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Outline

‚ Motivation - QCD, inhomogeneous phases and the Gross-Neveu model
‚ The dimensionality puzzle of inhomogeneous phases in the Gross-Neveu model
‚ Part I: General Lorentz-(pseudo)scalar four-fermi model in 2 ` 1-dimensions
‚ Part II: The Gross-Neveu model in non-integer dimensions
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Motivation (I) – QCD phase diagram
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[ K. Fukushima, T. Hatsuda, Reports on Prog. Phys. 74 (2011)]

adapted from [ F. Gao, J. M. Pawlowski, Phys. Lett. B. 820 (2021)]

‚ A plot full of conjectures

‚ What goes on at finite µB and low T?

‚ Do first principal calculations ñ very hard / impossible
‚ Use models of QCD

ñ a lot easier; questionable physical relevance
‚ Maybe chiral inhomogeneous phases?
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Motivation (II) – What is a chiral inhomogeneous phase?
‚ Possible chiral phases

‚ ⟨ψ̄ψ⟩pxq “ const. “ 0 : Symmetric phase (SP)
‚ ⟨ψ̄ψ⟩pxq “ const. ‰ 0 : Homogeneously broken phase (HBP)

‚ ⟨ψ̄ψ⟩pxq “ f pxq : Inhomogeneous phase (IP)
‚ IP breaks chiral symmetry and translational invariance (!)
‚ Well known in condensed matter, exotic in high energy physics
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Motivation (III) – Where to find a chiral inhomogeneous phase?

Gross-Neveu (GN) model in 1 ` 1 dimensions

Srψ̄, ψs “

∫
d2x

[
ψ̄p{B ` γ0µqψ ´

λ

2N
(
ψ̄ψ

)2
]

H.S.
ÝÝÑ
trafo

Sσrσ, ψ̄, ψs “

∫
d2x

[
ψ̄p{B ` γ0µ` σqψ `

Nσ2

2λ

]
integrate

ÝÝÝÝÑ
ψ̄,ψ

Seffrσs

N “

∫
d2x σ2

2λ ´ lnDetp{B ` γ0µ` σq

‚ Chiral Symmetry: ψ Ñ γ5ψ , ψ̄ Ñ ´γ5ψ̄ , σ Ñ ´σ

‚ Ward identity: ⟨ψ̄ψ⟩ “ ´N
λ
⟨σ⟩

‚ Mean-field approximation:
‚ No quantum fluctuations for σ
‚ only relevant configurations are minima of Seff
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[ M. Thies, K. Urlichs, Phys. Rev. D. 67 (2003)]
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Motivation (IV) – Inhomogeneous phases in higher dimensions
GN model in 2 ` 1 dimensions

[ M. Buballa et al., Phys. Rev. D. 103 (2021)]

IP vanishes in renormalized limit!

Nambu-Jona-Lasinio (NJL)-type models in 3 ` 1 dimensions
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adapted from [ D. Nickel, Phys. Rev. D. 80 (2009)]

‚ Phase diagram identical to GN model
‚ strong dependence on regulator and regularization

scheme [ L. Pannullo et al., PoS. LATTICE2022 (2023)]

[ T. L. Partyka, M. Sadzikowski, J. Phys. G: Nucl. Part. Phys. 36 (2009)]
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The dimensionality puzzle of IPs in the GN model

‚ Somehow the absence of an IP in 2 ` 1 does not fit with 1 ` 1 and 3 ` 1
[ M. Buballa et al., Phys. Rev. D. 103 (2021)]

‚ Also in 3 ` 1 strong regulator dependence of the IP has been found
[ L. Pannullo et al., PoS. LATTICE2022 (2023)] [ T. L. Partyka, M. Sadzikowski, J. Phys. G: Nucl. Part. Phys. 36 (2009)]

‚ We will look at two possible reasons:
1. the GN model is too simple for IPs in 2 ` 1-dimensions

ñ consider a more general model in 2 ` 1-dimensions (Part I)
2. 3 ` 1-dimensional results are “regulator artifacts” and the 3 ` 1 puzzle piece is also “red”

ñ consider renormalized GN model in non-integer spatial dimensions 1 ď d ă 3 (Part II)
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Part I: General model in 2 ` 1-dimensions
[ L. Pannullo, M. Winstel, (2023), arXiv: 2305.09444 ]

https://arxiv.org/abs/2305.09444


General model in 2 ` 1-dimensions

‚ Consider model with 16 Lorentz-(pseudo)scalar interaction channels

L “ ψ̄
(

{B ` γ0µ
)
ψ ´

16∑
j“1

λj
2N

(
ψ̄ cj ψ

)2
, cj “ (1, iγ4, iγ5, γ45, τ⃗ , iτ⃗ γ4, iτ⃗ γ5, τ⃗γ45)j

‚ Up4Nq symmetry for λj “ λ ñ homogeneous phase diagram identical to GN model
‚ Hubbard-Stratonovich, large-N limit similar to GN model
‚ search for IPs with stability analysis

Laurin Pannullo 8 / 26



Stability analysis (I) – General idea

‚ Homogeneous fields

ϕpxq “ ϕ̄

‚ Minimum of Seff is easy to obtain.
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Stability analysis (I) – General idea

‚ Consider only inhomogeneous perturbations

ϕpxq “ ϕ̄` δϕspxq

“ ϕ̄`

∫
j

∑
δϕ̃spqjq eixqj

‚ Investigate curvature at homogeneous
minimum
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Stability analysis (II) – Two-point function
‚ Curvature of the action in direction δϕ̃jpqq is given by the bosonic two-point function Γ

p2q

j pqqqq

‚ Simple quantity in the mean-field approximation

Γ
p2q

j pqqqq “
1
λ

`

ppp

ppp ` qqq

qqq qqq

ϕj ϕj
ψ “

1
λ

`

∫
dDp

p2πqD Tr
[
Sppq cjSpp ` qqqqcj

]

‚ curvature of Γp2q at q “ 0 is wave-function renormalization Z, i.e., Z “ 1
2

d2 Γp2q
pq2

q

dq2 |q“0
‚ negative Z indicates moat regime
‚ negative values indicate instability for mode q

q

Γ(2)(q) Normal

q

Γ(2)(q) Moat, Z < 0

q

Γ(2)(q) Instability
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Results of the stability analysis (I)

‚ One finds for all channels two-point functions of the form

Γ
p2q

j pqqqq “
1
λ

´ l1pM2q︸ ︷︷ ︸
independent of qqq

`L2,jpq2,M2q,

where M is value of homogeneous configurations used
as expansion point

‚ if M minimizes homogeneous effective action

ñ offset is always larger or equal than zero

‚ offset depends on details of model
‚ if q-dependent part L2,j is monotonically rising function,

no instability possible and no moat regime
‚ For all j either L2,j “ L2,` or L2,j “ L2,´
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Results of the stability analysis (II)

‚ consider all possible
expansion points M

‚ L2,˘ monotonically rising
function in q for all M, µ,T

‚ no instability towards an IP for
any combination of interaction
channels, e.g., GN, NJL etc.
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Extensions
Yukawa-type extensions

‚ Yukawa-type extensions of four-fermi models

SYrϕ⃗s “
Seffrϕ⃗s

N︸ ︷︷ ︸
four-fermi part

`

∫
d3x

 1
2h2

(
Bν ϕ⃗pxq

)2
`
∑
ną1

κn

(∑
j

ϕ2
j pxq

)n
 , (1)

‚ potential influences homogeneous minimum and thus the physical relevant evaluation point M
‚ kinetic part contributes q2{h2 to L2,˘, positive for real Yukawa couplings
‚ Yukawa-type extension cannot produce an instability

Other chemical potentials:

‚ we also considered some other chemical potentials such as chiral and isospin
‚ in this general framework the two-point function cannot be diagonalized for arbitrary set of

interaction channels
ñ have to neglect some interaction channels, which are physically relevant, e.g., charged pions

‚ for remaining subsetsno instability there
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Conclusion and outlook of Part I

Conclusion:

‚ Absence of inhomogeneous phase in 2 ` 1 dimensions not restricted to GN model
‚ Lorentz-(pseudo)scalar interaction channels show no instability when subjected to quark chemical

potential
‚ also no evidence of a moat regime

Outlook:

‚ Other interaction channels: Vector interactions promising – investigated by Marc Winstel

Laurin Pannullo 14 / 26



Part II: Gross-Neveu model in non-integer spatial
dimensions 1 ď d ă 3

[ L. Pannullo, (2023), arXiv: 2306.16290 ]

https://arxiv.org/abs/2306.16290


The dimensionality puzzle of IPs in the GN model

‚ result in 2 ` 1 dimensions not due to limited symmetry group

‚ maybe pieces are missing?
‚ consider renormalized GN model in non-integer spatial dimensions 1 ď d ă 3
‚ perform stability analysis to understand how the IP vanishes between d “ 1 and d “ 2
‚ approach d “ 3 from below to see if an instability begins to develop again
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Do’s and Dont’s in non-integer dimensions

First, let’s think about what we are allowed to do in non-integer dimensions:
[ G. ’t Hooft, M. Veltman, Nucl. Phys. B. 44 (1972)]

‚ {γµ, γν} “ 2δµ,ν : ✓

‚ {γµ, γ5} “ 0 : ✗
ñ avoid everything that depends on γ5 (such as the NJL)

‚ Chiral symmetry : ✗

‚ Chirality : ?
‚ Angles between vectors: ?
‚ interpret a lot into results at a specific non-integer d: ✗

ñ it is more about trends between integer dimensions

Laurin Pannullo 16 / 26



Homogeneous phase diagram of the GN model in 1 ď d ă 3
‚ Model renormalizable in 1 ď d ă 3 just as in integer dimensions (via Gap equation)
‚ First: Restrict to homogeneous σ, investigate dependence of phase diagram on spacetime

dimensions D “ d ` 1 [ T. Inagaki et al., Int. J. Mod. Phys. A. 10 (1995)]

Phase boundaries (dashed: 1st order line) Critical µ at T “ 0

[ T. Inagaki et al., Int. J. Mod. Phys. A. 10 (1995)]
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Homogeneous effective potential at T “ 0

‚ Homogeneous effective potential at T “ 0 and
at µ “ µc

‚ Critical point meets T “ 0 at d “ 2
ñ Ūeff is completely flat

Laurin Pannullo 18 / 26



Stability analysis – non-integer d calculation

‚ Two-point function can again be decomposed into

Γp2qpσ̄2, µ, q2, dq “
1
λ

´ Nγ l1
(
σ̄2, µ, d

)
` L2pσ̄2, µ,qqq, dq

‚ Momentum dependent part at T “ 0

L2pσ̄2, µ,qqq, dq “ 1
2

(
q2 ` 4σ̄2

)
Nγ

∫ 8

´8

dp0
p2πq

∫
ddp

p2πqd
1

ppp0´iµq2`σ̄2`pppp`qqqq2qppp0´iµq2`σ̄2`ppp2q

‚ Angle dependence can be removed with Feynman trick
‚ resulting integral cannot be solved in closed form for arbitrary d
‚ but can easily be integrated numerically

‚ Bosonic wave-function renormalization can be given in a completely closed form
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Results – 1 ď d ď 2 (I)
‚ Γp2q at T “ 0 and at homogeneous critical chemical potential µc shows instability for d ă 2
‚ Diverges only for d “ 1, but has cusp for d ą 1
‚ Instability gradually weakens until it vanishes together with critical point at d “ 2
‚ At d “ 2

‚ Two-point function exhibits flat region similar to Ūeff
‚ Urlichs found also a degeneracy of homogeneous configurations and inhomogeneous configurations at

T “ 0 and µ “ µc [ K. Urlichs, (2007)]
‚ Maybe not only the homogeneous effective potential is flat, but also the inhomogeneous potential

0.0 0.5 1.0 1.5 2.0 2.5

q/σ̄0

−0.3

−0.2

−0.1

0.0

0.1
Γ

(
2
)
/
(σ̄
d
−

1
0

N
γ

)

d = 1.0 d = 1.2

d = 1.5

d = 1.7
d = 1.9

d = 2.0

Laurin Pannullo 20 / 26



Results – 1 ď d ď 2 (II)

‚ Wave-function renormalization Z indicates moat regime as expected.
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Results – 2 ď d ă 3 (I)
‚ Γp2q at homogeneous critical chemical potential µc approaches parabolic shape for increasing d
‚ In conflict with 3 ` 1 results; difference is that the present results are renormalized

ñ IPs in 3 ` 1-dimensional GN and NJL are solely generated by the necessary regulator
‚ same effect observed in renormalizable 2 ` 1 GN [ M. Buballa et al., Phys. Rev. D. 103 (2021)]
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Results – 2 ď d ă 3 (II)
‚ Wave-function renormalization Z shows no moat regime
‚ Z diverges at µ{σ̄0 “ 1

‚ kink in Γp2q is located at q2
{4 “ µ2

´ σ̄2

‚ for d ą 2, one can find µ2
“ σ̄2

ñ Z diverges within broken phase
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Alternate interpretation

‚ in 3 ` 1-dimensional GN/NJL model one has to keep the regulator at finite value
‚ Some use dimensional regularization

‚ There one introduces a mass scale M0 since the regulator d is dimensionless
‚ One then tunes λ and d(ă 3) via IR observables (e.g. ⟨ψ̄ψ⟩vac. and fπ)

‚ ñ we really just calculated the regulator dependence of the 3 ` 1-dimensional Gross-Neveu
model for dim. reg.

‚ strong regularization then just procures low dimensional phase diagram
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Conclusion of Part II
‚ Solely increasing the number of dimensions causes the IP to vanish at d “ 2

‚ here the critical point meets T “ 0
‚ Maybe flat (inhomogeneous) effective action at d “ 2 at T “ 0 and µ “ µc?

‚ No instability for 2 ă d ă 3 ñ IP in d “ 3 generated by regulator
‚ alternate view of d-dimensional study: study of regulator dependence of dim. reg.
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‚ here the critical point meets T “ 0
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Outlook of Part II
‚ calculations for finite T
‚ calculation for finite regulator

ñ connect to 3 ` 1-dimensional results
‚ consider 1-dimensional ansatz functions embedded in d-dimensional space
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