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Part 1l: The Gross-Neveu model in non-integer dimensions
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Motivation (I) - QCD phase diagram
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[ K. Fukushima, T. Hatsuda, Reports on Prog. Phys. 74 (2011)]

e A plot full of conjectures
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e Do first principal calculations = very hard / impossible
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e Do first principal calculations = very hard / impossible
e Use models of QCD
= a lot easier; questionable physical relevance
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e A plot full of conjectures
e What goes on at finite up and low T?
e Do first principal calculations = very hard / impossible
e Use models of QCD
= a lot easier; questionable physical relevance

e Maybe chiral inhomogeneous phases?
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Motivation (II) - What is a chiral inhomogeneous phase?
e Possible chiral phases

e (1) (x) = const. = 0 : Symmetric phase (SP)
e (Y1))(x) = const. # 0 : Homogeneously broken phase (HBP)
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Motivation (II) - What is a chiral inhomogeneous phase?

e Possible chiral phases

o (¢nh)(x) = const. = 0 : Symmetric phase (SP)
o (¢nh)(x) = const. # 0 : Homogeneously broken phase (HBP)
o (YY) (x) = f(x) : Inhomogeneous phase (IP)
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Motivation (II) - What is a chiral inhomogeneous phase?

e Possible chiral phases

(¢1h)(x) = const. = 0 : Symmetric phase (SP)
(¢1h)(x) = const. # 0 : Homogeneously broken phase (HBP)
() (x) = f(x) : Inhomogeneous phase (IP)
o |P breaks chiral symmetry and translational invariance (!)
e Well known in condensed matter, exotic in high energy physics
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Motivation (III) - Where to find a chiral inhomogeneous phase?
Gross-Neveu (GN) model in 1 + 1 dimensions

Sl o] = [ e [0+ s = 33 (G0
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Motivation (III) - Where to find a chiral inhomogeneous phase?
Gross-Neveu (GN) model in 1 + 1 dimensions
S(o.0) = [ i { B+ o) — s () }
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e Chiral Symmetry: ) — vs¢», ¥ — —y5¢0, o — —0
e Ward identity: (¥¢)) = 5N (o)
e Mean-field approximation:

e No quantum fluctuations for o

e only relevant configurations are minima of Sex
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Motivation (III) - Where to find a chiral inhomogeneous phase?
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[ M. Thies, K. Urlichs, Phys. Rev. D. 67 (2003)]
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Motivation (IV) — Inhomogeneous phases in higher dimensions

GN model in 2 + 1 dimensions
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Motivation (IV) — Inhomogeneous phases in higher dimensions

GN model in 2 + 1 dimensions
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Motivation (IV) — Inhomogeneous phases in higher dimensions

GN model in 2 + 1 dimensions
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IP vanishes in renormalized limit!
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Motivation (IV) — Inhomogeneous phases in higher dimensions

GN model in 2 + 1 dimensions Nambu-Jona-Lasinio (NJL)-type models in 3 + 1 dimensions
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IP vanishes in renormalized limit!
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e Phase diagram identical to GN model
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Motivation (IV) — Inhomogeneous phases in higher dimensions

GN model in 2 + 1 dimensions Nambu-Jona-Lasinio (NJL)-type models in 3 + 1 dimensions
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[ M. Buballa et al., Phys. Rev. D. 103 (2021)] adapted from [ D. Nickel, Phys. Rev. D. 80 (2009)]
IP vanishes in renormalized limit! e Phase diagram identical to GN model

e strong dependence on regulator and regularization
scheme [L. Pannullo et al., PoS. LATTICE2022 (2023)]

[ T. L. Partyka, M. Sadzikowski, J. Phys. G: Nucl. Part. Phys. 36 (2009)]
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The dimensionality puzzle of IPs in the GN model

e Somehow the absence of an IP in 2 + 1 does not fit with 1 +1and 3 + 1
[ M. Buballa et al., Phys. Rev. D. 103 (2021)]
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e Also in 3 + 1 strong regulator dependence of the IP has been found
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The dimensionality puzzle of IPs in the GN model

e Somehow the absence of an IP in 2 + 1 does not fit with 1 +1and 3 + 1
[ M. Buballa et al., Phys. Rev. D. 103 (2021)]

e Also in 3 + 1 strong regulator dependence of the IP has been found
[ L. Pannullo et al., PoS. LATTICE2022 (2023)] [T. L. Partyka, M. Sadzikowski, J. Phys. G: Nucl. Part. Phys. 36 (2009)]

e We will look at two possible reasons:

1. the GN model is too simple for IPs in 2 + 1-dimensions
= consider a more general model in 2 4+ 1-dimensions (Part )

2. 3 + 1-dimensional results are “regulator artifacts” and the 3 + 1 puzzle piece is also “red”
= consider renormalized GN model in non-integer spatial dimensions 1 < d < 3 (Part Il)
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Part I: General model in 2 + 1-dimensions
[ L. Pannullo, M. Winstel, (2023), arXiv: 2305.09444 ]


https://arxiv.org/abs/2305.09444

General model in 2 + 1-dimensions

Consider model with 16 Lorentz-(pseudo)scalar interaction channels

16

L= a + ’YO,U/ Z wC] 3 Cj = (171747i757’y45a7_)7 i7—'"74ai7?75,7_"’?45)]‘

U(4N) symmetry for \; = A = homogeneous phase diagram identical to GN model
Hubbard-Stratonovich, large-N limit similar to GN model

search for IPs with stability analysis

Laurin Pannullo
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Stability analysis (I) — General idea

e Homogeneous fields

p(x) = ¢

e Minimum of S, is easy to obtain.
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Stability analysis (I) — General idea

¢ In general fields have full space dependence

P(x) = ¢+ ¢s(x

=¢ +j <l5< el
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¢ In general fields have full space dependence

P(x) = ¢+ ¢s(x
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Stability analysis (I) — General idea

¢ In general fields have full space dependence

P(x) = ¢+ ¢s(x

_¢+§[ e

e Former homogeneous minimum might only be
saddle point

e Full dependence of Sei on ¢(x) extremely
difficult or impossible
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Stability analysis (I) — General idea

o Consider only inhomogeneous perturbations
(;5(3() = Qg + (5¢5(X)
— 643 56.(g) e
j

e Investigate curvature at homogeneous
minimum
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Stability analysis (II) - Two-point function

e Curvature of the action in direction 5(;3]-(0]) is given by the bosonic two-point function I’
e Simple quantity in the mean-field approximation

r®(q)

Normal

B

Tr [S(p) ¢S(p + 4)c]
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Stability analysis (II) - Two-point function

Curvature of the action in direction 5(;3]-(0]) is given by the bosonic two-point function F;z) (q)
Simple quantity in the mean-field approximation '

1 q
F;@)(q):X + ¢@¢ /\ /dp Tr [S(p) ¢iS(p + 9)¢f]
j j

p+q N
2 2 2
curvature of T at g = 0 is wave-function renormalization Z, i.e., Z = %drdiqz(’”hzo

negative Z indicates moat regime
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Stability analysis (II) - Two-point function

Curvature of the action in direction 5(;3]-(0]) is given by the bosonic two-point function F;z) (q)
Simple quantity in the mean-field approximation '

1 q
1“](2) q) = 1 4 eennnnes @ ........ )\ / Sﬂﬁ’n Tr [S(p) ¢iS(p + 9)qj]
on on

ptq
curvature of T at g = 0 is wave-function renormalization Z, i.e., Z = %%ﬁ;(’ﬁh:o
negative Z indicates moat regime
negative values indicate instability for mode g

@ (q) Normal r@(q) Moat, Z <0 r®(g) Instability
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Results of the stability analysis (I)

¢ One finds for all channels two-point functions of the form

1
TP @) = 5 — (M) +Loj(q*, M),

N—_——
independent of g

where M is value of homogeneous configurations used
as expansion point
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Results of the stability analysis (I)

¢ One finds for all channels two-point functions of the form

1
TP @) = 5 — (M) +Loj(q*, M),

Seft

N—_——
independent of g

where M is value of homogeneous configurations used
as expansion point

¢ if M minimizes homogeneous effective action

o(q:)
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as expansion point
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= offset is always larger or equal than zero
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Results of the stability analysis (I)

One finds for all channels two-point functions of the form

1
I @) = = h(M?) +Lo(q*, M),

—_—
independent of g

where M is value of homogeneous configurations used
as expansion point

e if M minimizes homogeneous effective action
= offset is always larger or equal than zero

¢ offset depends on details of model

e if g-dependent part L, ; is monotonically rising function,
no instability possible and no moat regime
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Results of the stability analysis (I)

One finds for all channels two-point functions of the form

1
I @) = = h(M?) +Lo(q*, M),

—_—
independent of g

where M is value of homogeneous configurations used
as expansion point

e if M minimizes homogeneous effective action
= offset is always larger or equal than zero

¢ offset depends on details of model

e if g-dependent part L, ; is monotonically rising function,
no instability possible and no moat regime

e Foralljeither Ly; =L,y orlyj=1Ls_
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Results of the stability analysis (II)

e consider all possible
expansion points M

e [, + monotonically rising
function in g for all M, pi, T
e no instability towards an IP for

any combination of interaction
channels, e.g., GN, NJL etc.
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Extensions

Yukawa-type extensions

e Yukawa-type extensions of four-fermi models

Svlé] - Se;? o [ @ [21,12 (0800) + Y ma( X )| 1)

four-fermi part
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Extensions

Yukawa-type extensions

e Yukawa-type extensions of four-fermi models

Sy[g] = Serle] +/d3x 2:12(55 )+ZHH(Z¢, ) : (1)

n>1

95
§:

four-fermi part

o potential influences homogeneous minimum and thus the physical relevant evaluation point M
e kinetic part contributes q2 /h? to L, +, positive for real Yukawa couplings
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Extensions

Yukawa-type extensions

e Yukawa-type extensions of four-fermi models

Sy[g] = Serle] +/d3x 2:12(55 )+Znn(2¢, ) : (1)

n>1

95
§:

four-fermi part

o potential influences homogeneous minimum and thus the physical relevant evaluation point M
e kinetic part contributes q2 /h? to L, +, positive for real Yukawa couplings
e Yukawa-type extension cannot produce an instability

Other chemical potentials:

e we also considered some other chemical potentials such as chiral and isospin
o in this general framework the two-point function cannot be diagonalized for arbitrary set of
interaction channels
= have to neglect some interaction channels, which are physically relevant, e.g., charged pions
o for remaining subsetsno instability there
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Conclusion and outlook of Part I

Conclusion:

e Absence of inhomogeneous phase in 2 + 1 dimensions not restricted to GN model

o Lorentz-(pseudo)scalar interaction channels show no instability when subjected to quark chemical
potential

e also no evidence of a moat regime
Outlook:

o Other interaction channels: Vector interactions promising — investigated by Marc Winstel
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Part II: Gross-Neveu model in non-integer spatial
dimensions 1 <d < 3
[ L. Pannullo, (2023), arXiv: 2306.16290 ]


https://arxiv.org/abs/2306.16290

The dimensionality puzzle of IPs in the GN model

e resultin 2 4+ 1 dimensions not due to limited symmetry group
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e resultin 2 4+ 1 dimensions not due to limited symmetry group
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The dimensionality puzzle of IPs in the GN model

Laurin Pannullo

result in 2 4+ 1 dimensions not due to limited symmetry group
maybe pieces are missing?

approach d = 3 from below to see if an instability begins to develop again

1+1GN
IP v

consider renormalized GN model in non-integer spatial dimensions 1 < d < 3
perform stability analysis to understand how the IP vanishes betweend = 1 and d = 2

3+1 GN
IP?
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Do’s and Dont’s in non-integer dimensions

First, let’s think about what we are allowed to do in non-integer dimensions:
[ G. 't Hooft, M. Veltman, Nucl. Phys. B. 44 (1972)]

g {’Y/JJ’YV} = 26;},,1/ W

{’Y,Un P)/S} =0: X
= avoid everything that depends on 75 (such as the NJL)

Chiral symmetry : X
Chirality :
Angles between vectors:

interpret a lot into results at a specific non-integer d: X
= it is more about trends between integer dimensions
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Homogeneous phase diagram of the GN modelin1 <d <3

e Model renormalizable in 1 < d < 3 just as in integer dimensions (via Gap equation)
e First: Restrict to homogeneous o, investigate dependence of phase diagram on spacetime
dimensions D = d + 1 [T Inagaki et al., Int. J. Mod. Phys. A. 10 (1995)]

Phase boundaries (dashed: 1st order line) Critical pat T =0

pn/m pe/m

12

10

[ T. Inagaki et al., Int. J. Mod. Phys. A. 10 (1995)]
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Homogeneous effective potential at T = 0

e Homogeneous effective potential at T = 0 and
at p = pic

e Critical point meets T =0 atd =2
= Ut is completely flat
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Stability analysis — non-integer d calculation

Two-point function can again be decomposed into

1
P (02 g d) = 5 = Noh (52, i, d) + Lo(3% g, d)

Momentum dependent partat T = 0

_2 o dp
La(o% .d) = 3 +4" / 0 / @ o e G o 74 7)

Angle dependence can be removed with Feynman trick

e resulting integral cannot be solved in closed form for arbitrary d
e but can easily be integrated numerically

Bosonic wave-function renormalization can be given in a completely closed form
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Results -1 <d <2 (D)

I'® at T = 0 and at homogeneous critical chemical potential 1. shows instability for d < 2

Diverges only for d = 1, but has cusp ford > 1

Instability gradually weakens until it vanishes together with critical point at d = 2

Atd =2

o Two-point function exhibits flat region similar to U

e Urlichs found also a degeneracy of homogeneous configurations and inhomogeneous configurations at
T =0and u = pu. [K. Urlichs, (2007)]

e Maybe not only the homogeneous effective potential is flat, but also the inhomogeneous potential

r® /(a5 Ny)
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Results -1 <d <2 II)

e Wave-function renormalization Z indicates moat regime as expected.

0.01 7
. ] d=2.0
c ~ 0.00 3 d=19
> ] = 1.9 &=
TZ 5 001 d= “f
S Lo ] d=15
=< L —0.02 ]
a N ] d=1.2
£ —0.03 7
_0,04-: d=1.0
L L I R R R B R AL R
0.0 0.5 1.0 1.5
n/Go
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Results-2 <d <3 ()

o I'® at homogeneous critical chemical potential 1., approaches parabolic shape for increasing d

e In conflict with 3 + 1 results; difference is that the present results are renormalized
= IPsin 3 + 1-dimensional GN and NJL are solely generated by the necessary regulator

e same effect observed in renormalizable 2 + 1 GN [ M. Buballa et al., Phys. Rev. D. 103 (2021)]
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Results -2 <d <3 (II)

e Wave-function renormalization Z shows no moat regime
e Zdiverges at /5o = 1

e kink in T® is located at g% /4 = pi* — 5°
e ford > 2, one can find > = % = Z diverges within broken phase

0.20
—~ 015 ] 0.06 -
N ] > d=29
ﬁZ ] Z,
| 0.10 ] =" 0.04 7
"o
) ] S
= 0.05 ] < 0.02 4 d=27
a 1 N
7, 1 — d=25
0.00 4 ] d=21|
] 0001 4_9p
—— SR Ly [ SN [ SN I —
00 05 10 15 20 25 3.0 00 05 1.0 15 20 25 30 35

q/50 K/Go
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Alternate interpretation

in 3 + 1-dimensional GN/NJL model one has to keep the regulator at finite value

Some use dimensional regularization

e There one introduces a mass scale My since the regulator d is dimensionless

e One then tunes A and d(< 3) via IR observables (e.g. (1/1)vac. and fr)

= we really just calculated the regulator dependence of the 3 + 1-dimensional Gross-Neveu
model for dim. reg.

strong regularization then just procures low dimensional phase diagram
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Conclusion of Part II

e Solely increasing the number of dimensions causes the IP to vanish at d = 2
e here the critical point meets T = 0
e Maybe flat (inhomogeneous) effective actionatd =2 at T = 0 and p = pc?
e No instability for 2 < d < 3 = IP in d = 3 generated by regulator
e alternate view of d-dimensional study: study of regulator dependence of dim. reg.

3+1GN
IP?

Laurin Pannullo
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Outlook of Part II

e calculations for finite T
e calculation for finite regulator
= connect to 3 + 1-dimensional results
e consider 1-dimensional ansatz functions embedded in d-dimensional space

—— 1st order == 2nd order ® CP

B/5o
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