BSM phenomenology from heterotic string orbifolds

MSc Omar Perez-Figueroa

JLU Giessen Institut für Theoretische Physik

June 20th, 2023

Content

Motivation

- SM and beyond
- BSM proposals
- Introduction to String theory
- 3 Heterotic Orbifolds
- Phenomenology of orbifold compactifications
 Gauge coupling of a U(1)' model
 Uline neutral DM
 - Higgs-portal DM

Content

Motivation

- SM and beyond
- BSM proposals
- Introduction to String theory
- 3 Heterotic Orbifolds
- Phenomenology of orbifold compactifications
 Gauge coupling of a U(1)' model
 Higgs-portal DM

Phenomenology of orbifold compactification

Content

1 Motivation

- SM and beyond
- BSM proposals

Introduction to String theory

3 Heterotic Orbifolds

Phenomenology of orbifold compactifications
Gauge coupling of a U(1)' model
Higgs-portal DM

Heterotic Orbifolds

Phenomenology of orbifold compactification

Conclusions 0000

SM irreps

f	irrep	s	irrep	V_{μ}	irrep
q	$({f 3},{f 2})_{1/6}$	ϕ	$({f 1},{f 2})_{1/2}$	G^a_μ	$({f 8},{f 1})_0$
ℓ	$(1,2)_{-1/2}$			W^a_μ	$({f 1},{f 3})_0$
\overline{u}	$(ar{3}, 1)_{-2/3}$			B_{μ}	$({f 1},{f 1})_0$
\overline{d}	$({f \bar 3},{f 1})_{1/3}$				
\overline{e}	$({f 1},{f 1})_1$				

• SM irreps under $\mathcal{G}_{SM} = SU(3)_c \times SU(2)_L \times U(1)_Y$.

Beyond the SM

- SM as an effective theory
 - Quantum gravity effects become relevant at $M_P \sim 10^{19}~{\rm GeV}$
- Already known BSM physics:
 - Neutrino masses \Rightarrow mixing
 - Muon anomalous magnetic moment
 - Particle physics description of dark matter (DM)
 - Dark energy
- Naturalness and hierarchy problems:
 - Mass hierarchy
 - Electroweak hierarchy problem
 - Strong CP problem

leory Heterotic Orbifolds

Phenomenology of orbifold compactification

Conclusions

Higgs vacuum meta-stability

The Higgs quartic coupling $\lambda(\mu) < 0$ at $\mu \sim 10^{10}$ GeV D. Buttazzo [arXiv:1307.3536].

- Potential becomes unbounded from below, no minimum.
- Decay to vacuum with different physics.

Qualitatively, for small λ

$$\beta(\lambda) \propto \sum_{i,j=1,2} g_i^2 g_j^2 - h_t^4 < 0$$

Omar Perez-Figueroa (ITP, JLU)

Content

- Motivation

 SM and beyond
 - BSM proposals
- Introduction to String theory
- 3 Heterotic Orbifolds
- Phenomenology of orbifold compactifications
 Gauge coupling of a U(1)' model
 Higgs-portal DM

Bottom-up

- $\bullet~{\sf Z}'$ models : extra ${\rm U}(1)'$ symmetry,
 - Exotics required to avoid gauge anomalies
 - $\bullet\,$ Can be motivated from GUTs like E_6
 - Known to stabilize the Higgs vacuum in the presence of few exotics charged under the U(1)' Di Chiara et al. [arXiv:1412.7036]

• Detection limits $m_{Z'}\gtrsim 2\,{
m TeV}$ (2018)

Bottom-up

- $\bullet~{\sf Z}'$ models : extra ${\rm U}(1)'$ symmetry,
 - Exotics required to avoid gauge anomalies
 - $\bullet\,$ Can be motivated from GUTs like E_6
 - Known to stabilize the Higgs vacuum in the presence of few exotics charged under the U(1)' Di Chiara et al. [arXiv:1412.7036]
 - Detection limits $m_{Z'}\gtrsim 2\,{
 m TeV}$ (2018)
- Higgs portal models : Higgs coupled to dark sector
 - THDM extensively studied
 - Higgs portals to a singlet DM candidate are prolific scenarios

Heterotic Orbifolds

Phenomenology of orbifold compactification

Conclusions 0000

Top-down

SUSY

•
$$N_f = N_b$$

Φ	5	f	irrep	V	f	V_{μ}	irrep
Q	q	q	$(3, 2)_{1/6}$	Gª	Ĝª	G^a_μ	$(8, 1)_0$
L	$\tilde{\ell}$	ℓ	$(1, 2)_{-1/2}$	Wª	Ŵª	W^a_μ	$(1, 3)_0$
ū	\tilde{u}_R^*	u_R^{\dagger}	$({f \bar 3},{f 1})_{-2/3}$	В	Ĩ	B_{μ}	$(1, 1)_0$
d	\tilde{u}_R^*	d_R^\dagger	$({f \bar 3},{f 1})_{1/3}$				
ē	\tilde{e}_R^*	e_R^\dagger	$(1, 1)_1$				
H _u	ϕ_{u}	$\tilde{\phi}_{u}$	$(1, 2)_{1/2}$				
H _d	ϕ_{d}	$\tilde{\phi}_{d}$	$(1, 2)_{-1/2}$				

MSSM spectrum

SUSY

•
$$N_f = N_b$$

• Suggests GUTs: gauge coupling unification

S. P. Martin [arXiv:9709356]

- SUSY
 - $N_f = N_b$
 - Suggests GUTs: gauge coupling unification
 - Solves the EW hierarchy problem

- SUSY
 - $N_f = N_b$
 - Suggests GUTs: gauge coupling unification
 - Solves the EW hierarchy problem
 - No superpartners observed yet

- SUSY
 - $N_f = N_b$
 - Suggests GUTs: gauge coupling unification
 - Solves the EW hierarchy problem
 - No superpartners observed yet
- String theory

Phenomenology of orbifold compactifications

Content

- Motivation
 - SM and beyond
 - BSM proposals

2 Introduction to String theory

- 3 Heterotic Orbifolds
- Phenomenology of orbifold compactifications
 Gauge coupling of a U(1)' model
 Higgs-portal DM

Heterotic Orbifolds
 0000000000

Phenomenology of orbifold compactifications

Conclusions

Action and Symmetries

• 1D objects propagating over spacetime, described in the worldsheet $X^M(\tau,\sigma)$ in D dims $M=0,1,\ldots,D-1$

Figure: Worldsheets of an a) open and a b) closed string in comparison with a particle's worldline (down).

Heterotic Orbifolds

Phenomenology of orbifold compactifications

Conclusions

Action and Symmetries

- 1D objects propagating over spacetime, described in the worldsheet $X^M(\tau,\sigma)$ in D dims $M=0,1,\ldots,D-1$
- $\bullet\,$ Nambu-Goto action (worldsheet area) non-polinomial $\to\,$ Polyakov action via worldsheet metric

$$\mathcal{S}_{\mathsf{NG}}[X] = -\frac{1}{2\pi\alpha'} \int \mathrm{d}\,\tau \,\mathrm{d}\,\sigma \sqrt{-\det\partial_a X^M \partial_b X^N g_{MN}(X)}$$

String tension $T=1/(2\pi\alpha')$ (Regge slope $\alpha')$

Heterotic Orbifolds

Phenomenology of orbifold compactification

Conclusions

Action and Symmetries

- 1D objects propagating over spacetime, described in the worldsheet $X^M(\tau,\sigma)$ in D dims $M=0,1,\ldots,D-1$
- $\bullet\,$ Nambu-Goto action (worldsheet area) non-polinomial $\rightarrow\,$ Polyakov action via worldsheet metric

$$S_{\mathsf{P}}[X,g_{ab}] = -\frac{1}{4\pi\alpha'} \int \mathrm{d}\,\tau\,\mathrm{d}\,\sigma\sqrt{-\det(g^{ab})}g^{ab}\partial_a X^M\partial_b X^N g_{MN}(X)$$

Heterotic Orbifolds

Phenomenology of orbifold compactifications

Conclusions

Action and Symmetries

- 1D objects propagating over spacetime, described in the worldsheet $X^M(\tau,\sigma)$ in D dims $M=0,1,\ldots,D-1$
- $\bullet\,$ Nambu-Goto action (worldsheet area) non-polinomial $\rightarrow\,$ Polyakov action via worldsheet metric
- Symmetries...
 - Spacetime reparams (diffeos) $x^M \to \overline{x}^M(x)$ then $X^M(\tau, \sigma) \to \overline{X}^M(\tau, \sigma) = \overline{x}(X(\tau, \sigma))$
 - Worldsheet reparametrizations $\sigma^a \to \overline{\sigma}^a(\sigma)$
 - Weyl transformations (intrinsic metric rescaling) $g_{ab}(\sigma) \rightarrow \overline{g}_{ab}(\sigma) = \Omega(\sigma)g_{ab}(\sigma)$

Phenomenology of orbifold compactifications

Conclusions

Action and Symmetries

- 1D objects propagating over spacetime, described in the worldsheet $X^M(\tau,\sigma)$ in D dims $M=0,1,\ldots,D-1$
- $\bullet\,$ Nambu-Goto action (worldsheet area) non-polinomial $\rightarrow\,$ Polyakov action via worldsheet metric
- Symmetries...
 - Spacetime reparams (diffeos) $x^M \to \overline{x}^M(x)$ then $X^M(\tau, \sigma) \to \overline{X}^M(\tau, \sigma) = \overline{x}(X(\tau, \sigma))$
 - Worldsheet reparametrizations $\sigma^a \to \overline{\sigma}^a(\sigma)$
 - Weyl transformations (intrinsic metric rescaling) $g_{ab}(\sigma) \rightarrow \overline{g}_{ab}(\sigma) = \Omega(\sigma)g_{ab}(\sigma)$
- $\bullet\,$ Even after fixing some gauge freedom there is a remaining conformal symmetry $\to\,$ CFT

Motivation 00000000	Introduction to String theory	Heterotic Orbifolds	Phenomenology of orbifold compactifications	Concl 0000

Solutions

• Wave equations $(\partial_{\tau}^2 - \partial_{\sigma}^2)X^M = 0$ and boundary conditions of a closed $X^M(\tau, \sigma + 2\pi) = X^M(\tau, \sigma)$ or open string (Neumann and Dirichlet)

Heterotic Orbifolds

Solutions

- Wave equations $(\partial_{\tau}^2 \partial_{\sigma}^2)X^M = 0$ and boundary conditions of a closed $X^M(\tau, \sigma + 2\pi) = X^M(\tau, \sigma)$ or open string (Neumann and Dirichlet)
- Solutions can be decomposed in left and right movers $X^{M}(\tau,\sigma) = X^{M}_{L}(\tau+\sigma) + X^{M}_{R}(\tau-\sigma)$

$$\begin{split} X_L^M(\sigma^+) &= \frac{x^M}{2} + \sqrt{\frac{\alpha'}{2}} \alpha_0^M \sigma^+ + i \sqrt{\frac{\alpha'}{2}} \sum_{n \neq 0} \frac{\alpha_n^M}{n} e^{-in\sigma^+} \\ X_R^M(\sigma^-) &= \frac{x^M}{2} + \sqrt{\frac{\alpha'}{2}} \tilde{\alpha}_0^M \sigma^- + i \sqrt{\frac{\alpha'}{2}} \sum_{n \neq 0} \frac{\tilde{\alpha}_n^M}{n} e^{-in\sigma^-} \end{split}$$

Motivation Introduction to String theory Heterotic Orbifolds

Phenomenology of orbifold compactifications

Solutions

- Wave equations $(\partial_{\tau}^2 \partial_{\sigma}^2)X^M = 0$ and boundary conditions of a closed $X^M(\tau, \sigma + 2\pi) = X^M(\tau, \sigma)$ or open string (Neumann and Dirichlet)
- Solutions can be decomposed in left and right movers $X^M(\tau,\sigma)=X^M_L(\tau+\sigma)+X^M_R(\tau-\sigma)$
- Oscilation modes α_n^M , $\tilde{\alpha}_n^M$ become creation and annihilation operators upon quantization

Solutions

- Wave equations $(\partial_{\tau}^2 \partial_{\sigma}^2)X^M = 0$ and boundary conditions of a closed $X^M(\tau, \sigma + 2\pi) = X^M(\tau, \sigma)$ or open string (Neumann and Dirichlet)
- Solutions can be decomposed in left and right movers $X^M(\tau,\sigma)=X^M_L(\tau+\sigma)+X^M_R(\tau-\sigma)$
- Oscilation modes α_n^M , $\tilde{\alpha}_n^M$ become creation and annihilation operators upon quantization
- String excitations (oscillation modes in spacetime) are particles of a QFT at low energy

Heterotic Orbifolds

Phenomenology of orbifold compactification

Conclusions

Quantization and interactions

• Quantization and gauge fixing:

- Lightcone gauge: loses explicit Poincare invariance
- Covariant quantization: requires removing non-physical states from the theory

Phenomenology of orbifold compactifications

Conclusions

Quantization and interactions

• Quantization and gauge fixing:

- Lightcone gauge: loses explicit Poincare invariance
- Covariant quantization: requires removing non-physical states from the theory
- Only when D = 26 both quantization methods (and BRST) give the same spectrum and no Weyl anomaly

Quantization and interactions

- Quantization and gauge fixing:
 - Lightcone gauge: loses explicit Poincare invariance
 - Covariant quantization: requires removing non-physical states from the theory
- Only when D = 26 both quantization methods (and BRST) give the same spectrum and no Weyl anomaly
- String interactions are already in the theory via the topology of the worldsheets and reproduce QFT field interactions in the low energy limit

Quantization and interactions

- Quantization and gauge fixing:
 - Lightcone gauge: loses explicit Poincare invariance
 - Covariant quantization: requires removing non-physical states from the theory
- Only when D = 26 both quantization methods (and BRST) give the same spectrum and no Weyl anomaly
- String interactions are already in the theory via the topology of the worldsheets and reproduce QFT field interactions in the low energy limit

 $\bullet~\mbox{Gauge freedom}~\leftrightarrow~\mbox{modular}$ invariance of the string amplitudes

- \bullet Gauge freedom \leftrightarrow modular invariance of the string amplitudes
- No UV divergences thanks to modular invariance (theory includes an UV cutoff)

- $\bullet\,$ Gauge freedom $\leftrightarrow\,$ modular invariance of the string amplitudes
- No UV divergences thanks to modular invariance (theory includes an UV cutoff)

Heterotic Orbifolds

- Absence of Weyl anomalies for nontrivial backgrounds
 → beta function(al)s vanishing
 - \rightarrow QFT equations (plus corrections) in the low energy limit

Introduction to String theory

0000000

Motivation

Heterotic Orbifolds

- $\bullet\,$ Gauge freedom $\leftrightarrow\,$ modular invariance of the string amplitudes
- No UV divergences thanks to modular invariance (theory includes an UV cutoff)
- Absence of Weyl anomalies for nontrivial backgrounds
 → beta function(al)s vanishing
 - \rightarrow QFT equations (plus corrections) in the low energy limit Conformal invariance in the worldsheet

 \longleftrightarrow String dynamics in spacetime

Motivation

Introduction to String theory

0000000

theory Heterotic Orbifolds

Phenomenology of orbifold compactifications

Conclusions

Superstring Theories

- \bullet Only bosons in the spectrum \rightarrow SUSY
 - Add $\Psi^M(\tau,\sigma)$ spinors in the worldsheet but vectors in spacetime
 - Periodic (R) or antiperiodic (NS) conditions $\Psi^M(\tau,\sigma+2\pi)=\pm\Psi^M(\tau,\sigma)$
 - Now D = 10 for the Weyl anomaly to disappear

Superstring Theories

- \bullet Only bosons in the spectrum \rightarrow SUSY
- Modular invariance (of the partition function up to 1 loop) allows to define:
 - $\mathcal{N}=2$ theories IIA and IIB,
 - $\mathcal{N} = 1$ theory I with gauge group SO(32) to cancel anomalies and two heterotic SO(32) and $E_8 \times E_8$
 - $\mathcal{N}=0$ heterotic with $\mathrm{SO}(16)\times\mathrm{SO}(16)$ gauge group

heory Heterotic Orbifolds

Phenomenology of orbifold compactifications

Conclusions

Superstring Theories

- \bullet Only bosons in the spectrum \rightarrow SUSY
- Modular invariance (of the partition function up to 1 loop) allows to define:
 - $\mathcal{N}=2$ theories IIA and IIB,
 - $\mathcal{N}=1$ theory I with gauge group SO(32) to cancel anomalies and two heterotic SO(32) and $E_8 \times E_8$
 - $\mathcal{N}=0$ heterotic with $\mathrm{SO}(16)\times\mathrm{SO}(16)$ gauge group
- \bullet Several superstring theories \rightarrow M theory unification (dualities)

Advantages:

- Unification, quantum description of gravity (Einstein in the low energy limit)
- No UV divergences
- Can obtain the SM gauge group, for example by branes which allow a geometric mechanism for symmetry breaking (type IIB)
- Low energy limit is a QFT

Disadvantages/issues:

- D = 26 or D = 10 for the superstring models
- No realistic model yet
- SUSY breaking mechanism
- Moduli stabilization

Content

Motivation

- SM and beyond
- BSM proposals

2 Introduction to String theory

3 Heterotic Orbifolds

Phenomenology of orbifold compactifications
Gauge coupling of a U(1)' model
Higgs-portal DM

5 Conclusions

Heterotic Orbifolds

Phenomenology of orbifold compactification

Generalities

Heterotic	Right	Left	
String	modes	modes	
$\mu = 0, 1, 2, 3$	X^{μ}_R , Ψ^{μ}_R	X_L^{μ}	4D spacetime
$m = 4, 5, \dots, 9$	X^m_R , Ψ^m_R	X_L^m	$\mathcal{O}=\mathbb{T}^6/\mathcal{P}=\mathbb{R}^6/\mathcal{S}$
$I = 10, 11, \dots, 25$	_	X_L^I	\mathbb{T}^{16}

• Heterotic string $\mathsf{E}_8 \times \mathsf{E}_8$, $p = (p^I) \in \Lambda_{\mathsf{E}_8 \times \mathsf{E}_8}$.

Phenomenology of orbifold compactifications

Generalities

Heterotic	Right	Left	
String	modes	modes	
$\mu=0,1,2,3$	X^{μ}_R , Ψ^{μ}_R	X_L^{μ}	4D spacetime
$m = 4, 5, \ldots, 9$	X^m_R , Ψ^m_R	X_L^m	$\mathcal{O}=\mathbb{T}^6/\mathcal{P}=\mathbb{R}^6/\mathcal{S}$
$I = 10, 11, \dots, 25$	_	X_L^I	\mathbb{T}^{16}

- Heterotic string $\mathsf{E}_8 \times \mathsf{E}_8$, $p = (p^I) \in \Lambda_{\mathsf{E}_8 \times \mathsf{E}_8}$.
- \bullet Compactify in a toroidal orbifold ${\cal O}$

Phenomenology of orbifold compactification

Generalities

Heterotic	Right	Left	
String	modes	modes	
$\mu=0,1,2,3$	X^{μ}_R , Ψ^{μ}_R	X^{μ}_L	4D spacetime
$m = 4, 5, \ldots, 9$	X^m_R , Ψ^m_R	X_L^m	$\mathcal{O}=\mathbb{T}^6/\mathcal{P}=\mathbb{R}^6/\mathcal{S}$
$I = 10, 11, \dots, 25$	-	X_L^I	\mathbb{T}^{16}

- Heterotic string $\mathsf{E}_8 \times \mathsf{E}_8$, $p = (p^I) \in \Lambda_{\mathsf{E}_8 \times \mathsf{E}_8}$.
- \bullet Compactify in a toroidal orbifold ${\cal O}$

Generalities

Heterotic	Right	Left	
String	modes	modes	
$\mu = 0, 1, 2, 3$	X^{μ}_R , Ψ^{μ}_R	X^{μ}_L	4D spacetime
$m = 4, 5, \dots, 9$	X^m_R , Ψ^m_R	X_L^m	$\mathcal{O}=\mathbb{T}^6/\mathcal{P}=\mathbb{R}^6/\mathcal{S}$
$I = 10, 11, \dots, 25$	-	X_L^I	\mathbb{T}^{16}

- Heterotic string $\mathsf{E}_8 \times \mathsf{E}_8$, $p = (p^I) \in \Lambda_{\mathsf{E}_8 \times \mathsf{E}_8}$.
- Compactify in a toroidal orbifold ${\cal O}$
 - $\Gamma = \{n_{\alpha}e_{\alpha}|n_{\alpha}\in\mathbb{Z}, \alpha=1,\ldots,6\}$ genera \mathbb{T}^{6}
 - Toda $\theta \in \mathcal{P}$ cumple $\theta e_{\alpha} \in \Gamma$
 - Grupo de espacio $\mathcal{S} = \mathcal{P} \ltimes \Gamma$, $g = (\theta, n_{\alpha} e_{\alpha}) \in \mathcal{S}$
 - Identificación $X \sim \theta X + n_{\alpha} e_{\alpha} \text{ con } \theta = \vartheta^k \in \mathcal{P} = \mathbb{Z}_N, \ k \in \mathbb{Z}$
 - En coordenadas complejas $\bar{\vartheta}={\rm diag}(e^{2\pi iv^1},e^{2\pi iv^2},e^{2\pi iv^3})$ y se denota $v=(0,v^1,v^2,v^3)$

Motivation Introduction to String theor

Heterotic Orbifolds

Phenomenology of orbifold compactification

Conclusions 0000

2D Torus

¹Ramos, stringpheno.fisica.unam.mx

Motivation Introduction to String theory

Heterotic Orbifolds

Phenomenology of orbifold compactification

Conclusions

\mathbb{Z}_3 orbifold in 2D

²Ramos, stringpheno.fisica.unam.mx

Omar Perez-Figueroa (ITP, JLU)

BSM phenomenology from heterotic string orbifolds

Motivation Introduction to String theory

Heterotic Orbifolds

Phenomenology of orbifold compactification

Conclusions

\mathbb{Z}_3 orbifold in 2D

²Ramos, stringpheno.fisica.unam.mx

Heterotic Orbifolds

Phenomenology of orbifold compactifications

Conclusions

Omar Perez-Figueroa (ITP, JLU)

BSM phenomenology from heterotic string orbifolds

22/65

Heterotic Orbifolds

Phenomenology of orbifold compactifications

Conclusions 0000

Omar Perez-Figueroa (ITP, JLU)

BSM phenomenology from heterotic string orbifolds

Constraints

- The orbifold action is embedded in the gauge group degrees of freedom in the form of the group \mathcal{G} .
 - $\mathcal{S} \hookrightarrow \mathcal{G}$ such that $g = (\vartheta^k, n_\alpha e_\alpha) \longmapsto (kV, n_\alpha A_\alpha)$, with $k, n_\alpha \in \mathbb{Z}$
 - $X^I \to X^I + k V^I + n_\alpha A^I_\alpha$, $I = 10, \dots, 25$ with $NV, NA_\alpha \in \Lambda$
 - WL: gauge transformations associated to non-contractible loops in each direction e_{α} of the torus

Conclusions 0000

Constraints

- The orbifold action is embedded in the gauge group degrees of freedom in the form of the group \mathcal{G} .
 - $\mathcal{S} \hookrightarrow \mathcal{G}$ such that $g = (\vartheta^k, n_\alpha e_\alpha) \longmapsto (kV, n_\alpha A_\alpha)$, with $k, n_\alpha \in \mathbb{Z}$
 - $X^I \rightarrow X^I + kV^I + n_{\alpha}A^I_{\alpha}$, $I = 10, \dots, 25$ with $NV, NA_{\alpha} \in \Lambda$
 - WL: gauge transformations associated to non-contractible loops in each direction e_α of the torus
- Supersymmetry and modular invariance
 - SUSY $\mathcal{N}=1$ in 4D, holonomy ${\rm SU}(3)\supset \mathcal{P}$ then $v^1+v^2+v^3=0$
 - Modular invariance of the 1-loop partition function implies

$$\begin{split} N(V^2 - v^2) &= 0 \mod 2, \\ N_\alpha(A_\alpha \cdot V) &= 0 \mod 2, \\ N_\alpha(A_\alpha^2) &= 0 \mod 2, \\ \gcd(N_\alpha, N_\beta)(A_\alpha \cdot A_\beta) &= 0 \mod 2 \ (\alpha \neq \beta), \end{split}$$

where $N_{\alpha}A_{\alpha} \in \Lambda$.

Omar Perez-Figueroa (ITP, JLU)

Conclusions

Massless spectrum

- Right movers
 - States $\psi^M_{-1/2}|0\rangle_R$ in NS sector and $\psi^M_0|0\rangle_R$ in R $(M=2,\ldots,9)$ are $|q\rangle_R$ where q denotes the weight of the SO(8) rep

$$q\rangle_{R} = \begin{cases} |\underline{\pm 1}, 0, 0, 0\rangle_{R} & \sim \mathbf{8_{v}}, \\ |\underline{\pm \frac{1}{2}}, \underline{\pm \frac{1}{2}}, \underline{\pm \frac{1}{2}}, \underline{\pm \frac{1}{2}}\rangle_{R} & \sim \mathbf{8_{s}}, \\ \end{cases} \mathbf{R}.$$

For massless states

$$\frac{\alpha' m_R^2}{4} = \frac{1}{2}q^2 - \frac{1}{2} = 0.$$

• Left movers

- States $\alpha_{-1}^M |0\rangle_L$, $\alpha_{-1}^I |0\rangle_L$ with $I = 10, \ldots, 25$ or $|p\rangle_L$ where $p^2 = 2$.
- Massless states

$$\frac{\alpha'm_L^2}{4} = \frac{1}{2}p^2 + N - 1 = 0, \quad \text{where} \quad N = \sum_{n>0} (\alpha_{-n}^M \alpha_n^M + \alpha_{-n}^I \alpha_n^I).$$

Orbifold projection

Compatibility of the orbifold action with the Hilbert space

- In \mathcal{H}_g the states satisfy $Z(\tau,\sigma+2\pi)=gZ(\tau,\sigma),~g\in\mathcal{S}$
- If $h\in \mathcal{Z}_g\equiv \{h\in \mathcal{S}|[g,h]=0\}$ then hZ defines the same state
- The action

$$|q_{\rm sh}\rangle_R \otimes \alpha |p_{\rm sh}\rangle_L \xrightarrow{h} e^{2\pi i\varphi} |q_{\rm sh}\rangle_R \otimes \alpha |p_{\rm sh}\rangle_L,$$

implies the constraint $\varphi = 0 \mod 1$.

Non-twisted sector

- $Z(\tau, \sigma + 2\pi) = Z(\tau, \sigma) + n_{\alpha}e_{\alpha}, \quad n_{\alpha} \in \mathbb{Z}.$
- States $|q\rangle_R \otimes \alpha_{-1}^x |p\rangle_L$ (x = M, I) associated to g = (1, 0).
- $\varphi = p \cdot V_h q \cdot v_h + (\delta_{x,a} \delta_{x,\bar{a}}) v_h^{a,\bar{a}}, h \in \mathcal{S}.$
- Massless spectrum: Graviton, dilaton, anti-symmetric tensor, geometric moduli, gauge bosons and charged matter fields.

- $Z(\tau, \sigma + 2\pi) = \vartheta^k Z(\tau, \sigma) + n_\alpha e_\alpha$, $k = 1, \dots, N-1$.
- States $|q_{sh}\rangle_R \otimes \alpha |p_{sh}\rangle_L$, associated to $g = (\vartheta^k, n_\alpha e_\alpha)$.
- $|q_{sh}\rangle_R \otimes \alpha |p_{sh}\rangle_L \equiv |q + v_g\rangle_R \otimes \alpha |p + V_g\rangle_L$ with $v_g = kv$ and $V_g = kV + n_\alpha A_\alpha$

- $Z(\tau, \sigma + 2\pi) = \vartheta^k Z(\tau, \sigma) + n_\alpha e_\alpha$, $k = 1, \dots, N-1$.
- States $|q_{\mathsf{sh}}\rangle_R \otimes \alpha |p_{\mathsf{sh}}\rangle_L$, associated to $g = (\vartheta^k, n_\alpha e_\alpha)$.
- $|q_{sh}\rangle_R \otimes \alpha |p_{sh}\rangle_L \equiv |q + v_g\rangle_R \otimes \alpha |p + V_g\rangle_L$ with $v_g = kv$ and $V_g = kV + n_\alpha A_\alpha$
- α denotes $\alpha^a_{-\eta^a}$ and $\alpha^{\bar{a}}_{-1+\eta^a}$ products where $\eta^a = kv^a \mod 1 \ (0 < \eta^a \le 1)$

- $Z(\tau, \sigma + 2\pi) = \vartheta^k Z(\tau, \sigma) + n_\alpha e_\alpha$, $k = 1, \dots, N 1$.
- States $|q_{sh}\rangle_R \otimes \alpha |p_{sh}\rangle_L$, associated to $g = (\vartheta^k, n_\alpha e_\alpha)$.
- $|q_{sh}\rangle_R \otimes \alpha |p_{sh}\rangle_L \equiv |q + v_g\rangle_R \otimes \alpha |p + V_g\rangle_L$ with $v_g = kv$ and $V_g = kV + n_\alpha A_\alpha$
- $\varphi = p_{sh} \cdot V_h q_{sh} \cdot v_h + (N_g N_g^*) \cdot v_h \frac{1}{2}(V_g \cdot V_h v_g \cdot v_h),$ $h \in \mathcal{Z}_g$ Plöger, Ramos, Vaudrevange, Ratz [arXiv:0702176]

Conclusions

Twisted sector

- $Z(\tau, \sigma + 2\pi) = \vartheta^k Z(\tau, \sigma) + n_\alpha e_\alpha$, $k = 1, \dots, N-1$.
- States $|q_{\rm sh}\rangle_R\otimes \alpha |p_{\rm sh}\rangle_L$, associated to $g=(\vartheta^k,n_\alpha e_\alpha).$
- $|q_{sh}\rangle_R \otimes \alpha |p_{sh}\rangle_L \equiv |q + v_g\rangle_R \otimes \alpha |p + V_g\rangle_L$ with $v_g = kv$ and $V_g = kV + n_\alpha A_\alpha$
- Massless states fulfill

$$\frac{\alpha' m_R^2}{4} = \frac{1}{2} q_{\rm sh}^2 - \frac{1}{2} + \delta c \stackrel{!}{=} 0$$

and

$$\frac{\alpha' m_L^2}{4} = \frac{1}{2} p_{\rm sh}^2 + N - 1 + \delta c \stackrel{!}{=} 0$$

with $\delta c = \frac{1}{2}\sum_a \eta^a (1-\eta^a)$ and $N = \sum_{a=1}^3 \eta^a (N_g^a + N_g^{*\bar{a}})$

Conclusions

- $Z(\tau, \sigma + 2\pi) = \vartheta^k Z(\tau, \sigma) + n_\alpha e_\alpha$, $k = 1, \dots, N-1$.
- States $|q_{\mathsf{sh}}\rangle_R \otimes \alpha |p_{\mathsf{sh}}\rangle_L$, associated to $g = (\vartheta^k, n_\alpha e_\alpha)$.
- $|q_{sh}\rangle_R \otimes \alpha |p_{sh}\rangle_L \equiv |q + v_g\rangle_R \otimes \alpha |p + V_g\rangle_L$ with $v_g = kv$ and $V_g = kV + n_\alpha A_\alpha$

Content

Motivation

- SM and beyond
- BSM proposals

2 Introduction to String theory

3 Heterotic Orbifolds

Phenomenology of orbifold compactifications
Gauge coupling of a U(1)' model
Higgs-portal DM

Conclusions

Content

Motivation

- SM and beyond
- BSM proposals
- 2 Introduction to String theory
- 3 Heterotic Orbifolds
- Phenomenology of orbifold compactifications
 Gauge coupling of a U(1)' model
 Higgs-portal DM

5 Conclusions

Work done at UNAM:

• U(1)' coupling constant at low energies from heterotic orbifolds, Yessenia Olguin-Trejo, O. P.-F., Ricardo Perez-Martinez y Saul Ramos-Sanchez, Phys. Lett. B 795 (2019) 673-681.

arXiv:1901.10102 [hep-ph].

Scenario

- Heterotic string $E_8 \times E_8$ in toroidal orbifold \mathbb{Z}_8 with $\mathcal{N}=1$ in 4D
- orbifolder to calculate the massless spectrum Nilles et al. [arXiv:1110.5229]
 - Modular invariance and WL constraints
- $\mathcal{G}_{4\mathsf{D}} = \mathcal{G}_{\mathsf{SM}} \times \left[\mathrm{U}(1)' \right]^n \times \mathcal{G}_{\mathsf{hidden}} \ (n \le 10)$
 - SM singlets break to $\mathcal{G}_{\text{eff}}=\mathcal{G}_{\text{SM}}\times U(1)'\subset \mathcal{G}_{4\text{D}}$
- Massless spectrum: MSSM + vectorial exotics

Effective vacua

- One-loop RGEs with
 - Gauge coupling unification
 - $\Lambda_{Z'} = 2$ TeV threshold scale for U(1)' breaking
 - SUSY breaking at $\Lambda_{SUSY} \ge \Lambda_{Z'}$
 - $\Lambda_{\mathrm{SUSY}} = \Lambda_{Z'} = 2 \ \mathrm{TeV}$
 - $\Lambda_{\text{SUSY}} = 10^{12} \text{ GeV}$
 - $\Lambda_{\rm SUSY} = M_{\rm str} = 10^{17} {\rm ~GeV}$

Effective vacua

- One-loop RGEs with
 - Gauge coupling unification
 - $\Lambda_{Z'} = 2$ TeV threshold scale for U(1)' breaking
 - SUSY breaking at $\Lambda_{\text{SUSY}} \ge \Lambda_{Z'}$
 - $\Lambda_{\mathrm{SUSY}} = \Lambda_{Z'} = 2 \ \mathrm{TeV}$
 - $\Lambda_{\text{SUSY}} = 10^{12} \text{ GeV}$
 - $\Lambda_{\rm SUSY} = M_{\rm str} = 10^{17}~{\rm GeV}$
- Further constraints:
 - $b_4 \neq 0$ or the coupling to the Z' is suppressed (spectrum charged under U(1)')
 - $m_Z < M_{\rm GUT} < M_{\rm str}$
 - $0 < \alpha_i < 1$, rather $g_i < 1$ (difference of \sim 10 models)

Effective vacua

- One-loop RGEs with
 - Gauge coupling unification
 - $\Lambda_{Z'} = 2$ TeV threshold scale for U(1)' breaking
 - SUSY breaking at $\Lambda_{\text{SUSY}} \ge \Lambda_{Z'}$
 - $\Lambda_{\mathrm{SUSY}} = \Lambda_{Z'} = 2 \ \mathrm{TeV}$
 - $\Lambda_{\rm SUSY} = 10^{12} {\rm ~GeV}$
 - $\Lambda_{\rm SUSY} = M_{\rm str} = 10^{17}~{\rm GeV}$
- Further constraints:
 - $b_4 \neq 0$ or the coupling to the Z' is suppressed (spectrum charged under U(1)')
 - $m_Z < M_{\rm GUT} < M_{\rm str}$
 - $0 < \alpha_i < 1$, rather $g_i < 1$ (difference of \sim 10 models)
- Unification criteria
 - $\alpha_1 = \alpha_2$ defines $\alpha_{\rm GUT}$ and $M_{\rm GUT}$
 - $|\alpha_{\text{GUT}}^{-1} \alpha_3^{-1}(M_{\text{GUT}})| < 0.26 \ (3\sigma \text{ interval of } \alpha_3(m_Z))$

Motivation Introduction to String theory

Heterotic Orbifolds

Phenomenology of orbifold compactifications

Conclusions 0000

Coupling evolution (running)

$$\begin{aligned} \mathcal{G}_{4\mathrm{D}} &= \mathcal{G}_{\mathsf{SM}} \times [\mathrm{U}(1)']^n \times \mathcal{G}_{\mathsf{hidden}} \\ \mathcal{G}_{\mathsf{SM}} &= \mathrm{SU}(3)_c \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y \end{aligned}$$

RGEs

• 1-loop gauge couplings RGEs

$$\beta(g_i) \equiv \frac{\partial g_i}{\partial \ln \mu} = \frac{b_i g_i^3}{(4\pi)^2} \quad \Rightarrow \quad \frac{\partial \alpha_i^{-1}}{\partial \ln \mu} = -\frac{b_i}{2\pi} \,,$$

where $\alpha_i = q_i^2 / (4\pi)$ and i = 1, 2, 3

Solution

$$\alpha_i^{-1}(\mu) = \alpha_i^{-1}(\mu_0) - \frac{b_i}{2\pi} \ln\left(\frac{\mu}{\mu_0}\right).$$

Phenomenology of orbifold compactifications

RGEs

• 1-loop gauge couplings RGEs

$$\beta(g_i) \equiv \frac{\partial g_i}{\partial \ln \mu} = \frac{b_i g_i^3}{(4\pi)^2} \quad \Rightarrow \quad \frac{\partial \alpha_i^{-1}}{\partial \ln \mu} = -\frac{b_i}{2\pi} \,,$$

where $\alpha_i = g_i^2/(4\pi)$ and i=1,2,3

Solution

$$\alpha_i^{-1}(\mu) = \alpha_i^{-1}(\mu_0) - \frac{b_i}{2\pi} \ln\left(\frac{\mu}{\mu_0}\right).$$

b coefficients

$$b_i = -\frac{11}{3}C_2(G_i) + \frac{2}{3}\sum_f n_f C(\mathbf{R}_f) + \frac{1}{3}\sum_s n_s C(\mathbf{R}_s) \,,$$

so $(b_1, b_2, b_3) = \left(\frac{41}{10}, -\frac{19}{6}, -7\right)$, and with SUSY $b_i^{\text{SUSY}} = -3C_2(G_i) + \sum n_{\Phi}C(\mathbf{R}_{\Phi})$,

then
$$(b_1, b_2, b_3)^{\mathsf{SUSY}} = \left(\frac{33}{5}, 1, -3\right).$$

Omar Perez-Figueroa (ITP, JLU)

Results

 $\sim 17,000$ effective vacua and 0.5-1.5% with gauge coupling unification

- Low Λ_{SUSY} (2 TeV)
 - $25 \le \alpha_4^{-1}(\Lambda_{Z'}) \le 60 \to 0.46 \le g_4(\Lambda_{Z'}) \le 0.7$
 - $M_{\text{GUT}} \in \{10^{12} \text{ GeV}, 6.6 \times 10^{13} \text{ GeV}, 4.1 \times 10^{16} \text{ GeV}\}\$
 - $5.6 \le \alpha_{\text{GUT}}^{-1} \le 21.4 \text{ most frequent: } \alpha_{\text{GUT}} \approx 1/21 \sim 1/25 \text{ and } g_4(2 \text{ TeV}) \approx 0.6 \lesssim g_2$
- Intermediate and High Λ_{SUSY} (10¹², 10¹⁷ GeV)
 - $38 \le \alpha_4^{-1}(\Lambda_{Z'}) \le 64 \to 0.44 \le g_4(\Lambda_{Z'}) \le 0.6$
 - $4.3 \times 10^{11} \text{GeV} \le M_{\text{GUT}} \le 10^{16} \text{GeV}, \ \overline{g_4(\Lambda_{Z'})} \approx 0.5$
 - $17 \le \alpha_{\rm GUT}^{-1} \le 36$ most frequent: $M_{\rm GUT} \approx 4.3 \times 10^{11} {\rm GeV}$, $\alpha_{\rm GUT} \approx 1/33$

Heterotic Orbifolds

Phenomenology of orbifold compactifications

Conclusions

A model with Higgs vacuum stabilization

• 1-loop RGEs with SARAH F. Staub [arXiv:1309.7223]

Phenomenology of orbifold compactifications

Conclusions

A model with Higgs vacuum stabilization

- 1-loop RGEs with SARAH F. Staub [arXiv:1309.7223]
- type-I seesaw mechanism

#	irrep	f]	#	irrep	f	#	irrep	s
2	$(1, 2)_{(-1/2, -7/12\sqrt{2})}$	$\ell_{1,2}$		1	$(\mathbf{ar{3}},1)_{(1/3,3/4\sqrt{2})}$	\bar{x}_i	1	$(1, 2)_{(1/2, -1/3\sqrt{2})}$	ϕ_u
1	$(1, 2)_{(-1/2, 1/3\sqrt{2})}$	ℓ_3		1	$(3,1)_{(-1/3,1/12\sqrt{2})}$	x_i	1	$(1, 2)_{(-1/2, 1/12\sqrt{2})}$	ϕ_d
2	$(1,1)_{(1,\ -1/6\sqrt{2})}$	$\bar{e}_{1,2}$		8	$(1, 2)_{(0, 1/6\sqrt{2})}$	η_i	1	$(1,1)_{(0,-1/4\sqrt{2})}$	s_1
1	$(1,1)_{(1,1/12\sqrt{2})}$	\bar{e}_3		8	$(1,1)_{(1/2,1/6\sqrt{2})}$	ζ_i	1	$(1,1)_{(0,1/3\sqrt{2})}$	s_2
2	$(3,2)_{(1/6,-1/6\sqrt{2})}$	$q_{1,2}$		8	$(1,1)_{(-1/2,7/12\sqrt{2})}$	$\bar{\zeta}_i$			
1	$(3,2)_{(1/6,1/4\sqrt{2})}$	q_3		8	$(1,1)_{(-1/2,-1/12\sqrt{2})}$	$\bar{\kappa}_i$			
2	$(\mathbf{\bar{3}}, 1)_{(-2/3, -1/6\sqrt{2})}$	$\bar{u}_{1,2}$		8	$(1,1)_{(1/2,-1/6\sqrt{2})}$	κ_i			
1	$(ar{3}, m{1})_{(-2/3, 1/12\sqrt{2})}$	\bar{u}_3		11	$(1,1)_{(0,1/3\sqrt{2})}$	N_i^a			
2	$(\mathbf{\bar{3}}, 1)_{(1/3, -7/12\sqrt{2})}$	$\bar{d}_{1,2}$		10	$(1,1)_{(0,\ -2/3\sqrt{2})}$	N_i^b			
1	$(\mathbf{\bar{3}},1)_{(1/3,3/4\sqrt{2})}$	\bar{d}_3		8	$(1,1)_{(0,\ -1/12\sqrt{2})}$	N_i^c			
				6	$(1,1)_{(0,\ -5/12\sqrt{2})}$	N_i^d			
				4	$(1,1)_{(0,7/12\sqrt{2})}$	N_i^e			
				2	$({f 1},{f 1})_{(0,-1/4\sqrt{2})}$	N_i^f			

A model with Higgs vacuum stabilization

- 1-loop RGEs with SARAH F. Staub [arXiv:1309.7223]
- type-I seesaw mechanism
- Some fine-tuning for correct mass hierarchies (except e, d)
- Residual flavor symmetry (1st and 2nd gens)
- Arbitrary choice of f and s reps introduces spurious anomalies
A model with Higgs vacuum stabilization

- 1-loop RGEs with SARAH F. Staub [arXiv:1309.7223]
- type-I seesaw mechanism
- Some fine-tuning for correct mass hierarchies (except e, d)
- Residual flavor symmetry (1st and 2nd gens)
- Arbitrary choice of f and s reps introduces spurious anomalies
- SUSY and flavor symmetry breaking analysis needed

Content

Motivation

- SM and beyond
- BSM proposals
- Introduction to String theory
- 3 Heterotic Orbifolds
- Phenomenology of orbifold compactifications
 Gauge coupling of a U(1)' model
 - Higgs-portal DM

5 Conclusions

 Higgs-portal darl matter from non-supersymmetric strings, Esau Cervantes, O. P.-F., Ricardo Perez-Martinez and Saul Ramos-Sanchez, Phys. Rev. D 107, 115007 (2023). arXiv:2302.08520 [hep-ph].

Scenario

- Non-SUSY heterotic string $SO(16) \times SO(16)$ in toroidal orbifold $\mathbb{Z}_2 \times \mathbb{Z}_4(2,4)$ (fruitful)
- $\mathcal{G}_{4\mathsf{D}} = \mathcal{G}_{\mathsf{SM}} \times \mathcal{G}' \times \left[\mathrm{U}(1)'\right]^8$ with $\mathcal{G}' = \mathcal{G}_{\mathsf{flavor}} \times \mathcal{G}_{\mathsf{hidden}}$
- Massless spectrum: SM + scalar singlets + few heavy exotics
 - More than one Higgs or several fermion exotics
- freeze-out drives DM production
 - DM particle out of thermal equilibrium when the expansion of the Universe is faster than the interaction rate for the processes DM↔SM

Scenario

- Non-SUSY heterotic string $SO(16) \times SO(16)$ in toroidal orbifold $\mathbb{Z}_2 \times \mathbb{Z}_4(2,4)$ (fruitful)
- $\mathcal{G}_{4\mathsf{D}} = \mathcal{G}_{\mathsf{SM}} \times \mathcal{G}' \times \left[\mathrm{U}(1)'\right]^8$ with $\mathcal{G}' = \mathcal{G}_{\mathsf{flavor}} \times \mathcal{G}_{\mathsf{hidden}}$
- Massless spectrum: SM + scalar singlets + few heavy exotics
 - More than one Higgs or several fermion exotics
- freeze-out drives DM production
 - DM particle out of thermal equilibrium when the expansion of the Universe is faster than the interaction rate for the processes DM ↔ SM
- Goals: Identify the Higgs-portal scenario with
 - DM relic density below bounds
 - stable Higgs vacuum
 - reproduces the observed Higgs mass and VEV

if successful, predict the mass of the DM candidate and the heavy Higgs spectrum

Phenomenology of orbifold compactifications

Conclusions

 $\frac{\text{Label}}{\substack{\phi_i \\ S \\ s_i \\ s'_i \\ x_i}}$

A stringy THDM

• $\mathcal{G}_{4\mathsf{D}} = \mathcal{G}_{\mathsf{SM}} \times \mathrm{SU}(2)_{\mathsf{flavor}} \times [\mathrm{SU}(3) \times \mathrm{SU}(2)]_{\mathsf{hidden}} \times [\mathrm{U}(1)']^8$ where $\mathcal{G}_{\mathsf{SM}} = \mathrm{SU}(3)_c \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$

#	Fermionic irrep.	Label	#	Scalar irrep.
3	$({f 1},{f 2};{f 1})_{-1/2}$	$\ell_{\mathrm{L},i}$	2	$({f 1},{f 2};{f 1})_{1/2}$
1	$({f 1},{f 1};{f 2})_1$	$\overline{e}_{\mathrm{L}}$	1	$({f 1},{f 1};{f 1})_0$
1	$({f 1},{f 1};{f 1})_1$	$\overline{e}_{\mathrm{L},3}$	107	$({f 1},{f 1};{f 1})_0$
1	$({f 3},{f 2};{f 2})_{1/6}$	$q_{ m L}$	8	$({f 1},{f 1};{f 2})_0$
1	$({f 3},{f 2};{f 1})_{1/6}$	$q_{\mathrm{L},3}$	2	$(\overline{f 3},{f 1};{f 2})_{1/3}$
1	$(\overline{3},1;2)_{-2/3}$	$\overline{u}_{ m L}$		
1	$(\overline{3},1;1)_{-2/3}$	$\overline{u}_{\mathrm{L},3}$		
5	$(\overline{f 3},{f 1};{f 1})_{1/3}$	$\overline{d}_{\mathrm{L},i}$		
2	$({f 3},{f 1};{f 1})_{-1/3}$	$d'_{\mathrm{L},i}$		
131	$({f 1},{f 1};{f 1})_0$	$ u_{\mathrm{R},i}$		
14	$(1,1;\overline{2})_0$	$\nu'_{\mathrm{R},i}$		
		11.0		

- At tree level:
 - masses for extra $d'_{\mathsf{L},i}$
 - Yukawa couplings such that the heaviest quarks and lepton can be identified
 - Leptoquark x_i interactions

- At tree level:
 - masses for extra $d'_{\mathsf{L},i}$
 - Yukawa couplings such that the heaviest quarks and lepton can be identified
 - Leptoquark x_i interactions
 - $\bullet\,$ Potential: Higgs + Singlet DM candidate + Interaction

$$\begin{split} V_{\phi}(\phi_{1},\phi_{2}) &= \mu_{11}^{2} |\phi_{1}|^{2} + \mu_{22}^{2} |\phi_{2}|^{2} + \lambda_{1} |\phi_{1}|^{4} + \lambda_{2} |\phi_{2}|^{4} + \lambda_{3} |\phi_{1}|^{2} |\phi_{2}|^{2} \\ &+ \lambda_{4} (\phi_{1}^{\dagger} \phi_{2}) (\phi_{2}^{\dagger} \phi_{1}) + \left[\mu_{12}^{2} \phi_{1}^{\dagger} \phi_{2} + \lambda_{5} (\phi_{1}^{\dagger} \phi_{2}) (\phi_{1}^{\dagger} \phi_{2}) \right. \\ &+ \lambda_{6} |\phi_{1}|^{2} (\phi_{1}^{\dagger} \phi_{2}) + \lambda_{7} |\phi_{2}|^{2} (\phi_{1}^{\dagger} \phi_{2}) + \text{h.c.} \right], \\ V_{S}(S) &= \mu_{S}^{2} |S|^{2} + \lambda_{S} |S|^{4}, \\ V_{\phi S}(\phi, S) &= \lambda_{1S} |\phi_{1}|^{2} |S|^{2} + \lambda_{2S} |\phi_{2}|^{2} |S|^{2} \\ &+ \lambda_{12S} \left[(\phi_{2}^{\dagger} \phi_{1}) |S|^{2} + \text{h.c.} \right] \end{split}$$

• Upon EWSB

$$\phi_1 = \begin{pmatrix} \phi_1^+ \\ \phi_1^0 \end{pmatrix} \longrightarrow \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \sigma_1) \end{pmatrix} \quad \text{and}$$
$$\phi_2 = \begin{pmatrix} \phi_2^+ \\ \phi_2^0 \end{pmatrix} \longrightarrow \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \sigma_2) \end{pmatrix}$$

- Higgs spectrum
 - Neutral heavy and light scalars h, H
 - $\bullet \ {\sf Pseudoscalar} \ A$
 - Charged Higgs H^{\pm}
- DM mass

Motivation Introduction to String theory

Phenomenology of orbifold compactifications

Conclusions

Fitting DM and Higgs data

- Higgs-vacuum stability at 1-loop
- Admissibly heavier states in the Higgs sector
- Compatibility with observables PDG 2022, Planck collab. 2018 [arXiv:astro-ph/1807.06209]

 $\begin{array}{rl} m_h &=& 125.25(17)\,{\rm GeV}\,,\\ &v &=& 246.219640(63)\,{\rm GeV}\,,\\ \Omega_{\rm DM}h^2 &=& 0.120(1)\,, \end{array}$

where $v = (\sqrt{2}G_F)^{-1/2}$ and in our model $v^2 = v_1^2 + v_2^2$

Parameters

$$\mu_{12}^2, \tan \beta = v_2/v_1, \lambda_i, \qquad (i = 1, \dots, 7)$$

$$\mu_S^2, \lambda_S, \lambda_{1S}, \lambda_{2S}, \lambda_{12S}$$

Numerical tools

SARAH generates input files for

- VevaciousPlusPlus determines the Higgs VEVs (v₁, v₂) at several identified vacua and stability status Camargo and O'Leary, https://github.com/JoseEliel/VevaciousPlusPlus
- SPheno 4.0.5 computes the mass spectrum including 1-loop corrections
 Porod [arXiv:hep-ph/0301101], [arXiv:1104.1573]
- micrOMEGAs 5.3.35 computes the freeze-out DM relic abundance, including 1-loop annihilation processes Belanger et al. [arXiv:1801.03509]

Parameter scan

- Random scan over Higgs potential params and bisection method to determine $\tan\beta$ for the correct m_h at $6\sigma \rightarrow \chi^2 \sim 10^4$
- Scan over all parameters with optimization methods implemented in Python (package LMFIT Newville et al. Imfit/Imfit-py: 1.1.0)
 - Differential evolution: global
 - Least squares: local

$$\rightarrow \chi^2 = 7.6$$

• Markov Chain Monte Carlo ensemble sampler: exploration of a neighborhood of promising parameter space points $\rightarrow \chi^2 = 1.23 \times 10^{-4}$

Phenomenology of orbifold compactifications

Results

Higgs parameter	value	Higgs-portal parameter	value	observable	value
λ_1	$3.63 imes 10^{-4}$	μ_S^2	$7.77 \times 10^4 \mathrm{GeV^2}$	m_h	$125.25\mathrm{GeV}$
λ_2	1.24×10^{-1}	λ_S	8.33×10^{-3}	m_H	$381.41\mathrm{GeV}$
λ_3	$5.03 imes 10^{-1}$	λ_{1S}	4.52×10^{-1}	$m_{H^{\pm}}$	$386.82{ m GeV}$
λ_4	-1.7×10^{-1}	λ_{2S}	1.18×10^{-1}	m_A	$379.82\mathrm{GeV}$
λ_5	$9.35 imes 10^{-3}$	λ_{12S}	9.95×10^{-4}	$\Omega_{ m DM}h^2$	0.12
λ_6	$5.52 imes 10^{-4}$,,	m_S	$286.01\mathrm{GeV}$
λ_7	3.76×10^{-4}			χ^2	1.23×10^{-4}
μ_{12}^2	$-1.45\times10^3{\rm GeV^2}$				
1/1	$2.394 \mathrm{GeV}$				

• $\tan \beta = 102.84$

 $246.21\,\mathrm{GeV}$

 v_1

 v_2

 χ^2

8

- 6

-4

395 400

Content

1 Motivation

- SM and beyond
- BSM proposals
- Introduction to String theory
- **3** Heterotic Orbifolds
- Phenomenology of orbifold compactifications
 Gauge coupling of a U(1)' model
 Higgs-portal DM
 - Higgs-portal DM

5 Conclusions

- String theory is a strong candidate for a UV completion of the SM, it may describe quantum gravity but it is not fully understood and it is not clear that nature is described by it.
- Low energy models originating in string compactifications may possess the correct ingredients to solve SM extant problems, such as Higgs stabilization, DM particle description, neutrino mass generation, experimental anomalies.
- Heterotic orbifolds are rich scenarios where interesting pheno can be found.
- We explored the realization of $\mathrm{U}(1)'$ models at low energy from the toroidal orbifold \mathbb{Z}_8 compactifications and obtained the massless spectrum of MSSM-like models with extra exotics.

Motivation

Motivation Introduction to String theory

- With reasonable assumptions such as coupling unification and specific SUSY and U(1)' breaking scales, we found limits for the extra Abelian coupling keeping 0.5-1.5% of the effective vacua. We constrained $0.44 < g_4(2{\rm TeV}) < 0.7$.
- We looked into a particular model in with Higgs vacuum stabilization and argued that it has promising characteristics, which can be generic to the effective vacua.
- We explored vacua from the non-supersymmetric heterotic string compactified in an abelian toroidal orbifold with point group $\mathbb{Z}_2 \times \mathbb{Z}_4$. A parameter scan for a particular realization of the THDM shows that the correct DM relic abundance can be obtained for a singlet scalar candidate while stabilizing the Higgs vacuum.
- The effective models explored in both works can also be seen as bottom-up proposals and other models found in this context may possess interesting pheno that is left to be researched.

Omar Perez-Figueroa (ITP, JLU)

Heterotic Orbifolds 0000000000 Phenomenology of orbifold compactification

Conclusions 000●

Thanks!

Omar Perez-Figueroa (ITP, JLU)

BSM phenomenology from heterotic string orbifolds

53/65

Heterotic Orbifolds 0000000000 Phenomenology of orbifold compactification

Conclusions 000●

Thanks! Questions?

Semi-direct product

Given two subgroups H and K of G, with $H \leq G$ (for each $h \in H$, [g, h] = 0 for all $g \in G$), $H \cap K = \{1\}$ and HK = G, then we write $G = H \rtimes K$. For the space group $S = \mathcal{P} \ltimes \Gamma$ the action of the element $g = (\theta, \ell) \in S$ (where $\theta = \vartheta^k$ for the Abelian case $\mathcal{P} = \mathbb{Z}_N$ and $\ell = n_\alpha e_\alpha$) is given by

$$gX = \theta X + \ell,$$

where the product $g_1g_2 = (\theta_1, \ell_1)(\theta_2, \ell_2) = (\theta_1\theta_2, \theta_1\ell_2 + \ell_1) \in S$ gives structure to the group. In general, elements of the point group do not commute with an arbitrary space group element since

$$(\theta_1\theta_2, \theta_1\ell_2) = (\theta_1, 0)(\theta_2, \ell_2) \neq (\theta_2, \ell_2)(\theta_1, 0) = (\theta_2\theta_1, \ell_2).$$

Massless spectrum of the non-twisted sector

•
$$Z(\tau, \sigma + 2\pi) = Z(\tau, \sigma) + n_{\alpha}e_{\alpha}, \quad n_{\alpha} \in \mathbb{Z}$$

- States $|q\rangle_R \otimes \alpha_{-1}^x |p\rangle_L$ (x = M = 2, ..., 9 or x = I = 10, ..., 25) associated to g = (1, 0)
- Massless spectrum:
 - Graviton $g_{\mu\nu}$, dilaton φ and anti-symmetric tensor $B_{\mu\nu}$ in 4D $(\mu=2,3)$

$$|q\rangle_R \otimes \alpha_{-1}^{\nu}|0\rangle_L, \quad \text{ with } \quad q = \begin{cases} \pm (1,0,0,0), \\ \pm (\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}). \end{cases}$$

Geometric moduli

 $|q\rangle_R\otimes \alpha_{-1}^{a,\bar{a}}|0\rangle_L, \quad \text{such that} \quad q\cdot v_h\mp v_h^{a,\bar{a}}=0 \mod 1,$

where a = 1, 2, 3 denote compact (complex) dimensions and for all $h \in S$.

Omar Perez-Figueroa (ITP, JLU)

55/65

• Massless spectrum:

• 16 chargeless gauge bosons

$$|q\rangle_R \otimes \alpha^I_{-1}|0\rangle_L,$$

q as in (55) and I = 10, ..., 25.

• 480 charged gauge bosones

$$|q\rangle_R \otimes |p\rangle_L$$
, with $p^2 = 2$,

such that $q \cdot v_h = 0 \mod 1$ (q as in (55)) and $p \cdot V_h = 0 \mod 1$, then $p \cdot V = 0 \mod 1$ and $p \cdot A_\alpha = 0 \mod 1$, $\alpha = 1, \dots, 6$.

• Non-twisted charged matter fields. States as in (56) such that

$$p \cdot V_h - q \cdot v_h = 0 \mod 1,$$

where q is **not** of the form (55).

$lpha_{1,2}$ and quadratic indexes

•
$$g_1 = \sqrt{5/3}g'$$
, $g_2 = g$ and $g_3 = g_s$

• In the SM the electric charge is $e=g\sin\theta_W=g'\cos\theta_W,$ then $\alpha=e^2/(4\pi)$ and so

$$\alpha_1 = \frac{5}{3} \frac{\alpha}{1 - \sin^2 \theta_W} \quad \mathbf{y} \quad \alpha_2 = \frac{\alpha}{\sin^2 \theta_W}.$$

• If T_R^a are the matrices associated to the generators in the rep ${\bf R},$ then

$$\operatorname{Tr}[T_R^a T_R^b] = C(\mathbf{R})\delta^{ab},$$

where $C(\mathbf{R})$ is the quadratic or Dynkin index. In particular, for the adjoint rep R = A, defined by $(T_A^a)^{bc} = -if^{abc}$, where $[T_R^a, T_R^b] = if^{abc}T_R^c$, we have

$$T_A^a T_A^a = C_2(G)\mathbb{1}\,,$$

which defines the quadratic Casimir $C_2(G)$ of the group.

Omar Perez-Figueroa (ITP, JLU)

Viable orbifold constructions details

- Negligible kinetic mixing (10⁻⁴ 10⁻²) Goodsell, Ramos, Ringwald [arXiv:1110.6901]
- Accidental global symmetries identified so that fast proton decay is avoided
- At tree level $f_{\alpha}=S,$ then $g_s^{-2}=\langle {\rm Re}S\rangle$ at $M_{\rm str}\approx 10^{17}~{\rm GeV}.$

Compactification and effective vacua details

- Two point groups \mathbb{Z}_8-I and \mathbb{Z}_8-II with $v_{\rm I}=\frac{1}{8}(1,2,-3)$ and $v_{\rm II}=\frac{1}{8}(1,3,-4)$
- 5 inequivalent torus \mathbb{T}^6 geometries: \mathbb{Z}_8 -I (i, 1) with i = 1, 2, 3 and \mathbb{Z}_8 -II (j, 1) with j = 1, 2
- \mathbb{Z}_8 has the largest fraction of MSSM-like models Olguin et al. [arXiv:1808.06622]
- 138 inequivalent space groups for 17 abelian point groups with $\mathcal{N}=1$

M. Fischer [arXiv:hep-th/1209.3906]

Orbifolio	# modelos tipo MSSM	vacíos efectivos	Orbifolio	# modelos tipo MSSM	vacíos efectivos
\mathbb{Z}_{8} –I (1,1)	268	1,362	\mathbb{Z}_{8} -II (1,1)	2,023	10,023
\mathbb{Z}_{8} –I (2,1)	246	1,097	\mathbb{Z}_{8} –II (2,1)	505	2,813
\mathbb{Z}_{8} –I (3,1)	389	1,989			

Frequency plots patterns

• Vertical lines: $\alpha_{GUT} \equiv \alpha_1(M_{GUT}) = \alpha_2(M_{GUT})$ implies $(\Lambda_{SUSY} = \Lambda_{Z'})$

$$\ln \frac{M_{\rm GUT}}{\Lambda_{Z'}} = 2\pi \frac{\alpha_1^{-1}(\Lambda_{Z'}) - \alpha_2^{-1}(\Lambda_{Z'})}{b_1 - b_2} \,,$$

where only M_{GUT} and $b_1 - b_2$ are model dependent and $b_i \in \mathbb{Q}$.

• Diagonal lines:

$$\alpha_{\mathsf{GUT}}^{-1} = \alpha_2^{-1}(M_{\mathsf{GUT}}) = \alpha_2^{-1}(\Lambda_{Z'}) - \frac{b_2}{2\pi} \ln \frac{M_{\mathsf{GUT}}}{\Lambda_{Z'}},$$

each line describes the RG evolution of the gauge coupling for models with the same b_2 value, points in the line are models with different $M_{\rm GUT}$.

Omar Perez-Figueroa (ITP, JLU)

Stable Higgs vacuum model details

- Model with $\Lambda_{SUSY} = 10^{12} \text{ GeV} \approx M_{GUT}$ from a toroidal orbifold \mathbb{Z}_8 -II (2,1) compactification.
- $V = \frac{1}{4}(-\frac{7}{2}, 0, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{5}{2}, 3)(-4, -1, 0, 0, 0, \frac{1}{2}, \frac{1}{2}, 3)$
- $A_1 = \frac{1}{4}(1, -7, -7, -5, 2, 2, 1, -3)(-3, 3, -6, -4, 1, -3, 3, 5)$ y $A_6 = 0.$
- $t_1 = \frac{1}{4}(1, \frac{5}{3}, \frac{5}{3}, -\frac{5}{3}, 1, 1, 1, 1)(0, 0, 0, 0, 0, 0, 0, 0)$
- $t_4 = \frac{1}{12\sqrt{2}}(-3, 0, 0, 0, 1, 1, 1, -2)(0, 0, 0, 0, 0, 8, 8, 0)$
- $M_{\rm GUT} \approx 10^{12} {\rm ~GeV}$, $\alpha_{\rm GUT} \approx 1/32$, $\alpha_4^{-1}(2 {\rm ~TeV}) \approx 54$
- $b_i = (23/3, -1/3, -19/3, 715/108)$ and $b_i^{SUSY} = (59/5, 5, -2, 731/72)$

Model running and Higgs vacuum stabilization

• RGE initial conditions at $\mu = m_t = 173.1$ GeV (4-loop calculations plus threshold corrections) Khan et al. [arXiv:1407.6015]

$$\sqrt{3/5}g_1 = 0.3587, \ g_2 = 0.6482, \ g_3 = 1.1645,$$

 $h_t = 0.9356 \text{ and } \lambda = 0.127$

Contributions

$$\begin{split} \Delta\beta(\lambda) &\propto g_4^2 Q_{\phi}'^2 + c g_4^4 Q_{\phi}'^4, \\ \Delta\beta(h_t) &\propto -g_4^2 (Q_q'^2 + Q_t'^2) h_t, \end{split}$$

increase the value of λ and lower h_t . The running of g_4 depends on the exotics, which modifies this contributions.

RGEs used by SARAH

Higgs quartic coupling beta function

$$\beta(\lambda) \equiv \frac{\partial \lambda}{\partial \ln \mu} = \frac{1}{(4\pi)^2} \left[24\lambda^2 - \lambda \left(\frac{9}{5}g_1^2 + 9g_2^2 \right) + \frac{9}{8} \left(\frac{3}{25}g_1^4 + \frac{2}{5}g_1^2g_2^2 + g_2^4 \right) + 4\lambda Y_2(S) - 2H(S) \right],$$

where

$$\begin{split} Y_2(S) &\equiv \mathrm{Tr} \left[3h_u^{\dagger}h_u + 3h_d^{\dagger}h_d + h_e^{\dagger}h_e \right], \\ H(S) &\equiv \mathrm{Tr} \left[3(h_u^{\dagger}h_u)^2 + 3(h_d^{\dagger}h_d)^2 + (h_e^{\dagger}h_e)^2 \right], \end{split}$$

the matrices in family space $h_u, h_d \mbox{ and } h_e$ are the Yukawa couplings, whose RGEs are

$$\begin{split} h_u^{-1} \frac{\partial h_u}{\partial \ln \mu} &= \frac{1}{(4\pi)^2} \left[\frac{3}{2} \left(h_u^{\dagger} h_u - h_d^{\dagger} h_d \right) + Y_2(S) - \left(\frac{17}{20} g_1^2 + \frac{9}{4} g_2^2 + 8 g_3^2 \right) \right], \\ h_d^{-1} \frac{\partial h_d}{\partial \ln \mu} &= \frac{1}{(4\pi)^2} \left[\frac{3}{2} \left(h_d^{\dagger} h_d - h_u^{\dagger} h_u \right) + Y_2(S) - \left(\frac{1}{4} g_1^2 + \frac{9}{4} g_2^2 + 8 g_3^2 \right) \right], \\ h_e^{-1} \frac{\partial h_e}{\partial \ln \mu} &= \frac{1}{(4\pi)^2} \left[\frac{3}{2} h_e^{\dagger} h_e + Y_2(S) - \frac{9}{4} \left(g_1^2 + g_2^2 \right) \right]. \end{split}$$

Omar Perez-Figueroa (ITP, JLU)

Dominant contributions to the mass terms (effective Lagrangian)

$$\begin{split} \mathcal{L} \supset -h_{33}^u \overline{u}_3 \widetilde{\phi}_u^{\dagger} q_3 - h_{11,22}^u \overline{u}_{1,2} \widetilde{\phi}_u^{\dagger} q_{1,2} s_2^2 - h_{33}^d \overline{d}_3 \widetilde{\phi}_d^{\dagger} q_3 s_1^7 s_2^2 - h_{11,22}^d \overline{d}_{1,2} \widetilde{\phi}_d^{\dagger} q_{1,2} s_2^2 \\ -h_{33}^e \overline{e}_3 \widetilde{\phi}_d^{\dagger} \ell_3 s_1^2 - h_{11,22}^e \overline{e}_{1,2} \widetilde{\phi}_d^{\dagger} \ell_{1,2} s_2^2 - h_{ii}^\nu N_i^b \widetilde{\phi}_u^{\dagger} \ell_3 s_2^2 - k_{ij} N_i^a N_j^c s_1 + \text{h.c.}, \end{split}$$

where $\phi_{u,d}$ are the \mathcal{CP} conjugate doublets. By choosing, for example $\langle s_1 \rangle \sim \mathcal{O}(10)$, $\langle s_2 \rangle \sim \mathcal{O}(10^{-5})$ and $\langle \phi_d \rangle \sim \mathcal{O}(10^{-4}) \langle \phi_u \rangle$ the correct hierarchies $m_t/m_u \approx 10^5$, $m_t/m_b \approx 10^2$ and $m_t/m_\tau \approx 10^2$ are obtained if $h^{u,d,e}$ are of order one.

Stringy THDM details

• $\mathbb{Z}_2 imes \mathbb{Z}_4$ (2,4) toroidal orbifold compactification

•
$$V_1 = \frac{1}{4}(-5, -1, 1, 1, 1, 1, 1, 1)(-7, -7, -1, -1, -1, -1, 1, 1)$$

 $V_2 = \frac{1}{8}(5, -3, -7, -1, -1, 1, 1, 5)(-7, -3, -1, 1, 1, 7, -7, 5)$

• $A_1 = A_2 = 0$, $A_3 = A_4 = A_6 = \frac{1}{4}(-7, 5, 5, 3, 3, -3, 1, 5)(1, 1, 7, 1, 3, 5, 9, 9)$, $A_5 = (0, 0, 0, 0, 0, 0, 0, 0)(0, 1, -2, 1, 1, 1, 2, -2)$