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Introduction



Introduction

Quantum︸ ︷︷ ︸
physics

computer science︷ ︸︸ ︷
finite state automata

Quantum computing: The discipline that combines physics and

computer science, by studying new models of computation based on

quantum physics.



Firsts steps in quantum computing

• R. Feynman, Simulating physics with computers, Int. J. Theor.

Phys. 21, 467 (1982)

• P. Benioff, Quantum mechanical Hamiltonian models of Turing

machines, J. Stat. Phys. 29, 515 (1982)

• D. Deutsch, Quantum theory, the Church-Turing principle, and the

universal quantum computer, Proc. R. Soc. London, Ser. A 400, 97

(1985)



”Quantum power” (1)

Shor’s Algorithm shows that a quantum computer is capable of

factoring very large numbers in polynomial time.

• P. Shor, Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer, SIAM J. Comput. 26,

1484 (1997)

Note 1: there is no classical polynomial time factoring algorithm

Note 2: current cryptographic protocols are based on the difficulty of

the factoring problem

But, only theoretically



”Quantum power” (2)

Shor’s Algorithm shows that a quantum computer is capable of

factoring very large numbers in polynomial time.

• P. Shor, Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer, SIAM J. Comput. 26,

1484 (1997)

Note 1: there is no classical polynomial time factoring algorithm

Note 2: current cryptographic protocols are based on the difficulty of

the factoring problem

But, only theoretically



”Quantum power” (3)

Shor’s Algorithm shows that a quantum computer is capable of

factoring very large numbers in polynomial time.

• P. Shor, Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer, SIAM J. Comput. 26,

1484 (1997)

Note 1: there is no classical polynomial time factoring algorithm

Note 2: current cryptographic protocols are based on the difficulty of

the factoring problem

But, only theoretically



Building a quantum computer

• Extremely complex to realise

• Difficult to program

• Have still ”small” size



Like quantum computers, but smaller

Quantum︸ ︷︷ ︸
Quantum mechanics

Theoretical computer science︷ ︸︸ ︷
finite state automata

Quantum Finite state automata: small model of computation

with a finite amount of internal memory that uses the quantum paradigm

to work.



Finite State Automata



(Classical) Finite state automata

Finite state automata: small model of computation with a finite

amount of internal memory.

Its ”hardware” is composed by an internal Finite State Control that scans

an input tape, consisting in a sequence of cells.

. . .σi. . .σ2σ1 σn $

FSC
For each step the automaton:

1. reads the current cell;

2. changes the internal state;

3. moves to the next cell.



Encoding a problem

We encode the input of the problem as a string: w = σ1, σ2, . . . σn where

σi ∈ Σ,∀i .

. . .σi. . .σ2σ1 σn $

We then ask: Does w respect some characteristics?

The output: either yes or no according how the machine is built.



Given a problem P...

Problem

Input: k ∈ N

Question: Is k a multiple of m ∈ N?

a. . .aaaInput tape: a a $

k times

I accept (I say yes) whenever the input length is such that

k mod m = 0



Example for a FSA

Problem

Input: k ∈ N

Question: Is k a multiple of 8?

a. . .aaa a a $

q0

k times

q0 q4

q2

q6

q1 q3

q7 q5

a

a a

a

a

aa

a

When the computation end in the state q0, k is actually a multiple of 8.



Formal Definition

A Finite State Automaton A is defined by:

• a finite set of internal states Q;

• a set of character for the input string Σ;

• a function δ : QxΣ → Q defining the behaviour

δ(qi , σi ) = qj ;

• the starting internal state q0 ∈ Q;

• the set of final states F ⊆ Q.

Formally: A = (Q,Σ, δ, q0,F )



Formal definition for the example

q0 . . .

q2

qm−2

q1 q3

qm−1 qm−3

a

a a

a

a

aa

a

A = (Q = {q0, q1 . . . qm−1},Σ = {a}, q0, δ, q0),

where δ(qi , a) = q(i+1) mod (m).



Introducing Quantum



From classic to quantum

. . .σi. . .σ2σ1 σn $

qi

. . .σi. . .σ2σ1 σn $

ξ

We have so far described a classic Automata, with a classic set of

internal states Q and transitions defined by a classic deterministic

function δ.

A = (Q, Σ, δ, q0, F )

M = (Q, Σ, {U}σ∈Γ, π0, F )



Formal definition

. . .σi. . .σ2σ1 σn $

QFC

A Quantum Finite State Automaton M, with n basis states, is

defined by the triple

M = (π0, {U}σ∈Γ,P),

where:

• π0 is the initial superposition of states, with ∥π0∥ = 1;

• {U}σ∈Γ ∈ Cnxn is a set of unitary transition where Γ = {Σ ∪ $};
• P ∈ Cnxn is the projector into the subspace of Cn spanned by

accepting basis states.



States in QFAs

• The set of basis states is Q = q0, . . . , qn−1, where each qi is

represented by the characteristic vector ei ∈ {0, 1}n having 1 at the

ith position and 0 elsewhere.

• A quantum state on Q is a superposition ξ ∈ Cn of basis states of

the form

ξ =
n∑

i=1

αiei ,

with αi being complex amplitudes and satisfying ∥ξ∥ = 1.



Computation steps in a QFA (1)

The computation begins from the starting superposition π0.

σn−1. . .σ3σ2σ1 σn $

π0

After the first step of the computation the internal state is:

ξ = π0 · Uσ1 .

We have then the (reversible) computation:

ξ = π0 · Uσ1 · Uσ2 · · ·Uσn · U$.



Computation steps in a QFA (2)

The computation begins from the starting superposition π0.

σn−1. . .σ3σ2σ1 σn $

ξ

After the first step of the computation the internal state is:

ξ = π0 · Uσ1 .

We have then the (reversible) computation:

ξ = π0 · Uσ1 · Uσ2 · · ·Uσn · U$.



Computation steps in a QFA (3)

The computation begins from the starting superposition π0.

σn−1. . .σ3σ2σ1 σn $

ξ

After the first step of the computation the internal state is:

ξ = π0 · Uσ1 .

We have then the (reversible) computation:

ξ = π0 · Uσ1 · Uσ2 · · ·Uσn · U$.



Measurement of the outcome

σn−1. . .σ3σ2σ1 σn $

ξ

ξ = π0 · Uσ1 · · ·Uσn · U$

At the end of the computation M is observed using the projector P, it will

be in an accepting basis state with probability:

pM(w) = ∥π0 · Uσ1 · · ·Uσn · U$ · P∥2.

• After observing this measurement the system collapses to the

superposition ξP/∥ξP∥2.



Acceptance policy

We consider only the set of problems that are acceptable with

isolated cut-point.

0

1

λ
ρ

w accepted

Given λ ∈ [0, 1] and ρ ∈ (0, 1/2], it is the set of

problem s.t.

|pM(w)− λ| > ρ,

for any given problem and

pM(w) > λ,

when the outcome of the problem is actually

positive.



Example of QFA



Setting the problem

Problem

Input: k ∈ N

Question: Is k a multiple of m ∈ N?

a. . .aaa a a $

k times

We define the QFA

M =

(
π0 = (1, 0),Ua =

(
cos(π/m) sin(π/m)

− sin(π/m) cos(π/m)

)
,P =

(
1 0

0 0

))
,

the unitary matrix U$ is the identity I of dimension 2× 2



The starting point

a. . .aaa a a $

π0

k times

We set θ = π/m, so we have:

Ua =

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
x axis

y axis

π0

ξ = π0



First steps (1)

a. . .aaa a a $

ξ

k times

We set θ = π/m, so we have:

Ua =

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
x axis

y axis

π0

π0 · Ua

θ

ξ = π0 · Ua



First steps (2)

a. . .aaa a a $

ξ

k times

We set θ = π/m, so we have:

Ua =

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
x axis

y axis

π0

π0 · Ua

θ

π0 · U2
a

θ

ξ = π0 · Ua · Ua



Final superposition

a. . .aaa a a $

ξ

k times

x axis

y axis

π0

π0 · Ua

θ

π0 · U2
a

θ

π0 · U3
a

θ

π0 · U4
a

θ

ξ = π0 · (Ua)
k · U$



Measuring

• The state at the end of the computation is: ξ = π0 · (Ua)
k · U$

• The transition matrix: (Ua)
k =

(
cos(kπ/m) sin(kπ/m)

−sin(kπ/m) cos(kπ/m)

)

The probability of observing the automata in an accepting state is:

pM(w) = ∥π0 · Uk
a · P∥2 = ∥(1, 0) · Uk

a ·

(
1 0

0 0

)
∥2

= cos2
(
kπ

m

)
=

{
1 if k mod m = 0

cos2(π/m) otherwise.



Setting the cut point

pM(w) =

{
1 if k mod m = 0

cos2(π/m) otherwise.

ξ

ρ

λ

We can set the cut-point and

the isolation:

ρ =
1− cos2 (π/m)

2

λ =
1 + cos2 (π/m)

2



Final remarks



Power of QFA

• For computational power, QFA are weaker

than classical FSA

- due to reversibility of quantum dynamics

FSA

QFA

• For dimension QFA are more convenient than classical FSA

-because of quantum superposition

Problem: Minimum number fo states

FSA: m QFA: 2 (for any m)



Future studies

• Immediate application for few q-bits quantum devices.

• Tackle theoretical studies of quantum computation:

• Exploitation of superposition to implement quantum parallelism

• Exploitation of entanglement in quantum computation



Thank you for your
attention
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