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Why real-time?
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Performing calculations directly in real time (Minkowski spacetime)

I avoids the need of analytic continuation in comparison with the imaginary-time
formalism, and

I allows treating phenomena off-equilibrium, e.g. many aspects of heavy-ion collisions,
which are very dynamic in nature.
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Figure: Spectral functions of the quartic oscillator at finite temperature stemming from various
computational techniques, including the real-time FRG. (JR, Schweitzer, Sieke, von Smekal ’21)
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Time evolution of general mixed state ρ̂(t) is described by von Neumann equation

i
d

dt
ρ̂(t) = [H(t), ρ̂(t)]

I which is formally solved by

ρ̂(t) = U(t,−∞)ρ̂0U(−∞, t)

I with time-evolution operator

U(t, t′) = T exp

{
−i
∫ t

t′
dt′′H(t′′)

}
I Initial state ρ̂0 = ρ̂(−∞) is defined in the distant past (see below)
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Expectation value of observable

〈O(t)〉 =
Tr
(
Oρ̂(t)

)
Tr ρ̂(t)

Schrödinger picture

=
Tr
(
OU(t,−∞)ρ̂0U(−∞, t)

)
Tr
(
U(t,−∞)ρ̂0U(−∞, t)

) (use cyclicity)

=
Tr
(
U(−∞, t)OU(t,−∞)ρ̂0

)
Tr ρ̂0

Heisenberg picture

=
Tr
(
U(−∞,+∞)U(+∞, t)OU(t,−∞)ρ̂0

)
Tr ρ̂0

(extend evolution to +∞)

Now the time evolution goes from −∞ to +∞, and then back to −∞, hence the name
‘closed time path’ (CTP). (Schwinger ’60, Kadanoff, Baym ’62, Keldysh ’64)

2.2 Partition function 13
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Fig. 2.1 The closed time contour C. Dots on the forward and backward branches
of the contour denote discrete time points.

sometime after (before) t = −∞. This constant is therefore frequently omitted
without causing confusion.

The next step is to divide the C contour into (2N − 2) time intervals of length δt ,
such that t1 = t2N = −∞ and tN = tN+1 = +∞, as shown in Fig. 2.1. One then
inserts the resolution of unity in the over-complete coherent state basis, Eq. (2.7),

1̂ =
∫

d[φ̄ j ,φ j ] e−|φ j |2 |φ j 〉〈φ j | (2.15)

at each point j = 1, 2, . . . , 2N along the contour. For example, for N = 3 one
obtains the following sequence in the expression for Tr{ÛC ρ̂0}, Eq. (2.10) (read
from right to left):

〈φ6|Û−δt |φ5〉〈φ5|Û−δt |φ4〉〈φ4|1̂|φ3〉〈φ3|Û+δt |φ2〉〈φ2|Û+δt |φ1〉〈φ1|ρ̂0|φ6〉, (2.16)

where Û±δt is the evolution operator (1.1) during the time interval δt in the positive
(negative) time direction. Its matrix elements are given by:
〈
φ j

∣∣∣Û±δt

∣∣∣φ j−1

〉
≡
〈
φ j

∣∣∣e∓iĤ(b†,b)δt

∣∣∣φ j−1

〉
≈
〈
φ j

∣∣∣
(
1∓ iĤ(b†, b

)
δt
)∣∣∣φ j−1

〉

=
〈
φ j |φ j−1

〉(
1∓ iH(φ̄ j ,φ j−1)δt

)
≈ e φ̄ jφ j−1 e∓iH(φ̄ j ,φ j−1)δt , (2.17)

where the approximate equalities are valid up to the linear order in δt . Here we have
employed expression (2.4) for the matrix elements of a normally-ordered operator
along with Eq. (2.6) for the overlap of the coherent states. For the toy example
(2.12) one finds H(φ̄ j ,φ j−1) = ω0φ̄ jφ j−1. However, Eq. (2.17) is not restricted to
it, but holds for any normally-ordered Hamiltonian. Notice that there is no evolu-
tion operator inserted between tN and tN+1. Indeed, these two points are physically
indistinguishable and thus the system does not evolve during this time interval.

Employing the following property of the coherent states (see Eq. (2.11)):
〈φ1|e−β(ω0−µ)b†b|φ2N 〉 = exp

{
φ̄1φ2Nρ(ω0)

}
and collecting all the exponential

factors along the contour, one finds for the partition function, Eq. (2.13),

Z = 1
Tr{ρ̂0}

∫ 2N∏

j=1

d[φ̄ j ,φ j ] exp



i
2N∑

j, j ′=1

φ̄ j G−1
j j ′ φ j ′



 . (2.18)
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Figure: A. Kamenev, Field Theory of Non-Equilibrium Systems, (Cambridge University Press,
2011).
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∣∣∣Û±δt

∣∣∣φ j−1

〉
≡
〈
φ j
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Figure: A. Kamenev, Field Theory of Non-Equilibrium Systems, (Cambridge University Press,
2011).

Define partition function

Z ≡ Tr
(
U(−∞,+∞)U(+∞,−∞)ρ̂0

)
Tr ρ̂0

= 1 .

Expectation values by introducing sources on forward and/or backward branch, e.g.

I to calculate expectation value 〈O(t)〉 from above

I replace H → H± = H ± V (t)O, then

Z[V ] ≡ Tr
(
UCTP[V ]ρ̂0

)
Tr ρ̂0

=⇒ 〈O(t)〉 =
i

2

δZ[V ]

δV (t)

∣∣∣∣
V≡0

by functional differentiation.
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Digression: Why and when is closing the time path necessary?

I Zero-temperature field theory is concerned with quantities e.g. of the form

〈Ω|O(t)|Ω〉

with interacting ground state |Ω〉.
I Usual trick: Adiabatic switching off interactions in distant past and future

(1) |Ω〉 = U(t0,−∞)|0〉 with free ground state |0〉
(2) U(+∞,−∞)|0〉 = eiϕ|0〉

I Then (define Heisenberg picture w.r.t. t0 here, O(t) = U(t0, t)OU(t, t0))

〈Ω|O(t)|Ω〉 (1)
= 〈0|U(−∞, t0)O(t)U(t0,−∞)|0〉
= 〈0|U(−∞,+∞)U(+∞, t0)O(t)U(t0,−∞)|0〉
(2)
= e−iϕ〈0|U(+∞, t0)O(t)U(t0,−∞)|0〉
(2)
=
〈0|U(+∞, t0)O(t)U(t0,−∞)|0〉

〈0|U(+∞,−∞)|0〉
only needs forward evolution!
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Digression: Why and when is closing the time path necessary?

I Zero-temperature field theory is concerned with quantities e.g. of the form

〈Ω|O(t)|Ω〉

with interacting ground state |Ω〉.
I Usual trick: Adiabatic switching off interactions in distant past and future

(1) |Ω〉 = U(t0,−∞)|0〉 with free ground state |0〉 still ok 3

(2) U(+∞,−∞)|0〉 = eiϕ|0〉 no longer valid! 7

I Then (define Heisenberg picture w.r.t. t0 here, O(t) = U(t0, t)OU(t, t0))

〈Ω|O(t)|Ω〉 (1)
= 〈0|U(−∞, t0)O(t)U(t0,−∞)|0〉
= 〈0|U(−∞,+∞)U(+∞, t0)O(t)U(t0,−∞)|0〉
(2)
= e−iϕ〈0|U(+∞, t0)O(t)U(t0,−∞)|0〉
(2)
=
〈0|U(+∞, t0)O(t)U(t0,−∞)|0〉

〈0|U(+∞,−∞)|0〉
only needs forward evolution!

Trick not possible when non-adiabatic changes are present during time evolution!
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Consider harmonic oscillator H0 = ω0a
†a (zero-point energy subtracted)

in thermal equilibrium ρ̂0 = e−βH0 .

To arrive at path integral representation of the partition function
Suzuki-Trotter-decompose Z in ‘coherent’ states

a|α〉 = α|α〉 , (α ∈ C)

defined as eigenstates of annihilation operator a.
I Express in energy eigenstates,

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 , with H0|n〉 = nω0|n〉 .

I Calculate inner product,

〈α|α′〉 = e−
1
2 (|α|2+|α′|2−2α∗α′)

(special case of 〈α|eρa†a|α′〉= e−
1
2 (|α|2+|α′|2−2eρα∗α′) for ρ ∈ R).

I Form over-complete basis and evaluate traces,

1 =

∫
d2α

π
|α〉〈α| , TrO =

∫
d2α

π
〈α|O|α〉
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Consider harmonic oscillator H0 = ω0a
†a (zero-point energy subtracted)

in thermal equilibrium ρ̂0 = e−βH0 .

To arrive at path integral representation of the partition function
Suzuki-Trotter-decompose Z in ‘coherent’ states

a|α〉 = α|α〉 , (α ∈ C)

defined as eigenstates of annihilation operator a.
Convenient because discretized partition function is product of exponentials,

〈α1|ρ̂0|α2N 〉 = eρ0α
∗
1α2N 〈αN+1|αN 〉 = e−

1
2 (|αN+1|2+|αN |2−2α∗N+1αN)

〈αn+1|U(tn ± δt, tn)|αn〉 = 〈αn+1|αn〉e∓iδtω0α
∗
n+1αn +O(δ2

t )

t
T−T +δt ...

−δt...

Figure: Discretized CTP.

(Define Boltzmann factor ρ0 ≡ e−βω0)
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Write partition function now as discretized path integral

Z =
1

Tr ρ̂0

∫  2N∏
j=1

d2αj
π

 exp
{
iS[{α∗j , αj}]

}
= 1

with discretized action

S[{α∗j , αj}] =

2N∑
j=2

δtj

(
iα∗j

αj − αj−1

δtj
− ω0α

∗
jαj−1

)
+ iα∗1

(
α1 − ie−βω0α2N

)
N→∞−−−−→

∫
CTP

dt
(
α∗(t)i∂tα(t)− ω0α

∗(t)α(t)
)

+ boundary terms

boundary terms are inconvenient in (naive) continuum limit, as they spoil manifest
time-translation invariance of a system in thermal equilibrium. (Impractical.)

Goal: Find a continuum action that is time-translation invariant, and reproduces free
Green functions via rules of Gaussian integration . . .

Johannes Roth Real-time FRG for critical dynamics Lunch Club | June 8, 2022 8 / 37
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. . . But before that, simplify the notation:
Introduce fields on the forward (+) and backward (−) branches of the contour,

α+(t) ≡ α(t+) , α−(t) ≡ α(t−)

Calculate discrete propagators by matrix inversion,

GTjj′ ≡ G++
jj′ = i〈α+

j α
+
j′
∗〉 =

i

1− ρ0
(u+)j−j

′ ×
{

1 if j ≥ j′
e−βω0 if j < j′

‘time ordered’ ,

GT̃jj′ ≡ G−−jj′ = i〈α−j α−j′
∗〉 =

i

1− ρ0
(u+)j−j

′ ×
{
e−βω0 if j > j′

1 if j ≤ j′ ‘anti-time-ordered’ ,

G<jj′ ≡ G+−
jj′ = i〈α+

j α
−
j′
∗〉 =

i

1− ρ0
(u+)j−j

′
ρ0 ‘lesser’ ,

G>jj′ ≡ G−+
jj′ = i〈α−j α+

j′
∗〉 =

i

1− ρ0
(u+)j−j

′
‘greater’ ,

not all independent, but generally interrelated by

G++
jj′ +G−−jj′ −G+−

jj′ −G−+
jj′ = δjj′ → 0 in continuum limit

(Note here: Kronecker-δ, not δ-function!)
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Exploit this linear interrelation by orthogonal
transformation which sets one of the Green functions
identically to zero:

I achieved by ‘Keldysh rotation’

αc(t) ≡ 1√
2

(
α+(t) + α−(t)

)
,

αq(t) ≡ 1√
2

(
α+(t)− α−(t)

)
,

I with ‘classical’ and ‘quantum’ fields αc(t), αq(t)

α+

α−

αc

αq

π/4

π/4

Figure: Keldysh rotation: Clockwise
rotation in the (+,−)-field space.

I Green functions are ‘rotated’ according to

( time ordered

G++(t, t′)
lesser

G+−(t, t′)
G−+(t, t′)

greater

G−−(t, t′)
anti-time-ordered

)
→
( Keldysh

GK(t, t′)
retarded

GR(t, t′)
GA(t, t′)

advanced

0

)

Johannes Roth Real-time FRG for critical dynamics Lunch Club | June 8, 2022 10 / 37
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Now perform the continuum limit to (statistical function F (ω) ≡ 2nB(ω) + 1)

I find Keldysh-rotated propagators (1st order form),

GR(t, t′) = iθ(t− t′)e−iω0(t−t′)

GA(t, t′) = −iθ(t′ − t)e−iω0(t−t′)

GK(t, t′) = iF (ω0)e−iω0(t−t′)

Johannes Roth Real-time FRG for critical dynamics Lunch Club | June 8, 2022 11 / 37
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Now perform the continuum limit to (statistical function F (ω) ≡ 2nB(ω) + 1)

I find Keldysh-rotated propagators (1st order form),

GR(t, t′) = iθ(t− t′)e−iω0(t−t′) → GR(ω) = − 1

ω + iε− ω0
,

GA(t, t′) = −iθ(t′ − t)e−iω0(t−t′) → GA(ω) = − 1

ω − iε− ω0
,

GK(t, t′) = iF (ω0)e−iω0(t−t′) → GK(ω) = 2πiF (ω0)δ(ω − ω0) ,
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Now perform the continuum limit to (statistical function F (ω) ≡ 2nB(ω) + 1)

I find Keldysh-rotated propagators (1st order form),

GR(t, t′) = iθ(t− t′)e−iω0(t−t′) → GR(ω) = − 1

ω + iε− ω0
,

GA(t, t′) = −iθ(t′ − t)e−iω0(t−t′) → GA(ω) = − 1

ω − iε− ω0
,

GK(t, t′) = iF (ω0)e−iω0(t−t′) → GK(ω) = 2πiF (ω0)δ(ω − ω0) ,

I discover general requirement of

Causality

Retarded (advanced) propagator G
R(A)
k (ω) is analytic in the upper (lower) half ω-plane.
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Now perform the continuum limit to (statistical function F (ω) ≡ 2nB(ω) + 1)

I find Keldysh-rotated propagators (1st order form),

GR(t, t′) = iθ(t− t′)e−iω0(t−t′) → GR(ω) = − 1

ω + iε− ω0
,

GA(t, t′) = −iθ(t′ − t)e−iω0(t−t′) → GA(ω) = − 1

ω − iε− ω0
,

GK(t, t′) = iF (ω0)e−iω0(t−t′) → GK(ω) = 2πiF (ω0)δ(ω − ω0) ,

I and write down action which reproduces these Green functions by the rules of
Gaussian integration,

Free Keldysh action (1st order form)

S =

∫ ∞
−∞
dt
(
αc∗(t), αq∗(t)

)( 0 i∂t − iε− ω0

i∂t + iε− ω0 2iεF (ω0)

)(
αc(t)
αq(t)

)

which is manifestly time-translation invariant. (Goal reached!)
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Starting with

Free Keldysh action (1st order form)

S =

∫ ∞
−∞
dt
(
αc∗(t), αq∗(t)

)( 0 i∂t − iε− ω0

i∂t + iε− ω0 2iεF (ω0)

)(
αc(t)
αq(t)

)

I introduce canonical oscillator coordinates ϕ and π again,

α =
1√
2ω0

(ω0ϕ+ iπ) , α∗ =
1√
2ω0

(ω0ϕ− iπ) ,

I integrate out Gaussian π’s, to arrive at

Free Keldysh action (2nd order form)

S =
1

2

∫ ∞
−∞
dt
(
φc(t), φq(t)

)( 0 (i∂t − iε)2 − ω2
0

(i∂t + iε)2 − ω2
0 −ε[∂t, F ]

)(
φc(t)
φq(t)

)
(in coordinate space) (Shorthand notation!

Actually non-local in time . . . )
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Include interactions by

I adding potential term to Keldysh action

SV =

∫ ∞
−∞
dt
(
−Vint(φ

+) + Vint(φ
−)
)

=

∫ ∞
−∞
dt

(
−Vint

(
φc + φq√

2

)
+ Vint

(
φc − φq√

2

))
I and imagine that interactions are adiabatically

switched off in the distant past, t→ −∞
(but they may stay finite in the distant future t→ +∞ (!))

I e.g. quartic coupling Vint(ϕ) = λϕ4/4! ,

SV = − λ

12

∫ ∞
−∞
dt
(
φc(t)φc(t)φc(t)φq(t)︸ ︷︷ ︸

‘classical’ vertex

+φc(t)φq(t)φq(t)φq(t)︸ ︷︷ ︸
‘quantum’ vertex

)
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SV = − λ

12

∫ ∞
−∞
dt
(
φc(t)φc(t)φc(t)φq(t)︸ ︷︷ ︸

‘classical’ vertex

+φc(t)φq(t)φq(t)φq(t)︸ ︷︷ ︸
‘quantum’ vertex

)
Why the names ‘classical’ and ‘quantum’?

Perform classical limit of Keldysh action by reintroducing ~, then take the limit ~→ 0,

I S → S/~,

I T → T/~ =⇒ F (ω)→ 2T/~ω +O(~) (Rayleigh-Jeans distribution),

I φq(t)→ ~φq(t),

(obtained from dimensional analysis)

S[φc, φq] =
1

2

∞∫
−∞

dω

2π

(
φc, φq

)
−ω

(
0 (ω − iε)2 − ω2

0

(ω + iε)2 − ω2
0 4iεω coth

(
ω/2T

))(φc
φq

)
ω

− λ

12

∫ ∞
−∞
dt
(
φc(t)φc(t)φc(t)φq(t) + φc(t)φq(t)φq(t)φq(t)

)
,
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SV = − λ

12

∫ ∞
−∞
dt
(
φc(t)φc(t)φc(t)φq(t)︸ ︷︷ ︸

‘classical’ vertex

+φc(t)φq(t)φq(t)φq(t)︸ ︷︷ ︸
‘quantum’ vertex

)
Why the names ‘classical’ and ‘quantum’?

Perform classical limit of Keldysh action by reintroducing ~, then take the limit ~→ 0,

I S → S/~,

I T → T/~ =⇒ F (ω)→ 2T/~ω +O(~) (Rayleigh-Jeans distribution),

I φq(t)→ ~φq(t),

(obtained from dimensional analysis)

1

~
S[φc, φq] =

1

2~

∞∫
−∞

dω

2π

(
φc, ~φq

)
−ω

(
0 (ω − iε)2 − ω2

0

(ω + iε)2 − ω2
0 4iεω coth

(
~ω/2T

))( φc

~φq

)
ω

− λ

12~

∫ ∞
−∞
dt
(
~φc(t)φc(t)φc(t)φq(t) + ~3φc(t)φq(t)φq(t)φq(t)

)
,
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SV = − λ

12

∫ ∞
−∞
dt
(
φc(t)φc(t)φc(t)φq(t)︸ ︷︷ ︸

‘classical’ vertex

+φc(t)φq(t)φq(t)φq(t)︸ ︷︷ ︸
‘quantum’ vertex

)
Why the names ‘classical’ and ‘quantum’?

Perform classical limit of Keldysh action by reintroducing ~, then take the limit ~→ 0,

I S → S/~,

I T → T/~ =⇒ F (ω)→ 2T/~ω +O(~) (Rayleigh-Jeans distribution),

I φq(t)→ ~φq(t),

(obtained from dimensional analysis)

1

~
S[φc, φq] =

1

2

∞∫
−∞

dω

2π

(
φc, φq

)
−ω

(
0 (ω − iε)2 − ω2

0

(ω + iε)2 − ω2
0 8iεT

)(
φc

φq

)
ω

− λ

12

∫ ∞
−∞
dt
(
φc(t)φc(t)φc(t)φq(t)

)
,

i.e. only ‘classical’ vertex remains in classical limit, hence the name.
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1

~
S[φc, φq] =

1

2

∞∫
−∞

dω

2π

(
φc, φq

)
−ω

(
0 (ω − iε)2 − ω2

0

(ω + iε)2 − ω2
0 8iεT

)(
φc

φq

)
ω

− λ

12

∫ ∞
−∞
dt
(
φc(t)φc(t)φc(t)φq(t)

)
,

I Arrived at the Martin-Siggia-Rose-Janssen-de Dominicis path integral formulation of
classical-statistical systems. (Later)

I From the point of view of the formalism non-equilibrium QFT and
classical-statistical field theories are virtually indistinguishable.

I One may now linearize action in φq(t) by Hubbard-Stratonovich transformation,
integrate linear φq(t) to get δ-functional, enforcing class.-stat. equations of motion

∂2
t φ

c + 2ε∂tφ
c + ω2

0φ
c +

λ

12
(φc)3 = ξ(t) ,

〈ξ(t)〉β = 0 , 〈ξ(t)ξ(t′)〉β = 8εTδ(t− t′)

for a particle in infinitesimal contact ε to an external heat bath. (Canonical ensemble)
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Generating functional

Z[jc, jq] =

∫
DφcDφq exp

{
iS[φc, φq] + i

∫ ∞
−∞
dt
(
jc(t)φq(t) + jq(t)φc(t)

)}
with Keldysh action

S[φc, φq] =
1

2

∞∫
−∞

dω

2π

(
φc(−ω), φq(−ω)

)( 0 ω2 − iγω − ω2
0

ω2 + iγω − ω2
0 2iγωF (ω)

)(
φc(ω)
φq(ω)

)

− λ

12

∫ ∞
−∞
dt
(
φc(t)φc(t)φc(t)φq(t) + φc(t)φq(t)φq(t)φq(t)

)
,

with

I quartic self-interaction

I finite coupling to dissipative external heat bath (Caldeira-Leggett model, later)

Effective action by Legendre transform

Γ[φ̄c, φ̄q] = sup
jc,jq

{
−i logZ[jc, jq]−

∫ ∞
−∞
dt
(
jc(t)φ̄q(t) + jq(t)φ̄c(t)

)}
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Idea of the (functional) renormalization group
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I Suppose the effective action Γ of the theory is known at some momentum/energy
scale k, denoted Γk, where fluctuations from modes |p| & k have been taken into
account.

I Realized by modifying the action with an infrared cutoff ∆Sk[φc, φq],

S → S + ∆Sk

suppressing modes with |p| < k.

I Has the structure (D = d+ 1 number of spacetime dimensions)

∆Sk[φ] =
1

2

∫
dDx

∫
dDx′ φT (x)Rk(x, x′)φ(x′), φT = (φc, φq),

with the 2× 2-‘regulator’ matrix

Rk(p) =

(
0 RAk (p)

RRk (p) RKk (p)

)
.

in momentum space.
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Idea of the (functional) renormalization group
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I Change the scale k → k + dk, arrive at ‘flow’ equation
(Wetterich ’93, Berges, Mesterházy ’12)

∂kΓk = − i
2

tr (∂kRk ◦Gk) , Gk = −
(

Γ
(2)
k +Rk

)−1

I Has the form of a 1-loop integral,
(Color-coding from Hülsmann, Schlichting, Scior ’20)

∂kΓk = − i
2

but is exact. Fully field-dependent
propagator Gk[φ]

I Have Γk
k→Λ−−−→ S, classical action.

(Demonstrated via saddle-point approximation.)
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I Regulator changes analytic structure of propagators,

GRk (ω,p) = − 1

Γqck (ω,p) +RRk (ω,p)
(retarded)

GAk (ω,p) = − 1

Γcqk (ω,p) +RAk (ω,p)
(advanced)

I What are the consequences?

I Maybe everything fine for k = 0?
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Test:

I Observe very general property of Keldysh action:

S =
1

2

∫
p

(φc(−p), φq(−p))
(

0 · · ·
· · · · · ·

)(
φc(p)
φq(p)

)
+ · · ·

follows from that for φ+ = φ− the action vanishes, S[φc, 0] = 0.

I Necessary condition for the correctness of the flow.

Find:

I Popular regulators like sharp/exponential/algebraic/... cutoff produce such an
unphysical component during flow.

I Problem of causality not trivial. (Duclut, Delamotte ’18)

I An insufficient regulator leads to an incorrect Keldysh action.
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What can we do?
(Start with 0+1 dimensional case, i.e. quantum mechanics.)

Most simple regulator which we could write down has form of a purely mass-like shift,
(Callan-Symanzik regulator)

R
R/A
k (ω) = −k2

I Trivially causal, only induces mass-shift m2 → m2 + k2 in propagators.

I Too simple?

I Flow no longer consistent with Wilson’s idea of integrating out energy (momentum)
shells?
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Regulator motivated by physics: (Causality guaranteed!)

I Imagine ∆Sk is the result of integrating out an external heat bath.

I Heat bath (HB) is modeled as an ensemble of independent harmonic oscillators,
attached to the particle. (Caldeira-Leggett model)

Particle
x

HB osci.
ϕs H ′ =

∑
s

(
π2
s

2
+
ω2
s

2

(
ϕs − gs

ω2
s

x

)2
)

I Integrate out heat bath =̂ Particle acquires self-energy ΣR/A(ω)

ΣR (ω) =
∑
s Ds(ω)

gs gs
= −

∫ ∞
0

dω′

2π

2ω′J(ω′)

(ω + iε)2 − ω′2

I Fully controlled by a spectral density J(ω) = π
∑
s

g2s
ωs
δ(ω − ωs)

I Invert ; J(ω) = 2Im ΣR(ω), but self-energy ΣR also has a non-vanishing real part.
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I Now make the spectral density k-dependent, J(ω)→ Jk(ω),
and choose it to damp infrared modes.

I The resulting self-energy is the regulator, ΣR/A(ω)→ R
R/A
k (ω).

Jk(ω)/k2

-4 -2 2 4
ω/k

-0.5

0.5

Re[Rk(ω)/k2]

Im[Rk(ω)/k2]

-4 -2 2 4
ω/k

-0.4

-0.2

0.2

0.4

0.6

m2 → m2−∆m2
HB(k)

Example:

Jk(ω) = kω exp
{
−ω2/k2

}
=⇒ φ(t) ∼ e−kt/2 for ω � k, damped

But: Heat bath induces negative (!) shift
in the squared mass

∆m2
HB(k) =

∫ ∞
0

dω

π

Jk(ω)

ω
=

k2

√
4π

Makes the theory unstable and acausal for
sufficiently large values of k !

Johannes Roth Real-time FRG for critical dynamics Lunch Club | June 8, 2022 23 / 37



Heat bath regulators
 

 

CRC -  TR 

I Way out: We learned that a masslike shift is causal.

; Add mass-like ‘counter-term’ −αk2 with α > 0
to compensate unwanted shift in squared mass!
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α = 0 α = 1/
√

4π,
(balanced)

α = 1/
√

4π + 1,
(balanced + regulated)

Re[Rk(ω)/k2]

Im[Rk(ω)/k2]
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FIG. 2. Poles !p(k) of the retarded propagator (5.23) with the Drude regulator (5.22) in the complex plane as a function of
k, with !0 = 1, � = 0.5 and three di↵erent values of ↵. The black dots mark the quasi-particle poles (5.25) of the propagator
at k = 0, where the regulator vanishes. They move around with k in the lower half-plane, but never cross the real axis. The
crosses at the origin mark the points where the regulator-induced third poles disappear with k ! 0 in the IR. For ↵ < 1/2 this
relaxational regulator pole moves into the upper half-plane at a finite value of the FRG scale k and the regulator thus violates
causality at large k towards the UV.

Following the flow backwards towards the UV we see
that for ↵  1/2 the imaginary part of the relaxational
regulator pole first moves to smaller values. Eventually,
however, it turns around to increase again towards the
UV, for ↵ < 1/2 without bound. In this case it thus
always crosses the real axis and moves into the upper
half-plane (where a retarded self-energy should be an-
alytic) so that causality is violated by the regulator at
finite FRG scale k. For ↵ = 1/2 it turns around as well,
but approaches 0� for k ! 1 in the UV and never moves
into the upper half-plane. This is the liming case where
↵ is chosen precisely such that the regulator has a root at
! = 0. For larger values ↵ > 1/2 the imaginary part of
the relaxational regulator pole decreases monotonically
and the regulator never violates causality. Its real part
has no zero-crossings anymore, and always leads to a pos-

FIG. 3. Flow of the imaginary parts Im!p(k) of the regulator-
induced relaxational poles in the retarded propagators of
Fig. 2 over the FRG scale k. Here, ↵ = 1/2 is the limiting
case, i.e. causality is always violated at large k for ↵ < 1/2.

itive mass/frequency shift, because the Callan-Symanzik
counter-term is large enough to compensate the negative
shift in the squared mass/frequency by �!2

HB from the
heat bath regulator.

C. Truncation for the E↵ective Average Action

In analogy to Ref. [28], we use the vertex expansion
around the scale-dependent minimum �0,k(x) up to order
Q, since it was proven that such a truncation gives rise to
qualitative structures such as the collisional broadening
and further resonance frequencies in the spectral func-
tion, corresponding to 1 $ 3 processes.

We will now briefly summarize the truncation and
the di↵erences to the one presented in Ref. [28]. For
the quartic oscillator, the minimum �0,k(x) ⌘ 0 is k-
independent because of the inversion symmetry of the
e↵ective action and the assumption that no spontaneous
symmetry breaking occurs. We consider a vertex expan-
sion up to sixth order in the field �, which may be ex-
plicitly written as
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C. Truncation for the E↵ective Average Action

In analogy to Ref. [28], we use the vertex expansion
around the scale-dependent minimum �0,k(x) up to order
Q, since it was proven that such a truncation gives rise to
qualitative structures such as the collisional broadening
and further resonance frequencies in the spectral func-
tion, corresponding to 1 $ 3 processes.

We will now briefly summarize the truncation and
the di↵erences to the one presented in Ref. [28]. For
the quartic oscillator, the minimum �0,k(x) ⌘ 0 is k-
independent because of the inversion symmetry of the
e↵ective action and the assumption that no spontaneous
symmetry breaking occurs. We consider a vertex expan-
sion up to sixth order in the field �, which may be ex-
plicitly written as
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I Way out: We learned that a masslike shift is causal.

; Add mass-like ‘counter-term’ −αk2 with α > 0
to compensate unwanted shift in squared mass!

Heat bath regulator in 1 + 0d

R
R/A
k (ω) = −

∫ ∞
0

dω′

2π

2ω′Jk(ω′)

(ω ± iε)2 − ω′2 − αk
2

(JR, Schweitzer, Sieke, von Smekal ’21)
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What about a field theory?
I Arguably simplest ansatz: Imagine an independent bath of harmonic oscillators for

every spatial momentum mode p. Then the spectral representation just acquires an
additional p-dependence,

Heat bath regulator

R
R/A
k (ω,p) = −

∫ ∞
0

dω′

2π

2ω′Jk(ω′,p)

(ω ± iε)2 − ω′2 − αk(p)k2

which still ensures causality.

0

0.5

1.0

1.5

2.0

Figure: Real part (Mass shift).

-0.50

-0.25

0

0.25

0.50

Figure: Imaginary part (Damping).
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I And when we have no preferred frame of reference, e.g. no external medium?
What about Lorentz invariance?

I A regulator like the one above would break Lorentz symmetry.

I Imagine the heat bath to be an ensemble of Klein-Gordon fields with a relativistic
dispersion relation ω2 = p2 +m2

s,
; Our field gains a self-energy
(Källén-Lehmann representation)

ΣRk (ω,p) =
∑
s Ds(ω,p)

gs gs
= −

∫ ∞
0

dµ2

2π

J̃k(µ2)

(ω + iε)2 − p2 − µ2

with invariant spectral density J̃(µ2) = 2π
∑
s g

2
sδ(µ

2 −m2
s) in

J(ω,p) = sgn(ω) θ(p2) J̃(p2)

I Reintroduce masslike counter-term −αk2, and then
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find general form of

Lorentz-invariant heat-bath regulator

R
R/A
k (ω,p) = −

∫ ∞
0

dµ2

2π

J̃k(µ2)

(ω ± iε)2 − p2 − µ2
−αk2

(Special case of spectral representation shown above)

Figure: Imaginary part (damping).

Example:

J̃k(µ2) =
4kµ

(1 + µ2/k2)2

I p2 is a Lorentz scalar.

I sgnω is also a Lorentz scalar, but only if p is
timelike and if we restrict ourselves to
orthochronous Lorentz transformations.
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Consider classical λϕ4-theory with Landau-Ginzburg free energy (statics) Model A
in thermal equilibrium,

F =

∫
ddx

{
1

2
(~∇ϕ)2 + V (ϕ)

}
, Z =

∫
Dϕe−βF ,

and equations of motion (dynamics) with dissipative coupling γ to heat bath (Langevin)

∂2
t ϕ+ γ∂tϕ = −δF

δϕ
+ ξ(x) ,

with Gaussian white noise(s)

〈ξ(x)〉β = 0 ,

〈ξ(x)ξ(x′)〉β = 2γTδ(x− x′) ,

Discrete Z2 (ϕ→ −ϕ) symmetry breaks spontaneously for T < Tc when m2 < 0.
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Consider classical λϕ4-theory with Landau-Ginzburg free energy (statics) Model B
with coupling B between conserved density n(x) and ϕ(x) (Son, Stephanov ’04)

F =

∫
ddx

{
1

2
(~∇ϕ)2 + V (ϕ) +B ϕn+

1

2χ0
n2

}
, Z =

∫
DϕDn e−βF ,

and equations of motion (dynamics) with dissipative coupling γ to heat bath (Langevin)

∂2
t ϕ+ γ∂tϕ = −δF

δϕ
+ ξ(x) ,

τR∂
2
t n+ ∂tn = λ̄~∇2 δF

δn
+ ~∇ · ~ζ(x) ,

with Gaussian white noise(s)

〈ξ(x)〉β = 0 ,

〈ξ(x)ξ(x′)〉β = 2γTδ(x− x′) ,
〈ζi(x)〉β = 0 ,

〈ζi(x)ζj(x′)〉β = 2λ̄T δijδ(x− x′) .

Discrete Z2 (ϕ→ −ϕ) symmetry breaks spontaneously for T < Tc when m2 < 0.
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Consider classical λϕ4-theory with Landau-Ginzburg free energy (statics) Model C
with coupling g between conserved density n(x) and ϕ2(x)

F =

∫
ddx

{
1

2
(~∇ϕ)2 + V (ϕ) +

g

2
ϕ2n+

1

2χ0
n2

}
, Z =

∫
DϕDn e−βF ,

and equations of motion (dynamics) with dissipative coupling γ to heat bath (Langevin)

∂2
t ϕ+ γ∂tϕ = −δF

δϕ
+ ξ(x) ,

τR∂
2
t n+ ∂tn = λ̄~∇2 δF

δn
+ ~∇ · ~ζ(x) ,

with Gaussian white noise(s)

〈ξ(x)〉β = 0 ,

〈ξ(x)ξ(x′)〉β = 2γTδ(x− x′) ,
〈ζi(x)〉β = 0 ,

〈ζi(x)ζj(x′)〉β = 2λ̄T δijδ(x− x′) .

Discrete Z2 (ϕ→ −ϕ) symmetry breaks spontaneously for T < Tc when m2 < 0.
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Spectral function defined as

ρ(ω) =
1

2πi

∫ ∞
−∞
dt eiωt

∫
ddx i〈[φ(t,x), φ(0,0)]〉 ,

which

I behaves like ρ(ω) ∼ |ω|−σ at the critical point, T = Tc, with

I scaling exponent σ = (2− η⊥)/z, which is related to

I dynamical critical exponent z, defined by ξt ∼ ξz.
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Write down corresponding Keldysh (Martin-Siggia-Rose) action S[φc, φq], then solve via
real-time FRG, i.e.

I truncate Γk[φc, φq],
(exemplary for Model A)

Γk =
1

2

∫
p

∆φT (−p)
(

0 Z
‖
k(ω)ω2 − Z⊥k p2 −m2

k − iγk(ω)ω
c.c. of adv. 4iγk(ω)T

)
∆φ(p)

− κk√
8

∫
x

(
φc − φc0,k

)2
φq − λk

12

∫
x

(
φc − φc0,k

)3
φq ,

with power-law behavior and finite ( 6= 0) anomalous scaling dimension
η⊥k = −k∂k logZ⊥k in mind, and with the fluctuation ∆φ ≡ φ− φ0,k around the
minimum, and then

I solve truncated flow equations numerically,
(here e.g. for 2-point function)

∂kΓcqk (x, x′) = −i

 x x′
+

x x′
+

1

2
x x′

+
x x′

.
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Results for critical spectral functions at T ≈ Tc Model A
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Figure: d = 2.
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Figure: d = 3.

I visible power-law behaviour building up close to the critical point

(Reduced temperature τ ≡ (T − Tc)/Tc) (JR, von Smekal, in preparation.)
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Results for critical spectral functions at T ≈ Tc Model B
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Figure: d = 2.
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Figure: d = 3.

I visible power-law behaviour building up close to the critical point

I conserved density non-critical, but

I non-trivial spectral function at p = 0!
Non-conserved ϕ also resembles critical dynamics of Model B

(Reduced temperature τ ≡ (T − Tc)/Tc) (JR, von Smekal, in preparation.)
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Results for critical spectral functions at T ≈ Tc Model C
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Figure: d = 2.
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Figure: d = 3.

I visible power-law behaviour building up close to the critical point,

I conserved density becomes critical due to non-linear interaction ∼ ϕ2n with critical
ϕ-mode, and

I for comparison the Model A result indicated as dashed lines.

(Reduced temperature τ ≡ (T − Tc)/Tc) (JR, von Smekal, in preparation.)
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Extraction scheme: Model A
Look at logarithmic derivative σ = −ω ∂ log ρ(ω)/∂ω in scaling regime of critical spectral
function to extract dynamical critical exponent z = (2− η⊥)/σ
(also compare against mean-field result σmf = 1, η⊥mf = 0 =⇒ zmf = 2)
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τ  5.5×10-8

τ  0.062
τ  0.2
τ  0.42
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Figure: d = 2.

z ≈ 2.094 = 2 + cη⊥ cf. z
?
= 2.1665(12)

Nightingale, Blöte ’96

(Monte Carlo)

τ ≈ 0
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Figure: d = 3.

z ≈ 2.042 = 2 + cη⊥ cf. z = 2.0245(15)
Hasenbusch ’20

(Monte Carlo)
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Extraction scheme: Model B
Look at logarithmic derivative σ = −ω ∂ log ρ(ω)/∂ω in scaling regime of critical spectral
function to extract dynamical critical exponent z = (2− η⊥)/σ
(also compare against mean-field result σmf =

1
2
, η⊥mf = 0 =⇒ zmf = 4)
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Figure: d = 2.

z ≈ 3.55 = 4− η⊥ cf. z = 3.75
Onsager’s solution of 2d Ising model
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Figure: d = 3.

z ≈ 3.90 = 4− η⊥ cf. z = 3.964
Kos et al. ’16, Komargodski et al. ’17

(Conformal bootstrap)
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Extraction scheme: Model C
Look at logarithmic derivative σ = −ω ∂ log ρ(ω)/∂ω in scaling regime of critical spectral
function to extract dynamical critical exponent z = (2− η⊥)/σ
(also compare against mean-field result σmf = 1, η⊥mf = 0 =⇒ zmf = 2)
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τ  0.35
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Figure: d = 2.

z ≈ 2.56 = 2 + α/ν cf. z = 2
Onsager’s solution of 2d Ising model

(problematic. . . )
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Figure: d = 3.

z ≈ 2.31 = 2 + α/ν cf. z = 2.175
Kos et al. ’16, Komargodski et al. ’17

(Conformal bootstrap)
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We have

I constructed regulators in the real-time FRG which automatically take care of
causality and Lorentz invariance, and

I calculated critical spectral functions using one and two-loop self-consistent
truncation schemes in Model A, B, and C.

For the future, we plan to

I extract universal scaling functions which describe universal behaviour in close vicinity
of critical point,

I inspect real-time dynamics of Model G and H,

I include fermions (; low-energy effective models of QCD in real time), and

I analyze non-equilibrium phenomena.

Thank you for your attention!
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Diagram(s) that correspond to the unphysical upper left (cc) component of the Keldysh
action,

∂kΓcck =
−i
4

 +


=
iλk
2

∫ ∞
−∞

dω

2π

(
GRk (ω)∂kR

R
k (ω)GRk (ω) +GAk (ω)∂kR

A
k (ω)GAk (ω)

)
!
= 0 for a flow that respects the causal structure of the action.

Propagators:

G
R(A)
k (ω) = − 1

ω2 ± iγω −m2 +R
R(A)
k (ω)
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I Well-known regulator from the Euclidean FRG (Litim ’01)

I Regulator has the form

R
R/A
k (ω) = (k2 − ω2)θ(k2 − ω2),

with a sharp cutoff at ω = k.

I Result:

 0

 0.2
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 0.6

 0.8

 1
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 0  1  2  3  4  5

(i
 m

2
/2
λ
) 

 ∂
k
 Γ
c
c
k
  
 (
s
h
o
u
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 b
e

 z
e
ro
)

k/m

γ/m = 0.5

I Flow indeed generates an
unphysical cc component in
the action.

I Pole at k = m !
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I Is it the sign?

I Regulator now has the form

R
R/A
k (ω) = −(k2 − ω2)θ(k2 − ω2),

still with a sharp cutoff at ω = k.

I Result:

-0.25
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-0.1

-0.05

 0
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 0  1  2  3  4  5

(i
 m

2
/2
λ
) 
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k
 Γ
c
c
k
  
 (
s
h
o
u
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 b
e

 z
e
ro
)

k/m

γ/m = 0.5

+ No more singularities in the flow.

− Flow still generates an
unphysical cc component in the
action.
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Plots of Lorentz invariant Causal Regulators
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Figure: Real part (Mass shift). Figure: Imaginary part (Damping).
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