JUSTUS-LIEBIG7 UNIVERSITAT GIESSEN

Real-time functional renormalization group for critical dynamics

Johannes Roth ${ }^{1}$
${ }^{1}$ Institute for Theoretical Physics, University of Giessen

Lunch Club | June 8, 2022

Based on
JR, D. Schweitzer, L. J. Sieke, L. von Smekal, Real-time methods for spectral functions, arXiv:2112.12568, JR, L. von Smekal, in preparation.

Outline

1. Real-time ...
2. ...functional renormalization group ...
3. ... for critical dynamics

Why real-time?

Performing calculations directly in real time (Minkowski spacetime)

- avoids the need of analytic continuation in comparison with the imaginary-time formalism, and
- allows treating phenomena off-equilibrium, e.g. many aspects of heavy-ion collisions, which are very dynamic in nature.

Figure: Spectral functions of the quartic oscillator at finite temperature stemming from various computational techniques, including the real-time FRG. (JR, Schweitzer, Sieke, von Smekal '21)

Real-time QFT

Real-time QFT

Time evolution of general mixed state $\hat{\rho}(t)$ is described by von Neumann equation

$$
i \frac{d}{d t} \hat{\rho}(t)=[H(t), \hat{\rho}(t)]
$$

- which is formally solved by

$$
\hat{\rho}(t)=U(t,-\infty) \hat{\rho}_{0} U(-\infty, t)
$$

- with time-evolution operator

$$
U\left(t, t^{\prime}\right)=T \exp \left\{-i \int_{t^{\prime}}^{t} d t^{\prime \prime} H\left(t^{\prime \prime}\right)\right\}
$$

- Initial state $\hat{\rho}_{0}=\hat{\rho}(-\infty)$ is defined in the distant past (see below)

Real-Time QFT

Expectation value of observable

$$
\begin{array}{rlrl}
\langle\mathcal{O}(t)\rangle & =\frac{\operatorname{Tr}(\mathcal{O} \hat{\rho}(t))}{\operatorname{Tr} \hat{\rho}(t)} & & \text { Schrödinger picture } \\
& =\frac{\operatorname{Tr}\left(\mathcal{O} U(t,-\infty) \hat{\rho}_{0} U(-\infty, t)\right)}{\operatorname{Tr}\left(U(t,-\infty) \hat{\rho}_{0} U(-\infty, t)\right)} & & \text { (use cyclicity) } \\
& =\frac{\operatorname{Tr}\left(U(-\infty, t) \mathcal{O} U(t,-\infty) \hat{\rho}_{0}\right)}{\operatorname{Tr} \hat{\rho}_{0}} & & \text { Heisenberg picture } \\
& =\frac{\operatorname{Tr}\left(U(-\infty,+\infty) U(+\infty, t) \mathcal{O} U(t,-\infty) \hat{\rho}_{0}\right)}{\operatorname{Tr} \hat{\rho}_{0}} & \text { (extend evolution to }+\infty)
\end{array}
$$

Now the time evolution goes from $-\infty$ to $+\infty$, and then back to $-\infty$, hence the name 'closed time path' (CTP). (Schwinger '60, Kadanoff, Baym '62, Keldysh '64)

Figure: A. Kamenev, Field Theory of Non-Equilibrium Systems, (Cambridge University Press, 2011).

Real-time QFT

Figure: A. Kamenev, Field Theory of Non-Equilibrium Systems, (Cambridge University Press, 2011).

Define partition function

$$
Z \equiv \frac{\operatorname{Tr}\left(U(-\infty,+\infty) U(+\infty,-\infty) \hat{\rho}_{0}\right)}{\operatorname{Tr} \hat{\rho}_{0}}=1
$$

Expectation values by introducing sources on forward and/or backward branch, e.g.

- to calculate expectation value $\langle\mathcal{O}(t)\rangle$ from above
- replace $H \rightarrow H^{ \pm}=H \pm V(t) \mathcal{O}$, then

$$
Z[V] \equiv \frac{\operatorname{Tr}\left(U_{\mathrm{CTP}}[V] \hat{\rho}_{0}\right)}{\operatorname{Tr} \hat{\rho}_{0}} \Longrightarrow\langle\mathcal{O}(t)\rangle=\left.\frac{i}{2} \frac{\delta Z[V]}{\delta V(t)}\right|_{V \equiv 0}
$$

by functional differentiation.

Real-time QFT?

Digression: Why and when is closing the time path necessary?

- Zero-temperature field theory is concerned with quantities e.g. of the form

$$
\langle\Omega| \mathcal{O}(t)|\Omega\rangle
$$

with interacting ground state $|\Omega\rangle$.

- Usual trick: Adiabatic switching off interactions in distant past and future (1) $|\Omega\rangle=U\left(t_{0},-\infty\right)|0\rangle$ with free ground state $|0\rangle$
(2) $U(+\infty,-\infty)|0\rangle=e^{i \varphi}|0\rangle$
- Then (define Heisenberg picture w.r.t. t_{0} here, $\left.\mathcal{O}(t)=U\left(t_{0}, t\right) \mathcal{O U}\left(t, t_{0}\right)\right)$

$$
\begin{aligned}
\langle\Omega| \mathcal{O}(t)|\Omega\rangle & \stackrel{(1)}{=}\langle 0| U\left(-\infty, t_{0}\right) \mathcal{O}(t) U\left(t_{0},-\infty\right)|0\rangle \\
& =\langle 0| U(-\infty,+\infty) U\left(+\infty, t_{0}\right) \mathcal{O}(t) U\left(t_{0},-\infty\right)|0\rangle \\
& \stackrel{(2)}{=} e^{-i \varphi}\langle 0| U\left(+\infty, t_{0}\right) \mathcal{O}(t) U\left(t_{0},-\infty\right)|0\rangle \\
& \stackrel{(2)}{=} \frac{\langle 0| U\left(+\infty, t_{0}\right) \mathcal{O}(t) U\left(t_{0},-\infty\right)|0\rangle}{\langle 0| U(+\infty,-\infty)|0\rangle}
\end{aligned}
$$

only needs forward evolution!

Real-time QFT?

Digression: Why and when is closing the time path necessary?

- Zero-temperature field theory is concerned with quantities e.g. of the form

$$
\langle\Omega| \mathcal{O}(t)|\Omega\rangle
$$

with interacting ground state $|\Omega\rangle$.

- Usual trick: Adiabatic switching off interactions in distant past and future
(1) $|\Omega\rangle=U\left(t_{0},-\infty\right)|0\rangle$ with free ground state $|0\rangle$
(2) $U(+\infty,-\infty)|0\rangle=e^{i \varphi}|0\rangle$
- Then (define Heisenberg picture w.r.t. t_{0} here, $\left.\mathcal{O}(t)=U\left(t_{0}, t\right) \mathcal{O U}\left(t, t_{0}\right)\right)$

$$
\begin{aligned}
\langle\Omega| \mathcal{O}(t)|\Omega\rangle & \stackrel{(1)}{=}\langle 0| U\left(-\infty, t_{0}\right) \mathcal{O}(t) U\left(t_{0},-\infty\right)|0\rangle \\
& =\langle 0| U(-\infty,+\infty) U\left(+\infty, t_{0}\right) \mathcal{O}(t) U\left(t_{0},-\infty\right)|0\rangle \\
& \stackrel{(2)}{=} e^{-i \varphi}\langle 0| U\left(+\infty, t_{0}\right) \mathcal{O}(t) U\left(t_{0},-\infty\right)|0\rangle \\
& \stackrel{(2)}{=} \frac{\langle 0| U\left(+\infty, t_{0}\right) \mathcal{O}(t) U\left(t_{0},-\infty\right)|0\rangle}{\langle 0| U(+\infty,-\infty)|0\rangle}
\end{aligned}
$$

only needs forward evolution!

Real-time QFT?

Digression: Why and when is closing the time path necessary?

- Zero-temperature field theory is concerned with quantities e.g. of the form

$$
\langle\Omega| \mathcal{O}(t)|\Omega\rangle
$$

with interacting ground state $|\Omega\rangle$.

- Usual trick: Adiabatic switching off interactions in distant past and future
(1) $|\Omega\rangle=U\left(t_{0},-\infty\right)|0\rangle$ with free ground state $|0\rangle$
(2) $U(+\infty,-\infty)|0\rangle=e^{i \varphi}|0\rangle \quad$ no longer valid! \boldsymbol{x}
- Then (define Heisenberg picture w.r.t. t_{0} here, $\left.\mathcal{O}(t)=U\left(t_{0}, t\right) \mathcal{O} U\left(t, t_{0}\right)\right)$

$$
\begin{aligned}
\langle\Omega| \mathcal{O}(t)|\Omega\rangle & \stackrel{(1)}{=}\langle 0| U\left(-\infty, t_{0}\right) \mathcal{O}(t) U\left(t_{0},-\infty\right)|0\rangle \\
& =\langle 0| U(-\infty,+\infty) U\left(+\infty, t_{0}\right) \mathcal{O}(t) U\left(t_{0},-\infty\right)|0\rangle \\
& \stackrel{(2)}{=} e^{-i \varphi}\langle 0| U\left(+\infty, t_{0}\right) \mathcal{O}(t) U\left(t_{0},-\infty\right)|0\rangle \\
& \stackrel{(2)}{=} \frac{\langle 0| U\left(+\infty, t_{0}\right) \mathcal{O}(t) U\left(t_{0},-\infty\right)|0\rangle}{\langle 0| U(+\infty,-\infty)|0\rangle}
\end{aligned}
$$

only needs forward evolution!
Trick not possible when non-adiabatic changes are present during time evolution!

Real-time QFT

Consider harmonic oscillator $H_{0}=\omega_{0} a^{\dagger} a$ (zero-point energy subtracted) in thermal equilibrium $\hat{\rho}_{0}=e^{-\beta H_{0}}$.

To arrive at path integral representation of the partition function Suzuki-Trotter-decompose Z in 'coherent' states

$$
a|\alpha\rangle=\alpha|\alpha\rangle, \quad(\alpha \in \mathbb{C})
$$

defined as eigenstates of annihilation operator a.

- Express in energy eigenstates,

$$
|\alpha\rangle=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle, \text { with } H_{0}|n\rangle=n \omega_{0}|n\rangle .
$$

- Calculate inner product,

$$
\begin{gathered}
\left\langle\alpha \mid \alpha^{\prime}\right\rangle=e^{-\frac{1}{2}\left(|\alpha|^{2}+\left|\alpha^{\prime}\right|^{2}-2 \alpha^{*} \alpha^{\prime}\right)} \\
\left(\text { special case of }\langle\alpha| e^{\rho a^{\dagger} a}\left|\alpha^{\prime}\right\rangle=e^{-\frac{1}{2}\left(|\alpha|^{2}+\left|\alpha^{\prime}\right|^{2}-2 e^{\rho} \alpha^{*} \alpha^{\prime}\right)} \text { for } \rho \in \mathbb{R}\right)
\end{gathered}
$$

- Form over-complete basis and evaluate traces,

$$
\mathbf{1}=\int \frac{d^{2} \alpha}{\pi}|\alpha\rangle\langle\alpha|, \quad \operatorname{Tr} \mathcal{O}=\int \frac{d^{2} \alpha}{\pi}\langle\alpha| \mathcal{O}|\alpha\rangle
$$

Real-time QFT

Consider harmonic oscillator $H_{0}=\omega_{0} a^{\dagger} a$ (zero-point energy subtracted) in thermal equilibrium $\hat{\rho}_{0}=e^{-\beta H_{0}}$.

To arrive at path integral representation of the partition function Suzuki-Trotter-decompose Z in 'coherent' states

$$
a|\alpha\rangle=\alpha|\alpha\rangle, \quad(\alpha \in \mathbb{C})
$$

defined as eigenstates of annihilation operator a.
Convenient because discretized partition function is product of exponentials,

Figure: Discretized CTP.
(Define Boltzmann factor $\rho_{0} \equiv e^{-\beta \omega_{0}}$)

Real-time QFT

Write partition function now as discretized path integral

$$
Z=\frac{1}{\operatorname{Tr} \hat{\rho}_{0}} \int\left(\prod_{j=1}^{2 N} \frac{d^{2} \alpha_{j}}{\pi}\right) \exp \left\{i S\left[\left\{\alpha_{j}^{*}, \alpha_{j}\right\}\right]\right\}=1
$$

with discretized action

$$
\begin{aligned}
S\left[\left\{\alpha_{j}^{*}, \alpha_{j}\right\}\right] & =\sum_{j=2}^{2 N} \delta t_{j}\left(i \alpha_{j}^{*} \frac{\alpha_{j}-\alpha_{j-1}}{\delta t_{j}}-\omega_{0} \alpha_{j}^{*} \alpha_{j-1}\right)+i \alpha_{1}^{*}\left(\alpha_{1}-i e^{-\beta \omega_{0}} \alpha_{2 N}\right) \\
& \xrightarrow{N \rightarrow \infty} \int_{\text {CTP }} d t\left(\alpha^{*}(t) i \partial_{t} \alpha(t)-\omega_{0} \alpha^{*}(t) \alpha(t)\right)+\text { boundary terms }
\end{aligned}
$$

boundary terms are inconvenient in (naive) continuum limit, as they spoil manifest time-translation invariance of a system in thermal equilibrium. (Impractical.)

Goal: Find a continuum action that is time-translation invariant, and reproduces free Green functions via rules of Gaussian integration...

Real-time QFT

... But before that, simplify the notation:
Introduce fields on the forward $(+)$ and backward (-) branches of the contour,

$$
\alpha^{+}(t) \equiv \alpha\left(t^{+}\right), \quad \alpha^{-}(t) \equiv \alpha\left(t^{-}\right)
$$

Calculate discrete propagators by matrix inversion,
$G_{j j^{\prime}}^{T} \equiv G_{j j^{\prime}}^{++}=i\left\langle\alpha_{j}^{+} \alpha_{j^{\prime}}^{+*}\right\rangle=\frac{i}{1-\rho_{0}}\left(u^{+}\right)^{j-j^{\prime}} \times\left\{\begin{array}{ll}1 & \text { if } j \geq j^{\prime} \\ e^{-\beta \omega_{0}} & \text { if } j<j^{\prime}\end{array} \quad\right.$ 'time ordered',
$G_{j j^{\prime}}^{\widetilde{T}} \equiv G_{j j^{\prime}}^{--}=i\left\langle\alpha_{j}^{-} \alpha_{j^{\prime}}^{-*}\right\rangle=\frac{i}{1-\rho_{0}}\left(u^{+}\right)^{j-j^{\prime}} \times\left\{\begin{array}{ll}e^{-\beta \omega_{0}} & \text { if } j>j^{\prime} \\ 1 & \text { if } j \leq j^{\prime}\end{array}\right.$ 'anti-time-ordered',
$G_{j j^{\prime}}^{<} \equiv G_{j j^{\prime}}^{+-}=i\left\langle\alpha_{j}^{+} \alpha_{j^{\prime}}^{-*}\right\rangle=\frac{i}{1-\rho_{0}}\left(u^{+}\right)^{j-j^{\prime}} \rho_{0}$
'lesser',
$G_{j j^{\prime}}^{>} \equiv G_{j j^{\prime}}^{-+}=i\left\langle\alpha_{j}^{-} \alpha_{j^{\prime}}^{+*}\right\rangle=\frac{i}{1-\rho_{0}}\left(u^{+}\right)^{j-j^{\prime}}$
'greater',
not all independent, but generally interrelated by

$$
G_{j j^{\prime}}^{++}+G_{j j^{\prime}}^{--}-G_{j j^{\prime}}^{+-}-G_{j j^{\prime}}^{-+}=\delta_{j j^{\prime}} \rightarrow 0 \text { in continuum limit }
$$

(Note here: Kronecker- δ, not δ-function!)

Exploit this linear interrelation by orthogonal transformation which sets one of the Green functions identically to zero:

- achieved by 'Keldysh rotation'

$$
\begin{aligned}
\alpha^{c}(t) & \equiv \frac{1}{\sqrt{2}}\left(\alpha^{+}(t)+\alpha^{-}(t)\right) \\
\alpha^{q}(t) & \equiv \frac{1}{\sqrt{2}}\left(\alpha^{+}(t)-\alpha^{-}(t)\right)
\end{aligned}
$$

- with 'classical' and 'quantum' fields $\alpha^{c}(t), \alpha^{q}(t)$

Figure: Keldysh rotation: Clockwise rotation in the (,+-)-field space.

- Green functions are 'rotated' according to

$$
\left(\begin{array}{cc}
\left.\begin{array}{cc}
\text { time ordered } & \text { lesser } \\
G^{++}\left(t, t^{\prime}\right) & G^{+-}\left(t, t^{\prime}\right) \\
G^{-+}\left(t, t^{\prime}\right) & G^{--}\left(t, t^{\prime}\right)
\end{array}\right) \rightarrow\left(\begin{array}{cc}
\text { Keldysh } & \text { retarded } \\
G^{K}\left(t, t^{\prime}\right) & G^{R}\left(t, t^{\prime}\right) \\
G^{A}\left(t, t^{\prime}\right) & 0
\end{array}\right) \\
\text { anti-time-ordered } & \text { advanced }
\end{array}\right.
$$

Real-time QFT

Now perform the continuum limit to (statistical function $F(\omega) \equiv 2 n_{B}(\omega)+1$)

- find Keldysh-rotated propagators ($1^{\text {st }}$ order form),

$$
\begin{aligned}
& G^{R}\left(t, t^{\prime}\right)=i \theta\left(t-t^{\prime}\right) e^{-i \omega_{0}\left(t-t^{\prime}\right)} \\
& G^{A}\left(t, t^{\prime}\right)=-i \theta\left(t^{\prime}-t\right) e^{-i \omega_{0}\left(t-t^{\prime}\right)} \\
& G^{K}\left(t, t^{\prime}\right)=i F\left(\omega_{0}\right) e^{-i \omega_{0}\left(t-t^{\prime}\right)}
\end{aligned}
$$

Real-time QFT

Now perform the continuum limit to (statistical function $F(\omega) \equiv 2 n_{B}(\omega)+1$)

- find Keldysh-rotated propagators (1 $1^{\text {st }}$ order form),

$$
\begin{array}{ll}
G^{R}\left(t, t^{\prime}\right)=i \theta\left(t-t^{\prime}\right) e^{-i \omega_{0}\left(t-t^{\prime}\right)} & \rightarrow G^{R}(\omega)=-\frac{1}{\omega+i \varepsilon-\omega_{0}} \\
G^{A}\left(t, t^{\prime}\right)=-i \theta\left(t^{\prime}-t\right) e^{-i \omega_{0}\left(t-t^{\prime}\right)} & \rightarrow G^{A}(\omega)=-\frac{1}{\omega-i \varepsilon-\omega_{0}} \\
G^{K}\left(t, t^{\prime}\right)=i F\left(\omega_{0}\right) e^{-i \omega_{0}\left(t-t^{\prime}\right)} & \rightarrow G^{K}(\omega)=2 \pi i F\left(\omega_{0}\right) \delta\left(\omega-\omega_{0}\right)
\end{array}
$$

Real-time QFT

Now perform the continuum limit to (statistical function $F(\omega) \equiv 2 n_{B}(\omega)+1$)

- find Keldysh-rotated propagators ($1^{\text {st }}$ order form),

$$
\begin{array}{ll}
G^{R}\left(t, t^{\prime}\right)=i \theta\left(t-t^{\prime}\right) e^{-i \omega_{0}\left(t-t^{\prime}\right)} & \rightarrow G^{R}(\omega)=-\frac{1}{\omega+i \varepsilon-\omega_{0}} \\
G^{A}\left(t, t^{\prime}\right)=-i \theta\left(t^{\prime}-t\right) e^{-i \omega_{0}\left(t-t^{\prime}\right)} & \rightarrow G^{A}(\omega)=-\frac{1}{\omega-i \varepsilon-\omega_{0}} \\
G^{K}\left(t, t^{\prime}\right)=i F\left(\omega_{0}\right) e^{-i \omega_{0}\left(t-t^{\prime}\right)} & \rightarrow G^{K}(\omega)=2 \pi i F\left(\omega_{0}\right) \delta\left(\omega-\omega_{0}\right)
\end{array}
$$

- discover general requirement of

Causality

Retarded (advanced) propagator $G_{k}^{R(A)}(\omega)$ is analytic in the upper (lower) half ω-plane.

Real-time QFT

Now perform the continuum limit to

- find Keldysh-rotated propagators ($1^{\text {st }}$ order form),

$$
\begin{array}{ll}
G^{R}\left(t, t^{\prime}\right)=i \theta\left(t-t^{\prime}\right) e^{-i \omega_{0}\left(t-t^{\prime}\right)} & \rightarrow G^{R}(\omega)=-\frac{1}{\omega+i \varepsilon-\omega_{0}} \\
G^{A}\left(t, t^{\prime}\right)=-i \theta\left(t^{\prime}-t\right) e^{-i \omega_{0}\left(t-t^{\prime}\right)} & \rightarrow G^{A}(\omega)=-\frac{1}{\omega-i \varepsilon-\omega_{0}} \\
G^{K}\left(t, t^{\prime}\right)=i F\left(\omega_{0}\right) e^{-i \omega_{0}\left(t-t^{\prime}\right)} & \rightarrow G^{K}(\omega)=2 \pi i F\left(\omega_{0}\right) \delta\left(\omega-\omega_{0}\right)
\end{array}
$$

- and write down action which reproduces these Green functions by the rules of Gaussian integration,

Free Keldysh action ($1^{\text {st }}$ order form)

$$
S=\int_{-\infty}^{\infty} d t\left(\alpha^{c *}(t), \alpha^{q *}(t)\right)\left(\begin{array}{cc}
0 & i \partial_{t}-i \varepsilon-\omega_{0} \\
i \partial_{t}+i \varepsilon-\omega_{0} & 2 i \varepsilon F\left(\omega_{0}\right)
\end{array}\right)\binom{\alpha^{c}(t)}{\alpha^{q}(t)}
$$

which is manifestly time-translation invariant. (Goal reached!)

Real-time QFT

Starting with

Free Keldysh action (1 $1^{\text {st }}$ order form)

$$
S=\int_{-\infty}^{\infty} d t\left(\alpha^{c *}(t), \alpha^{q *}(t)\right)\left(\begin{array}{cc}
0 & i \partial_{t}-i \varepsilon-\omega_{0} \\
i \partial_{t}+i \varepsilon-\omega_{0} & 2 i \varepsilon F\left(\omega_{0}\right)
\end{array}\right)\binom{\alpha^{c}(t)}{\alpha^{q}(t)}
$$

- introduce canonical oscillator coordinates φ and π again,

$$
\alpha=\frac{1}{\sqrt{2 \omega_{0}}}\left(\omega_{0} \varphi+i \pi\right), \quad \alpha^{*}=\frac{1}{\sqrt{2 \omega_{0}}}\left(\omega_{0} \varphi-i \pi\right)
$$

- integrate out Gaussian π 's, to arrive at

Free Keldysh action (2 $2^{\text {nd }}$ order form)

$$
S=\frac{1}{2} \int_{-\infty}^{\infty} d t\left(\phi^{c}(t), \phi^{q}(t)\right)\left(\begin{array}{cc}
0 & \left(i \partial_{t}-i \varepsilon\right)^{2}-\omega_{0}^{2} \\
\left(i \partial_{t}+i \varepsilon\right)^{2}-\omega_{0}^{2} & -\varepsilon\left[\partial_{t}, F\right]
\end{array}\right)\binom{\phi^{c}(t)}{\phi^{q}(t)}
$$

(in coordinate space)

Real-time QFT - Interactions

Include interactions by

- adding potential term to Keldysh action

$$
\begin{aligned}
S_{V} & =\int_{-\infty}^{\infty} d t\left(-V_{\text {int }}\left(\phi^{+}\right)+V_{\text {int }}\left(\phi^{-}\right)\right) \\
& =\int_{-\infty}^{\infty} d t\left(-V_{\text {int }}\left(\frac{\phi^{c}+\phi^{q}}{\sqrt{2}}\right)+V_{\text {int }}\left(\frac{\phi^{c}-\phi^{q}}{\sqrt{2}}\right)\right)
\end{aligned}
$$

- and imagine that interactions are adiabatically switched off in the distant past, $t \rightarrow-\infty$
(but they may stay finite in the distant future $t \rightarrow+\infty$ (!))
- e.g. quartic coupling $V_{\text {int }}(\varphi)=\lambda \varphi^{4} / 4$!,

$$
S_{V}=-\frac{\lambda}{12} \int_{-\infty}^{\infty} d t(\underbrace{\phi^{c}(t) \phi^{c}(t) \phi^{c}(t) \phi^{q}(t)}_{\text {'classical' vertex }}+\underbrace{\phi^{c}(t) \phi^{q}(t) \phi^{q}(t) \phi^{q}(t)}_{\text {'quantum' vertex }})
$$

Real-time QFT - Relation to classical-statistical systems

$$
S_{V}=-\frac{\lambda}{12} \int_{-\infty}^{\infty} d t(\underbrace{\phi^{c}(t) \phi^{c}(t) \phi^{c}(t) \phi^{q}(t)}_{\text {'classical' vertex }}+\underbrace{\phi^{c}(t) \phi^{q}(t) \phi^{q}(t) \phi^{q}(t)}_{\text {'quantum' vertex }})
$$

Why the names 'classical' and 'quantum'?
Perform classical limit of Keldysh action by reintroducing \hbar, then take the limit $\hbar \rightarrow 0$,

- $S \rightarrow S / \hbar$,
- $T \rightarrow T / \hbar \Longrightarrow F(\omega) \rightarrow 2 T / \hbar \omega+\mathcal{O}(\hbar)$ (Rayleigh-Jeans distribution),
- $\phi^{q}(t) \rightarrow \hbar \phi^{q}(t)$,
(obtained from dimensional analysis)

$$
\begin{array}{r}
\left.S\left[\phi^{c}, \phi^{q}\right]=\frac{1}{2} \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi}\left(\phi^{c}, \phi^{q}\right)\right)_{-\omega}\left(\begin{array}{cc}
0 & (\omega-i \varepsilon)^{2}-\omega_{0}^{2} \\
(\omega+i \varepsilon)^{2}-\omega_{0}^{2} & 4 i \varepsilon \omega \operatorname{coth}(\omega / 2 T)
\end{array}\right)\binom{\phi^{c}}{\phi^{q}}_{\omega} \\
-\frac{\lambda}{12} \int_{-\infty}^{\infty} d t\left(\phi^{c}(t) \phi^{c}(t) \phi^{c}(t) \phi^{q}(t)+\phi^{c}(t) \phi^{q}(t) \phi^{q}(t) \phi^{q}(t)\right),
\end{array}
$$

Real-time QFT - Relation to classical-statistical systems

$$
S_{V}=-\frac{\lambda}{12} \int_{-\infty}^{\infty} d t(\underbrace{\phi^{c}(t) \phi^{c}(t) \phi^{c}(t) \phi^{q}(t)}_{\text {'classical' vertex }}+\underbrace{\phi^{c}(t) \phi^{q}(t) \phi^{q}(t) \phi^{q}(t)}_{\text {'quantum' vertex }})
$$

Why the names 'classical' and 'quantum'?
Perform classical limit of Keldysh action by reintroducing \hbar, then take the limit $\hbar \rightarrow 0$,

- $S \rightarrow S / \hbar$,
- $T \rightarrow T / \hbar \Longrightarrow F(\omega) \rightarrow 2 T / \hbar \omega+\mathcal{O}(\hbar)$ (Rayleigh-Jeans distribution),
- $\phi^{q}(t) \rightarrow \hbar \phi^{q}(t)$,
(obtained from dimensional analysis)

$$
\begin{array}{r}
\frac{1}{\hbar} S\left[\phi^{c}, \phi^{q}\right]=\frac{1}{2 \hbar} \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi}\left(\phi^{c}, \hbar \phi^{q}\right)_{-\omega}\left(\begin{array}{cc}
0 & (\omega-i \varepsilon)^{2}-\omega_{0}^{2} \\
(\omega+i \varepsilon)^{2}-\omega_{0}^{2} & 4 i \varepsilon \omega \operatorname{coth}(\hbar \omega / 2 T)
\end{array}\right)\binom{\phi^{c}}{\hbar \phi^{q}}_{\omega} \\
-\frac{\lambda}{12 \hbar} \int_{-\infty}^{\infty} d t\left(\hbar \phi^{c}(t) \phi^{c}(t) \phi^{c}(t) \phi^{q}(t)+\hbar^{3} \phi^{c}(t) \phi^{q}(t) \phi^{q}(t) \phi^{q}(t)\right)
\end{array}
$$

Real-time QFT - Relation to classical-statistical systems

$$
S_{V}=-\frac{\lambda}{12} \int_{-\infty}^{\infty} d t(\underbrace{\phi^{c}(t) \phi^{c}(t) \phi^{c}(t) \phi^{q}(t)}_{\text {'classical' vertex }}+\underbrace{\phi^{c}(t) \phi^{q}(t) \phi^{q}(t) \phi^{q}(t)}_{\text {'quantum' vertex }})
$$

Why the names 'classical' and 'quantum'?
Perform classical limit of Keldysh action by reintroducing \hbar, then take the limit $\hbar \rightarrow 0$,

- $S \rightarrow S / \hbar$,
- $T \rightarrow T / \hbar \Longrightarrow F(\omega) \rightarrow 2 T / \hbar \omega+\mathcal{O}(\hbar)$ (Rayleigh-Jeans distribution),
- $\phi^{q}(t) \rightarrow \hbar \phi^{q}(t)$,
(obtained from dimensional analysis)

$$
\begin{gathered}
\frac{1}{\hbar} S\left[\phi^{c}, \phi^{q}\right]=\frac{1}{2} \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi}\left(\phi^{c}, \phi^{q}\right)_{-\omega}\left(\begin{array}{cc}
0 & (\omega-i \varepsilon)^{2}-\omega_{0}^{2} \\
(\omega+i \varepsilon)^{2}-\omega_{0}^{2} & 8 i \varepsilon T
\end{array}\right)\binom{\phi^{c}}{\phi^{q}}_{\omega} \\
-\frac{\lambda}{12} \int_{-\infty}^{\infty} d t\left(\phi^{c}(t) \phi^{c}(t) \phi^{c}(t) \phi^{q}(t)\right)
\end{gathered}
$$

i.e. only 'classical' vertex remains in classical limit, hence the name.

$$
\begin{gathered}
\frac{1}{\hbar} S\left[\phi^{c}, \phi^{q}\right]=\frac{1}{2} \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi}\left(\phi^{c}, \phi^{q}\right)_{-\omega}\left(\begin{array}{cc}
0 & (\omega-i \varepsilon)^{2}-\omega_{0}^{2} \\
(\omega+i \varepsilon)^{2}-\omega_{0}^{2} & 8 i \varepsilon T
\end{array}\right)\binom{\phi^{c}}{\phi^{q}}_{\omega} \\
-\frac{\lambda}{12} \int_{-\infty}^{\infty} d t\left(\phi^{c}(t) \phi^{c}(t) \phi^{c}(t) \phi^{q}(t)\right)
\end{gathered}
$$

- Arrived at the Martin-Siggia-Rose-Janssen-de Dominicis path integral formulation of classical-statistical systems. (Later)
- From the point of view of the formalism non-equilibrium QFT and classical-statistical field theories are virtually indistinguishable.
- One may now linearize action in $\phi^{q}(t)$ by Hubbard-Stratonovich transformation, integrate linear $\phi^{q}(t)$ to get δ-functional, enforcing class.-stat. equations of motion

$$
\begin{gathered}
\partial_{t}^{2} \phi^{c}+2 \varepsilon \partial_{t} \phi^{c}+\omega_{0}^{2} \phi^{c}+\frac{\lambda}{12}\left(\phi^{c}\right)^{3}=\xi(t) \\
\langle\xi(t)\rangle_{\beta}=0, \quad\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle_{\beta}=8 \varepsilon T \delta\left(t-t^{\prime}\right)
\end{gathered}
$$

for a particle in infinitesimal contact ε to an external heat bath. (Canonical ensemble)

Real-time QFT - Summary

Generating functional

$$
Z\left[j^{c}, j^{q}\right]=\int \mathcal{D} \phi^{c} \mathcal{D} \phi^{q} \exp \left\{i S\left[\phi^{c}, \phi^{q}\right]+i \int_{-\infty}^{\infty} d t\left(j^{c}(t) \phi^{q}(t)+j^{q}(t) \phi^{c}(t)\right)\right\}
$$

with Keldysh action

$$
\begin{array}{r}
S\left[\phi^{c}, \phi^{q}\right]=\frac{1}{2} \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi}\left(\phi^{c}(-\omega), \phi^{q}(-\omega)\right)\left(\begin{array}{cc}
0 & \omega^{2}-i \gamma \omega-\omega_{0}^{2} \\
\omega^{2}+i \gamma \omega-\omega_{0}^{2} & 2 i \gamma \omega F(\omega)
\end{array}\right)\binom{\phi^{c}(\omega)}{\phi^{q}(\omega)} \\
-\frac{\lambda}{12} \int_{-\infty}^{\infty} d t\left(\phi^{c}(t) \phi^{c}(t) \phi^{c}(t) \phi^{q}(t)+\phi^{c}(t) \phi^{q}(t) \phi^{q}(t) \phi^{q}(t)\right)
\end{array}
$$

with

- quartic self-interaction
- finite coupling to dissipative external heat bath (Caldeira-Leggett model, later) Effective action by Legendre transform

$$
\Gamma\left[\bar{\phi}^{c}, \bar{\phi}^{q}\right]=\sup _{j^{c}, j^{q}}\left\{-i \log Z\left[j^{c}, j^{q}\right]-\int_{-\infty}^{\infty} d t\left(j^{c}(t) \bar{\phi}^{q}(t)+j^{q}(t) \bar{\phi}^{c}(t)\right)\right\}
$$

Real-time functional renormalization group

Idea of the (functional) renormalization group

- Suppose the effective action Γ of the theory is known at some momentum/energy scale k, denoted Γ_{k}, where fluctuations from modes $|\boldsymbol{p}| \gtrsim k$ have been taken into account.
- Realized by modifying the action with an infrared cutoff $\Delta S_{k}\left[\phi^{c}, \phi^{q}\right]$,

$$
S \rightarrow S+\Delta S_{k}
$$

suppressing modes with $|\boldsymbol{p}|<k$.

- Has the structure ($D=d+1$ number of spacetime dimensions)

$$
\Delta S_{k}[\phi]=\frac{1}{2} \int d^{D} x \int d^{D} x^{\prime} \phi^{T}(x) R_{k}\left(x, x^{\prime}\right) \phi\left(x^{\prime}\right), \quad \phi^{T}=\left(\phi^{c}, \phi^{q}\right)
$$

with the 2×2-'regulator' matrix

$$
R_{k}(p)=\left(\begin{array}{cc}
0 & R_{k}^{A}(p) \\
R_{k}^{R}(p) & R_{k}^{K}(p)
\end{array}\right)
$$

in momentum space.

Idea of the (functional) renormalization group

- Change the scale $k \rightarrow k+d k$, arrive at 'flow' equation
(Wetterich '93, Berges, Mesterházy '12)

$$
\partial_{k} \Gamma_{k}=-\frac{i}{2} \operatorname{tr}\left(\partial_{k} R_{k} \circ G_{k}\right), \quad G_{k}=-\left(\Gamma_{k}^{(2)}+R_{k}\right)^{-1}
$$

- Has the form of a 1-loop integral,
(Color-coding from Hülsmann, Schlichting, Scior '20)

but is exact.
Fully field-dependent propagator $G_{k}[\phi]$
- Have $\Gamma_{k} \xrightarrow{k \rightarrow \Lambda} S$, classical action.
(Demonstrated via saddle-point approximation.)
- Regulator changes analytic structure of propagators,

$$
\begin{aligned}
G_{k}^{R}(\omega, \boldsymbol{p}) & =-\frac{1}{\Gamma_{k}^{q c}(\omega, \boldsymbol{p})+R_{k}^{R}(\omega, \boldsymbol{p})} \\
G_{k}^{A}(\omega, \boldsymbol{p}) & =-\frac{1}{\Gamma_{k}^{c q}(\omega, \boldsymbol{p})+R_{k}^{A}(\omega, \boldsymbol{p})}
\end{aligned} \quad \text { (advanced) }
$$

- What are the consequences?
- Maybe everything fine for $k=0$?

Test:

- Observe very general property of Keldysh action:

$$
S=\frac{1}{2} \int_{p}\left(\phi^{c}(-p), \phi^{q}(-p)\right)\left(\begin{array}{cc}
0 & \cdots \\
\cdots & \cdots
\end{array}\right)\binom{\phi^{c}(p)}{\phi^{q}(p)}+\cdots
$$

follows from that for $\phi^{+}=\phi^{-}$the action vanishes, $S\left[\phi^{c}, 0\right]=0$.

- Necessary condition for the correctness of the flow.

Find:

- Popular regulators like sharp/exponential/algebraic/... cutoff produce such an unphysical component during flow.
- Problem of causality not trivial. (Duclut, Delamotte '18)
- An insufficient regulator leads to an incorrect Keldysh action.

What can we do?
(Start with $0+1$ dimensional case, i.e. quantum mechanics.)
Most simple regulator which we could write down has form of a purely mass-like shift, (Callan-Symanzik regulator)

$$
R_{k}^{R / A}(\omega)=-k^{2}
$$

- Trivially causal, only induces mass-shift $m^{2} \rightarrow m^{2}+k^{2}$ in propagators.
- Too simple?
- Flow no longer consistent with Wilson's idea of integrating out energy (momentum) shells?

Heat bath regulators

Regulator motivated by physics: (Causality guaranteed!)

- Imagine ΔS_{k} is the result of integrating out an external heat bath.
- Heat bath (HB) is modeled as an ensemble of independent harmonic oscillators, attached to the particle. (Caldeira-Leggett model)

$$
\xrightarrow{\text { Particle }} \sim_{\varphi_{s}}^{\sim}
$$

- Integrate out heat bath $\hat{=}$ Particle acquires self-energy $\Sigma^{R / A}(\omega)$

$$
\Sigma^{R}(\omega)=\sum_{s} \frac{g_{s}}{D_{s}(\omega)}=-\int_{0}^{\infty} \frac{g_{s}}{2 \pi} \frac{2 \omega^{\prime} J\left(\omega^{\prime}\right)}{(\omega+i \varepsilon)^{2}-\omega^{\prime 2}}
$$

- Fully controlled by a spectral density $J(\omega)=\pi \sum_{s} \frac{g_{s}^{2}}{\omega_{s}} \delta\left(\omega-\omega_{s}\right)$
- Invert $\leadsto J(\omega)=2 \operatorname{Im} \Sigma^{R}(\omega)$, but self-energy Σ^{R} also has a non-vanishing real part.

Heat bath regulators

- Now make the spectral density k-dependent, $J(\omega) \rightarrow J_{k}(\omega)$, and choose it to damp infrared modes.
- The resulting self-energy is the regulator, $\Sigma^{R / A}(\omega) \rightarrow R_{k}^{R / A}(\omega)$.

Example:

$$
\begin{aligned}
J_{k}(\omega)=k \omega \exp \left\{-\omega^{2} / k^{2}\right\} \\
\Longrightarrow \phi(t) \sim e^{-k t / 2} \text { for } \omega \ll k, \text { damped }
\end{aligned}
$$

But: Heat bath induces negative (!) shift in the squared mass

$$
\Delta m_{\mathrm{HB}}^{2}(k)=\int_{0}^{\infty} \frac{d \omega}{\pi} \frac{J_{k}(\omega)}{\omega}=\frac{k^{2}}{\sqrt{4 \pi}}
$$

Makes the theory unstable and acausal for sufficiently large values of k !

$$
m^{2} \rightarrow m^{2}-\Delta m_{\mathrm{HB}}^{2}(k)
$$

Heat bath regulators

- Way out: We learned that a masslike shift is causal.
\sim Add mass-like 'counter-term' $-\alpha k^{2}$ with $\alpha>0$ to compensate unwanted shift in squared mass!

Heat bath regulators

$$
\begin{gathered}
\alpha=1 / \sqrt{4 \pi}, \\
\text { (balanced) }
\end{gathered}
$$

$\alpha=1 / \sqrt{4 \pi}+1$,
(balanced + regulated)

Heat bath regulators

- Way out: We learned that a masslike shift is causal.
\sim Add mass-like 'counter-term' $-\alpha k^{2}$ with $\alpha>0$ to compensate unwanted shift in squared mass!

Heat bath regulator in $1+0 d$

$$
R_{k}^{R / A}(\omega)=-\int_{0}^{\infty} \frac{d \omega^{\prime}}{2 \pi} \frac{2 \omega^{\prime} J_{k}\left(\omega^{\prime}\right)}{(\omega \pm i \varepsilon)^{2}-\omega^{\prime 2}}-\alpha k^{2}
$$

(JR, Schweitzer, Sieke, von Smekal '21)

Heat bath regulators for field theories

What about a field theory?

- Arguably simplest ansatz: Imagine an independent bath of harmonic oscillators for every spatial momentum mode \boldsymbol{p}. Then the spectral representation just acquires an additional p-dependence,

Heat bath regulator

$$
R_{k}^{R / A}(\omega, p)=-\int_{0}^{\infty} \frac{d \omega^{\prime}}{2 \pi} \frac{2 \omega^{\prime} J_{k}\left(\omega^{\prime}, p\right)}{(\omega \pm i \varepsilon)^{2}-\omega^{\prime 2}}-\alpha_{k}(p) k^{2}
$$

which still ensures causality.

Figure: Real part (Mass shift).

Figure: Imaginary part (Damping).

Heat bath regulators for field theories

- And when we have no preferred frame of reference, e.g. no external medium? What about Lorentz invariance?
- A regulator like the one above would break Lorentz symmetry.
- Imagine the heat bath to be an ensemble of Klein-Gordon fields with a relativistic dispersion relation $\omega^{2}=\boldsymbol{p}^{2}+m_{s}^{2}$,
\sim Our field gains a self-energy
(Källén-Lehmann representation)

$$
\left.\Sigma_{k}^{R}(\omega, \boldsymbol{p})=\sum_{s} \frac{g_{s}}{D_{s}(\omega,--\infty} g_{s}\right)=-\int_{0}^{\infty} \frac{d \mu^{2}}{2 \pi} \frac{\widetilde{J}_{k}\left(\mu^{2}\right)}{(\omega+i \varepsilon)^{2}-\boldsymbol{p}^{2}-\mu^{2}}
$$

with invariant spectral density $\widetilde{J}\left(\mu^{2}\right)=2 \pi \sum_{s} g_{s}^{2} \delta\left(\mu^{2}-m_{s}^{2}\right)$ in

$$
J(\omega, \boldsymbol{p})=\operatorname{sgn}(\omega) \theta\left(p^{2}\right) \widetilde{J}\left(p^{2}\right)
$$

- Reintroduce masslike counter-term $-\alpha k^{2}$, and then

Heat bath regulators for field theories

find general form of

Lorentz-invariant heat-bath regulator

$$
R_{k}^{R / A}(\omega, \boldsymbol{p})=-\int_{0}^{\infty} \frac{d \mu^{2}}{2 \pi} \frac{\widetilde{J}_{k}\left(\mu^{2}\right)}{(\omega \pm i \varepsilon)^{2}-\boldsymbol{p}^{2}-\mu^{2}}-\alpha k^{2}
$$

(Special case of spectral representation shown above)

Example:

$$
\widetilde{J}_{k}\left(\mu^{2}\right)=\frac{4 k \mu}{\left(1+\mu^{2} / k^{2}\right)^{2}}
$$

- p^{2} is a Lorentz scalar.
- $\operatorname{sgn} \omega$ is also a Lorentz scalar, but only if p is timelike and if we restrict ourselves to orthochronous Lorentz transformations.

Figure: Imaginary part (damping).

Critical dynamics

Critical dynamics

Consider classical $\lambda \varphi^{4}$-theory with Landau-Ginzburg free energy (statics)
Model A in thermal equilibrium,

$$
F=\int d^{d} x\left\{\frac{1}{2}(\vec{\nabla} \varphi)^{2}+V(\varphi)\right\}, \quad Z=\int \mathcal{D} \varphi e^{-\beta F}
$$

and equations of motion (dynamics) with dissipative coupling γ to heat bath (Langevin)

$$
\partial_{t}^{2} \varphi+\gamma \partial_{t} \varphi=-\frac{\delta F}{\delta \varphi}+\xi(x)
$$

with Gaussian white noise(s)

$$
\begin{aligned}
\langle\xi(x)\rangle_{\beta} & =0 \\
\left\langle\xi(x) \xi\left(x^{\prime}\right)\right\rangle_{\beta} & =2 \gamma T \delta\left(x-x^{\prime}\right)
\end{aligned}
$$

Discrete $Z_{2}(\varphi \rightarrow-\varphi)$ symmetry breaks spontaneously for $T<T_{c}$ when $m^{2}<0$.

Critical dynamics

Consider classical $\lambda \varphi^{4}$-theory with Landau-Ginzburg free energy (statics) with coupling B between conserved density $n(x)$ and $\varphi(x)$

$$
F=\int d^{d} x\left\{\frac{1}{2}(\vec{\nabla} \varphi)^{2}+V(\varphi)+B \varphi n+\frac{1}{2 \chi_{0}} n^{2}\right\}, \quad Z=\int \mathcal{D} \varphi \mathcal{D} n e^{-\beta F}
$$

and equations of motion (dynamics) with dissipative coupling γ to heat bath (Langevin)

$$
\begin{aligned}
\partial_{t}^{2} \varphi+\gamma \partial_{t} \varphi & =-\frac{\delta F}{\delta \varphi}+\xi(x) \\
\tau_{R} \partial_{t}^{2} n+\partial_{t} n & =\bar{\lambda} \vec{\nabla}^{2} \frac{\delta F}{\delta n}+\vec{\nabla} \cdot \vec{\zeta}(x)
\end{aligned}
$$

with Gaussian white noise(s)

$$
\begin{aligned}
\langle\xi(x)\rangle_{\beta} & =0, & \left\langle\zeta^{i}(x)\right\rangle_{\beta} & =0 \\
\left\langle\xi(x) \xi\left(x^{\prime}\right)\right\rangle_{\beta} & =2 \gamma T \delta\left(x-x^{\prime}\right), & \left\langle\zeta^{i}(x) \zeta^{j}\left(x^{\prime}\right)\right\rangle_{\beta} & =2 \bar{\lambda} T \delta^{i j} \delta\left(x-x^{\prime}\right) .
\end{aligned}
$$

Discrete $Z_{2}(\varphi \rightarrow-\varphi)$ symmetry breaks spontaneously for $T<T_{c}$ when $m^{2}<0$.

Critical dynamics

Consider classical $\lambda \varphi^{4}$-theory with Landau-Ginzburg free energy (statics) with coupling g between conserved density $n(x)$ and $\varphi^{2}(x)$

$$
F=\int d^{d} x\left\{\frac{1}{2}(\vec{\nabla} \varphi)^{2}+V(\varphi)+\frac{g}{2} \varphi^{2} n+\frac{1}{2 \chi_{0}} n^{2}\right\}, \quad Z=\int \mathcal{D} \varphi \mathcal{D} n e^{-\beta F},
$$

and equations of motion (dynamics) with dissipative coupling γ to heat bath (Langevin)

$$
\begin{aligned}
\partial_{t}^{2} \varphi+\gamma \partial_{t} \varphi & =-\frac{\delta F}{\delta \varphi}+\xi(x) \\
\tau_{R} \partial_{t}^{2} n+\partial_{t} n & =\bar{\lambda} \vec{\nabla}^{2} \frac{\delta F}{\delta n}+\vec{\nabla} \cdot \vec{\zeta}(x)
\end{aligned}
$$

with Gaussian white noise(s)

$$
\begin{aligned}
\langle\xi(x)\rangle_{\beta} & =0, & \left\langle\zeta^{i}(x)\right\rangle_{\beta} & =0 \\
\left\langle\xi(x) \xi\left(x^{\prime}\right)\right\rangle_{\beta} & =2 \gamma T \delta\left(x-x^{\prime}\right), & \left\langle\zeta^{i}(x) \zeta^{j}\left(x^{\prime}\right)\right\rangle_{\beta} & =2 \bar{\lambda} T \delta^{i j} \delta\left(x-x^{\prime}\right)
\end{aligned}
$$

Discrete $Z_{2}(\varphi \rightarrow-\varphi)$ symmetry breaks spontaneously for $T<T_{c}$ when $m^{2}<0$.

Critical dynamics

Spectral function defined as

$$
\rho(\omega)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} d t e^{i \omega t} \int d^{d} x i\langle[\phi(t, \boldsymbol{x}), \phi(0, \mathbf{0})]\rangle
$$

which

- behaves like $\rho(\omega) \sim|\omega|^{-\sigma}$ at the critical point, $T=T_{c}$, with
- scaling exponent $\sigma=\left(2-\eta^{\perp}\right) / z$, which is related to
- dynamical critical exponent z, defined by $\xi_{t} \sim \xi^{z}$.

Critical dynamics

Write down corresponding Keldysh (Martin-Siggia-Rose) action $S\left[\phi^{c}, \phi^{q}\right]$, then solve via real-time FRG, i.e.

- truncate $\Gamma_{k}\left[\phi^{c}, \phi^{q}\right]$, (exemplary for Model A)

$$
\begin{aligned}
\Gamma_{k}= & \frac{1}{2} \int_{p} \Delta \phi^{T}(-p)\left(\begin{array}{cc}
0 & Z_{k}^{\|}(\omega) \omega^{2}-Z_{k}^{\perp} \boldsymbol{p}^{2}-m_{k}^{2}-i \gamma_{k}(\omega) \omega \\
\text { c.c. of adv. } & 4 i \gamma_{k}(\omega) T
\end{array}\right) \Delta \phi(p) \\
& -\frac{\kappa_{k}}{\sqrt{8}} \int_{x}\left(\phi^{c}-\phi_{0, k}^{c}\right)^{2} \phi^{q}-\frac{\lambda_{k}}{12} \int_{x}\left(\phi^{c}-\phi_{0, k}^{c}\right)^{3} \phi^{q}
\end{aligned}
$$

with power-law behavior and finite $(\neq 0)$ anomalous scaling dimension $\eta_{k}^{\perp}=-k \partial_{k} \log Z_{k}^{\perp}$ in mind, and with the fluctuation $\Delta \phi \equiv \phi-\phi_{0, k}$ around the minimum, and then

- solve truncated flow equations numerically, (here e.g. for 2-point function)

$$
\partial_{k} \Gamma_{k}^{c q}\left(x, x^{\prime}\right)=-i\left\{x \longrightarrow_{x^{\prime}}+\frac{1}{2} \longrightarrow_{x}^{\infty}\right\}+\underbrace{\infty}_{x^{\prime}}
$$

Critical spectral functions

Results for critical spectral functions at $T \approx T_{c}$
Model A

Figure: $d=2$.

Figure: $d=3$.

- visible power-law behaviour building up close to the critical point

Critical spectral functions

Results for critical spectral functions at $T \approx T_{c}$

Figure: $d=2$.

Figure: $d=3$.

- visible power-law behaviour building up close to the critical point
- conserved density non-critical, but
- non-trivial spectral function at $\boldsymbol{p}=0$!

Non-conserved φ also resembles critical dynamics of Model B
(Reduced temperature $\tau \equiv\left(T-T_{c}\right) / T_{c}$)

Critical spectral functions

Results for critical spectral functions at $T \approx T_{c}$

Model C

Figure: $d=2$.

Figure: $d=3$.

- visible power-law behaviour building up close to the critical point,
- conserved density becomes critical due to non-linear interaction $\sim \varphi^{2} n$ with critical φ-mode, and
- for comparison the Model A result indicated as dashed lines.
(Reduced temperature $\tau \equiv\left(T-T_{c}\right) / T_{c}$)

Critical spectral functions

Extraction scheme:
Model A
Look at logarithmic derivative $\sigma=-\omega \partial \log \rho(\omega) / \partial \omega$ in scaling regime of critical spectral function to extract dynamical critical exponent $z=\left(2-\eta^{\perp}\right) / \sigma$ (also compare against mean-field result $\sigma_{\mathrm{mf}}=1, \eta_{\mathrm{mf}}^{\perp}=0 \Longrightarrow z_{\mathrm{mf}}=2$)

Figure: $d=2$.
$z \approx 2.094=2+c \eta^{\perp}$
cf. $z \stackrel{?}{=} 2.1665(12)$
Nightingale, Blöte '96
(Monte Carlo)

Figure: $d=3$.

Critical spectral functions

Extraction scheme:

Look at logarithmic derivative $\sigma=-\omega \partial \log \rho(\omega) / \partial \omega$ in scaling regime of critical spectral function to extract dynamical critical exponent $z=\left(2-\eta^{\perp}\right) / \sigma$ (also compare against mean-field result $\sigma_{\mathrm{mf}}=\frac{1}{2}, \eta_{\mathrm{mf}}^{\perp}=0 \Longrightarrow z_{\mathrm{mf}}=4$)

Figure: $d=2$.
$z \approx 3.55=4-\eta^{\perp}$
Onsager's solution of $2 d$ Ising model

Figure: $d=3$.

$$
z \approx 3.90=4-\eta^{\perp}
$$

Critical spectral functions

Extraction scheme:

Model C
Look at logarithmic derivative $\sigma=-\omega \partial \log \rho(\omega) / \partial \omega$ in scaling regime of critical spectral function to extract dynamical critical exponent $z=\left(2-\eta^{\perp}\right) / \sigma$ (also compare against mean-field result $\sigma_{\mathrm{mf}}=1, \eta_{\mathrm{mf}}^{\perp}=0 \Longrightarrow z_{\mathrm{mf}}=2$)

Figure: $d=2$.
$z \approx 2.56=2+\alpha / \nu$
Onsager's solution of $2 d$ Ising model (problematic...)

Figure: $d=3$.
$z \approx 2.31=2+\alpha / \nu$
cf. $z=2.175$
Kos et al. '16, Komargodski et al. '17
(Conformal bootstrap)

We have

- constructed regulators in the real-time FRG which automatically take care of causality and Lorentz invariance, and
- calculated critical spectral functions using one and two-loop self-consistent truncation schemes in Model A, B, and C.

For the future, we plan to

- extract universal scaling functions which describe universal behaviour in close vicinity of critical point,
- inspect real-time dynamics of Model G and H,
- include fermions (\sim low-energy effective models of QCD in real time), and
- analyze non-equilibrium phenomena.

Thank you for your attention!

Appendix

Causal Regulators?

Diagram(s) that correspond to the unphysical upper left ($c c$) component of the Keldysh action,

$$
\begin{aligned}
\partial_{k} \Gamma_{k}^{c c} & =\frac{-i}{4} \\
& =\frac{i \lambda_{k}}{2} \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi}\left(G_{k}^{R}(\omega) \partial_{k} R_{k}^{R}(\omega) G_{k}^{R}(\omega)+G_{k}^{A}(\omega) \partial_{k} R_{k}^{A}(\omega) G_{k}^{A}(\omega)\right) \\
& \stackrel{!}{=} 0 \quad \text { for a flow that respects the causal structure of the action. }
\end{aligned}
$$

Propagators:

$$
G_{k}^{R(A)}(\omega)=-\frac{1}{\omega^{2} \pm i \gamma \omega-m^{2}+R_{k}^{R(A)}(\omega)}
$$

Causal Regulators?

- Well-known regulator from the Euclidean FRG (Litim '01)
- Regulator has the form

$$
R_{k}^{R / A}(\omega)=\left(k^{2}-\omega^{2}\right) \theta\left(k^{2}-\omega^{2}\right)
$$

with a sharp cutoff at $\omega=k$.

- Result:

- Flow indeed generates an unphysical $c c$ component in the action.
- Pole at $k=m$!

Causal Regulators?

- Is it the sign?
- Regulator now has the form

$$
R_{k}^{R / A}(\omega)=-\left(k^{2}-\omega^{2}\right) \theta\left(k^{2}-\omega^{2}\right),
$$

still with a sharp cutoff at $\omega=k$.

- Result:

+ No more singularities in the flow.
- Flow still generates an unphysical $c c$ component in the action.

Plots of Lorentz invariant Causal Regulators

Figure: Real part (Mass shift).

Figure: Imaginary part (Damping).

