The Anderson Transition in Lattice QCD

Robin Kehr

Institute for Theoretical Physics, Justus Liebig University Giessen

Lunch Club Seminar - February 14, 2024

Based on: R. Kehr, D. Smith, L. von Smekal, arXiv:2304.13617

- 2 QCD on the lattice
- 3 Numerical methods and lattice setup
- 4 Results and analysis
- **5** Conclusion and outlook

- 2 QCD on the lattice
- 3 Numerical methods and lattice setup
- 4 Results and analysis
- 5 Conclusion and outlook

 Principal transitions within the QCD phase diagram: Chirally broken → Chirally restored & Confined → Deconfined phase

Open question

Is chiral symmetry breaking related to confinement and if so, how?

- QCD Anderson transition seems to be related to both phenomena
 ⇒ Might provide the answer to this question
- In this work: Focus on relation to chiral symmetry breaking
- Term Anderson transition originates from condensed matter physics [P. W. Anderson, 1958] [F. Evers, A. D. Mirlin, arXiv:0707.4378]
 - Describes metal-insulator transition in disordered solids
 - In metal phase low-lying eigenmodes of Hamiltonian are delocalized ⇒ Conductivity
 - Above critical disorder all eigenmodes localized \Rightarrow No conductivity

Anderson transition

- Delocalized modes separated from localized modes by energy threshold E_c (mobility edge)
- Above critical disorder strength w_c all modes are localized

- Similar transition in QCD [M. Giordano, T. G. Kovács, arXiv:2104.14388]
 - Hamilton operator
 → Dirac operator
 - Disorder strength \rightarrow Temperature
 - Low-lying modes are localized
 - Higher ones delocalized
 - Below T₀ all modes are delocalized (no mobility edge)

Lunch Club - 2024-02-14

5/42

Relation to . . .

.. (de)confinement

- Eigenmodes tend to localize in the sinks of Polyakov loop [L. Holicki, E.-M. Ilgenfritz, L. von Smekal, arXiv:1810.01130]
- In quenched QCD the vanishing of mobility edge coincides with the deconfining phase transition [T. G. Kovács, R. Á. Vig, arXiv:1706.03562]

... chiral symmetry restoration/breaking

- Previous work suggests $T_0 = T_{pc}$, where T_{pc} is the pseudocritical temperature of the chiral crossover (nonvanishing quark mass)
- No Goldstone bosons in the chiral limit, if near-zero modes are localized [M. Giordano, arXiv:2206.11109]
 - \Rightarrow $T_0 \ge T_c$ (T_c : temperature of the chiral phase transition)
- Near-zero modes produce chiral condensate (Banks-Casher relation) [T. Banks, A. Casher, 1980]

6/42

2 QCD on the lattice

3 Numerical methods and lattice setup

4 Results and analysis

QCD in the continuum

• QCD expectation value:

$$\langle O \rangle = \frac{1}{\mathcal{Z}} \int_{\mathcal{C}} \mathcal{D}[\psi, \overline{\psi}, A] O[\psi, \overline{\psi}, A] e^{-S[\psi, \overline{\psi}, A]}$$

Partition function:

$$\mathcal{Z} = \int_{\mathcal{C}} \mathcal{D}[\psi, \overline{\psi}, A] e^{-S[\psi, \overline{\psi}, A]}$$

• Action:
$$S[\psi, \overline{\psi}, A] = S_F[\psi, \overline{\psi}, A] + S_G[A]$$

• Gauge action for finite temperature *T* (Euclidean):

$$S_{\rm G}[A] = \frac{1}{2g^2} \int_0^{\frac{1}{7}} {\rm d}t \int_{\mathbb{R}^3} {\rm d}^3 \vec{x} \ {\rm tr}(F_{\mu\nu}(x)F_{\mu\nu}(x))$$

QCD in the continuum

Fermion action:

$$S_{\mathsf{F}}\left[\psi, \overline{\psi}, A\right] = \int_{0}^{\frac{1}{T}} \mathsf{d}t \int_{\mathbb{R}^{3}} \mathsf{d}^{3} \vec{x} \ \overline{\psi}(x) \ D_{\mathsf{c}}(x) \ \psi(x)$$

Dirac operator

$$D_{\mathsf{c}}(x) = \gamma_{\mu}(\partial_{\mu} + \mathsf{i} A_{\mu}(x)) + m$$

• Anticommutes with
$$\gamma_5$$
 for $m=0$: $\left\{ D_{\rm c}|_{m=0} \, , \, \gamma_5 \right\} \, = \, 0$

Massless action invariant under chiral rotations:

$$\begin{array}{rcl} \psi & \mapsto & \exp\left(\mathrm{i}\alpha\,\gamma_5\right)\psi \\ \overline{\psi} & \mapsto & \overline{\psi}\,\exp\left(\mathrm{i}\alpha\,\gamma_5\right) \end{array}$$

Robin Kehr (ITP – JLU Giessen) T

Fermion action on the lattice

- Want to keep symmetries of continuum action if possible
- Discretize four-dimensional spacetime (with lattice spacing a)
- Central difference quotient for the partial derivative
- Naive discretization of the fermion action:

$$S_{\text{naive}}\left[\psi, \overline{\psi}, U\right] = a^{4} \sum_{n \in \Lambda} \overline{\psi}(n) \left(m\psi(n) + \gamma_{\mu} \frac{U_{\mu}(n)\psi(n + e_{\mu}) - U_{-\mu}(n)\psi(n - e_{\mu})}{2a}\right)$$

Group valued link variables

$$U_{\mu}(n) = \exp(\mathsf{i} \, a A_{\mu}(n))$$

• Negative direction:

$$U_{-\mu}(n) := U_{\mu}(n-e_{\mu})^{\dagger}$$

Robin Kehr (ITP - JLU Giessen)

The Anderson Transition in Lattice QCD

Lunch Club – 2024-02-14

10/42

Doubling problem

• Read off lattice Dirac operator:

$$S_{\text{naive}}\left[\psi, \overline{\psi}, U\right] = a^4 \sum_{n, l \in \Lambda} \overline{\psi}(n) \frac{D_{\text{naive}}(n, l)}{\psi(l)} \psi(l)$$

- Consider free naive Dirac operator ($U_{\mu}\equiv \mathbb{1}$)
- Take Fourier transform and invert

Free naive fermion propagator

$$\widetilde{D}_{naive}^{0}(p)^{-1}\Big|_{m=0} = \frac{-ia\,\gamma_{\mu}\sin(p_{\mu}a)}{\sum_{\nu=1}^{4}\sin^{2}(p_{\nu}a)} \quad \xrightarrow{a\to 0} \quad \frac{-i\gamma_{\mu}p_{\mu}}{p^{2}}$$

• Correct continuum limit but $2^4 = 16$ poles:

$$p = a^{-1}(p_1, p_2, p_3, p_4)$$
 with $p_{\mu} \in \{0, \pi\}$

Robin Kehr (ITP – JLU Giessen)

• Wilson Dirac operator (momentum space):

$$\widetilde{D}_{\mathsf{W}}^{\mathsf{0}}(p) = \widetilde{D}_{\mathsf{naive}}^{\mathsf{0}}(p) + \frac{1}{a} \sum_{\mu=1}^{4} (1 - \cos(p_{\mu}a))$$
Wilson term

- Removes fermion doublers
- Vanishes for physical pole p = (0, 0, 0, 0)
- Wilson operator in position space $(\gamma_{-\mu} := -\gamma_{\mu})$:

$$D_{\mathsf{W}}(n,l) = \left(m + \frac{4}{a}\right)\delta_{n,l} - \frac{1}{2a}\sum_{\mu=\pm 1}^{\pm 4} (1 - \gamma_{\mu}) U_{\mu}(n) \delta_{n+e_{\mu},l} \sigma_{\mu}(n_{4})$$

Chiral symmetry on the lattice

• From now m=0 \Rightarrow Wilson operator still breaks chiral symmetry: $\{D_{W}, \gamma_{5}\} \neq 0$

- Nielsen-Ninomiya theorem: Chiral symmetric and doubler free lattice action does not exist!
- Ginsparg-Wilson equation:

$$\{D, \gamma_5\} = aD\gamma_5D \quad \Leftrightarrow \quad D\gamma_5\left(1-\frac{a}{2}D\right) + \left(1-\frac{a}{2}D\right)\gamma_5D = 0$$

• Modify chiral rotations:

$$\psi \mapsto \exp\left(\mathrm{i}\alpha\,\gamma_5\left(1-\frac{a}{2}D\right)\right)\psi$$
$$\overline{\psi} \mapsto \overline{\psi}\,\exp\left(\mathrm{i}\alpha\,\left(1-\frac{a}{2}D\right)\gamma_5\right)$$

Ginsparg-Wilson fermions

• Consider γ_5 -hermitian Dirac operator:

$$\gamma_5 D \gamma_5 = D^\dagger$$

 \Rightarrow Eigenvalues are either real or come in complex conjugate pairs

• Ginsparg-Wilson equation: v_{λ} eigenmode with eigenvalue $\lambda \implies v_{\lambda^*} = \gamma_5 v_{\lambda}$

Overlap fermions

Overlap operator

$$D_{\mathsf{ov}} = rac{1}{\widetilde{a}} \left(1 + \operatorname{sgn} K
ight)$$

• γ_5 -hermitian kernel operator K:

$$\gamma_5 K \gamma_5 = K^{\dagger} \quad \Rightarrow \quad \operatorname{sgn} K = \frac{K}{\sqrt{K^{\dagger} K}} \quad \text{is well defined}$$

• In this work: $K = aD_W - (1 + s)$ • Let $\tilde{a} = a/(1 + s)$: $\Rightarrow D_{ov} \xrightarrow{a \to 0} D_c$

- Not strictly local due to inverse square root
- Still exponential decay:

 $\|D_{\rm ov}(n,l)\| \leq C \exp(-c \|n-l\|)$

Lattice gauge action

• Plaquette:

$${{P}_{\mu
u}}(n) = {U_{\mu}}(n) \, {U_{
u}}(n+e_{\mu}) \, {U_{\mu}}(n+e_{
u})^{\dagger} \, {U_{
u}}(n)^{\dagger}$$

• Wilson gauge action:

$$S_{\mathrm{W}}[U] = rac{2}{g^2} \sum_{n \in \Lambda} \sum_{\mu <
u} \operatorname{\mathsf{Re}} \operatorname{tr}(\mathbb{1} - P_{\mu\nu}(n))$$

Expectation value on the lattice

• Rearrange and integrate out fermions:

$$\langle O \rangle = \frac{1}{\mathcal{Z}} \int_{\mathcal{C}_{\mathsf{G}}} \mathcal{D}[U] \, \mathrm{e}^{-S_{\mathsf{G}}[U]} \, \mathcal{Z}_{\mathsf{F}}[U] \, \langle O \rangle_{\mathsf{F}}[U]$$

$$\mathcal{D}[U] = \prod_{n \in \Lambda} \prod_{\mu=1}^{4} \mathrm{d} U_{\mu}(n)$$

• Generate set of gauge field configurations $U_1, U_2, ..., U_k$: $dP[U] = \frac{1}{Z} \mathcal{D}[U] e^{-S_G[U]} \mathcal{Z}_F[U]$

- Fermion determinant: $\mathcal{Z}_{\mathsf{F}}[U] = -a^4 \det(D)$
- Approximate path integral by Monte Carlo simulation:

$$\langle O
angle pprox rac{1}{k} \sum_{i=1}^k \langle O
angle_{\mathsf{F}} [U_i]$$

2 QCD on the lattice

3 Numerical methods and lattice setup

4 Results and analysis

5 Conclusion and outlook

Implementation of the overlap operator

• $N_{\rm s} = 24$, $N_{\rm t} = 4$: $d \approx 660 \, {\rm k}$ $\Rightarrow d^2 \approx 440 \, {\rm billion \, \, complex}$ entries $\hat{\approx} 3.2 \, {\rm TB} \, {\rm storage}$ (single precision)

•
$$N_{
m s}=48$$
, $N_{
m t}=20$: \hat{pprox} 5 PB

• No chance of storing the whole operator!

- Implement matrix-vector product Dov v instead
- Rational approximation for sign function:

$$\operatorname{sgn} \mathcal{K} = \frac{1}{\sqrt{(\gamma_5 \mathcal{K})^2}}$$
$$\approx \alpha_0 + \sum_{j=1}^k \frac{\alpha_j}{(\gamma_5 \mathcal{K})^2 + \beta_j}$$

• Solve system of equations $\forall j$:

$$\left((\gamma_5 K)^2 + \beta_j\right) w_j = v$$

Conjugate gradient method

Krylov subspace methods

- Due to high dimension entire diagonalization not feasible!
- Compute small part of spectrum using Krylov subspace methods
- *p*-dimensional Krylov subspace to matrix *A* and start vector *x*₁:

$$\mathcal{K}_{p}(A, x_{1}) = \operatorname{span}\{x_{1}, Ax_{1}, A^{2}x_{1}, ..., A^{p-1}x_{1}\}$$

- Let $u_1, u_2, ..., u_p$ be an orthonormal basis of the Krylov subspace
- Projection onto subspace:

$$H = U^{\dagger}AU$$

- Compute eigenvalues θ_i and eigenvectors y_i of H
- Approximate eigenpairs of A:

 $\lambda_i \approx \theta_i$ (Ritz values)

 $v_i \approx U y_i$ (Ritz vectors)

• Best approximations in $\mathcal{K}_{\rho}(A, x_1)$

Krylov-Schur method (SLEPc library)

Arnoldi method

- Successively extend Krylov subspace with ω := Au_j
- Compute matrix elements $H_{ij} = u_i^{\dagger} \omega$
- Orthogonalize ω to $u_1, u_2, \dots u_j$
- Compute $H_{j+1,j} = \|\omega\|_2$ and set $u_{j+1} = \omega/\|\omega\|_2$
- *H* takes upper Hessenberg form of dimension *p*
- Arnoldi decomposition:

 $AU = UH + (Au_p)e_p^{\dagger}$

Krylov decomposition:

 $AU = UB + u_{p+1}b_{p+1}^{\dagger}$

• Krylov-Schur: *B* has 1 × 1 or 2 × 2 blocks on the diagonal

Repeat

- Build Krylov decomposition using Arnoldi method
- Transform into Krylov-Schur decomposition
- Reorder blocks according to desired eigenvalues
- Truncate Krylov subspace

Mixed action setup

• Compute low-lying eigenmodes of overlap operator with Wilson kernel:

$$D_{
m ov} = rac{1+s}{a} \left(1+{
m sgn}\, K
ight), \quad {
m where} \quad K = a D_{
m W} - \left(1+s
ight)$$

• Configurations from *twisted mass at finite temperature* collaboration [F. Burger, E.-M. Ilgenfritz, M. P. Lombardo, A. Trunin, arXiv:1805.06001]

- Twisted mass Wilson fermions at maximal twist, Iwasaki gauge action
- $N_{\rm f}=2+1+1$: two degenerate light & physical strange, charm quarks
- $\bullet\,$ Pseudocritical temperature $\,T_{\rm pc}$ from disconnected chiral susceptibility
- Lattice spacing a from nucleon mass [C. Alexandrou et al., arXiv:1406.4310]
- Mixed action setup well studied [K. Cichy et al., arXiv:1211.1605]
 - Adopting lattice spacing *a* and matching quark mass (respectively m_{π}) \Rightarrow Consistent continuum limit for f_{π} , $m_{\rm N}$ and m_{Δ}
 - Locality: s = 0.4 optimal value for $N_{\rm f} = 2$ and Symanzik gauge action

22 / 42

Gauge configurations

		_				
Set of ensembles	Ns	Nt	T / MeV	T/T _{pc}	# conf.	modes conf.
A370 a = 0.0936(13) fm $m_{\pi} = 364(15) \text{ MeV}$ $T_{pc} = 185(8) \text{ MeV}$	24	4	527(7)	2.85(13)	200	200
		5	422(6)	2.28(10)	200	160
		6	351(5)	1.90(9)	200	135
		7	301(4)	1.63(7)	150	115
		8	264(4)	1.42(6)	200	100
		9	234(3)	1.27(6)	200	90
		10	211(3)	1.14(5)	250	80
		11	192(3)	1.04(5)	200	75
		12	176(2)	0.95(4)	200	70
	32	13	162(2)	0.88(4)	50	150
		14	151(2)	0.81(4)	50	140
$ \begin{array}{c c} \textbf{D370} \\ a = 0.0646(7) \text{fm} \\ m_{\pi} = 369(15) \text{MeV} \\ T_{\text{pc}} = 185(4) \text{MeV} \end{array} \begin{array}{c} 32 \\ 40 \\ 48 \end{array} $	20	3	1018(11)	5.50(13)	120	400
		6	509(6)	2.75(7)	120	200
	32	14	218(2)	1.18(3)	160	85
		16	191(2)	1.03(2)	160	75
	40	18	170(2)	0.92(2)	40	150
	48	20	153(2)	0.83(2)	3	200
$\begin{array}{c} \textbf{D210} \\ a = 0.0646(7) \text{fm} \\ m_{\pi} = 213(9) \text{MeV} \\ T_{\text{pc}} = 158(5) \text{MeV} \end{array}$	48	4	764(8)	4.83(16)	10	1000
		6	509(6)	3.22(11)	10	700
		8	382(4)	2.42(8)	10	500
		10	305(3)	1.93(6)	10	400
		12	255(3)	1.61(5)	10	350
		14	218(2)	1.38(5)	10	300
		16	191(2)	1.21(4)	10	250
		18	170(2)	1.07(4)	10	225
		20	153(2)	0.97(3)	-	-
		24	127(1)	0.81(3)	-	-

 N_s: Number of lattice sites in each space direction

• Volume =
$$L^3$$
:

 $L = aN_{\rm s}$

- N_t: Number of lattice sites in temporal direction
- Temperature:

$$T = rac{1}{aN_{
m t}}$$

Robin Kehr (ITP – JLU Giessen)

- 2 QCD on the lattice
- 3 Numerical methods and lattice setup
- 4 Results and analysis
 - 5 Conclusion and outlook

Stereographic projection

- Mimic continuum limit by projecting eigenvalues on imaginary axis
- Require $f(z) = z + O(\tilde{a}z^2)$ and $f(2/\tilde{a}) = \infty$ [W. Bietenholz, K. Jansen, S. Shcheredin, arXiv:0306022]:

$$f(z) = \frac{z}{1 - \frac{\tilde{a}}{2}z}$$

(Möbius transformation)

• Translates to stereographic projection:

$$\frac{\lambda:=f(\lambda)=\frac{\mathrm{i}\,\mathrm{Im}\,\lambda}{1-\frac{\tilde{a}}{2}\,\mathrm{Re}\,\lambda}=\mathrm{i}\,\frac{2}{\tilde{a}}\,\mathrm{tan}\,\frac{\varphi}{2}$$

Distribution A370: a = 0.0936(13) fm, $m_{\pi} = 364(15)$ MeV

Robin Kehr (ITP - JLU Giessen)

The Anderson Transition in Lattice QCD

Lunch Club - 2024-02-14 26 / 42

Distribution D370: a = 0.0646(7) fm, $m_{\pi} = 369(15)$ MeV

Robin Kehr (ITP - JLU Giessen)

The Anderson Transition in Lattice QCD

Lunch Club - 2024-02-14 27 / 42

Distribution D210: a = 0.0646(7) fm, $m_{\pi} = 213(9)$ MeV

- Keep *a* but reduce m_{π} , T_{pc} and increase volume
- However smallest $m_{\pi}L \approx 3.3$ (at least > 3, optimally > 4)

 $T_{
m pc}=158(5)\,{
m MeV}$

- Near-zero modes do not instantly vanish when increasing *T* above *T*_{pc} (chiral crossover)
- For increasing temperature an increasingly wider gap emerges (Banks-Casher gap)

۲

Localization measure

- Need measure of localization to reveal QCD Anderson transition
- Relative eigenmode volume:

$$r(\lambda) = rac{P_2^{-1}(\lambda)}{|\Lambda|} \in [1/|\Lambda|, 1]$$

with inverse participation ratio $P_2(\lambda) = \sum_{i \in \Lambda} (v_\lambda(i)^{\dagger} v_\lambda(i))^2$

- Maximally localized on n_0 : $v_{\lambda}(n)^{\dagger}v_{\lambda}(n) = \delta_{n,n_0}$ $\Rightarrow r(\lambda) = 1/|\Lambda|$
- Maximally delocalized: $v_{\lambda}(n)^{\dagger}v_{\lambda}(n) = 1/|\Lambda|$ $\Rightarrow r(\lambda) = 1$

- Transition clearly visible
- Need criterion to quantify position
 [^] mobility edge
- Employ inflection point (IP)

Mobility edge

Strategy for determining the IP

- Average over small bins in λ
 (≈ expectation value of r(λ))
- Obtain data with standard error
- Vary binsize and fit window
- Find fits with $\chi^2/d.o.f.\approx 1$
- Read off inflection point

Fit Taylor polynomial (at IP)

$$\begin{aligned} r(\lambda) &= r_{\rm c} + b(\lambda - \lambda_{\rm c}) + 0(\lambda - \lambda_{\rm c})^2 \\ &+ c(\lambda - \lambda_{\rm c})^3 + d(\lambda - \lambda_{\rm c})^4 \end{aligned}$$

A370: a = 0.0936(13) fm, $m_{\pi} = 364(15)$ MeV

- Mobility edge vanishes below $T_{\rm pc} = 185(8)\,{\rm MeV}$
- Consistent with earlier work

[M. Giordano et al., arXiv:1410.8392]

[L. Holicki, E.-M. Ilgenfritz,

L. von Smekal, arXiv:1810.01130]

Robin Kehr (ITP - JLU Giessen)

D370: a = 0.0646(7) fm, $m_{\pi} = 369(15)$ MeV

D210: a = 0.0646(7) fm, $m_{\pi} = 213(9)$ MeV

- Move closer towards physical limit: reduce m_π, T_{pc}, increase volume
- Find mobility edge for all evaluated ensembles, but all temperatures are above $T_{\rm pc} = 158(5) \, {\rm MeV}$

Key question

Where does the mobility edge vanish in the physical limit?

Temperature extrapolation of the mobility edge

Fit Taylor polynomial (at the zero) $\lambda_c(T) = b(T - T_0) + c(T - T_0)^2$

 A370 consistent with linear dependence and vanishing at T_{pc} as seen in earlier work
 [L. Holicki, E.-M. Ilgenfritz,

L. von Smekal, arXiv:1810.01130]

- D370 shows slight curvature and no vanishing at T_{pc} , supported by data points to larger volumes
- In [M. Giordano et al., arXiv:1410.8392] actually slight curvature as well

Extrapolation D210: a = 0.0646(7) fm, $m_{\pi} = 213(9)$ MeV

Correlation analysis

- Criterion $\chi^2/{\rm d.o.f.}\approx 1$ requires statistically independent errors
- Same configurations for each bin ⇒ Bins might be correlated
- Quantify by computing Pearson correlation coefficient of bin X and Y:

$$\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}$$

- Correlation of λ (top) and $r(\lambda)$ (bottom) for $N_t = 4$ of A370
- Correlations for λ negligible but not for r(λ)

Robin Kehr (ITP – JLU Giessen)

Reduce correlation

- Correlation especially strong for neighboring bins
 - $\Rightarrow \text{Pick different configurations:} \\ \text{Even index for bin } i, \text{ odd for} \\ \text{bin } i + 1 \text{ (alternate picking)}$
- Correlation for relative volume strongly reduced (bottom)
- Repeat analysis with new method
- Small difference (a for alternating)

Data set	T_0 / MeV	$T_{0,a} / \text{MeV}$
A370	161(5)	158(6)
D370	171(1)	168(2)
D210	129(14)	137(9)

Scaling (second order phase transition)?

- Repeat quadratic fit for D210
- T₀ gets shifted downwards again
- Better $\chi^2/d.o.f.$ but still not convincing
- Try scaling fit:

 $\lambda_{\rm c}(T) = b(T-T_0)^{\nu}$

- T_0 moves downwards back to T_c
- Acceptable χ²/d.o.f., however just 5 configurations per bin
- $\nu \approx 1.437$ for unitary Anderson model [L. Ujfalusi, I. Varga, arXiv:1501.02147]

Robin Kehr (ITP - JLU Giessen)

The Anderson Transition in Lattice QCD

- 2 QCD on the lattice
- 3 Numerical methods and lattice setup
- 4 Results and analysis

5 Conclusion and outlook

Conclusion and outlook

- Mobility edge λ_c depends nonlinear on the temperature (scaling?)
- Evidence for vanishing of λ_c at T_c and especially not at T_{pc}
- Data on lower temperatures and closer to physical limit necessary
 - * \Rightarrow Reduce computational costs
 - Improve program (if possible)
 - Apply UV-smoothing to lattice gauge configurations
- Employ other definitions of localization [A. Alexandru, I. Horváth, arXiv:2103.05607] ⇒ Find infrared mobility edge *(...)
- Annihilation of both mobility edges as alternative scenario
- Both scenarios combined possible as well
- Determine mobility edge more precisely by finite-size analysis *(...)
- Study correlation of eigenmodes with Polyakov loop

Extra: (Official) Marathon world record extrapolation

Thank you!