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Abstract

The aim of this Bachelor’s thesis is to determine the range of values that
the chemical potential at various Coulomb interaction strengths can take as
a parameter of a grand-canonical description of monolayer graphene at fixed
temperature without causing a fermion sign problem which makes Monte-
Carlo-simulations unfeasible. The focus is on Coulomb interaction energies
varying from zero to full vacuum interaction strength and chemical potentials
varying from zero to 1.0 and in addition from 2.5 to 2.9 eV to study the sign
problem at the neck-disrupting Lifshitz transition in graphene.

Kurzfassung

Das Ziel dieser Bachelorarbeit ist das Vorzeichenproblem, welches ein Hinder-
nis bei der Anwendung von Monte-Carlo-Simulationen darstellt, in Graphen
bei fester Temperatur zu untersuchen, wenn ein Tight-Binding Hamiltonian
plus Coulombwechselwirkung und chemisches Potential für die großkanon-
siche Beschreibung verwendet wird. Variable Größen sind dabei die Wechsel-
wirkungsstärke, welche von 10 Prozent bis 100 Prozent der Vakuumwechsel-
wirkungsstärke variiert wird, und das chemische Potential, welches von 0,1
bis 1,0 und 2,5 bis 2,9 eV aufgedreht wird. Letzterer Bereich soll untersucht
werden, um den neck-disrupting Lifshitzübergang bei 2.7 eV abzudecken.
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1 Introduction

Graphene started out as a purely theoretical construct, which was considered
not to exist in nature because of its thermodynamical instability, as shown by
Landau [1] in 1937 and others. However, later on, beginning in the 60s of the
20th century, experimentalists were able to produce graphene, like Boehm et
al in 1962 [2]. The discrepancy between experiment and theory could later
be resolved by the argument, that one has to consider crumpling into the 3rd
dimension of the graphene sheet [3]. First systematic examinations of the
electronic properties of graphene were conducted in 2005 by Novoselov et al
[4], which were rewarded with the nobel prize in physics in 2010. For further
information on the properties of graphene see [5] and references therein.
From a theoretical viewpoint, one wishes to find suitable models for graphene
to calculate and reproduce the experimental data. For a history of model-
ing and calculation methods used, see [7]. In short, graphene is modeled
by a tight-binding Hamiltonian plus Coulomb interaction of the electrons,
with which the partition function and other observables can be calculated
using Hybrid-Monte-Carlo simulation ( in the remaining called ’HMCs’ for
notational convenience ). Recently a chemical potential has been introduced
to study graphene beyond half-filling. That is, the Fermi surface can be
moved and the states populated at absolute zero temperature altered. This
way van-Hove-singularities in the bandstructure ( see 2.1 ) can be reached
and examined, resulting in a topological phase transition called neck disrupt-
ing Lifshitz transition [8]. Regarding experiments, the Fermi surface can be
changed by doping or an applied electric field [5]
Because there are other interesting phenomena such as superconductivity
possible in graphene ( see for example [6] ), one wishes to do further calcula-
tions at variable chemical potential. But there is a problem coming with the
introduction of a chemical potential, called fermion sign problem which can
make HMCs unfeasible. More on that in section 2.4. The purpose of this
thesis is therefore to investigate the range of values the chemical potential
can take at various Coulomb interaction strengths without the sign problem
being so severe that HMCs cease to be feasible.
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2 Theoretical Basics

2.1 Graphene

Graphene is an allotrope of carbon consisting of atoms arranged on a hexag-
onal lattice in two dimensions. The lattice can be described by 3 vectors in
a manner employed in solid state physics, namely by dividing the lattice in
two sublattices, each of them having the same basis, which are connected
by a third vector pointing from any atom on the one lattice to the corre-
sponding atom on the other lattice that is displaced in the direction of this
vector, see the 6x4 lattice depicted in figure 1. The pink axes show the direc-
tion of the basis vectors and the blue dots and red dots representing atoms
on sublattice one and sublattice two, respectively. The indexing scheme is
straight-forward, first the atoms of the first sublattice are counted, the enu-
meration is then continued on the other sublattice.

The bandstructure of graphene was derived in [8] using tight-binding
approach, stating

E(kx, ky) = ±t

√
3 + 4 cos(

√
3a

2
kx) cos(

3a

2
ky) + 2 cos(

√
3akx) (1)

where kx and ky are the components of the wave vector and t is the hopping
parameter, describing the interaction between nearest neighboring sites in the
tight-binding model. See figure 2 for a visualization of the bandstructure.
In that figure one can see one of the interesting phenomena mentioned in the
introduction are the dirac cones in the bandstructure. These are the areas in
the wavenumer space where the upper and lower bands meet. Electrons with
those wave vectors are governed by the dirac equation, that is, they behave

Figure 1: The graphene lattice with basis vectors and indexing scheme. Ex-
cerpt from [7]
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Figure 2: Visualization of the bandstructure in tight-binding graphene. Ex-
cerpt from [8]

Figure 3: Visualization of the Fermi surface at various chemical potentials.
Excerpt from [8]

like relativistic particles. Furthermore, the density of states vanishes at the
dirac cones [8].
In figure 3 the topology of the Fermi surface at various chemical potentials is
depicted. When the Fermi surface reached the level of a van Hove singular-
ity in the density of states, its topology changes. This happens at chemical
potential µ = 2, 7eV [8]. Further phenomena are associated with this topo-
logical phase transition, see section 6.
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2.2 Hamiltonian

After this little introduction about graphene the Hamiltonian describing elec-
trons in graphene will be presented. As mentioned before, tight-binding ap-
proach with Coulomb interaction chemical potential is used and the Hamil-
tonian is expressed in second quantization. The same Hamiltonian was used
in [8]. The tight-binding term is

Htb = t
∑
x,ynn,s

(a†x,say,s + a†y,sax,s) (2)

where nn denotes summation only over nearest neighbors, t ist the hopping
parameter and a†x,s and ax,s creation and annihilation operators of an electron
with spin s at site x.
The term accounting for the Coulomb interaction is

HCoul =
1

2

∑
x,y,s

qxVxyqy (3)

with the charge operator qx = a†x,1ax,1 + a†x,−1ax,−1 − 1 and the Coulomb
interaction matrix Vxy. Minus one was added to the charge operators to
make the system neutral at half-filling. Exploiting the commutation relation
for fermions, the charge operator can be rewritten: qx = a†x,1ax,1−ax,−1a

†
x,−1.

Chemical potential is added to the system via the following term

Hchem = −µ
∑
x,s

a†x,sax,s (4)

Furthermore, there is an additional term used for technical purposes

Hm =
∑
x

ms(a
†
x,1ax,1 + a†x,−1ax,−1) (5)

where ms is one for one sublattice, and minus one for the other, therefore
breaking sublattice symmetry.
In conclusion, the resulting Hamiltonian is

H =t
∑
x,ynn,s

(a†x,say,s + a†y,sax,s)− µ
∑
x,s

a†x,sax,s

+ms

∑
x

(a†x,1ax,1 + a†x,−1ax,−1) +
1

2

∑
x,y,s

qxVxyqy (6)
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2.3 Partition function

In the following the path integral formulation of the partition function of
graphene will be derived, repeating the steps in [7] with additional chemical
potential. Only the important steps are included here, an extensive version
can be found there. The goal is to arrive eventually at a formulation that is
suitable to perform HMCs.
First, to eliminate summation over the spin components, hole creation and
annihilation operators are introduced to replace spin down annihilation and
creation operators, respectively. That is,

a†x,−1 → bx

ax,−1 → b†x

a†x,1 → a†x

ax,1 → ax (7)

Moreover, on one lattice the sign of the hole operators is flipped, meaning
bx → −bx and b†x → −b†x. Now the Hamiltonian expressed with hole operators
in normal order is

H =t
∑
x,ynn

(a†xay + a†yax + b†xby + b†ybx)− µ
∑
x,s

a†xax − b†xbx

+ms

∑
x

(a†xax + b†xbx) +
1

2

∑
x,y,s

qxVxyqy (8)

The purpose of this manipulation is to be able to formulate the partition
function using coherent states, which are constructed like this

|φ, η〉 = exp(−
∑
x

φxa
†
x + ηxb

†
x) |0〉 (9)

with φx and ηy being the associated Grassmannumbers to each creation op-
erator [9] and |0〉 the vacuum state of the Fock space. After slicing e−βH into
e(−δH)Nt , with δ = β/Nt, which is later interpreted as computer time for the
molecular dynamics evolution, the partition function Tr e−βH can be written
using coherent states and anti-periodic boundary conditions:

Tr e−βH =

∫ Nt∏
t=0

(
∏
x

dφ∗x,tdφx,tdη
∗
x,tdηx,t)

× exp(
∑
x

φ∗x,tφx,t + η∗x,tηx,t) 〈φt+1, ηt+1| e−δH |φt, ηt〉 (10)

5



Evaluation the matrix elements yields by using the abbreviation Dφ =
Nt∏
t=0

∏
x

dφx,t

Tr e−βH =

∫
DφDφ∗DηDη∗ exp[−δ(1

2

∑
x,y

Qx,t+1,tVx,yQy,t+1,t︸ ︷︷ ︸
Coulomb interaction

+
1

2

∑
x

Vx,x(φ
∗
x,t+1φx,t + η∗x,t+1ηx,t)︸ ︷︷ ︸

Coulomb diagonal elements

− t
∑
x,ynn

φ∗x,t+1φy,t + η∗x,t+1ηy,t + φ∗y,t+1φx,t + η∗y,t+1ηx,t︸ ︷︷ ︸
Tight-binding

+
∑
x

ms(φ
∗
x,t+1φx,t + η∗x,t+1ηx,t)︸ ︷︷ ︸
staggered mass

− µ
∑
x

φ∗x,t+1φx,t − η∗x,t+1ηx,t︸ ︷︷ ︸
chemical potential

)

−
∑
x

φ∗x,t+1(φx,t+1 − φx,t) + η∗x,t+1(ηx,t+1 − ηx,t)︸ ︷︷ ︸
weighting function and scalar product

] (11)

where Qx,t,t′ = φ∗x,tφx,t′ − η∗x,tηx,t′ .
To get rid of the fourth powers in the Coulomb interaction term, a Hubbard-
Stratonovich-transformation is performed:

exp(−δ
2

∑
x,y

Qx,t+1,tVx,yQy,t+1,t) ∝

∫
Dψ exp(

δ

2

Nt−1∑
t=0

∑
x,y

ψx,tV
−1
x,y ψy,t − iδ

Nt−1∑
t=0

∑
x

ψx,tQx,t+1,t) (12)
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yielding

Tr e−βH =

∫
DφDφ∗DηDη∗Dψ exp[−δ

Nt−1∑
t=0

(

1

2

∑
x,y

ψx,tV
−1
x,y ψy,t − i

Nt−1∑
t=0

∑
x

ψx,tQx,t+1,t︸ ︷︷ ︸
Transformation

+
1

2

∑
x

Vx,x(φ
∗
x,t+1φx,t + η∗x,t+1ηx,t)︸ ︷︷ ︸

Coulomb diagonal elements

−t
∑
x,ynn

φ∗x,t+1φy,t + η∗x,t+1ηy,t + φ∗y,t+1φx,t + η∗y,t+1ηx,t︸ ︷︷ ︸
Tight-binding

+
∑
x

ms(φ
∗
x,t+1φx,t + η∗x,t+1ηx,t)︸ ︷︷ ︸

staggered mass

−µ
∑
x

φ∗x,t+1φx,t − η∗x,t+1ηx,t︸ ︷︷ ︸
chemical potential

)

−
Nt−1∑
t=0

∑
x

φ∗x,t+1(φx,t+1 − φx,t) + η∗x,t+1(ηx,t+1 − ηx,t)︸ ︷︷ ︸
weighting function and scalar product

] (13)

The last step is to introduce a matrix

Mx,y,t,t′(µ) =δx,y(δt,t′ − δt−1,t′)− t
β

Nt

∑
nn

δy,xδt−1,t′ +ms
β

Nt

δx,yδt−1,t′

+
Vx,yβ

2Nt

δx,yδt− 1, t′ + iψx,t
β

Nt

δx,yδt−1,t′ − µ
β

Nt

δx,yδt−1,t′ (14)

where nn denoting, that s takes every neighboring value at fixed y. The
partition function can now be expressed by this matrix

Tr e−βH =

∫
DφDφ∗DηDη∗Dψ exp(−δ

2

Nt−1∑
t=0

∑
x,y

ψx,tV
−1
x,y ψy,t

−
Nt−1∑
t,t′

∑
x,x′

φ∗x,tMx,x′,t,t′(µ)φ∗x′,t′ + η∗x,tM
∗
x,x′,t,t′(−µ)η∗x′,t′) (15)
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Notice that in the last term, the matrix is evaluated with a flipped sign of the
chemical potential. This is the very cause of the sign problem, as expanded
on in the next section. By carrying out the Gaussian integral∫

(
n∏

m=1

dχ∗mdχm) exp(−
n∑

i,j=1

χ∗iAi,jχj) ∝ detA (16)

the final form is obtained

Tr e−βH =

∫
Dψ detM(µ) detM∗(−µ) exp(−δ

2

Nt−1∑
t=0

∑
x,y

ψx,tV
−1
x,y ψy,t) (17)

2.4 Reweighting

To be able to evaluate an integral with HMCs, it has to be of the following
form

I =

∫
DφP (φ)O(φ) (18)

where P denotes the weight of the integral and O the observable. P has
to be real and positive in order to be interpreted as a probability distri-
bution by HMCs. But Equation 17 does not satisfy this condition, for the
determinants can be complex numbers in general. If they were of the form
detM(µ) detM∗(µ) = |detM(µ)|2, no problem would occur, since the result
would be real and positive. To this end eq. 17 is rewritten, like demonstrated
in [13] for QCD:

Z =

∫
Dψ detM(µ) detM∗(−µ)

detM∗(µ)

detM∗(µ)
exp(−δ

2

Nt−1∑
t=0

∑
x,y

ψx,tV
−1
x,y ψy,t)

=

∫
Dψ| detM(µ)|2 exp(−δ

2

Nt−1∑
t=0

∑
x,y

ψx,tV
−1
x,y ψy,t)

detM∗(−µ)

detM∗(µ)
(19)
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Using eq. 19, one has to evaluate the following integral in order to calculate
an observable O:

Tr(e−βHO) =
1

Z

∫
Dψ detM(µ) detM∗(−µ)

detM∗(µ)

detM∗(µ)

× exp(−δ
2

Nt−1∑
t=0

∑
x,y

ψx,tV
−1
x,y ψy,t)O(φ)

=
1

Z

∫
Dψ | detM(µ)|2 exp(−δ

2

Nt−1∑
t=0

∑
x,y

ψx,tV
−1
x,y ψy,t)︸ ︷︷ ︸

P

× detM∗(−µ)

detM∗(µ)
O(φ)︸ ︷︷ ︸

O’

(20)

While interpreting the factor referred to as O′ as new observable, eq. 20
assumes a form that can be evaluated by HMCs.
Remark: In [8] it was assumed that detM∗(−µ) = detM∗(µ) by flipping
the sign of the chemical potential for holes, since the bandstructure in the
nearest-neighbor tight-binding model is symmetric under spin-flip.
The problem now is that the ratio of determinants, as a complex number
possessing both a magnitude and a phase, could be highly oscillatory, mean-
ing the phase would be uniformly distributed over the complex unit circle
and thus yielding zero as mean value, making Monte-Carlo-simulations un-
feasible. That is called the sign problem and the very topic of this thesis.
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3 Hybrid Monte Carlo algorithm

In this section the basics of the Hybrid Monte Carlo algorithm used in this
thesis will be presented. Main source is [10].

3.1 Basic Monte-Carlo

Monte Carlo Simulations are mainly used to calculate high-dimensional in-
tegrals because of their probabilistic approach as opposed to deterministic
algorithms, which lowers the run time of the algorithm.
Consider an integral of a function f(x) over a volume V. The integral can
then be approximated by∫

V

f(x)dx ≈ V

N

N∑
i=1

f(xi) (21)

with xi being N randomly picked points of the volume. As N grows to infinity,
the approximation converges to the exact value of the integral, as assured by
the law of large numbers.

3.2 Importance Sampling

Most of the time, a non-random distribution of the points is more efficient.
For example, if a Gaussian distribution is to be integrated over the set of real
numbers, most points would not contribute much to the value of the integral,
if the Gaussian distribution function is evaluated at those points. Instead the
points are selected following a Gaussian distribution by themselves, meaning
points at the center are preferred. So if p(x) is the normalized distribution
according to which the points are picked, the integral is approximated like∫

V

f(x)dx ≈ V

N

N∑
i=1

f(xi)

p(xi)
(22)
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To determine the distribution the reweighted formulation of the partition
function follows, eq. 19 is rewritten using eq. 16:

Z =

∫
Dψ| detM(µ)|2 exp(−δ

2

Nt−1∑
t=0

∑
x,y

ψx,tV
−1
x,y ψy,t)

detM∗(−µ)

detM∗(µ)

=

∫
DψDχDχ∗ exp(− δ

2

Nt−1∑
t=0

∑
x,y

ψx,tV
−1
x,y ψy,t︸ ︷︷ ︸

S(ψ)

−
Nt−1∑
t′,t=0

∑
x,y

χ∗x,t(MM †)−1
x,x′,t,t′χx′,t′︸ ︷︷ ︸

S’(χ)

)
detM∗(−µ)

detM∗(µ)
(23)

So p(ψ, χ) = exp(−S(ψ) − S ′(χ)). The points for χ are selected simply
by following the distribution given by exp(−S ′(χ)). Another expression for
’selecting points’ is ’generating field’, since ψ and χ are interpreted as fields.

3.3 Molecular dynamics

The ψ-field is generated using a Markov chain molecular dynamics evolu-
tion, meaning that a trajectory in fictitious time through the phase space
is calculated based on the field Hamiltonian and a corresponding fictitious
momentum field [7]. The equation of motion defined by this Hamiltonian
is solved by discretizing and using a leapfrog integrator. Since there are
discretization errors ( step-size errors ), a metropolis acceptance test is per-
formed afterwards, which rejects any configuration that is not a valid phase
space point at given energy.
Thermalization and correlation of the configurations are two problems one
has to pay attention to when performing the molecular dynamics evolution.
They are discussed in the next section.
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4 Simulations

Simulations were conducted to calculate the reweighted partition function 23
with the ratio of determinants as an effective observable at β = 2.0 eV−1 on
a 6x6 lattice with Nt = 12 and the chemical potential ranging from µ = 0.1
to µ = 1.0 and µ = 2.5 to µ = 2.9 eV with a stepsize of 0.1 eV at Coulomb
interaction strengths of 10, 20, 40, 80 and 100 percent of vacuum strength.
The staggered mass is set to zero. At every combination of chemical potential
and Coulomb interaction strength 1500 measurements were made with two
updates of the molecular dynamics trajectory in between every measurement.
As leapfrog integrator steps number 1000 was set and as step size 0.3 unless
otherwise indicated in the results section. There are a few possible technical
issues to be considered to guarantee the integrity of the calculations.

4.1 Thermalization

Thermalization is the process of a system reaching thermodynamical equi-
librium. The graphene lattice has to be in equilibrium associated with a
specific energy for the measurements to make sense. Eventually reaching
equilibrium is ensured by the acceptance test, accepting configurations in
equilibrium with a much higher probability, but it is not clear how long it
takes to get there from a arbitrary starting configuration. An indicator for
equilibrium is the variation of the Hamiltonian. If it fluctuates around a
static mean value, equilibrium is reached.
The measurements exhibited almost instant thermalization throughout the
entire range of parameters, so there is no further consideration necessary.

Figure 4: Thermalization at 10% Coulomb interaction strength and µ = 0.5
eV
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4.2 Correlation

Another problem is the correlation of configurations in the phase space by the
simple fact that the trajectory has a finite step size and cannot reach every
other point from a given point in phase space in one step. So the next point
depends not only one the previous one, but also several ones prior to that.
One method to solve this problem is using the binning-method as described
in [8]. In this thesis however, it is assumed that enough updates are made
throughout the measurements that correlations cease to be of significant
impact on the data.

4.3 Technical data

The simulations were performed on nVidia graphic boards of the type ’GeForce
GTX 980 Ti’. For further information, see [18].
The source code of the program developed by Smith and von Smekal [7] was
modified to calculate the ratio of determinants 23, compiled and run on a
computer cluster using the graphic boards mentioned above at Justus-Liebig-
Universitaet Gießen in August 2016.
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5 Results

In this section, the results of the simulations are presented. In general, the
observable is a complex number, but the magnitude turned out to be almost
constant in every measurement, with a average fluctuation of under 10 per-
cent. Thus it can be considered constant and can be absorbed in the measure
of the integral, yielding complex numbers limited to the complex unit circle,
that is, numbers with magnitude one. Therefore the only interesting parts
of the measurements are the phases of the complex numbers and will be dis-
played as histograms in the following.
The histograms were made with gnuplot.

5.1 Mu = 0.1 - 1.0

The plots were superpositioned with a Gaussian fit to make it easier to
compare the dispersion at different parameters, measured by the root mean
square deviation. At every Coulomb interaction strength the distribution of
the phases are practically even at a chemical potential of µ = 0.5 eV and
greater and are therefore not included. That means the sign problem is severe
at those chemical potentials.
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(a) µ = 0.1 eV (b) µ = 0.2 eV

(c) µ = 0.3 eV (d) µ = 0.4 eV

Figure 5: Phase distribution at 10% Coulomb interaction strength
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(a) µ = 0.1 eV (b) µ = 0.2 eV

(c) µ = 0.3 eV (d) µ = 0.4 eV

Figure 6: Phase distribution at 20% Coulomb interaction strength
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(a) µ = 0.1 eV (b) µ = 0.2 eV

(c) µ = 0.3 eV (d) µ = 0.4 eV

Figure 7: Phase distribution at 40% Coulomb interaction strength
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(a) µ = 0.1 eV (b) µ = 0.2 eV

(c) µ = 0.3 eV

Figure 8: Phase distribution at 80% Coulomb interaction strength
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(a) µ = 0.1 eV (b) µ = 0.2 eV

(c) µ = 0.3 eV

Figure 9: Phase distribution at 100% Coulomb interaction strength
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To compare the results at different parameters quantitatively, the root mean
square deviation of every plot is listed in the table below. The sort sequence
is designed to make the comparison between different Coulomb interaction
strengths easier. All values are rounded to 2 decimal positions. Mean and
root mean square values are practically dimensionless, because the phase is
expressed in radial measure. The format of the first column is ’ - percentage
of Coulomb interaction strength in vacuum used - , - chemical potential in
eV - ’.

Parameters RMS Mean
10%, 0.1 0.22 -0.02
20%, 0.1 0.26 0.00
40%, 0.1 0.28 0.01
80%, 0.1 0.28 0.00
100%, 0.1 0.31 0.01
10%, 0.2 0.47 0.00
20%, 0.2 0.55 0.00
40%, 0.2 0.63 0.00
80%, 0.2 1.05 0.01
100%, 0.2 1.78 -0.01
10%, 0.3 1.63 0.00
20%, 0.3 2.17 0.05
40%, 0.3 3.08 0.07
80%, 0.3 5.12 -0.14
100%, 0.3 5.48 -0.30
10%, 0.4 12.4 3.60
20%, 0.4 4.31 0.40
40%, 0.4 71.2 13.9
80%, 0.4 - -
100%, 0.4 - -

Two main outcomes are evident. First, at a chemical potential of µ = 0.4
the Gaussian fit ceases to make sense because of great root mean square
deviation and means that are out of range. When compared to figure 6d
the Gaussian fit algorithm even seems to fail at 20% Coulomb interaction
strength because the visual examination yields no sufficient evidence for a
concentration of the phase as suggested by the relatively low root mean
square value. Therefore, combined with the observation mentioned above,
the sign problem is severe at chemical potential µ = 0.4 eV and greater.
Second, root mean square deviation raises when Coulomb interaction strength
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increases. That is, the phase distribution flattens out at higher energy and
the sign problem becomes stronger.

5.2 Mu = 2.5 - 2.9

The sign problem at chemical potential ranging from µ = 2.5 to µ = 2.9
was studied to determine the feasibility of HMCs at this range, where the
neck-disrupting Lifshitz transition and other phenomena happen. For every
set of parameters 1000 measurements were conducted as opposed to 1500
for the parameters studied in the last section. The simulations yielded the
following results.
At Coulomb interaction strengths of 10% and 20% almost every measurement
yielded zero as result not only for the phase of the integral, but also for mag-
nitude, real part and imaginary part. A few measurements stated the phase
as numerical π while real and imaginary part remained zero. Because of the
fact that the phase is calculated using real and imaginary part, these results
are considered to be due to a predetermined variable within the program or
simply as an systematic error. Measurements were conducted a second time
with altered Leapfrog integrator parameters, because the zero results could
be caused by an instability in the integrator. The step number was set to
100,000 and the step size to 0.003 to remain a product of 300, which turned
out to be optimal during the simulations conducted in [8]. But the results
were still zero without change in the number of numerical pis. This could be
due to the single precision complex variables that were used. Further studies
should use double precision to determine the origin of this result.
At 40% Coulomb interaction strength 8% on average of the measurements re-
sulted in a finite phase, the remaining ones in zero or an infinite magnitude,
meaning that the range the complex variables could handle was exceeded.
A second conduction with altered Leapfrog integrator parameters as above
yielded no increase in the percentage of finite phases. The little data that
were of use showed an distribution with no significant concentration. Figure
10a and 10b show an example. The higher the Coulomb interaction strength
the more finite phases were obtained, ranging from 1% at 10% strength and
24% at 100% strength.
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(a) µ = 2.8 eV (b) µ = 2.9 eV

Figure 10: Phase distribution at 40% Coulomb interaction strength

At 80% and 100% Coulomb interaction strength 96% and 92% of the mea-
surements were finite, respectively. But as at previous Coulomb interaction
strengths no concentration in the phase distribution are evident. The results
at 80% Coulomb interaction strength are included below, the ones at 100%
do not deviate significantly from them.
Apparently the sign problem is severe at chemical potential ranging from
µ = 2.5 and µ = 2.9 eV, making HMCs unfeasible.
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(a) µ = 2.5 eV (b) µ = 2.6 eV

(c) µ = 2.7 eV (d) µ = 2.8 eV

(e) µ = 2.9 eV

Figure 11: Phase distribution at 80% Coulomb interaction strength
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Figure 12: αeff to µ diagram on the simulation results. Extrapolations were
made to provide continuous lines. Abbreviations used: ’sp’ : sign problem
occurs in this area, ’ no sp’ : sign problem does not occur in this area. Made
with inscape

6 Conclusion and outlook

In summary, the simulations conducted for this thesis showed the following
results ( see figure 12 for a visual summary ).
At chemical potential µ = 0.4 eV and greater, the sign problem in tight
binding graphene with Coulomb interaction is severe regardless of Coulomb
interaction strength. More precisely, at 10% interaction strength HMCs are
still feasible up to µ = 0.3 eV, but this limit drops steadily as interaction
strength increases down to µ = 0.1 eV at full interaction strength. Beyond
those limits, the sign problem impedes the use of HMCs.
Around the Lifshitz transition at µ = 2.7 eV, the precision used by the sim-
ulations is not good enough to yield results at 40% interaction strength and
below. Possibly the sign problem is sufficiently non-severe to yield a concen-
tration in the phase distribution at very weak Coulomb interactions. On the
other hand, the sign problem is indeed severe at 80% interaction strength
and greater.
A continuation and expansion of this thesis should definitely include mea-
surements at the Lifshitz transition with a higher precision, so that this
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region can be clarified. Furthermore the tight binding Hamiltonian could
be expanded in a way that it includes next-nearest neighbor hopping, which
makes the model better and more realistic. This new Hamiltonian is subject
to a sign problem as well, even without a chemical potential, because the two
sublattices get intertwined by the next-nearest hopping term.
The region around the Lifshitz transition is of particular interest for further
research, because it is rich in interesting phenomena, as already mentioned
in the introduction. With Angle resolved photoemission studies [17] one can
examine the van Hove singularity in the bandstructure of doped graphene
and can thus investigate the region of the Lifshitz transition experimentally.
Interesting phenomena include quantum hall effect [16], d-wave superconduc-
tivity [15] and other exotic ground states.
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Zeitschrift fue Naturforschung, 17 b, 150 – 153, 1962

[3] J. C. Meyer, A. K. Geim, M. I. Katsneslon, K. S. Novoselov, T. J.
Booth, S. Roth, The structure of suspended graphene sheets, Nature
446, 60-63, March 2007

[4] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich,
S. V. Morozov, A. K. Geim, Two-dimensional atomic crystals, Pro-
ceedings of the National Academy of Sciences of the United States of
America 102, 30, 10451-10453, 2005

[5] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A.
K. Geim, The electronic properties of graphene, Review of Modern
Physics, 81, 109, 2009

[6] Chapman, J., et al. Superconductivity in Ca-doped graphene,
arXiv:1508.06931 (2015).

[7] D. Smith and L. von Smekal, Monte Carlo simulation of the tight-
binding model of graphene with partially screened Coulomb interac-
tions http://arxiv.org/pdf/1403.3620v1.pdf

[8] Michael Körner Master’s thesis: Investigation of topological phase
transitions in graphene by Monte Carlo simulations

[9] J. W. Negele and H. Orland, Quantum Many-Particle Systems, West-
view Press 1998

[10] Bernd A. Berg Markov chain monte carlo simulations and their sta-
tistical analysis, World Scientific Publishing, 2004

[11] S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth, Phys. Lett.
B 195, 216 (1987)

[12] R. C. Brower, C. Rebbi and D. Schaich, Hybrid Monte Carlo Simula-
tion of Graphene on the Hexagonal Lattice http://arxiv.org/pdf/

1101.5131v1.pdf

http://arxiv.org/pdf/1403.3620v1.pdf
http://arxiv.org/pdf/1101.5131v1.pdf
http://arxiv.org/pdf/1101.5131v1.pdf


[13] Masanori Hanada, Yoshinori Matsuo and Naoki Yamamoto, Sign
problem and phase quenching in finite-density QCD: models, holog-
raphy, and lattice https://arxiv.org/pdf/1205.1030v3.pdf

[14] Jacob Friedrich Finkenrath, Stochastic Methods for the Fermion
Determinant in Lattice Quantum Chromodynamics http:

//elpub.bib.uni-wuppertal.de/servlets/DerivateServlet/

Derivate-4620/dc1502.pdf

[15] J. Vucicevic et al, d-wave superconductivity on the honeycomb bilayer,
Physical Review B 86, 214505 ( 2012 )

[16] Tao Li Spontaneous quantum hall effect in quarter-doped Hubbard
model on honeycomb lattice and its possible realization in quarter-
doped graphene system, Europhysics Letters 97.3 (2012): 37001

[17] A. Damascelli et al Angle resolved photoemission studies of the cuprate
superconductivity Rev. Mod. Phys. 75 473, 2003

[18] nVidia-corporation Information on GeForce GTX 980 Ti, http://

www.geforce.com/hardware/desktop-gpus/geforce-gtx-980-ti,
09/22/2016

https://arxiv.org/pdf/1205.1030v3.pdf
http://elpub.bib.uni-wuppertal.de/servlets/DerivateServlet/Derivate-4620/dc1502.pdf
http://elpub.bib.uni-wuppertal.de/servlets/DerivateServlet/Derivate-4620/dc1502.pdf
http://elpub.bib.uni-wuppertal.de/servlets/DerivateServlet/Derivate-4620/dc1502.pdf
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980-ti
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980-ti



	Introduction
	Theoretical Basics
	Graphene
	Hamiltonian
	Partition function
	Reweighting

	Hybrid Monte Carlo algorithm
	Basic Monte-Carlo
	Importance Sampling
	Molecular dynamics

	Simulations
	Thermalization
	Correlation
	Technical data

	Results
	Mu = 0.1 - 1.0
	Mu = 2.5 - 2.9

	Conclusion and outlook

