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1 Introduction

In describing statistical processes and the microscopic interactions in particle physics,
Quantum Field Theory has had a lot of success. Nevertheless, one still encounters
problems attempting to describe strongly interacting matter. Due to the running of
the strong coupling constant, perturbation theory only succeeds at small scales or high
momenta. In order to produce physical results, a higher focus has been put upon the
development of non-perturbative methods. One of them is the functional renormaliza-
tion group. With the help of functional methods, the system is only regarded in a small
momentum shell and a flow equation is obtained. This could, e.g., be the infinitesimal
change of the partition function under an infinitesimal change of the regarded momen-
tum. With the knowledge of the partition function at a certain scale, the system can
be evolved until all fluctuations are included and the full partition function is obtained
[1]. The proper-time renormalization group (PTRG) approximates this flow in a good
fashion. In this work, the application of the PTRG to a quark-meson model is studied
concerning critical behaviour and chiral phase transitions. Therefore, the flow equation,
which is a partial differential equation, is expanded in a Taylor series. The ordinary
differential equations obtained this way can be solved numerically.

2 Functional Methods in Quantum Field Theory

In the following section, the functional methods needed to derive the renormalization
group flow equations will be briefly introduced. A functional F [ϕ] on a space of func-
tions maps each function ϕ(x) to e.g. a scalar value. Thus, it is a function of a function
and does not take a discrete amount of variables xi, but rather a continuum of variables
ϕ(x), x εR. A path integral in Quantum Field Theory is a functional integral, which
is, for real scalar fields, defined as

∫
DϕF [ϕ] ≡ lim

n→∞

∫ ∞

−∞

(
n∏

i=1

dαi√
2π

)
F (α1, ..., αn), (1)

where ϕ(x) =
∑∞

i=1 αi ui(x) is formed by a complete set of orthonormal functions [2].
All possible configurations of ϕ(x) are included in this form, thus it makes sense that
the partition function of a statistical population is a weighted functional integral:

Z[J ] =

∫
Dϕ e−S[ϕ]+

∫
x J(x)ϕ(x). (2)

J(x) is an external source term and S[ϕ] is the action

S =

∫
d4xL . (3)

It is the four-dimensional integral of the Lagrangian density. For Quantum Chromo-
dynamics, it reads

L = LG′ + Lg + Lq, (4)

where

LG′ = −1

4
Giµν(x)Gµνi (x)− 1

2
(∂µA

µ
i (x))

2
(5)
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describes the interaction of the gluon fields Aµi (x). Depending on the gauge being used,
a ghost term must be introduced:

Lg = ∂µηi(x) [∂µη̃i(x) + gs fijk η̃j(x)Aµk(x)] (6)

η and η̃ are virtual anti-commuting (Grassmann) fields that interact with the gluons.
The quarks are included by

Lq = ψa(x) [i /Dab − δabm]ψb(x), (7)

with

/Dab = γµ

(
δab∂

µ +
1

2
i gs(λj)abA

µ
j (x)

)
. (8)

Note that the partition function is expressed in four-dimensional Euclidean metric, that
can be obtained from the Minkowski space-time metric by a Wick rotation t → −iτ .
Z[J ] also acts as a generating functional for the n-point correlators:

〈ϕ(x1) ... ϕ(xn)〉 =
1

Z[0]

δnZ[J ]

δJ(x1) ... δJ(xn)

∣∣∣∣
J=0

=
1

Z[0]

∫
Dϕϕ(x1) ... ϕ(xn) e−S[ϕ] (9)

Its logarithm,
W [J ] := lnZ[J ], (10)

is the generating functional for connected correlators, such as the connected Green
function

G(x, y) =
δ2W [J ]

δJ(x)δJ(y)
= 〈ϕ(x)ϕ(y)〉 − 〈ϕ(x)〉〈ϕ(y)〉. (11)

The classical field can be obtained from the generating functional as well:

φ(x) =
δW [J ]

δJ(x)
= 〈ϕ(x)〉. (12)

Furthermore, we define the effective action as the Legendre transformation of W [J ]:

Γ[φ] := sup
J

(∫
Jφ−W [J ]

)
. (13)

Taking the supremum ensures that the functional is convex [1]. We are now able to
find the quantum equation of motion:

δΓ[φ]

δφ(x)
= J(x) +

∫

y

δJ(y)

δφ(x)
φ(y)−

∫

y

δW [J ]

δJ(y)

δJ(y)

δφ(x)

(12)
= J(x). (14)
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3 The Functional Renormalization Group

The derivation of the functional renormalization group (FRG) roughly follows the steps
performed in [1]. The strategy behind the functional renormalization group approach
follows Wilson’s idea of looking at the problem in statistical physics only at a certain
scale and then using the known scale dependence to evaluate the system from a starting
point to the desired end point. In practice, this is done by adding a scale dependent
action term ∆Sk[ϕ] in the exponential of the generating functional (eq. (2)):

Zk[J ] =

∫
Dϕ e−S[ϕ]−∆Sk[ϕ]+

∫
x J(x)ϕ(x), (15)

which reads

∆Sk[ϕ] =
1

2

∫
ddq

(2π)d
ϕ(−q)Rk(q)ϕ(q). (16)

Rk(q) is a regulator function providing an IR regularization. It guarantees that only
small momentum shells around k are considered in the evaluation of the functional
differential equation (which we will find at the end of this section) towards k = 0. At
this point, all the fluctuations are taken into account and the original action has to be
restored. This implies certain requirements for the regulator. Firstly,

lim
q2/k2→0

Rk(q) > 0 (17)

ensures the IR regularization. Often, Rk ∼ k2 for q2 � k2 is used, which gives evidence
that ∆Sk serves as a dynamic mass term [1]. Secondly,

lim
k2/q2→0

Rk(q) = 0 (18)

leads to the full (effective) action at k = 0. The last condition is

lim
k2→Λ

Rk(q)→∞, (19)

which gives the bare action Γk
k→Λ−−−→ S(bare) at the UV cutoff Λ. Γk is now k-dependent,

being called the effective average action. Although the trajectory taken by the effec-
tive average action in theory space depends on the regulator function, the conditions
introduced above make sure that the start point Γk=Λ = S(bare) and the end point at
Γk=0 = Γ always stay the same. Additionally, we slightly change the definition of Γk
by subtracting ∆Sk:

Γk[φ] = sup
J

(∫

x
J(x)φ(x)−Wk[J ]

)
−∆Sk[φ] (20)

It is now possible to show that Γk converges against the classical action at the UV
cutoff. Therefore, we examine the exponential of the effective average action:

e−Γk[φ] = eWk[J ]−
∫
x J(x)φ(x)+∆Sk[φ] =

∫
Dϕ e−S[ϕ]+

∫
x J(x)(ϕ(x)−φ(x))−∆Sk[ϕ]+∆Sk[φ]. (21)

Using the substitution ϕ′ = ϕ− φ and the definition of ∆Sk, we get

e−Γk[φ] =

∫
Dϕ e

−S[ϕ′+φ]+
∫
x J(x)ϕ′(x)− 1

2

∫ ddp

(2π)d
Rk(p)(ϕ′(−p)ϕ′(p)+ϕ′(−p)φ(p)+φ(−p)ϕ′(p))

(22)
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For Rk →∞, the term exp
(∫

p ϕ
′(−p)Rkϕ′(p)

)
acts as a delta functional δ[φ] [3], thus

leading to
e−Γk[φ] → e−S[φ]. (23)

Following the renormalization group idea, we can now perform a derivation of Wk[J ]
with respect to k. We will however use the convention [1]

t = ln
k

Λ
, ∂t = k

d

dk
, (24)

and the definition of ∆Sk to obtain

∂tWk[J ] = ∂t lnZk[J ] = −1

2

∫
ddq

(2π)d
∂tRk(q)Gk(q) + ∂t∆Sk[φ], (25)

where G(q) is the Fourier transform of the connected two-point Green function (11).
φ(x) = 〈ϕ(x)〉 denotes the expectation value as defined in (12). The derivative of Γk[φ]
delivers a modified quantum equation of motion (compare to equation (14)):

δΓk[φ]

δφ(x)
= J(x)−Rk(x)φ(x). (26)

Here, the Fourier transformed regulator term for real scalar fields is used. This helps
us to find the relation

δJ(x)

δφ(y)
=

δ2Γk[φ]

δφ(x)δφ(y)
+Rk(x, y), (27)

with Rk(x, y) = Rk(x)δ(x− y). The second relation we require is found by expressing
the classical field φ as the functional derivative of Wk[J ] (compare to (12)). Now, the
connected Green function (in coordinate space) can be reproduced:

δφ(y)

δJ(z)
=

δ2Wk[J ]

δJ(z)δJ(y)
≡ Gk(y − z) (28)

Combining these two relations, (27) and (28), one can write the delta function as

δ(x− z) =

∫

y

δJ(x)

δφ(y)

δφ(y)

δJ(z)
=

∫

y

(
δ2Γk[φ]

δφ(x)δφ(y)
+Rk(x, y)

)
Gk(y, z) (29)

Writing the nth functional derivative of Γk[φ] as an uppercase index in parenthesis, one
finds

1 = (Γ
(2)
k +Rk)Gk, (30)

which is to be interpreted as an operator notation, with the multiplication being a ma-
trix multiplication extended to continuous coordinate space. The actual flow equation
is obtained by inserting the results from eq. (25) and (30) into the t-derivative of the
effective average action (20). Note that this is a partial derivative, meaning the classical
field φ is kept independent from the scaling factor. Necessarily, the source J(x) has to
be k-dependent, as the relation (12) still holds. This means that additionally to the
partial derivative ∂tWk[J ], also the t-derivative of J(x) in Wk[J ] must be taken into
account:

dtWk[J ] = ∂tWk[J ] +

∫

x

δWk[J ]

δJ(x)
∂tJ(x) = ∂tWk[J ] +

∫

x
φ(x) ∂tJ(x), (31)
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which finally renders the functional renormalization group (FRG) flow equation:

∂t Γk[φ] = −∂tWk[J ]−
∫

x
φ(x) ∂tJ(x) +

∫

x
φ(x) ∂tJ(x)− ∂t∆Sk[φ]

=
1

2

∫
ddq

(2π)d
∂tRk(q)Gk(q) =

1

2
Tr

[
∂tRk

(
Γ

(2)
k [φ] +Rk

)−1
]
.

(32)

4 The Proper-Time Renormalization Group

In order to derive the proper-time renormalization group (PTRG) flow equation, one
applies a Schwinger proper-time regularization [4] to the one-loop expansion of the
effective action

Γ1−loop[φ] = S[φ] +
1

2
Tr lnS(2)[φ], (33)

where we used the same notation as before:

S(2)[φ] =
δ2S[φ]

δφδφ
. (34)

The goal is to achieve a regularization of the logarithm [5]. At first, the Schwinger
proper-time representation for an elliptic operator O is introduced:

O−1 = lim
Λ→∞

∫ ∞

1/Λ2

dτ e−τ O. (35)

An integration of both sides with respect to the operator and a subsequent tracing
gives

Tr(lnO − lnO0) = −
∫ ∞

0

dτ

τ
f(τ,Λ2) Tr (e−τ O − e−τ O0), (36)

where the UV regularization has been dragged into the integral by the function f(τ,Λ2)
with the property

lim
τ→0

f(τ,Λ2) = 0. (37)

This makes sure that the regularized integral stays finite. For an IR regularization,
which will eventually deliver the flow equation, one just gives the regulator an additional
k-dependence and opposes the condition

lim
τ→∞

fk 6=0(τ,Λ2) = 0. (38)

As the original physics have to be recovered in the limit k = 0, the conditions

lim
Λ→∞

fk=0(τ,Λ2) = 1, lim
τ→∞

fk=0(τ,Λ2) = 1 (39)

have to be fulfilled by the regulator function as well. In case the IR cutoff k and the UV
cutoff Λ are the same, all fluctuations are neglected and the regulator has to become 0:

lim
k→Λ

fk(τ,Λ
2) = 0. (40)
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Now, the regularized logarithm (36) can be inserted into one-loop expansion of the
effective action (33):

Γk[φ] = S[φ]− 1

2

∫ ∞

0

dτ

τ
fk(τ,Λ

2) Tr e−τ S
(2)[φ] (41)

Just like in the derivation of the FRG flow equation, the result is obtained by a deriva-
tion with respect to the scale variable t = ln(k/Λ):

∂tΓk[φ] = −1

2

∫ ∞

0

dτ

τ
∂tfk(τ,Λ

2) Tr e−τ S
(2)[φ]. (42)

This is not a full functional differential equation for Γk yet. In the last step, the renor-
malization group improvement is applied by replacing S(2)[φ] with the second functional
derivative of the full effective average action, delivering the required differential equa-
tion [6, 7]:

∂tΓk[φ] = −1

2

∫ ∞

0

dτ

τ
(∂tfk(τ,Λ

2)) Tr e−τ Γ
(2)
k [φ]. (43)

Note that the derivative with respect to t still only affects the regulator function, as
the classical action has been replaced with the effective average action thereafter.

5 The Quark-Meson Model

The quark-meson (QM) model can be described as an effective field theory. Its La-
grangian reads [8]

LQM = q (i/∂ − g (σ + i γ5 ~τ~π)) q +
1

2
(∂µσ)2 +

1

2
(∂µ~π)2 − U(σ, ~π), (44)

where the mesonic potential U(σ, ~π) is characterized by

U(σ, ~π) =
λ

4
(σ2 + ~π2 − v2)2 − cσ. (45)

Comparing the Lagrangian density with equation (4), one can see that any gluon in-
teractions are neglected. Instead, a quark-meson Yukawa interaction and a mesonic
potential have been added. This is due to the fact that the QM model shall describe
QCD at the compositeness scale kφ of about 1 GeV and below, where quarks and gluons
compose into mesons. For higher energies, perturbation theory can be used, because
then the coupling constant gs is small enough. Between kφ and the chiral symmetry
breaking scale kχ, which will be elaborated later, the system’s dynamics are governed
mainly by quark-meson interactions through the strong Yukawa coupling g. At the
confinement scale kQCD of about 200 MeV, quark confinement occurs and additional
bound states form, which are not described in this model. However, the constituent
quarks, having continually increased their mass since k = kχ, decouple from the meson
dynamics. As we will later see, massive particles do not contribute as much to the flow
equation. This justifies the usage of the QM model to solely describe the mesons up to
the IR [6].

The quark fields q and q include two flavors, up- and down-quarks. The current quark
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masses are set 0 in good approximation to the light quarks. The scalar σ field and the
three pseudoscalar π fields can be summed up in a 4-vector φ = (σ, ~π) with 〈φ〉 = 〈σ〉
(since the expectation value of a pseudoscalar field is 0). Now the term −cσ in the me-
son potential acts as an explicit chiral symmetry breaking term. If c = 0, the effective
action Γ is invariant under global chiral SU(2)L × SU(2)R symmetry transformations
[6]. The quark masses and the expectation value of the meson fields 〈φ〉 are 0. As
we will later see, this system experiences a spontaneous symmetry breaking at kχ.
One direction in φ is then distinguished and the expectation value 〈φ〉 = 〈σ〉 becomes
non-vanishing. This comes with the existence of three massless Goldstone bosons, the
pions. To account for the finite pion mass, which results from the difference of the
up- and down-quark-masses that break the symmetry and which is neglected here, the
explicit symmetry breaking term is introduced. If c > 0, the symmetry is broken right
from the beginning, which implicates a finite quark mass mq = g 〈σ〉 (compare to the
mass term in the Lagrangian, (44)). Note that in the following evaluation, using the
proper-time renormalization group flow equation, the running of the Yukawa coupling
g is neglected. The parameter is chosen so that mq = 300 MeV holds for k → 0. c is
considered to be scale independent and v as well as the quartic coupling λ are fitted
to the IR masses mπ = 138 MeV and mσ = 600 MeV, while 〈σ〉 = fπ = 93 MeV is
approached.

6 Application of the PTRG to the QM Model

As we will not be able to find a flow equation for our full effective average action, it is
first expanded in an operator expansion [1]:

Γk =

∫
ddx

[
Ωk(φ) +

1

2
(∂µφ)2 +O(∂2)

]
. (46)

We will only focus on the lowest order term, the effective potential Ωk. Furthermore,
we will treat fermions and bosons separately by splitting the Lagrangian. This includes
another approximation, since the meson field φ will be treated as a mean background
field 〈φ〉 = (〈σ〉, 0) in the fermionic interaction.

6.1 Fermionic Part

The fermionic Lagrangian reads

LF = q (i/∂ − g 〈σ〉) q. (47)

Including a chemical quark potential, the partition function becomes

ZF =

∫
DqDq exp

{
−
∫ β

0
dτ

∫
d3x (−i LF + µγ0 qq)

}
. (48)

Here, a Wick rotation t→ −iτ has been used. With the definitions

/D := γµ (∂µ + µ δµ0 ), mq := g 〈σ〉, S−1
0 := /D + imq, (49)

the partition function takes the Gaussian form

ZF =

∫
DqDq exp

{
−
[
q S−1

0 q
]}

= detS−1
0 . (50)
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Now it is simple to express the effective action in terms of S−1
0 :

ΓF = −WF = − lnZF = − ln detS−1
0 = −Tr lnS−1

0 . (51)

Since the effective action is approximately the (trivial) space-time integral of the effec-
tive potential (46), the latter can be written as

ΩF = − 1

βV3
Tr lnS−1

0 . (52)

Again, we are at a point where the logarithm has to be regularized. Unfortunately, the
Schwinger proper time formalism can not be used on the potential as it is now, because
S−1

0 is not an elliptic operator.1 Therefore, the operator

S̃−1
0 := PS−1

0 P with P := iγ5 (53)

is introduced. Since detP = −1 and det(AB) = det(A) det(B), the determinants of

S−1
0 and S̃−1

0 are equal. The product of the two operators is an elliptic operator

S−1
0 S̃−1

0 = ( /D + imq)( /D − imq) = /D /D +m2
q , (54)

where the relations
γ2

5 = 1, γµγ5 = −γ5γµ (55)

came to use. This enables us to re-express the partition function in terms of an elliptic
operator:

ZF = detS−1
0 = det

(
S−1

0 S̃−1
0

) 1
2
. (56)

Hence, the potential becomes

ΩF = − 1

βV3
ln

(
det
(
S−1

0 S̃−1
0

) 1
2

)
= − 1

2βV3
Tr ln

(
S−1

0 S̃−1
0

)
. (57)

In this form, it allows a regularization:

ΩF,reg. =
1

2βV3

∫ ∞

0

ds

s
fk(s,Λ

2) Tr e−s S
−1
0 S̃−1

0 . (58)

In order to evaluate the integral, the trace must first be calculated. To do this, we

express the color and flavor matrix elements of S−1
0 S̃−1

0 in momentum space. Following
the Dirac algebra and applying the coordinate space representation pµ = i ∂µ, one
receives

(
S−1

0 S̃−1
0

)ab
ud

= −(p2
0 − ~p2)1γ δud +m2

q 1γ δ
ab δud

= −p2
1γ δud +m2

q 1γ δ
ab δud,

(59)

1A differential operator

P =
∑
|α|≤r

aα∂
α

of order r with the property

p(x, ξ) :=
∑
|α|=r

aαξ
α 6= 0 ∀ ξ εRn \ 0

is defined as elliptic [9].
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where p0 = ωn + iµ. We will perform the following trace in Euclidean 4-dimensional
space with imaginary time and apply the Matsubara formalism, which yields a sum
over periodic frequencies (ωn = (2n + 1)πT for fermions) instead of an integral, since
we want to study the system at finite temperatures. The trace over the Dirac space is
4 and the color and flavor spaces also trivially add their respective dimensions Nc and
Nf to the product. With the change in metric of the momentum trace, the resulting
flow equation is

∂tΩF = 2NcNfT

∫ ∞

0

ds

s
(∂tfk(s,Λ

2))
∑

n

∫
d3p

(2π)3
e−s (p20+~p2+m2

q). (60)

The momentum integration consists of three Gaussian integrals which can be computed
easily:

∂tΩF =
2NcNfT

8
√
π

3

∫ ∞

0

ds

s5/2
(∂tfk(s,Λ

2))
∑

n

e−s (p20+m2
q). (61)

Because of the scale derivation, it is sufficient to consider the k-dependent part of the
regulator function. It is usually given by functions of the form

f(sk2)(i,d) =
2i(d− 2)!!

Γ(d/2)(d− 2 + 2i)!!
Γ(d/2 + i, sk2), (62)

whereas f (1,3) yields analytically solvable Matsubara sums. Its scale derivative,

∂tf(sk2)(1,3) = − 8

3
√
π

(sk2)5/2 e−sk
2
, (63)

is used in the derivation of the PTRG flow equation for the QM model [10]. Now, the
flow equation reads

∂tΩF = −2NcNfk
5

3π2
T
∑

n

∫ ∞

0
ds e−s ((ωn+iµ)2+E2

q )

= −2NcNfk
5

3π2
T
∑

n

1

(ωn + iµ)2 + E2
q

(64)

with the squared quark energy E2
q = m2

q +k2. The sum over the Matsubara frequencies
can be evaluated with the help of the residue theorem. One just expresses the sum
in eq. (64) by a contour integral of the summand multiplied with a function that has
simple poles with residue 1 at z = iωn [11]:

1

β

∑

n

1

(ωn + iµ)2 + E2
q

=
1

β2πi

∫

C
dz

1

(−i z + iµ)2 + E2
q

uβ(z) (65)

The contour goes around the imaginary axis and thus around all the poles of uβ(z). It
can be deformed into one closed contour along the imaginary axis with a small offset
ε to the right (positive real part) and back in a half circle of radius R → ∞ and a
similar contour on the left side of the imaginary axis (negative real part), each going in
clockwise direction (cf. [11]). This only holds if the absolute value of the argument of
the above integral vanishes sufficiently fast for R → ∞, rendering the parts along the
half circles zero. A suitable weight function for fermions is

uβ(z) =
β

2
(1− 2nF(z)) =

β

2
tanh

(
βz

2

)
, (66)
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where nF(z) = (exp(βz) + 1)−1 denotes the Fermi-Dirac distribution. Now, the poles
on the imaginary axis are not taken into account anymore, but the poles of the original
summand are within the contour. In this case, we get

1

(−i z + iµ)2 + E2
q

=
1

(Eq + (z − µ))

1

(Eq − (z − µ))
, z1,2 = µ± Eq. (67)

We see that the integral can be replaced by a sum again, but over different indices and
with a modified argument:

1

β2πi

∫

C
dz

1

(−i z + iµ)2 + E2
q

uβ(z) = −1

2

2∑

i=1

Res
z=zi

(
1

E2
q − (z − µ)2

tanh

(
βz

2

))

=
1

4Eq

(
tanh

(
Eq − µ

2T

)
+ tanh

(
Eq + µ

2T

))

(68)

This is finally inserted into eq. (64) to deliver the fermionic part of the flow equation:

∂tΩF = −NcNfk
5

6π2Eq

(
tanh

(
Eq − µ

2T

)
+ tanh

(
Eq + µ

2T

))
. (69)

6.2 Bosonic Part

The derivation of the bosonic part of the flow equation follows the same strategy as the
derivation of the fermionic part. Firstly, the bosonic Lagrangian in Euclidean metric is

LB =
1

2
(∂µσ)2 +

1

2
(∂µ~π)2 + U(σ, ~π) =

1

2
(∂µφ)2 + U(φ) (70)

with U(σ, ~π) = U(φ) from equation (45) and φ = (σ, ~π). In this case, we can immedi-
ately calculate the second functional derivative of the effective average action ΓB, which
is needed in the PTRG flow equation (43). Therefore, we will express ΓB in momentum
space:

ΓB[φ] =

∫
d4p

(2π)4

(
−1

2
p2φ(p)φ(p) + U(φ2(p))

)
(71)

As we have already done above, we will from now on write U = U(φ2) to introduce the
short-hand notation U ′ = dU/dφ2, U ′′ = d2U/(dφ2)2 etc. We get

δ2ΓB

δφa(p)δφb(p′)
=
(
−p2δab + 2U ′δab + 4U ′′φa(p)φb(p

′)
)
δ(p− p′). (72)

This operator is elliptic and it can directly be inserted into the flow equation. Again,
we need to calculate some traces:

Tr exp
(
−sΓ

(2)
B [φ]

)
= βV3T

∑

n

∫
d3p

(2π)3
exp

(
−s p2

)
·

·
[
exp

(
−s
(
2U ′ + 4U ′′σ2

))
+ 3 exp

(
−s 2U ′

)]
,

(73)

where a mean field approximation φ = (σ, 0) has been applied to perform the trace over
the meson spaces:

Trmes. exp
[
−s
(
2U ′δab + 4U ′′φa(p) φb(p))] ≈ Trmes. exp

[
−s
(
2U ′δab + 4U ′′σ2 δab

)]

= exp
(
−s
(
2U ′ + 4U ′′σ2

))
+ 3 exp

(
−s 2U ′

)
.

(74)
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The three Gaussian momentum integrals and the proper time integral are left to be
evaluated and under the usage of the same regulator function f(sk2)(1,3) as in the
fermion part, all this leads to

∂tΩB = − k5

6π2
T
∑

n

(
1

k2 + ω2
n + 2U ′ + 4U ′′σ2

+
3

k2 + ω2
n + 2U ′

)
. (75)

The Matsubara frequencies ωn = −i p0 = 2nπT are even for Bosons. Thus, the weight
function changes to

uβ(z) =
β

2
(1 + 2nB(z)) =

β

2
coth

(
βz

2

)
. (76)

in order to produce poles at the correct frequencies. nB(z) = (exp(βz) − 1)−1 is the
Bose-Einstein statistics. A chemical potential is not included and the residues at the
relevant poles are summed up in

2∑

i=1

Res
z=zi

(
1

E2
j − z2

coth

(
βz

2

))
= − 1

Ej
coth

(
Ej
2T

)
, (77)

where zi = ±Ej for E2
1 = k2 +2U ′+4U ′′σ2 and E2

2 = k2 +2U ′ respectively. This result
has to be multiplied with β/2 from the weight function and inserted into the bosonic
flow equation (75) for the complete results for the bosonic part:

∂tΩB =
k5

12π2

(
1

Eσ
coth

(
Eσ
2T

)
+

3

Eπ
coth

(
Eπ
2T

))
. (78)

Here, the energies have already been indexed with the corresponding meson field. On
top of that, the renormalization group improvement has been used one more time by
replacing the mesonic potential U(φ2) with the full effective potential Ωk(φ

2), which is
not truncated at the order 2. Bringing the pieces together, the full PTRG flow equation
in application to the quark-meson model becomes [7]

∂tΩk(φ
2) =

k5

12π2

{
1

Eσ
coth

(
Eσ
2T

)
+

3

Eπ
coth

(
Eπ
2T

)

− 2NcNf

Eq

[
tanh

(
Eq + µ

2T

)
+ tanh

(
Eq − µ

2T

)]}
.

(79)

The energies are

Eπ =
√
k2 +m2

π =
√
k2 + 2Ω′k,

Eσ =
√
k2 +m2

σ =
√
k2 + 2Ω′k + 4φ2Ω′′k,

Eq =
√
k2 +m2

q =
√
k2 + g2φ2.

(80)
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7 Evaluation of the PTRG Flow Equation

The PTRG flow equation we found for the quark-meson model (79) is a (functional)
partial differential equation and it is not analytically solvable as far as we know by now.
It can be tackled by either a discretization of the potential on a grid or a Taylor series
expansion [10]. In this work, the latter is done. We expand the potential in terms of φ2

around a global minimum φ2
0. Since we only examine the radial component of the field

and do not know the single components (which also do not differ in their contributions
in the chiral limit), we will from now on substitute the variable φ2 by σ2, which shall
also be the direction to be distinguished by the explicit symmetry breaking term.

7.1 Chiral Symmetry

First, we will explore the system under chiral symmetry. This means that no explicit
symmetry breaking term is used, i.e. c = 0 in the meson potential (45). In a Taylor
series expansion, the effective potential then reads

Ωk(σ
2) =

N∑

j=0

1

j!
aj (σ2 − σ2

0)j (81)

The sum is truncated at the order N , which means that, including the 0th term, we
will get a system of N + 1 coupled ordinary differential equations for the k-dependent
expansion coefficients

aj = aj,k = Ω
(j)
k (σ2)

∣∣∣
σ=σ0

= Ω
(j)
k (σ2

0), (82)

where the uppercase index in parenthesis denotes the jth derivative with respect to σ2.
At the beginning of the evaluation, the minimum of the potential shall be at σ0 ≡ 0.
In other words, at the UV cutoff, the fields should be zero. The Taylor expansion
simplifies to

Ωk(σ
2) =

N∑

j=0

1

j!
aj (σ2)j . (83)

A Taylor expansion of the flow equation ∂tΩk yields

∂tΩk(σ
2) =

N∑

j=0

1

j!
(∂tΩk)

(j)(0) (σ2)j , (84)

while a partial differentiation of Ωk(σ
2) (83) with respect to t results in

∂tΩk(σ
2) =

N∑

j=0

1

j!

(
d

dt
aj

)
(σ2)j , (85)

which immediately implies
d

dt
aj = ∂tΩ

(j)
k (σ2)

∣∣∣
σ=0

. (86)

The right-hand side of the equation is found by taking the jth derivative of the PTRG
flow equation (79) with respect to σ2 and evaluating the result at σ = 0. This is done
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in appendix A. One can see that under these conditions, the flow equation degenerates
in the way that the pion and sigma energies (80) at the minimum of the potential are
equal:

Eπ|σ=0 = Eσ|σ=0 =
√
k2 + 2Ω′k|σ=0 =

√
k2 + 2a1 =: Em. (87)

The bosonic parts of the flow equation are now summed up in one term. Furthermore,
the quarks are massless. The flow equation then reads

∂tΩk(σ
2 = 0) =

k5

12π2

{
4

Em
coth

(
Em
2T

)
− 2NcNf

k

[
tanh

(
k + µ

2T

)
+ tanh

(
k − µ

2T

)]}
.

(88)

7.2 Spontaneous Symmetry Breaking

The fermionic part in (88) gets stronger with decreasing k, which will eventually cause
the expansion coefficient a1 to drop to negative values. This is not a physical behaviour,
e.g. the square of the meson masses (87) becomes negative. The solution to this problem
is to go back to the original Taylor expansion (81) and allow a finite global minimum σ2

0

of the potential in the evolution from the point a1 becomes 0 onward. We just demand

a1 ≡ Ω′k(σ
2
0)

!
= 0, (89)

which is the necessary criterion for a local minimum at σ2
0. We lose one differential

equation and, of course, it has to be replaced by another one for the system to be
described in its entirety. This makes perfect sense, as the minimum σ2

0 = σ2
0,k is now

scale dependent and shifts during the evolution of the flow equation towards the IR. We
remember that this spontaneous symmetry breaking happens at the chiral symmetry
breaking scale kχ. A differential equation for σ2

0 remains to be found and the other
differential equations have to be adjusted to include a scale-dependent minimum. To
do this, we will again partially differentiate the Taylor expansion of the potential (81):

∂tΩk(σ
2) =

N∑

j=0

1

j!

(
d

dt
aj

)
(σ2 − σ2

0)j +
N∑

j=1

1

(j − 1)!
aj (σ2 − σ2

0)j−1

(
− d

dt
σ2

0

)

=
N∑

j=0

1

j!

[(
d

dt
aj

)
− aj+1

(
d

dt
σ2

0

)]
(σ2 − σ2

0)j

=

N∑

j=0

1

j!

[(
d

dt
Ω

(j)
k (σ2

0)

)
− Ω

(j+1)
k (σ2

0)

(
d

dt
σ2

0

)]
(σ2 − σ2

0)j

=
N∑

j=0

1

j!

(
∂tΩ

(j)
k (σ2

0)
)

(σ2 − σ2
0)j .

(90)

We also would have gotten the last result, if we had just expanded ∂tΩk(σ
2) in a Taylor

series around σ2
0. It is important to keep in mind the difference between a partial

differentiation ∂t = ∂
∂t , where the scale dependence of the actual variable in parenthesis

is neglected, and a total differentiation d
dt , where it is included. Comparing the second

and the last row of the above equation, we find the modified differential equation for
the expansion coefficients:

d

dt
aj = ∂tΩ

(j)
k (σ2)

∣∣∣
σ=σ0

+ aj+1
d

dt
σ2

0. (91)
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The interpretation of the last term is that it includes the running of the minimum, hence
of the expansion point. This is now a tower of N coupled differential equations, where

the last term does not include the running of σ2
0, because aN+1 = Ω

(N+1)
k (σ2

0) = 0.
Since we imposed d

dta1 ≡ 0 (which means that σ2
0 stays a local minimum throughout

the evaluation), equation (91) also gives us the differential equation for σ2
0:

d

dt
σ2

0 = − 1

a2
∂tΩ

′
k(σ

2)
∣∣
σ=σ0

. (92)

Due to the vanishing derivative of the effective potential at the minimum, the pion
masses vanish there as well:

m2
π,σ0 = 2Ω′k(σ

2
0) = 0

m2
σ,σ0 = 2Ω′k(σ

2
0) + 4σ2

0Ω′′k(σ
2
0) = 4σ2

0 a2

m2
q,σ0 = g2σ2

0.

(93)

7.3 Explicit Symmetry Breaking

In order to produce finite pion masses, an explicit symmetry breaking term is intro-
duced. The potential now reads

Ω̃k(σ
2) =

N∑

j=0

1

j!
bj (σ2 − σ2

0)j − cσ, (94)

where c is a positive k-independent scalar. As the sum is still a Taylor series expansion,
it has to be the expansion of Ωk = Ω̃k + cσ. Therefore, the coefficients still read

bj = Ω
(j)
k (σ2

0). (95)

On top of that, the scale independence of c has the advantage that ∂tΩ̃k(σ
2) = ∂tΩk(σ

2),
where ∂tΩk(σ

2) is known from the flow equation. Inserting Ω̃k into the differential
equation would lead to different results, since the explicit symmetry breaking term does
not disappear being differentiated with respect to σ2. This conflict can only be solved
under the premise that the flow equation is incorrect for unsymmetric potentials. This
can be understood, since only the squared fields and derivations with respect to these
are used in the derivation, which means that only the radial component is considered.
Fortunately, as already stated, a partial differentiation with respect to t shows that
both potentials obey the same differential equation. Consequently, the Taylor expanded
ordinary differential equations stay the same as the ones under spontaneous symmetry
breaking (91). The main difference, however, is that the expansion point has changed.
We want to know the potential Ω̃k near its global minimum, which is characterized by

Ω̃′k(σ
2
0) = Ω′k(σ

2
0)− c

(
d

dσ2
σ

)∣∣∣∣
σ=σ0

= b1 −
c

2σ0

!
= 0 ⇐⇒ b1 =

c

2σ0
. (96)

To differentiate σ with respect to σ2, the trick

d

dσ2
=

d

2σdσ
=

1

2σ

d

dσ

was used. It is notable that σ0 = 0 is not allowed for b1 to stay finite, consequently
there is always a positive minimum of the potential and thus the chiral symmetry is
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always broken for c > 0. b1 is now scale-dependent, so the relation d
dtb1 = 0 can not

hold anymore and the derivation of the differential equation for σ2
0 becomes wrong. We

can correct it by using the relation

0
!

=
d

dt

(
b1 −

c

2σ0

)
(91)
= ∂tΩ

′
k(σ

2
0) + b2

d

dt
σ2

0 +
c

4σ3
0

d

dt
σ2

0

⇐⇒ d

dt
σ2

0 = − 1

b2 + c
4σ3

0

∂tΩ
′
k(σ

2)
∣∣
σ=σ0

.
(97)

Remarkably, the particle energies are still found by taking Ωk instead of Ω̃k in the
energy equations (80), because c does not change in the evolution process and, as
already stated, the original Taylor expansion without explicit symmetry breaking term
has to be used in the flow equation. Plugging in the known value for b1, we get a finite
pion mass:

m2
π,σ0 =

c

σ0

m2
σ,σ0 =

c

σ0
+ 4σ2

0 b2

m2
q,σ0 = g2σ2

0.

(98)

In the numerical evolution, we are now able to set the starting values accordingly to re-
ceive correct final IR values. First of all, we will fit σ0 to the pion decay constant σ0,IR =
fπ = 93 MeV. To get an effective quark mass of about 300 MeV, g = mq,IR/σ0,IR = 3.22
follows, while a pion mass of 138 MeV implies c = m2

pi,IR · σ0,IR = 1, 771, 092 MeV3.
b2,IR = 9.86 follows from a sigma mass of 600 MeV.

7.4 The QM Model Revisited

In this short section, the expansion coefficients of the effective potential shall be related
to the parameters λ and v of the mesonic potential quark-meson model. As we have
seen above, the coefficients for the linear and the quadratic term are deciding for the
IR masses of the particles. If we just add and substract the minimum σ2

0 in the mesonic
potential and substitute φ2 by σ2, we can factor out equation (45) and relate λ and v
to σ0 and b2:

U(σ2) =
λ

4
(σ2 − σ2

0 + σ2
0 − v2)2 − cσ

=
λ

4
(σ2 − σ2

0)2 +
λ

2
(σ2

0 − v2)(σ2 − σ2
0) +

λ

4
(σ2

0 − v2)2 − cσ.
(99)

By comparison of the first term of the mesonic potential and the quadratic term in
Ω̃k, we immediately find λ = 2 b2. Using b1 = c/(2σ0), the linear term yields v2 =
σ2

0 − c/(σ0λ).

7.5 Contributions to the Flow

It will turn out to be helpful to understand if and when the respective meson or quark
fields produce the main contributions to the flow. Therefore, we regard the limit T =
0, µ = 0. The flow equation then reads

∂tΩk =
k5

12π2

(
1

Eσ
+

3

Eπ
− 4NcNf

Eq

)
, (100)
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since the threshold functions yield 1 (for positive arguments):

coth

(
E

2T

)
T→0−−−→ 1, E > 0,

tanh

(
E ± µ

2T

)
T→0−−−→ 1, E ± µ > 0.

(101)

In the chiral limit, the quark mass at the minimum is zero, thus the quark energy
is the lowest energy term in the equation. With the additional degrees of freedom
from the color and flavor numbers, the main contribution to the flow comes from
the quarks. Since the evolution happens downwards (dk < 0), the sign of the flow
equation has to be changed in order to get an indication about the direction of the flow
evolution. Consequently, a0 = Ωk(0) will increase to positive values and a1 = Ω′k(0)
will decrease, because the derivation of 1/Eq with respect to σ2 changes the sign.
That means that the quarks drive the evolution towards the spontaneous symmetry
breaking, while the mesons work against it. Under spontaneous symmetry breaking,
the same argumentation holds. The sign of the flow of σ2

0 is opposite to the one of a1

from before, which can be verified in (92). Thus, the quarks increase the minimum,
while the meson contributions try to restore the chiral symmetry. If one goes to non-
vanishing temperatures, the threshold functions must be included. The contributions
of the quarks diminish due to

tanh

(
E ± µ

2T

)
(E±µ)/2T→0−−−−−−−−→ 0, (102)

while the meson contributions increase:

coth

(
E

2T

)
E/2T→0−−−−−→∞, E > 0, T > 0. (103)

At a critical temperature Tc, they are strong enough to restore the chiral symmetry, as
we will see later.

In the spontaneously broken phase, the quark masses steadily increase and the pion

masses are zero at the minimum, so Eπ,σ0 = k
k→0−−−→ 0. Hence, the flow is mainly

governed by the pion fluctuations for small k. This enables us to qualitatively predict
the running of the higher order coefficients a3, a4 etc. Due to the high exponents of
the energy terms in the denominator, the flow of these coefficients is suppressed at high
scales. At very small scales, it is determined by the contributions of the pion energy
term with the highest exponent in the denominator. As the sign of this term changes
with every derivation, these coefficients evolve towards +∞ and −∞ in turn.
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8 Numerical Results

For numerically solving the system of ordinary differential equations, an eighth-order
Dormand-Prince method, which is a Runge-Kutta algorithm, is used (cf. [12]). It has
to be modified to automatically switch from the symmetric to the broken phase when
a1 drops below 0, precisely when −e ≤ a1 ≤ 0, where e is a small definable error. The
system is examined with two quark flavours and three colors. The constants used in
the evaluation are listed below.

chiral symmetry explicit symmetry breaking

c [MeV3] 0 1,771,092
g 3.2 3.22
Nc 3 3
Nf 2 2

Table 1: constants of the flow equation

8.1 Initial Values

In the following, the truncation orders N = 3, 4, 5, 6 will be used. In order to make
the results comparable, it is essential that they all have equal infrared values. Con-
sequently, their starting values will differ. To resemble the quark-meson potential at
the UV cutoff Λ, all initial values but a1 and a2 or σ2

0 and b2, respectively, are set to
zero. The two remaining initial values are set accordingly to match the particle masses
and the pion decay constant for k → 0, as shown in section 7.3. For c = 0, the pion
mass vanishes under spontaneous symmetry breaking and the sigma mass is reduced.
Actually, the sigma mass also vanishes for k → 0, because a2 → 0 converges against
a Gaussian fixed point [13]. Since the numerics only allow an evaluation to a certain
point k > 0, we will stop at k = 1 MeV. At this point, there are still massive sigma
mesons. It has turned out that a sigma mass of mσ,0 =

√
4σ2

0a2 ≈ 248 MeV leads to
sensible results for both UV cutoffs (Λ = 950 MeV and Λ = 1500 MeV) that are used.
According to grid simulations and chiral perturbation theory, the pion decay constant
in the chiral limit is fπ ≈ 88 MeV [10], which will be used as the second condition,
generating a quark mass of mq = gfπ = 3.2 · 88 MeV = 281.6 MeV.

Fitting the initial values to the correct infrared values needs a sophisticated method,
because variations of the starting values can change the IR values quite unpredictably.
This is done via a heuristic algorithm called differential evolution (cf. [14]). Its feature
is to globally minimize a function with a low risk of getting trapped in a local minimum.
The algorithm begins by randomly producing a number of NP D-dimensional vectors.
D is the number of parameters that need to be fixed; in this work, D = 2. Each vector
is assigned a cost C(vi), which shall be minimized. This is in general a function of
the D input parameters. In our case, totally random initial values would not make
any sense, because the flow equation would only converge in a few cases. Therefore,
it is convenient to produce random numbers only in a certain area which is near the
suspected minimum.

Now, the algorithm picks three different, random vectors, a, b and c, from the NP
ones that are in storage. The idea is to produce a new trial vector out of them and
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compare it to the first vector in storage, v1. Therefore, the first of the D components
to set is randomly chosen. If it is the last component or if a random number (e.g.
between 0 and 1) is below a prefixed constant CR, this component of the trial vector
is set to ti = ci + F · (ai − bi), where F is another prefixed constant. Otherwise, this
component gets the value of v1i. This means that a high value for CR causes a strong
mixing of the vectors, while a small value causes a more static behaviour. The value
for F determines how big the parameter change can be. If this value is high, it is
likely that many new vectors outside the area of random vectors we have set at the be-
ginning are produced. A value of 0.5 for both constants led to good results in this work.

Now, the D − 1 remaining components of the trial vector are generated in the same
way, still using v1 and a, b, c from before. At the end, the cost of v1 and the trial vector
are compared. If the cost (which should be minimized) of the trial vector is lower,
t is saved; otherwise, v1 is saved. All this is repeated for the other NP − 1 vectors.
Then all of them are replaced by the saved ones. The whole process is repeated until
a fixed number of generations is reached. Raising NP or the number of generations
significantly improves the result, but it also gets as much more time consuming. If the
algorithm converges in time, all of the NP vectors are equal up to a small error and the
ideal initial values are found. Minimizing the added squares (that can not assume neg-
ative values) of the differences between the actual value and the target value, namely,
in the chiral limit

S := (σ0 − 88 MeV)2 + (mq − 281.6 MeV)2 + (mσ − 275 MeV)2 (104)

and with explicit symmetry breaking

B := (σ0−93 MeV)2 +(mq−300 MeV)2 +(mπ−138 MeV)2 +(mσ−600 MeV)2, (105)

we get the following results:

N Λ a1,Λ a2,Λ σ0,IR mq,IR mσ,IR

[MeV] [MeV2] [MeV] [MeV] [MeV]

3 950 165622.4 5.9329 88.00 281.60 248.00
4 65423.8 13.8855 88.00 281.60 248.00
5 143500.0 9.1809 88.61 283.55 245.34
6 131847.0 8.7230 88.00 281.61 248.01

3 1500 801808.0 0.7548 88.00 281.60 248.00
4 514660.5 12.1205 88.00 281.60 248.00
5 271100.0 23.2722 88.00 281.60 248.00
6 700665.7 4.6815 88.00 281.60 248.00

Table 2: Initial values and IR values for the chiral limit
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N Λ σ2
0,Λ a2,Λ σ0,IR mq,IR mπ,IR mσ,IR

[MeV] [MeV2] [MeV] [MeV] [MeV] [MeV]

3 950 28.1795 6.69238 93.15 299.93 137.89 600.00
4 124.9274 14.16164 93.15 299.93 137.89 600.00
5 1546.6320 20.87550 93.15 299.93 137.89 600.04
6 38.4479 8.89184 93.15 299.93 137.89 600.00

3 1500 1.22824 1.49027 93.15 299.93 137.89 600.00
4 2.56637 11.57016 93.15 299.94 137.89 600.02
5 4.19307 16.84657 93.15 299.93 137.89 600.03
6 1.50897 4.69766 93.15 299.93 137.89 600.12

Table 3: Initial values and IR values for explicit symmetry breaking

Only the values for N = 5, Λ = 950 MeV could not be fitted perfectly.
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8.2 Evolution for Vanishing Temperature and Chemical Potential

To get a general view of the dynamics of the system, we will first examine it for T = 0
and µ = 0 under chiral symmetry as well as explicit symmetry breaking.

8.2.1 Chiral Limit

Figure 1 shows the expansion coefficients a0 to a2 for the truncation order N = 3
and a UV cutoff Λ = 950 MeV. One can see that a1 drops rapidly, as expected due
to the strong contributions of the massless quarks, spontaneously breaking the chiral
symmetry at kχ = 683.5 MeV. From that point, a1 stays zero and the minimum σ2

0

increases. It converges against a certain value, becoming almost constant for small
scales where the now massive quarks have decoupled from the flow. a0, which is the
potential Ωk, evaluated at the global minimum, steadily increases as the fluctuations
are added up. It is continuously differentiable at the chiral symmetry breaking scale,
because the term that has to be added to the flow to account for a non-constant
minimum, a1

d
dtσ

2
0 (cf. (91)), is zero, since a1 ≡ 0. The quartic coupling however,

expressed by a2 ∼ λ, is not smooth. The kink that can be observed comes solely from
the addition of the previously mentioned term. The rapid decrease of a2 towards zero
for k → 0 due to the massless pion contributions can be observed here.
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Figure 1: Expansion coefficients for order N = 3 and UV cutoff Λ = 950 MeV in the
chiral limit. The symmetric phase is depicted in blue, the broken phase in red. a1 is
switched to σ2

0 in the broken phase.
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In figure 2, the minimum and a2 are explored for the UV cutoff Λ = 1500 MeV and
the truncation orders 3, 4, 5 and 6. As the values at k = 0 are set equal, the initial
values differ from each other. There is no trivial connection between the truncation
order and the correct set of the initial values. Although only the final IR values are of
physical importance, the initial values theoretically should be obtained if the QCD with
an infinite UV cutoff could be evaluated down until Λ and correctly mapped to this
model. The starting values already differing this much for different truncation orders
depict the problem of consistently solving QCD quite well.
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Figure 2: σ0 and a2 in the chiral limit for a UV cutoff Λ = 1500 MeV and the truncation
orders 3–6. σ0 only differs from 0 in the spontaneously broken phase.

8.2.2 Explicit Symmetry Breaking

Figure 3 shows σ0 and b2 using an explicit symmetry breaking term for Λ = 1500 MeV
and the truncation orders 3–6. As the symmetry is broken right from the beginning,
all the coefficients stay smooth throughout the evaluation. σ0 typically begins at very
small values and only runs weakly at high values of k, which is due to the high particle
energies, where E ∼ k for small masses. For small values of k, the quark and meson
masses, which have increased with the minimum, are high enough to weaken the running
of σ0 again. Both σ0 and b2 could be fitted to the correct values at all truncation orders.
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Figure 3: σ0 and b2 for explicit symmetry breaking, a UV cutoff Λ = 1500 MeV and
the truncation orders 3–6.
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8.3 Evolution for Non-Vanishing Temperature

In this section, the system will be regarded for T > 0. We will find a critical exponent
in the chiral limit and conclude on the other critical exponents of this universality class.

8.3.1 Chiral Limit

Figure 4 shows a1 and, as soon as it hits zero, σ0 as well as a2 for several temperatures
for the UV cutoff Λ = 1500 MeV and N = 6. Due to increasing pion fluctuations
in the broken phase, an increase in temperature decreases the value of σ0,k=0. At
the critical temperature Tc, the chiral symmetry is restored. This will hold for all
higher temperatures. The curve for T = 200 MeV does not even hit the x-axis once,
which means that spontaneous symmetry breaking does not occur on any scale for that
temperature (and above). However, this result is questionable, because using the same
initial values for finite temperatures as the ones we found for T = 0 only works if the
threshold function delivers a value close to 1 at the UV cutoff [13]. As we will later
see, this approach does not deliver reliable results for high temperatures. It can also be
observed that a2 gets very close to zero for increasing temperatures, which effectively
renders the sigma mass zero as well.
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Figure 4: a1, σ2
0 and a2 for a UV cutoff Λ = 1500 MeV at different temperatures. The

truncation order is N = 6. As soon as a1 hits zero, it is switched to σ2
0 and vice versa.

The temperature dependency of the minimum σ0,k=0 is depicted in figure 5 for several
truncation orders. σ0 is an order parameter of the system that continuously goes to
zero. This means that the system experiences a second order phase transition at the
critical temperature Tc where σ0 becomes zero. For T < Tc, the approach can be
described by the non-linear relation [13]

σ0 ∼
∣∣∣∣
T − Tc
Tc

∣∣∣∣
β

, (106)

where β is a critical exponent.
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Figure 5: σ0,k=0 for all temperatures up to the critical temperature Tc and the trunca-
tion orders 3–6. The UV cutoff is Λ = 1500 MeV.

Taking the logarithm on both sides, one obtains

ln
(σ0

Λ

)
= β ln

(
T − Tc
Tc

)
+ C, (107)

which is an easy to handle linear relation. In the left diagram of figure 6, a line has
been fitted to the numerical results for N = 6 and Λ = 1500 MeV. For x-values be-
tween 0 and -4, the data points are too far away from the critical temperature and are
therefore neglected. One can see that they deviate from a straight line near 0. The
values between -18 and -8 on the x-axis also have to be neglected, since they get too
small and a correct computation can not be assured. Fitting the line to the remaining
values, one gets the critical exponents shown in the right diagram. For a truncation
order of 3, β is near 0.42; for all higher orders, it is very close to 0.4. Furthermore, an
oscillation around 0.4 can be observed.

β = 0.4 is the exact value for this model in the three-dimensional O(4) universality
class. It is three-dimensional, because the singularity T/k →∞ for finite temperatures
forces a dimensional reduction. Using the scaling relations

α = 2− dν
β =

ν

2
(d− 2 + η)

γ = (2− η)ν

δ =
d+ 2− η
d− 2 + η

,

(108)

where d = 3 is the dimension and η = 0 is known, because no wave function renormal-
ization is used [13], we find the other critical exponents:

ν = 0.8

α = −0.4

γ = 1.6

δ = 5.

(109)
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ters N = 6 and Λ = 1500 MeV. A linear fit was applied to the x-values between -4 and
-8. The right figure shows the resulting critical exponents β for the truncation orders
3–6.

8.3.2 Explicit Symmetry Breaking

Under explicit symmetry breaking, the same behaviour as in the chiral limit can be
observed concerning the minimum σ0 and b2. An increasing temperature decreases the
coefficients and therefore the particle masses reduce.
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Figure 7: σ0 and b2 for explicit symmetry breaking, Λ = 1500 MeV and N = 6 at
different temperatures.

Since the chiral symmetry is broken permanently, the order parameter can not exactly
reach 0 at a finite temperature. The transition is washed out (cf. fig. 8), but one finds
a pseudocritical temperature where the slope of the curve starts to reduce. Hence, here
we also have a second order phase transition.



8 NUMERICAL RESULTS 26

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

σ
0

[M
eV

]

T [MeV]

N = 3
N = 4
N = 5
N = 6

Figure 8: σ0,k=0 for temperatures up to 300 MeV and the truncation orders 3–6. The
UV cutoff is Λ = 1500 MeV.

8.4 Evolution for Non-Vanishing Chemical Potential

If we compute the critical temperature for several chemical potentials, we can draw a
phase diagram for the QM model. In figure 9, this has been done for the chiral limit
as well as for explicit symmetry breaking. Both lines belong to a second order phase
transition, but the critical temperature of the explicitly broken phase is about 30 MeV
higher. Both curves stop at a critical endpoint (CEP). The numerics do not find a
critical temperature anymore. The critical temperature of both CEP is near 75 MeV.
Other results suggest lower temperatures (between 50 and 60 MeV in the chiral limit)
[10]. Possibly, the numerics being used here are not suited to get close enough to the
CEP. Evidently, another phase transition happens beyond these points. According to
grid simulations, the second order phase transition at the explicitly broken symmetry
slowly turns into a crossover, whereas it suddenly becomes a first order phase transition
in the chiral limit [10]. In a first order phase transition, the order parameter jumps
to another value. This implies that there is a second (local) minimum which has now
become the global minimum. Since the Taylor expansion in this work approximates
the potential around one certain minimum, it becomes clear that a correct description
of a first order phase transition is not possible.
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Figure 9: Critical temperatures plotted on the chemical potentials for Λ = 1500 MeV
and N = 6 in the chiral limit (red) and for explicit symmetry breaking (green).

8.5 Pressure

Finally, the pressure of the system shall be examined. The grand canonical potential
J obeys the thermodynamic relation for homogeneous systems

J = −PV = −T lnZ. (110)

Considering that lnZ = W = −Γ (without external sources), we can use the operator
expansion of the effective (average) action (46) to find

P = − 1

βV

∫
d4xΩ = −Ω, (111)

when Ω = Ω
(0)
k (σ2

0) = b0. We will use explicit symmetry breaking and set the vacuum
pressure (T = 0, µ = 0) to zero. Then the pressure is

P = Ω
(0)
k (σ2

0, µ = 0, T = 0)− Ω
(0)
k (σ2

0, µ, T ). (112)

Figure 10 shows the scaled pressure P/T 4 for several chemical potentials. At high
temperatures, the scaled pressure decreases, which can be attributed to the finite UV
cutoff. Studies including gluon degrees of freedom show a continuous increase in scaled
pressure [5].
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9 Summary

The target of this work was to study the application of renormalization group methods
to (low-energy) QCD based on the example of the quark-meson model, where phase
transitions could be observed. As a starting point, the functional renormalization group
was introduced. Building upon the basic RG ideas, an approximation to the FRG, the
proper-time renormalization group, was deduced. In what follows, the quark-meson
model was introduced and the application of the PTRG to it was outlined. A flow
equation was obtained, which was first analytically treated in a Taylor expansion. The
resulting set of ordinary differential equations was computed numerically and the results
were compared to prior expectations. Concerning the critical behaviour, we have seen
that the second order phase transitions in the chiral limit as well as for explicitly broken
symmetry are well described by the theory. We have also seen the limitations of the
method used in this work. A Taylor expansion is not suited to describe all possible
phenomena, e.g. first order phase transitions. The UV cutoff and the theory we input
also limit the parameter range where our results are reliable. This could explicitly
be observed in the scaled pressure. Gluon fluctuations that are important at high
temperatures are neglected in this theory. Another problem is the appropriate choice
of initial values, which does, on the one hand, succeed for fixed final IR values. On
the other hand, the derivation from the QCD action has not yet succeeded. Therefore,
many of the results can not be seen as definite physical predictions for experimental
outcomes. Nevertheless, the theory sets a very good framework for the investigation of
the QCD phase diagram and the power of the renormalization group theory becomes
evident.
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A Taylor Series Expansion of the PTRG Flow

The expansion terms of the PTRG flow equation (79) can get very large, thus it makes
sense to split them into different functions and write down the derivations of them
separately. For a computer, this is just as easy to handle and higher truncation orders
would easily be added. First, let us define the bosonic and fermionic threshold functions

B(E, T ) := coth

(
E

2T

)

F (E, T, µ) := tanh

(
E − µ

2T

)
.

(113)

If we define the short form

A(f(E), E) :=
1

E
f(E), (114)

the PTRG flow equation can be written as

∂tΩk =
k5

12π2
{A(B(Eσ, T ), Eσ) + 3A(B(Eπ, T ), Eπ)

−2NcNf A(F (Eq, T, µ) + F (Eq, T,−µ), Eq)} .
(115)

With A(j) := djA/(dσ2)j , a Taylor expansion takes the form

∂tΩ
(j)
k (σ2)

∣∣∣
σ=σ0

=
k5

12π2

{
A(j)(B(Eσ, T ), Eσ) + 3A(j)(B(Eπ, T ), Eπ)

−2NcNf A
(j)(F (Eq, T, µ) + F (Eq, T,−µ), Eq)

}∣∣∣
σ=σ0

.

(116)

Let f ′(E) := df(E)/dE and E′ := dE/dσ2. Then

A′(f(E), E) =
f ′E′

E
− fE′

E2
(117)

A′′(f(E), E) = f

(
2E′2

E3
− E′′

E2

)
+ f ′

(
E′′

E
− 2E′2

E2

)
+
f ′′E′2

E
(118)

A′′′(f(E), E) =f

(
−6E′3

E4
+

6E′E′′

E3
− E′′′

E2

)
+ f ′

(
6E′3

E3
− 6E′E′′

E2
+
E′′′

E

)

+f ′′
(

3E′E′′

E
− 3E′3

E2

)
+
f ′′′E′3

E

(119)

A(4)(f(E), E) =f

(
24E′4

E5
− 36E′2E′′

E4
+

8E′E′′′

E3
+

6E′′2

E3
− E(4)

E2

)

+f ′

(
−24E′4

E4
+

36E′2E′′

E3
− 8E′E′′′

E2
− 6E′′2

E2
+
E(4)

E

)

+f ′′
(

12E′4

E3
− 18E′2E′′

E2
+

4E′E′′′

E
+

3E′′2

E

)

+f ′′′
(

6E′2E′′

E
− 4E′4

E2

)
+
f (4)E′4

E

(120)
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A(5)(f(E), E) =f

(
−120E′5

E6
+

240E′3E′′

E5
− 60E′2E′′′

E4
− 90E′E′′2

E4

+
10E′E(4)

E3
+

20E′′E′′′

E3
− E(5)

E2

)

+f ′
(

120E′5

E5
− 240E′3E′′

E4
+

60E′2E′′′

E3
+

90E′E′′2

E3

−10E′E(4)

E2
− 20E′′E′′′

E2
+
E(5)

E

)

+f ′′
(
−60E′5

E4
+

120E′3E′′

E3
− 30E′2E′′′

E2

−45E′E′′2

E2
+

5E′E(4)

E
+

10E′′E′′′

E

)

+f ′′′
(

20E′5

E3
− 40E′3E′′

E2
+

10E′2E′′′

E
+

15E′E′′2

E

)

+f (4)

(
10E′3E′′

E
− 5E′5

E2

)
+
f (5)E′5

E

(121)
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A(6)(f(E), E) =f

(
720E′6

E7
− 1800E′4E′′

E6
+

480E′3E′′′

E5
+

1080E′2E′′2

E5

−90E′2E(4)

E4
− 360E′E′′E′′′

E4
− 90E′′3

E4
+

12E′E(5)

E3

+
30E′′E(4)

E3
+

20E′′′2

E3
− E(6)

E2

)

+f ′
(
−720E′6

E6
+

1800E′4E′′

E5
− 480E′3E′′′

E4
− 1080E′2E′′2

E4

+
90E′2E(4)

E3
+

360E′E′′E′′′

E3
+

90E′′3

E3
− 12E′E(5)

E2

−30E′′E(4)

E2
− 20E′′′2

E2
+
E(6)

E

)

+f ′′

(
360E′6

E5
− 900E′4E′′

E4
+

240E′3E′′′

E3
+

540E′2E′′2

E3
− 45E′2E(4)

E2

−180E′E′′E′′′

E2
− 45E′′3

E2
+

6E′E(5)

E
+

15E′′E(4)

E
+

10E′′′2

E

)

+f ′′′
(
−120E′6

E4
+

300E′4E′′

E3
− 80E′3E′′′

E2
− 180E′2E′′2

E2

+
15E′2E(4)

E
+

60E′E′′E′′′

E
+

15E′′3

E

)

+f (4)

(
30E′6

E3
− 75E′4E′′

E2
+

20E′3E′′′

E
+

45E′2E′′2

E

)

+f (5)

(
15E′4E′′

E
− 6E′6

E2

)
+
f (6)E′6

E
(122)

Fortunately, the derivations of F (E) and B(E) are quite similar, which enables us to
write

f ′(E) =
1

2T
(1− f(E)2) (123)

f ′′(E) := −f(E)− f(E)3

2T 2
(124)

f ′′′(E) = − 1

4T 3
(3f(E)4 − 4f(E)2 + 1) (125)

f (4)(E) = − 1

2T 4
(−3f(E)5 + 5f(E)3 − 2f(E)) (126)

f (5)(E) = − 1

4T 5
(15f(E)6 − 30f(E)4 + 17f(E)2 − 2) (127)

f (6)(E) = − 1

4T 6
(−45f(E)7 + 105f(E)5 − 77f(E)3 + 17f(E)) (128)

The energies are given in (80). From now on, E
(j)
x,0 := djEx/(dσ

2)j |σ=σ0 . The energies
and their derivations, evaluated at the expansion point, are now listed. They can be
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inserted into the above equations for the full Taylor series:

Eπ,0 =
√

2Ω′ + k2 (129)

E′π,0 =
Ω′′

Eπ,0
(130)

E′′π,0 =
Ω′′′

Eπ,0
− Ω′′2

E3
π,0

(131)

E′′′π,0 =
3Ω′′3

E5
π,0

− 3Ω′′Ω′′′

E3
π,0

+
Ω(4)

Eπ,0
(132)

E
(4)
π,0 = −15Ω′′4

E7
π,0

+
18Ω′′2Ω′′′

E5
π,0

− 4Ω′′Ω(4)

E3
π,0

− 3Ω′′′2

E3
π,0

+
Ω(5)

Eπ,0
(133)

E
(5)
π,0 =

105Ω′′5

E9
π,0

− 150Ω′′3Ω′′′

E7
π,0

+
30Ω′′2Ω(4)

E5
π,0

+
45Ω′′Ω′′′2

E5
π,0

− 5Ω′′Ω(5)

E3
π,0

− 10Ω′′′Ω(4)

E3
π,0

+
Ω(6)

Eπ,0

(134)

E
(6)
π,0 =− 945Ω′′6

E11
π,0

+
1575Ω′′4Ω′′′

E9
π,0

− 300Ω′′3Ω(4)

E7
π,0

− 675Ω′′2Ω′′′2

E7
π,0

+
45Ω′′2Ω(5)

E5
π,0

+
180Ω′′Ω′′′Ω(4)

E5
π,0

+
45Ω′′′3

E5
π,0

− 6Ω′′Ω(6)

E3
π,0

− 15Ω′′′Ω(5)

E3
π,0

− 10Ω(4)2

E3
π,0

+
Ω(7)

Eπ,0

(135)

Ω(j) here denotes Ω
(j)
k (σ2

0) = bj . Of course, in the chiral limit, all bj are substituted by
aj . The sigma energies are

Eσ,0 =
√
k2 + 2p1 (136)

E′σ,0 =
p2

Eσ,0
(137)

E′′σ,0 =
p3

Eσ,0
− p2

2

E3
σ,0

(138)

E′′′σ,0 =
3p3

2

E5
σ,0

− 3p2p3

E3
σ,0

+
p4

Eσ,0
(139)

E
(4)
σ,0 = −15p4

2

E7
σ,0

+
18p2

2p3

E5
σ,0

− 4p2p4

E3
σ,0

− 3p2
3

E3
σ,0

+
p5

Eσ,0
(140)

E
(5)
σ,0 =

105p5
2

E9
σ,0

− 150p3
2p3

E7
σ,0

+
30p2

2p4

E5
σ,0

+
45p2p

2
3

E5
σ,0

− 5p2p5

E3
σ,0

− 10p3p4

E3
σ,0

+
p6

Eσ,0
(141)

E
(6)
σ,0 =− 945p6

2

E11
σ,0

+
1575p4

2p3

E9
σ,0

− 300p3
2p4

E7
σ,0

− 675p2
2p

2
3

E7
σ,0

+
45p2

2p5

E5
σ,0

+
180p2p3p4

E5
σ,0

+
45p3

3

E5
σ,0

− 6p2p6

E3
σ,0

− 15p3p5

E3
σ,0

− 10p2
4

E3
σ,0

+
p7

Eσ,0
,

(142)
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where pi := (2i− 1) bi + 2σ2
0 bi+1. Lastly, the quark energies are

Eq,0 =
√
k2 + g2σ2

0
(143)

E′q,0 =
g2

2Eq,0
(144)

E′′q,0 = − g4

4E3
q,0

(145)

E′′′q,0 =
3g6

8E5
q,0

(146)

E
(4)
q,0 = − 15g8

16E7
q,0

(147)

E
(5)
q,0 =

105g10

32E9
q,0

(148)

E
(6)
q,0 = −945g12

64E11
q,0

(149)
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