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Abstract

In this thesis, we investigate meson properties at finite chemical potential and
vanishing temperature and study the influence of mesonic and baryonic backcoupling
effects on the chiral order parameters and different parts of the QCD phase diagram.
For this purpose, we solve a coupled set of (truncated) Dyson-Schwinger equations
for the Landau gauged quark and gluon propagators with Nf = 2 (+1) dynamical
quark flavors and the two cases of including and neglecting the backcoupling of
hadrons. The corresponding quark-meson Bethe-Salpeter vertices and bound state
properties, i.e. the meson masses and decay constants, of multiple light- and
strange-quark mesons are explicitly calculated from their homogeneous Bethe-
Salpeter equations at finite chemical potential and vanishing temperature. Since
the baryon backcoupling is calculated in the quark-diquark approximation, the
necessary baryon and diquark wave-functions and properties are approximated by
corresponding results explicitly calculated in vacuum.

At vanishing temperature, we study the changes of the quark dressing functions and
meson Bethe-Salpeter wave-functions with chemical potential and thereby trace
charge-conjugation parity breaking. For the light and strange quarks, we observe
two separate first-order coexistence regions. From zero chemical potential up to
the end of these coexistence regions, we find constant masses and decay constants
for every considered meson and the quark condensate. Thereby, we explicitly verify
the Silver-Blaze property of QCD. Inside the light- and strange-quark coexistence
region, the Pion and the K̄ meson, respectively, become more massive while their
decay constants decrease. The corresponding quantities for the (axial-)vector and
scalar mesons and the K meson remain (almost) perfectly constant.

For the backcoupling of the Pion and/or Sigma meson as well as for the backcoupling
of the nucleon and/or scalar diquark, we find similar chiral-restoration effects.
Considering backcoupled baryons, oscillations of the quark propagator at finite
chemical potential and vanishing temperature prevent a clear statement regarding
the liquid-gaseous phase transition. For Pion and Sigma meson backcoupling, we
observe a (small) shift of the critical endpoint towards smaller chemical potentials
and a reduced curvature of the chiral crossover line. We conclude that the location
of the critical endpoint in the phase diagram is mainly determined by microscopic
degrees of freedom of QCD (quarks and gluons) while its critical properties are
dominated by macroscopic degrees of freedom (especially the Sigma meson).
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Zusammenfassung

In dieser Arbeit untersuchen wir einerseits die Eigenschaften von Mesonen bei
endlichem chemischem Potential und verschwindender Temperatur und andererseits
den Einfluss von mesonischen und baryonischen Rückkopplungseffekten auf die chi-
ralen Ordnungsparameter und verschiedene Bereiche des QCD-Phasendiagramms.
Zu diesem Zweck lösen wir einen gekoppelten Satz von (trunkierten) Dyson-
Schwinger Gleichungen für die Landau-eichfixierten Quark- und Gluonpropagatoren,
für die wir Nf = 2 (+1) dynamische Quark-Flavor und den Fall von inkludierten und
nicht inkludierten hadronische Rückkopplungen in die Rechnung eingehen lassen.
Die entsprechenden Quark-Meson-Bethe-Salpeter-Vertizes, Mesonenmassen und
elektroschwachen Zerfallskonstanten der verschiedenen leichten und strange Quark
Mesonen werden explizit von ihren homogenen Bethe-Salpeter-Gleichungen bei
endlichem chemischem Potential und verschwindender Temperatur ermittelt. Da
die Baryonen-Rückkopplung in der Quark-Diquark-Approximation berechnet wird,
werden die notwendigen Baryon- und Diquark-Wellenfunktionen und -Eigenschaften
durch entsprechende, speziell dafür im Vakuum berechnete Ergebnisse approximiert.

Bei verschwindender Temperatur untersuchen wir die Änderungen der Quark-
Dressingfunktionen und Bethe-Salpeter Wellenfunktionen, welche durch eine Än-
derung des chemischen Potentials induziert werden. Dadurch können wir die
Brechung der Ladungskonjugationsinvarianz durch ein nichtverschwindendes chemi-
sches Potential untersuchen. Für die leichten und strange Quarks beobachten wir
zwei disjunkte Koexistenz-Gebiete der chiralen Symmetriebrechung. Außerdem
finden wir konstante Massen und Zerfallskonstanten für jedes betrachtete Meson
sowie ein konstantes Quarkkondensat, meist fast bis zum Ende des jeweiligen
Koexistenz-Gebiets. Dies impliziert weiterhin, dass unsere Berechnungen die Silver-
Blaze-Eigenschaft der QCD erfüllen. Innerhalb des Koexistenz-Gebiet der leichten
(des strange) Quarks wird das Pion (das K̄-Meson) massiver, während die zuge-
hörigen Zerfalls-konstanten abnehmen. Währenddessen bleiben die entsprechenden
Größen für die (axial-)vektor- und skalaren Mesonen und das K-Meson (fast)
perfekt konstant.

Wenn wir die Rückkopplung der Pionen- und Sigma-Mesonen oder die Rückkopp-
lung des Nukleons und des skalaren Diquarks betrachten, finden wir ähnliche
chirale Restaurierungseffekte für die einzelnen Komponenten. Bei verschwindender
Temperatur und endlichem chemischen Potential verhindern Oszillationen des
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Zusammenfassung

Quark-Propagators eine klare Aussage über den Phasenübergang von flüssiger
zu gasförmiger Kernmaterie, wenn wir die Rückkopplung der Baryonen (und
der Diquarks) mit in die Berechnung einbeziehen. Für die Rückkopplung von
Pionen und des Sigma-Mesons beobachten wir eine (kleine) Verschiebung des
kritischen Endpunktes zu kleineren chemischen Potentialen und eine reduzierte
Krümmung der chiralen Koexistenzslinie. Wir schließen daraus, dass die Lage des
kritischen Endpunktes im Phasendiagramm hauptsächlich durch die mikroskopische
Freiheitsgrade der QCD (Quarks und Glu-onen) bestimmt wird, während seine
kritischen Eigenschaften durch makroskopische Freiheitsgrade (insbesondere das
Sigma-Meson) dominiert werden.
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Abbreviations

AxWTI axial-vector Ward-Takahashi identity

BC Ball-Chiu

BSA Bethe-Salpeter amplitude

BSE Bethe-Salpeter equation

CEP critical endpoint

dof degrees of freedom

DSE Dyson-Schwinger equation

DχSB dynamical chiral symmetry breaking

FRG functional renormalization group

hBSE homogeneous Bethe-Salpeter equation

nPI n particle irreducible

QCD quantum chromodynamics

QED quantum electrodynamics

QFT quantum-field theory

QGP quark-gluon plasma

SBP Silver-Blaze property

STI Slavnov-Taylor identity

VEV vacuum expectation value

WTI Ward-Takahashi identity

YM Yang-Mills
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1. Introduction

In the last two decades, the phase diagram of strongly interacting matter has
become a hot topic in particle physics. Especially the quest of the existence, the
location, and the properties of a putative critical endpoint (CEP) is an important
goal for various heavy-ion-collision experiments like the Beam Energy Scan (BES)
program [1] at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven
National Laboratory or the present HADES (FAIR Phase-0) [2] as well as the
future Compressed Baryonic Matter (CBM) experiment [3] at the Facility for
Antiproton and Ion Research (FAIR).

In these experiments, heavy ions are accelerated to large fractions of the speed of
light before they are collided. When colliding, the particles produce a zone of hot
and dense matter which is, under certain conditions, equal to a so-called quark-
gluon plasma (QGP) predicted from theoretical calculations at high temperatures
and densities/ chemical potentials. The zone then expands, cools down and ends
in a phase of ordinary hadrons which are finally detected. With this procedure
the existing operations like RHIC or the large hadron collider (LHC) at CERN
(Conseil européen pour la recherche nucléaire) were able to study parts of the
phase diagram. While an analytic crossover at vanishing chemical potential [4–7]
(from lattice) and a liquid-gaseous first-order phase transition of nuclear matter are
settled, there is no experimental reassurance of the theoretically predicted CEP so
far. Due to technical limitations of the experiments, it is still difficult to reach the
high density region needed for the CEP.

On the theoretical side, we describe the interaction of all particles by the quantum
mechanical local gauge groups SUC(3) × SUL(2) × UY(1) where the first group
describes the strong and the latter two the electroweak interaction. Thereby, the
electroweak interaction represents the unification of weak and electromagnetic
interactions and includes effects like the decay of particles and the attraction or
repulsion of particles due to the electromagnetic and weak charges. The strong
interaction, on the other hand, explains the binding of fundamental particles to
composite objects which are necessary for more complex structures. The building
elements of these complex structures are the quarks which carry a so-called color
charge and interact via the color-force by emitting and absorbing gluons. This color-
force is stronger than the other three fundamental interactions, acts only on length
scales of the elementary particles (quark and gluons) and can only be described by
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1. Introduction

a non-Abelian, non-perturbative gauge theory, namely quantum chromodynamics
(QCD). While the theory of electromagnetic interactions, quantum electrodynamics
(QED), can generally be described in a perturbative expansion in terms of the
electromagnetic coupling constant e, the self interaction of the gluons in QCD
leads to a strong coupling constant gs at low momenta which is too large for an
expansion and makes a non-perturbative treatment necessary. At high momenta,
however, the strong coupling decreases enabling a perturbative description.

In QCD, two important non-perturbative phenomena appear: Color confinement
and dynamical chiral symmetry breaking (DχSB) which is connected to dynamical
mass generation. While the color confinement describes the absence of any colored
particle in the experimental detectors, the DχSB states that the mass of colorless
bound states cannot result from the Higgs mechanism alone but has to be explained
through dynamical mass generations and anomalies of the strong interaction instead.
In some cases, the Higgs mechanism even represents only a small percentage of the
actual mass. It is important to note that quarks and gluons carry color (charge) and
are bound to colorless bound states which in turn are bound to nuclei by the residual
force. While colored particles are confined at low momenta, the observed decrease
of the strong coupling with higher momenta leads to an asymptotic freedom [8, 9]
of the elementary particles. In addition, the two non-perturbative effects depend
on thermodynamic circumstances. If used as classification for different states of
the strongly interacting matter, we can collect the thermodynamic information to
these phenomena into the QCD phase diagram.

In this QCD phase diagram, we summarize the thermodynamic properties (chemical
potential and temperature dependencies) of the chiral [10] and center [11] symmetry
(in a graphical way) for the two non-perturbative phenomena of DχSB and color
confinement, respectively. The QCD phase diagram as it is presently believed to
look like is shown schematically in Fig. 1.1. Corresponding comprehensive reviews
to this topic can be found in Refs. [12, 13] and references therein. Three (kinds of)
phases, i.e. states of strongly interacting matter, can be found:

(i) A quark-gluon plasma (QGP) at high temperature and chemical potential
where the chiral symmetry is (approximately) restored and quarks and gluons
move as quasi-free particles since they are asymptotically free and no longer
confined.

(ii) A hadronic phase at small temperatures and chemical potentials where the
chiral symmetry is spontaneously broken due to the formation of a quark
condensate and the quarks and gluons are confined to bound states.

(iii) Different manifestations of color superconducting phases at small temper-
atures and high chemical potentials where the chiral symmetry is again

2



spontaneously broken since the quarks form Cooper pairs in certain combi-
nations of color and flavor.

Figure 1.1.: Sketch of the QCD phase diagram taken from Ref. [14].

The existence of these three phases is largely accepted or proven but the coexistence
lines in between are still matter of intense studies, theoretically and experimentally.
For the experimental side, see for example the different experimental facilities
shown in the figure which probe the phase diagram. For the coexistence lines, it is
expected from functional methods and model calculations [15–17] that we find a
continuous crossover at low chemical potential which turns, for increasing chemical
potentials, into a second-order CEP and a sharp first-order phase transition above
it. In the hadronic phase, there furthermore is a liquid-gaseous first-order phase
transition [18] which indicates the appearance of nuclear matter.

For the theoretical determination of the QCD phase diagram, there exist different
approaches. The method of choice is the ab initio lattice QCD approach where we
discretize the theory on a finite space-time grid and use Monte-Carlo simulations
to obtain results. This method is well established at vanishing chemical potential
but suffers from the so called Fermion sign-problem [19] at non-vanishing chemical
potentials. Due to the sign-problem, we have to resort to extrapolations which
are valid up to a certain chemical potential to temperature ratio. For a review of
this method see the Refs. [20, 21]. Also effective theories like the (Polyakov-loop
extended) Nambu-Jona-Lasinio ((P)NJL) or the quark meson ((P)QM) model are
convenient tools for many applications associated with the QCD phase diagram
and its relations to heavy-ion collisions [15]. But, especially the versions with
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1. Introduction

added Polyakov-loop potential in the functional renormalization group (FRG)
approach [22–26], have a certain success. However, using these models, we have
to keep in mind that they do not treat the gluon as an active degree of freedom
and are only valid in a certain limit of the theory. Finally, functional methods like
the Dyson-Schwinger (DS) or FRG approach can map the whole phase diagram
and are, in general, equivalent to the generating functional and consequently ab
initio. Furthermore, since they are based on the representation of the generating
functional in terms of correlation functions, they have access to the fundamental
degrees of freedom and derived observables and composite particles, too. However,
due to this representation, they constitute an infinite tower of coupled integral (DS
approach) and differential (FRG approach) equations for Green functions which
relies on truncations to be solved. But these truncations are less controlled than
Monte-Carlo simulations. Reviews to the DS and FRG approach can be found
in Refs. [17, 27, 28] and [29, 30], respectively. In this work, we will apply the
Dyson-Schwinger approach and will build upon a series of works dealing with (i)
the bound state phenomenology in vacuum [31–34], (ii) the influence of quark
flavors on the QCD phase diagram [35–37] and (iii) the critical scaling of the CEP
of QCD [38] as well as (iv) the calculation of thermodynamic quantities like the
pressure, the quark number density and baryon number fluctuations in medium
[39–43].

Applications include the determination of simplified baryon backcoupling effects
on the QCD phase diagram [44], too. In this work, we will enhance this baryon
backcoupling study towards the chemical potential axis of the QCD phase diagram
to check the applied calculation for any indications of a liquid-gaseous nuclear
matter phase transition. The observed baryonic effects result from the quark-gluon
vertex which represents the crucial element coupling the Yang-Mills sector with its
quark sector. While propagators have been determined from their Dyson-Schwinger
or FRG equations in vacuum and medium [37, 45–49], the corresponding vertices
(including the quark-gluon vertex) have not been determined with comparable
precision, especially in medium. For this purpose, recent attention has focused
on the medium fluctuations of this vertex and their effect on the location of the
CEP. In the DS approach, Ref. [50] calculated the quark-gluon vertex Dyson-
Schwinger equation (DSE) semi-perturbatively whereas Ref. [49] studied effects
due to nonprimitively-divergent vertex structures. In addition, mesonic medium
effects have been taken into account in the FRG approach in Refs. [46, 47, 51] and
are naturally present in quark-meson type effective theories [22, 52–54]. Due to
the inherent complementarity of truncations in the DS and FRG approach, it is
highly desirable to complement these studies by a corresponding one in the DS
approach which is one of the main topics in this work.[55]

To be more precise, based on the studies in Refs. [56–58], we will determine the
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influence of explicitly calculated and backcoupled Pion and Sigma mesons onto
the QCD phase diagram. We restrict ourselfs to the (pseudo-)Goldstone Bosons
(Pions) and their chiral partner (Sigma) since we expect them to be dominant, not
only for the universal behavior [52, 59, 60] but also compared to the backcoupling
of other mesons. As input for the backcoupling, we will calculate and study the
properties and wave-functions of these backcoupled mesons together with multiple
vector and axial-vector mesons on the chemical potential axis of the QCD phase
diagram. With this procedure, we take important chemical-potential effects for the
meson backcoupling into account which are mandatory to preserve the Silver-Blaze
property (SBP) [61, 62] but neglect temperature effects. In addition, we complement
meson bound state calculations at finite temperature [63–67]. Furthermore, we are
able to trace the breaking of the charge conjugation parity through the chemical
potential and to check the validity of the SBP: all dependencies of colored quantities
on chemical potential cancel out in observables.

In particular, the determination of the meson properties of the vector mesons are
interesting since especially the light vector (ρ, ω and φ) mesons play an important
role for the observed dilepton spectrum [3, 68, 69] and due to their quantum
numbers they couple to the electromagnetic current. Since the electromagnetic
radiation from the hot and dense fireball of the experimental heavy-ion collisions
escapes the medium almost undistorted, this radiation and the light vector mesons
(though the observed dilepton spectrum) can serve as a probe for the state of
matter in the early stages of the collision. In consequence, it is important to know
the medium properties of these vector mesons. So far, the impact of non-vanishing
chemical potential on the bound state properties and the quark and gluon structure
of the ρ, its chiral partner a1, and the φ meson (covered in this work) is less studied.
Instead, mainly the properties of vector mesons like the spectral function have
been studied in a range of approaches with focus on the medium effects of their
Pion cloud and medium effects due to the coupling of ρ mesons to the nucleons
via resonance excitations [3, 68, 69].

This work is structured as follows: In Chaps. 2 and 3, we will derive and discuss
the properties and the truncation of the Dyson-Schwinger and Bethe-Salpeter
equations for the fundamental and mesonic bound state particles, respectively. In
Chap. 4, we present the quark and meson property and wave-function results as
well as the chiral observable results at finite chemical potential. These are used in
Chap. 5 to determine the influence of Pion and Sigma meson backcoupling effects
onto the quark, the chiral observables and the QCD phase diagram. Before we
conclude in Chap. 7, we study the backcoupling effects of baryons onto the quark
and chiral observables in Chap. 6 in a simplified manner and for finite chemical
potential and vanishing temperature.
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2. Fundamental particles of QCD

In this chapter, we will discuss the theoretical background for the properties of the
fundamental particles of quantum chromodynamics (QCD): the quarks and their
gauge Bosons the gluons which mediate the strong interaction. We will begin by
deriving equations to calculate these properties. For this purpose, we introduce
the functional approach of Dyson-Schwinger equations (DSEs) and discuss the
necessary approximations for this framework to be implemented numerically. At
the end, we will show some first results.

To begin, we describe the theory of strong interactions via the generating functional
of QCD, which contains all information of the considered strong interaction. From
this quantity, we are able to derive the equations of motion for each of the elementary
particles. To be more general, we will do so for arbitrary actions first, before we
apply the procedure to the QCD action. By using the path integral formalism, the
generating functional for partially connected Green functions in vacuum is given
by

Z[J ] = N
∫
Dϕei(S[ϕ]−

∫
x
ϕ(x)J(x)) (2.1)

with the arbitrary action S[ϕ] =
∫
x L (ϕ(x), ∂µϕ(x)), the integral abbreviation∫

x =
∫
d4x, the Lagrangian density L and the super-field ϕ which contains all fields

of the system. We add the external source field J(x) to the action for the ability
to derive all Green functions Gn(x1, . . . , xn) of the order n by simply applying a
functional derivative w.r.t J(x) to the generating functional Z[J ] and ultimately
setting J(x) = 0. In equations this means:

Gn(x1, . . . , xn) = 〈0| T̂ {ϕ̂(x1) . . . ϕ̂(xn)} |0〉 =
∫ Dϕϕ(x1) . . . ϕ(xn)eiS[ϕ]

∫ DϕeiS[ϕ]

= 1
Z[J ]

inδn

δJ(x1) . . . δJ(xn)Z[J ]
∣∣∣∣
J=0

. (2.2)

Here, T̂ represents the time ordering operator. Next, we will use this relation to
derive the master equation of the Dyson-Schwinger framework.
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2. Fundamental particles of QCD

2.1. Dyson-Schwinger framework

The Dyson-Schwinger framework is based on the representation of the generating
functional in terms of correlation functions which can be demonstrated by

Z[J ] = Z[0]
∞∑

n=0

(−i)n
n!

∫
d4x1 . . . d

4xnJ(x1) . . . J(xn)Gn(x1, . . . , xn) . (2.3)

Due to this identity, the Dyson-Schwinger framework is an ab initio approach if it
is solved completely and self-consistently. The framework is given by an infinite
tower of coupled integral equations, the Dyson-Schwinger equations (DSEs). These
equations are the quantum equations of motion for all n-point Green functions
of the theory. Every equation is self-consistent which means that the quantity
which is defined by the equation depends on itself. In consequence, we need a
fixpoint iteration to solve the equation. See App. C.1.2 for more information of
this procedure.

In general, the solutions of the quantum equations of motion are the Green functions
of the elementary particles of the considered theory or the Green functions of
n-particle bound states consisting of these elementary particles. The two-particle
(mesonic) bound states described by the Bethe-Salpeter equations (BSEs) will
be discussed in the next Chap. 3. In the next sections, however, we will discuss
the elementary particles as fundamental degrees of freedom described by the
Dyson-Schwinger equations.

2.1.1. Derivation of the Dyson-Schwinger equations

The DSEs result from the local translation invariance of the generating functional.
We describe this local translation by the field transformation T : ϕ(x)→ ϕ′(x) =
ϕ(x) + δϕ(x). Since we integration over all filed configurations, the field transfor-
mation T only represents a redefinition of the integral variable. Consequently, the
path integral is not affected, implying

T (Z[J ]) = N
∫
Dϕ′ ei(S[ϕ′]−

∫
x
ϕ′(x)J(x))

= N
∫
Dϕei

∫
x
δϕ(x)

[
δS[ϕ]
δϕ(x)−J(x)

]
ei(S[ϕ]−

∫
x
ϕ(x)J(x))

(2.2)= Z[J ]
〈
e
i
∫
x
δϕ̂(x)

[
δS[ϕ̂]
δϕ̂(x)−J(x)

]〉

J 6=0

!= Z[J ] . (2.4)

In this derivation, we used the Taylor-expansion S[ϕ′] = S[ϕ]+
∫
x δϕ(x)δS[ϕ]/δϕ(x)

and the fact that the integral measure Dϕ is invariant under transformation T .

8



2.1. Dyson-Schwinger framework

The expression 〈f(ϕ̂)〉J 6=0 represents the vacuum expectation value (VEV) of the
function f depending on the field operator ϕ̂ with intact dependency from external
source J . From Eq. (2.4), we can deduce the so-called master DSE for partially
connected Green functions which is defined via

〈
δS[ϕ̂]
δϕ̂(x)

〉

J 6=0
= J(x) (2.5)

and describes the quantum mechanical expectation value of the classical equation
of motion. So far, we considered partially connected Green functions, but we
are interested in the n-point one-particle irreducible (1PI)1 Green functions since
we can derive all other kinds of Green functions from them, e.g. the (partially)
connected Green functions. The 1PI Green functions represent the irreducible
contribution to the n-point interaction vertex without redundancies and can be
derived from the so-called effective action Γ[ϕ̃]. This generating functional is
connected to the other generating functionals via

Z[J ]
Z[0] = eiW [J ] = ei(Γ[ϕ̃]−

∫
z
ϕ̃(z)J(z)) (2.6)

where W [J ] is related to the effective action by Legendre transformation and
generates all connected n-point Green functions which enter into the scattering-
matrix. ϕ̃(x) = 〈ϕ(x)〉J 6=0 is the so-called averaged field and defined as the vacuum
expectation value of the field operator ϕ̂. Resulting from the definition of the
effective action as a Legendre transformation, we can identify J(x) = ∂Γ[ϕ̃]/∂ϕ̃(x)
and ϕ̃(x) = ∂W [J ]/∂J(x) as conjugated sources. This implies that ϕ̃ vanishes if J
vanishes2. To be able to express the Master-DSE in Eq. (2.5) also with connected
and 1PI Green functions, we consider the definition of 〈f(ϕ̂)〉J 6=0 for the different
kinds of Green functions and get the following relations:

〈f(ϕ̂)〉J 6=0 :=
∫ Dϕf(ϕ)ei(S[ϕ]−

∫
x
ϕ(x)J(x))

∫ Dϕei(S[ϕ]−
∫
x
ϕ(x)J(x))

= 1
Z[J ]f

(
iδ

δJ

)
Z[J ]

= e−iW [J ]f

(
iδ

δJ

)
eiW [J ] = f

(
−δW [J ]

δJ
+ iδ

δJ

)
1

= f

(
ϕ̃(•) +

∫

y
∆•y[ϕ̃] δ

δϕ̃(y)

)
1 . (2.7)

Here, we used the relation e−xf(∂/∂y)ex = f(∂x/∂y + ∂/∂y) and the definition of
the conjugated variables. In the last line, ∆xy[ϕ̃] =

(
∂2Γ[ϕ̃]

∂ϕ̃(x)∂ϕ̃(y)

)−1
= − ∂2W [J ]

∂J(x)∂J(y)

11PI diagrams stay connected if one internal line is cut.
2In case of dynamical chiral symmetry breaking (DχSB), ϕ̃ is generally finite but can be redefined
to zero.
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2. Fundamental particles of QCD

describes the 1PI two-point function or inverse propagator with non-vanishing
external source. In the limit of a vanishing external source, we obtain the 1PI
two-point Green function: G2(x, y) = ∆xy[ϕ̃]|J,ϕ̃→0.

With Eq. (2.7), we are now able to translate classical relations between fields
f(ϕ) = 0 into quantum-mechanical identities 〈f(ϕ̂)〉 = 0. For this purpose, we
exchange the classical fields ϕ by field operators ϕ̂ and take the vacuum expectation
value. If we do so for Eq. (2.5), we finally get the Master-DSE for 1PI Green
functions which is given by

δΓ
δϕ̃(x) [ϕ̃] = δS

δϕ(x)

[
ϕ̃(•) +

∫

y
∆•y[ϕ̃] iδ

δϕ̃(y)

]
1 . (2.8)

Now, we can apply this Master-DSE to the QCD action and derive all necessary
DSEs. But first we will discuss the different components of the QCD action.

QCD in vacuum

Analog to quantum electrodynamics (QED), the QCD action has to obey Poincaré
invariance, renormalizability and P- or T-invariance3 but also local SUC(Nc) gauge
invariance. The only action in vacuum and Minkowski space-time that fulfills these
requirements is given by

S[A, Ψ̄,Ψ] =
∫

x

{
Ψ̄f (x)

(
iγµDµ(x)− 1D1Cmf

q
)

Ψf (x)− 1
4F

g
µν(x)Fµνg (x)

}
(2.9)

with the Dirac spinor for quark Ψf (x) and antiquark Ψ̄f (x) = Ψ†f (x)γ0 fields and
the quark flavor f . The field strength tensor Fµν(x) = i

gs
[Dµ(x), Dν(x)] is defined

through the covariant derivative Dµ(x) = 1C∂µ− igsAµ(x) and the SUC(Nc) gauge
fields Aµ(x) = Agµ(x)tg describing the gluon. gs and mf

q are the unrenormalized
strong coupling constant and the current quark mass of quark flavor f , generated
by the Higgs mechanism. Under the local gauge transformation G:

G(Ψf (x)) = UG(x)Ψf (x) ,
G(Ψ̄f (x)) = Ψ̄f (x)U †G(x) ,

G(Aµ(x)) = UG(x)
(
Aµ(x) + i

gs
1C∂µ

)
U †G(x) ,

UG(x) = eiε(x) = e
i
∑

g
εg(x)tg (2.10)

3In general, an additional εαβµνFαβg Fµνg term can appear, but this term breaks the P- and
T-invariance [70]. Here, εαβµν represents the totally antisymmetric tensor.
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2.1. Dyson-Schwinger framework

the (anti-)quark and gluon fields transform as elements of the fundamental and
adjoint representation of the SUC(Nc)-group, respectively. Furthermore, UG(x)
is the unitary local gauge transformation matrix acting on the color part of the
elementary fields. The SUC(Nc) gauge-group generators tg fulfill the Lie algebra[
tg, th

]
= ifghltl, but the actual representation of the generators depend on the

fields they are acting on. Further relations and the possible representation of the
"color" generators can be found in App. A.2. Naturally, we consider Nc = 3 colors.
The corresponding Dirac matrix representation is shown in App. A.1. By using
the Lie algebra of the color gauge group generators, the field strength tensor can
be rewritten as

Fµν(x) = ∂µAν(x)− ∂νAµ(x)− igs [Aµ(x),Aν(x)]

=
(
∂µA

g
ν(x)− ∂νAgµ(x) + gsf

ghlAhµ(x)Alν(x)
)
tg = F gµν(x)tg (2.11)

where fghl are the totally antisymmetric and real structure constants. The last
term results from the non-Abelian character of the strong interaction and leads to
gluon self-interaction.4

From Eq. (2.10), we can deduce that a subset of gauge fields is connected by
the gauge transformation G. Since they all have the same physical content, we
encounter an over-counting in the generating functional. Due to this problem, we
have to reduce the integration to a subset where the gauge fields can no longer
be transformed into each other via the gauge transformation G. This procedure is
called gauge fixing. One possible method for this procedure is the Faddeev-Poppov
gauge fixing from Ref. [71]. As result of this procedure, an additional gauge
fixing action term appears in the QCD action which depends on the so-called
Faddeev-Poppov ghost c(x) and antighost c̄(x) auxiliary fields. If we consider a
generalized linear covariant gauge fixing condition f [A] = ∂µAgµ(x)− ω = 0 with
arbitrary ω the additional action term then is given by

SGF[A, c, c̄] = −
∫

x

(
∂µAgµ(x)

)2

2ξ +
∫

x
c̄(x)∂µDµ(x)c(x) (2.12)

where ξ is the unrenormalized gauge parameter. Under the local gauge transfor-
mation G the ghost fields c(x) = ca(x)ta are elements of the adjoint representation
of SUC(Nc), too.

So far, all fields and constants in the QCD action are unrenormalized. To cancel
appearing infinities, we introduce the regulator Λ and renormalization constants.

4In the Abelian QED, this last term vanishes and there are no self-interacting Photons in the
QED U(1) gauge group.
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2. Fundamental particles of QCD

The regulator removes the appearing infinities by introducing a regulator depen-
dency, while the renormalization constants are fixed through the renormalization
conditions. Through this renormalization procedure, we no longer have a regulator
dependency but need the constants (mf

q(ξq), gs(ξi)) as input from experimental
data at the renormalization points ξx. In the QCD action, we introduce renormal-
ization constants for the quark wave-function Zf2 and the quark mass Zfm of quark
flavor f , as well as for the strong coupling constant Zg, the gluon wave function Z3,
the ghost wave function Z̃3, and the gauge fixing parameter Zξ. The corresponding
connection of the unrenormalized to the renormalized quantities is defined via

Ψf (Λ) =
(
Zf2 (Λ, ξq)

)1/2
Ψf (ξq), mf

q(Λ) = Zfm(Λ, ξq)mf
q(ξq),

Aµ(Λ) = (Z3(Λ, ξg))1/2Aµ(ξg), gs(Λ) = Zg(Λ, ξi)gs(ξi),

c(Λ) =
(
Z̃3(Λ, ξgh)

)1/2
c(ξgh), ξ(Λ) = (Zξ(Λ, ξG))−1 ξ(ξG) (2.13)

where Λ is the regulator and ξx with x ∈ {q, g, gh, i,G} are the renormalization
points. From now on, we use renormalized quantities and suppress the renormal-
ization point and regulator dependency for the rest of this work. Furthermore, we
transform some renormalization constants in more convenient vertex renormaliza-
tion constants using so-called Slavnov-Taylor identities (STIs). This re-expression
yields

Z1 = Zg (Z3)3/2 , Z̃1 = Z̃3Zg (Z3)1/2 , Zf1F = Zf2Zg (Z3)1/2 , Z4 = (Zg)2 (Z3)2

(2.14)

with the vertex renormalization constants for the three-gluon vertex Z1, the ghost-
gluon vertex Z̃1, the quark-gluon vertex Zf1F of quark flavor f , and the four gluon
vertex Z4. Finally, we can write the renormalized, Lorentz gauge fixed QCD action
in vacuum and Minkowski space-time by

SQCD[A, Ψ̄,Ψ, c, c̄] =
∫

x

[
Zf2 Ψ̄f (x)

(
iγµ1C∂µ − Zfm1D1Cmf

q
)

Ψf (x) +

+ Zf1F gsΨ̄
f (x)γµtgAgµ(x)Ψf (x) + Z3

1
2A

g
µ(x)

(
�gµν +

[
Zξ
ξ
− 1

]
∂ν∂µ

)
Agν(x)+

− Z1
gs
2 fghl

[
∂µAνg(x)− ∂νAµg (x)

]
Ahµ(x)Alν(x) + Z̃3c̄(x)�c(x)+

− Z4
g2
s
4 fgkofghlA

µ
k(x)Aνo(x)Ahµ(x)Alν(x) + gsZ̃1 (∂µc̄(x))Aµ(x)c(x)

]
. (2.15)

Now, we want to derive the necessary DSEs from this QCD action. But to derive
the DSEs for quarks, gluons, ghosts and all vertices from the generating functional,
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2.1. Dyson-Schwinger framework

it is more convenient to transform the QCD action into the Euclidean momentum
space first. This is done in Apps. A.4 and A.5. For the derivation we, furthermore,
use a graphical notation, apply the derivation explained in Ref. [73] and get the

= +-1-1

= +-1-1 +

+

+ +

+

= + + + +

Figure 2.1.: Full, untruncated Dyson-Schwinger equations for the inverse quark
(upper) and gluon (center) propagator as well as the quark-gluon vertex (lower).
Quark, gluon and ghost propagators are denoted by solid, curly and dotted lines,
respectively. The intersection of different line types or three or four curly lines
represent different kinds of vertices. Dressed quantities are indicated by big
black dots. The remaining ones are bare. The arrows indicate the direction of
the quark or ghost flavor and the momentum. The differently colored symbols
in the quark-gluon vertex DSE represent higher dressed vertices. Note that the
upper vertex in all diagrams of the quark-gluon vertex DSE are bare. The shown
vertex representation is adopted from Refs. [44, 72]. The signs and prefactors
are absorbed into the diagrams.
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2. Fundamental particles of QCD

full quark, gluon and quark-gluon vertex DSEs shown in Fig. 2.1 as well as all
further vertices and ghost DSEs. The quark-gluon vertex DSE shown in this figure
is one possible representation. Another is given in Ref. [74].

2.1.2. Quark and gluon equations

In this section, we consider and discuss only the quark and gluon DSEs. A
diagrammatic representation of the considered quark and gluon DSEs with the
appropriate momentum routing is shown in Fig. 2.2. The first term on the right side

= +-1-1

= +-1 -1

YM

Figure 2.2.: Dyson-Schwinger equations for the inverse quark (upper) and gluon
(lower) propagator with the corresponding momentum routing. The intersection
of quark and gluon lines represent quark-gluon vertices. The first gluon term
marked by a gray dot and a YM subscript summaries all Yang-Mills diagrams of
the gluon DSE shown in Fig. 2.1. The remaining quantities are defined in the
same way as in Fig. 2.1.

of the gluon DSE, marked by a gray dot, summarizes all diagrams already present
in Yang-Mills theory. In equations we indicate this term as DYM

µν . It includes the
bare gluon propagator, gluon self-interactions and gluon-ghost interactions. The
quark loop term in the gluon DSE couples the matter sector of QCD back onto
the gluon and includes an implicit sum over all Nf considered quark flavor. In
this work, we mostly consider Nf = 2 + 1. Through this sum, the quark loop term
furthermore yields a non-trivial coupling between the quark flavors.

In algebraic equations, the DSEs for the quark and gluon propagators for real p
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2.1. Dyson-Schwinger framework

momenta5 are given by
[
Sf (p)

]−1
=
[
Sf0 (p)

]−1
−
∫

q
Γf,ε,hqg,0 S

f (q)Γf,ν,hqg (p, q, k)Dεν(k) , (2.16)

[Dεν(k)]−1
hg =

[
DYM
εν (k)

]−1

hg
+
∫

q
TrDCF

[
Γε,hqg,0S(q)Γν,gqg (p, q, k)S(p)

]
. (2.17)

For each quark flavor f , there is a quark DSE. In the quark self energy Σf (p) and
the quark loop ΠQL

µν (k) terms of the quark and gluon DSEs (second term on the
RHS), we use the integral abbreviation

∫
q ≡

∫
d4q/(2π)4 and consider Nf quark

and Nc = 3 colors. Additionally, the quark loop includes a trace over the Dirac,
color and flavor part. The fermionic quark momenta p and q and the bosonic gluon
momentum k are connected by the momentum routing p = q − k with momenta of
the form q = (~q, q4).

The quark self energy and the quark loop depend on the bare Γf,ε,hqg,0 = igsZ
f
1Fγ

εth

and dressed Γν,h,fqg (p, q, k) = igsthΓν,fqg (p, q, k) quark-gluon vertex of the quark
flavor f . The representations and relations of the contained Dirac γµ and color
matrices th are given in Apps. A.1 and A.2, respectively. In the quark self energy,
the color matrices sum up to ∑h t

hth = CF with the quadratic Casimir factor
CF = (N2

c − 1)/(2Nc) in the fundamental representation, while the color trace of
the quark-loop yields TrC[thtg] = δhg/2. The appearing strong coupling constant
is defined by g2

s = 4παs(ξv) where αs(ξv) = 0.3 is the running coupling at a scale
fixed by the quenched gluon from lattice (see Refs. [75, 76] for details). In the
renormalization constant for the quark-gluon vertex Zf1F = Zf2 Z̃1/Z̃3, the ghost-
gluon vertex renormalization constant Z̃1 is set to one since the corresponding
vertex is ultraviolet finite in the Landau gauge (see Ref. [77]) which we will apply
throughout this work. Z̃3 furthermore is the ghost wave function renormalization
constant.

The dressed quark propagator also depends on the inverse bare quark propagator
which is, in vacuum, given by

[
Sf0 (p)

]−1
= Zf2

(
i/p+ 1DZ

f
mm

f
q(ξq)

)
1C (2.18)

with Zf2 and Zfm being the quark wave-function and quark mass renormalization
constants of the quark flavor f . mf

q(ξq) is the renormalized current quark mass of
the quark flavor f at the quark renormalization point ξq = 80 GeV.6

5The discussion of the quark DSEs for complex momenta is done in App. C.1.3.
6We use such a high value for the renormalization point to be sufficiently far in the perturbative
regime.
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2. Fundamental particles of QCD

To solve the coupled set of quark and gluon equations, we need an ansatz for the
dressed quark and gluon propagators. For the dressed quark propagator Sf of
quark flavor f in vacuum, this ansatz can be displayed by

Sf (p) =
−i/pAf (p) + 1DBf (p)

Nf (p) 1C , (2.19)

Nf (p) = p2A2
f (p) + B2

f (p) .

The dressed quark propagators of the different quark flavors can be written in a
diagonal flavor matrix S = diag

(
Su, Sd, . . .

)
which will be important for a compact

notation in the bound state approach and is used in the gluon DSE. Since we
consider the isospin-symmetric limit of equal up- and down-quark masses mu

q = md
q,

the up- and down-quark propagators are identical Su = Sd, too. From now on, we
will no longer differentiate between these two quark flavors and will call them light
quark mesons (f = `). The dressed gluon propagator Dµν in vacuum (still with an
arbitrary gauge) is given by

Dµν(k) =
(Z(k)

k
Tµν(k) + ξ

k2Lµν(k)
)
1C (2.20)

with the projectors

Tµν(k) = δµν −
kµkν
k2 , (2.21)

Lµν(k) = kµkν
k2 (2.22)

transversal (Tµν) and longitudinal (Lµν) to the gluon momentum k. The dressing
function of the gluon (Z) as well as those of the quark (Af , Bf ) have non-trivial
momentum dependence and encode the non-perturbative information. Normally,
these dressing functions and the renormalization constants all depend on the
gauge parameter ξ, but the dependence is suppressed here and further on. In
all calculations, we apply the so-called Landau gauge ξ = 0. Details to the
renormalization procedure of the quark and gluon equations as well as details
to the general numerical setup in the DSE are noted in Apps. C.1.1 and C.1.2,
respectively.

This leaves us with the quark-gluon vertex Γν,fqg (p, q, k) and Yang-Mills part of the
gluon DYM

µν (k) which are still to define. In Sec. 2.2, we will introduce truncations to
the set of equations and will discuss these two quantities in more detail. But before,
we will consider the changes introduced by considering the system in medium.
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2.1. Dyson-Schwinger framework

2.1.3. Introduction of the medium

In this section, we are interested in the connection between the system describing
quantities of thermodynamics and quantum field theory (QFT). Consequently,
we search for a connection between the appropriate thermodynamic potential or
partition function of a certain set of natural variables and the generating functional.
Since we need a system which is in contact with the heat bath and allows particle
and energy exchange, we consider the grand canonical ensemble. Here, the particle
number and energy are only known on average and the system is defined by the
natural variables of temperature T and a set of quark chemical potentials µfq for
the quark flavors f ∈ {u,d, s}. The grand canonical ensemble is described by the
partition function7

ZGC(T, µfq) = Tr
(
e−(Ĥ−µfqN̂f )/T

)
. (2.23)

In this expression, N̂f =
∫
d3xΨ̂†f (x)Ψ̂f (x) =

∫
d3x ˆ̄Ψf (x)γ0Ψ̂f (x) represents the

quark particle number operator with Ψ̂f (x) and ˆ̄Ψf (x) as quark and antiquark
spinor field operators of the quark flavor f . In the following expressions, the
Hamiltonian will be redefined such that the particle number term is included.

For the connection between thermodynamics and QFT, we now use the Euclidean
Matsubara or imaginary time formalism. A review to this topic can be found in
Ref. [78]. First we consider the generating functional in Eq. (2.1) in Euclidean
space-time (transformation see App. A.4) and for the special case of a finite time
interval as shown by

ZEucl.[J = 0](ϕf (τf ), ϕi(τi)) = 〈ϕf (τf )| ϕi(τi)〉 =
〈
ϕf
∣∣∣e−Ĥ(τf−τi)

∣∣∣ϕi
〉

=

= N
∫ ϕf (τf )

ϕi(τi)
Dϕe−SEucl.[ϕ](τi,τf ) (2.24)

where SEucl.[ϕ](τi, τf ) =
∫ τf
τi
dτ
∫
d3xLEucl.(ϕ(x, τ), ∂µϕ(x, τ)) defines the corre-

sponding Euclidean action and τ = −it is the imaginary time. By comparing this
expression of the Euclidean generating functional with finite time interval and the

7The connected grand canonical potential is given by Ω = −T/V logZGC(T, µfq) with the volume
of the system V , the temperature T and the quark chemical potentials µfq of the quark flavor
f .
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2. Fundamental particles of QCD

grand canonical ensemble, we get the desired connection in the from

ZGC(T, µq) =
∫
dϕ

〈
ϕ

∣∣∣∣∣e
−
(
Ĥ−µfq

∫
d3x ˆ̄Ψf (x)γ0Ψ̂f (x)

)
/T
∣∣∣∣∣ϕ
〉

=

= N
∫

ϕ(0)=±ϕ(1/T )
Dϕe−SEucl.[ϕ](0,1/T )+µfq

∫ 1/T
0 dτ

∫
d3xΨ̄f (x)γ0Ψf (x)

(2.25)

As consequence from this connection and the spin-statistic theorem, we can deduce
antisymmetric and symmetric periodicity conditions for Fermion fields Ψ and
Boson fields Φ, respectively. These conditions are given by

Ψ(~x, τ + 1/T ) = −Ψ(~x, τ) ,
Φ(~x, τ + 1/T ) = + Φ(~x, τ) . (2.26)

Due to the periodicity conditions and the finite integration interval in the temporal
component, the energy component of the four-momentum becomes discrete. For
this purpose, we introduce the bosonic (B) and fermionic (F) Matsubara frequencies:

ωF
p = πT (2np + 1) , ωB

p = 2πTnp with np ∈ Z . (2.27)

At finite temperature, we consequently have to replace all integrations
∫
q by ∑∫

q ≡
T
∑
nq

∫
d3q/(2π)3 which includes a sum over the discrete (fermionic) Matsubara

frequencies. If we additionally consider finite chemical potential, the quark chemical
potential is added to the Matsubara frequency via ω̃p = ωp+iµfq for each considered
quark.

In this work, however, we mostly consider the case of finite chemical potential but
vanishing temperature. Turning down the temperature to zero, there is no longer
a discrete energy component, no periodicity conditions, and no summation over
Matsubara frequencies but the quark chemical potential still has to be included
into the energy component of the quark four momentum. In the following, we will
discuss the quark and gluon propagator representation at finite chemical potential
and vanishing temperature but the finite temperature case is easily obtainable by
exchanging the fourth momentum component by a discrete Matsubara frequency.
The inverse bare quark propagator of the quark flavor f at finite chemical potential
and vanishing temperature is given by

[
Sf0 (p)

]−1
= Zf2

(
i~/p+ ip̃f4γ4 + 1DZ

f
mm

f
q(ξq)

)
1C (2.28)

with the abbreviation p̃f4 = p4 + iµfq . In medium, the O(4) symmetry of the
propagator is broken to a O(3) symmetry by the appearance of an assigned
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2.1. Dyson-Schwinger framework

direction of the medium vmed = (~0, 1). This assigned direction results from a
non-vanishing chemical potential in the energy component of the momentum or
from the introduction of a heat bath. Due to this O(4) symmetry breaking, the
corresponding dressed quark propagator Sf of the quark flavor f for finite quark
chemical potential µfq but vanishing temperature T now has to be represented by

Sf (p) =
−i~/pAf (p) + 1DBf (p)− ip̃f4γ4Cf (p) + ip̃f4γ4~/pDf (p)

Nf (p) 1C , (2.29)

Nf (p) = ~p2A2
f (p) + B2

f (p) + (p̃f4)2C2
f (p) + ~p2(p̃f4)2D2

f (p) .

The fourth dressing function Df has no perturbative counterpart in the bare quark
propagator, its contribution is negligible in principle (see Refs. [79, 80]), and since
it is explicitly zero for a Rainbow-Ladder interaction vertex in the quark DSE, we
will not use it in this work. In the dressed gluon propagator Dµν for finite quark
chemical potential µfq but vanishing temperature T , the assigned direction of the
medium has a similar effect as in the quark. In Landau gauge, the dressed gluon
propagator is now represented by

Dµν(k) =
(ZL(k)

k2 P
L
µν(k) + ZT(k)

k2 PT
µν(k)

)
1C (2.30)

with the medium projectors

PT
µν(k) =

(
δµν −

~kµ~kν
~k2

)
(1− δµ4)(1− δν4) , (2.31)

PL
µν(k) = Tµν(k)− PT

µν(k) (2.32)

taking into account the transversality w.r.t. the momentum k and the assigned
direction of the medium vmed = (~0, 1). In vacuum or for momenta scales much
higher than the temperature and chemical potential, the gluon dressing functions
ZL and ZT as well as the quark vector dressing functions Af and Cf degenerate
while they can become distinguishable in medium.

In previous works [44, 81] at finite temperature and chemical potential, we worked
with non-zero light-quark chemical potential but set the strange quark chemical
potential explicitly to µsq = 0. In principle, the strange quark chemical potentials
should be adjusted such that the strangeness neutrality (as encountered in heavy
ion collisions) is fulfilled [82, 83]. In this way, we could derive the appropriate
dependence on the isospin- (µI), strangeness- (µS) and baryon- (µB) chemical
potential. But since a variation of the strange quark chemical potential in the
interval µsq ∈ {0, µ`q} only has a small influence on location of CEP as shown
by Ref. [80], we work with equal light- (µ`q) and strange-quark (µsq) chemical
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2. Fundamental particles of QCD

potentials for the most parts of this work. If this is not the case, it will explicitly be
mentioned. Throughout the remaining work, we will express all chemical potential
dependencies by the baryon chemical potential µB = 2µ`q + µsq = 3µfq .

2.1.4. Dynamical chiral symmetry breaking observables

In the following chapters, we often discuss the reaction of the chiral symmetry
on different circumstances. For this purpose, we need reliable observables for the
chiral symmetry. But first, we have to define the chiral symmetry, its breaking and
possible observables for the dynamical chiral symmetry breaking (DχSB).

Chirality is the property of left- and right-handed quarks to transform separately
under the chiral symmetry group SUR(Nf)× SUL(Nf). The invariance under this
symmetry group is called chiral symmetry and implies that the differently handed
quarks decouple from each other and do not mix or transform into each other
anymore. The right- or left-handed representation of the flavor group SUR/L(Nf)
only transforms right-/left-handed particles. These left- Ψ− and right-handed Ψ+
quarks are particles with negative and positive helicity8 h = ~p·~s

|~p||~s| , which is defined
by the projection of the spin vector onto the momentum vector of the particle.
Thereby, the differently handed quarks are defined via Ψ± = P±Ψ with the chiral
projector9

P± = 1
2(1D ± γ5) . (2.33)

Since we are interested in the chiral properties, we have to use the Weyl representa-
tion of the Dirac matrices (mentioned in App. A.1) for this section and especially
for this projector. If we use the chiral projector and consider the different Dirac
structures

Ψ̄Γ(µ)Ψ =





∑
ω=±

Ψ̄ωΓ(µ)Ψω Γµ ∈ {γµ, γµγ5}
∑
ω=±

Ψ̄−ωΓ(µ)Ψω Γ ∈ {1D, γ5}
, (2.34)

we can deduce that mass terms break the chiral symmetry10 since they induce a
mixing or interaction of left- and right-handed quarks in the QCD action. If we,

8The helicity is only a conserved quantum-number for mass-less particles, since there always is
an inertial system which is faster than a massive particle yielding a sign-flip for the helicity.

9The chiral projector fulfills the rules of a general projector Pλ. This includes the idempotency
P 2
λ = Pλ and the existence of an orthogonal projector Pλ + P⊥λ = 1 (→ PλP

⊥
λ = 0).

Furthermore, the chiral projector has the properties: P±γµ = γµP∓ and P±γ5 = γ5P±.
10As shown in Tab. B.3, the introduction of a mass term breaks the symmetry of the SUA(Nf)

flavor group and therefore also the chiral symmetry.
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2.1. Dyson-Schwinger framework

consequently, consider the chiral limit of vanishing static quark masses (mq = 0),
the flavor symmetry groups SUV(Nf)× SUA(Nf) of the QCD action are classically
conserved since the action is invariant under the symmetry transformations. How-
ever, dynamically generated quark masses can still break the chiral symmetry
(group) SUR(Nf)× SUL(Nf) back to SUV(Nf)× SUA(Nf). In the following, we will
therefore take a closer look at the spontaneous symmetry breaking.

For this purpose, we have to consider the charge of the SUA(Nf) flavor group
QA
a =

∫
d3xΨ†(x)γ5τaΨ(x) = na+ − na− which represents the "particle number"

na± =
∫
d3xΨ†±(x)τaΨ±(x) difference between the right- (+) and left-handed (-

) contributions. Here, we used γ5 = P+ − P−. If this charge is a constant
of motion (not time dependent), we immediately know that there cannot be
a transition between particles of different helicities. By considering the vacuum
expectation value of an infinitesimal symmetry transformation

[
Q̂a, ϕ̂i

]
= −(τ̂a)ijϕ̂i

(see App. B.1 for more information) with the charge operator Q̂a = Q̂A
a of the flavor

symmetry group SUA(Nf) and a pseudo-scalar density for the field ϕ̂i = P̂b(0), we
get
〈

0
∣∣∣
[
Q̂A
a , P̂b(0)

]∣∣∣ 0
〉

= − i
〈

0
∣∣∣ ˆ̄Ψ {τa, τb} Ψ̂

∣∣∣ 0
〉

(2.35)

= − iδabNf

〈
Ψ̄Ψ

〉
− idabc

〈
0
∣∣∣Ŝc(0)

∣∣∣ 0
〉 mq∝1D= −iδabNf

〈
Ψ̄Ψ

〉

where we used the bilinear operator commutation relation in Eq. (B.6) and consid-
ered the flavor matrices τa = λa/2 for the three quark flavors. For the last equality
we have to mention that if we consider the limit mq = mf

q1D, the symmetry under
the flavor group SUV(Nf) is exact, implying that the charge operator annihilates
the vacuum Q̂V

a |0〉 = 0 (compare with the discussion in App. B.1). Since the non-
singlet scalar condensate ifabcŜc(x) =

[
Q̂V
a , Ŝb(x)

]
is connected with the Noether

charge operator Q̂V
a of the flavor group SUV(Nf), all non-singlet scalar condensates〈

0
∣∣∣Ŝc(0)

∣∣∣ 0
〉
must vanish.

Finally, from Eq. (2.35), we can deduce that (even) if we consider the chiral limit
mq = 0 the flavor symmetry group SUA(Nf) (and consequently the chiral symmetry
too) is classically conserved but spontaneously broken by the quark condensate〈

Ψ̄Ψ
〉
which represents the transition probability of a right-handed quark to

become a left-handed one and vice versa.11 Note that the spontaneous symmetry
breaking is also present for finite quark masses.
11In App. B.1, we discuss that the charge operator does not annihilate the vacuum in this case.

Instead it produces another energy-degenerated vacuum state.
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In our calculations, we will consider two different chiral symmetry observables:
The dynamical quark mass and the quark condensate. The dynamical quark mass
Mf (p) = Bf (p)

Af (p) is a renormalization point invariant but not renormalization scheme
invariant observable for the dynamical chiral symmetry breaking (DχSB) and
depend on the scalar Bf and first vector Af quark dressing function. The quark
condensate, on the other hand, represents the transition probability of right-handed
quarks to become left-handed quarks and vice versa and is defined by

〈 ˆ̄ΨΨ̂〉f (T, µB) = − Zf2Zfm
∑∫

q

TrDC
[
Sf (q)

]
(2.36)

with a Dirac and color trace. Since this property shows a quadratically divergent
behavior proportional to the quark mass, we define a regularized quark condensate
∆`s by subtracting the primarily static quark condensate of a heavier quark12
weighted by the corresponding mass ratio as shown by

∆`s(T, µB) = 〈 ˆ̄ΨΨ̂〉`(T, µB)− m`
B

ms
B
〈 ˆ̄ΨΨ̂〉s(T, µB) . (2.37)

Here mf
B = Zfmm

f
q is the bare quark mass of flavor f .

2.2. Truncation

As mentioned earlier, the DSEs represent an infinite tower of coupled integral
equations and only if we solve this tower completely, the DSEs are equivalent to
the generating functional. But in order to be able to solve it, we need truncations
(approximations) rendering the infinite tower finite. Thereby, we have to chose the
truncation carefully to conserve all important properties of the theory, e.g. the
thermodynamic properties. The truncations are furthermore guided by symmetries,
constrains and other methods, e.g. lattice QCD. In general, the truncation can be
improved systematically by adding n-point Green functions order by order and
using ansätze for the missing Green functions. In vacuum, this was done e.g. in
Refs. [34, 84–88]. At finite temperature, however, the truncation does not have
reached this level of sophistication.

In the following section, we will first introduce hadronic contributions in the quark-
gluon vertex before we discuss the truncation of the non-hadronic part and the
QCD phase diagram resulting from this non-hadronic part only. The truncation
that will be presented hereinafter is mainly detailed in Ref. [44] but with more
attention to the mesonic backcoupling in Refs [38, 89].
12For high masses the dynamic part is negligible relative to the static part.
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2.2. Truncation

2.2.1. Hadronic contributions in the quark-gluon vertex

In this section, we will take a closer look at the untruncated full quark-gluon
vertex DSE shown in Fig. 2.1. We will express parts of the vertex by hadronic
contributions and will introduce an approximation for the quark-gluon vertex based
on the differentiation into hadronic and non-hadronic contributions.

Besides the tree-level term, the full quark-gluon vertex DSE contains three one-loop
diagrams with fully dressed quark, ghost and gluon propagators running through
the loop and connected to the external gluon by a corresponding bare vertex.
It remains a gluonic two-loop diagram with a bare four gluon vertex. The one-
and two-loop diagrams contain four- and five-point 1PI Green functions, which
are expendable in skeleton diagrams with fully dressed internal 1PI propagators
and vertices [72]. If we now consider the first non-trivial and Abelian diagram
of the quark-gluon vertex DSE in Fig. 2.1 (first loop diagram indicated by a red
blob and a dressed quark running through the loop13), we can re-express parts
of the skeleton diagrams of the contained four-point quark vertex in a resonance
expansion. If we do so for the lowest orders of this quark-antiquark scattering
kernel, the Abelian diagram of the quark-gluon vertex DSE can be represented by
Fig. 2.3 as discussed in Refs. [44, 56].

= + +

N,...

+ (...)

Figure 2.3.: Resonance expansion of the quark-antiquark scattering kernel in the
Abelian diagram of the quark-gluon vertex in terms of Bethe-Salpeter and
Faddeev-type vertices as well as propagators for mesons and baryons. Quark,
gluon, meson and baryon propagators are denoted by solid, curly, dashed and
triple lines, respectively. The intersection of two quarks and a gluon or a meson
represents a quark-gluon or a Bethe-Salpeter vertex, respectively. The analogon
for three quarks and a baryon is called Faddeev-type vertex. Dressed quantities
are indicated by big colored dots. The remaining ones are bare. The arrows
indicate the direction of the quark or baryon flavor and the momentum. Note
that the upper vertex in all diagrams is bare. The shown expansion is adopted
from Ref. [44]. The signs and prefactors are absorbed into the diagrams.

13The other non-trivial diagrams are non-Abelian.
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= + +

N,...

Figure 2.4.: Separation of the full quark-gluon vertex into non-hadronic contri-
butions (first term) and lowest order hadronic contributions resulting from a
resonance expansion of the quark-antiquark scattering kernel. The first term rep-
resents a summary of all non-hadronic contributions. Thereby the non-hadronic
part is mostly given by pure Yang-Mills diagrams. For the hadronic contribution
we consider an one-meson exchange (second term) and a baryon two-loop dia-
gram (third term). The components are defined in the same way as in Fig. 2.3.
The shown expansion is again adopted from Refs. [44].

The first and last contributions represent the off-shell one meson and one gluon
exchanges between a quark and an antiquark. The second contribution is much
more complicated since the off-shell baryon is included via a two loop diagram.
In these diagrams, the mesons and baryons are no actual degrees of freedom but
composite particles. They interact with their constituents via the Bethe-Salpeter
and Faddeev-type vertices. Double counting of diagrams is easily avoided in this
expansion due to the different quantum numbers of the hadrons. If we summarize
all non-hadronic contributions of the quark-gluon vertex into one quantity and
only consider the lowest order of the hadronic contributions, the full quark-gluon
vertex then takes the form shown in Fig. 2.4. We assume the summary term of all
non-hadronic contributions to consist basically of pure Yang-Mills diagrams since
we expect the diagrams to be only mildly quark dependent. The hadronic terms
then represent unquenching effects in form of the backcoupling of hadron degrees
of freedom onto the quark-gluon interaction.14

In this work, we will not solve the quark-gluon vertex DSE, but instead we will
insert the different parts of the vertex into the other considered equations (quark,
gluon, mesons). Consequently, we will approximate the different parts of the vertex
by solving them separately. This separation of the hadronic and non-hadronic
parts can be motivated by two considerations: (i) a 1/Nc-expansion and (ii) the
tensor-structures to which the hadronic part in comparison to the non-hadronic
14Hadronic contributions in the quark-gluon vertex are generated by the inclusion of dynamical

sea quarks in the quark-gluon interaction and are therefore only present in unquenched QCD.
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2.2. Truncation

part contributes. We discuss the effects of the Pion, since the other hadronic
diagrams are suppressed by a factor Λ2

QCD/m
2
x relative to the Pion. The effects,

however, are similar.

(i) If we consider a 1/Nc-expansion15 of the quark-gluon vertex, the hadronic
part contributes maximally to the next-to-leading order (NLO) corrections
in the order of O(1/Nc). The leading order (LO) corrections result from
the non-Abelian diagrams and are of the order of O(1). Since the hadronic
terms are suppressed relative to the non-hadronic part we can motivate a
separation of the two contributions.

(ii) In general, the quark-gluon vertex can be decomposed into twelve tensor-
structures. See e.g. Ref. [92] for a basis decomposition. All these tensor-
structures can be important in the intermediate momentum regime, as
explored in lattice simulations in Ref. [93] and DSE calculations in Refs. [74,
94]. Ref. [56] shows that the one-Pion exchange diagram contributes to
all of these tensor-structures. Our ansatz for the non-hadronic part of the
quark-gluon vertex, on the other hand, is based on the leading vertex tensor-
structure with a tree-level counterpart. Due to this different tensor structure
decomposition necessary for the hadronic part, it makes sense to separate
the two interactions in our calculation.

In the next section, an ansatz for the non-hadronic part of the quark-gluon vertex
is introduced. In the remaining chapter and Sec. 4, we neglect the hadronic
contributions and define and use two corresponding truncations. But in Sec. 5 we
will introduce the one-meson exchange in addition to the non-hadronic part and
discuss its implication. In Sec. 6, we do the same for the baryon.

2.2.2. Fischer-Maas-Müller model/ The non-hadronic part

For the full quark-gluon vertex, we now take only the first term in Fig. 2.4
into account and discuss a truncation for the remaining set of equations build
upon i) a truncation of the gluon DSE and ii) an ansatz for the quark-gluon
vertex. This truncation evolved from the quenched case [75, 76] to different
numbers of backcoupled quark flavors [35–37]. Applications also exist for color
superconductivity [95, 96]. An overview can be found in Ref. [17].
15The large Nc expansion originates from the Refs. [90, 91] and arranges the appearing diagrams

in orders of the color number Nc. For this purpose, the strong coupling constant gs is replaced
by g0

s /
√
Nc, where g0

s is kept fixed. In Dyson-Schwinger diagrams, the Nc-order can easily be
determined by matching the color structure on the LHS and RHS of the equation, using the
rules given in App. A.2 and exchanging the strong coupling constant as described before.
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2. Fundamental particles of QCD

Table 2.1.: Temperature dependent fit parameter of the quenched gluon fit function
shown in Eq. (2.38) below and above the transition temperature Tc = 277 MeV
for the quenched SUC(Nc) theory. t = T/Tc represents the reduced temperature.

Parameter t < 1 t > 1

aL(T ) 0.595− 0.9025 t+ 0.4005 t2 3.6199 t− 3.4835

aT(T ) 0.595 + 1.1010 t2 0.8505 t− 0.2965

bL(T ) 1.355− 0.5741 t+ 0.3287 t2 0.1131 t+ 0.9319

bT(T ) 1.355 + 0.5548 t2 0.4296 t+ 0.7103

For the truncation of the gluon DSE, we use a temperature-dependent fit Dfit
µν(k)

to quenched lattice data [76, 97] for the Yang-Mills diagrams DYM
µν (k) indicated

in Fig. 2.2 as gray dot with subscript YM. The quark-loop term ΠQL
µν (k) in this

equation then leads to the unquenching of the gluon.16 The fit function to the
quenched gluon is given in terms of transversal and longitudinal gluon dressing
functions (relation to gluon propagator in Eq. (2.30)) which are represented by

Zfit
T/L(k2) = x

(x+ 1)2



(

ĉ

x+ aT/L(T )

)bT/L(T )

+ x

(
β0αs
4π ln(1 + x)

)γ

 . (2.38)

In this fit function, we use the momentum variable x = k2/Λ2 together with the
gluon momentum k. ĉ = 5.87 and Λ = 1.4 GeV are temperature independent
parameters and αs is the running coupling defined in Sec. 2.1.2. The logarithmic
term represents the perturbative running with the anomalous dimension of the
quenched gluon γ = −13Nc+4Nf

22Nc+4Nf

que.= −13
22 at high momenta. It includes the leading-

order coefficient of the beta function β0 = (11Nc − 2Nf)/3
que.= 11Nc/3. Since we

consider a fit for a quenched gluon, Nf vanishes in these two parameters. The
remaining temperature dependent fit parameters aT/L(T ) and bT/L(T ), appearing
in the first term, are shown in Tab. 2.1.

Since we split the YM part and the quark-loop and calculate them separately, we
neglect sub-leading (compared to quark loop) second order (in a 1/Nc expansion)
unquenching effects in YM diagrams. But due to the unquenching process of
16In the quenched case, the YM sector decouples from the matter sector and can be calculated

without the knowledge of the quark. The quark, however, uses the quenched gluon as input.
A quark or hadronic backcoupling onto the gluon leads to a coupling of the two sectors and
unquenches the system of equations. Infinitely heavy quarks decouple from the YM part.
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this truncation, we achieve a non-trivial coupling of different quark flavors and
introduce implicit flavor, chemical potential and temperature dependencies to the
quark and gluon. Consequently, we can state that the gluon is controlled by QCD
dynamics instead of just modeling. Since the quenched gluon is chemical potential
independent, the chemical potential dependence of the gluon only results from the
quark loop.

For the considered dressed quark-gluon vertex Γν,h,fqg (p, q, k), we use an infrared
enhanced perturbative ansatz with a tensor structure which is guided by the
Slavnov-Taylor identity. In previous works [36, 37, 44] the ansatz was fully
determined by the construction

Γν,h,fqg (p, q, k) = igst
h Z̃3γ

νΓqg(x)ΓfBC(p, q) ,

Γqg(x) = d1
d2 + xΛ2 + x

1 + x

(
β0αs
4π ln(1 + x)

)2δ
,

ΓfBC(p, q) = (1− δν4)Af (p) + Af (q)
2 + δν4

Cf (p) + Cf (q)
2 . (2.39)

In this work, we will modify this construction, as will be shown in the next
Sec. 2.2.3. In the following, we will, however, discuss the original construction.
Except for ΓfBC(p, q) in the quark DSE, everything else is still valid for the modified
construction.

In the self energy Σ of the quark DSE, the momentum variable x is represented
by the gluon momentum x = k2/Λ2 whereas in the quark loop ΠQL of the gluon
DSE it is defined via the sum over the squared quark momenta x = (p2 + q2)/Λ2.
This distinction is necessary to maintain the multiplicative renormalizability of
the gluon DSE [98]. β0 = (11Nc − 2Nf)/3 is again the leading-order coefficient of
beta function and the temperature-independent parameters d2 = 0.5 GeV2 and
Λ = 1.4 GeV are fixed to match the scales in the quenched gluon propagator from
the lattice. The only free parameter d1 represents the effective infrared vertex
interaction strength. We will discuss its fixing in Sec. 2.2.3. gs, th, and Z̃3 are
defined in the same way as in Sec. 2.1.2.

Overall, Γqg(x) describes a phenomenological vertex dressing function ansatz
capturing the well known perturbative running of the vertex at large momenta
and parametrizing the non-perturbative enhancement at small momenta, which
is known from explicit solutions of the vertex DSE in vacuum (see Refs. [34,
84] and references therein for more information). It accounts for non-Abelian
effects and due to the second term, it describes the correct logarithmic running
with the anomalous dimension of the vertex 2δ = −9Nc

22Nc−4Nf
. The first term is a

phenomenological infrared ansatz with the two parameters d1 and d2.
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ΓfBC(p, q) together with the Dirac matrix γν represent the leading term of the
Abelian Ball-Chiu vertex construction [99] in medium. We will refer to it as
leading-order BC term. This term satisfies the Abelian Ward-Takahashi identity
(WTI), which is used as approximation for the non-Abelian Slavnov-Taylor identity
(STI). In App. B.4, we discuss the STI and the resulting construction in full
glory. Due to the quark propagator in the leading-order BC term, a non-trivial
temperature and chemical potential dependence is introduced into the vertex. This
chemical potential and temperature dependence, however, is not sufficient. In
Ref. [42], we studied the baryon number fluctuations and discussed the necessity
of an improvement of the vertex truncation by using more terms of the Ball-Chiu
vertex construction.

For a measure of this truncation concerning the gluon DSE and the quark-gluon
vertex, we can discuss two different comparisons:

1. In vacuum, the comparison of this truncation with a more elaborated trun-
cation in Ref. [98] where the quark, gluon and ghost are calculated ex-
plicitly, showed a difference below the five-percent level. Furthermore, the
vertex dressing together with the gluon dressing fulfills the perturbative
renormalization-group running at large momenta.

2. At finite temperature and vanishing chemical potential, the comparison of
DSE results for an unquenched gluon [36, 45] with corresponding lattice
results [100] showed very good agreement in the range of 5% − 10%. The
results are summarized and discussed in Ref. [17]. It is worth mentioning
that the DSE results were published before the lattice results.

Due to the complexity of the calculation of fundamental particles and mesons, we
now modify the vertex construction and introduce a further approximation.

2.2.3. Additional approximations

Because of (i) the numerical complexity of the additional study of mesons (in
medium) and (ii) the calculation of gluons for finite chemical potential but vanishing
temperature, we will introduce two additional approximations in this section.

The first approximation (i) concerns the tensor structure of the quark-gluon vertex.
In Sec. 3.1.1, it will be discussed that the quark self energy has to fulfill the axial-
vector Ward-Takahashi identity (AxWTI) to ensure the correct implementation of
the chiral symmetry and its breaking in the bound state approach. This further
implies that we have to chose between a Rainbow-Ladder like vertex in the quark
DSE and a more complex bound state kernel construction. To keep the (medium)
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bound state calculation simple and fast, we strive for a Rainbow-Ladder like vertex
in the quark DSE. The discussion how the more complex bound state kernel is
constructed is detailed in Sec. 3.1.1 and Ref. [82].

A Rainbow-Ladder like vertex means that the quark-gluon vertex construction in
Eq. (2.39) should not depend on the quark propagator. For this purpose, we have
to replace ΓfBC(p, q) by the quark wave-function renormalization constant Zf2 . If
we do so in the quark and gluon DSE, the calculation is no longer converging. The
problem emerges in the quark loop, where ΓfBC(p, q) seems to have a stabilizing
role. In Refs. [95, 96] the same calculation converged, but a Nambu-Gorkov
formalism and another regularization of the gluon were used to calculate color
superconductivity. The gluon regularization used in this work and the previous
works mentioned above is detailed in App. C.1.1.

In this work, we want to keep contact to previous calculations as much as possible.
Therefore, we introduce a quark-gluon vertex truncation which we will refer
to as Hybrid (Hyb) truncation from now on. In this truncation, we replace
ΓfBC(p, q)→ Zf2 in the quark-gluon vertex construction (2.39) of the quark DSE
together with an appropriate change of the vertex interaction strength d1 → dq1
to compensate the missing interaction strength resulting from the omission of the
quark dressing functions (d2 and Λ remain unchanged). Consequently, we use a
Rainbow-Ladder like vertex term

Γν,h,fqg (p, q, k) = igst
hZf2 Z̃3γ

ν Γ̃qg(x) (2.40)

with a modified vertex interaction strength in the quark DSE while we keep the full
(leading-order BC) quark-gluon vertex construction as discussed in the previous
section for the gluon DSE. This includes an unchanged vertex interaction strength
d1 in the gluon DSE. What unchanged means will become clear in the next section,
where we discuss the parameter fixing of the truncation.

The second approximation (ii) concerns the tensor structure of the gluon propagator
in case of vanishing temperatures and finite chemical potential. In this case, we
neglect the chemical-potential dependence of the gluon (which results solely from
the quark backcoupling) by setting the gluon propagator to its vacuum state.17 This
further implies that the quark flavors do not influence each other anymore. The
reason is purely numerical and discussed in App. C.1.2. We use this approximation
for first qualitative results but strive to improve upon it. To quantify the error, we
will study the chemical potential dependency of the gluon at small temperatures
and baryon chemical potentials up to 1 GeV in Sec. 2.2.4.
17Other works (see e.g. Refs. [101, 102]) used this approximation too, since the gluon is only

implicitly chemical potential dependent through the quark in the quark loop.
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Fixing parameters

In this section, we discuss the fixing of parameters for two truncations: The one
used in previous works [42] without the additional approximations (1BC) and
the one with those approximations (Hyb). We introduced the Hyb truncation
with an ’unchanged’ d1 in the gluon vertex. Unchanged means that we use the
d1 value from the 1BC truncation as input for the Hyb truncation. Since we
additionally determine the quark mass ratio between the light and strange quarks
for both truncations by fixing the Pion and Kaon masses in the Hyb truncation, it
is necessary to determine the trunaction and QCD parameters of both truncations
simultaneously in an iterative procedure. This iterative procedure is shown in
Fig. 2.5. The converged parameters for both truncations, i.e. the vertex strengths
and quark masses, are shown in Tab. 2.2 together with the corresponding pseudo-
critical temperature at vanishing chemical potential. The resultant meson masses
in vacuum are given in Tab. 3.3. In Fig. 2.6 we furthermore show the vacuum-
normalized, regularized quark condensate results of both truncations compared to
the corresponding continuum extrapolated lattice result for finite temperature and
vanishing chemical potential.

At low temperatures, the results of both truncation are almost indistinguishable
and within the error bars they agree well with the lattice results. For moderate
temperatures, the slope of the lattice data is reproduced satisfactorily by both
truncations. We have to emphasize that this is a non-trivial result since the
parameter fixing only influences the pseudocritical temperature not the slope of
our results. At high temperatures, however, the Hyb truncation produces slightly
too large condensate values while the 1BC truncation shows good agreement with
the lattice results. In the following, we will discuss that this behavior of the Hyb
truncation is not connected to the additional approximations but is due to missing
contributions in the quark-gluon vertex.

Table 2.2.: Vertex strength parameter(s) d(q)
1 , quark masses mf

q , light-to-strange
quark mass ratio r`s and the pseudocritical temperature Tpc at vanishing chemical
potential for the truncations 1BC and Hyb. The error of the pseudocritical tem-
perature is purely numerical and its determination from the vacuum-normalized,
regularized quark condensate is discussed in App. C.1.2.

dq1 [GeV2] d1 [GeV2] m`
q [MeV] ms

q [MeV] r`s Tpc [MeV]
1BC 8.49 0.80 20.6 25.7 156(1)
Hyb 12.85 8.49 1.47 37.8 25.7 155(1)
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1BC truncation
Vertex construction: (2.39) with d1(= dq1) in the gluon and quark DSE
Externally fixed parameters: Light-to-strange quark mass ratio r`s = m`

q/m
s
q

Parameters to determine:
I Fix the vertex interaction strength d1 of the quark and gluon DSE to the lattice
pseudocritical temperature T lat

pc from Ref. [4].

I Fix the light quark massm`
q such that the DSE results for the vacuum-normalized

regularized quark condensate in Eq. (2.37) matches the continuum-extrapolated
lattice counterpart from Ref. [4] in the high temperature limit.

Hyb truncation
Vertex construction: (2.39) with d1 in the gluon DSE and (2.40) with d1 → dq1
in the quark DSE
Externally fixed parameters: Vertex interaction strength d1 in the gluon DSE
Parameters to determine:
I Fix the vertex interaction strength dq1 of the quark DSE to the lattice pseudo-
critical temperature T lat

pc from Ref. [4].

I Fix the light-quark m`
q and strange-quark ms

q masses such that the Pion mπ

and Kaon mK masses match the experimental values shown in Tab. 3.3.

Start guess
d1, m`

q, ms
q

End results
d1, dq1, m`

q, ms
q, r`s, Tpc

truncation parameter unchanged/ converged

d1Inputr`s

Figure 2.5.: Iterative procedure to fix the truncation parameters of the 1BC and
Hyb truncations simultaneously. In this iterative procedure, we determine the
parameters of the two truncations repeatedly with the input from the other
truncation until the parameters of both truncations converged. For the lattice
pseudocritical temperature we used the same value as in previous works [4]
but values between 154.0 MeV and 157.0 MeV with errors between 1.5 MeV and
9.0 MeV are found in Refs. [4, 5, 103, 104].
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Figure 2.6.: Comparison of the vacuum-normalized regularized quark condensate
(2.37) of the 1BC (dashed gray) [42] and Hyb (solid black) [105] DSE truncation
with the corresponding continuum-extrapolated lattice results (solid red circles)
from Ref. [4]. The results are considered at finite temperature and vanishing
chemical potential.

First, it has to be mentioned that at high temperature the normalized regularized
quark condensate is mainly controlled by the static part of the quark masses.
Consequently, the overshooting of the Hyb truncation results from too high current
quark masses. But where do these high quark masses come from? In this work,
the quark masses in the 1BC truncation are fixed to the correct large temperature
limit of the quark condensate (w.r.t lattice data) and therefore to the correct
thermodynamics, while the quark masses of the Hyb truncation are fixed to
reproduce the correct meson masses. Applying the latter fixing procedure to the
1BC truncation, too, we also observe the same overestimation of chiral symmetry
breaking as shown in Ref. [37]. Consequently, it is reasonable to assume that the
additional approximations do not lead to the observed overestimation of chiral
symmetry breaking at high temperature. The reason, however, is an artifact of
the Fischer-Maas-Müller truncation. More precisely, it is an artifact of the quark-
gluon vertex ansatz since the gluon compares satisfactorily with the lattice results.
Unfortunately, the artifact makes it impossible to describe meson properties and
thermodynamics equally well at the same time.

In general, in the high-temperature phase, a vertex construction with more Ball-
Chiu components is advisable. This is also visible in sensitive thermodynamic
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2.2. Truncation

observables like the baryon number fluctuations studied in Ref. [42], where we
argued that terms reacting strongly on the chiral restoration (they are only present
if chiral symmetry broken) are missing in the vertex ansatz. We guess that the
simultaneous description of thermodynamics and meson properties will improve if
we improve the used vertex construction.

Since we are mostly interested in describing mesons in medium in this work, we fix
our quark masses to the meson masses and do not worry about the artifact. Next,
it is interesting how the QCD phase diagram reacts on the modified interaction in
the quark DSE.

2.2.4. QCD phase diagram

In this section, we will compare the chiral symmetry QCD phase diagram for the
Hyb and 1BC truncation. The comparison is presented in Fig. 2.7. The 1BC
truncation phase diagram was only calculated for a reduced chemical potential
interval due to the necessary additional computational effort. In both truncations,
we find a crossover at low chemical potential which becomes steeper and turns at
the second-order critical endpoint (CEP) into a metastable phase. This metastable
phase thereby represents a phase-coexistence area where the coexisting phases
exist simultaneously but locally separated. This first-order coexistence region is
defined by the area between the so-called Nambu-Goldstone and Wigner-Weyl
first-order spinodals which are represented by the upper and lower strait line in
Fig. 2.7, respectively. The physical first-order phase transition is located inside this
coexistence region and has to be determined by thermodynamic considerations. In
Ref. [43], the thermodynamic quantities of the 1BC truncation were evaluated and
discussed, but due to the lack of lattice data for the pressure difference between the
Nambu and Wigner phase, it is not possible to determine the physical first-order
phase transition, yet.

The Nambu and Wigner spinodals are defined by two types of stable solutions of
the quark DSE: The chirally broken (Nambu) and the chirally symmetric (Wigner)
solution. A more detailed description can be found in Apps. B.1 and Sec. 2.1.4.
For chemical potentials above the CEP, the appearance and disappearance of
these solutions mark three regions in the plot: At low temperature and chemical
potential, only the Nambu solution is found in the numerical iteration. The Wigner
solution is also present but neither iteratively attractive nor thermodynamically
favored. At high temperature and/or chemical potential, the Nambu solution
disappears and the Wigner solution remains, now as the only stable solution. In
between, there is an area where we find both solutions as stable solutions.[105] In
the text above, we already indicated this area as metastable phase or coexistence
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Figure 2.7.: Chiral symmetry QCD phase diagram for the Hyb (black) and 1BC
(blue) truncation introduced in Sec. 2.2.3. Dashed lines correspond to crossover
transitions while strait lines represent a first-order spinodal. The physical first-
order phase transition happens in the coexistence region indicated by the shaded
areas. The big dots show the location of the second order critical endpoint of
the corresponding truncation. In case of the Hyb truncation, the arrow towards
the chemical potential axis displays the zero-temperature limit of the Wigner
spinodal. This point was calculated neglecting the chemical potential dependency
of the gluon. More information can be found in the text. The transition lines are
obtained from the inflection point of the quark condensate. More information to
the definition and the determination of the (pseudo)critical temperatures can
be found in App. C.1.2. For the calculation of both phase diagrams the strange
quark chemical potential was set to µsq = 0 for comparability with previous
results, e.g. Ref. [42]. The phase diagram was first published in Ref. [106].

region. The Nambu and Wigner spinodals are therefore defined by the chemical
potential, temperature tuple of the upper and lower borders of the latter region.
See Ref. [107] for a proper definition and Ref. [12] for a comprehensive introduction
to the QCD phase diagram. More details and explanations on the appearance and
disappearance of the different solutions in the quark DSE can be found in Refs. [57,
108, 109].

The phase diagram of the Hyb truncation resembles the one of the 1BC truncation
but the CEP is shifted to higher chemical potentials. This is mainly due to the high
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2.2. Truncation

vertex interaction strength dq1 value in the quark DSE and shows the necessity to
carefully take all the temperature and chemical potential effects of the quark-gluon
vertex into account. The corresponding critical endpoints (CEPs) of the two
truncations are located at

(µB , T )CEPHyb = (636(1) , 111.9(1)) MeV ,

(µB , T )CEP1BC = (495(1) , 119.2(1)) MeV . (2.41)

The errors of the CEPs are purely numerical.18 Another considerable feature of
the phase diagram is the transition temperature Tpc(µB) at low baryon chemical
potentials µB which can be described by the expansion

Tpc(µB)
Tpc(0) = 1− κ

(
µB

Tpc(0)

)2

+ λ

(
µB

Tpc(0)

)4

(2.42)

and represents the curvature of the chiral phase boundary at low chemical potential.
With the corresponding pseudocritical temperature values at vanishing chemical
potential Tpc(0) shown in Tab. 2.2, we obtain the associated curvature coefficients

κHyb = 0.017331 , λHyb = −0.000796 ,
κ1BC = 0.024626 , λ1BC = −0.000532 (2.43)

by fitting the expansion up to a baryon chemical potential of µB = 240 MeV. In
comparison to FRG [47] (κ = 0.0142(2)) and extrapolated lattice results [104, 110,
111] (κ = 0.0144(26) − 0.0153(18)) as well as results for a FRG-DSE combined
framework [48, 49] (κ = 0.0147(5)− 0.0150(7)), the curvatures of both truncations
are too high. But interestingly, the less consistent Hyb truncation is closer to
the Nf = 2 + 1 curvature values of FRG, lattice and the FRG-DSE combined
framework. Also, for the CEP, we find a better agreement to the FRG and FRG-
DSE combined framework when considering the Hyb truncation instead of the
1BC truncation. We expect that this is due to missing effects in the quark-gluon
vertex, e.g. further Ball-Chiu terms. In the following, we will mention some other
possible optimizations of the calculation before we will do a quality check of the
Hyb truncation.

So far, we did not include the hadronic backcoupling as introduced in Sec. 2.2.1.
This can possibly improve the agreement with the extrapolated lattice results
and will be done in Chaps. 5 and 6. Eventually, in Chap. 5, we will discuss the
18An estimation of the systematic error due to truncation assumptions could be done by the com-

parison with other truncations, e.g. the combined framework of the functional renormalization-
group (FRG) together with DSE in Ref. [49].
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influence of mesonic backcoupling on the QCD phase diagram, the location of
the CEP and the curvature. In Ref. [44], this was already done for the baryonic
backcoupling effects but in a simplified manner. As we will, unfortunately, see
later, both effects improve the agreement with the lattice extrapolations only
marginally. But the description of the respective backcoupling can and should still
be improved. Another possibility to improve the phase diagram and the agreement
of the curvature in a future work is the introduction of a backcoupled background
gauge field. This further allows us to simultaneously investigate the confinement
via the Polyakov loop potential. See e.g. Ref. [112] for the determination of
the Polyakov loop potential from a background gluon field in the FRG and DSE
approach and Refs. [113, 114] for basics to the background gluon field.

Quality check of the truncation

In this section, we will mainly discuss the Hyb truncation results, but in preliminary
calculations with slightly modified numerics we found indications for a similar
behavior for the coexistence lines of the 1BC truncation. At first, we will consider
the flaws of the QCD phase diagram, before we discuss the validity of the second
approximation (vacuum gluon approximation).

Considering the QCD phase diagram for chiral symmetry in Fig. 2.7, we observe
problems with the spinodals of the Hyb truncation. At high chemical potential, we
find a saturation of the Nambu and Wigner spinodal and a subsequent unphysical
increase of the Nambu spinodal. Additionally, there is no intersection with the
chemical potential axis. At this point, we have to note that for such high chemical
potentials and low temperatures, the truncation and calculation method neglects
color-superconducting phases and effects. To include them, a Nambu-Gorkov
formalism would be necessary. See Refs. [95, 96] for studies of the super-conducting
phases using the Nambu-Gorkov formalism. We infer that we cannot apply the
two truncations presented in previous sections in this region of phase diagram,
also because we expect the numerical calculation to break down in this area of the
phase diagram.

Furthermore, the arrow in the figure shows the zero-temperature limit of the Wigner
spinodal from the Hyb truncation which is located at µW,`

B = 936 MeV. This value
is calculated on the chemical potential axis with zero temperature implying that
the second approximation (the neglect of the chemical potential dependency of
the gluon by using the vacuum gluon) in Sec. 2.2.3 becomes important. In
Sec. 4.2, we will discuss the zero-temperature limit of the quark condensate and the
corresponding Nambu and Wigner solutions in more detail. If we extrapolate the
finite temperature Wigner solution to zero temperature using only the data before
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Figure 2.8.: Vacuum normalized longitudinal (left) and transversal (right) gluon
propagator DL/T(k) = ZL/T(k)/k2 plotted against the gluon four momentum for
different chemical potentials (colors) and temperatures (line-styles). The results
are calculated with the Hyb truncation.

saturation takes place, we find a 20 % higher value for the zero-temperature limit
of the Wigner spinodal as compared to the calculation on the chemical potential
axis. As already mentioned in the last section, the calculation on the chemical
potential axis differs from the finite temperature calculation since we use the
second (vacuum gluon) approximation from Sec. 2.2.3. Now, there are two possible
explanations for the deviation of the Wigner spinodal on the chemical potential
axis calculated with the finite temperature and chemical potential method. 1.)
The vacuum gluon approximation in this phase diagram area is too strong or 2.)
the finite temperature results can not be trusted in an certain area also before
saturation. To test the vacuum gluon approximation, we consider the chemical
potential dependence of the gluon propagator for two low temperatures.19 The
results are shown in Fig 2.8.

At high momenta, the medium gluon propagators equal the vacuum one. We
consequently observe a vanishing chemical potential and temperature dependence
for both propagators. For low and moderate momenta, however, the figure shows
an increasing behavior for increasing temperature and/or chemical potential. This
increase is much more pronounced in the longitudinal gluon propagator than
in the transversal one. For chemical potentials up to 1.05 GeV and vanishing
temperatures, we expect a maximal change over whole momentum range of 50%
and 2% for the longitudinal and transversal gluon propagator, respectively.
19We use two temperatures to be able to expect the behavior of the gluon propagator for vanishing

temperature. The effect of using a vacuum gluon instead of a medium gluon in the DSE
calculation is also discussed in Ref. [115].
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To go into more detail, we consider the different contributions to the gluon propaga-
tor. The gluon propagator is constructed from the chemical potential independent
Yang-Mills part DYM

µν and the quark loop ΠQL. The quark loop itself can be decom-
posed in a regular part Π̃QL and a screening mass msc as discussed in App. C.1.1.
The regular part of the quark loop shows a maximal change of 5% up to a chemical
potential of 1.05 GeV for the transversal and longitudinal part. Consequently, the
regular part has to play a sub-leading role for the chemical potential dependence
of the longitudinal gluon propagator. The dominant medium effect of the gluon
propagator results from the screening mass msc.

Since the transversal screening mass or Meissner mass msc
M is zero in our cal-

culation20, the transversal gluon propagator is only weakly chemical potential
dependent. The longitudinal screening mass or Debye mass msc

D has a much
stronger influence. It decreases for decreasing temperatures at low chemical po-
tential and should vanish for vanishing temperatures. In our calculation, however,
the screening mass becomes negative above a certain chemical potential (also for
non-vanishing but low temperatures) which is unphysical and an artifact of our
truncation. This behavior is applicable to 1BC calculations, too.

As we can see, the treatment of the gluon propagator at finite chemical potential
and vanishing temperatures has to be improved in future works. The same is
true for the appearing negative screening masses. In this work, we will, however,
keep the vacuum gluon approximation due to the numerical complexity of the
calculation and the high computational runtime experienced otherwise.

20The Meisner mass can become non-zero in color-superconducting phase if we use the Nambu-
Gorkov formalism.
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In the last chapter, we discussed the properties of the fundamental particles of
QCD: the quarks and gluons. In nature, these particles do not exist as free
particles due to their own color structure and the color confinement. Only hadrons
as color-neutral bound states of quarks and gluons which interact via the strong
interaction appear as observable particles. Thereby, we define physical particles
as irreducible representations of the Poincaré group with fixed quantum numbers
such as spin, parity, mass, flavor. Using these quantum numbers we can categorize
the observable (composite) particles via

(i) the classes of bound states (mesons, baryons, glueballs, tetraquarks, . . .)
which result from the requirement of a color singlet state,

(ii) the quantum numbers1 JPC of the invariant subspace of the Poincaré group
with the total spin of the meson J , the parity P and the charge conjugation
parity C and

(iii) the quark flavor content.

In this chapter, we consider the important features of mesons as bound states of
quarks and antiquarks described by the Dyson-Schwinger approach in vacuum and
medium. More specifically, we will consider scalar (S), pseudo-scalar (PS), vector
(V) and axial-vector (AV) mesons with the quantum numbers JPC = 0−+, 0++,
1−− and 1++, respectively. Now only the flavor content remains to be discussed.

A practical classification scheme for composite particles of QCD according to the
quark flavor content is the constituent quark model introduced by Gell-Mann and
Zweig in Refs. [116, 117]. In App. B.3, we take this model into account considering
the global flavor transformations of the flavor symmetry groups UV(1)×SUV(Nf)×
SUA(Nf) × UA(1) and derive flavor and baryon numbers as conserved quantum
numbers. These can be used to derive the meson multiples shown in Fig. 3.1.

In this work, we will concentrate on Pion, Kaon, Sigma/ f0, Rho, Phi and a1
mesons. Since we use the isospin-symmetric limit of equal up- and down-quark

1See App. B.2.2 for more information to the irreducible representations and the transformations
of the Poincaré group and App. B.2.3 for more information of the discrete symmetries of parity,
time-reversal and charge-conjugation.
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3. Mesonic bound states in QCD

Figure 3.1.: Graphical notation of the pseudo-scalar (JP = 0−, left) and vector
(JP = 1−, right) mesons in so-called multiplets showing their strangeness S and
isospin I3 quantum numbers. The representation of the mesons in flavor space
can be found in App. A.3.

masses and neglect the electromagnetic interaction, there is no further distinction2
between the charged and uncharged Pions. The same holds for the Rho mesons. In
addition, due to the use of a Rainbow-Ladder interaction we also do not distinguish
between isoscalar (ω/η) and isovector (ρ/π) mesons.

In the following, we will introduce the Bethe-Salpeter framework and derive the
(on-shell) equations necessary to describe the mesonic bound states. Then, we will
show the features of their solutions. In the end, we will conclude by discussing
general properties of the meson bound states. Thereby, we will pay special attention
to the modifications resulting from the introduction of the medium.

3.1. Bethe-Salpeter framework

The Bethe-Salpeter framework is a functional method to calculate bound states
consisting of a quark and an antiquark based on their quantum equations of motion,
the so-called Bethe-Salpeter equations (BSEs). For this purpose, we need the
Green functions of the constituents as input. Analog to the fundamental particles,
we can derive the quantum equations of motion of the bound states from the
generating functional using two-particle irreducibiliy (2PI).3 Since the procedure
is quite similar, we will only mention the most important relations.

2No distinction means that the mesons are identical up to their flavor structure and are therefore
calculated in the same way. This is due to the fact that the flavor structure is not important
for the bound state wave-function calculation as we will see later on.

3Cutting two internal lines does not disconnect a 2PI diagram.
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3.1. Bethe-Salpeter framework

3.1.1. Derivation

To start the derivation, we express the effective action defined in Eq. (2.6) by
bilocal sources J [2](x, y) and fields ϕ̃[2](x, y) depending on two space-time points
and get the 2PI version of the effective action Γ[2][ϕ̃[2]]. We use the upper index ′[2]′
here and further on to indicate the 2PI nature of a variable. For a vanishing bilocal
source J [2](x, y) the conjugate bilocal field ϕ̃[2](x, y) corresponds to the 1PI two-
point Green function or propagator G2(x, y) = ϕ̃[2](x, y)

∣∣∣
J [2](x,y)→0

. The related

bilocally connected 2PI two-point Green function G
[2]
2 =

(
δ2Γ[2][ϕ̃[2]]
δϕ̃[2]δϕ̃[2]

)−1∣∣∣∣
ϕ̃[2]→G2

represents the propagator of a particle pair. In the following we are interested
in bound states consisting of quarks. Consequently, we only need the quark part
of the 2PI effective action. In Ref. [118] this part was determined and for Green
functions evaluated at the stationary point ( δΓ

[2][S ]
δS = 0) it can be written as:

Γ[2][S ] = TrF logS−1 − TrF
[
1 − S−1

0 S
]

+ Γ[2]
Int[S ] (3.1)

where S and S0 are the dressed and bare quark propagators with suppressed quark
flavor, color, Dirac and momentum dependence. TrF represents a trace in the
functional sense, which means that we trace over the flavor, color and Dirac indices
as well as the momentum space. The considered interaction part of the 2PI effective
action Γ[2]

Int[S ] contains all 2PI diagrams w.r.t. the quark propagator S . Analog
to the 1PI version, we can now derive all 2PI n-point Green functions from the
2PI effective action by applying functional derivatives w.r.t. the bilocal source and
subsequently setting this source to zero similar as shown in Eq. (2.2). If we use
the effective action shown in Eq. (3.1) for this procedure, we get the expression

(
G

[2]
2,S

)−1
= δ2Γ[2][S ]

δSδS
= S−1S−1 + δ2Γ[2]

Int[S ]
δSδS︸ ︷︷ ︸
=:−K

(3.2)

for the 2PI two-point Green function or propagator G[2]
2,S with quark content. By

reshuffling this relation, we obtain the bound state equation of motion

G
[2]
2,S = SS + SSKG

[2]
2,S . (3.3)

Strictly speaking the derivation of this equation is only valid for equal quark and
antiquark flavor but it can be extended for different flavors as discussed in [118].
If we introduce the ’inhomogeneous’ Bethe-Salpeter amplitude Γ̃ = S−1S−1G

[2]
2,SΓ0

with the renormalized vertex Γ0 (see Eq. (B.2) with renormalization constants),
we can again rewrite this equation to a general quark-antiquark-meson-vertex
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connecting a quark and an antiquark to a color-singlet meson-current channel. We
obtain the so-called inhomogeneous Bethe-Salpeter equation

Γ̃ = Γ0 +KSS Γ̃ (3.4)

which entails all off-shell information and the pole structure of the Green function
G

[2]
2,S . The included BSE kernel K resulting from the interacting part of the 2PI

effective action Γ[2]
Int[S ] is given by4

Kf
αβ,γδ(p, q, P ) = − δ2Γ[2]

Int[S ]
δ[Sf (q)]βδδ[Sf (p)]αγ

= −δ[Σ
f [S ](p)]αγ

δ[Sf (q)]βδ
!= [Γf,ε,hqg,0 ]αβDνε(k)[Γ̃f,ν,hqg (p, q, k)]γδ . (3.5)

Here we used the momentum routing k = p− q and the super-indices α, β, γ and
δ to summarize the color, flavor and Dirac structure. The second line is derived
similarly as in Ref. [56] and results from our truncation. Consequently, it is not
valid in general. In addition to the connection between the quark self energy and
the BSE kernel shown in this equation, the two quantities Σ and K have to fulfill
the non-singlet axial-vector-Ward-Takahashi identity (AxWTI) in chiral limit [119]
(see App. B.4 for a derivation). A possible notation for this AxWTI is
{
γ5Σf (p−) + Σf (p+)γ5

}
αδ

= −
∫

q
Kf
αβ,γδ(p, q, P )

{
γ5S

f (p−) + Sf (p+)γ5
}
βγ
.

(3.6)

By relating the quark self energy and the quark-antiquark scattering kernel, this
identity ensures the correct implementation of chiral symmetry and its dynamical
breaking in the bound state approach. It ensures that the Pion as Goldstone
Boson5 is mass-less in chiral limit enforcing a binding energy of the pseudo-scalar
mesons which exactly cancel the quark and antiquark masses.

To avoid a complicated calculation of the meson, especially in medium, we want
to be able to write the kernel in form of the second line in Eq. (3.5) without any
additional term but fulfilling the AxWTI at the same time. Due to the discussed
connection between the quark self energy Σf (p) and the BSE kernel K, this is
only possible if the quark-gluon vertex Γ̃f,ν,hqg (p, q, k) in the quark DSE does not

4In the 2PI approach the quark self energy results from the effective action via Σf (p) =
δΓ[2]

Int[S ]/δSf (p).
5The dichotomous nature of the Pions as almost mass-less (pseudo) Goldstone Bosons and bound
state of massive quarks is discussed from first principles in Ref. [31]. More information about
the Goldstone theorem and the BSE properties under the chiral symmetry can be found in
Refs. [120, 121].
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3.1. Bethe-Salpeter framework

depend on the quark propagator at the momenta p and q. The simplest way to
achieve this property is to use a Rainbow-Ladder(-like) truncation for the quark-
gluon vertex in the quark DSE. Indeed, the truncation discussed in Sec. 2.2.3 was
intentionally constructed such that we can describe the BSE kernel by the second
line in Eq. (3.6) and we see that the AxWTI is fulfilled. As a result, we use the
same one-gluon exchange interaction and especially the same dressed quark-gluon
vertex Γ̃f,ν,hqg (p, q, k) in the BSE as applied in the quark DSE.

If we want to go beyond the Rainbow-Ladder(-like) truncation in the interaction of
the quark DSE and meson BSE, e.g. by including further terms of the Ball-Chiu
vertex in Eq. (B.34), we can no longer express the kernel via the second line of
Eq. (3.5). The introduction of the first two terms of the Ball-Chiu vertex leads
to a further term in the BSE kernel, where we take the functional derivative of
the quark-gluon vertex w.r.t. the quark propagator in the quark self energy into
account:

∫
l[γµS(l)]αε

δ[Γνqg(l,p)]εγ
δ[S(q)]βδ Dµν(l − p). The AxWTI remains fulfilled. Adding

the third Ball-Chiu vertex, too, is only possible via the method explained in
Ref. [82]. The functional derivative of the gluon w.r.t. the quark propagator is
neglected here because its dependence is only implicit.

Next we want to describe a meson bound state x of mass mx and total momentum
P at the on-shell momentum P 2 = −m2

x. For this purpose we derive the on-shell
analogon to Eq. (3.4), the so-called homogeneous Bethe-Salpeter equation (hBSE).
To keep the chapter concise we will only mention the most important relations
while the detailed derivations are shifted to App. C.2.1. There, we use the fact
that hadrons produce poles in QCD Green functions, scattering amplitudes and
cross sections. As result, by inserting a complete set of hadron eigenstates we can
express the 2PI two-point Green function in the pole representation

G
[2]
2,S (P, p, l) =

∑

x

iχαx (P, p)χ̄αx (−P, l)
P 2 +m2

x + iε
+R(P, p, l) (3.7)

where we sum over the different pole contributions of the various bound states.
The second term R(P, p, l) on the other hand is regular. The individual pole
terms resemble a free propagator multiplied with a bound state wave-function
χαx (P, p) and its charge conjugated equivalent χ̄αx (P, p) =

[
Cχαx (P,−p)C−1]>.6

These wave-functions are defined via

χαx (P, x1, x2) :=
〈

0
∣∣∣T̂
{ ˆ̄Ψ(x1)Ψ̂(x2)

}∣∣∣P, x, α
〉 UΛ(1D,X)

= e−iPXχαx (P, x) (3.8)

and represent the transition probability of a quark-antiquark-system
〈

Ψ̄Ψ
∣∣∣ to turn

into an on-shell meson bound state |P, x, α〉 with momentum P , hadron type x
6C = γ2γ4 is the charge-conjugation matrix and the superscript > denotes a matrix transpose.
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3. Mesonic bound states in QCD

and further quantum numbers which we summarize by α. The second equality
results from the invariance under Poincaré translation UΛ(1D, X) with X = x1+x2

2
and x = x1−x2 (see Eq. (B.14) for the definition of Poincaré transformations onto
specific states). In the pole representation the Fourier transformed wave-functions
depend on the total momentum of the meson P and the relative momentum
between the two constituents p or l. If we now insert the pole representation of
the 2PI two-point Green function into Eq. (3.3) and compare the residues for a
specific meson x we get the homogeneous Bethe-Salpeter equation (hBSE)

S−1(p+)χαx (P, p)S−1(p−) =
∫

q
K(p, q, P )χαx (P, q) (3.9)

for the Bethe-Salpeter wave-functions

χαx (P, p) = S(p+)Γαx (P, p)S(p−) . (3.10)

Here, Γαx (P, p) is the Bethe-Salpeter amplitude (BSA). In the next sections we
will reformulate the hBSE for this amplitude and will discuss its properties under
discrete symmetries and in medium.

3.1.2. Homogeneous Bethe-Salpeter equation

In full glory, the general hBSE for different spin-parity-states is given by

Γ(µ)
x,e (P, p) =

∫

q
Γε,hqg,0S(q+)Γ(µ)

x,ẽ (P, q)S(q−)Γν,hqg (p, q, k)Dνε(k) (3.11)

or in a graphical representation as shown in Fig. 3.2. We again use the integral
abbreviation

∫
q =

∫ d4q
(2π)4 and represent the bosonic total momentum of the meson

by P . The fermionic relative momenta between the quark and the antiquark
are denoted by p externally and q inside the loop. We furthermore use the
momentum routing k = q − p for the gluon momentum which enters the dressed
gluon propagator Dνε from Eq. (2.20) and the dressed quark-gluon vertex of the
quark flavor f . Since we use the Hyb truncation from Sec. 2.2.3 for the vertex, we
can write the dressed quark-gluon vertex via Γf,ν,hqg (p, q, k) = igsZ̃3Z

f
2 γ

νthΓ(k2).
The bare equivalent is again defined via Γf,ε,hqg,0 = igsZ

f
1Fγ

εth. In these expressions
gs, Zf1F and Zf2 are the strong coupling constant, the quark-gluon vertex and quark
wave-function renormalization constants for the quark flavor f , respectively. They
are defined in Sec. 2.1.2. The Dirac γµ and color matrices th definitions along with
useful relations can be found in the Apps. A.1 and A.2, respectively.

The dressed quark propagator in flavor space is given by S = diag
(
Su, Sd, . . .

)

with the individual quark flavor propagators defined in Eq. (2.19). Since we use the
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3.1. Bethe-Salpeter framework

=

Figure 3.2.: Graphical representation of the homogeneous Bethe-Salpeter equation
with the appropriate momentum routing. The blue quantity is called the quark-
antiquark-meson vertex or Bethe-Salpeter amplitude. While quark propagators
are denoted as solid lines, gluon propagators are represented as curly lines. The
intersection of quark and gluon lines are quark-gluon vertices. Dressed quantities
are marked by big dots. The remaining quantities are bare.

isospin-symmetric limit Su = Sd. In the hBSE, the dressed quark propagators need
to be evaluated at the complex momenta q± = q ± η±P . See App. C.1.3 for more
information regarding the calculation of quarks at complex momenta. The included
momentum partitioning parameters 0 ≤ η± ≤ 1 fulfill the relation η+ + η− = 1. In
general, P satisfies the on-shell condition P 2 = [i(mx± iΓx

w/2)]2 with the mass mx
and the width Γx

w of the meson x [122]. In this work, we do not consider resonances.
Consequently, the width is zero and P is a purely imaginary time-like momentum.
Since we furthermore consider all mesons to be in rest frame P = (~0, imx).7 More
technical details can be found in App. C.2 and Ref. [123]. Now, it only remains
to discuss the Bethe-Salpeter amplitude (BSA) or quark-antiquark-meson vertex
amplitude Γ(µ)

x,e . This will be done in more detail in the following.

Bethe-Salpeter amplitude

To calculate the Bethe-Salpeter amplitudes for all considered meson kinds, we use
the Dirac tensor structure decomposition

Γ(µ)
x,e (P, p) =





∑
i f

i
x(P, p) τ

(µ)
i (P, p)⊗ 1C ⊗ rex for JP = 0+, 1−

∑
i f

i
x(P, p)γ5τ

(µ)
i (P, p)⊗ 1C ⊗ rex for JP = 0−, 1+

(3.12)

where the dressing function f ix(P, p) of the ith Dirac covariant τ (µ)
i (P, p) entails

the non-perturbative momentum dependence. Throughout the whole work, we
use the meson type index x to indicate a specific degenerated meson flavor x ∈

7Going beyond the rest frame assumption (in vacuum and medium) is connected with some
difficulties. See App. C.2.4 for more information.
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3. Mesonic bound states in QCD

{π,K, K̄, σ/f0, ρ, φ, a1} or an invariant subspace of the multiple hadrons, e.g. the
spin-parity-states x ∈ {S,PS,V,AV}. e furthermore represents the meson "flavor"
index and is connected to the flavor matrix rex which entails the quark content and
is defined in App. A.3.

To define the Dirac covariants τ (µ)
i (P, p), we first have to consider the Dirac

structure of a general vertex. This vertex is constraint by the Clifford algebra
of the Dirac matrices. A general Fermion-scalar vertex Γ(P, p) depending on
the momenta P and p allows four independent matrices {1D, /P , /p, /P/p}, while a
general Fermion-vector vertex Γµ(P, p) depending on the same momenta results
in twelve independent Lorentz covariants consisting of the three vectors γµ, Pµ
and pµ each multiplied with the four matrices from the Fermion-scalar vertex
{γµ, Pµ, pµ} × {1D, /P , /p, /P/p}. Due to the vector WTI shown in App. B.4, there
exists a conserved current linking the four longitudinal elements of the vector
vertex (∝ Pµ) with quark dressing functions. The eight remaining transversal
tensor structures are not constraint. Eventually, the on-shell vector and axial-
vector mesons are transverse to their total momentum and their allowed number
of covariants reduced to eight. Furthermore, the Dirac covariants are constraint by
their transformation property under CPT [124]. The invariance of the considered
BSA under parity transformation

U−1
P Γ(µ)

x (P, p)UP = (−1)J (δJ,0 + gµν− δJ,1)γ0 Γ(ν)
x (g−P, g−p)γ0

!= PΓ(µ)
x (P, p)

(3.13)

requires the inclusion of a γ5 into the BSA of pseudo-scalar and axial-vector
mesons. In the parity transformation, J and P ∈ {+,−} are the total spin
and the multiplicative parity quantum number of the meson, respectively. g− =
diag(1,−1,−1,−1) is the metric tensor of the Minkowski space. If we consider
equal quark constituents, also the charge conjugation is a valid quantum number.
The corresponding charge conjugation invariance condition for the considered BSA
is

U−1
C Γ(µ)

x (P, p)UC = Γ̄(µ)
x (P, p) =

[
CΓ(µ)

x (P,−p)C>
]> != CΓ(µ)

x (P, p) (3.14)

with C = γ0γ2 and the multiplicative charge conjugation quantum number C ∈
{+,−}. This operation exchanges particles with their corresponding antiparticles.8

Although the choice of the basis for the Dirac covariants τ (µ)
i is constraint, the

representation is not unique. For our calculations we use the vacuum Dirac basis
from previous works [125–127] shown in Tab. 3.1. The signs of the pseudo-scalar

8See App. B.2.3 for further information to the discrete symmetries and the transformation
properties of meson BSA’s and their basis elements.
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3.1. Bethe-Salpeter framework

Table 3.1.: Vacuum Dirac tensor structure basis elements necessary for the descrip-
tion of mesons of spin J = 0, 1. The pseudo-scalar JPC = 0−+ and axial-vector
JPC = 1+± states have to be multiplied with a γ5 factor to account for the correct
parity transformation. The subscript > indicates transversality with respect
to the total momentum P . For an arbitrary vector vµ the transverse vector is
defined via vµ> = Tµν(P )vν , where Tµν represents the transverse projector in
Eq. (2.21). Ref. [126] showed that the axial-vector components in parenthesis
are sub-leading and can be neglected. The tensor structure components are
multiplied by the factors • = (p·P ) and ◦ = 1D which ensure the correct behavior
under charge conjugation transformation in case of equal quark constituents.

Name Component 0−+ 0++

Ex τ1(P, p) : 1D ◦ ◦
Fx τ2(P, p) : −i /P ◦ •
Gx τ3(P, p) : −i/p • ◦
Hx τ4(P, p) :

[
/p, /P

]
◦ ◦

Name Component 1−− 1++ 1+−

Fx
1 τµ1 (P, p) : iγµ> ◦ ◦ (•)

Fx
2 τµ2 (P, p) : γµ> /P ◦ • (◦)

Fx
3 τµ3 (P, p) : −γµ>/p+ pµ>1D • ◦ (•)

Fx
4 τµ4 (P, p) : iγµ>

[
/P , /p

]
+ 2ipµ> /P ◦ ◦ (•)

Fx
5 τµ5 (P, p) : pµ>1D ◦ (•) ◦

Fx
6 τµ6 (P, p) : ipµ> /P • (•) ◦

Fx
7 τµ7 (P, p) : −ipµ>/p ◦ (◦) •

Fx
8 τµ8 (P, p) : pµ>

[
/P , /p

]
◦ (•) ◦

covariants are chosen such that all BSA components are positive and the vector
basis elements are transversal to total momentum P . The additional P · p factors
ensure that all BSA’s transform similarly under CPT.

Chebychev representation of the BSA

The BSA Γ(µ)
x and its components depend on the total momentum of the meson

P 2, the relative momentum between the quark and the antiquark p2 and the
angle zp = cos(^(P, p)) = P̂ · p̂ in between those two momenta. In vacuum, the
dependence on the angle turns out to be mild. This allows the representation of
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3. Mesonic bound states in QCD

the BSA with Chebychev polynomials

f ix(P, p) ≈
Ncheby∑

k=0
f̃ i,kx (P 2, p2)T̃k(zp)ik . (3.15)

In this representation we utilize modified Chebychev polynomials of first kind:
T̃0(zp) = 1/

√
2, T̃k(zp) = cos(k arccos(zp)). Since the sum converges rapidly, we

only need four polynomials for (pseudo-)scalar and six for (axial-)vector mesons.

If we consider a charge conjugation eigenstate (uncharged meson with equal quark
constituents) and a symmetric momentum partitioning (η± = 0.5), we can study
the necessary transformation properties of the scalar meson dressing functions
f ix(P, p). Taking the charge conjugation transformation properties of the full BSA
Γ(µ)
x and its basis elements τ (µ)

i in Eqs. (3.14) and (B.19) into account, we can
deduce the constraints

U−1
C (f ix(P, p)) UC = f ix(P,−p) != f ix(P, p) (3.16)

=
∑

k

f̃ i,2kx (P 2, p2)T̃2k(zp)(−1)k − i
∑

k

f̃ i,2k+1
x (P 2, p2)︸ ︷︷ ︸

!=0

T̃2k+1(zp)(−1)k

for the Chebychev coefficients of the meson dressing function f i,kx (P, p).9 The minus
sign of the second term thereby results from the asymmetry of the odd Chebychev
polynomials T̃2k+1(−zp) = −T̃2k+1(zp). We see that the BSA should only depend on
even powers of the angle zp. Otherwise, there is no well defined charge conjugation
eigenvalue any more. We will see in Sec. 4.4 that the introduction of chemical
potential breaks the charge conjugation symmetry. To remember, the charge
conjugation exchanges particles with their corresponding antiparticles and vice
versa. Consequently, we can easily understand that due to the energy offset which
is introduced by the chemical potential, antiparticles and particles are no longer
energetically degenerated and the C-parity is broken.[105]

We can only study the C-parity breaking using a symmetric momentum partitioning
η± = 0.5, where the calculable meson mass is maximized and the BSA in vacuum
is simplified since it is purely real. Asymmetric values introduce imaginary compo-
nents and lead to non-vanishing odd Chebychev coefficients. Physical observables,
however, should be independent from the value of the partitioning parameter. In
loop diagrams a shift in the value of η± is equivalent to a shift in the integration
variables. Ref. [128] shows that as long as we consider non-anomalous processes,
the loop integrals are independent of these shifts, although with the condition that
all approximated variables in the integral respect Poincaré covariance.

9Note that the meson BSA basis elements are intentionally constructed such that the breaking
of the C-parity is easily visible in a Chebychev expansion.
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3.1. Bethe-Salpeter framework

3.1.3. Norm

Due to the structure of the homogeneous Bethe-Salpeter equation, the correspond-
ing amplitude is only determined up to a constant factor. To determine this factor
a normalization condition is necessary. There are two options for the normalization
procedure, the standard Leon-Cutkosky and the Nakanishi normalization method.
They can be written via

± d

dP 2 Q
(T )
x,el(P,Q)

∣∣∣∣
P 2=Q2=−m2

x

= δelN 2
x , (3.17)

±
(
d ln(λx)
dP 2

)
Q

(T )
x,el(P, P )

∣∣∣∣
P 2=−m2

M

= δelN 2
x . (3.18)

In general, both methods are applicable to Rainbow-Ladder and beyond. But
in the first line, we only show the Leon-Cutkosky normalization method for a
Rainbow-Ladder kernel which can be obtained by evaluating the derivative of
Dyson’s equation at the on-shell momentum (See App. C.2.1).10 The Nakanishi
normalization method [129] in the second line is applicable to Rainbow-Ladder
and beyond. The sign in both equations depend on the meson type. Furthermore,
the loop term Q

(T )
x,el is defined via

Q
(µν)
x,el (P,Q) =

∫

q
TrDCF

[
Γ̄(µ)
x,e (−Q, q)S(q+(P ))Γ(ν)

x,l (Q, q)S(q−(P ))
]
,

QTx,el(P,Q) = 1
Npol

Tµν(P )Qµνx,el(P,Q) (3.19)

with the charge conjugated BSA defined in Eq. (3.14). Note that the flavor
has to be transposed, too. The flavor trace especially is important for multi-
flavor configuration mesons states, where different quark flavor propagators of the
diagonal flavor matrix S = diag

(
Su, Sd, . . .

)
contribute to the calculation. Due to

the summation over the polarization tensor, we have to include the factor Npol = 3
in case of (axial-)vector mesons.

After discussing the properties of the meson BSA in vacuum we are now interested
in the changes resulting from the introduction of a finite chemical potential (and
temperature).
10In general the Leon-Cutkosky normalization method includes an additional term shown in

Eq. (C.20) and can be used for beyond Rainbow-Ladder truncations, too. Due to our Ladder
like truncation in the BSE and the total momentum P independence of the kernel the additional
term vanishes.
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3. Mesonic bound states in QCD

3.1.4. Medium changes

Due to the introduction of finite temperature T and quark chemical potential
µfq the quark part of the 2PI effective action changes to Γ[2][S ] = TrF log S−1

T −
TrF

[
1 − S−1

0 S
]

+ Γ[2]
Int[S ]. In consequence, the homogeneous BSE and the norm

remain structurally unchanged but the dressed quark and gluon propagator rep-
resentations change as discussed in Sec. 2.1.3. Additionally, the functional trace
entails the same changes to the momenta and integral representation at finite
temperature and/or chemical potential as mentioned in the first chapter. Since
we consider the mesons to be in rest frame P = (~0, imx), the total momentum
and the assigned direction of the medium vmed = (~0, 1) align in the energy compo-
nent of the four momentum. As a result, there are no additional momentum or
angular dependencies of the BSA but the quark propagators are now evaluated at
q± = q ± η±P with q = (~q, q̃4) implying q̃f4± = q4 + i(µfq ± η±mx).

Similar as for the quark and gluon propagator, the assigned direction of the
medium and the connected breaking of O(4) symmetry lead to changes in the
Dirac structure of the BSA. Instead of four independent matrices in a general
scalar vertex we now have eight {1D, /P , /p, /v, /P/p, /P/v, /v/p, /P/p/v} and 32 in a general
vector vertex {γµ, Pµ, pµ, vµ} × {1D, /P , /p, /v, /P/p, /P/v, /v/p, /P/p/v}. Here we erased the
subscript ’med’ from the assigned direction of the medium for a more compact
notation. If we again neglect all longitudinal contributions due to the vector WTI,
24 transversal tensor structures remain. Since this increased number of Dirac basis
elements also increase the computational complexity, we use the tensor structures
detailed in Tab. 3.2 in medium.

In the table, we indicate that the vector meson in medium splits into a spatial and
a temporal part w.r.t. the assigned direction of the medium. These two parts of the
vector do not mix and fulfill separate BSE and norm relations which probably leads
to different masses for the two orientations, c.f. with Ref. [63, 128]. Although the
charge conjugation symmetry gets broken by the presence of chemical potential (as
we will see later in Sec. 4.4) and there consequently is no unique charge conjugation
eigenvalue, we utilize the P · p factors to compare with the vacuum. Since we
know from vacuum [28] that Ex is dominant, Fx has a considerable impact on the
mass and decay constant and Gx is at least important for the decay constant while
Hx is negligible, we will restrict our-self to these first three (pseudo-)scalar basis
elements to describe the mass and decay constant as accurate as possible. Due
to the rest frame, we furthermore neglect Fx

s and Hx
s in our calculations. In case

of the (axial-)vector mesons, we restrict our-self to Fx
1 and Fx

4 since these are the
dominant structures for the vector and the 1++-axial-vector mesons, respectively.
By using both we have a direct comparison between these two meson types.
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Table 3.2.: Medium Dirac tensor structure basis elements necessary for the descrip-
tion of mesons of spin J = 0, 1. The pseudo-scalar JPC = 0−+ and axial-vector
JPC = 1++ states have to be multiplied with a γ5 factor to account for the
correct parity transformation. The subscripts ">T" and ">L" indicate vectors
defined by vµ>(T/L) = PT/L

µν (P )vν where PT/L
µν represents the medium projectors

in Eqs. (2.31) and (2.32). Like in vacuum, the tensor structure components are
multiplied by the factors • = (p · P ) and ◦ = 1D.

Name Component 0−+ 0++

Ex τ1(P, p) : 1D ◦ ◦
Fx
s τ2(P, p) : −i~/P ◦ •

Gx
s τ3(P, p) : −i~/p • ◦

Ix τ4(P, p) : −iγ4 ◦ ◦
Hx
s τ5(P, p) :

[
~/p,
~/P
]

◦ ◦

Name Component 1−− 1++ Orientation
Fx

1s τµ1s(P, p) : iγµ>T ◦ ◦ Spatial
Fx

4s τµ4s(P, p) : iγµ>T

[
/P , /p

]
+ 2ipµ>T /P ◦ ◦ Spatial

Fx
1t τµ1t(P, p) : iγµ>L ◦ ◦ Temporal

Fx
4t τµ4t(P, p) : 2ipµ>LP4γ4 ◦ ◦ Temporal

It has to be mentioned that the Ix medium BSA component corresponds to the
temporal part of Fx and Gx and consequently gets contributions from both. The
vacuum limit therefore is not clear and ambiguous. The same is also true for Fx

1t
and Fx

4t. Note that until now there only exist finite temperature zero Matsubara
frequency studies for mesons with Fx

1s and Fx
1t, see e.g. Ref. [32, 63, 128].

For the calculation of the norm the same medium modifications as for the BSE
apply. In addition to those modifications the loop term has to be replaced by
Q
T (T/L)
x,el (P,Q) = PT/L

µν (P )Qµνx,el(P,Q)/Ns/t
pol for the spatial/temporal part of the

vector meson by exchanging the projector Tµν(P ) by PT/L
µν (P ) in Eq. (3.19). There

the polarization factor for the spatial and temporal part of the vector meson
furthermore reduces to Ns

pol = 2 and Nt
pol = 1, respectively.

With this we can conclude the discussion of the wave-function and amplitude of
the meson bound states and can turn our interest to meson properties like the
meson mass and decay constant.
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3.2. Meson properties

In this section, we will discuss the determination of the meson mass(es) and
electroweak decay constant(s) in vacuum and medium, which we then use to
construct the meson propagator. At the end, we introduce and explain the Silver-
Blaze property (SBP) that all (meson) observables have to fulfill. We will begin
with the determination of the meson mass from the homogeneous Bethe-Salpeter
equation.

3.2.1. Mass and decay constant in vacuum and medium

When we consider the homogeneous BSE we not only have direct access to the
meson wave-function but also to the meson mass. This can be seen in a functional
notation, where we suppress all discrete and continuous indices. Then, we can
write the hBSE via

K̃(P )Γx(P ) = λx(P )Γx(P ) . (3.20)

Although the hBSE is only valid for the on-shell momentum P 2 = −m2
x, we added a

total momentum dependent function λx(P ) to describe also off-shell momenta close
to the on-shell momentum. In this representation, it is clearly visible that the hBSE
is an eigenvalue equation with an eigenvalue of one at the on-shell momentum,
i.e. P 2 = −m2

x ⇔ λx(P ) = 1. To study the total momentum dependence of the
eigenvalue function λx(P ) and thus to determine the on-shell momentum, we vary
the total momentum. The resulting eigenvalue function of the Pion is exemplarily
displayed in Fig. 3.3 for the vacuum and different chemical potentials. In our
calculation, we search for the ground state of the meson which is identified by the
largest eigenvalue and calculated using the power iteration method. See App. C.2.4
for more information.

Due to the pole structure of the quark and the numerical problems connected to
it (discussed in App. C.1.3), there only is a certain total momentum or meson
mass interval which is numerically accessible in our bound state calculation. For
heavy mesons with a mass which is outside this interval or close to its border, the
eigenvalue functions have to be extrapolated from the accessible region. Because
of the alignment of the chemical potential and the total momentum in rest frame,
the addition of the meson mass and the chemical potential |µfq ± η±mx| has to
remain in the aforementioned interval. Consequently, the mass interval becomes
chemical potential dependent and we can use the partitioning parameter η± to
maximize the accessible chemical potential and mass region. See App. C.2.3 for
more information to this topic.
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Figure 3.3.: The eigenvalue λx is plotted against the meson mass mx for a Pion
meson and different chemical potentials including the vacuum. The results are
calculated using only the Ex Dirac tensor structure shown in Tab. 3.2.

The vacuum meson mass of all considered mesons, calculated within this work, are
detailed in Tab. 3.3 in comparison to experimental values from Ref. [122]. The π
and K meson masses are in good agreement with the experimental values, but this
is due to the fact that we fix our truncation and the QCD parameters accordingly.
While the σ meson mass lies above the experimental range, the ρ, φ and a1 differ
by about 10− 20%. It is, however, possible to improve the agreement with a more
elaborate truncation [33, 34].

For a rigorous treatment of bound state resonances above the strong decay threshold
(e.g. the ππ production threshold at P 2 = −4m2

π), it is important to include possible
other (hadronic) decay channels. If we consider the decay channels in Ref. [122],
the π and K mesons decay mainly leptonic (lfνf ) or electromagnetic (γγ) but
the ρ and φ mesons decay mainly hadronic in ππ and KK modes, respectively.
For σ/f0 and a1 the decay properties are not settled since the branching ratios
are unknown but the importance of hadronic decays is plausible. These hadronic
decays have to be included into our BSE calculation and enter by a new light
meson loop term. This coupling to lighter meson modes then give rise to non-zero
meson widths Γx

w [128]. As a result, the total momentum becomes now complex
valued and has to be parameterized in terms of its resonant mass mx (pole mass
in second Riemann sheet) and width Γx

w via P 2 = [i(mx ± iΓx
w/2)]2. The meson is
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Table 3.3.: Comparison of the calculated vacuum meson masses and decay constants
with the experimental or lattice values given in Ref. [122] and [130] for all
considered meson types in this work. Since there are different conventions
defining the decay constant differing by a factor of

√
2, the experimental decay

constant values were divided by a factor of
√

2 to be comparable to our convention.
The mesons are calculated with the most elaborated vacuum Dirac tensor basis
shown in Tab. 3.1.

Particles mx [MeV] fx [MeV]
x This work Exp. (PDG [122]) This work Exp./Lat. (PDG [122])

π0 135.13 134.9768(5) 109.8 92(6)

K0 494.93 497.611(13) 132.5 110(5)

σ/f0 633.37 400− 550 − −

ρ0 854.95 775.26(25) 165.4 156(1)

φ 1230.62 1019.461(16) 218.1 162(3)

a1 1016.55 1230(40) 134.1 144(13)[130]

now a resonance and no longer a bound state particle. Note that this effect can
only be studied using beyond Rainbow-Ladder truncations.

If we include the decay channel ρ → ππ into the BSE calculation as shown in
Ref. [58], the ρ-meson mass decreases. In addition, Ref. [128] indicates that this
coupling is also important for the isoscalar-scalar meson (σ/f0) due to the large σ
width. Without the coupling the σ properties equal those of an idealized chiral
partner of the π. Furthermore, it is mentionable that low mass scalar mesons are
typical for too attractive Rainbow-Ladder truncation. A beyond Rainbow-Ladder
truncation is necessary to describe the observed scalar mesons since a Rainbow-
Ladder vertex cannot capture all essentials of the dynamical chiral symmetry
breaking [74, 94]. However, concerning the σ meson, we have to keep in mind that
after Ref. [131] proposed a possible four-quark description of light scalar mesons,
multiple theoretical studies showed that four-quark descriptions deliver a more
consistent picture than two-quark descriptions do [132–135].

In this work, we have to neglect these kinds of hadronic and beyond Rainbow-Ladder
effects since they would increase the computational effort drastically, especially
in medium. We will, however, study other hadronic backcoupling effects in the
Chaps. 5 and 6. Next, we will consider the calculation of the meson decay constants.
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3.2. Meson properties

The meson decay constant(s)

In vacuum, we determine the leptonic or electromagnetic meson decay constant for
pseudo-scalar and (axial-)vector mesons [32, 136] via

iδelfxmx =
∫

q
TrDCF

[
j(µ)
x,e (P )S(q+)Γ̂(µ)

x,l (P, q)S(q−)
]

(3.21)

where Γ̂(µ)
x,l (P, q) = Γ(µ)

x,l (P, q)/N describes the normalized BSA and the current is
given by

j(µ)
x,e (P ) =





Z2γ5 /̂P ⊗ rex
Nf
⊗ 1C JPC = 0−+

Z2 γµ 1
Npol
⊗ rex

Nf
⊗ 1C JPC = 1−−

Z2γ5γµ
1

Npol
⊗ rex

Nf
⊗ 1C JPC = 1+±

(3.22)

with the momentum abbreviation /̂P = /P/
√
P 2. The equation is evaluated at

the on-shell momentum P 2 = −m2
x and is exact as long as the quark propagator

and the BSA are exact. Z2 and Npol again represent the quark wave-function
renormalization constant and the polarization factor.

Since the decay constant for the scalar meson (σ/f0) is zero (also numerically) we
will not consider it in this work. A comparison of the calculated vacuum meson
decay constant with the experiment is given in Tab. 3.3 for the remaining mesons.
But since only the masses of the π and K are comparable to the experimental
values, we only discus their corresponding decay constants. Both are 20% larger
compared to the experimental values. Since other truncation methods show better
agreements, the reason can only be the employed truncation. An improvement of
the employed truncation of the DSE and/or BSE is advisable, e.g. an improvement
of the quark-gluon vertex by introducing or using more Ball-Chiu terms.

If we now consider the medium, the introduction of an assigned direction and the
connected O(4) symmetry breaking lead to further changes in the decay constant
equation, in addition to the arguments in Sec. 3.1.4. Refs. [137–139] showed that
the introduction of an assigned direction splits the Pion decay constant into two
parts: A part temporal f tπ and another spatial f sπ to the assigned direction of the
medium vmed = (~0, 1). Although this splitting was only shown for the Pion, we
expect it to be true for all pseudo-scalars. Taking into account the derivation of
the meson decay constant in App. C.2.1, the splitting of the pseudo-scalar meson
decay constant

fP P
µ medium−−−−−→

[
f tP PL

µν(v) + f sPPT
µν(v)

]
P ν (3.23)
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3. Mesonic bound states in QCD

now enters on the LHS of the equation. Henceforth, we will denote these two
decay constants as temporal f tx and spatial f sx meson decay constant. Due to
the use of the rest frame, we do not have access to the spatial decay constant
for pseudo-scalar mesons. If we consider the (axial-)vector mesons, we also have
temporal and spatial decay constants which are connected to the corresponding
temporal and spatial part of BSA. With this we can define the generalized decay
constant equation in medium

δelf
s/t
x =

∫

q
TrDCF

[
js/t,(µ)
x,e (P )S(q+)Γ̂(µ)

x,l (P, q)S(q−)
]

(3.24)

for pseudo-scalar and (axial-)vector mesons. Here the current is defined via

js/t,(µ)
x,e (P ) =





Z2γ5
~/P/~P 2 ⊗ rex

Nf
⊗ 1C JPC = 0−+, spatial

Z2γ5γ4/P 2
4 ⊗ rex

Nf
⊗ 1C temporal

−iZ2 γµ>T /mV
1

Ns
pol
⊗ rex

Nf
⊗ 1C JPC = 1−−, spatial

−iZ2 γµ>L/mV
1

Nt
pol
⊗ rex

Nf
⊗ 1C temporal

−iZ2γ5γ
µ
>T /mV

1
Ns

pol
⊗ rex

Nf
⊗ 1C JPC = 1+±, spatial

−iZ2γ5γ
µ
>L/mV

1
Nt

pol
⊗ rex

Nf
⊗ 1C temporal

. (3.25)

In the following, we will use the discussed meson masses and decay constants to
define the meson propagation necessary for the meson backcoupling in Sec. 5.

3.2.2. Propagation

The propagation of mesons, described in this section, is based on the findings of
Ref. [138, 139]. In these references, the real part of the dispersion relation of "soft"
Pions in the symmetry broken phase is given by ω2 = u2

π( ~P 2 +m2
π) with the Pion

velocity11 uπ and mπ being the Pion screening mass and the energy of the Pion
at ~P = 0. m̃π = uπmπ represents the Pion pole mass. In vacuum, the pole and
screening mass coincide and the velocity equals one uπ = 1 but in medium the
velocity in general differs from one due to the missing Lorentz invariance and can
be expressed by the ratio of the spatial and temporal Pion decay constant

uπ = f sπ
f tπ
. (3.26)

11Normally it is only a velocity if mπ = 0.
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3.2. Meson properties

For the Pion propagator in medium, we use the same ansatz

Dπ(P ) = 1
P 2

4 + u2
π(~P 2 +m2

π)
(3.27)

as outlined in previous works, e.g. in Ref. [38]. In vacuum, this representation
reduces to Dπ(P ) = 1

P 2+m2
π
, while at finite temperature the fourth momentum

component has to be replaced by a bosonic Matsubara frequency. The propagation
corresponds to a classical one without any widths. Although the dispersion relation
is only shown for the Pion at finite temperature, we expect this propagator to be
valid for all considered pseudo-scalar and assume it to be valid for scalar mesons
in vacuum and medium, too. The propagation of the vector mesons is similar but
multiplied by a spin state dependent function Λµνx (P ). To conclude this section, we
have to mention that since the calculation of the spatial part of the decay constant
is not possible in the rest frame, we have to set ux = 1. A Pion velocity of a Pion
at rest does not make sense.

3.2.3. Silver-Blaze property

In this section, we will discuss the so-called Silver-Blaze property (SBP) which
is relevant for observables at zero temperature and small chemical potential. It
states that the system has to stay in its vacuum ground state until the baryon
chemical potential µB is large enough to create physical excitations. Since the
introduction of finite temperature leads to excitations too, the property is only
considered at vanishing temperature. On the chemical potential axis of the QCD
phase diagram, the first physical excitation corresponds to the lightest nucleon, the
proton. Consequently, the SBP is valid as long as µB < mmed

N = mN −Ebind with
mmed

N = 928 MeV being the mass of the lightest nucleon in medium. The nucleon
mass in medium results from the corresponding vacuum mass mN = 939 MeV and
the binding energy Ebind. It is possible to show the SBP analytically for finite
isospin chemical potential µI but it is also plausible for baryon chemical potential
[61, 62]. It was furthermore shown in a lattice formulation with heavy quark masses
[140].

To clarify, the SBP states that all observables have to remain constant in the
Silver-Blaze region which is given by µB ∈ [0,mmed

N ]. Above this region, states
can be exited and observables change. In this work, we basically consider only
the meson masses and decay constants as observables. Since the QCD Lagrangian
and non-observable colored quantities derived from it like the Green functions
show more or less strong (explicit) chemical potential dependencies, a complex
cancellation of internal chemical potential dependencies is necessary to fulfill the
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3. Mesonic bound states in QCD

SBP and to obtain constant observables. Therefore, it is understandable that a
careless truncation can easily violate the SBP.

To further discuss the SBP, we consider Refs. [101, 141]. There, it was analytically
shown that the Quark propagator and different vertices at finite chemical potential
can easily be calculated from their vacuum equivalent by evaluating the vacuum
pendant at a shifted momentum. For the quark propagator this means S[µ](p) =
Svac(p̃) with p̃ =

(
~p, p4 + iµfq

)
. As long as the SBP is fulfilled or as long as there

is no pole included in our calculation, this would furthermore imply that all quark
dressing functions develop an imaginary part and that the two quark vector dressing
functions Af and Cf are identical. In the next chapter, we will observe exactly this
behavior and will be able to verify the analytic findings of Refs. [101, 141] with
our numerical calculation. If we generalize this property to the main equations
which we consider in this work, we get

f[µ](P, p, k) =
∫

q
K((P ), p̃, q̃(±), k) I= fvac(P, p̃, k) , (3.28)

K((P ), p̃, q̃(±), k) ⊂ {S(q̃(±)), S(p̃), Dµν(k),Γqg(x),Γ(ν)
x (P, q̃)} ,

f(P, p, k) ∈ {S(p),Γ(ν)
x (P, p), Dεγ(k),

〈 ˆ̄ΨΨ̂
〉
,Nx, fx}

with the substitution I: q4 → q̃4 = q4 + iµfq and the momentum routing k =
q̃ − p̃ = q − p. The substitution holds as long as there is no singularity in the area
defined by q4 + it with t ∈ [0, µfq ] and q4 ∈ [−∞,∞]. Considering the different
quantities appearing in K((P ), p̃, q̃(±), k), only Γqg(x) in the gluon DSE could
exhibit singularities in the defined area. We know that Γqg(x) entails factors
like a

b+x with x ∝ p2 + q2 in the gluon DSE and x ∝ k2 = (p − q)2 in the
quark DSE. While the chemical potentials of the momenta p and q cancel each
other in the momentum x ∝ k of the quark DSE, we have an explicit chemical
potential dependency in the gluon DSE. Ref. [142] showed that this chemical
potential violates the SBP weakly. In consequence, a consistent implementation
of the chemical potential in the vertex of the gluon DSE requires a dependence
on p4 + iµfq and q4 + iµfq . Since the observed SBP violation in the gluon is only
weak and especially since we approximate the gluon propagator at finite chemical
potential and vanishing temperature by its vacuum equivalent, we neglect this
violation in our calculation and do not modify the vertex dressing.

To clarify again: The relation in Eq. (3.28) does not mean that our considered
function f[µ](P, p, k) at finite chemical potential can simply be replaced by its
vacuum counterpart at the same momenta P , p and k. Instead, we have to evaluate
the vacuum counterpart at a shifted momentum p̃ =

(
~p, p4 + iµfq

)
. Consequently,
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3.2. Meson properties

as mentioned above, the relation implies that the number of dressing functions of
the quark, gluon and meson at finite chemical potential is the same as in vacuum
and all dressing functions develop an imaginary part, at least if the SBP is still
valid.
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4. Quarks and mesons at finite chemical
potential

As a basis for the remaining work, we will now show and discuss the results
for quarks and mesons at finite chemical potential but vanishing temperature.
The results are obtained with the Hyb truncation presented in Sec. 2.2.3 without
hadronic backcoupling, considering Nf = 2 + 1 dynamical quark flavors and equal
light- and strange-quark chemical potentials µsq = µ`q.1 With our calculation, we
go beyond previous works by (i) taking into account the dynamics of the gluon
rather than simply modeling it, solving the homogeneous Bethe-Salpeter equation
at finite chemical potential with (ii) more than the leading BSA component and
(iii) using quark propagators explicitly evaluated in the complex momentum plane.

At first, we will consider the quark dressing functions and the related chiral
order parameter and number density. Then, we discuss some restrictions and the
necessary input (quarks at complex momenta) for the bound state calculation.
Finally, we use the received data to determine the meson wave-functions and
properties. These results were also published in Refs. [105, 143].

4.1. Quark dressing functions

We begin the discussion by plotting the first vector and the scalar light-quark
dressing function A` and B` for different baryon chemical potentials in Fig. 4.1. The
spread of the different line types results from the angle between the four momentum
p and the assigned direction of the medium vmed = (~0, 1). Consequently, the spread
represents the angular dependence of the considered quark dressing functions
resulting from the chemical potential. Note that the second vector dressing
function C` is identical to the first vector dressing function A` for the chemical
potentials shown in the plot. We will discuss this property in more detail later on.

1In previous works, we set µs = 0. The change to a non-vanishing strange-quark chemical
potential only influences the strange-quark condensate and mesons with strange-quark content.
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Figure 4.1.: Real part of the scalar B` (left) and first vector A` (right) light-quark
dressing functions for different baryon chemical potentials µB plotted against
real and space-like four momenta p2. The spread of the dressing functions
represent their angular dependency resulting from the assigned direction of the
medium. Only the µB = 1.80 GeV data correspond to the Wigner solution while
all remaining values result from the Nambu solution.

We observe that all dressing functions are (almost) independent from the chemical
potential for momenta much larger than the scale of the considered chemical poten-
tial. In the mid-momentum region, however, the spread of the dressing functions,
i.e. their angular dependence, increase with increasing chemical potentials. For
small momenta, the scalar dressing function increase drastically with the chemical
potential before it drops instantaneously to a much smaller magnitude at high
chemical potential, indicating a restoration of chiral symmetry. The scalar dressing
function then remains with almost no dynamical contribution. Overall, the first
vector dressing function is much less chemical potential dependent than the scalar
dressing function but effects can be seen. For baryon chemical potentials in the fig-
ure up to 1.44 GeV, the quark dressing functions correspond to the Nambu solution
while they represent the Wigner solution above this value. The Nambu and Wigner
solutions were already introduced and discussed in Sec. 2.2.4 and represent two
types of stable quark solutions. The detected sharp transition between the Nambu
and Wigner solution of the scalar dressing function already hints at a first-order
transition for a certain chemical potential between 1.44 GeV and 1.8 GeV which
we will discuss in the next section.

As indicated before, the first and second vector dressing function A` and C` are
identical for the Nambu solution but become different for the Wigner solution.
While the scalar dressing function almost vanishes in the Wigner solution, one
vector dressing function decreases and the other increases strongly. A similar
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4.1. Quark dressing functions

behavior was found in Ref. [144]. The degeneracy of the vector dressing functions
and the connected reduction of the tensor structure of the quark propagator to
the vacuum case is not new but was shown analytically for a Rainbow-Ladder
truncation in Ref. [141]. It was outlined that the quark propagator at finite
chemical potential can be obtained from the vacuum equivalent by an analytical
continuation of the form S[µ](p) = S[0](p̃) with p̃ = p+ iµfqvmed.2 This holds until
the first pole in the complex momentum plane (of the quark) is reached.3 Knowing
the Silver-Blaze property (SBP) which we introduced and discussed in Sec. 3.2.3,
one could assume that this pole results from a bound state pole in our calculation
that breaks the SBP and would be located at the mass of the lightest baryon,
i.e. the proton. But it is still an open question how the breaking of the SBP
actually takes place. The backcoupling of the baryon does not necessarily imply
a pole in the quark propagator. For the meson, this was shown in Ref. [57]. In
Chap. 6, we will however see that the introduction of baryon backcoupling leads to
a discontinuity in form of oscillations in the quark propagator if we pass a baryon
chemical potential equal to the nucleon mass in medium.

As can be seen in Fig. 4.1, the scalar dressing function shows a mildly oscillating
behavior for the Wigner solution. The two vector dressing functions oscillate even
stronger and are therefore not shown for the Wigner solution. To find the origin of
this behavior, we have to consider the analytic structure of the quark propagator
for the Wigner solution. In Ref. [57], the analytic structure of the quark propagator
was studied and the authors found that the Wigner solution in vacuum features
a pair of complex-conjugated poles close to the time-like real momentum axis at
very low quark masses. Since the introduction of chemical potential leads to a shift
of the quark momenta into the complex plane, the integration path in the quark
DSE is shifted beyond these poles if we consider large chemical potentials. In our
calculation, this poses numerical problems4 and leads to the oscillating behavior.
To solve the oscillation problem in our calculation, we would need to dynamically
determine the pole positions and their rank in every iteration step to be able to
take into account the residues properly. This is not yet done and since we are
mainly interested in the Nambu solution, it will not be considered further. But as
we will discuss later, we will not be able to calculate mesons for the Wigner phase
due to this behavior.

2This property is obtained under the assumption of a chemical potential independent gluon and
an analytic behavior of the quark for low chemical potential. Whether the property holds when
chemical potential effects in the gluon propagator are considered in our numerical calculation
or the analytic derivation remains to be investigated.

3In Ref. [145], it was proposed that the appearance of poles is connected to a phase transition.
4For example, the Cauchy method, used in this work and discussed in App. C.1.2, is affected.
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4. Quarks and mesons at finite chemical potential

4.2. Quark condensate and number density

In this section, we will first discuss the chemical potential dependence of the quark
condensate and will indicate some important regions, before we consider the quark
number density nf = 〈Ψ†Ψ〉 reaction on chemical potential. In Sec. 2.2.3, we
introduced the approximation of the finite chemical potential gluon propagator
through the vacuum gluon propagator if we consider finite chemical potentials
and vanishing temperatures. Due to this additional approximation, finite chemical
potential effects in the quark loop of the gluon DSE are ignored. In consequence,
the light and strange quarks are no longer coupled and do not influence each
other any more.5 The regularization of the quark condensate by subtracting an
appropriate amount of the strange quark as in Eq. (2.37) consequently does not
make sense anymore. Instead, we regularize the light- and strange-quark condensate
by subtracting the appropriate amount of the light-quark condensate evaluated at
an high chemical potential where the dynamical part is expected to vanish. We
now define the regularized quark condensate via

〈Ψ̄Ψ〉regf (µB) = 〈Ψ̄Ψ〉f (µB)− Zfmm
f
q

Z`mm
`
q
〈Ψ̄Ψ〉` (∞) . (4.1)

In Fig. 4.2, we display this vacuum-normalized and regularized quark condensate
plotted against the baryon chemical potential µB. We differentiate between light
and strange quarks and the two types of stable solutions: The chirally-broken
Nambu and chirally-symmetric Wigner solution. If we consider the appearance and
disappearance of these Nambu and Wigner solutions for the light and strange quark
in the figure, we find different stability regions. Thereby, we observe the same
pattern for light and strange quarks: For small chemical potentials only the Nambu
solution can be found in the numerical iteration.6 For large chemical potentials
the Nambu solution disappears and only the Wigner solution remains. In a certain
chemical potential interval in between, both solutions can be found as stable and
attractive solutions.[105] We will refer to this interval as coexistence region or
metastable area. The corresponding boundaries of the light- and strange-quark
coexistence regions are given by

µB =

Wigner: Nambu:
0.936 GeV , 1.730 GeV (light) ,
2.149 GeV , 2.516 GeV (strange) .

(4.2)

5In Ref. [115], the influence of this approximation was studied in the case of two color QCD.
6The Wigner solution is present too but neither iteratively attractive nor thermodynamically
favored. See Refs. [57, 108, 109] for more information and explanations to the appearance and
disappearance of the different solutions.
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Figure 4.2.: Vacuum-normalized and regularized light (blue) and strange (red)
quark condensate for the chirally-broken Nambu (solid and dashed lines) and
chirally-restored Wigner (differently dashed dotted lines) solution plotted against
the baryon chemical potential µB. The boundaries for the appearance/ disap-
pearance of the Nambu and Wigner solution are denoted by vertical dotted lines
in the corresponding color of the flavor and called light and strange spinodal
points. The densely dotted magenta line corresponds to the mass of the nucleon
in medium mN and therefore represents the end of the Silver-Blaze region.

In Fig. 4.2, these so-called spinodal points are indicated by vertical dotted lines
in the color of the considered quark flavor. The question which solution in the
coexistence region is thermodynamically favored for a certain chemical potential has
to be determined from thermodynamic considerations. It is clear that the physical
first-order phase transition happens in this coexistence region but the exact value of
the chemical potential where the Wigner solution is thermodynamically favored over
the Nambu solution for the first time remains an open question. In the functional
Dyson-Schwinger approach, the determination of the thermodynamic potential and
consequently the first-order phase transition is tremendously difficult and mostly
limited to Rainbow-Ladder truncations, see e.g. Refs. [40, 146, 147]. While it is
applicable to our Hyb truncation, we cannot use it for the more elaborated 1BC
truncation. A truncation independent way of determining the thermodynamic
potential and the equation of state was introduced in Ref. [43]. But the problem is
that this method relies on input data for the Wigner phase which are still missing.
Since the thermodynamic calculations are out of the scope of the present work, we
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4. Quarks and mesons at finite chemical potential

will not consider it further.

Another interesting question is whether the chiral symmetry breaking of the light
and strange quarks react similarly to chemical potential or if we even find different
first-order phase transitions for the quark flavors. In a fully backcoupled system of
equations, the first-order transition appearing in the light-quark sector at some
critical chemical potential inevitably leads to non-analytic changes in the strange-
quark propagator (see Ref. [148] for an explicit calculation of this effect). It is,
however, not clear if the corresponding loss in interaction strength due to the
almost mass-less (and screening) light quarks is sufficient to reduce the strange
quark immediately to its Wigner solution. Instead, there possibly is a chemical
potential interval where the strange quark still feels chiral symmetry breaking,
however with reduced strength, while the light quarks are already in the Wigner
phase. Then, at higher chemical potential, a second first-order transition in the
strange-quark sector appears. The plausibility of this scenario, certainly, remains
to be studied.[143] In our calculation, because of the vacuum gluon propagator
approximation and the resulting lack of backcoupling of the light and strange
quarks onto the respective other quarks, we expect and indeed find two different
coexistence regions for the light and strange quarks.

After discussing the different quark solutions, we can now take a closer look at the
actual behavior of the quark condensates. The light- and strange-quark condensates
belonging to the respective Nambu solution remain constant for chemical potentials
far into the coexistence regions. The quark condensate therefore fulfills the Silver-
Blaze property (SBP), although it is strictly speaking not an observable quantity. In
addition, the precision is astonishing: Up to the chemical potential µSB = 928 MeV
the quark condensate only increases by 0.001 %. This value corresponds to the mass
of the nucleon mN in medium with subtracted binding energy and marks the end of
the validity of the SBP. In Fig. 4.2, we highlight the end of the Silver-Blaze region
by a vertical, magenta and densely dotted line. This line is very close to the lower
light-quark spinodal point and therefore shortly below the light-quark coexistence
region. Deviations from the constant behavior can only be found shortly before the
end of the corresponding coexistence region. For the Wigner solution, we observe
that the light-quark condensate increases for lower chemical potentials and settles
for higher ones whereas the strange equivalent decrease steadily. Both quark flavors
show oscillatory behavior which is due to the fact that the quark dressing functions
oscillate, too. As result, it is unknown if we can actually trust the Wigner results.

We remark that we are in qualitative good agreement with simpler truncations in
Refs. [63, 96, 141, 144, 149, 150] which all fulfill the Silver-Blaze property at least
approximately. The first-order transitions found in these works also correspond
to our light-quark coexistence region. An important observation of Ref. [96],
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furthermore, is that a full (self-consistent) quark backcoupling is necessary to fulfill
the SBP. Hard dense loop calculations with bare quark propagators in the quark
loop are not sufficient.

To conclude, we shortly consider the non-observable quark number density nf =
−Zf2 TrF γ4Sf . For finite chemical potential and vanishing temperature, we find
a linear increase with increasing chemical potential which coincides with results
at finite but low temperatures in Ref. [42]. This behavior represents the fact that
more quarks exist the more energy is present in the system. Deviations from the
linear behavior cannot be found. This could either be the actual physical behavior
or due to the fact that the quark number density calculation at finite chemical
potential but vanishing temperature is strongly cutoff dependent and needs to be
regularized properly. Unfortunately, our present regularization method introduced
in Ref. [42] is not applicable for this calculation. As result, further studies are
necessary to investigate the behavior of the quark number density.

For the following investigations of the meson properties, we will display the light
and strange coexistence regions by the spinodal points similar as in Fig. 4.2. The
same is true for the indication of the end of the Silver-Blaze region.

4.3. General remarks for the meson results

Before we can discuss the results for the meson properties and wave-functions, we
have to mention some features and problems of the bound state calculation. As
already mentioned in Sec. 3.1.2 and discussed in App. C.1.3, it is necessary to
evaluate the quark propagator at complex momenta for the bound state calculation.
If we consider the Wigner solution, the oscillatory behavior of the quark dress-
ing functions found in the last two sections aggravates for this "complex quark"
calculation and prevent the iteration from converging. Up to now, this problem
with the analytic structure of the quark propagator is beyond current solution
techniques. Due to this technical problem and because we expect to encounter
super-conducting phases in this region of the phase diagram for chemical potentials
above the physical phase transition7, we refrain from using the Wigner solution
and calculate bound state results only with the Nambu solution.8

7The inclusion of super-conducting phases into our calculation requires a substantial extension
of the framework to the Nambu-Gorkov formalism studied in Refs. [95, 96].

8The determination of mesons for the Wigner solution has only been accomplished in the vacuum
[151].
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Since we consider mesons in the rest frame, the chemical potential and the time-like
total momentum of the meson add up9 and as a consequence we need to provide
the quark further out in the complex momentum plane. This property, together
with the inability to calculate the "complex quark" for the Wigner solution, implies
that we can only calculate the meson if |µfq ± η±mx| < µfq,N is fulfilled. Here, mx,
η±, and µfq,N denote the meson mass, the quark momentum partitioning parameter,
and the upper spinodal point of the quark flavor f , respectively. As a result of this
restriction, for fixed mx and µfq , there exists a certain chemical potential dependent
partitioning parameter η+ interval where calculations of "complex quarks" and
mesons are possible. The higher the meson mass, the smaller this interval becomes.
More information on this interval and how we calculate heavy mesons until the
end of the coexistence region are deepened in App. C.2.3. Since the coexistence
region of strange quarks appears at higher chemical potentials than the one of
light quarks, we are able to calculate mesons with strange-quark content for higher
chemical potentials.

4.4. Bethe-Salpeter amplitudes

In this section, we will discuss the behavior of all considered mesons under chemical
potential and momentum partitioning parameter changes. All Bethe-Salpeter
amplitudes are always plotted on-shell and normalized. Derived quantities are
based on these normalized and on-shell BSAs. At first we will consider the
properties of the (pseudo-)Goldstone Bosons, the Pions, and its chiral partner, the
Sigma meson. Then, the remaining mesons will be discussed. In Fig. 4.3, we show
a collection of the most important properties of the Pion and Sigma meson BSAs
which will be important for the meson backcoupling in the next chapter. We will
now begin by discussing the chemical potential dependence of the Pion BSA with
a symmetric (η± = 0.5) momentum partitioning parameter (upper row) before we
continue with the Pion and Sigma BSA properties for an asymmetric momentum
partitioning parameter (lower two rows).

In the upper left panel of Fig. 4.3, the real part of the first normalized BSA
component of the on-shell Pion (Eπ) is plotted against the relative four-momentum
for a symmetric momentum partitioning parameter and different chemical poten-

9The chemical potential and the total momentum of the meson in rest frame are aligned and
only contribute to the energy component of the four momentum, which is at the same time
the assigned direction of the medium. Due to this alignment, we can, in a certain extent, map
the chemical potential and the partitioning parameter onto another. If we stop using the rest
frame, the momentum partitioning parameter dependence, which we will show in the next two
sections, could decrease but the calculation is much more complicated.
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Figure 4.3.: Upper row: Real part of the first normalized on-shell Pion BSA
component Êπ (left) and its corresponding first Chebychev coefficient Êπ1 (right)
plotted against the relative four-momentum p2 between the quarks for various
baryon chemical potentials µB and a symmetric momentum partitioning. Center
and lower row: Corresponding data for the real part of the first three normalized
on-shell Pion BSA components (Êπ, Ĝπs , Îπ) and the first normalized on-shell
Sigma BSA component (Êσ) for an asymmetric momentum partitioning η+ = 0.
The spread of the amplitudes represent their dependence on the angle between
the total and the relative momentum of the considered meson.
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4. Quarks and mesons at finite chemical potential

tials. For a given chemical potential, we further display amplitudes with different
angles cos(^(P, p)) = P̂ p̂ between the total momentum of the meson P and the
relative momentum between the quarks p. Consequently, the spread of the different
line types represents the angular dependence. If we compare the chemical potential
dependence of this BSA with the one of the scalar quark dressing function in
Fig. 4.1, we detect a similar behavior for both quantities. This means that we
observe a vanishing chemical potential dependence at large momenta, an increasing
angular dependence in the mid momentum region and a strong increase of the
BSA at low momenta. But in contrast to the scalar quark dressing function, this
increase with the chemical potential experiences a saturation at high chemical
potential. This saturation is not visible in the plot since it happens in a small
chemical potential interval.

For an explanation of this similarity to the scalar quark dressing function, we
have to consider the chiral limit. In chiral limit all Pion BSA components can
exactly be represented by generalized Goldberger-Treiman like relations as shown
in Ref. [31] for the vacuum. This relation is approximately true also for finite
quark masses and expected to persist in medium. For this purpose, this relation
was used as approximation in previous vacuum [56–58, 152] and medium [63,
101, 145] studies. For the first Pion BSA component Eπ, the relation is given
by Êπ(0, p) = B(p)/fπ which explains the similarity of the scalar quark dressing
function and the first Pion BSA component. But as we will see in the next section,
the Pion decay constant decreases at high chemical potential which would normally
lead to a further increase but instead we observe a saturation of the BSA. This
disagreement can have different reasons. For example, the approximation is no
longer valid for physical quark masses and very high chemical potentials or our
calculation breaks down at very high chemical potentials in the coexistence region.
As mentioned earlier, at high chemical potentials, our framework should be replaced
by a Nambu-Gorkov formalism. However, at low chemical potential the relation
seems to hold.

Now we can take a closer look at the angular dependency by making use of
the Chebychev expansion representation of the BSA in Eq. (3.15). The zeroth
Chebychev coefficient is the only one with a non vanishing contribution at low
momenta, since it equals the angular average of the full BSA component. At small
chemical potential it therefore gives the largest contribution to the full amplitude.
All higher coefficients contribute to the chemical potential dependency in the
mid-momentum region, yielding the angular dependence of the BSA. Thereby, the
importance of the Chebychev coefficients decrease by one order of magnitude for
every order of Chebychev polynomials. The importance of the higher Chebychev
coefficients, however, increase with increasing chemical potential as can be seen in
the upper right panel of Fig. 4.3 for the first Pion BSA component. In vacuum
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4.4. Bethe-Salpeter amplitudes

the second Chebychev coefficient is more important than the first one. This is
due to the fact that in vacuum the neutral Pion is an invariant state under charge
conjugation. As explained in Sec. 3.1.2 this causes all odd Chebychev coefficients
to vanish for a symmetric momentum partitioning. Therefore: Eπ1 (µB = 0) = 0.
When the chemical potential is switched on, this property disappears and all odd
coefficients begin to contribute as can be seen in the upper right panel of Fig. 4.3.
At a certain point, the first Chebychev coefficient even becomes more significant
than the second one. To remember, the charge conjugation exchanges particles with
their corresponding antiparticles and vice versa. Due to the energy offset which
is introduced by the chemical potential, antiparticles and particles are no longer
energetically degenerated and the charge conjugation symmetry gets broken.[105]

To study the influence of the momentum partitioning parameter on the first Pion
BSA component, we compare the upper and center left panel in Fig. 4.3. As already
mentioned the results in the upper left panel are calculated with a symmetric
momentum partitioning (η± = 0.5). The center left panel is calculated with an
asymmetric momentum partitioning of η+ = 0. While the vanishing chemical
potential dependence at large momenta remains the same, the angular dependence
at mid momentum and the increase at low momenta are less pronounced for the
asymmetric momentum partitioning. The reaction of the BSA on a reduced η+
parameter is similar to a reduction of the chemical potential. We would like to
emphasize, that the BSAs can depend on the partitioning parameter since they
are no observables. The partitioning parameter of all other mesons, especially the
high-mass mesons, are much less pronounced, since their dependence on chemical
potential is much smaller. We will see this behavior in a bit. From now on we will
consider only the asymmetric momentum partitioning.

Considering the center panels and the lower left panel of Fig. 4.3, we see that
all three Pion BSA components (Eπ, Gπ

s and Iπ) show a similar behavior. This
means: All BSA components increase with the chemical potential at low momenta,
spread more in mid-momentum region and do not react to chemical potential at
large momenta. The strength of the infrared increase and the spreading, however,
is different for the BSA components. The Gπ

s component almost doubles its
magnitude and therefore becomes comparable in strength to the leading BSA
component Eπ at large chemical potential. This shows the importance of taking Gπ

s
into account. The Iπ component, however, increases only weakly but shows a much
stronger chemical potential dependence in the mid momentum.[143] Additionally,
the two sub-leading BSA components do not show a saturation of the increase
at low momenta. Furthermore, all Pion BSA components connect smoothly to
the corresponding vacuum limit. For the vacuum limit of the medium Iπ BSA
component in the lower left panel, we have to plot Fπ/

√
p2. This agreement
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4. Quarks and mesons at finite chemical potential
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Figure 4.4.: Upper row: Real (left) and imaginary (right) part of the spatial part
of the first normalized on-shell Rho BSA component F̂ ρ1s plotted against the
relative four-momentum p2 between the quarks for various baryon chemical
potentials µB and a asymmetric momentum partitioning η+ = 0. Lower row:
Similar results for the second normalized on-shell K̄ meson BSA component ĜK̄s .

between the vacuum BSA Fπ and Iπ is surprising since Iπ gets contributions from
both vacuum BSA components Fπ and Gπ.

Finally considering the Sigma meson in the lower right panel of Fig. 4.3, we
see that the real part of the Sigma BSA component shows almost no chemical
potential dependence. The same is true for the other two BSA components.
They only decrease marginally at low momenta and increase their spread in the
mid-momentum for increasing chemical potential. All other high-mass meson
BSAs, in particular those of the (axial-)vector mesons, show a very weak chemical
potential dependence in the real part of the BSAs, too. Nevertheless, all mesons
develop a significant chemical potential dependence in the imaginary part as
demonstrated exemplary in the upper panels of Fig. 4.4 for the Rho meson. Thus,
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4.5. Meson properties

the imaginary parts of the amplitudes that all mesons show, are important to
balance the variations in the quark propagator w.r.t. the chemical potential and
to provide the Silver-Blaze property as we will see later on.

As final mesons, we will consider the special case of light-strange quark mixed
mesons, the Kaons. It is important to note that the momentum partitioning
dependence of the Kaons is no longer symmetric since they consist of light ` and
strange s quarks. This results in a different chemical potential behavior of the
amplitudes for the kaons (K,K+) with quark content ` s̄ and the antikaons (K̄,K−)
with quark content ¯̀s. In the following, we will only discuss K and K̄ since K+/−

is degenerated to K/K̄ due to the use of the isospin-symmetric limit. The meson
BSA components of both Kaon types behave qualitatively similar as the one of
the π but the changes are much less pronounced. Most importantly, the GK

s BSA
component of the K meson remains weak and does not become comparable to
the leading BSA EK . For the K̄ meson, the GK̄

s BSA component even decreases
as shown in the lower panel of Fig. 4.4 whereas IK̄ shows a stronger increase as
compared to the K meson.[143]

Before we continue with the meson properties, we conclude the BSA discussion
mentioning an analytic requirement for the BSAs. In Ref. [101], it was shown
that every type of quark-meson vertex at finite chemical potential can be obtained
from the vacuum pendant by an analytic continuation of the form Γ[µ](P, p, . . .) =
Γ[0](P, p̃, . . .) similar as for the quark propagator, also with the same requirements
(see Sec. 4.1). As a consequence, the number of independent Dirac tensor structures
of the BSA at finite chemical potential should be equal to the one of the vacuum
until the first pole appears. Unfortunately, due to the use of the rest frame we
cannot include Fx

s to check this property.

4.5. Meson properties

In this section, we will use the quark and meson BSA results from the previous
sections to determine and study the meson properties. We will consider the meson
mass(es) and decay constants at finite chemical potential and vanishing temperature.
Since we consider the mesons to be in the rest frame, the spatial decay constants
of pseudo-scalar mesons are not accessible. The scalar Sigma mesons does not
have a leptonic decay constant. To remember, the determination of the meson
for the Wigner solution is not possible. Therefore, we will only show results for
the Nambu solution. At first, we will discuss the tensor structure and momentum
partitioning parameter dependency for the Pion in detail. Then we consider all
meson properties in a compact form for the most elaborated approximation of the
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4. Quarks and mesons at finite chemical potential

BSA. To guide the eye, we will indicate the spinodal points and the end of the
Silver-Blaze region in the same way as in Sec. 4.2.

In the upper panels of the Fig. 4.5, the Pion mass and temporal Pion decay
constant are shown in vacuum and for finite chemical potential and different levels
of approximation of the BSA (different set of BSA components used in the bound
state calculation). In vacuum, we display these different levels of approximation as
colored symbols. As one can see, the vacuum limit of the Pion mass and decay
constant is fulfilled within the numerical precision.10 If we consider the overall
behavior under chemical potential, the addition of the Iπ BSA component to the
calculation leads to qualitative and quantitative changes of the Pion mass and
decay constant. On the one hand, the mass and decay constant are increased and
on the other hand, the behavior in the coexistence region is affected. The addition
of the Gs BSA component, however, has only a small effect on the Pion mass
but a significant quantitative and qualitative effect for Pion decay constant. It
leads to a strong decrease in the coexistence region. As expected in Sec. 3.1.4, the
Iπ BSA component is important for the Pion mass and decay constant whereas
Gs is of importance mostly for the Pion decay constant. We refrain from adding
more tensor structures to the calculation due to the resulting numerical complexity
and since we do not expect a significant qualitative or quantitative change of the
properties.

Within the numerical precision, the Pion mass and decay constant for the dif-
ferent levels of BSA approximations remain constant also beyond the end of the
Silver-Blaze region. Therefore, the Silver-Blaze property is clearly satisfied. The
deviations from the vacuum are smaller than 0.5 % for the Pion mass and 2 % for
the temporal Pion decay constant up to the end of the Silver-Blaze region. We are
able to trace the existence of the Pion as (pseudo-)Goldstone Boson almost to the
end of the coexistence region. For larger chemical potentials it is, for numerical
reasons, not possible to identify solutions of BSE. Until the numerical stability
decreases drastically and we are no longer able to obtain solutions (shortly before
the end of the coexistence region), the Pion mass increases up to 14% compared to
the vacuum value. For the temporal Pion decay constant we find a 20% decrease
compared to the vacuum value.

After the discussion of the dependence on the used BSA approximation, we now
consider the partitioning parameter dependence of the Pion mass. In the central
panel of Fig. 4.5, we display the Pion mass plotted against the chemical potential
for the symmetric (η± = 0.5) and a certain asymmetric (η+ = 0) momentum
partitioning. The difference between the asymmetric and the symmetric solution
increases up to 7% for the Pion mass and 5% for the Pion decay constant. But a
10Since Iπ gets contribution from the vacuum Fπ and Gπ BSA component, its limit is ambiguous.
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Figure 4.5.: Upper row: Pion massmπ (left) and temporal decay constant f tπ (right)
plotted against the baryon chemical potential µB for different combinations of
tensor-structures used in the BSE calculation. The results are obtained using
an asymmetric momentum partitioning η+ = 0. Lower row: Similar results for
the spatial and temporal Rho mass mt/s

ρ (left) and decay constant f t/sρ (right).
For these results the momentum partitioning has to be varied as explained in
App. C.2.3. Center row: Momentum partitioning parameter dependence of
the Pion mass in dependence of the baryon chemical potential for the most
elaborated tensor-structure combination of the BSE calculation. The meaning
of the shaded area is explained in the text. The vertical dotted lines are adopted
from Fig. 4.2. The colored symbols represent the vacuum results.
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4. Quarks and mesons at finite chemical potential

comparison is only possible up to a chemical potential of µB = 1.4 GeV. Up to
the end of the Silver-Blaze region, the partitioning parameter dependence is much
weaker. While the mass deviates by less than 0.6%, the decay constant differs
by maximally 1.5%. Consequently, we can safely assume that the Silver-Blaze
property is not affected. Nonetheless, the partitioning parameter dependence is
much stronger than in vacuum. There, the difference between the symmetric and
asymmetric partitioning is less than 0.3% for all meson kinds and levels of BSA
approximations. In vacuum, this dependence clearly is a numerical artifact.

As already mentioned in Sec. 4.3 and indicated for the transition between the
symmetric and asymmetric partitioning representation of the Pion BSA in Sec. 4.4,
there is a connection between the chemical potential and momentum partitioning
parameter if we use the meson in the rest frame. For the meson properties, we find
that we can obtain the Pion mass for a certain momentum partitioning parameter
η
′
± from another momentum partitioning parameter η±, at least approximately,

via the relation mπ(µ′B, η
′
±) = mπ(µB, η±) and µ′B = µB± 3(η±− η′±)mx(µB, η±).11

In the figure, we used this relation to show the possible Pion mass values for the
whole interval of partitioning parameter values as a shaded area. As one can see,
the shaded area shows larger deviations from the vacuum of the order of 1.8%
already at the end of the Silver-Blaze region. We assume that this larger deviation
is an artifact of the rest frame calculation which originates from the alignment
of the chemical potential and the total momentum of the meson in rest frame.
Consequently, it is advisable to study the mesons also using the moving frame
to check the corresponding partitioning parameter dependence. Because of the
almost perfectly constant behavior of heavy mesons which we will discuss later,
the momentum partitioning parameter dependence of these mesons is much weaker
and can be neglected.

After discussing the Pion properties in detail, we can now discuss the other
considered mesons. In Fig. 4.6, we show the meson mass(es) and decay constants
for multiple light- and strange-quark mesons at finite chemical potential and for
the respective most elaborated approximation of the BSA. Interesting aspects for
the influence of different levels of BSA approximations will only be discussed in the
text. The K and K̄ meson properties behave similarly as the one of the π meson
(for all levels of the BSA approximation). But while the observed decrease of the
decay constant is much less pronounced for the K meson and almost constant, it
is only modified marginally for the K̄ meson. The chemical potential dependence
of the two Kaon masses is reduced, too. Furthermore, due to the quark content of
the two mesons, the K meson can only be calculated up to the end of the light-
11The Pion decay constant in a certain momentum partitioning cannot be approximated by

another partitioning since it further depends on the on-shell mass itself.
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Figure 4.6.: Masses (upper) and decay constants (lower) for different light-quark
(left) and strange-quark (right) mesons plotted against the baryon chemical
potential for the most elaborated tensor-structure combination of the BSE in
medium. The results are calculated using the chirally-broken Nambu solution.
Again, the vertical dotted lines represent the end of the Silver-Blaze region
(magenta) whereas the light (blue) and strange (red) spinodal points indicate
the corresponding coexistence region.

quark coexistence region while the K̄ meson is calculable into the strange-quark
coexistence region. Until the end of the corresponding coexistence regions (or the
breakdown of the numerical stability) the K and K̄ meson mass increase by 0.25%
and 3%, respectively, whereas the corresponding temporal decay constants decrease
by 0.5% and 15%. If we consider the deviations of the K and K̄ meson properties
from their respective vacuum value only up to the end of the Silver-Blaze region,
we can safely state that the Silver-Blaze property is fulfilled within the numerical
precision. The deviations are below 0.5% and 2% for the meson masses and decay
constants, respectively.

77



4. Quarks and mesons at finite chemical potential

The mass of the σ meson as well as the longitudinal and transversal ρ and φ
properties remains perfectly constant until the end of the corresponding coexistence
regions with a maximal deviation of less than 0.5%. Consequently, we can state
that the SBP is fulfilled for these mesons, too. If we consider the temporal and
spatial projections of the ρ and φ properties, we observe different values for the
two orientations of the mass and decay constants. This is shown exemplary for
the Rho meson in the lower panel of Fig. 4.5. As we can see, only the spatial Rho
meson quantities have a smooth vacuum limit. The reason is that the temporal
counterpart receives contributions from several vacuum BSA components. The
vacuum limit therefore becomes ambiguous. By including the sub-leading second
tensor structure F4, the difference between the two orientations of the vector meson
properties decrease drastically. The wiggly behavior of the φ meson properties in
Fig. 4.6 is due to the numerics. Also because of numerical reasons, only the spatial
projection of the a1 meson is calculable. Like all heavy-mass mesons, the mass and
decay constant of the spatial projection of a1 remain perfectly constant until the
end of the light-quark coexistence region fulfilling the Silver-Blaze property.

We would like to emphasize that the observation of a constant behavior for all
meson masses and decay constants until the end of the Silver-Blaze region (and
beyond) is a highly non-trivial matter. That the Silver-Blaze property is fulfilled
in our calculation relies on subtle cancellations between the chemical potential
dependence of the quarks, their interactions inside the mesons and the BSAs.
These quantities have to interplay such that they produce constant masses and
decay constants. It is quite satisfying to see that this happens in our functional
approach.[143]

The observation of the Silver-Blaze property, however, is not new but was observed,
at least approximately, in previous works using the functional Dyson Schwinger
or FRG approaches, see e.g. Ref. [63, 101, 145, 150, 153–156] or Ref. [157–
159], respectively. Most of these works use effective models like the NJL or QM
model or apply quite strong truncations for the equations (of the elementary
particles) like contact or so-called Maris-Tandy interactions [32]. Even if the
elementary particles are properly calculated by solving their corresponding DSEs,
the bound state calculation mostly relies on approximations. Apart from Ref. [63],
all previous Dyson-Schwinger works did not calculate the meson BSA from the
BSE at finite chemical potential but used e.g. generalized Goldberger-Treiman like
relations [31] as approximations for the BSAs. The corresponding meson masses
and decay constants then have to be obtained from the Pagel-Stokar [160] and
GMOR equations. But the usage of these approximations lead to an over- or
underestimation of the vacuum Pion properties up to 30% [160]. Furthermore,
Ref. [150] is the only work taking the splitting of the decay constant into account.
In addition, effects of sub-leading BSA components have not been studied so far at
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4.5. Meson properties

finite chemical potential. While the pion mass and decay constant at finite chemical
potential are often studied in these works, the corresponding chemical potential
dependence of the wave-function is mostly neglected. The same applies to the other
mesons calculated in this work, at least if they are considered. Although these
works used effective interactions and further approximations for the bound state
calculation, they deliver qualitatively similar results, at least up to the coexistence
region. In the coexistence region there is no unique statement regarding the
behavior of the meson properties.

To our knowledge, this work is the first to study not only the meson masses and
decay constants until the end of the corresponding coexistence region but also the
corresponding BSAs. (Almost) no work has calculated the BSAs, especially not
for such an elaborated truncation of the BSAs themselves and of the whole set of
equations. In addition, most works restrict themselves to the (pseudo-)Goldstone
bosons and possibly vector mesons in addition while we studied a great variety
of different mesons. We are quite satisfied to see that our complex calculation of
explicitly solving the quark DSE in the complex momentum plane (by taking into
account the full momentum dependence of the gluon) and the meson BSE, norm
and decay constant worked and yields such convincing results. Nevertheless, as
discussed in the last sections and the Sec. 3.2.1, there is still room for improving
our calculation.

To conclude the discussion of the meson properties, we mention that there are
few lattice studies at very low temperature to compare with. For example in
Ref. [161] Pion properties are analytically continued from imaginary to real chemical
potentials. For decreasing temperatures the chemical potential dependency of
the Pion mass becomes weaker yielding an almost constant behavior up to high
chemical potentials where the mass increase monotonically. This coincides with
our observations.
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chemical potential and temperature

In this chapter, we are interested in the influence that mesonic (backcoupling)
effects have on the QCD phase diagram. For this purpose, we have to mention that
the physics of the QCD phase diagram and the meson properties in medium are
closely connected in different ways. Especially for the DχSB and its restoration,
pseudo-scalar and scalar mesons are important.1 On the one hand, the pseudo-
scalar mesons are the (pseudo-)Goldstone Bosons of chiral symmetry breaking and
the scalar mesons are their chiral partners. On the other hand, the two meson
types are important for the universal behavior if they are backcoupled.[105]

In the vicinity of second-order chiral phase transitions the relevant degrees of
freedom (dof) are associated with long-range correlations. The pseudo-scalar
and scalar mesons constitute to these effective long-range dof that control the
universal behavior of QCD at second-order chiral phase transition points. If we
consider the two-flavors theory in chiral limit, we may observe a second-order
phase transition in the O(4) universality class with isovector Pions and an isoscalar
scalar meson as driving dof. This however also depends on the fate of the UA(1)-
symmetry. At physical quark masses and at the second-order critical endpoint
(CEP) this is expected to turn into a Z(2) universality class of the Ising model
in three dimensions driven by an isoscalar scalar meson [52].2 That the mesonic
backcoupling contributions become dominant for the universality properties of the
CEP, was observed in a corresponding analytic scaling analysis in our framework
[38], too. There, the introduction of Pion and Sigma meson backcoupling diagrams
lead to a change of the universality class from a mean field to an O(4) scaling.[55, 105]
Furthermore, it is clear that the critical region around the CEP, where the (meson)
fluctuations are large, is quite small [52]. But we do not know to what extent these
meson fluctuations are able to influence the location of the CEP. Consequently,
the purpose of this chapter is a quantitative study of this effect. Preliminary work

1The Refs. [162, 163] also argued that Pion effects in the quark propagator may even be
responsible for quark confinement.

2While the Pions remain massive the Sigma mesons become mass-less and therefore important
for the scaling of the universality class.
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5. Meson backcoupling at finite chemical potential and temperature

was already done in Ref. [89]. The determination of the universality properties of
the CEP will not be considered.

Now the question remains which mesons should be backcoupled. We already saw
that the Pion and Sigma mesons are important for the correct scaling properties
of the CEP but we are rather interested in the overall changes of the whole phase
diagram. Considering the meson backcoupling term of the quark-gluon vertex in
Fig. 2.4 at vanishing temperature and physical quark mass, it transpires that the
meson exchange is dominated by the exchange of the lightest mesons, the Pions.
The other hadrons are suppressed by a factor of Λ2

QCD/m
2
x relative to the Pion

[56]. Although the vector mesons would be important for the observed dilepton
spectrum3 and together with the axial-vectors they could have a certain impact on
the phase diagram if they are backcoupled, we will only use the Goldstone Bosons
(Pions) and their chiral partners (Sigma meson) for the meson backcoupling. We
expect that they have the biggest influence on the phase diagram and the location
of the CEP. However, in future works the backcoupling of (axial-)vector and further
(pseudo-)scalar mesons is desirable.

With the results from the previous sections we now want to improve our truncation
by including mesonic backcoupling effects into the calculation. In previous works
such effects were studied in the Nambu-Jona-Lasinio (NJL) model [164–166] but
also in the functional approach [23, 24, 38, 56, 57, 167] often by including mesons
as external degrees of freedom. In the Dyson-Schwinger approach, based on the
description of pseudo-scalar and vector mesons with Bethe-Salpeter equations in
vacuum [31, 32, 168] and at finite temperature [65], the meson backcoupling onto
light quarks and mesons was introduced in vacuum [56, 58], in the CFL phase at
large chemical potentials [169] and for finite temperature [38, 170]. Additionally in
Ref. [171] Pion cloud effects on the baryon masses were studied in an exploratory
vacuum calculation. In all studies the meson backcoupling effects are of the order
of 10 − 20% compared to the other components of the quark-gluon interaction.
We will build upon these works studying the effects of the meson backcoupling
introduced in Sec. 2.2.1. As shown in Ref. [128], other mesonic effects like the
inclusion of hadronic decays are also important for the correct description of the
meson phenomenology for mesons above the strong decay threshold. But in this
work, we will neglect them due to the complexity of the corresponding calculation
in medium. In the following, we will introduce a meson backcoupling truncation
which is orientated on Ref. [56]. The results were already published in Ref. [55].

3The vector mesons, especially the light ones (ρ, ω, and φ), are expected to contribute substantially
to the observed dilepton spectrum since they couple to the electromagnetic current due to their
quantum numbers. Since the photons are produced in the reaction and escape the medium
almost undistorted, they can therefore serve as a probe for the state of matter in the early
stages of the collision.[143]
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5.1. Meson backcoupling truncation

5.1. Meson backcoupling truncation

As already mentioned in Sec. 2.2.1, we want to solve the non-hadronic and hadronic
part of the quark-gluon vertex separately by inserting them into the equations of the
quark, gluon, and mesons. In this section, we will do so for the mesonic part. The
baryonic part will be neglected. Inserting the quark-gluon vertex decomposition
given by Fig. 2.4 without the baryon diagram into the quark DSE yields the
equation shown in Fig. 5.1. For simplicity and since the mesonic contribution

= +-1-1 +

Figure 5.1.: Quark DSE with a dressed quark-gluon vertex separated into a non-
hadronic part and an one-meson exchange diagram as shown in Fig. 2.4. Quark,
gluon, and meson propagators are denoted by solid, curly, and dashed lines,
respectively. The intersection of two quarks and a gluon or a meson represent
a quark-gluon or a Bethe-Salpeter vertex, respectively. Dressed quantities are
indicated by big colored dots. The remaining ones are bare. The arrows indicate
the direction of the quark flavor and the momentum. The signs and prefactors
are absorbed into the diagrams.

is suppressed in a large Nc-expansion of the gluon DSE4, we neglect the one-
meson exchange and insert only the non-hadronic part of the quark-gluon vertex
into the gluon DSE. By inserting the quark-gluon vertex decomposition into the
homogeneous BSE, we get an additional (meson exchange) diagram in the hBSE.
This implies that we have to re-ensure that the Bethe-Salpeter kernel fulfills the
AxWTI shown in Eq. (3.6). Since, in the considered case, this is quite complicated,
we rather approximate the interaction such that the AxWTI is exactly fulfilled by
the approximated interaction. To approximate the interaction, we consider the
mesonic two-loop diagram with two full Bethe-Salpeter vertices in Fig. 5.1. One
loop resembles the homogeneous BSE with only non-hadronic contributions shown
in Fig. 3.2. By inserting this homogeneous BSE, we can replace the corresponding
loop by an ’effective’ Bethe-Salpeter amplitude and get the quark DSE shown
in Fig. 5.2. The corresponding new interaction kernel5 has the correct charge

4In the gluon DSE the vertex decomposition has to be inserted into the quark loop, which itself is
already suppressed by a factor of 1/Nc compared to the Yang-Mills part. Overall the mesonic
contribution in the gluon DSE is suppressed by a factor of 1/N2

c .
5The additional kernel for the meson exchange diagram can be derived from the quark self-
energy by taking a functional derivative w.r.t. a quark propagator as discussed in Sec. 3.1.1.
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5. Meson backcoupling at finite chemical potential and temperature

= +-1-1 +

Figure 5.2.: Approximated quark DSE with a gluon (indicated as non-hadronic
NH) and meson (last term) backcoupling term. The components are defined in
the same way as in Fig. 5.1. The blue dot with a white center represents an
effective Bethe-Salpeter vertex, which will be discussed in the text.

conjugation properties and respects the multiplicative renormalizability of the BSE
as shown in Ref. [56]. With this approximation we are able to reduce the numerically
demanding two-loop diagram to a one-loop diagram. The approximation is justified
as long as the Bethe-Salpeter amplitudes, resulting from the two hBSE calculations
with and without a meson exchange diagram, do not differ strongly. In Ref. [56]
this was proven explicitly for the Pion. To simplify the calculation and since the
inclusion of the meson exchange diagram does not strongly change the BSA of the
considered mesons, we consequently neglect the mesonic contribution and calculate
the homogeneous BSE with the non-hadronic part of the vertex alone.

Let’s consider the one-loop approximation in more detail. As stated before, we
replaced the second loop in Fig. 5.1 which consists of two dressed quark propagators,
a gluon propagator and two bare quark-gluon vertices by an effective BSA since
the replaced loop resembles a hBSE. But why is it an effective one? Here, we have
to emphasize that the two quark-gluon vertices in the loop that we approximated
by the hBSE are bare, while one quark-gluon vertex is fully dressed in the hBSE.
Consequently, it is questionable to approximate the loop by a full BSA and we rather
introduced an effective Bethe-Salpeter vertex instead, as indicated in Fig. 5.2. Two
possible expressions of this effective Bethe-Salpeter vertex were studied in previous
works: The use of a fully dressed or a bare Bethe-Salpeter vertex. The initial work
in Ref. [56] used two fully dressed Bethe-Salpeter vertices in the one-loop meson
exchange diagram but Ref. [57] showed that the resulting strong back-reaction is
overestimated and in disagreement with corresponding lattice results. The usage of
a bare Bethe-Salpeter vertex in the latter reference, however, yields a quantitatively
correct description of the mesonic effect and Ref. [58] additionally showed good
results for the meson phenomenology6 by using the bare vertex. The downside
of the use of the bare quark-meson vertex, on the other hand, is that the correct

Considering Fig. 5.2, the non-hadronic and mesonic kernels are obtained by simply cutting
the remaining dressed quark propagator in the last two diagrams.

6The inclusion of the mesonic backcoupling leads to better results for the meson masses and
decay constants in vacuum.
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5.1. Meson backcoupling truncation

scaling behavior at the (pseudo)critical temperature gets destroyed since the two
vertices do not have the same scaling anymore, as shown in the scaling analysis
of Ref. [38]. Since we are not interested in the scaling behavior in this work but
rather want to estimate the impact of meson effects correctly, we use only one fully
dressed Bethe-Salpeter vertex and set the effective Bethe-Salpeter vertex to a bare
one. Ref. [89] checked, for a simplified calculation of the BSA, that this choice
does not affect the results on a qualitative level.

Now, before we can discuss the mesonic backcoupling term in Fig. 5.2 in more
detail, we have to discuss the formulation of the meson exchange kernel. In the
backcoupling diagram, the meson exchange is needed in the t-channel. But we
only know the meson contribution to the quark-antiquark scattering kernel in the
s-channel [31], which is given by

Mx
αβ,γδ(p, q, P ) =

[ˆ̄Γx(−P, p)
]
γδ
Dx(P )

[
Γ̂x(P, q)

]
αβ

+Rx
αβ,γδ(p, q, P ) (5.1)

with Mx representing the mesonic part of the renormalized and fully-amputated
quark-antiquark scattering amplitude which is connected to the BSE kernel via
M = K +K(SS)K + . . . [172]. In this scattering kernel, Γ̂x and ˆ̄Γx describe the
normalized Bethe-Salpeter amplitude and its charge conjugation for the meson
type x ∈ {π, σ} as discussed in Sec. 3.1.2. The corresponding meson propagator
Dx(P ) is described in Sec. 3.2.2. The remaining term Rx describes the sub-leading
contribution and is a regular term in contrast to the first term which has a pol at
the meson mass mx in the meson propagator.

The corresponding expression for the t-channel is normally directly related through
the crossing symmetry by taking the incoming and outgoing momenta on-shell. But
since we only consider the dominant first term of Eq. (5.1), the crossing symmetry
gets broken. As a result, the transformation from the s-channel to the t-channel is
no longer unique and depends on the choice of the incoming and outgoing momenta.
To find an expression for the mesonic part of the BSE kernel and the related
mesonic part of the quark self-energy that furthermore fulfills the AxWTI, we take
an arithmetic mean over the possible contributions (permutations of the incoming
and outgoing momenta leading to the two terms in the curly brackets of Eq. (5.2)).
The corresponding mesonic backcoupling part of the quark self-energy ΣM

f (p) for
the quark flavor f in the quark DSE is given by

ΣM
f (p) = −

∑

x⊂{π,σ}
Nf

x
∑∫

q

Dx(P )
2 Γ̄bare

x Sf
′(q)

{
Γ̂x(P, l) + Γ̂x(−P, l)

}
(5.2)

which contains a sum over the considered mesons (π and/ or σ/f0) [38, 58]. Thereby,
the three isovector Pions are counted as one contribution. As mentioned in Sec. 3,
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5. Meson backcoupling at finite chemical potential and temperature

some of the mesons are degenerated due to our approximations. Nf
x takes account

for this degeneration and describes the number of times the different degenerated
mesons couple to the considered quark flavor f . We will call this quantity meson
flavor factor and calculate it via

Nf
x =

∑

e∈x
v>f (rex)> rexvf =

{
3 δf` + 0 δfs for x = π

1 δf` + 0 δfs for x = σ
. (5.3)

In this expression we sum over the degenerated mesons (x = π ∈ {π±, π0} and
x = σ). Thereby the meson flavor matrices rex originate from the BSAs in Eq. (3.12)
and their representations are discussed in App. A.3. This representation also
includes a normalization factor

√
2. Due to the charge conjugation in Eq. (5.2) one

meson flavor matrix has to be transposed. We further multiply these flavor matrices
by the unit vectors of the quark flavor space vf to project the (inverse) quark
propagator S = diag

(
Su, Sd, . . .

)
onto a specific quark flavor f . If we consider the

contributions of the different quark flavors, it is noteworthy that only two Pions
interact with the light quarks although there are three of them. This is because
the external quark flavor has to run through the meson to archive a coupling
between the quark and the meson. If we, e.g., consider the up-quark, we sum over
e ∈ {π+, π0}. Thereby, π+ couples to the quark once but π0 only to a half. The
Pion and Sigma mesons, furthermore, only influence the light quarks as indicated
by δf`. For the strange quark to couple to a meson we would need to backcouple
mesons with open or hidden strangeness, i.e. K or φ mesons.7 Additionally, the
quark flavor projection described above also implies that the quark propagator
which is integrated over can have another quark flavor f ′.

The meson backcoupling self-energy further depends on the meson propagator
Dx(P ) and one fully dressed and normalized BSA Γ̂x(P, l) of the meson type x as
well as a charge conjugated bare Bethe-Salpeter vertex defined by

Γ̄bare
x,e =




Zf2 γ5 ⊗ 1C ⊗ (rex)> for x = π

Zf21D ⊗ 1C ⊗ (rex)> for x = σ
. (5.4)

In this expression, we included the meson flavor matrix for the sake of completeness.
The dressed BSA depends on the relative momentum l = p+q

2 and the off-shell
total momentum P = q − p, implying a symmetric momentum partitioning. The
off-shell meson BSAs needed in the the meson backcoupling term can be extracted
from the inhomogeneous BSE. Since these off-shell BSAs are, for the momenta
relevant in our calculation, almost identical to the on-shell amplitudes obtained

7The proper inclusion of the Kaon would further introduce another coupling between the light
and the strange quarks in addition to the unquenching of the gluon.
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5.2. Influence on the chiral order-parameters

from the hBSE, we will use the on-shell BSAs presented in the last chapter as an
approximation. Consequently, temperature effects are neglected.8 The inclusion of
finite temperature in the considered truncation by evaluating the complex quark
and BSE explicitly is far too complicated and beyond the scope of this work. But
through the data, we incorporate the effects of chemical potential in the BSAs
and meson properties which are, as we will see later, mandatory to preserve the
Silver-Blaze property of QCD. In addition to the use of the on-shell data from the
last chapter, we have to apply a further approximation, which is related to the
meson propagator. As already mentioned in Sec. 3.2.2, the spatial decay constant
and the meson velocity cannot be calculated since we consider the mesons to be in
rest frame. Although the velocity would also be important for the scaling behavior,
we set f tx = f sx and ux = 1.

In summary, in this chapter we calculate a coupled set of quark and gluon DSEs
and a meson hBSE, neglecting hadronic backcoupling terms in the gluon DSE
and the meson hBSE and adding an hadronic backcoupling self-energy given by
Eq. (5.2) to the non-hadronic part in the quark DSE:

(
Sf (p)

)−1
=
(
Sf0 (p)

)−1
+ ΣNH

f (p) + ΣM
f (p) . (5.5)

In the gluon DSE, the meson hBSE and the non-hadronic part of the quark DSE
we use the Hyb truncation detailed in Sec. 2.2.2 (and following) with Nf = 2 + 1
quark flavors. How the iterative procedure of the coupled quark and gluon DSEs
and meson BSE precisely works is detailed in App. C.1.2. With the (meson
backcoupling) truncation fixed, we can now investigate the chiral order parameters.

5.2. Influence on the chiral order-parameters

We start by studying the impact of backcoupled mesons on the dynamical (light-)
quark mass function and the corresponding wave-function renormalization function
in vacuum. Therefore, in Fig. 5.3, we plot these two quantities against the
four momentum. To see the effect of the different mesons individually and in
combination, we consider different sets of backcoupled mesons. Compared to the
calculation without any backcoupled mesons, the inclusion of Pion backcoupling
reduces the dynamical quark mass over the whole momentum range with a maximal
reduction of around 7% at vanishing momentum. The Sigma meson backcoupling
behaves similarly but is weaker in its chiral restoration effect with a maximal
reduction of 5%. The combined effect of both backcouplings trivially is the sum of

8In App. C.1.2 we will however try to estimate the the impact of the missing temperature effects.
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Figure 5.3.: Dynamical quark mass function M`(p) = B`(p)/A`(p) (left) and corre-
sponding quark wave-function renormalization function Z`F(p) = 1/A`(p) (right)
plotted against the four-momentum for light quarks and different numbers of
backcoupled mesons in vacuum. All results are obtained with the parameters of
the Hyb truncation given in Tab. 2.2.

the individual parts. As we can see in the figure, the wave-function renormalization
function also shows a much stronger reaction on the Pion than on the Sigma meson.

Since the introduction of the meson backcoupling terms reduces the (pseudo)critical
temperature for all chemical potentials, the truncation parameters have to be
re-scaled to match the lattice pseudocritical temperature at vanishing chemical
potential [4, 104] again. For this purpose we only need a change of the vertex
interaction strength parameter dq1 in the quark DSE as discussed in Sec. 2.2.3. The
resulting regularized and normalized quark condensate is plotted in Fig. 5.4 in
comparison with corresponding lattice results for finite temperature but vanishing
chemical potential. In this plot, we consider two types of meson backcoupling:
On the one hand we backcouple only the Pion and use only the leading BSA
component (+π) to later compare with the results presented in Ref. [89]. On
the other hand we backcouple the Pion and Sigma meson with all possible BSA
components (+π&σ). In the plot, we furthermore compare with the results without
meson backcoupling (Hyb). Since the π backcoupling is introduced to compare
with an older QCD phase diagram, the vertex strength parameter naturally is fixed
to the same pseudocritical lattice temperature as in previous works [4]. For the
π&σ backcoupling we however take account of newer lattice results [104] with an
pseudocritical temperature which is 2 MeV higher. The corresponding parameters
resulting from the new parameter fixings are recorded in Tab. 5.1 together with
the resulting pseudocritical temperature at vanishing chemical potential.
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Figure 5.4.: Vacuum-normalized regularized quark condensate (2.37) of the Hyb
DSE truncation without meson backcoupling (solid gray) [105], with Pion back-
coupling (dashed dotted black) and with Pion and Sigma backcoupling (dashed
blue) compared to the corresponding continuum-extrapolated lattice results
(solid red circles) from Ref. [4]. The results are considered at finite temperature
and vanishing chemical potential.

In the figure we, furthermore, see that the π parameter set coincides quite well
with previous data without meson backcoupling and (within the error bars) the
lattice, too. At high temperatures the already previously observed and discussed
overestimation of chiral symmetry breaking of the truncation without meson
backcoupling (see Sec. 2.2.3) vanishes for the two meson backcoupling parameter
sets. For the π&σ parameter set, it is obviously visible that the condensate does

dq1 [GeV2] d1 [GeV2] m`
q [MeV] ms

q [MeV] Tpc [MeV]
Hyb + π 13.54 8.49 1.47 37.8 156(1)
Hyb + π&σ 14.18 8.49 1.47 37.8 157(1)

Table 5.1.: Vertex strength parameter(s) d(q)
1 , quark masses mf

q and the pseudocrit-
ical temperature Tpc at vanishing chemical potential for the Hyb truncation with
Pion as well as Pion and Sigma backcoupling. The error of the pseudocritical tem-
perature is purely numerical and its determination from the vacuum-normalized,
regularized quark condensate is discussed in App. C.1.2.

89



5. Meson backcoupling at finite chemical potential and temperature

0.0 0.5 1.0 1.5
µB [GeV]

-0.5

0.0

0.5

1.0

1.5

〈 Ψ̄
Ψ

〉 r
eg `

(µ
B

)/
〈 Ψ̄

Ψ
〉 r

eg `
(0

)

Back-coupling:
no
π

π&σ

Back-coupling:
no
π

π&σ

0.0 0.5 1.0 1.5
µB [GeV]

-1

0

1

〈 Ψ̄
Ψ

〉 r
eg `

(µ
B

)/
〈 Ψ̄

Ψ
〉 r

eg `
(0

)

Back-coupling:
no
π

π&σ

Back-coupling:
no
π

π&σ

Figure 5.5.: Vacuum-normalized and regularized light-quark condensate of the Hyb
DSE truncation without meson backcoupling (solid gray), with Pion backcoupling
(dash dotted black) and with Pion and Sigma backcoupling (dashed blue). The
results are considered at finite chemical potential and vanishing temperature.
The jump represents the transition from the Nambu to the Wigner solution
and corresponds to the upper border of the light-quark coexistence region. The
densely dotted magenta line corresponds to the end of the Silver-Blaze area.
The regularized quark condensate 〈Ψ̄Ψ〉regf is defined by Eq. (4.1). Due to the
average over the possible incoming and outgoing momenta, the imaginary part
of the meson BSA components vanishes (left side). We reinsert the imaginary
part of the BSA on the right side. More information in the text.

not coincide equally well with the lattice for intermediate temperatures. This,
although, is not astonishing since it is fixed to match newer lattice results with a
higher pseudocritical temperature. At low and high temperatures the agreement
with the other presented data is, however, satisfying. It has to be mentioned
that after backcoupling the mesons, the quark masses should be re-scaled, too,
potentially yielding a better agreement with the lattice data (at high temperatures).
But this requires a much more complicated truncation and calculation since we
would need to solve a coupled set of quark and gluon DSEs and the homogeneous
BSE simultaneously and in the complex momentum plane.

After introducing the two parameter sets, we can now consider the corresponding
results at finite chemical potential and vanishing temperature, before we study the
impact on the QCD phase diagram. We therefore display the vacuum-normalized
and regularized quark condensate against the baryon chemical potential in Fig. 5.5
for the two parameter sets in comparison with the truncation without any backcou-
pling. At first, we consider the panel on the left side which directly results from
our calculation. As one can see, the results with meson backcoupling show a strong
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5.2. Influence on the chiral order-parameters

chemical potential dependence, in contrast to the constant results of the truncation
without meson backcoupling. Although the quark condensate is not an observable
quantity, the strong dependence on chemical potential and the connected violation
of the Silver-Blaze property could hint at a violation of the SBP of an (other)
observable. Especially the peak of the π&σ backcoupling results seems unphysical.

At this point, we remember one of the most important observations from the last
chapter: At finite chemical potential and vanishing temperature, the Bethe-Salpeter
amplitudes of all mesons develop an imaginary part. For high-mass mesons this
imaginary part is also almost the only reaction of the amplitude to chemical
potential. Furthermore we mentioned, at the end of the last chapter, that there
is a non-trivial cancellation between the chemical potential dependencies of the
quark and meson quantities happening, that provides a constant behavior of the
observables. Consequently, all parts of the BSAs which depend on the chemical
potential should be included in the calculation. But if we take a closer look at
the implemented kernels for the meson backcoupling, the procedure of taking the
average over all possible combinations of the incoming and outgoing momenta
yields that the imaginary part of all BSAs vanish in the calculation. If we reinsert
the imaginary part of the BSAs manually we get the results presented on the right
side of the figure. Now at least the quark condensate for the π parameter set is
constant and fulfills the SBP. It seems that our approach of just taking the average
of the possible permutations of the incoming and outgoing momenta (included
to fulfill the AxWTI) is not the optimal choice and has to be replaced. For the
behavior of the condensate for Pion and Sigma meson backcoupling, we mention
that we had to extrapolate the Sigma meson properties and BSAs for baryon
chemical potentials above µB = 630 MeV since we are restricted to use a symmetric
momentum partitioning parameter. For simplicity we use a constant extrapolation
for both, the Sigma meson properties and BSAs. Due to the resulting missing
chemical potential dependence, we expect that the latter approximation leads
to the dip and the subsequent decrease of the quark condensate in both figures.
In vacuum, we observed that the importance of the H and G BSA components
interchange if we go from the Pion to the Sigma meson. This means that H is
much more important than G if we consider the Sigma meson instead of the Pion.
In our calculation the H BSA component is however neglected. We consequently
assume that the SBP violating behavior below µB = 630 MeV could result from
the missing H contribution. In future works, we have to include the H contribution
and to improve upon the constant extrapolation. To achieve both, we have to go
beyond the rest frame description of the mesons.

If we reinsert the imaginary part of the BSAs, also the upper border of the
coexistence region is affected. The calculation of the lower border is numerically
not feasible since we do not have access to the mesons BSAs for the Wigner
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5. Meson backcoupling at finite chemical potential and temperature

solution.9 The influence of the imaginary part, for the π parameter set, can also be
seen if we consider the quark dressing functions. Before reinserting the imaginary
part of the BSAs, all quark dressing functions show a strongly oscillatory behavior
already at low chemical potential. Furthermore, the two quark vector dressing
functions behave similarly but are not identical. If we reinsert the imaginary part,
the oscillations vanish almost completely and only a weak oscillation remains in
the second vector dressing function. Additionally, the two vector dressing functions
differ by less than 1% over the whole momentum range and for all chemical potential
values of the Nambu solution. But in the Wigner phase they are different. Overall,
the quark dressing functions react on chemical potential similar as discussed in
Sec. 4.1.

5.3. Influence on the QCD chiral phase-diagram

In this section, we will study the impact of the meson backcoupling on the chiral-
symmetry QCD phase diagram. Therefore, in Fig. 5.6, we show the QCD phase
diagram calculated for the two parameter sets with backcoupled mesons in compar-
ison with the corresponding phase diagram of the Hyb truncation without meson
backcoupling. The difference between the phase diagram of the Hyb truncation
without meson backcoupling and the phase diagram of previous works (1BC trun-
cation), was already discussed in Sec. 2.2.4. Since the Hyb truncation inherits
much stronger approximations than the 1BC truncation, the absolute values for
the curvature and the location of the CEP, in this section, should not be regarded
as best results. Instead, it only serves to highlight the relative difference resulting
from suppressing and including the different mesonic effects.

In the figure, we observe (for all three cases) a crossover at low chemical potential
which increases its steepness until it ends in a second-order critical endpoint (CEP).
The coexistence region which we observed for the 1BC and Hyb truncation in
Sec. 2.2.4 cannot be determined if we include mesonic backcoupling. As already
mentioned in the last section, the reason is that we do not have access to the
mesons corresponding to the Wigner solution. Consequently, we are only able to
determine the upper spinodal.

As one can see, the phase diagram is only affected marginally through the inclusion
of the Pion and Sigma backcoupling terms. The most prominent effect is the shift
of the CEP to lower chemical potential and higher temperatures along the previous
coexistence crossover line. For the π parameter set we find a chemical potential

9The results above the upper border of the coexistence region are calculated with mesons from
the Nambu solution and therefore have to be considered with caution.
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Figure 5.6.: Chiral symmetry QCD phase diagram for the Hyb truncation detailed
in Sec. 2.2.3 without meson backcoupling (black) and with different numbers
of additionally backcoupled mesons. For the meson backcoupling we consider
the Pion (red) as well as the Pion and Sigma (blue) parameter sets. Dashed
lines correspond to crossover transitions while strait lines represent a first-order
spinodal. The big dots show the location of the second-order critical endpoint of
the corresponding truncation. The shaded area represents the coexistence region
where the physical first-order phase transition takes place. To be comparable with
previous calculations of the QCD phase diagram [42], we set the strange-quark
chemical potential to µsq = 0.

shift of 10% while the shift of the π&σ parameter set turn out to be smaller of the
order of 6%. A similar result was found for baryonic backcoupling in Ref. [44].10
We have to remember that the π parameter set was calculated using only the
dominant Pion BSA component whereas the π&σ parameter set uses all possible
BSA components mentioned in Sec. 3.1.4. In consequence, the question whether
the reduced shift of the π&σ parameter set is due to the inclusion of the Sigma
backcoupling term or more Bethe-Salpeter amplitude components or a mixture of
these two additions, needs to be evaluated in a future (computational expensive)
investigation. The corresponding locations of the three critical endpoints are
detailed in Tab. 5.2.
10However, the results in this work originate from a much more elaborated calculation. In Ref. [44],

vacuum quantities were used for the baryon whereas in this work we explicitly include the
chemical potential dependency of the mesons.
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5. Meson backcoupling at finite chemical potential and temperature

Table 5.2.: Critical endpoint (CEP) and curvature κ of the two meson backcoupling
parameter sets introduced above and corresponding values for the truncation
without meson backcoupling (Hyb). The errors of the CEPs are purely numerical.

(µB , Tc )CEP [MeV] κ

Hyb ( 636(1) , 111.9(1) ) 0.0173
+π ( 570(1) , 117.7(1) ) 0.0210

+π&σ ( 597(1) , 117.2(1) ) 0.0167

In the table, we also show the curvature values obtained from a fit to Eq. (2.42)
up to a baryon chemical potential of µB = 240 MeV. In our calculation, we find an
increase of the curvature for the π parameter set and a slight decrease for the π&σ
parameter set.

Finally, we can state that we are consistent with Ref. [89] where a similar effect
on the CEP and the curvature was found using only the Pion backcoupling term
and a generalized Goldberger-Treiman like relation as approximation for the
leading BSA component (See Sec. 4.4 and Ref. [31] for more details). Since this
relation replaces the BSAs by quark dressing functions, also temperature effects
are considered properly in this approximation, at least if the relation holds also
for finite temperature. Since we see a similar behavior in our calculation we are
confident that our results are meaningful even though we neglect the temperature
dependence of the meson properties and wave-functions. Although this truncation
is only comparable to the π parameter set, we have now seen that the π&σ
parameter set does behave in the same way.

To conclude, we can state that if we combine our results with the results of the
Refs. [38, 44, 89], we find strong evidence that the location of the CEP is mainly
driven by the non-resonant part of the quark-gluon vertex, i.e. by the microscopic
degrees of freedom of QCD (the quarks and gluons), whereas macroscopic dof (in
particular the σ meson) are expected to take over if we consider the properties of
the CEP like the critical exponents/ the universal behavior. The latter feature
is expected for a system in the Z(2) universality class and was explored in detail
in effective models of QCD [52, 59, 60].11 The corresponding analytic scaling
analysis in our framework is straightforward along the lines of Ref. [38] but requires
a tremendous additional numerical effort.[55] To study the scaling behavior, the
behavior of the meson velocity and decay constant in the dispersion relation is
11Indications for the correct scaling behavior in lattice and functional methods can be found in

Refs. [173–176] and [177, 178], respectively.
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5.3. Influence on the QCD chiral phase-diagram

crucial [38]. Consequently, we have to consider the meson in the moving frame
which would enable the possibility to properly calculate the spatial meson decay
constant. In addition to the decay constant, we need to find a better description
of the effective BSA and to include temperature effects to be able to study the
critical scaling. Apart from the scaling analysis, the inclusion of mesonic decays
into the calculation and a proper study of baryon properties and backcouplings in
medium could be done in future investigations.
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6. Baryon backcoupling effects at finite
chemical potential

Similar to the last chapter with meson backcoupling, we want to investigate the
influence of baryon (and diquark) backcoupling in this chapter. In Refs. [44, 80],
the qualitative impact of this baryon backcoupling onto the QCD phase diagram
was already studied in a rather simple way for a Nf = 2 quark flavor calculation and
a 1BC truncation (description see Sec. 2.2.3). A strong influence on the QCD phase
diagram and the critical endpoint could not be found.1 However, since it would
be important that the truncation shows the desired nuclear matter liquid-gaseous
phase transition [18], we now extend this investigation to the chemical potential
axis of the QCD phase diagram. Because the baryon backcoupling provides us
a connection between the chiral observables and the baryon wave-function, we
hope to find an indication of this transition if we properly included the baryon
backcoupling effects onto the quark propagator. Changes in the baryon wave-
function, e.g. through the sharp (first-order) nuclear liquid-gaseous transition, then
influence the quark condensate directly.

In the next section, we will introduce the applied truncation and show the equations
to solve. Since Refs. [44, 80] already discussed the derivation of the baryon (and
diquark) backcoupling in detail and since this derivation is quite similar to the
one for meson backcoupling in the last chapter, we will mention only the most
important aspects. Then, we will consider the impact of the baryon and diquark
backcoupling onto the quark dressing functions and the quark condensate.

6.1. Approximations

We include the baryonic contributions in the same way as we did it for the mesons
in the last chapter. This means that we include the baryon diagram of the quark-
gluon vertex decomposition in Fig. 2.4 into the quark DSE but neglect the meson
backcoupling. This yields a three-loop diagram which is far too complicated to

1In a two color version of QCD, the FRG studies in Ref. [179, 180] found that baryon backcoupling
effects are even crucial for the existence of CEP.
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6. Baryon backcoupling effects at finite chemical potential

be solved numerically, especially if we consider the calculation of the three-quark
Faddeev amplitude in medium.2 To reduce the complexity, we apply a commonly
used approximation of the baryon, the so-called quark-diquark approximation: Due
to the dynamical formation of diquark correlations inside the baryon, quark-diquark
degrees of freedom can be seen as a satisfying approximations for the three-body
framework. This approximation converts the three-quark Faddeev amplitude into
a quark-diquark BSA for baryons. The corresponding Bethe-Salpeter equation can
be found in Ref. [44]. By applying this approximation with simple models for the
quark and diquark propagators and ansätze for diquark amplitudes [186–189] or
with more fundamental approaches similar to our calculation [190–193], previous
works were able to show satisfying descriptions of nucleon and ∆-baryon ground-
state properties and a good agreement with the three-quark Faddeev calculation
of the nucleon, see e.g. in Ref. [181].[44]

By inserting the quark-diquark ansatz into each three-body Faddeev amplitude of
the three-loop diagram, we can rearrange the resulting diagrams into two groups
which can be represented by the two one-loop diagrams shown in the lower row of
Fig. 6.1. We will refer to the diagram where the quark couples to a diquark ampli-

= +-1-1

+ +

Figure 6.1.: Approximated quark DSE with a gluon (indicated as non-hadronic
NH), diquark (first term in second row) and baryon (last term in second row)
backcoupling. Quark, gluon, diquark, and baryon propagators are denoted
by solid, curly, double, and triple lines, respectively. The intersection of two
quarks and a gluon or a diquark represent a quark-gluon or a diquark Bethe-
Salpeter vertex, respectively. The intersection of a baryon, a diquark and a
quark is a Faddeev-type amplitude in the quark-diquark approximation. Dressed
quantities are indicated by big colored dots. The remaining ones are bare. The
arrows indicate the direction of the quark, diquark, and baryon flavor and the
momentum. The signs and prefactors are absorbed into the diagrams.

2The calculation of the three-body Faddeev equation in vacuum as shown in Refs. [171, 181–185]
is already quite complicated.

98



6.1. Approximations

tude as diquark loop, while we denote the diagram where the quark couples to
a diquark-baryon amplitude as baryon loop. Each of the two diagrams has one
proper amplitude/ vertex and an effective one which absorbs the remaining objects
of the set of graphs. Analogous to the treatment of the Pion loop in the quark DSE
in Sec. 5.1, we use a bare vertex instead of an effective vertex since dressing both
vertices would overestimate the strength of the backcoupling by far [44]. This is due
to the normalization factor of the dressed amplitudes which we will introduce later
on. The resulting truncated quark DSE with diquark and baryon backcoupling
and bare instead of effective vertices is shown in Fig. 6.1 and given by

(
Sf (p)

)−1
=
(
Sf0 (p)

)−1
+ ΣNH

f (p) + ΣDQ
f (p) + ΣBA

f (p) (6.1)

with the non-hadronic (X=NH), diquark (X=DQ), and baryon (X=BA) self-
energies ΣX

f . Similar to the meson backcoupling, the inclusion of the baryon vertex
term into the gluon DSE is neglected since the baryonic contribution to the quark
loop is suppressed by a factor of 1/N2

c . To be comparable to Refs. [44, 80], we
use the 1BC truncation discussed in Sec. 2.2.3 with Nf = 2 quark flavors and
modified vertex interaction strength d1 = 8.05 GeV2 for the non-hadronic part
of the interaction. Since we consider Nf = 2 quark flavors and use the isospin-
symmetric limit, only the isospin-singlet scalar and isospin-triplet axial-vector
diquarks and the degenerated isospin-doublet of nucleons remain in the calculation.
Like in the Refs. [44, 80], we omit axial-vector diquarks in the calculation. Finally,
we obtain the nucleon (BA) and the scalar diquark (DQ) backcoupling quark
self-energies via

ΣDQ
f (p) =

∫

q
Γ̄0
DQ

(
Sf
′(q)

)>
ΓDQ(P, l)DDQ(k) , (6.2)

ΣBA
f (p) =

∫

q
Γ̄0
BA(P )SBA(2l) ΓBA(P, r)DDQ(2l) (6.3)

where we use the abbreviation
∫
q =

∫ d4q
(2π)4 and the transposition >. The momenta

appearing in the vertices are the total P and relative momenta l = (q − p)/2
and r = q/2− p. The remaining momentum routing is given by k = q + p. The
corresponding bare quark-diquark and diquark-baryon vertices are given by

Γ0
DQ = γ5C ⊗ εABC√

2
⊗ s0 , (6.4)

Γ0
BA(P ) = Λ+(P )⊗ 1C√

3
⊗ d0 (6.5)

with the charge conjugation matrix C = γ0γ2 as well as the diquark and baryon
flavor matrices s0 = i√

2σ2 and d0 = 1B. The color matrices are normalized.
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6. Baryon backcoupling effects at finite chemical potential

Furthermore, the projection operator onto positive-energy states Λ+(P ) will be
omitted in the baryon loop because its purpose is already fulfilled by the baryon
propagator. The dressed quark-diquark and diquark-baryon vertices are approx-
imated by their leading tensor structures which correspond to the bare tensor
structures. Consequently, the amplitudes are given by ΓDQ(P, q) = fDQ(q2)Γ0

DQ
and ΓBA(P, q) = fBA(q2)Γ0

BA(P ) where fDQ and fBA represent the leading diquark
and baryon dressing functions. Since little is known about in-medium properties
of baryons, we use an exploratory ansatz for these dressing functions. They are
taken from explicit solutions of the diquark and nucleon amplitudes in a vacuum
Rainbow-Ladder quark-diquark calculation with an effective interaction [191–193].3
In Ref. [73] the results were parameterized in the form

fDQ(q2) = NDQ

(
e−αDQx + βDQ

1 + x

)
, (6.6)

fBA(q2) = NN

(
e−αNx + βN

(1 + x)3

)
. (6.7)

The momentum x = q2/Λ2 includes the scale Λ = 0.7 GeV and the amplitudes
are normalized by the normalization factors NDQ = 15.6 and NN = 28.4. The
remaining parameters for the exponentials and the ultraviolet behavior are given by
αDQ = 0.85, αN = 1.0, βDQ = 0.02, and βN = 0.03. Finally, as the last quantities,
the off-shell diquark and baryon propagators are approximated by free propagators

DDQ(q) = 1
~q2 + (q4 + 2/3iµB)2 +m2

DQ
, (6.8)

SBA(q) =
−i~/q − iγ4(q4 + iµB) +mN

~q2 + (q4 + iµB)2 +m2
N

(6.9)

where we use the vacuum diquark and nucleon mass mDQ = 0.85 GeV and mN =
0.938 GeV. By the use of vacuum masses and wave-functions, we neglect important
temperature and chemical potential dependencies. On the one hand, we do so to
keep the calculation simple and fast, but on the other hand there are only a few
investigations about baryon mass and wave-function in medium [194–197]. We
know from Ref. [195] that the amplitude is almost independent of the temperature
while the mass depends strongly on it, especially at the critical temperature. This
can have important effects on the quark propagator and the chiral observable.
For finite chemical potential and vanishing temperature, the liquid-gas transition

3Due to the use of another interaction for the calculation of the baryon and diquark amplitude
as compared to the quark DSE, we have to pay special attention to the renormalization as
shown in App. C.1.1.
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6.2. Quark dressing functions

represents a sharp change in the behavior of the nucleon mass and wave-function.
This, however, is neglected in our ansatz.

In our calculation, we only take the lowest lying JP = 1
2

+ baryon multiplet for
two quark flavor into account. All other baryons ’b’ are suppressed by powers of
m2

N/m
2
b, except for the parity partner of the nucleon which becomes (almost) mass

degenerated when chiral symmetry is restored. By projecting the baryon loops of
the nucleon and its parity partner onto the quark dressing functions by applying
appropriate Dirac traces, the contribution of the nucleon and its partner cancel in
the scalar part of the self energy (ΣBA

f )B and add up in the vector parts (ΣBA
f )A/C

in the chirally restored phase. We take this feature into account by introducing an
extra factor into the calculation. As this extra factor, we use

CX =





2− M`(T,µB;0)
M`(0,0;0) X ∈ {A,C}

M`(T,µB;0)
M`(0,0;0) X = B

(6.10)

with M`(T, µB; p) = B`(T, µB; p)/A`(T, µB; p) representing the renormalization
point independent dynamical quark mass function in medium at the four momentum
p. This factor has no effect in vacuum but mimics the cancellation of the multiplets
in the chirally restored phase.[44, 80] This completes our discussion of the applied
(baryon and diquark loop) truncation. Now, we can determine the quark dressing
functions and the corresponding quark condensate.

6.2. Quark dressing functions

In Fig. 6.2, we display the dynamical (light-)quark mass and the corresponding
quark wave-function renormalization function in vacuum. The two quantities
are plotted against the four-momentum for different combinations of baryon and
diquark backcouplings: We consider the diquark and baryon backcoupling separately
and in combination and compare them to the case of no backcouplings (1BC).
The backcoupling terms have the largest impact at small momenta but are of
no importance for large momenta. Consequently, we will concentrate on the
infrared part only. While the wave-function renormalization function is almost
independent of the applied backcoupling, the dynamical quark mass shows a strong
decrease for each loop contribution separately. But this chiral restoration effect
is differently pronounced for the different contributions. The diquark term only
yields a reduction of dynamical mass generation of 3% whereas the baryon term
results in a reduction of 11%. We see that the baryon influence is much stronger
than the one of the diquark. The combined effect is just the sum of the individual
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6. Baryon backcoupling effects at finite chemical potential
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Figure 6.2.: Dynamical quark mass M` = B`/A` (left) and corresponding quark
wave-function renormalization function Z`F = 1/A` (right) plotted against the
four-momentum for light quarks and different combinations of diquark and
baryon backcouplings in vacuum.

effects and is in the same ballpark as the meson backcoupling effect discussed in
the last chapter. Overall, the dynamical quark mass reacts similar on baryons
and diquarks as on mesons. The wave-function renormalization function, however,
is much less affected by baryons and diquarks as can be seen in comparison to
Fig. 5.3.

For the discussion of the chemical potential dependency, we will concentrate
on the combined effects of diquark and baryon backcoupling. In Fig. 6.3, we
therefore show again the dynamical (light-)quark mass and the quark wave-function
renormalization function plotted against the four-momentum but now for different
chemical potentials. The resulting chemical potential dependence is similar to
the one presented in Sec. 4.1. This means that we observe an increase at low
momenta and an increase of the spreading in mid-momentum region indicating
more angular dependence as well as a vanishing chemical potential dependencies
for large momenta. The wave-function renormalization function, however, shows a
weaker chemical potential dependence compared to the case without baryon and
diquark backcoupling. There only is a marginal decrease at low momenta. The
difference between the two vector dressing functions in case of baryon and diquark
backcoupling is less than 0.3% over the whole momentum range for chemical
potentials in the Silver-Blaze region. Above, the difference increases strongly. We
can trace back this behavior to the baryon mass which is now explicitly included
into the calculation and yields some numerical problems, too.

As one can see in both panels of Fig. 6.3, there is a strong oscillatory behavior at
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Figure 6.3.: Chemical potential dependency of the dynamical (light-)quark mass
(left) and the quark wave-function renormalization function (right) for the
combined effects of diquark and baryon backcoupling. The results are obtained
with the Nambu solution only.

low and mid momenta for µB = 1.32 GeV. This behavior is already visible for lower
chemical potential but much less pronounced. To get insights into the origins of this
oscillatory behavior, we consider the different self energy components of Eq. (6.1)
in dependence of the chemical potential. While the baryon component ΣBA

f

already shows a weak oscillatory behavior at low chemical potential4, the stronger
oscillations enter near specific chemical potentials. If we consider the diquark ΣDQ

f

and baryon ΣBA
f components separately, we observe that these chemical potentials

are around µB = 3
2mDQ = 1.275 GeV and µB = mN = 0.928 GeV, respectively. We

assume that they are connected to the poles of the diquark and baryon. Due to the
poles in the integration area, our numerical calculation, e.g. the applied Cauchy
method, breaks down and cannot be trusted any longer.

To conclude the dressing function discussion, we mention that neither the baryon
nor the diquark contribution show a discontinuity in form of a jump in their
behavior when passing the end of the Silver-Blaze region which corresponds to a
baryon chemical potential equal to the baryon mass. We only find such a jump when
passing from the Nambu to the Wigner phase. We however find a discontinuity in
form of oscillations when passing both the specific chemical potentials mentioned
before which are connected to the nucleon and scalar diquark mass. Since these
oscillation originate from a numerical breakdown, we can neither confirm nor deny
the existence of a liquid-gaseous phase transition. We assume that if we repair
the numerical calculation by including the dynamically evaluated residues of the

4We expect the complex numerical evaluation or the strong approximations to be the reason.
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6. Baryon backcoupling effects at finite chemical potential

bound state poles, we could possibly find an indication for such a transition. But
unless these calculations are done, the situation remains unclear. Nevertheless,
it is clear that our truncation lacks important chemical potential dependencies
in the baryon and diquark propagators and vertices. We expect that an explicit
calculation of the diquark Bethe-Salpeter equation and the three-quark Faddeev
equation (possibly in the quark-diquark picture) in medium and with more than
the leading amplitudes similar to the calculation in the last chapter, could improve
the description of the baryon and could lead to a more visible indication of the
liquid-gaseous phase transition.

6.3. Quark condensate

In this section, we will consider the reaction of the chiral observable on the
introduction of diquark and baryon backcoupling terms at finite chemical potential.
For this purpose, we display the vacuum-normalized and regularized light-quark
condensate plotted against the baryon chemical potential in Fig. 6.4. In the figure,
we display different combinations of backcouplings: We consider the diquark and
baryon backcoupling separately and in combination and compare the results to
the case without backcoupling (1BC). Since we consider only Nf = 2 quark flavors,
we use a heavy quark ’h’ instead of the strange quark to regularize the quark
condensate. In the following, we will first consider the results of the Nambu solution
before we continue with the Wigner solution.

As we saw already in previous chapters, the condensate without backcoupling
remains constant until the end of the coexistence region. If we include only the
diquark backcoupling, the condensate remains constant until the aforementioned
value of µB = 3

2mDQ = 1.275 GeV indicated by a vertical gray dotted line in the
figure. The condensate results with baryon backcoupling on the other hand show a
weak linear increase until the end of the Silver-Blaze region (marked as vertical
magenta dotted line) and a stronger linear increase up to µB = 3

2mDQ.5 Although
the quark condensate is, strictly speaking, not an observable quantity, the fact that
the condensate with baryon backcoupling does not remain constant until the end
of the Silver-Blaze region could hint at the violation of the Silver-Blaze property
of other observables. We can imagine two origins of this behavior:

5Because of the chemical potential in the denominator, the diquark and baryon loop get weaker.
Therefore, the chiral restoration effect of the two backcoupling terms is reduced, leading to
increased values for the condensate.
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Figure 6.4.: Chemical potential dependence of the vacuum-normalized and regu-
larized light-quark condensate for the chirally-broken Nambu (lines of muted
colors) and chirally-restored Wigner (lines of bright colors) solution as well as
for different combinations of considered diquark and baryon backcoupling terms
(different line types). We consider results with the diquark and baryon backcou-
pling term included separately and in combination. In addition, we show the
corresponding results without any backcoupling (1BC truncation). The densely
dotted magenta and gray vertical lines correspond to the end of the Silver-Blaze
region at µB = mN and to the specific chemical potential µB = 3

2mDQ.

(i) In the last section, we saw that the numerical complexity of the baryon loop
calculation leads to small oscillations of the baryon contribution ΣBA

f at low
chemical potentials. This numerical instability could harm the SBP.

(ii) We saw in the last chapter that the correct way of meson backcoupling (with
contained imaginary part of the BSAs) is important to obtain a constant
behavior of the condensate. In this chapter, the correct chemical potential
dependence of the diquark and baryon vertex is possibly missing (since
we consider vacuum quantities) and cannot compensate the corresponding
chemical potential dependence of the quark.

Above the baryon chemical potential µB = 3
2mDQ, we see strong numerical artifacts

which we trace back to the diquark and baryon poles which are now included into
the integral calculation. Due to this behavior, it is not clear if the results can be
trusted above µB = 3

2mDQ or even above µB = mN. Another observation is that
the lower border of the coexistence region is unaffected by the backcoupling terms
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6. Baryon backcoupling effects at finite chemical potential

while the upper border shows a stronger dependence. The results of the Wigner
solution are only marginally affected by the inclusion of different backcoupling
terms.

To conclude, we can furthermore mention that we were not able to find a finite
but small jump in the light-quark condensate for all backcoupling types. Such a
jump would however be a clear sign indicating a nuclear matter liquid-gaseous
phase transition. But as already motivated in the last section, the absence of
such a jump could be due to an insufficient calculation where the residues of
the bound state poles are neglected. Consequently, to make a proper statement
regarding the confirmation or denial of a liquid-gaseous phase transition, further
calculations with improved numerics are necessary. In addition, we assume that
the explicit calculation of the baryon and diquark in medium could provide us
a chemical potential dependent nucleon mass, possibly with a discontinuity at a
certain chemical potential indicating the liquid-gaseous phase transition.
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7. Summary and conclusion

In this work, we studied the chemical potential dependence of quark and meson
properties at vanishing temperature and investigated the impact of mesonic and
baryonic backcoupling effects on different areas of the QCD phase diagram. For
this purpose, we applied the functional framework of Dyson-Schwinger equations
and explicitly calculated the meson bound state properties and the quark-meson
Bethe-Salpeter vertex from their homogeneous Bethe-Salpeter equation. We used
a well studied truncation [17, 35–38, 75, 76] to reduce the infinite tower of coupled
integral equations to a coupled set of truncated DSEs for the Landau gauged
quark and gluon propagators with Nf = 2 (+1) dynamical quark flavors. In this
truncation, we expressed the Yang-Mills part of the gluon DSE by a temperature
dependent fit to quenched lattice data [76, 97] and unquenched the equation by
explicitly calculating the backcoupling of the quark onto the gluon. To keep the
bound state calculation manageable and to be able to simultaneously calculate the
phase diagram, we modified the infrared enhanced perturbative quark-gluon vertex
ansatz used in previous works. To this end, the tensor structure of the vertex in the
quark DSE, originally guided by the Slavnov-Taylor identity, is adjusted such that
the axial-vector Ward-Takahashi identity is simply fulfilled. In addition, the gluon
propagator at finite chemical potential and vanishing temperature is approximated
by the vacuum equivalent. With these approximations, the newly defined truncation
shows a qualitatively identical phase diagram but the critical endpoint is shifted to
much higher chemical potentials and the curvature is decreased. Although this new
truncation is less evolved than the previous one, the curvature (and the location of
the CEP) agrees better with extrapolated lattice [104, 110, 111] and FRG [47–49]
results.

With our calculations of quark and meson properties at finite chemical potential
and vanishing temperature, we improved previous calculations by (i) taking into
account the dynamics of the gluon rather than simply modeling it and (ii) solving
the hBSE at finite chemical potential with more than the leading tensor structure as
well as (iii) using quark propagators explicitly calculated in the complex momentum
plane.[105] We identified the chirally-broken Nambu-Goldstone and the chirally-
restored Wigner-Weyl solution of the quark and observed different coexistence
regions (without overlap) for the light and strange quarks. Possibly this is due to the
missing coupling between the quark flavors resulting from the new approximations
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7. Summary and conclusion

but could also be physically realized. The necessary thermodynamic calculations
[43] to locate the physical first-order phase transition in this coexistence region
could not be performed. Furthermore, we observed a strong chemical potential
dependence of the quark dressing functions and meson Bethe-Salpeter amplitudes,
especially for the light mesons. Interestingly, all mesons developed a significant
chemical potential dependence in the imaginary part of the BSAs, which turned
out to be crucial to balance the variations of the quark propagator w.r.t. the
chemical potential and to provide the Silver-Blaze property. In fact, the meson
mass and decay constant of all considered (light and strange quark) mesons and
the quark condensate remain constant within the numerical precision and fulfill
therefore the SBP. Only the light mesons showed a stronger chemical potential
dependence at large chemical potentials in the coexistence regions. The existence
of all mesons could be traced up to the end of the corresponding coexistence regions
but the determination of mesons for the Wigner solution was not possible because
of numerical problems connected to the pole structure of the quarks in the complex
momentum plane. By applying a Chebychev expansion to the BSAs, we were also
able to trace the breaking of the charge conjugation parity back to the introduction
of chemical potential. This property is expected since the quark and the antiquark
are no longer energetically degenerated due to the energy offset induced by the
chemical potential.

For the hadronic backcoupling, we extended the truncation by introducing hadron
degrees of freedom into the quark-gluon vertex DSE and reducing the vertex to a
decomposition of a non-hadronic, a mesonic and a bosonic contribution. We did not
solve the vertex DSE but inserted the decomposition into the quark DSE, instead.
In the gluon DSE and the meson BSE, however, only the non-hadronic part is used
which we identify with the vertex ansatz introduced before. We studied the meson
and baryon backcoupling separately and neglected the respective other contribution.
In case of the meson backcoupling, we introduced further approximations to obtain
a calculable one-loop one-meson exchange diagram. These approximations originate
from a series of previous works [38, 56–58, 89] and are guided by the AxWTI and
comparisons to corresponding lattice results. Unfortunately, the approximations
prevent a study of the universal properties (of the CEP). Instead of using ansätze
or approximations for the mesons like in previous works [38, 56, 58, 89, 169,
170], we used explicitly calculated meson properties and wave-functions as input.
If we backcouple these explicitly calculated Pion and Sigma mesons, we find a
similar chiral restoration effect for both of them. Furthermore, both violate the
SBP at finite chemical potential but, at least for the Pion backcoupling, this
violation can be repaired by a modification of the approximations introduced for
the meson backcoupling. Thereby, the importance of the imaginary part of the
meson BSAs for the SBP is observed once again and it is shown that the applied
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approximations have to be improved. Our study of the phase diagram implies
that mesonic backcoupling effects are qualitatively irrelevant and quantitatively
small. Through the meson backcoupling the CEP is shifted marginally to smaller
chemical potentials and higher temperatures. Furthermore, backcoupling Pions
and Sigma mesons decreases the curvature to a small extent. A similar effect could
be found for the baryon backcoupling in Ref. [44]. Together with Refs [38, 44, 89],
we therefore find strong evidence that the location of the CEP is mainly driven by
the non-resonant part of the quark-gluon vertex, i.e. by the microscopic degrees of
freedom of QCD, the quarks and gluons. The macroscopic dof, in particular the
Sigma meson, are expected to be dominant for the properties of the CEP [52, 59,
60].[55]

Oriented to the truncation detailed in Ref. [44], we used a quark-diquark approxi-
mation and baryon and diquark properties and wave-functions obtained from a
vacuum calculation as input to study the baryon backcoupling effects at finite
chemical potential. The baryon and diquark backcoupling effects lead to chiral
restoration effects in the same order as the meson but the applied numeric and
possibly the strong approximations are insufficient to properly describe the baryon
backcoupling. On the one hand, the SBP is violated while, on the other hand,
unconsidered residues of poles in the bound state propagators lead to an oscillating
behavior of the quark dressing functions and the quark condensate. We assume
that a proper calculation of these bound state pole residues is necessary to get
rid of the numerical oscillations and to possibly find a proper indication of the
liquid-gaseous nuclear matter phase transition. Furthermore, we expect that a
proper calculation of the baryon properties and wave-functions at finite chemical
potential, as we performed for the meson, could improve the description of the
SBP and lead to a more visible indication of the liquid-gaseous phase transition.

To conclude, we would like to emphasize that the observation of a constant behavior
for all meson masses and decay constants (as well as the quark condensate with and
without Pion backcoupling) until the end of the Silver-Blaze region and beyond
is a highly non-trivial matter. The fact that the SBP is fulfilled, relies on subtle
cancellations between the chemical potential dependencies of the quarks and mesons.
These quantities have to interplay such that they produce constant masses and
decay constant. It is quite satisfying to see that this happens in our functional
approach.[143]
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A. Conventions

In this chapter, we will introduce the used conventions and abbreviations. We will
begin with general remarks before we continue with the Dirac, color and (meson)
flavor space representations and relations. Then, we introduce the Euclidean and
momentum space and show how the are related to the Minkowski and coordinate
space. In the last two sections, we will reformulate the QCD action in the
corresponding spaces.

In general, we use the Einstein sum convention a · b = aµb
µ = ∑

µ aµb
µ and natural

(Planck) units, i.e. the speed of light c = 1, the Planck constant ~ = 1, the
Boltzmann constant kB = 1 and the electrical charge e = 1 are set to one. For the
integral representation we normally introduce abbreviations. The four dimensional
momentum and space-time integrals are represented by

∫
p =

∫ d4p
(2π)4 and

∫
x =

∫
d4x,

respectively. At finite temperature, the temporal integral is furthermore only a
finite interval integration. For the finite temperature momentum integral, we use
the shorthand notation ∑∫

p = ∑
ωp

∫ d3p
(2π)3 . In the following the Pauli

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(A.1)

and Gell-Mann matrices

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 , λ4 =




0 0 1
0 0 0
1 0 0


 ,

λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 , λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 = 1√

3




1 0 0
0 1 0
0 0 −2




(A.2)

are important. These are traceless (Tr[Ai] = 0), Hermitian (A†i = Ai) and
orthogonal (Tr[AiAj ] = 2δij) matrices for each case A ∈ {σ, λ}.
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A. Conventions

A.1. Dirac space

The most important basis elements of the Dirac space are the so-called Dirac
matrices γµ. They are defined by the Clifford algebra which is inherited from the
Pauli matrices and in Minkowski space given by

{γµ, γν} = 2gµν− 1D (A.3)

with the unit matrix 1D = diag(1, 1, 1, 1) and the metric tensor of the Minkowski
space g− = diag(1,−1,−1,−1) in the mostly minus convention. The latter quantity
defines the connection between covariant and contravariant Lorentz vectors pµ =
gµν− pν . In the standard Dirac representation, the Dirac matrices are given by

γ0 =
(
1 0
0 −1

)
, γk =

(
0 σk
−σk 0

)
, γ5 = iγ0γ1γ2γ3 =

(
0 1

1 0

)
(A.4)

with k ∈ {1, 2, 3}. Other representations are possible but have to be unitary
transformations γ′µ = UγµU

† of the Dirac representation. One of these other
representations is the Weyl or chiral representation received by the unitary trans-
formation U = 1√

2
(
1 −1
1 1

)
. This representation is important, since in this notation

the Weyl(γ5) = −Dirac(γ0) matrix is diagonal and used to project onto left- and
right-handed particles. This is relevant in the chiral or ultra-relativistic limit where
the quark masses are neglectable. In each representation, the Dirac matrices γµ
and the special Dirac matrix γ5 are related by

{
γµ, γ5

}
= 0 (A.5)

which means that they anticommute. To conclude, we have to mention the Feynman
slash notation Aµγµ = /A, where Aµ is an arbitrary Lorentz vector.

A.2. Color space

For the color space, we have to consider two representations of the SUC(Nc)-group1:
the fundamental representation for quarks and the adjoint representation for the
gluons as gauge Bosons which mediate the strong interaction. In both cases, the
N2
c − 1 generators ta fulfill the Lie algebra

[ta, tb] = ifabctc (A.6)
1Throughout the whole work, We always use Nc = 3 colors flavors.
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A.2. Color space

where the quantities fabc are the totally antisymmetric structure constants defined
in Tab. A.1 together with the totally symmetric structure constants dabc which in
turn result from the anticommutation relation of the generators in the fundamental
representation {ta, tb} = 1

2Nc
δab1C + 1

2dabctc.

Table A.1.: Totally antisymmetric (left) and symmetric (right) real structure con-
stants for the color gauge group SUC(Nc) with three colors Nc = 3. All indices
resulting from permutations have the same structure constant value. The struc-
ture constants of the remaining indices are zero

fabc abc

1 123
1/2 147, 246, 257, 345
−1/2 156, 367
√

3/2 458, 678

dabc abc

1/
√

3 118, 228, 338
1/2 146, 157, 256, 344, 355
−1/2 247, 366, 377
−1/
√

6 448, 558, 668, 778
−1/
√

3 888

In addition, the generators fulfill the relations

TrC[tatb] = T (R)δab and




N2
c−1∑

a=0
t2a



ij

= C(R)δij (A.7)

with T (R) and C(R) representing the Dynkin index and Casimir factor in the
representation R. The values of these two objects are detailed in Tab. A.2 for the
fundamental and adjoint representation together with the representation of the
matrices and their dimension. In the fundamental representation, the matrices
ta = λa

2 are defined through the Gell-Mann matrices λa in Eq. (A.2).

Table A.2.: Fundamental and adjoint representation of the SUC(Nc)-group genera-
tors and corresponding properties.

Representation R (ta)ij dim(ta) T (R) C(R)

Fundamental (λa/2)ij Nc
1
2

N2
c−1

2Nc

Adjoint −ifaij N2
c − 1 Nc Nc
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A. Conventions

A.3. Flavor space

In this section, we consider the meson flavor matrices in the quark flavor space
of Nf = 3 quark flavors. In Sec. 3, we already mentioned the considered mesons
of the different spin-parity-states. In Tab. A.3, the different representations of
these mesons are shown together with their quark-antiquark content. It has to be
mentioned that the φ-meson normally is a mixing of uū, dd̄ and ss̄ but due to the
experimentally observed mixing angle of θV = 39◦ we can safely assume that the
meson only consists out of ss̄. In the equations, we will use rex =

√
Nf b

e
x instead

Table A.3.: Meson bound-state flavor structure for different spin-parity states x ∈
{PS,S,V,AV} and contained mesons e ∈ {π±, π0,K0, K̄0,K±, σ, ρ±, ρ0, φ, a1}.
The second to fourth column are different representations of the meson flavor
structure in the considered Nf = 3 dimensional quark flavor space. The second
column shows the quark and antiquark content where the antiquarks are given
by ū = (100), d̄ = (010), s̄ = (001) and the corresponding quarks via {u, d, s} 3
x = x̄>. The fourth column is the representation of the meson flavor using the
Gell-Mann matrices defined in Eq. (A.2).

bex qq̄
(. . .) λ

bπ
+

PS , b
ρ+

V ud̄
( 0 1 0

0 0 0
0 0 0

)
1
2(λ1 + iλ2)

bπ
−

PS , b
ρ−

V dū
( 0 0 0

1 0 0
0 0 0

)
1
2(λ1 − iλ2)

bπ
0

PS, b
ρ0

V
1√
2(uū− dd̄)

( 1 0 0
0 −1 0
0 0 0

)
1
2λ3

bσS , b
a1
AV

1√
2(uū+ dd̄)

( 1 0 0
0 1 0
0 0 0

) √
2

3 1F + 1√
6λ8

bK
0

PS ds̄
( 0 0 0

0 0 1
0 0 0

)
1
2(λ6 + iλ7)

bK
+

PS us̄
( 0 0 1

0 0 0
0 0 0

)
1
2(λ4 + iλ5)

bK
−

PS sd̄
( 0 0 0

0 0 0
0 1 0

)
1
2(λ6 − iλ7)

bK̄
0

PS sū
( 0 0 0

0 0 0
1 0 0

)
1
2(λ4 + iλ5)

bφV ss̄
( 0 0 0

0 0 0
0 0 1

)
1
31F − 1√

3λ8

of the normalized meson flavor structures of the table. These modified matrices
fulfill the orthogonality relation TrF

[
(rex)> rlx

]
= Nfδel and similar commutation

and anticommutation relations as in App. A.2 for the fundamental representation.
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A.4. Euclidean space

A.4. Euclidean space

All our calculations are done in the Euclidean space. Therefore, in this section,
we will introduce the Euclidean space as a counterpart to Minkowski space and
show the connection between them. All quantities with index "E" are given in
the Euclidean space, while the Minkowski quantities are shown without index. As
notional remark, we have to mention that in Euclidean space we refer to the energy
component with index 4 instead of 0 in Minkowski space. The main property
of the Euclidean space is that the difference between the co- and contra-variant
vectors vanishes and the metric is now given by gµν− → δµν . Consequently, the
scalar products and the Clifford-algebra now given by

aE · bE =
∑

µ

aµEb
µ
E = ~aE~bE + a4

Eb
4
E and {γµE, γνE} = 2δµν1D . (A.8)

Note that this is applicable to the Feynman slash notation by exchanging a or
b with γ, too. We achieve this property via Wick rotation and the resulting
redefinition of the Lorentz-vectors, -tensors and gamma matrices. The Euclidean
counterparts are defined via

aµE =
(
~a
ia0

)
, γµE =

(
−i~γ
γ0

)
, TµνE =

(
T 00 iT i0

iT 0j −T ij
)
, γ5

E = γ5 .

(A.9)

The Dirac matrices in the Euclidean standard representation are now Hermitian
(γµE = (γµE)†) and are represented by

γ0
E =

(
1 0
0 −1

)
, γkE =

(
0 −iσk
iσk 0

)
, γ5

E =
(

0 1

1 0

)
. (A.10)

The overall replacement rules between the Minkowski and Euclidean space, which
follow from the representations above, are

aE · bE = a · b , /aE = i/a , (∂ · a)E = (∂ · a) , /∂E = −i/∂ , �E = −� .
(A.11)

The Wick rotation also influences the fourth component of the integral such that
we get the connection

lim
t→∞−iε

i

∫ t

−t
dx0 = lim

τ→∞

∫ τ

−τ
dx4 (A.12)

between Minkowski and Euclidean time integral. In Minkowski space, the infinites-
imal ε parameter was necessary due to poles of the propagator in the integration
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interval. Using the rules presented in this section, we can rewrite the Euclidean
QCD action in Landau gauge to

SE
QCD[A, Ψ̄,Ψ, c, c̄] =

∫

x

[
Z2Ψ̄(x)

(
/∂ + Zmmq

)
Ψ(x) + (A.13)

+ Zf1F igsΨ̄(x)/A(x)Ψf (x)− Z3
1
2A

g
µ(x) (�δµν − ∂ν∂µ)Agν(x)+

− Z1
gs
2 fghl

[
∂µA

g
ν(x)− ∂νAgµ(x)

]
Ahµ(x)Alν(x) + Z̃3c̄(x)�c(x)+

− Z4
g2
s
4 fgkofghlA

µ
k(x)Aνo(x)Ahµ(x)Alν(x) + igsZ̃1 (∂µc̄(x))Aµ(x)c(x)

]

where we suppress the index E except for the action itself. Overall, the the
Euclidean and Minkowski action are connected via iS = −SE. The index ’E’ will
no longer be used in this work. The considered space will be clear in the context.

A.5. Momentum space

On top of the Euclidean space, we always calculate in the momentum space. For this
purpose, we now show the connection between the coordinate and momentum space.
A transformation between the two spaces is possible via the Fourier transformations

ϕ(x) =
∫

d4p

(2π)4 e
−ipxϕ(p) , ϕ(p) =

∫
d4xeipxϕ(x) (A.14)

where ϕ stands for an arbitrary variable, e.g. a certain field in the QCD action. At
finite temperature, we have to take the changes of the four dimensional integrals
mentioned in Sec. 2.1.3 into account. This means that the time integral is finite in
the coordinate space implying a sum over discrete Matsubara frequencies for the
energy component in the momentum space. For the transformation into momentum
space, we, furthermore, have to apply the substitutions

∂ · v(x)→ ip · v(p) , �s(x)→ −k2s(k) , /∂s(x) = i/qs(q) . (A.15)

with the Lorentz vector v and the Lorentz scalar s. The Fourier transformation
implies that we have to integrate over a new four-momentum for every transformed
variable. Applied onto Eq. (A.13), the Euclidean QCD action in Landau-gauge in
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A.5. Momentum space

momentum space is given by

SE
QCD[A, Ψ̄,Ψ, c, c̄] =

∫

~p

[
Z2Ψ̄(p1)

(
i/p2 + Zmmq

)
Ψ(p2) + (A.16)

+ Zf1F igsΨ̄(p1)/A(p2)Ψf (p3) + Z3
1
2A

g
µ(p1)

(
p2

2δµν − pν2pµ2
)
Agν(p2)+

− Z1i
gs
2 fghl

[
pµ1A

g
ν(p1)− pν1Agµ(p1)

]
Ahµ(p2)Alν(p3)− Z̃3c̄(p1)p2

2c(p2)+

− Z4
g2
s
4 fgkofghlA

µ
k(p1)Aνo(p2)Ahµ(p3)Alν(p4)− gsZ̃1 (pµ1 c̄(p1))Aµ(p2)c(p3)

]

with shorthand notation
∫
~p =

∫
p1
. . .
∫
pn
δ(p1+. . . pn). In this notation, the variables

pi i ∈ [1, n] represent the n four-momenta of the n fields of the considered term.
The delta-distribution ensures the four-momentum conservation and results from
the space-time integral of the action.
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B. Transformations and symmetries

In this section, we consider invariances of the QCD (action) under certain symmetry-
transformations. Symmetries, which we identify with invariances, imply conserved
quantities. We are interested in finding these conserved quantities for the considered
transformations. We will begin with the Lorentz and Poincaré transformations
which are the basic symmetries of all theories. Then we consider symmetries under
quark flavor transformations and conclude with resulting quantum mechanical
current conservations (identities). But to begin, we introduce some basic relations
and naming conventions which we will need later on.

B.1. Basic relations and notations

For simplicity, we define the quark bilinears

j
(µ)
Γ,a(x) = Ψ̄(x)Γ(µ)τaΨ(x) ,

j
(µ)
Γ (x) = Ψ̄(x)Γ(µ)Ψ(x) (B.1)

with the quark spinor Ψ and antispinor Ψ̄ as well as the Dirac matrices Γ(µ) ∈
{1D, iγ5, γµ, γµγ5}. Based on these quark bilinears, we introduce the notation of
scalar S(a)(x) and pseudo-scalar P(a)(x) densitys as well as vector Vµ(a)(x) and
axial-vector Aµ(a)(x) currents via

S(a)(x) ↔ Γ(µ) = 1D , Vµ(a)(x) ↔ Γ(µ) = γµ ,

P(a)(x) ↔ Γ(µ) = iγ5 , Aµ(a)(x) ↔ Γ(µ) = γµγ5 (B.2)

with j(µ)
Γ,(a)(x) ∈ {S(a)(x),P(a)(x),Vµ(a)(x),Aµ(a)(x)}. We will see in the next section

that these densities and currents correspond to spin-parity states. In the following,
we will consider color (τa = ta in the fundamental representation) and meson flavor
(τa = rax) currents and densities with the matrix elements defined in Apps. A.2 and
A.3, respectively.

By applying Eq. (2.7), we can express classical relations of these currents and
densities as quantum mechanical identities. For this purpose, we have to consider
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B. Transformations and symmetries

the quark fields and bilinears as operators, before we take the vacuum expectation
value. As result of this procedure, we get quantum mechanical relations between
Green functions. To shorten future relations, we therefore introduce the naming
conventions

G2n,S (x1, . . . , x2n) =
〈

0
∣∣∣T̂
{ ˆ̄Ψ(x1)Ψ̂(x2) . . . ˆ̄Ψ(x2n−1)Ψ̂(x2n)

}∣∣∣ 0
〉
,

G
(µ)
2n,Γ,(a)(y;x1, . . . , x2n) =

〈
0
∣∣∣T̂
{
ĵ

(µ)
Γ,(a)(y) ˆ̄Ψ(x1)Ψ̂(x2) . . . ˆ̄Ψ(x2n−1)Ψ̂(x2n)

}∣∣∣ 0
〉
,

G
(µν)
ΓΓ′,(ab)(y;x) =

〈
0
∣∣∣T̂
{
ĵ

(µ)
Γ,(a)(y)ĵ(ν)

Γ′,(b)(x)
}∣∣∣ 0

〉
. (B.3)

for quark Green functions (compare with Eq. (2.2)). The indices S and Γ ∈
{S,P,V,A} indicate the corresponding quark and bilinear content. The first Green
function describes a correlation function of n incoming and n outgoing quark
fields and the second one corresponds to a transition element between the current
ĵ

(µ)
Γ,(a)(y) and a n quark and n antiquark state while the last one is a correlation
of two densities or currents of the kinds Γ and Γ′. For two identical (spin-parity)
quark bilinears the latter Green function describes a 2PI two-point Green function
or propagator

G
(µν)
ΓΓ,(ab)(x; y) = δab

∫

P
e−iPzD

(µν)
F,Γ (P,m) = δabG

[2],(µν)
2,S ,Γ (z) (B.4)

with z = x − y and the Feynman propagator D(µν)
F,Γ (P,m) = iΛ(µν)

Γ (P )
P 2−m2+iε where m

and P are the mass and the total momentum of the particle and Λ(µν)
Γ (P ) defines

a spin state dependent function.1 Additionally, the Green function G(µν)
ΓΓ,(ab)(y;x)

can be seen as a projected version of a four-point 1PI quark Green function GP4,S

G
(µν)
ΓΓ,(ab)(y;x) =

〈
0
∣∣∣T̂
{ ˆ̄Ψ(x)Γ(µ)τaΨ̂(x) ˆ̄Ψ(y)Γ(µ)τbΨ̂(y)

}∣∣∣ 0
〉

= GP4,S (y, y, x, x)
(B.5)

where projected means that the quark-antiquark state is projected onto a certain
spin-parity and (meson) flavor or color subspace by introducing Dirac and (meson)
flavor or color matrices. If we return to the quark bilinears in Eq. (B.1) and consider
them as operators, the quark bilinear and field operators fulfill the commutation

1If we consider meson flavor densities or currents (τa = rax) the 2PI two-point Green function can
be seen as effective meson propagator of the bound state mass mx and the total momentum P .

120



B.1. Basic relations and notations

relations
[
ĵ

(µ)
Γ,a(y), Ψ̂(x)

]
= − τaγ0Γ(µ)Ψ̂(x)δ3(~x− ~y) ,

[
ĵ

(µ)
Γ,a(y), ˆ̄Ψ(x)

]
= ˆ̄Ψ(x)Γ(µ)γ0τaδ

3(~x− ~y) ,
[
ĵ

(µ)
Γ,a(y), ĵ(ν)

Γ′,b(x)
]

= 1
2

ˆ̄Ψ(x)
(
Γ(µν)

+ [τa, τb] + Γ(µν)
− {τa, τb}

)
Ψ̂(x)δ3(~x− ~y) ,

[
ĵ

(µ)
Γ,a(y), ĵ(ν)

Γ′ (x)
]

= ˆ̄Ψ(x)Γ(µν)
− τaΨ̂(x)δ3(~x− ~y) (B.6)

with Γ(µν)
± = Γ(µ)γ0Γ′(ν)±Γ′(ν)γ0Γ(µ). Before we start to discuss some specific trans-

formations, let us discuss two different symmetry representations of an arbitrary
continuous global symmetry group.

Symmetry representations

This section follows the lines of Ref. [73]. We begin by considering a continuous
global symmetry group G which acts non-trivially on the fields ϕi (eventually
describing bound states/ composite particles). The quantum mechanical transfor-
mation and its infinitesimal version are given by

eiεaQ̂aϕ̂ie
−iεaQ̂a = D−1

ij (ε)ϕ̂j and
[
Q̂a, ϕ̂i

]
= −(τ̂a)ijϕ̂i (B.7)

where eiεaQ̂a is an element of the symmetry group G and D−1
ij (ε) =

[
eiεaτ̂a

]
ij
is the

representation matrix corresponding to the representation to which the field ϕi
belongs. Q̂a is a charge operator which forms a representation of the algebra on
Hilbert space, whereas εa and τ̂a are the group parameters and generators of the
Lie algebra of G in the representation of the field ϕi.

If the symmetry group leaves the vacuum invariant, i.e. eiεaQ̂a |0〉 = |0〉, the
generator annihilates the vacuum Q̂a |0〉 = 0. Considering the vacuum expectation
value of the general transformation in Eq. (B.7), the fields transform non-trivially
under G, implying that D−1

ij (ε) is not the identity matrix. Consequently, if the
symmetry group leaves the vacuum invariant, 〈0 |ϕ̂i| 0〉 must vanish for all i to
fulfill the equation. This is called the Wigner-Weyl representation of the symmetry.

If, however, an operator ϕ̂ which is not invariant under G develops a non-zero
vacuum expectation value, the symmetry G is spontaneously broken. We call this
the Nambu-Goldstone realization of the symmetry. In consequence the charge
operators do not annihilate the vacuum but produce another energy-degenerated
vacuum state |η〉 = Q̂a |0〉 instead. Since the symmetry is classically conserved the
charge operator commutes with the Hamiltonian and therefore Ĥ |η〉 = 0.
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B. Transformations and symmetries

B.2. Poincaré and Lorentz transformations

In Sec. 3, we introduced particles as irreducible representations of the Poincaré
group with fixed quantum numbers. In this section, we are interested to find the
irreducible representations and their connected quantum numbers which describe
and classify our (fundamental and composite) particles. In addition, we will
derive transformation properties necessary for the description of bound states. At
first, we will consider the properties of the Lorentz group before we deepen this
investigation when studying the Poincaré group. Throughout this section, we work
in the Minkowski space with the metric g− defined in App. A.1.

B.2.1. Lorentz group

The Lorentz transformations are defined as the transformations

UΛ(Λ) : x′ = Λx ⇔ x′µ = Λνµxν (B.8)

that leave the scalar product x · y = x>g−y = gµν− xµyν invariant. This leads to the
defining condition

Λ>g−Λ = g− ⇔ gµν− ΛαµΛβν = gαβ− (B.9)

which constrains the 4 × 4 matrix Λ with 10 conditions due to the symmetric
metric g−. The Lorentz group is an orthogonal group O(3, 1).2 The group axioms
are fulfilled with the unit element Λ = 1D and the inverse element Λ−1 = g−Λ>g−.
From Eq. (B.9), furthermore, follows det Λ = ±1 and (Λ0

0)2 ≥ 1. Depending on
the sign of Λ0

0 and det Λ, we can define four disconnected irreducible subgroups of
the Lorentz group shown in Fig. B.1.

The six-dimensional Lorentz transformation SO(3, 1)↑ 3 Λ = L(~β)R(~α) can be
reconstructed from three-dimensional Lorentz boosts L(~β) with the velocity ~β = ~v/c
and spatial rotations R(~α) ∈ SO(3) in three dimensions with the rotation angle
~α. Thereby, only the rotation group forms an irreducible subgroup. The whole
Lorentz group is a) not compact (due to the boosts all unitary representations are
infinite-dimensional) and b) not simply connected due to the rotations.

To find all irreducible unitary representations of the Lorentz group SO(3, 1)↑, we
have to consider the universal covering group SL(2,C) of it. The covering group has
the same Lie algebra, which reflects the property of the group close to its identity,

2In general, a transformation of coordinates {x1 . . . xn, y1 . . . ym} that leaves the quadratic form
(x2

1 + . . .+ x2
n)− (y2

1 + . . .+ y2
m) invariant constitute the orthogonal group O(m,n).
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B.2. Poincaré and Lorentz transformations

Proper orthochronous
Lorentz group SO(3, 1)↑

• det Λ = 1

• Λ0
0 ≥ 1

• 1D

Proper
Lorentz group SO(3, 1)↓

• det Λ = 1

• Λ0
0 ≤ −1

• −g−

Improper
Lorentz group O(3, 1)↓

• det Λ = −1

• Λ0
0 ≤ −1

• −1D

Improper orthochronous
Lorentz group O(3, 1)↑

• det Λ = −1

• Λ0
0 ≥ 1

• g−

TT
−g−

TP g− TP g−

TT
−g−

TPTT

−1D

Figure B.1.: The four disconnected irreducible subgroups or components of the
Lorentz group O(3, 1) = SO(3, 1)↑∪SO(3, 1)↓∪O(3, 1)↓∪O(3, 1)↑ including their
properties and relations. Lorentz transformations that preserve the direction
of time are called orthochronous and have Λ0

0 ≥ 1. The transformations that
preserve orientation are denoted as proper and have a determinant of 1. The
corresponding improper ones have a determinant of -1. Time-reversal TT=̂− g−
and parity inversion TP=̂g− transform orthochronous in non-orthochronous and
proper into improper groups, respectively. The last entry of the disconnected
components of the Lorentz group represents the group-identity to which all
subgroup elements are continuously connected.

but is simply connected. Furthermore, SL(2,C) is a double cover of SO(3, 1)↑. The
use of the covering group is necessary to find the spinor representations beside the
tensor representations which we find also with the Lorentz group itself.

B.2.2. Poincaré group

The Poincaré group or inhomogeneous Lorentz group IO(1, 3) is a ten dimensional
Lie group consisting of the Lorentz group and translations in four dimensions.
It has the same disconnected components as the Lorentz group. The proper
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B. Transformations and symmetries

orthochronous Poincaré group ISO↑(1, 3) with the group identity 1D, thereby,
represents the basic symmetry group of the space-time for the whole physics. The
Poincaré transformation UΛ(Λ, a) ∈ IO(1, 3) of four-vectors is given by

UΛ(Λ, a)xµ = λνµxν + aµ . (B.10)

This transformation leaves the line element (dx)2 = c2(dt)2 − (d~x)2 invariant and
guarantees that the speed of light c is equal in all inertial systems. The group
axioms are again fulfilled:

a) Group multiplication: UΛ(Λ1, a1)UΛ(Λ2, a2) = UΛ(Λ1Λ2,Λ1a2 + a1)

b) Inverse element: UΛ(Λ−1,−Λ−1a)

c) Neutral element: UΛ(1D, 0)

Furthermore, the decomposition in pure translation UΛ(a) = UΛ(1D, a) and pure
four dimensional "rotations" UΛ(Λ) = UΛ(Λ, 0) is possible and can be represented
by

UΛ(Λ, a) = UΛ(Λ)UΛ(a) = e
i
2ωµνM̂

µν
eiaσP̂

σ (B.11)

with the generators of translations P̂µ (momentum operator) and the generator
of spatial rotations and boots M̂µν .3 These generators form a Lie algebra, the
so-called Poincaré algebra

i
[
M̂µν , M̂ρσ

]
= gµσ− M̂νρ + gνρ− M̂

µσ − gµρ− M̂νσ − gνσ− M̂µρ ,

i
[
P̂µ, M̂ρσ

]
= gµρ− P̂

σ − gµσ− P̂ ρ

[
P̂µ, P̂ ν

]
= 0 (B.12)

which we get from the infinitesimal transformation (only the linear terms) of
U−1

Λ (Λ, a)UΛ(Λ′, a′)UΛ(Λ, a). The explicit form of the generators and the trans-
formation itself depend on the representation. To discuss the irreducible unitary
representations, we wish do describe the system through eigenvalues of a set of
commuting observables which also commute with the generators. For this purpose,
we use the Casimir operators of the Poincaré Lie group, which are defined as

3The Lorentz group generators can be expressed by i
2ωµνM̂

µν = i~α ~̂J+i~β ~̂K where Ĵk = 1
2 ε
kijM̂ ij

are the generators of spatial rotations and K̂k = M̂k0 represent the generators of boosts
(k, i, j ∈ {1, 2, 3}).
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B.2. Poincaré and Lorentz transformations

operators commuting with all generators and build by a product of generators.
The Casimir operators of the Poincaré group are P̂ 2 and Ŵ 2 where

Ŵµ = −1
2εµρσλM̂

ρσP̂ λ ⇔ Ŵ =


 ~̂P · ~̂J
P̂0 ~̂J + ~̂P × ~̂J


 (B.13)

is the so-called Pauli-Lubanski vector. Since the generators of the translation
commute, the translation operators have common eigenvectors |P, x, α〉 with the
total momentum P , other quantum numbers α and x as an identifier of the particle.
We use these eigenvectors as basis for our physical Hilbert space. Considering the
two cases a) P 2 = m2 > 0 in rest frame ~P = 0 and b) P 2 = 0 (P 6= 0) for the
momentum, we can directly extract conserved quantum numbers from the Casimir
operators, which we then use to classify the irreducible unitary representations.

In case a) the Casimir operators take the form Ŵ 2 = −P̂ 2 ~̂J and P̂ 2 = P̂ 2
0 with the

eigenvalues −m2j(j+1) and m2 respectively. While ~̂J represents the spin operator,
its eigenvalue j is the total spin of the particle and m is the corresponding mass of
the particle. In case b) the Pauli-Lubanski vector is given by Ŵµ = λP̂µ where λ
is the helicity which defines the direction or sign of the projection of the spin onto
the momentum. The irreducible unitary representations in both cases are labeled
with the spin and the mass of the particle (in the latter case the mass is zero).

In the following we take a closer look at the Poincaré transformations in these irre-
ducible unitary representations (spin states). The general Poincaré transformation
of i) a field operator Φ̂µ1...µn(x), ii) the eigenstate |P, x, α〉 defined above and iii)
the vacuum state |0〉, are defined by

U−1
Λ (Λ, a)Φ̂µ1...µn(x)UΛ(Λ, a) =

{[
D
(
UΛ(Λ)

)]ν1...νn
µ1...µn

}−1
Φ̂ν1...νn(Λx+ a) ,

UΛ(Λ, a) |P, x, α〉 = eiPa |ΛP, x, α〉 ,

UΛ(Λ, a) |0〉 = |0〉 (B.14)

where D(UΛ(Λ)) is the finite dimensional representation-matrix of the Lorentz
group for the considered irreducible unitary representation. The irreducible unitary
representations considered in this work are (pseudo-)scalars, spinors and (axial-
)vectors particles. The corresponding representation matrices for Lorentz scalars,
vectors and Dirac spinors are given in Tab. B.1. Axial-vectors and pseudo-scalar
particles result via parity transformation from the vectors and scalar particles.

If we consider the Poincaré transformation for composite scalar and vector particles
consisting of a quark and an antiquark, we have to study the transformation
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B. Transformations and symmetries

Table B.1.: Representation matrix D
(
UΛ(Λ)

)
of the double cover SL(2,C) of the

Proper orthochronous Lorentz group SO(3, 1)↑ for different irreducible unitary
representations (spin states). In the Dirac spinor case the generator is given by
σµν = −1

2 [γµ, γν ].

Spin 0 1
2 1

Type scalar s Dirac spinor Ψ vector vµ

D
(
UΛ(Λ)

)
1 exp( i2ωµνσµν) Λ

properties of the transition probability of a quark-antiquark-system to become a
meson bound state. This transition probability is given by Eq. (3.8) and transforms
like the Green function

G
(µ)
2,Γ(x;x1, x2) =

〈
0
∣∣∣T̂
{
ĵ

(µ)
Γ (x) ˆ̄Ψ(x1)Ψ̂(x2)

}∣∣∣ 0
〉

(B.15)

with ĵS(x) representing a scalar density and ĵµV(x) a vector current. The corre-
sponding Poincaré transformation is given by

G
(µ)
2,Γ(x;x1, x2) =

〈
0
∣∣∣T̂
{
U−1

Λ UΛĵ
(µ)
Γ (x)U−1

Λ︸ ︷︷ ︸
=:
[
D

(µν)
(vec)/sc(UΛ)

]−1
ĵ
(µ)
Γ (x′)

=: ˆ̄Ψ(x′1)Dsp(UΛ)
︷ ︸︸ ︷
UΛ

ˆ̄Ψ(x1)U−1
Λ UΛΨ̂(x2)U−1

Λ︸ ︷︷ ︸
=:D−1

sp (UΛ)Ψ̂(x′2)

UΛ
}∣∣∣ 0

〉

=
[
D

(µν)
(vec)/sc(UΛ(Λ))

]−1
Dsp(UΛ(Λ))G(ν)

2,Γ(Λx+ a; Λx1 + a,Λx2 + a)D−1
sp (UΛ(Λ)) .

(B.16)

The Bethe-Salpeter wave-function of Eq. (3.8) in momentum space then transforms
like

χ(µ)(P, q) =
[
D

(µν)
(vec)/sc(UΛ(Λ))

]−1
Dsp(UΛ(Λ))χ(ν)(ΛP,Λq)D−1

sp (UΛ(Λ)) . (B.17)

The Poincaré transformation of the Bethe-Salpeter amplitude results from the
decomposition in Eq. (3.10) and the fact that the quark propagator S transforms
like G2,S (x, y) = Dsp(UΛ(Λ))G2,S (Λx+ a,Λy + a)D−1

sp (UΛ(Λ)). A more detailed
description of the Lorentz and Poincaré group transformations and representations
can be found in the Refs. [70, 73].
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B.2. Poincaré and Lorentz transformations

B.2.3. CPT-transformations

Besides of rotations in three dimensions and the transition between inertial systems
moving with constant velocity relative to each other (boots), the Lorentz group
contains space-time reflections. They preserve the scalar product but cannot be
represented via continuous transformations. These so-called time-reversal and
parity symmetries define, together with the charge conjugation, the three discrete
symmetries. In Tab. B.2, we show the transformation properties of different
variables, quantum numbers and field operators under the parity UP, time reversal
UT, and charge conjugation UC transformations.

Table B.2.: Transformation of different variables, quantum numbers and field oper-
ators under parity UP, time reversal UT, and charge conjugation UC transforma-
tion. Considered variables are the space time x, the four-momentum p, the spin ~s
and the helicity h = ~p·~s

|~p||~s| . The quantum numbers are the electrical charge Qel and
the baryon B and flavor F numbers. The scalar Ŝ, Dirac Ψ̂, and vector V̂µ field
operators transform corresponding to U−1

X Φ̂(µ)(·)UX =
[
D

(µν)
type(UX)

]−1
Φ̂(ν)(·′)

with D(µν)
type(UX) in the corresponding representation shown in Tab. B.1.

UP UT UC

x g−x −g−x x

p g−p g−p p

~s ~s −~s ~s

h −h h h

Qel Qel Qel −Qel

B,F B,F B,F −B,−F

Ŝ(·) Ŝ(·′) Ŝ(·′) Ŝ∗(·′)

Ψ̂(·) γ0Ψ̂(·′) γ1γ3Ψ̂(·′) −iγ2Ψ̂∗(·′)

V̂µ(·) −gµν− V̂ν(·′) gµν− V̂ν(·′) V̂µ†(·′)

The parity transformation, which is defined by the reflection of the spatial position
~x, is a unitary operation that flips the left- and right-handed parts of a quark
spinors. For the time reversal on the other hand is important to note that it is an
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B. Transformations and symmetries

antiunitary operation and the charge conjugation exchanges particles with their
corresponding antiparticles implying also that the electric charge, the flavor and
baryon numbers of the particle flip. For the charged conjugated Dirac spinor we
define −iγ2Ψ∗ = (Ψ̄C)> with C = −iγ0γ2.

For the Bethe-Salpeter amplitude of a general meson shown in Eq. (3.12), we get
the discrete transformations

U−1
P Γµ1...µn

x (P, q)UP = (−1)Jgµ1
−ν1 . . . g

µn
−νn γ0Γν1...νn

x (g−P, g−q)γ0 ,

U−1
C Γµ1...µn

x (P, q)UC =
[
C Γµ1...µn

x (P,−q) C>
]>

. (B.18)

Changing to the Euclidean space only the definition of the charge conjugation
matrix changes to C = γ0γ2. The corresponding vacuum basis elements shown in
Tab. 3.1 transform under charge conjugation and parity transformation via

U−1
P (1D + γ5)τ (µ)

i (P, p)UP = (−1)J(1D − γ5)τ (µ)
i (P, p)

U−1
C (1D + γ5)τ (µ)

i (P, p)UC = C (1D + γ5)τ (µ)
i (P, p) (B.19)

where C is the charge conjugation eigenvalue or quantum number.

B.3. Quark flavor transformations

For discussing the quark flavor transformations, we have to introduce the Noether
theorem first. This theorem tells us that any continuous local or global symmetry
transformation that leaves the action invariant implies the existence of a conserved
Noether current and a corresponding Noether charge which is a constant of mo-
tion. If we consider the variation of the super-field ϕ induced by the symmetry
transformation U: ϕ′ = ϕ+ δϕ, the invariance of the action S =

∫
d4xL (ϕ, ∂µϕ)

under U leads to the equation of motion

∂L

∂ϕ
− ∂µ

∂L

∂(∂µϕ) = 0 (B.20)

on the one hand and to the Noether current −ε(a)j
µ
(a)(x) = ∂L

∂(∂µϕ)δϕ and its
conservation

∂µj
µ
(a)(x) = 0 (B.21)

on the other hand. In the definition of the Noether current, ε(a) is a group parameter
and a represents an index for the generator of the symmetry group. There is one
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B.3. Quark flavor transformations

conserved current for each generator. These Noether currents take the form of the
Lorentz vectors of the quark bilinears defined in Eq. (B.1). Their corresponding
Noether charges are defined by

QΓ
(a)(t) =

∫
d3xj0

Γ,(a)(x) (B.22)

and describe a constant of motion if
d

dt
QΓ

(a)(t) =
∫
d3x

∂

∂t
j0
Γ,(a)(x) (B.21)= −

∫
d3x~∇~jΓ,(a)(x) = 0 (B.23)

which is fulfilled if the Noether current vanishes sufficiently fast on the surface in
infinity. Now let’s consider the quark flavor dependent part of the QCD action∫
d4xΨ̄(x)(i/∂ + gs /A −mq)Ψ(x) in Eq. (2.15) where the vector Aµ is the gauge

field mediating the interaction and gs is the strong coupling constant. The quark
mass matrix for the three considered quark flavors, is given by

mq = diag(mu
q ,m

d
q,m

s
q) =

mu
q +md

q +ms
q

3 1F +
mu

q −md
q

2 λ3 +
mu

q +md
q − 2ms

q√
12

λ8

(B.24)

with the Gell-Mann matrices λa defined in Eq. (A.2). In the following, we are
interested in the global quark flavor symmetry transformations Ψ′ = UΨ of QCD
which are described by the groups UV(1)×SUV(Nf)×SUA(Nf)×UA(1). In Tab. B.3,
the unitary representation of the groups, their Noether currents and charges as
well as their conservation conditions are mentioned. To receive the conservation
condition mentioned in the Tab. B.3, we use the equation of motion

/∂Ψ(x) = i(gs /A(x)−mq)Ψ(x), Ψ̄(x)
←−
/∂ = iΨ̄(x)(gs /A(x)−mq) (B.25)

of the quark fields Ψ(x) and Ψ̄(x) which result from Eq. (B.20). In the following,
we will take a closer look at the different quark flavor symmetry groups. The UV(1)
group represents a global phase transformation and entails the baryon number
B := QV

3 as constant of motion. Furthermore, the current conservation condition
in momentum space

∂µVµ(x) = 0 ⇔ kµVµ(k) = 0 (B.26)

will be important for later discussions. The SUV(Nf) symmetry is explicitly broken
by a mass matrix mq 6= mf

q1F but there still are conserved Noether currents and
charges for the diagonal generators λ3/2 and λ8/2 which are also present in the
mass matrix in Eq. (B.24). From these conserved Noether currents and charges,
we obtain the Isospin I3 = QV

3 and Hypercharge Y = (2/
√

3)QV
8 as constants of
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B. Transformations and symmetries

Table B.3.: Global quark flavor transformations of the QCD action in Eq. (2.15).
The first and second column show the group and the corresponding unitary
representation. The third and fourth column are the Noether current jµ(a)(x) and
charge QΓ

(a)(t) defined in Eqs. (B.1) and (B.22), respectively. The last column
demonstrates the condition necessary to fulfill the Noether current conservation
of Eq. (B.21). The flavor matrix is given by τa = λa/2 with the Gell-Mann
matrices λa defined in Eq. (A.2).

Group Representation jµΓ,(a) QΓ
(a) Conservation condition

UV(1) exp(iε) V µ QV ∂µVµ(x) = 0

SUV(Nf) exp(i∑a εaτ
a) Vµa QV

a ∂µV
µ
a (x) = iΨ̄(x)

[
mq, τa

]
Ψ(x)

SUA(Nf) exp(iγ5
∑
a εaτ

a) Aµa QA
a ∂µA

µ
a(x) = iΨ̄(x)

{
mq, τa

}
γ5Ψ(x)

UA(1) exp(iεγ5) Aµ QA ∂µA
µ(x) = i2Ψ̄(x)mqγ5Ψ(x)+an.

motion. Together with the constants of motion of the UV(1) group, we, finally, get
the conserved quantum numbers

B =
∑

f

nf
3 ,

I3 = nu − nd ,

Y = nu + nd − 2ns
3 ,

S = Y −B = −ns ,

Qel = I3 + Y

2 = 2
3nu −

1
3nd −

1
3ns (B.27)

where nf =
∫
d3xΨ†f (x)Ψf (x) = nr. of quarks− nr. of antiquarks with the quark

flavor f ∈ {u,d, s}. In these expressions, S and Qel represent the strangeness and
the electrical charge of state. Even if the flavor symmetry in SUV(Nf) is broken
in general, we can use these quantum numbers to arrange hadrons, as composite
particles of quarks of a certain (quark) flavor, into {I3, S} multiplets4 of different
invariant subspaces. In Sec. 3, we did so for pseudo-scalar and vector mesons.

The SUA(Nf) symmetry is explicitly broken by a mass matrix mq 6= 0. But for
mq = mf

q1F, we can consider a special relation. In this case, the divergence of the

4Multiplets are graphical representation of particles depending on their quantum numbers.
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axial-vector current is a pseudo-scalar density

∂µAµa(x) = 2mf
qPa(x) (B.28)

which is known as partially conserved axial-vector current (PCAC). The UA(1)
symmetry is classically conserved for mq = 0 but no longer preserved after
quantization since the UA(1) Noether current gets broken by the QCD anomaly
an. = − g2

s Nf
32π2 F̃

µν
a F aµν .

B.4. Ward-Takahashi identities

In this section, we consider the current conservation discussed in App. B.3 at the
level of Green functions. For this purpose, the currents and fields become operators
and we consider their vacuum expectation value. If we consider the Green function
in second line of Eq. (B.3) and use the abbreviations ϕ̂(xi) = ˆ̄Ψ(xi) for odd i and
ϕ̂(xi) = Ψ̂(xi) for even i, we can derive

∂

∂yµ
Gµ2n,Γ,(a)(y;x1, . . . , x2n) = ∂

∂yµ

〈
0
∣∣∣T̂
{
ĵµΓ,(a)(y)ϕ̂(x1) . . . ϕ̂(x2n)

}∣∣∣ 0
〉

=
〈

0
∣∣∣T̂
{(
∂µĵ

µ
Γ,(a)(y)

)
ϕ̂(x1) . . . ϕ̂(x2n)

}∣∣∣ 0
〉

+

+
2n∑

k=1
δ(y0 − xk,0)

〈
0
∣∣∣ϕ̂(x1) . . .

[
ĵ0
Γ,(a)(y), ϕ̂(xk)

]
. . . ϕ̂(x2n)

∣∣∣ 0
〉

(B.29)

where we used the derivative ∂µθ(x0 − y0) = −∂µθ(y0 − x0) = δ(x0 − y0)δ0µ of the
time-ordering operator T̂ (f(x)g(y)) = θ(x0− y0)f(x)g(y)± θ(y0−x0)g(y)f(x). By
considering the three-point Green function (n = 1) in Eq. (B.29) and using the
commutation relations of current operators with quark field operators defined in
Eq. (B.6) as well as the current conservation relations in Eqs. (B.26) and (B.28),
we get

∂µG
µ
2,V,a(x;x1, x2) = δ4(x− x1)G2,S (x1, x2)τa − δ4(x− x1)τaG2,S (x1, x2)

∂µG
µ
2,A,a(x;x1, x2) = δ4(x− x1)G2,S (x1, x2)γ5τa − δ4(x− x1)τaγ5G2,S (x1, x2)

+ 2mqG2,P,a(x;x1, x2) (B.30)

Transferred into the momentum frame this relation becomes

kµG
µ
2,V,a(p1, p2) = S(p2)τa − τaS(p1)

kµG
µ
2,A,a(p1, p2) = S(p2)γ5τa − τaγ5S(p1) + 2mqG2,P,a(x;x1, x2) (B.31)
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with k = p1−p2 and identifying G2,S (p) with the quark propagator S(p). τa = λa/2
is defined by the Gell-Mann matrices λa in Eq. (A.2). These relations are the
so-called Ward-Takahashi-identities (WTIs) and relate the vector and axial-vector
vertices with quark propagators and the pseudo-scalar vertex. In the flavor-singlet
case (τa → 1), the axial-vector vertex is related to an additional term, the anomaly.
In general the WTIs relate n-point and (n + 1)-point Green functions. In the
following, we will discuss some important implications of these WTIs.

Applications of the WTIs

Two important applications are i) the axial-vector Ward-Takahashi-identity (AxWTI)
constraining the connection of the BSE kernel K and the quark self energy Σf (in
chiral limit) and ii) the Ball-Chiu vertex as approximation for the longitudinal
part of the quark-gluon vertex.

For i), we rewrite the flavor singlet version (τa → 1D) of the second line of
Eq. (B.31) in chiral limit in terms of quark-antiquark-meson vertices defined in
Eq. (3.4) (multiply with S−1S−1) and consider on-shell momenta. We therefore
get

PµΓµA(P, p) = S−1(p+)γ5 + γ5S
−1(p−) (B.32)

with the total and relative momenta P and p as well as the quark momenta p± = p±
P
2 . Furthermore, ΓµA(P, p) represents the inhomogeneous Bethe-Salpeter amplitude
which fulfills the Eq. (3.4). Inserting the quark DSE S−1(p) = S−1

0 (p) + Σ(p) and
the inhomogeneous BSE defined in Eqs. (2.16) and (3.4) into the AxWTI (and
the AxWTI in the representation of Eq. (B.32) again into the resulting equation)
yields the more prominent version shown in Eq. (3.6).

For ii) we consider the vertex of two quarks and the gauge Boson of QCD (gluon)
and calculate properties of the correlation of the gauge Boson current with a quark-
antiquark system. The resulting quantum mechanical color current conservation
is called vector Slavnov-Taylor identity. It constrains the longitudinal part of the
quark-gluon vertex by relating it to the quark and ghost propagators as well as
the quark-ghost scattering kernel, similar as in Eq. (B.31). So far, this could not
be solved in QCD, but we approximate it by the Abelian vector Ward-Takahashi
identity shown in the first line of Eq. (B.31) multiplied with a non-Abelian factor
NA(k) and rewritten in the same way as for i). This means that we consider the
flavor singlet case and multiply the equation with S−1S−1. In the end, we get

kµΓµqg(p, q, k) = NA(k)
[
S−1(p+)− S−1(p−)

]
(B.33)
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for the approximated quark-gluon vertex. Neglecting the non-Abelian factor, this
is solved by the Ball-Chiu vertex construction

ΓµBC(p, q) = γµ
A(p) + A(q)

2 + 2/kkµA(p)−A(q)
p2 − q2 + 2ikµB(p)− B(q)

p2 − q2 ,

ΓµBC(p, q) = ~γi(1− δµ0)A(p) + A(q)
2 + γ4δµ0

C(p) + C(q)
2 + (B.34)

+ 2~/kkµA(p)−A(q)
p2 − q2 + 2k̃4γ4k

µC(p)− C(q)
p2 − q2 + 2ikµB(p)− B(q)

p2 − q2 .

in vacuum (first line) and medium (second line). In this relation we used the
abbreviation k = (p+ q)/2.
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In this chapter, we will discuss the numerical background for the calculation of
fundamental particles with the help of the Dyson-Schwinger equations and of
mesonic bound states by using the Bethe-Salpeter approach. We will begin with
the description of the fundamental particles.

C.1. ... the DSE

For the description of the DSE calculations, we will, at first, detail the regularization
and renormalization of the quark and the gluon in vacuum and medium. Then, we
consider all facets of the numerical implementation of the DSE. Next, we discuss
the determination of the (pseudo)critical temperatures for the QCD phase diagram
and the changes to the quark calculation necessary due to the introduction of
complex momenta.

C.1.1. Regularization and renormalization of the quark and gluon

For the numerical calculation of the DSEs, the radial part of the momentum
integrals has to be truncated. For this purpose, we use a momentum subtraction
(MOM) regularization scheme and introduce two different kinds of ultraviolet O(4)
momentum regulators for the quark and the gluon. In the gluon DSE, we use a
hard cutoff ΛUV = 200 GeV for the radial part of the four-momentum. For the
quark DSE, on the other hand, we utilize a translational invariant momentum
regulator in form of a Pauli-Villars regulator R(q2) = 1

1+q2/Λ2
PV

to truncate the
radial part of the four-momentum. The regulator thereby entails the Pauli-Villar
scale ΛPV = 200 GeV. It is mentionable that we use these O(4) regulators for the
four-momentum, also in case of finite temperatures where the O(4) symmetry,
actually, is broken down to a O(3) symmetry.

To cancel the divergences appearing with the regulator, we impose renormalization
conditions at the renormalization points ξx with x ∈ {q, g}. This transfers the
regulator dependency into a renormalization point dependency, implies the need of
an external input given at this renormalization point and fixes the renormalization
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constants. Since the medium do not introduce new divergences [198], we renormalize
in vacuum and use the resulting renormalization constants or self energies at the
renormalization points as input for the medium. In the following, we will consider
the renormalization of the quark in vacuum and medium, before we move on to
the gluon. For the quark in vacuum, we use the renormalization condition

(
Sf (ξq)

)−1
= i/µ+mf

q(ξq) (C.1)

at the quark renormalization point ξq = 80 GeV.1 This renormalization condition
can be rewritten into conditions for the quark dressing functions which are given
by Af (ξq) = 1 and Bf (ξq) = mf

q(ξq). The renormalized quark mass mf
q(ξq) has to

be fixed externally. But due to the confinement, there is no experimental values
for it. Consequently, we fix the quark mass by matching the Pion and Kaon
mass as explained in Sec. 2.2.3. In case of real momenta, we determine the quark
wave-function Zf2 and quark mass Zfm renormalization constants from the quark
self energy Σf (ξq) at the quark renormalization point ξq in vacuum and insert
them into the medium equations. The changes to the renormalization procedure
due to the use of complex momenta are detailed in App. C.1.3.

For the renormalization of the diquark and baryon backcoupling in Chap. 6, we
need special attention. All self energies in Eq. (6.1) are proportional to the quark
wave-function renormalization constant Z2. The diquark and baryon loop self
energies depend on ΓSSΓ and ΨBSSSΨB, respectively. Here, Γ and ΨB represent
the diquark and baryon amplitudes which are proportional to Z

1/2
2 and Z

3/4
2 .

Since the diquark and baryon amplitudes are calculated with another truncation
and regularization than the quark, we have to insert the factors Z2/Z

eff.
2 and

Z2/(Zeff.
2 )3/2 for the diquark and baryon loop, respectively. Here, Zeff.

2 represents
the quark wave-function renormalization constant evaluated with an effective
interaction, no hadronic backcoupling, a hard cutoff instead of a Pauli-Villars
regulator and at a renormalization point of ξq = 19 GeV. More information on this
topic can be found in Ref. [80].

The numerical need to introduce a hard cutoff in the gluon DSE leads to quadratic
divergences in the quark loop, which break the translational and gauge invariance.
On the one hand, we have spurious quadratic divergences transversal to the
gluon four-momentum and on the other hand there arises an unphysical quadratic
divergent component longitudinal to the gluon four-momentum. In Landau gauge,
this component should vanish. If we consider the medium case, the divergences
transversal to the gluon four-momentum are furthermore accompanied by screening

1We use such a high value for the renormalization point to be sufficiently far in the perturbative
regime.
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mass like quantities in the form2 aT 2+bµ2
B

k2 . The contribution to these screening
masses is the dominant medium effect of the gluon. Therefore, the unphysical and
spurious quadratic divergences have to be removed without spoiling these screening
mass like terms. We do so by introducing the regularized quark loop

ΠQL,reg
εν (k) = (δεαδνβ − δενLαβ(k)) ΠQL

αβ (k) (C.2)

where the two divergent parts cancel each other. Here, ΠQL
αβ (k) is the quark

loop and the longitudinal projector Lαβ(k) w.r.t. the gluon four-momentum
is defined by Eq. (2.22). Due to this procedure, it only remains a logarithmic
divergent term in direction longitudinal to the assigned direction of the medium.
By fixing the quark loop with the renormalization condition ΠQL,ren

εν (ξg) = 0 at the
gluon renormalization point ξg = 10 GeV, we can derive the gluon wave-function
renormalization constant Z3, and get the renormalized quark loop

ΠQL,ren
εν (k) = ΠQL,reg

εν (k)− k2

ξ2
g

ΠQL,reg
εν (ξg) . (C.3)

It is sufficient to calculate the quark loop ΠQL,reg
εν (ξg) at the gluon renormalization

point ξg once in vacuum. In medium we use the vacuum value as input. With
Eq. (C.3) we still have infrared divergences due to the screening mass. For
this purpose, we split the regularized quark loop into a divergence free (regular)
part Π̃QL

T/L(k) and a screening mass term msc
T/L(T, µB). With this procedure, the

regularized quark loop and the screening mass can be written by

ΠQL,reg
εν (k) =

{
Π̃QL
T (k) + 2[msc

T (T, µB)]2

k2

}
PT
εν(k) +

+
{

Π̃QL
L (k) + 2[msc

L (T, µB)]2

k2

}
PL
εν(k) ,

[
msc

T/L(T, µB)
]2

= k2

2N s/t
pol
PT/L
εν (k)ΠQL,reg

εν (k)

∣∣∣∣∣∣
k→0

. (C.4)

The screening mass is strongly sensitive to high accuracy and needs to be calcu-
lated with the full Matsubara sum, an analytically solved angular part and by
numerically/ manually restoring the O(4) invariance via

Cf (q)→ (
1− e−x)Af (q) + e−xCf (q) (C.5)

with x = q2/Λ2
AC and Λ2

AC = 40 GeV2. We consequently calculate the regular part
and the screening mass separately and with different numeric.

2k is the gluon four-momentum, T is the temperature and µB is the baryonic chemical potential.
a and b are arbitrary parameters.
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C.1.2. Numerical implementation

For the numerical implementation, we have to discuss the momentum and integral
representation and handling. Then, we continue with the dressing function and
(pseudo)critical temperature determination and the way how the iterative procedure
works.

Momentum parametrization:

The parametrization of the external p and internal q quark momentum at fi-
nite chemical potential and vanishing temperature is based on hyper-spherical
coordinates and given by

p = (0, 0, |~p|, p̃4), q = (0, |~q|ȳq, |~q|yq, q̃4) (C.6)

where the abbreviation for the fourth momentum component l̃4 = l4 + iµfq
with l ∈ {p, q} entails the quark chemical potential of the quark flavor f . The
parametrization of the gluon momentum k equals the one of the external quark
momentum p without the chemical potential. In this parametrization the vector
part |~l| =

√
l2z̄l and the fourth momentum component l4 =

√
l2zl for the momenta

l ∈ {p, q, k} include the angles z̄l =
√

1− z2
l and zl. Thereby, zl = cos

(
^(l, vmed)

)

represents the angle between the momentum l and the assigned direction of the
medium vmed = (~0, 1) or energy direction (fourth momentum component). ȳl
and yl are defined in the same way. The vacuum (a) and finite temperature (b)
parametrization results from Eq. (C.6) by setting (a) the angle yl = 1 and the quark
chemical potential µfq = 0 and (b) exchanging the fourth momentum component
l4 = ωl with the appropriate discrete Matsubara frequencies.

Integral parametrization:

We already discussed the regularization of the quark and gluon equations in
App. C.1.1 and the momentum parametrization in the previous App. C.1.2. The
corresponding integrals for vanishing (first line) and finite (second line) tempera-
tures are given by

∫ Λ

q
=

∫ Λ2

ε2
dq2 q

2

2

∫
dΩq

4D ,

Λ∑∫

q

= T

|ωq |<Λ∑

nq

∫ ~Λ2
ωq

ε2
d|~q|2 |~q|2

∫
dΩq

3D (C.7)
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with the four and three dimensional angular integral
∫
dΩq

4D = 1
(2π)4

∫ 2π

0
dφq

∫ 1

−1
dyq

∫ 1

−1
dzq
√

1− z2
q ,

∫
dΩq

3D = 1
(2π)3

∫ 2π

0
dφq

∫ 1

−1
dyq (C.8)

and the three-momentum squared ultraviolet cutoff ~Λ2
ωq = Λ2 − ω2

q . The angles in
Eq. (C.8) not appearing in the corresponding vacuum, finite temperature, and finite
chemical potential but vanishing temperature parametrization cases of App. C.1.2,
can directly be analytically evaluated. While we describe the zq angular integral
with a linear Gauss-Chebychev integration, the remaining angular integrals and the
radial part are described by a linear and logarithmic Gauss-Legendre integration,
respectively.3 It remains the discussion of the Matsubara sum. We treat the
Matsubara sum differently in the quark self energy and the quark loop. The
reason is the necessary precision and the low number of necessary calculations (see
App. C.1.2) of the quark loop compared to the quark self energy. In the quark
loop we perform the whole Matsubara sum explicitly. For the Matsubara sum in
the quark self energy we assume continuity above a Matsubara index Nmax and
use the integral approximation

T

|ωq |<Λ∑

nq

= T

−Nq
mats+ 1

2∫

−( Λ
2πT −

1
2 )

dωq + T

Nq
mats−1∑

nq=−Nq
mats

+T

Λ
2πT −

1
2∫

Nq
mats−

1
2

dnq

= 1
2π

−ωq,max−πT∫

−Λ

dnq + T

Nq
mats−1∑

nq=−Nq
mats

+ 1
2π

Λ∫

ωq,max+πT

dωq (C.9)

with ωq,max = πT (2N q
mats − 1). We have to add 1/2 and πT to the integral

limits due to the validity range of the sum. In the substitution, we used the
fact, that the summed Matsubara frequencies of the quark loop and the quark
self energy are fermionic Matsubara frequencies. For the quark self energy we
calculate 2N q

mats Matsubara frequencies explicitly and approximate the remaining
momentum interval by a logarithmic Gauss-Legendre integration (grid). For
decreasing temperature and fixed N q

mats, the explicit sum describes a shrinking
3Gauss-Legendre or Gauss-Chebychev integration means that we use a Gaussian quadrature and
Legendre or Chebychev polynomials of second kind as grid-points. To increase the precision,
we always use an equidistant external grid (p or k) and embed the integration grid (q) between
the external grid points. Consequently, we need an interpolation routine base on the external
grid points. This will be discussed in App. C.1.2.
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momentum range. As result, more and more parts of the momentum interval have
to be approximated and are therefore less accurate. Consequently, if we want to
describe the integral at lower temperatures as accurately as possible, we should
increase N q

mats for decreasing temperatures.

Dressing function determination:

As already mentioned before, the external and internal grids differ and consequently
we need an interpolation routine to determine the dressing functions of the quark
and the gluon on the internal grid. At finite temperature, the heat bath direction
yields an additional complication. In this case, the dressing functions are saved
for a finite number of discrete external Matsubara frequencies in between −ωl,max
and ωl,max ∈ {ωp,max, ωk,max} with ωp,max = πT (2Ñ q

mats − 1) for the quark and
ωk,max = 2πTÑg

mats for the gluon dressing functions. Usually, we set Ñ q
mats = N q

mats
with N q

mats being the maximal Matsubara index of the Matsubara frequency integral
approximation in Eq. (C.9). This implies that only the approximated Matsubara
frequencies are not saved and calculated explicitly. For the quark and gluon
Matsubara frequencies that are not saved and calculated explicitly, we need an
approximation or determination method for the dressing functions needed on the
internal (Matsubara) grid. For this purpose, we use the restoration of the O(4)
invariance of the quark and gluon dressing functions at high four-momenta. The
dressing function X at the three-momentum ~q2 and the Matsubara-frequency
ωq > ωl,max can be approximated by the same dressing function X but now
evaluated at the three-momentum ~q2 + ω2

q − ω2
l,max and the last saved Matsubara

frequency ωl,max. We expressed this in formulas via

X(~q2,±ωq) ≈ X(~q2 + ω2
q − ω2

l,max,±ωl,max) (C.10)

whereX ∈ {A,B,C,Z,ZT/L} represents the dressing functions and {ωp,max, ωk,max}
3 ωl,max < ωq the highest saved Matsubara frequency. For the quark, we need at
least Ñ q

mats = N q
mats = 5 Matsubara frequencies before we can use the restoration

of the O(4) invariance. For lower temperatures (< 100 MeV) even more. For the
gluon, however, it is sufficient to use the zeroth Matsubara frequency approxi-
mation, which means that we only save the first bosonic Matsubara frequency
implying Ng

mats = 0.

At finite temperature, we still need an interpolation routine for the spatial part of
the momentum which means the three-momentum. Therefore, we introduce one
cubic spline object per dressing function and for every saved Matsubara frequency.
This cubic spline object is based on the logarithmic and equidistant distributed
radial part of the external three-momentum. In vacuum, the interpolation is
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necessary for the four-momentum. Similar to the finite temperature case, we
introduce again one cubic spline object per dressing function. But the cubic splines
are now based on the logarithmic and equidistant distributed radial part of the
external four-momentum. At finite chemical potential and vanishing temperature,
the interpolation is a little bit more complicated. The dressing functions now
depend on the four-momentum and an angle between the four-momentum and the
assigned direction of the medium. One possibility is a two dimensional cubic-spline
interpolation. But this interpolation is quite slow. For this purpose, we use the
fact, that the chemical potential extents our four-momentum into the complex
plane.

In this work, our (external) four-momentum at finite chemical potential and
vanishing temperature can, in general, be represented by p = (~p, p4 + ic̃) as
discussed in App. C.1.2. Here, we generalized the momentum representation for
the ability to describe also complex momenta. This will be discussed in more detail
in App. C.1.3. For now, we want to discuss the interpolation routine at finite
chemical potential and vanishing temperature and without any further complex
momentum. Consequently, the imaginary contribution is given by c̃ = µfq . To
make things easier to understand, we express the four-momentum including the
imaginary contribution by pC and the four-momentum without the imaginary
contribution by pR. Their relation is given by pC = pR + ivmedc̃ with the assigned
direction of the medium vmed = (~0, 1). The needed complex momenta can now be
represented by

p2
C = p2

R − c̃+ i
√
p2
Rzpc̃ (C.11)

with the angle zp = cos(^(p, vmed)) between the external momentum p and the
assigned direction of the medium vmed = (~0, 1). To evaluate the quark propagator
in the complex plane or for finite chemical potential we have different interpolation
routines available, e.g. the shell- and the Cauchy-method. A review to the
numerical techniques in vacuum can be found in Ref. [199]. In this work, we use
the Cauchy-method, which was introduced in Ref. [125] and which is based on the
Cauchy integral formula

f(p) =
∫

Γ
f(q)
q−p∫

Γ
1
q−p

(C.12)

where we obtain the function f at the momentum p interior to the closed contour
Γ by a contour integration over the function at Γ. The closed contour thereby
describes the edge of the set of necessary momenta in the complex momentum plane.
As already mentioned, the necessary momenta can be described by Eq. (C.11).
Finally, we only need to evaluate the dressing functions on the corresponding
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−c̃2 Λ2

p2
C

Re

Im

Γ

zp = 1

zp = −1

Figure C.1.: Closed path Γ for the complex momenta needed in the finite chemical
potential and vanishing temperature as well as in the bound state calculations.
We furthermore show poles of the quark propagator marked as dots. The closed
path consists of three parts: a vertical line at the UV cutoff Λ, and two parabolas
indicated by zp = ±1. The direction of the path integral is given by the arrow
around the closed path Γ.

closed path which is given in Fig. C.1. The dressing functions for all momenta
in between are obtained from the Cauchy integral formula in Eq. (C.12). The
edge of the set of complex momenta is defined by the two parabolas zp = ±1
in Eq. (C.11) and a vertical line at the UV-cutoff Λ, which connects the two
parabolas. The maximal (calculable) value of c̃ is dictated by the appearance of
poles or singularities in the quark propagator, which are indicated in the figure
as big dots. The parametrization and the grid are chosen in the same as in the
review in Ref. [199].

Due to the existence of the quark chemical potential in the external quark four-
momentum, we are able to use the Cauchy-method as interpolation routine for the
quark dressing functions at finite chemical potential and vanishing temperature.
However, there is no chemical potential in the gluon four-momentum. Consequently
we would need a slow two dimensional cubic spline interpolation for the gluon
interpolation at finite chemical potential and vanishing temperature. To avoid this
slowing factor, we introduced the vacuum gluon approximation in Sec. 2.2.3. An
improvement through the use of a two dimensional cubic spline interpolation can
be done in a future work.
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In our calculations, we also need the dressing functions at momenta above the
ultraviolet cutoff. Consequently, we implemented two methods for the extrapolation:
a constant and a linear extrapolation. For the constant extrapolation, we evaluate
the dressing functionX at the momentum |p| > Λ by simply using the same dressing
function evaluated at |p| = Λ and keeping the considered angles and Matsubara
frequencies unchanged. The mapping onto the saved Matsubara frequencies in
Eq. (C.10), however, is still necessary.4 For the linear extrapolation, we keep the
considered angles and Matsubara frequencies fixed and apply the mapping onto
the saved Matsubara frequencies. Then, we use the upper two external grid points
of the considered angle and Matsubara frequency to determine a linear function
from the logarithmic grid. Afterwards, we use this linear function to determine the
value of the extrapolated dressing function. The linear extrapolation is especially
important for the gluon. There the results show a considerable difference, if the
constant extrapolation is used instead. In our calculation of the quark and gluon,
we therefore use the linear extrapolation for large momenta and the constant
extrapolation for small momenta.

Iterative procedure:

Since the quark and gluon integral equations are coupled, we have to calculate
them simultaneously with a fixpoint iteration. If we further include hadrons in
the calculation, this quark-gluon system fixpoint iteration has to be repeated once
again. A schematic representation of the iterative procedure is shown in Fig. C.2.

If we backcouple baryons and diquarks via Eq. (6.1) instead of mesons, the flow
diagram changes a bit. At first, the quarks and gluons are again calculated
without the hadron. Then, we repeat the macro cycle with the diquark and baryon
backcoupled and therefore included in the quark iteration. For the diquark and
baryon, we use precalculated dressing functions, which are discussed in Sec. 6.1.
Because of this, we do not need to solve the hadrons with an iterative procedure.

Since we use the same meson at a specific chemical potential for all temperatures
as mentioned in Sec. 5.1, we need to consider if this is a good approximation. For
this purpose, we now try to estimate the the impact of the missing temperature
effects considering the results of previous calculations concerning mesons and meson
backcoupling at finite temperature. A characteristic behavior in lattice [200, 201]

4At finite temperature, we use the dressing function X at the four-momentum p =
(~̂p
√

Λ2 − ω2
p,±ωp) instead of the same dressing function at p = (~p,±ωp). For vanishing

temperatures the corresponding four-momentum p is exchanged by p = p̂Λ. The three-
momentum ~̂p = ~p/

√
~p2 represents the normalized three-vector. The normalized four-vector is

defined similarly.

143



C. How to solve ...

Calculate the gluon
• Eq. (2.17)
• fixed: quark, qg-vertex
• Regular part & screening mass

Initial guess

Solve quark
• Eq. (2.16) or (5.5)
• fixed: gluon, meson, qg-vertex
• Fixpoint iteration

Iteration solved in one step?

Meson calculated or not necessary?

Calculation terminated

Solve meson
• Eq. (3.11)
• fixed: quark, gluon, qg-vertex
• Power iteration method, ev-Eq.

true

true
false

false

Figure C.2.: Flow diagram showing how the quarks, gluons and mesons are cal-
culated for fixed input parameters (quark masses mf

q and vertex interaction
strengths d(q)1 ) defined in Sec. 2.2.3. The quark is solved iteratively until the
propagator converged. The gluon, quark-gluon vertex and mesons (if already
calculated) are kept fixed during this iteration which we call micro cycle. If the
quark converged, the gluon is updated (we calculate the new regular part and
the screening mass). The quark and gluon calculation together is the macro
cycle. The quark-gluon system converged if the update of the gluon leads to
no changes in the quark propagator. The quark iteration then terminates in
one step. If this is the case and the meson is already calculated and included
in the quark calculation or the meson is not necessary, the whole calculation
is terminated. If the meson is necessary but not calculated so far, it is with a
power iteration method and an eigenvalue equation explained in App. C.2.4 and
Sec. 3.2.1, respectively. Meanwhile, the quark, gluon and quark-gluon vertex
are kept fixed. Afterwards the macro cycle is started again. In this work, the
finite temperature mesons are approximated by corresponding mesons with their
temperature turned down to zero.

and DSE [63–67] studies is that the Pion mass is almost temperature independent
for temperatures below the pseudocritical temperature. Furthermore, Ref. [64]
shows that the Pion and sigma mesons do not dissolve into a gas of almost mass-less
quarks for temperatures also significantly higher than the chiral and deconfinement
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transition. These two features are in accordance with our approximation. However,
in disagreement with our approximation, Ref. [128] observed that the sigma meson
mass decreases already for temperatures below the pseudocritical temperature and
exhibits a dip at the pseudocritical temperature. For temperatures shortly above
the pseudocritical temperature the sigma meson degenerates5 with the Pion meson
and their mass increase approaching an asymptotic behavior of 2πT . This linear
increase of the Pion and sigma mass w.r.t. the temperature was also observed in
lattice in the Refs. [200, 201] and is missing in our approximation.

In summary, the meson properties and the meson propagator depend much stronger
on temperature than on chemical potential. But how important are the compara-
tively small changes in the meson propagator for observables and the QCD phase
diagram? In Ref. [169], the influence of the mass of a backcoupled Pion on the
dynamical quark mass, the quark condensate and the meson decay constant was
studied. As result, we see that the bound state mass variations, certainly, are
important for the correct description of the phase diagram. However, the influence
of the temperature on the BSAs can play an important part, too. Unfortunately,
the BSAs at finite temperature (for our quite evolved truncation) are unknown.
Consequently, further investigations are necessary to be able to make qualitative
statements. So far, the BSAs and the meson backcoupling at finite temperature
were only calculated in a simplified manner. Previous works used an effective
interaction, e.g. Ref. [65], and/ or approximated the Bethe-Salpeter amplitude
components via generalized Goldberger-Treiman like relation given in Ref. [31].6
By using the latter approximation, Ref. [89] obtained the first results of meson
effects (with temperature dependency) on the QCD phase diagram. In comparison
with our results in Sec. 5.3, the observed qualitative impact of the meson effects on
the QCD phase diagram is the same. This implies that the neglect of temperature
effects on the meson propagator and the BSA do not influence the results on a
qualitative basis. Similar as in Ref. [89], we rather expect that the strongest (meson
backcoupling) effect results from the number of considered meson flavors or the

5In the chiral limit, Ref. [65] discusses that the Pion and sigma mesons even become locally
identical above the pseudocritical temperature, meaning that the leading amplitudes become
point-wise identical while the remaining amplitudes vanish.

6These relations relate the Pion BSA components to quark dressing functions, e.g. via Eπ(p) =
B(p)/fπ. This provides us the opportunity to evaluate the Pion BSA off-shell and for general
momenta. However, the relation is only valid in the chiral limit. At finite quark mass, the UV
behavior is different. For example the B function has a logarithmic running (see Ref. [202])
while the Eπ function retains the chiral power law behavior. This mostly affects the finiteness
of integrals. Because of this difference, Ref. [89] introduced an extra factor to repair this
behavior. Note that Ref. [65] showed that the Goldberger-Treiman like relation holds at finite
temperature, too. Using this relation, the Pion decay constant and the Pion masses have to
be obtained by the Pagel-Stokar approximation and the GMOR relation, respectively. But
the latter relation is only applicable if all four tensor structures are used.
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BSA not from their precise mass.

Furthermore, we have to mention that the correct way to include hadrons into the
calculation is to solve a fully coupled system of DSEs and BSEs at the desired
phase diagram point. To achieve this, the flow diagram has to be extended. The
first two steps are the same: We calculate the quark-gluon system without the
hadron. Then in another iterative cycle, we calculate the hadron and include it into
the quark-gluon calculation until neither the quark, nor the gluon or the meson
change anymore. This is, furthermore, done for fixed input parameters. But we
have to repeat this calculation varying the input parameters to find the optimal
values for the input parameters, at least in vacuum. The fixing of the parameters
is discussed in Sec. 2.2.3. The search of the optimal input parameters itself is
again an iterative procedure, since we have to repeat the quark-gluon and meson
calculation for every change of the parameters. The problem with this procedure,
however, is that we need to calculate the quark in the complex momentum plane to
be able to solve the meson. The calculation of the quark in the complex momentum
plane and the determination of the meson with a eigenvalue equation and power
iteration method leads to extremely time-consuming calculations.

If we calculate the quarks, gluons and hadrons with the flow diagram presented in
Fig. C.2, problems with the convergence of the quark fixpoint iteration can appear.
To solve them, we introduce a relaxation parameter 0 ≤ r ≤ 1 for the calculation
of new dressing functions. New dressing functions are then obtained by a certain
ratio of the new and the old dressing function via X ′new = rXnew + (1− r)Xold.

(Pseudo)critical temperature and CEP location determination:

In this section, we will detail how we determine the (pseudo)critical tempera-
tures and the location of the critical endpoint. For the determination of the
(pseudo)critical temperature, we can consider different thermodynamic quantities
derived from the thermodynamic potential, e.g. the order parameter or fluctu-
ations/ response functions. Here, we will discuss the order parameter, i.e. the
(regularized) quark condensate or the dynamical quark mass, and the response
function which (in case of the chiral symmetry) is the chiral susceptibility.

The critical temperature of the sharp first-order phase transition is identical
for all ways of determination. This means that all thermodynamic quantities
yield the same critical temperature for the first-order phase transition. The
critical temperature thereby is determined by the location of the discontinuity of
the considered thermodynamic quantity mentioned before. The crossover, as a
continuous transition between the two phases, on the other hand, is not an actual
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phase transition and does not have a properly defined critical temperature. There
is no unique definition. In this section, we will consider two possible definitions
of the pseudocritical temperature which work for the first-order phase transition
too: The inflection point of the order parameter

(
T fpc
)
op.

or the maximum of the

response function
(
T fpc
)
rf.
. These two quantities are defined via

(
T fpc
)
op.

= arg max
T

∣∣∣∣
∂∆fh(T, µB)

∂T

∣∣∣∣ ,

(
T fpc
)
rf.

= arg max
T

∣∣∣∣∣∣
∂〈 ˆ̄ΨΨ̂〉f (T, µB)

∂mf
q

∣∣∣∣∣∣
. (C.13)

Both methods give different results in the crossover region but coincide in the
discontinuous phase transition region and the location of the CEP. For all results
in this work, we use the inflection point definition.

Due to the numerical complexity of the calculation, the obtained regularized
quark condensate shows an oscillating behavior around the transition between
the hadronic and the quark-gluon plasma phase if we consider the crossover.
To compensate this behavior, we fit smoothed splines to the regularized quark
condensate and determine the pseudocritical temperatures from them. We do this
iteratively in a temperature interval T ∈ [Tpc − Tint(µB)/2, Tpc + Tint(µB)/2] until
the pseudocritical temperature and therefore also the interval does not change
anymore. In this interval, Tpc represents the pseudocritical temperature of the last
iteration step or the stating guess and Tint(µB) defines the range of the temperature
interval. As starting guess, we use the pseudocritical temperature from the raw
(unsplined) regularized quark condensate which we get from a simple differential
quotient. Tint(µB) is chemical potential dependent, since the regularized quark
condensate becomes steeper, the closer we get to the CEP. Consequently, for
numerical reasons, the spline is only able to describe the quark condensate in
a shrinking temperature interval. We determine the error of the pseudocritical
temperature from this procedure.

We define the location of the second-order CEP as the chemical potential (together
with the corresponding critical temperature) where the crossover turns into a
first-order phase transition. If we, however, are able to determine the Nambu and
Wigner solution, we instead define the location of the CEP as the lowest chemical
potential (together with the corresponding critical temperature) where the Nambu
and Wigner coexistence lines coincide but the Wigner solution still is a stable and
different solution compared to the Nambu solution. We do so since the numerical
evaluation does not properly allow to distinguish between finite and infinite jumps
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without applying a lot of computing effort. We get the Nambu and Wigner solution
by inserting two different initial conditions.

C.1.3. Quark propagators for complex momenta

If we calculate bound states, we need the quark propagator for momenta in the
complex plane. For this purpose, we consider the external quark momentum
p in the quark DSE in the complex plane. By keeping the momentum routing
of the quark DSE the same and using the self consistent solution of the quark
propagator at real momenta for a final iteration step, we can perform a simple
analytic continuation. This, however, requires the knowledge of the gluon and the
quark-gluon-vertex for complex momenta. But if these are not accessible, we have
to modify the momentum routing instead.

The imaginary contribution c̃ = µfq + η±mx ≡ c± to the complex four-momentum
pC = pR+ c̃v has two origins: On the one hand the chemical potential µfq and on the
other hand the externally added imaginary momentum. Since we consider bound
states at rest, the second term is given by a fraction of the bound state mass η±mx
in energy direction v = vmed = (~0, 1). While the chemical potential is directly
connected to the quark propagator and therefore contributes to the quark momenta
alone, the second term only affects the external quark momentum. Consequently,
we only need to modify the momentum routing presented in Sec. 2.1.2 if we consider
externally added imaginary contributions.

By redefining the loop momentum k = p+q and exchanging the momenta q (without
chemical potential) and k in the quark DSE, the imaginary contribution is directed
through the quark propagator alone. This implies that the quark propagator has
to be evaluated iteratively on all points needed in the complex plane. The needed
complex momenta can be described by Eq. (C.11) with c̃ = µfq + η±mx ≡ c±.
The corresponding quark dressing functions are again calculated with the Cauchy-
method discussed in App. C.1.2. Furthermore, a different regularization is necessary.
Instead of using the renormalization constants as factor, we now have to subtract
the vacuum self energy at the renormalization point. Through this procedure, we
get a characteristic (small) drop of the quark dressing functions at large momenta.

C.2. ... the BSE

In this section, we will at first derive the on-shell equations necessary to calculate
the mesons and their properties within the Bethe-Salpeter approach. Then, for the
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numerical implementation of the BSE calculations, we will discuss the momentum
and integral representations, similar as for the DSE. Furthermore, the chemical
potential dependence of the momentum partitioning parameter, the BSA component
determination and the power iteration method will be detailed at the end.

C.2.1. Derivation of the on-shell equations

For the calculation of on-shell mesons and their properties, we have to derive
the homogeneous BSE, norm and decay constants equations. We will do so
in Minkowski space. More details to the following derivations can be found in
Refs. [124, 203]. We will begin with the derivation of the homogeneous BSE.

As already mentioned in Sec. 3.1.1, n-particle bound states appear as poles (at the
bound state masses) in the 2n-point quark Green functions defined in Eq. (2.2)
for the (anti)quark fields ϕ ∈ {Ψ̄,Ψ}. Consequently, to describe a meson bound
state x of mass mx and momentum P , we will now consider the four-point quark
Green function G4,S . In addition, we need a complete set of orthogonal hadron
eigenstates |P, x, α〉 with momentum P , hadron type x (indicating specific hadrons)
and further quantum numbers α (angular momentum, parity, hadron flavor, . . .).
These eigenstates are a basis for the system describing Hamiltonian and fulfill the
completeness relation

1 =
∑

x

∫
d4P

(2π)3 θ(P0)δ(P 2 −m2
x) |P, x, α〉 〈P, x, α| =

∑

x

1
(2π)3

∫
d4P

2EP
|. . .〉 〈. . .| .

(C.14)

Due to the Lorentz-invariant integral weight, each hadron on its mass shell P 2 = m2
x

(⇔ E2
P = ~P 2 + m2

x). If we now insert this completeness relation into the 1PI 4-
point quark Green function G4,S given in Eq. (B.3) and use the meson bound state
wave-function χαx definition in Eq. (3.8), we get an expression for the 2PI 2-point
quark Green function7 G[2]

2,S

G
[2]
2,S (P, x, y) =

∑

x

∫
d3P

(2π)3
χαx (P, x)χ̄αx (−P, y)

2EP
e−iEP (X0−Y0)+i ~P ( ~X−~Y )θ(X0 − Y0)

(C.15)

with X = x1+x2
2 and x = x1−x2 as well as analogous expressions for Y and y. Since

the constituents of the initial state should be chronologically earlier than those of the
final state, we introduced θ(X0−Y0) = −(i2π)−1 ∫ dk(k+ iε)−1 exp(−i(X0−Y0)k)

7In App. B.1, we show that there is a connection between the four-point quark Green functions
G4,S and the 2PI two-point meson Green function or meson propagator G[2]

2,S,x.
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with k = P0 −EP . By Fourier transforming this relation, adding the contribution
of the antiparticle states of |P, x, α〉 (this implies a factor of two), and considering
the Green function at the Pole P 2 = m2

x, we get the pole representation

G
[2]
2,S (P, p, l) =

∑

x

iχαx (P, p)χ̄αx (−P, l)
P 2 +m2

x + iε
(C.16)

with the total momentum of the meson P , the relative momenta between the
two constituents p or l and the on-shell condition P 2 = m2

x. This equation only
represents the pole contribution. As indicated by Eq. (3.7), there additionally
exists a regular term R(P, p, l). If we now multiply the bound state equation
of motion in Eq. (3.3) with S−1(p+)⊗ S−1(p+), insert the pol representation of
Eq. (C.16), and take the residue (Resx0

f(x)
g(x) = f(x0)

g′(x0)) for a specific meson x, we get

S−1(p+)χαx (P, p)S−1(p−)χ̄αx (−P, l) =
∫

q
K(p, q, P )χαx (P, q)χ̄αx (−P, l) (C.17)

with the Bethe-Salpeter wave-function χαx (P, ·) in momentum space defined by
Eq. (3.10). By cutting the charge conjugated Bethe-Salpeter wave-function
χ̄αx (P, l) = [Cχαx (P,−l)C−1]>, we get the quark-antiquark-meson vertex on-shell
equation or homogeneous Bethe-Salpeter equation (hBSE) shown in Eq. (3.9).
Since the Bethe-Salpeter amplitude, as solution of the hBSE, is only determined
up to constant factor (due to the structure of the hBSE as eigenvalue equation),
we need a normalization condition for it.

Norm

We can derive the standard canonical norm (Leon-Cutkosky normalization) from
the 2PI 2-point Green function G[2]

2,S (restricted to one mesonic channel) by de-
manding the residue at the bound state pole to equal one. This is necessary for
the decomposition of Eq. (3.7) into a pole and a regular term to hold. In the
neighborhood of a pole, we can approximate the propagator G[2]

2,S by the pole repre-
sentation in Eq. (C.16) multiplied by an arbitrary residue Rx. If we, furthermore,
consider the general derivative of the equation G[2]

2,S =
(
S−1S−1 −K)−1 which is

given by ∂
∂λG

[2]
2,S = −G[2]

2,S

(
∂S−1S−1

∂λ − ∂K
∂λ

)
G

[2]
2,S and insert the pole representation,

we obtain8

i
∂P 2

∂λ

∑

x
Rx

χαx χ̄
α
x

(P 2 −m2
x)2 = −

∑

x′
Rx′

χα
′

x′ χ̄
α′
x′

P 2 −m2
x′

∂

∂λ

(
S−1S−1 −K

)∑

x
Rx

χαx χ̄
α
x

P 2 −m2
x
.

(C.18)
8Keep in mind that χαx is on the mass-shell. This implies ∂χαx (P, p)/∂P 2 = 0.
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By multiplying with −i ∂λ
∂P 2 (P 2 −m2

x′′)/R2
x, (χ̄α′′x′′ )−1 (from the right) and (χα′′′x′′′ )−1

(from the left) and considering λ = Pµ, we can rewrite the equation into

δαα′δxx′N 2
x = δαα′δxx′

Rx
= i

Pµ
2P 2 χ̄

α′
x′

∂

∂Pµ

(
S−1S−1 −K

)
χαx

∣∣∣∣∣
P 2=m2

x

(C.19)

If we now take the functional, Dirac, flavor and color trace into account and express
the Bethe-Salpeter wave-function by Eq. (3.10), we can reshuffle the equation into

δαα′δxx′N 2
x = − i Pµ2P 2

d

dQµ
TrDCF

{∫

q
Γ̄α′x’ (−P, q)S(q+(Q))Γαx (P, q)S(q−(Q)) +

+
∫

q

∫

p
S(q−(P ))Γ̄α′x’ (−P, q)S(q+(P ))K(p, q,Q)S(p−(P ))·

· Γαx (P, p)S(p+(P ))
}∣∣∣∣

Q2=P 2=m2
x

(C.20)

with the charge conjugated Bethe-Salpeter amplitude Γ̄αx (P, p) =
[
CΓαx (P,−p)C−1]>.

Due to our Ladder like truncation in the BSE and the total momentum P inde-
pendence of the kernel, the second term vanishes in this work.

Decay constant

To derive the meson decay constant, we consider the transition element between a
hadron state defined in Eq. (C.14) and the current jµx,e(x) := Ψ̄(x)Γµx r̃exΨ(x) with
the Dirac matrix Γµx ∈ {γµ, γ5γµ} and the meson flavor matrices r̃ex = rex/Nf.9 This
transition element is defined by
〈

0
∣∣∣ĵµx,e(0)

∣∣∣P, x′, α
〉
e−iPx =

〈
0
∣∣∣ĵµx,e(x)

∣∣∣P, x′, α
〉

= − [Γµx r̃ex]γδ [χαx′(P, x, x)]δγ

= − lim
z→0

[Γµx r̃ex]γδ [χαx′(P, z)]δγ e
−iPx = − lim

z→0

∫

q
TrDCF [Γµx r̃exχαx′(P, q)] e−i(Px+qz) .

(C.21)

Considering different current and meson combinations we find (See Refs. [32, 204])

−TrF
[
Γµx r̃exχ

(ν)
x′,e′(P )

]
=
〈

0
∣∣∣ĵµx,e(0)

∣∣∣P, x′, (ν), e′
〉

(C.22)

=
{
δe,e′fx′iP

µ for x′ ∈ {PS/S} and x ∈ {AV/V}
δe,e′fx′imx′Tµν(P ) for x′ ∈ {AV/V} and x ∈ {AV/V}

.

9See App. A.3 for the definition of rex and corresponding relations.
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Here, x represents the type of the current and x’ the type of the meson. The
pseudo-scalar and axial-vector mesons x′ ∈ {PS,AV} couple to an axial-vector
current x = AV while the vector x′ = V mesons couple to a vector meson current
x = V. We use Tµν(P ) instead of the polarization tensor εµ(P ) from Refs. [32, 204],
to take the open Lorentz index of the meson state under consideration. Through
this procedure, we keep the orthogonality of the meson state w.r.t. the total
momentum and receive the correct polarization number if we contract the Lorentz
indices. After renormalization, a ZA has to be included into the vertex Γ0 of
Eq. (3.4) and to the RHS of Eq. (C.22) (see Ref.[31]). We can replace ZA by Z2
since their ratio is a renormalization-group-invariant quantity (see Ref. [205]).

C.2.2. Momentum and integral parametrization

In the bound state calculation for vanishing temperatures, the momentum parame-
trizations of the total (P ) and relative (p externally and q internally) momenta of
the meson are given by

P =
(
|~P |(0, 0, 1), P4

)
, p = (|~p|(0, ȳp, yp), p̃4) , q = (|~q|(ȳq sinφq, ȳq cosφq, yq), q̃4) .

(C.23)

Like in the DSE momentum parametrization in App. C.1.2, the external and
internal relative momenta entail the chemical potential. Also the angles are defined
in the same way. The gluon momentum entering in the quark-gluon vertex, is
given by k = p− q. The quarks are evaluated at the momenta

l± = l ± η±P (C.24)

with l ∈ {q, p}. The parametrization shown in Eq. (C.23) is generalized for
the correct determination of the angular dependency of the necessary equations.
Ultimately, we consider the mesons in rest frame by setting |~P | = 0. This
implies P4 = imx for the fourth component of the total momentum and yp = 1
and cosφq = 1 for the angles in the relative momenta. The parametrization of
the momenta in the bound state approach for finite temperature is much more
complicated and not considered in this work. The integrals are described in the
same way as in the DSE case detailed in App. C.1.2.

C.2.3. Chemical potential dependence of the partitioning parameter

In the bound state approach, the quark propagators are evaluated at the complex
momenta shown in Eq. (C.24). Another representation is p =

(
~p, p4 + icf±

)
where
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cf± = µfq ± η±mx is the complex extension which depends on the quark chemical
potential10 µfq , the mass of the considered meson mx, and the momentum partition-
ing parameters 0 ≤ η± ≤ 1 introduced in Sec. 3.1.2. This partitioning parameter
has to fulfill the condition η+ + η− = 1. The complex extension can be increased
until the quark propagator hits a pole. In vacuum and medium, we have to define
this position differently. In medium, we identify the pole position with the highest
still calculable chemical potential. Since the poles are much closer in the Wigner
solution11, the highest chemical potential of the Nambu solution is the desired
value, i.e. the upper border of the considered coexistence region studied in Sec. 4.2.
Only at the transition from the Nambu to the Wigner solution a pole enters the
complex quark momentum plane in medium. Since we force the vacuum quark
propagator to O(4) symmetry by not allowing a distinction between the first and
second quark vector dressing function, the calculation of the quark propagator is
possible for higher complex extensions than those in medium. In this work, we
are mostly interested in the medium, therefore, we have the condition |cf±| ≤ µfq,c
with the chemical potential µfq,c representing the upper border of the coexistence
region for the quark flavor f . Note that the medium quark propagator at complex
momenta shows numerical problems already before the Nambu transition.

For high meson masses, we get the problem that we can only access a small chemical
potential interval if we do not modify the partitioning parameter in dependence
on the chemical potential. To find the best chemical potential dependence for
the partitioning parameter, we consider a generalized version of the condition
mentioned above.12 The lower boundary is now given by−µfq,c ≤ cf− = µfq−η−mx =
µfq − (1− η+)mx and the upper one by µf ′q + η+mx = cf

′

+ ≤ µf
′

q,c. By rearranging
and expressing the quark chemical potential by the baryonic chemical potential13,
we get the condition

max
(

0.0 , 1.0− µfq,c
mx
− µB

3mx

)
≤ η+(µB) ≤ min

(
1.0 ,

µf
′

q,c
mx
− µB

3mx

)
(C.25)

for the partitioning parameter η+(µB). In Fig. C.3, we show this condition in a
graphical way and demonstrate the optimal chemical potential dependence for the
partitioning parameter η+(µB). Since numerical artifacts appear near the maximal

10For the meson in medium calculation, we can set the quark chemical potential to µfq = µB/3.
11The quark propagator of the Wigner solution for complex momenta is not calculable since the

pole is almost immediately included in the complex plane.
12Note that the quark and the antiquark have two different coexistence regions for mesons with

mixed quark content like the K and K̄ meson. Consequently the quark and the antiquark can
be calculated up to different quark chemical potentials: µ`q,c and µs

q,c.
13Here, we use the fact that we calculate all mesons for µs

q = µ`q.
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mx -µf
q,c mx/2 µf ′

q,c

1.0 -
µf

q,c/mx

0.5

1.0
µf ′

q,c/mx

µB/3

η+

η+ values:
Max & min
Optimum

η+ values:
Max & min
Optimum

Figure C.3.: Possible values for the partitioning parameter η+(µB) = c+−µB/3
mx

are
indicated by the gray area in dependence of the considered baryonic chemical
potential µB. More information can be found in the text.

or minimal values of η+(µB), we should chose η+(µB) for high-mass mesons as
shown in the figure.

C.2.4. BSA component determination and power iteration method

Like for the quark and gluon dressing functions we derive equations for the BSA
components f ix(P, p) by projection. The difference to the quark and gluon dressing
functions is that we express these components with Chebychev polynomials like
shown in Eq. (3.15). To extract the corresponding Chebychev coefficients, we use
the Chebychev orthogonality relation

2
N

N−1∑

n=0
T̃i(znp )T̃j(znp ) = δij . (C.26)

In this orthogonality relation, the angle znp = cos
(

2n+1
2N π

)
defines the nth of N

roots of the N th Chebychev polynomial.14 For each Chebychev coefficient of all
BSA components, we introduce one cubic spline object like for the quark and gluon
14The Chebychev polynomials can be calculated by the Chebychev recursive formula Tj(zp) =

2zpTj−1(zp)− Tj−2(zp) with the first polynomials T0(zp) = 1 and T1(zp) = zp.
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dressing functions. In vacuum and for finite chemical potential and vanishing
temperature, these cubic splines are based on the logarithmic and equidistant
distributed radial part of the external relative four-momentum. This, however,
is only possible since we consider the rest frame. Going beyond rest frame is
connected with some difficulties. Then, we either need a slow three dimensional
(spline) interpolation routine or a complicated two dimensional Cauchy interpolator.
Moreover, the calculation becomes more difficult due to the more complicated
momentum representation shown in Eq. (C.24).

In case of fundamental particles, the tree level term in the DSE represents an
inhomogeneity that stabilizes the iteration and plays a major role for its convergence.
The same is true for the inhomogeneous BSE in Eq.(3.4). Due to the absence of such
an inhomogeneity in the homogeneous BSE, the iteration does not converge and we
need another abort criterion for the eigenvalue like equation in Eq. (3.20). Since
the ground state of the considered bound state is identified by the largest eigenvalue
[199], we can extract the corresponding eigenvector by the so-called power iteration
method. In this method, we use the convergence of the eigenvalue as abort criterion.
We apply the kernel K̃(P ) iteratively onto the eigenvector (represented by the BSA
Γnx(P )) and start with an initial guess Γ0

x(P ). Consequently, the applied eigenvalue
equation is rather given by

K̃(P )Γnx(P ) = λn(P )Γn+1
x (P ) (C.27)

with n indicating the iteration step. For increasing orders of application, the
iterative eigenvalue trends towards the real eigenvalue

λn(P ) = Γn+1
x (P )
Γnx(P )

n→∞−−−→ λ(P ) (C.28)

and the eigenvector Γnx(P ) n→∞−−−→ Γx(P ) to the correct BSA. After every step we
normalize the BSA Γn+1

x (P ) by the the leading BSA component evaluated at a
certain momentum p. Since this momentum p is arbitrary and we choose it to be
p = 0. For simplicity we use the leading BSA component instead of the full BSA
for the definition of the eigenvalue and the normalization of the eigenvector.

155





D. Eigenständigkeitserklärung

 

 

 

Selbstständigkeitserklärung 

Hiermit versichere ich, die vorgelegte Thesis selbstständig und ohne unerlaubte fremde Hilfe 

und nur mit den Hilfen angefertigt zu haben, die ich in der Thesis angegeben habe. Alle 

Textstellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen sind, 

und alle Angaben die auf mündlichen Auskünften beruhen, sind als solche kenntlich 

gemacht. Bei den von mir durchgeführten und in der Thesis erwähnten Untersuchungen 

habe ich die Grundsätze guter wissenschaftlicher Praxis, wie sie in der ‚Satzung der Justus-

Liebig-Universität zur Sicherung guter wissenschaftlicher Praxis‘ niedergelegt sind, 

eingehalten. Gemäß § 25 Abs. 6 der Allgemeinen Bestimmungen für modularisierte 

Studiengänge dulde ich eine Überprüfung der Thesis mittels Anti-Plagiatssoftware. 
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