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Chapter 1

Introduction

1.1 Survey and motivation

Within the last century our picture of matter changed drastically and has undergone several
revolutionary steps in understanding. At the beginning of the 20th century one believed that
atoms, which are the fundamental building blocks for solid-state physics, chemistry and biology,
consisted of a homogeneous bulk of positively charged particles and therein embedded electrons
having a size of roughly 10−10m. This picture, proposed by Thomson in 1903, is also known
as the ‘raisin-cake’ model. Then the ground-breaking experiments performed by E. Rutherford
in 1911 led to the discovery of the atomic nucleus and made the physicists realize, that in fact
most of the volume of a piece of ordinary matter is almost as empty as the outer space, and
the atomic nucleus has only the size of several femtometers (10−15m). Based upon innovative
detection techniques, e.g. cloud chambers, the neutron was discovered by J. Chadwick in 1932,
and both the muon (1937 by C.D. Anderson) and the pion (1947 by C.F. Powell) were detected
within the cosmic radiation. Novel accelerator-driven experiments then led to the discovery of a
whole zoo of particles, which could be understood and categorized in terms of composite particles
built out of so-called quarks. Mesons, which are the lightest of such particles, are made up of a
quark and an anti-quark, whereas the heavier baryons – such as the proton and the neutron – are
composed of three quarks. These quarks could first be resolved in high energy electron scattering
of protons, where one could infer their multiplicity within the proton from the measured form
factors. Nowadays, one knows about three different elementary building blocks of matter. First
there are the quarks which are confined within the hadrons and can not be isolated. The leptons,
e.g. the electron and the neutrino, do not couple to the strong force, which binds the quarks,
and interact only electromagnetically or via the weak force. The interactions themselves are
mediated by gauge bosons: the strong one by the gluons, the weak one by the exchange of
W± and Z0 bosons and the electromagnetic interaction by the photon. The standard model of
particles explains all performed measurements and ”stands triumphant” according to the Nobel
prize winner F. Wilczek [Wil07]. However, there are several yet unresolved puzzles. Besides the
major problem that astro-physical observations lead to the conclusion that only roughly 4% of
all the energy density of the universe is given by baryonic matter and the rest by an unknown
form of matter and energy, called dark energy (≈ 76%) and dark matter (≈ 20%) [Yao06], there
are also major unknowns within the baryonic sector itself.

The standard model part dealing with the strong interaction of quarks, which are the building
blocks of baryons, is the theory of Quantum-Chromo-Dynamics (QCD). While the interaction is
weak for high momentum transfer, it is very strong for low momentum transfer such that stan-
dard perturbation theory does not succeed. Within the last decades, the speed-up of computer
hardware opened a window to the strong coupling regime via the so-called lattice QCD (LQCD),
which evaluates expectation values of QCD-operators on a space-time lattice. Another approach
to the strong coupling regime is the so-called chiral perturbation theory (χPT), which may be

1



Chapter 1 Introduction

Figure 1.1: An artistic view of the QCD phase-diagram taken from [CBM08].

applied to low-momentum processes. For instance, the origin of hadron masses and the origin
of the nucleon-nucleon force is presently addressed within both schemes1.

Another line of research program is addressing the QCD phase diagram being sketched in
fig. 1.1. At large temperature one expects a phase transition from the hadronic phase, in which
quarks are confined in hadrons, to a deconfined phase where the quarks and gluons are liber-
ated within a so-called Quark-Gluon-Plasma (QGP). To investigate this phase transition one
collides heavy-ions, e.g. at RHIC [RHI08] or the upcoming LHC [LHC08] and FAIR [FAI08]
facilities, to produce a dense and hot system of hadronic matter, which is expected to become
so hot and dense that it enters the QGP phase. However, the complicated time dependence
of the single-particle phase-space densities during these collisions complicates the disentangle-
ment of different phenomena, such that the discovery of a QGP is still under debate. Besides
the confinement-deconfinement phase transition one also expects a restoration of the so-called
chiral symmetry within a hot and dense medium. In vacuum, this symmetry is both explicitly
broken by the finite quark masses and spontaneously broken due to a non-vanishing expecta-
tion value of the 〈q̄q〉 condensate. This 〈q̄q〉 expectation value represents an order parameter
for the spontaneous symmetry breaking and is expected to decrease by about 30% already at
normal nuclear matter density [Dru90, Coh92, Bro96]. Thus signals for partial chiral symme-
try restoration should be observable in nuclear reaction experiments and, in particular, photon
induced processes are highly suited due to two key reasons. First, the reaction leaves the nu-
cleus close to its ground state, so that it takes place under well-defined conditions. And as a
second point, the photon penetrates deeply into the nucleus, giving rise to a high effective den-
sity. Especially the modification of the so-called σ or f0(600) meson inside the nuclear medium
was proposed as a signal for such a partial symmetry restoration. Theoretical models predict
a shift of its spectral strength to lower masses and a more narrow width due to the onset of
the restoration [Ber87, Hat99]. The σ-meson is a very short-lived state with a width of roughly
600 − 1000 MeV [Yao06], decaying predominantly into a ππ final state in S-wave. Hence the
experimental aim has been to find modifications of this state in ππ production reactions in
finite nuclear systems close to threshold. Such experiments have been performed with incident
pions by the CHAOS collaboration [Bon96, Bon00] and with photons by the TAPS collabora-
tion [Mes02, Blo07]. Both experiments have shown an accumulation of strength near the ππ

1More details can be found in the recent review by W. Weise [Wei08b].
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1.1 Survey and motivation

threshold in the decay channel of the σ in large nuclei. A possible interpretation of this effect
is the in-medium modification of this resonance due to partial symmetry restoration, but also
conventional final state interactions (FSI) must be treated properly. In general, final state effects
play a major role in nuclear reactions. Particles being produced in nuclei, e.g. in γA → πA′

reactions, must transverse the nuclear medium on their way to the detector. Given the sizable
interaction rates with the medium, the distortion of the particle tracks and also the absorption
and charge exchange reactions lead to important modifications of the finally measured particle
yields.

Within the exact QCD approximations of LQCD or χPT it is at present not feasible to address
complex many-body reactions such as ππ production off nuclei or heavy-ion collisions, which
leaves room for model building. In general, one must distinguish between processes which have
a simple time-evolution of the involved phase-space densities, as for example a γA-reaction at
low energies where the nucleus stays close to its ground state, from processes where the phase-
space densities evolve rapidly in time as for the case of heavy ion-collisions. The first class of
reactions can still be approximated within fully-quantum frameworks such as, e.g., distorted-
wave (DWIA) or plain-wave impulse-approximations (PWIA) although these models generally
lack coupled-channels features. In particular the commonly used DWIA and PWIA methods do
usually not incorporate side-feeding from one channel to the other channel due to the complex
implementation.

As an example for the second class of reactions, fig. 1.2 shows a typical time development
for an almost central, high-energetic (40 A GeV) Calcium-Calcium collision. Besides the pro-
duction of numerous new particles, one also notes that the initial nuclei undergo an almost
complete break-up during the reaction. For such reactions involving rapidly changing phase-
space densities far from equilibrium, the most general description in terms of quantum field
theory is given by the so-called Kadanoff-Baym equation [Kad94], which simplifies under spe-
cial assumptions (in particular small, slowly varying disturbances and Born approximation for
the self energies) to the so-called Boltzmann-Uehling-Uhlenbeck (BUU) equation [Kad94, cf. es-
pecially section 9.2 therein]. The BUU equation is of semi-classical nature and describes the
time-development of the so-called Wigner transform [Wig32], which represents a generalized
phase-space density. Thus simulating the BUU equation one obtains a full space-time picture
of the whole reaction process, and in particular one gets the phase-space densities of all in-
volved particles as a function of time. Such BUU models were introduced for the simulations
of heavy-ion collisions [Ber84, Ber88] starting in the beginning of the 1980’s. In parallel also
quantum-molecular-dynamics (QMD) models have been established, which propagate the par-
ticles in the simulations based on two-body and three-body forces instead of introducing mean
fields like the BUU models. Nowadays, several groups are still actively developing new or improv-
ing well-known highly-complex transport models, some of the more prominent ones are e.g. the
Dubna/Moscow INC [Ili97], HSD [Cas99, HSD08], LAQGSM [Mas05], MCMC/MCEF [Dep02],
RELDIS [Psh05], RQMD [Fuc96, Gai05] and URQMD [Bas98, URQ08] models. The models
differ in the included reaction mechanisms, in the multiplicity of particle species and, last but
not least, in the numerical realization.

In 1986, the Giessen theory group started with the development of a first BUU-type model.
Based on a rewrite of the original Bertsch code [Ber88], the rate for photon production in heavy-
ion collisions was predicted [Bau86, Bau89]. While the code was originally designed for heavy-ion
collisions [Cas90, Tei96, Hom98, Lar05], it was within the last decade also extended to become a
state-of-the-art model for electron- and photon-induced reactions [Eff99a, Leh03, Fal04a, Gal05,
Mü07]. For such rather elementary reactions, transport models compete with fully-quantum
DWIA and PWIA calculations. However, transport models comprise the important full-coupled

3



Chapter 1 Introduction

Figure 1.2: Time development of a Calcium-Calcium collision in a simplified simulation where
each physical particle is represented by one sphere. The kinetic energy of the projectile is
40 A GeV. All pictures are taken in the CM-frame of the collision and the first time slice
shows both Lorentz-contracted nuclei before the collision, the next time slices are given after
5 fm/c, 10 fm/c, 15 fm/c, 20 fm/c and 25 fm/c. Protons are depicted in blue, neutrons in red,
non-exotic baryon resonances in yellow, exotic baryon resonances in white with blue/violet
stripes, pions in green, exotic mesons in white with red stripes.
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channel FSI-treatment which is not feasible in the other frameworks. Extending the BUU model
to such reactions resulted in an universal field of application and the additional fact that the
model has both been used for the description of very high-energy, e.g. [Lar05, Fal04c, Gal05], and
low-energy processes, e.g. [Eng94, Mü04a], made it an outstanding model. Unfortunately, the
fast development speed of the model was not accompanied by a change of the code infrastructure.
So in 2004 several parallel branches of the source code co-existed and the source code structure
had become highly involved hindering further developments. As a consequence, the GiBUU
project was launched with the main intention to restructure and rewrite the original source code
based on a modern multi-user software development environment, which guarantees an unified
main branch, version control, proper documentation and multi-compiler compatibility.

The intention of this work comprises two major aspects. First it introduces to the new GiBUU
model framework, emphasizing the physical inputs, the numerical realization and the new code
management structure. Compared to the predecessor model version, major improvements have
been realized. We enhanced the underlying resonance model by obtaining the real parts of
the self-energies via a once-subtracted dispersion relation out of the imaginary parts, which
leads to analytical self energies and restores the normalization of the spectral functions. The
imaginary parts are now consistently obtained from the underlying collision rates as a function
of four-momentum and density. The refined resonance model together with readjusted non-
resonant background cross sections lead also to better elementary cross sections, which are
needed as input for the BUU equations. Also the connection of the region of high-energies,
which is described in the model based on Pythia [pyt07], to the low-energy region, where the
cross sections are based on the resonance model, has been enhanced by implementing event-
mixing of both the string and the resonance model in a cross-over energy regime. Concerning
algorithm development, we implemented for the first time the local-ensemble-algorithm [Lan93]
such that this work presents mostly results obtained in a full-ensemble test-particle scheme.
All results obtained with the predecessor model relied on the parallel-ensemble approximation,
which introduces large non-localities in the scattering processes. Both the dependence on the
time-step and the dependence on the position grid, which stores the densities for the mean fields,
have been reconsidered and improved. Thanks to the new code management, it is now possible
that at present eight physicists (five Post-Doc’s, two Phd- and one Diploma-student2) work in
parallel on the project boosting its development speed and its reliability. After improving the
code structure and supplemented with a proper documentation, we also published the model
source code under the GPL license on our website [GiB08b].

The second major aspect of this thesis is the analysis of photon, electron and pion induced
nuclear reactions in the resonance-energy region. Based on the work presented in [Mü06a], an
improved analysis of the ππ experiment by the TAPS collaboration [Mes02, Blo07] is performed.
Simulating this reaction involves the treatment of low-energy pions with kinetic energies down
to 20 MeV. Therefore, one first needs to validate the treatment of such pions having a long
wavelength in a semi-classical transport picture. This key question is addressed by a compari-
son to quantum calculations and experimental data on pion-nucleus scattering, and the model
treatment of the ππ final state is thereby evaluated. In the course of these studies major approx-
imations on the numerical realization and their impact on observables are investigated. We find
a very good description of available data on pion absorption, pion single-charge exchange and
double-charge exchange (DCX) in the kinetic energy regime of 30−200 MeV. Thereby our work
extends and improves the work of Engel et al. [Eng94] for lower pion energies. The DCX process
is found to have high sensitivity on model details and represents a strong model benchmark.

2cf. our website [GiB08b] for a complete list of project members
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We achieved considerable improvements compared to earlier microscopic works [Hüf79, Vic89].
The physics of DCX shows also surprises: according to our model it is a interesting cancellation
of Coulomb effects and neutron skins, which allows for a scaling of the cross section according
to naive expectations [Gra89]. A comparison of full and parallel ensemble runs shows visible
differences in the physical results, such that we conclude that the parallel ensemble approxima-
tion should be avoided in future works. For the photon-induced ππ-production we investigate
closely the present situation on the elementary data, before analyzing the nuclear data. We
show that the process is highly influenced by final-state processes which lead to rescattering,
absorption and charge exchange of the pions. It is concluded that, given the present data and
theory uncertainties, the influence of final-state processes and the influence of chiral symmetry
restoration can not be disentangled. We also present a new treatment of electron and photon
scattering off nuclei. The initial γ⋆N vertex is treated with full in-medium kinematics and we in-
vestigate the impact of in-medium potentials and in-medium spectral functions on inclusive and
single-π-production experiments. The importance of a momentum-dependent nucleon potential
is emphasized and we obtain good results for inclusive electron scattering off nuclei. Adressing
neutral pion production in the energy regime of 0.25− 0.8 GeV, we achieve a proper description
for the quasi-free production mechanism. Beyond its general interest, these studies serve as a
benchmark for ν-induced processes, which are performed using the very same model basis by
Leitner et al. [Lei06b, Lei06a]. Last but not least, the description of elementary reactions serves
as a testing-ground of model details important also for the complex heavy-ion reactions.

1.2 Overview and chapter abstracts

This work is structured into two major parts. Part I, which comprises chapters 2-5, deals
with the Giessen Boltzmann-Uehling-Uhlenbeck transport model and details the treatment of
electron- and photon-induced processes within the model. Thereafter, we present results on
pion–, electron– and photon–induced reactions. The following list of abstracts gives a short
summary for each of the sections and emphasizes its scope. Technical details have partially
been shifted to the appendix to facilitate the readability - especially the details on the source
code structure and management can be found there.

Chapter 2: Transport theory The theoretical basis for the non-equilibrium processes is summa-
rized and the concept of the BUU approximation is introduced. This chapter emphasizes
the numerical solution of the BUU equation and is especially intended to give a compre-
hensive overview on the derivation of the algorithms. In particular, it is intended for those
readers, which later also want to work on the source code and which are interested in the
foundation of the algorithms therein. Different methods for the implementation of the
collisions among particles are presented and their pros and cons are discussed.

Chapter 3: GiBUU model This chapter introduces the reader to details specific to the GiBUU
model. After a short historical detour, the implemented particle species and their couplings
are discussed. The resulting imaginary parts of the self-energies and the derivation of the
real parts via dispersion relations are detailed. In the end, we present benchmarks for
off-shell propagation of resonances.

Chapter 4: Interaction of electrons and photons with nucleons Based on the MAID model
for photon-nucleon interactions, we introduce pion and resonance production in electron-
and photon-nucleon scattering. The elastic scattering of virtual photons and nucleons is
treated using the latest form factor parametrizations based on recent Jefferson-Lab data.
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Chapter 5: Interaction of electrons and photons with nuclei This chapter generalizes the ele-
mentary cross sections presented in chapter 4 to the case that the target nucleon is em-
bedded in a nuclear medium. Therefore, the kinematics are revisited and the modeling
of in-medium form factors is addressed. Finally, the nuclear cross sections and the imple-
mentation in the GiBUU framework are specified.

Chapter 6: Pion induced reactions Results on pion scattering off nuclei are presented. After
discussing the pion mean free path within our model and comparing simulations for pion
absorption to data, we primarily address the double-charge exchange process, which serves
as a strict model benchmark. In the course of this chapter we investigate numerical
approximations to the collision term and evaluate their impact on the observables. Thereby
it is shown that the full ensemble method is superior to the parallel ensemble method. We
achieve good agreement with the available data in the regime of 30 − 200 MeV kinetic
energy.

Chapter 7: Electron and photon induced reactions Inclusive electron and photon scattering
off nuclei is addressed and a good description of existing data is obtained. The role of a
momentum-dependent mean field is emphasized and the impact of different model ingre-
dients is investigated. Finally, we present simulations for photon-induced pion production.

Chapter 8: Double pion photo-production This chapter is devoted to photon-induced ππ pro-
duction off nucleons and nuclei. After a survey on the available data for the elementary
reaction, we analyze the implications of nuclear corrections on the extraction of the neutron
data from the deuteron data. It is concluded that only a minor impact of such corrections
has to be expected. Finally, we address ππ production off complex nuclei and outline the
dominant role of final-state interactions on the resulting spectra.

Appendices Appendix A and B comprise explicit details, parameters and cross section para-
metrizations used in the GiBUU model. Appendix C focuses on technical details related to
the source code infrastructure, e.g. directory structure, version control, license issues and
the documentation style. Appendix D gives explicit cross sections for quasi-elastic electron-
nucleon scattering, Appendix E details the derivation of the resonance form-factors out of
the helicity amplitudes. In Appendix F the connection of hadron tensor and virtual photon
cross sections for pion production is summarized. Appendix G contains useful formulas
concerning the kinematics of electron-nucleon scattering.

1.3 Units and conventions

Throughout this thesis, a unit system in which ~ = c = 1 is used. Time and length, energy
and momentum, respectively, share the same units. The energy/momentum unit is given by the
inverse of the length/time unit,

[time] = [length] = [energy]−1 = [momentum]−1 .

For our applications, it is customary to choose electron charge times Volt (eV) as a measure of
energy, especially MeV = 106 eV and GeV = 109 eV. For conversion to the SI system, the
following relations are most useful [Yao06]:

0.1973269631(49) GeV fm = 197.3269631(49) MeV fm ≈ ~c = 1 ,

299.792458 × 1021 fm/s = c = 1
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with 1 fm = 10−15 m. Cross sections are conventionally measured in units of barns where

1 barn = 1 b = 10−28 m2 = 100 fm2 ⇒ 1 fm2 = 10 mb .

The definitions of the γ-matrices and the Dirac spinors are chosen according to Bjorken and
Drell [Bjo93], i.e. the normalization condition for a Dirac-spinor u is given by

ū(p, s)u(p, s) = 1 . (1.1)

Three-vectors are in general denoted with a vector sign, e.g. ~r, while four-vectors are given by
r = (r0, ~r).

1.4 Constants

The following constants are frequently used throughout this work:

Value

nuclear matter density ρ0 = 0.168 fm−3

charge averaged nucleon mass mN = 0.938 GeV
electron charge e = 1.602176487(40) × 10−19 C [Yao06]
electron mass me = 0.510998910(13) MeV [Yao06]
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Chapter 2

Transport theory

Overview: This chapter introduces the concept of non-equilibrium transport
comprising details on the Boltzmann-Uehling-Uhlenbeck (BUU) equation and its
numerical realization in terms of test-particles.

2.1 Introduction

In the most general context, the theory of transport describes non-equilibrium processes. There
are various applications for such a theory which vary both in time and length scales, e.g. bursts
of super-novas, traffic jams on highways or nucleus-nucleus collisions. Such transport processes
are classified according to the mean free paths of the participating scattering centers and the
extension of their wave packages relative to the inter-particle spacings. The flow of classical
particles, which have a negligible wave-length, can be successfully described applying either the
Boltzmann equation in case of a finite mean free path (e.g. gas particles within a neon bulb) or
the Navier-Stokes equations1 for negligible mean free path (e.g. within classical fluids). At short
length scales, one must, additionally, consider quantum mechanical effects. In the language
of quantum field theory (QFT), the most general description is given by the Kadanoff-Baym
equation which simplifies under special assumptions (in particular small, slowly varying dis-
turbances and Born approximation for the self energies) to the Boltzmann-Uehling-Uhlenbeck
(BUU) equation [Kad94, cf. especially section 9.2 therein]. In this work we want to describe
nuclear reactions based on BUU and want to simulate within this framework the flow of hadronic
phase-space densities, i.e. the transport of hadrons, through space and time. For such a treat-
ment, which has a quite some tradition since already in the 1980’s one started solving the
BUU equation for hadronic flows [Ber84, Bau86, Ber88], there exist within the hadron physics
community two widely used numerical schemes: the parallel ensemble method employed in the
BUU models [Aic85, Bau86, Ber88, Cas90] and in the Vlasov-Uehling-Uhlenbeck model [Mol85];
and the full ensemble method used in the Landau-Vlasov [Gre87], Boltzmann-Nordheim-Vlasov
[Bon89, Bon94] and Relativistic BUU [Fuc96, Gai05] models. Both schemes are based on the
so-called test-particle representation of the single-particle phase space density, but they differ in
the locality of the scattering processes (cf. discussion in [Wel89, Lan93]).

The major topic of this chapter is the BUU equation. Since there exists already a wealth of
literature concerning BUU (e.g. [Ueh33, Ber84, Ber88, Kad94, Eff99a, Leu00, Juc03]), we will
only emphasize the most relevant issues. Hereby we will mainly focus on the test-particle ansatz
as a method to numerically solve the BUU equation and the primary intention is to clarify the
links between the real BUU equation and the test-particle algorithms. We address mean field
propagation, simulation of decay processes, two- and three-body reactions using this ansatz.

1cf. discussion of Uhlenbeck in [Coh73] and references therein for the connection of the Boltzmann and Navier-
Stokes equation via the Chapman-Enskog expansion
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In the discussion of the two-body reactions, both the full ensemble and the parallel ensemble
schemes are introduced and their limiting behaviors are investigated.

2.2 BUU equation

A detailed derivation of the BUU equation based on non-equilibrium QFT is given, e.g., in
the didactic book by Kadanoff and Baym [Kad94]. Concerning the subtle issue of transporting
resonances, i.e. unstable particles, one finds in [Eff99a, Leu00, Juc03] the derivation of the gen-
eralized BUU equation which also holds for particles with non-vanishing widths. Lehr [Leh03]
confronts the rigorous results of Leupold [Leu00] with the so-called off-shell potential (OSP)
ansatz introduced by Effenberger et al. [Eff99b, Eff99a]. It is shown that the OSP ansatz is
within low-density approximation (Γ ∼ ρ) in good agreement with the full solution according
to [Leu00]. Furthermore, Lehr performed an explicit comparison of particle trajectories, evalu-
ated within OSP and using the relativistic BUU version derived by Juchem et al. [Cas00, Juc03],
which show for our practical purposes only negligible differences. As a pragmatic approach, we
start out directly with the formulation of BUU according to the OSP ansatz. Hence the term
’BUU equation’ will in the following always refer to the generalized off-shell version as presented
by Effenberger [Eff99b, Eff99a]. The BUU equation comprises a series of coupled differential
equations, which describe the time evolution of the Wigner transforms [Wig32] of the real time
Green’s functions
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which depend on the 8-dimensional phase space point (r, p). In the definitions above, Ψi denotes
the field operator of the ith particle species. Here and in the following the upper sign corresponds
to bosons, the lower sign to fermions. The factors in front of the integrals are chosen such that
ḡ>
i (r, p) and ḡ>

i (r, p) are real non-negative quantities. The quantity ḡ<
i has the interpretation of

a generalized particle phase-space density, whereas ḡ>
i represents a generalized density of holes

in phase-space. The time evolution of these quantities is governed by the BUU equation

[
p0 −Hi, ḡ

<
i

]

P
+
[
Re(gi),Σ

<
i

]

P
︸ ︷︷ ︸

=Aoff-shell

= −Σ>ḡ<
i + Σ<

i ḡ
>
i

︸ ︷︷ ︸

=Icoll

, (2.3)

where we have used the Poisson brackets

[a, b]P =
∂a

∂pµ

∂b

∂xµ
− ∂a

∂xµ

∂b

∂pµ
. (2.4)

The Σ≶ stand for loss and gain terms of the phase space densities andHi represents the Hamilton
function of the ith particle species. The variable gi in eq. 2.3 denotes the retarded Green’s
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function. Its imaginary part is given by

Im(gi) =
1

2

(
ḡ>
i ∓ ḡ<

i

)
. (2.5)

Since gi is analytic, its real part can be reconstructed out of the imaginary part by dispersion
relations. However, Re(gi) has not to be evaluated since the second term on the LHS of eq. 2.3,
which we denote Aoff-shell, is neglected within the OSP ansatz. Its effects are simulated by an
extra-term in the equations of motion for the test-particles, which will be detailed in section 2.4
(for further details see also [Leh03]). For later usage, we also want to define the Vlasov equation,
which is a limiting case of the BUU equation in which Σ>

i = Σ<
i = 0:

[
p0 −Hi, ḡ

<
i

]

P
= 0 . (2.6)

The single-particle Hamilton function for the ith particle species is chosen in relativistic form
and given by

Hi =

√

(mi + Ui(r, p))2 + (~p− ~Ai(r, p))2 +A0
i , (2.7)

where mi denotes the pole mass of the i-th particle species. It must be emphasized that the
Hamilton function of the particle species and the phase space variable p0 are distinct entities,
in particular it is important to note that the Hamilton function may also explicitly depend on
p0. The function Ui(r, p) denotes a scalar and Aµ

i (r, p) a vector Hartree-Fock-like mean-field
potential, which are in the general both functions of r and p, i.e. position, time, momentum
and energy. These mean fields may in principle depend upon the phase-space densities of all
other particle species, such that the differential equations 2.3 are already coupled through the
mean fields. Besides the Hamilton function, a further coupling of the particle species comes in
through the so-called collision term

Icoll(r, p) = −Σ>
i (r, p)ḡ<

i (r, p) + Σ<
i (r, p)ḡ>

i (r, p) , (2.8)

which includes all kind of scattering processes. For this we consider resonance decays, two-body
and three-body interactions (e.g. NNπ → NN), but higher correlations with more than three
involved particles (e.g. NNNπ → NNN) are neglected. While the first term in Icoll represents
a loss of particles at the generalized phase space point (~r, p) at time t, the second term is a gain
term due to strength being scattered into this generalized phase space element. As we will see
in the upcoming sections, the evaluation of this collision term is the most demanding task in
the numerical realization of the model.

2.2.1 Initial conditions

The BUU differential equation is a first order differential equation in time, so we need as initial
conditions the distribution functions ḡ<

i (~r, t = 0, p) and ḡ>
i (~r, t = 0, p) for all species i at time

t=0. In our approach, we rewrite the whole problem with the help of the spectral function

Ai(r, p) = ḡ>
i (r, p) ∓ ḡ<

i (r, p) . (2.9)

We assume that there is a function f(~r, t, ~p) which can be considered as a phase space distribution
function and fulfills

ḡ<
i (r, p) = fi(~r, t, ~p)Ai(r, p) (2.10)

ḡ>
i (r, p) = (1 ± fi(~r, t, ~p))Ai(r, p) . (2.11)

Within this assumption, the problem is fully solvable if the initial conditions fi(~r, t = 0, ~p) and
Ai(~r, t = 0, p) are known.
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The spectral function In [Leu00, Leu05] it has been shown that for the BUU equation the
spectral function of a particle with four-momentum p is given by2

Ai(p, r) =
1

π

−ImΠi(p)

(p2 −m2
i − ReΠi(p))2 + (ImΠi(p))2

, (2.12)

with the self energy Πi(E, ~p). The imaginary part of the self-energy is induced by the collision
term

Im [Πi] = −
√
pµpµ

(
Σ>

i − Σ<
i

)
, (2.13)

and the real part Re
[
Σcoll

i

]
can be derived via dispersion relations. Using a subtraction constant,

also mean field contributions can be incorporated – this topic will be addressed in detail in
sec. 3.7. The spectral function is normalized by the following integral relation

∫ ∞

0
dp0

{
2p0A(p0, ~p)

}
= 1 . (2.14)

2.3 Test-particle ansatz

For simplicity and the virtue of a shorter notation, we consider in the following only one particle
species. Therefore, the corresponding index i denoting the species is suppressed. The gener-
alization to a finite number of particle species is however straightforward. The BUU equation
can be solved numerically using the so-called test-particle ansatz. The phase-space density is
expressed in terms of δ-functions

ḡ<(~r, t, p) = lim
n(t)→∞

(2π)4

N

n(t)
∑

j=1

wj δ(~r − ~rj(t))δ(~p − ~pj(t))δ(p
0 − p0

j(t)) , (2.15)

with the weights wj (while wj may in general have arbitrary values we will later restrict it to the
integer values {−1, 0, 1}). The function n(t) denotes the number of test-particles at time t. This
number varies in time due to collisions which lead to loss or gain in the phase space densities
which is reflected by fluctuating number of test-particles. At starting time one sets wj = 1 ∀ i
and n(0) = A × N where A denotes the number of physical particles and N is the number of
ensembles, i.e. the number of test-particles per physical particle. Thus the single-particle phase-
space distribution is interpreted as a sum of all test-particle densities. Note, that we allow for
a fluctuating number of test particles per time and changing positions and momenta of these
test-particles. However, we restrict our distribution function to a sum of δ function products.

2.3.1 Solving the BUU equation via test-particles

To solve the BUU equation we first isolate the time dependence in eq. 2.3 with Aoff-shell = 0
according to the OSP ansatz

− Σ>ḡ< + Σ<ḡ> =
[
p0 −H, ḡ<

]

P

=
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∂pµ

∂ḡ<
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− ∂(p0 −H)

∂xµ

∂ḡ<

∂pµ

=

(
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∂p0

)
∂ḡ<

∂t
+
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∂~p
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∂~x
− ∂H

∂~x

∂ḡ<

∂~p
+
∂H

∂t

∂ḡ<
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. (2.16)

2We prefer to have the factor π in the definition to simplify the normalization condition.
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We get

∂ḡ<
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Let us now assume that n(t) > n(t′) for t > t′ 3. We discretize the problem introducing a finite
time step size ∆t
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j (t+ ∆t))

+
(2π)4

N

n(t)
∑

j=1

1

∆t

[
wj δ(~r − ~rj(t+ ∆t))δ(~p − ~pj(t+ ∆t))δ(p0 − p0

j(t+ ∆t))

−wj δ(~r − ~rj(t))δ(~p − ~pj(t))δ(p
0 − p0

j(t))
]

(2.19)

=
1

∆t

(2π)4

N

n(t+∆t)
∑

j=n(t)+1

wj δ(~r − ~rj(t))δ(~p − ~pj(t))δ(p
0 − p0

j(t))

+
(2π)4

N

n(t)
∑

j=1

∂

∂t

[
wj δ(~r − ~rj(t))δ(~p − ~pj(t))δ(p

0 − p0
j(t))

]
. (2.20)

If the test-particles 1 . . . n(t) obey the equations of motion

∂~rj
∂t

=
1

1 − ∂H
∂p0

∂H

∂~p
, (2.21)

∂ ~pj

∂t
= − 1

1 − ∂H
∂p0

∂H

∂~r
, (2.22)

∂p0
j

∂t
=

1

1 − ∂H
∂p0

∂H

∂t
, (2.23)

then we obtain

(2π)4

N

n(t)
∑

j=1

∂

∂t

[
wj δ(~r − ~rj(t))δ(~p − ~pj(t))δ(p

0 − p0(t))
]

=
1

1 − ∂H
∂p0

(

−∂H
∂~p

∂ḡ<(t, ~r, ~p)

∂~x
+
∂H

∂~x

∂ḡ<(t, ~r, ~p)

∂~p
− ∂H

∂t

∂ḡ<

∂p0

)

. (2.24)

It has to be emphasized that the position, time and energy dependence of the Hamiltonian

3This is no limitation to the general case since one might also introduce new test-particles with a negative weight
(wj = −1) to cancel old test-particles. In this way the effective number of test-particles may still stay constant
or even decrease.
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introduced in eq. 2.7 is fully given by the potentials U(r, p) and A(r, p). Using the latter identity
2.24 and eq. 2.20 within eq. 2.17, we get an expression for the newly produced test-particles

1

∆t

(2π)4

N

n(t+∆t)
∑

j=n(t)+1

wj δ(~r − ~rj(t+ ∆t))δ(~p − ~pj(t+ ∆t))δ(p0 − p0
j (t+ ∆t))

= −Σ>ḡ<(~r, t, ~p) + Σ<ḡ>(~r, t, ~p) . (2.25)

Henceforth the collision term is considered as a source and sink term for new test-particles.
In other words, the loss term generates test-particles with negative weight and the gain term
generates test-particles with positive weight. We introduce the abbreviation

ḡ>,∆t(~r, t, ~p) = ḡ>(~r, t, ~p)
∣
∣
test-particles propagated for∆t according to 2.21-2.23

=
(2π)4

N

n(t)
∑

j=1

wj δ(~r − ~rj(t+ ∆t))δ(~p − ~pj(t+ ∆t))δ(p0 − p0
j(t+ ∆t)) (2.26)

Let us summarize the above considerations: if we know the distribution function at time t, then
we can construct the distribution function at a later time t+ ∆t via

ḡ>(t+ ∆t, ~r, ~p)

= ḡ>,∆t(t, ~r, ~p) + ∆t
(
−Σ>ḡ<(t, ~r, ~p) + Σ<ḡ>(t, ~r, ~p)

)
+ O((∆t)2)

= ḡ>,∆t(t, ~r, ~p) + ∆t
(
−Σ>ḡ<,∆t(t, ~r, ~p) + Σ<ḡ>,∆t(t, ~r, ~p)

)
+ O((∆t)2) . (2.27)

The last two lines differ only by terms proportional O((∆t)2), which we neglect anyhow. The
equation 2.27 basically defines the algorithm to be used: propagate the test-particles according
to the equations of motions and introduce new test-particles or delete old test-particles (via new
test-particles with negative weight) according to the collision term.

2.4 Simulating the off-shell term

Fig. 2.1 visualizes our understanding of a so-called broad particle: a broad particle has a finite
lifetime caused either by collisions or decay of the particle; the non-vanishing probability for such
collisions or decays leads to a non-vanishing imaginary part of the self-energy Π. Consequently
the spectral function A(r, p) introduced in eq. 2.12 (depicted by the dashed line in fig. 2.1) has
not only strength at the pole of the denominator of eq. 2.12

p2 = m2
pole = m2 + ReΠ(p) , (2.28)

but also at other values of p2 (m is the vacuum pole mass of the particle species). This strength,
which is not situated at the pole-mass, is called off-shell strength, or off-shellness, of the particle.
Contrary to the broad particle, a stable particle has infinite lifetime and the imaginary part of
its self-energy vanishes. Its spectral function is, consequently, a δ-function diverging at the
pole-mass as shown by the solid line in fig. 2.1.

The relation

fi(~r, t, ~p)Ai(r, p) = ḡ<
i (r, p) = limn(t)→∞

(2π)4

N

∑n(t)
j=1wj δ(~r − ~rj(t))δ(~p − ~pj(t))δ(p

0 − p0
j (t))

connects a spread of the spectral function A as a function of (pµpµ)1/2 to the fact that the
test-particles must also have different ((pj)

µ(pj)µ)1/2 = ((p0
j )

2 − (~pj)
2)1/2. The broadness of a
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Figure 2.1: Spectral function of a broad and stable particle with same pole mass mpole = m2 +
ReΠ(p), where m is the vacuum pole mass, as a function of

√
pµpµ at fixed momentum ~p = 0.

spectral function, i.e. the value of ImΠ, varies when, e.g., a particle travels from high to low
density since at low densities the collision rate is different and, therefore, the imaginary part of
the self-energy is modified. This change in the spectral function must be accommodated by a
change of the test-particle ((pj)µ(pj)

µ)1/2 in time. However, in eqs. 2.21-2.23 the test-particle
motion is so far only influenced by the mean fields U and A but not by a change of ImΠ. To
include this effect, we introduce the off-shell potential ansatz. It is used throughout this work
and was developed by Mosel and Effenberger [Eff99a]. In their formalism the Hamiltonian is
first reformulated (cf. eq 2.7) in terms of a scalar potential V which may depend on position
and momentum

H =

√

(m+ U)2 + (~p− ~A)2 +A0 ≡
√

(m+ V )2 + ~p2 . (2.29)

Let us consider the jth test-particle for which a so-called off-shellness ∆µj is defined which
fulfills

√

p2
j = V +m

︸ ︷︷ ︸

In medium pole mass

+∆µj . (2.30)

Note that the scalar potential at the pole mass can also be connected to the self energy via
eq. 2.28

(V +m)2 = m2 + ReΠ . (2.31)

Since
√

p2
j is the full mass of the test-particle, the off-shellness is basically the difference between

the in-medium pole mass of the particle species and the test-particle mass. According to this
definition, the energy of the test-particle is given by 4

p0
j =

√

(V +m+ ∆µj)
2 + ~p 2 . (2.32)

In the full Kadanoff-Baym approach, the term Aoff-shell, which was introduced in eq. 2.3,
has a profound impact on the time development of the off-shellness. Since we neglected this

4Note that p0
j = H only if (pj)

µ(pj)µ = m2
pole, but in general p0

j 6= H .
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term, we must regulate the off-shellness by hand. In particular, we want the mass of an in-
vacuum stable particle to be driven back to its vacuum value as soon as the particle leaves the
nucleus. Such a behavior could be achieved, if the off-shellness depended linearly on the width
Γtot = −ImΠ/(2p0) of the represented particle

∆µj(~r, p) =
∆µj(~rj(t0), pj(t0))

Γtot(~rj(t0), pj(t0))
Γtot (~r, p) , (2.33)

where ~rj(t0) and pj(t0) denote the position and 4-momentum of the test-particle at its production
time. The Γtot’s are evaluated in the calculation frame, which corresponds to the center-of-mass
frame for heavy-ion reaction simulations and to the lab frame for all other reaction types5.

For broad states there are two different possible scenarios. Either the width is larger in
the medium (especially due to collisional broadening), in which case the off-shellness should get
reduced while the particle travels to the vacuum. The other possibility is that the Pauli blocking
of the free width dominates in the medium such that the width is eventually decreased. In the
latter case, the off-shellness should be enhanced, when the particle propagates out of the nuclear
medium. To include all this in the test-particle propagation, one defines for each test-particle
a separate Hamilton function. One replaces the particle mass by m + ∆µj, such that the off-
shellness can be interpreted as a momentum and position dependent scalar potential as defined
in eq. 2.33,

H =

√

(m+ V )2 + ~p2 → Hj =

√

(m+ ∆µj + V )2 + ~p2 . (2.37)

Since Hj(to) = p0
j (t0) and ∂tH = 0, we have Hj(t) = p0

j(t) ∀t.
In principle, the particle is driven back to its mass shell due to interactions with all other test-

particles. Therefore, the off-shell potential must also induce a potential on all other particles
(actio=reactio). Such a back-coupling term due to the off-shellness has been implemented in
earlier works [Leh03, Eff99a], which then also restores the overall momentum conservation. Since
in our applications the ground state will be on-shell and only a few final-state particles will be
propagated off-shell, we neglect this momentum-non-conservation problem and the somewhat
involved implementation of the back-coupling term6.

5To understand why we take the width in the calculation frame,let us analyze the transformation properties
of ∆µj . The term ∆µj(~r, p) must be a Lorentz-scalar since

√
pµpµ is a scalar and also m + V are scalars.

Henceforth

∆µj(~rj(t0), pj(t0))

Γtot(~rj(t0), pj(t0))
Γtot (~r, p) (2.34)

must be a scalar. Since ∆µj must be a scalar for all times, the fraction

Γtot(~rj(t0), pj(t0))

Γtot (~r, p)
(2.35)

must be a scalar as well. This is fulfilled if both Γ’s are being defined within the very same inertial system -
so we choose the calculation frame as our reference frame. Note that the term

Γtot,RF (~rj(t0), pj(t0))

Γtot,RF (~r, p)
, (2.36)

where the Γtot,RF ’s are being evaluated in the rest-frames of the particle, is not a Lorentz scalar! This is
caused by the fact that p(t) is in general not identical to p(t0), and as a consequence the rest-frames defined
by p(t) and p(t0) are in general different. So the numerator and denominator are not defined in the same
frame, hence the fraction is no scalar.

6See e.g. [Leh03] for the problem of choosing the proper mass initialization in the presence of the back-coupling
term.
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In the original work of Effenberger [Eff99a], the off-shell potential was assumed to be

∆µEffenberger
j (~r, p) =

∆µj(~rj(t0), pj(t0))

ρ(~rj(t0))
ρ (~r) , (2.38)

which included already the assumption Γtot ∼ ρ. However, even in a Γ = σρv ansatz, the width
may depend in a non-linear fashion on the density if the cross section itself becomes density-
dependent. So the implementation according to eq. 2.33 is more general and, therefore, favored
in this work. Since the off-shell potential according to eq. 2.33 is dependent on the width, it
is important to note that we have introduced for the first time an energy dependent width in
the GiBUU model. As a consequence, the term ∂H/∂p0 in eq. 2.21-2.23 is explicitly non-zero
since H depends on ∆µ (cf. eq. 2.37), which depends itself on Γtot. In practice, we determine
the width Γtot (~r, p) not for all possible values of p and ~r but only on a grid in momentum-
and position-space in order to save computation time. Thereafter, we use an interpolation of
this tabulation in our calculations. This tabulation must be smooth and should not include
numerical fluctuations, e.g. due to a low numerical accuracy. Otherwise the gradients ∂Γtot/∂p0

might get large due to these fluctuations and one generates test-particle velocities larger than
the speed of light. Altogether, the inclusion of the ∂H/∂p0 term complicates the numerical
treatment considerably, since the width must be determined with high accuracy7.

Annotation. The replacement m → m + ∆µj introduces a test-particle dependent Hamilto-
nian. First, this modification was only an educated guess by U. Mosel and M. Effenberger
[Eff99a]. However, as has been shown later by Lehr [Leh03], it implements most features of the
more complicated derivations including Aoff-shell, as, e.g., in [Leu00, Juc03]. Nevertheless, there
remains one subtlety: it has not yet been shown how to construct out of the given test-particle
dependent Hamiltonian Hj a Hamiltonian H for the non-test-particle representation. The OSP
ansatz as sketched above is a very efficient way of implementing off-shell effects as caused by the
term Aoff-shell. Though this approach might not be particularly aesthetic, it is being preferred
due its efficiency aspects.

2.5 Simulating the collision term

The scope of this section, which is dealing with the collision term, is two-fold. First, the collision
term is expressed in terms of resonance decay rates and cross sections. Then it is rewritten in
terms of the test-particle basis to evaluate eq. 2.25.

The collision term can be split into terms having different initial-state multiplicities. We
include in our model processes with just one particle (=resonance decays), two and three particles
in the initial state; any higher correlations are neglected. So the loss term Σ> reads

Σ> = Σ>,1 + Σ>,2 + Σ>,3 , (2.39)

where the indices 1, 2, 3 define the initial-state multiplicities. This section deals first with the
one-body processes, then with two- and three-body interactions and will be rather general. So
it does not particularly depend on details of cross sections or involved particle species which are
postponed to sec. 3.2.1 and sec. 3.3. As it will be shown in the forthcoming paragraphs, the
loss term describes events, where test-particles get annihilated. For each annihilation event, a
Monte-Carlo decision is performed to retrieve the final state particles. To conserve all quantum

7For numerical results see sec. 3.9.
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numbers, new test-particles corresponding to the final-state particles of such an annihilation
event are added to the simulation and the initial state particles are deleted. These additional
test-particles are then interpreted as the test-particles which represent the gain term. So we
focus in the following paragraphs on this loss term and the implementation of the gain term will
then be obvious.

2.5.1 Resonance decays

We assume a dependence of the resonance lifetime τ on the resonance decay width Γ, which is
given by the standard formula

τ =
1

Γ
. (2.40)

In [Leu01], another lifetime definition was presented, which is based on the original Kadanoff-
Baym formalism. When one averages this latter lifetime and the 1/Γ-lifetime over the spectral
functions then the averages are identical. Additionally, it was shown in [Lar02] that introducing
the different lifetime prescription is mostly counter-balanced by a related renormalization of
the 2-body interactions, which was also proposed in [Leu01]. So we neglect in this work for
simplicity both the renormalization and the modification in the lifetime definition. However, it
might be interesting for the future to include both the lifetime prescription according to [Leu01]
and the renormalization terms in the 2-body interactions, and to perform a comparison as in
[Lar02] also for more exclusive channels.

The loss term. The one-body loss term represents basically the rate with which particles decay,
in particular Σ>,1 = −1/τ where τ is the life time of the particle. Choosing τ = 1

Γ , the loss term
due to resonance decays is given by

I1
loss(~r, t, p) = Σ>,1(~r, t, p)ḡ<(~r, t, p) (2.41)

= Γ(~r, t, p)ḡ<(~r, t, p) . (2.42)

The decay width of the particle within the calculation frame is connected to the one in the
resonance rest-frame via

Γ(~r, t, p) =

√
pµpµ

p0
[Γ(~r, t, p)]Res. rest-frame , (2.43)

where the prefactor
√

pµpµ

p0
takes care of the proper time to resonance eigentime transformation.

In the rest-frame, the decay width is given by

[Γ(~r, t, p)]Res. rest-frame =
1

2M

∞∑

n=1

∑

all combinations{j1, . . . jn}
with j1 ≦ j2 ≦ . . .

n∏

k=1

{∫
dp4

k

2π4
2πAjk

(~r, t, pk)

× (1 ± fjk
(~r, t, ~pk))} (2π)4 δ4





n∑

j=1

pk − p



 |M2
→j1,...jn

| , (2.44)

where the sum over n denotes the sum over all possible numbers of final states and jk denotes
the particle species of the kth final state particle. The momenta pk denote the momenta of the
final state particles. Note that besides the additional Pauli-blocking/Bose-enhancement factors
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1 ± fjk
(~r, t, ~p) this corresponds just to the standard decay width definition taking into account

broad final state particles8.

In terms of test particles, we can now write down the first contribution to eq. 2.25

1

N

n(t+∆t)
∑

i=n(t)+1

wi δ(~r − ~ri(t+ ∆t))δ(~p − ~pi(t+ ∆t))δ(p0 − p0
i (t+ ∆t)) (2.45)

=
∆t

(2π)4
(
Σ>,1ḡ<(~r, t, ~p) + Σ>,2ḡ<(~r, t, ~p) + Σ>,3ḡ<(~r, t, ~p)

)
(2.46)

=
∆t

(2π)4
(
Γ(~r, t, p)ḡ<(~r, t, ~p) + . . .

)
(2.47)

=
∆t

(2π)4
(
Γ(~r, t, p)ḡ<(~r, t+ ∆t, ~p) + . . .

)
+ O

(
∆t)2

)
(2.48)

= − 1

N

n(t)
∑

i=1

Γ(~ri, t, pi)∆t wi δ(~r − ~ri(t+ ∆t))δ(~p − ~pi(t+ ∆t))δ(p0 − p0
i (t+ ∆t))

+ . . .+ O
(
(∆t)2

)
. (2.49)

The dots stand for the contributions of 2- and 3-particle loss terms; the term O
(
(∆t)2

)
is

neglected in the limit ∆t→ 0. To simulate the loss of strength through resonance decay one now
interprets Γ(~ri, t, pi)∆t as the probability for the decay of the ith test-particle. This corresponds
to substituting p = Γ(~ri, t, pi)∆t by a Bernoulli distributed random number 1p=Γ(~ri,t,pi)∆t with
probability p = Γ(~ri, t, pi)∆t

9. In the simulation, we then decide by a Monte-Carlo method
whether 1p=Γi(~ri,t,pi)∆t = 1 or 0. If the value is 1, then we get a negative test-particle at the
position of an original one and the test-particle is basically removed from the simulation. If it
is 0 then the test-particle remains. Since 1p=γ(~ri,t,pi)∆t is being evaluated separately for each
test-particle, the above described substitution is appropriate in the limit of many test-particles
when the loss term approaches the expectation value.

The gain term. For each event where a test-particle is absorbed due to the loss term, we choose
by a Monte-Carlo method a possible final state and its kinematics. Test-particles representing
this final state are thereafter added to the simulation. This procedure conserves quantum
numbers within such an absorption event and simulates the gain term.

2.5.2 Two-body collisions

For the sake of simplicity, let us consider a model with only one fermionic particle species which
has no degeneracy, allowing only for binary scattering processes

A(pA) B(pB) −→ a(pa) b(pb) . (2.50)

If such a scattering event occurs at point ~r, then the single-particle phase-space density decreases
in the vicinity of the phase space points (~r, pA) and (~r, pB) and increases in the vicinity of (~r, pa)
and (~r, pb). In each phase space point, the two-body contribution to the collision term consists

8Note that the decay width is not identical to the full width of the particle. The full width also includes scattering
processes.

9For small ∆t this corresponds to the well known decay probability lim∆t→0 p = 1 − e−Γ(~ri,t,pi)∆t.
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of a gain term due to particles which are scattered into this phase space point and a loss term
due to particles which are scattered out. The loss and gain terms are given by

I2
loss(~r, t, pA) = Σ>,2(~r, t, pA)g<(~r, t, pA) (2.51)

=

∫
d4pB

(2π)4

∫

dΩCM
dσAB→ab

dΩCM
vAB g<(~r, t, pB)g<(~r, t, pA)PaPb , (2.52)

and

I2
gain(~r, t, pA) = Σ<,2(~r, t, pA)g>(~r, t, pA) (2.53)

=

∫
d4pa

(2π)4
d4pb

(2π)4
(2π)3

dσab→AB

d4pA
vab g

<(~r, t, pa) g
<(~r, t, pb)PAPB , (2.54)

where dσAB→ab/dΩCM and dσab→AB/d
4pA are the angular and momentum differential cross

sections for the reactions AB → ab and ab → AB, respectively. vAB and vab are the relative
velocities of the collision partners AB and ab. The terms PX = 1−f(~r, ~pX , t) with X = A,B, a, b
correspond to the Pauli blocking of the final states. The momenta of the particles in loss and
gain term satisfy the condition of energy and momentum conservation.

To point out the connection between our numerical implementation and the underlying BUU
equation, we focus on the loss term of BUU. Therefore, we will not elaborate on the gain term
Igain, which describes the production of particles. However, its numerical implementation is
analogous to the loss term since both are related by detailed balance.

In terms of the test-particle ansatz the loss term reads

∆t I2
loss(~r, t, ~pA) = lim

N→∞
(2π)4

N

n(t)
∑

i=1

n(t)
∑

j = 1
j 6= i

wiwj δ(p
0
A − p0

i )δ(~pA − ~pi)δ(~r − ~ri)

× lim
N→∞

1

σij

∫

dΩCM PaPb
dσij→ab

dΩCM
︸ ︷︷ ︸

=PaPb

σij∆t vij
1

N
︸ ︷︷ ︸

=∆Vij

δ(~r − ~rj) (2.55)

= lim
N→∞











(2π)4

N

n(t)
∑

i=1

n(t)
∑

j = 1
j 6= i

wiwj δ(pA − pi)δ(~r − ~ri)PaPb

∫

∆Vij

δ(~r ′ − ~rj)d
3r′











,(2.56)

where σij and vij are the total interaction cross section and the relative velocity of the test-
particles i, j; ∆Vij = σij∆t vij/N is an infinitesimal volume in the vicinity of ~ri. Note that
this volume defines the locality of the scattering process of two test-particles. The term PaPb

denotes the blocking of the final state averaged over its angular distribution. We excluded
self-interactions – therefore a test-particle cannot scatter with itself.

Numerical implementation

In a real calculation the number of test-particles N is chosen finite, for our purposes usually of
the order of 300-1500. The time step ∆t is chosen such that the average distance traveled by
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the particles during ∆t is less than their mean free path. Therefore, ∆Vij is small enough such
that a particle has no more than one scattering partner at a given time step. The algorithm
proceeds as a sequence of the following steps:

• The loss term is implemented according to eq. 2.56. We consider therefore each term in
eq. 2.56 separately. For simplicity let us just consider one summand describing the loss of
the ith test-particle due to a collision with the jth test-particle.

1. The term
∫

∆Vij
δ(~r ′ − ~rj)d

3r′ gives 1 or 0 depending on the fact whether j is within

∆Vij . The volume ∆Vij is chosen to be a cylinder of height ∆tvij with a circle basis
σij/N ; the symmetry axis is chosen along ~vij and the basis is centered at ~ri. This
corresponds to the usual minimum distance concept [Cug81].

2. If the result of the integral is 1, then we evaluate

PaPb =
1

σij

∫

dΩCM PaPb
dσij→ab

dΩCM
. (2.57)

For this we perform a Monte-Carlo integration with only one integration point. This
is a good approximation in the large N limit since then a lot of collisions occur
such that, effectively, the above integral is evaluated to a good precision. This one
point ΩCM is chosen in the center of mass (CM) frame randomly according to the

weight 1
σij

dσij→ab

dΩCM
. Since

√
s is fixed, ΩCM defines the random momentum ~pa

CM.

Furthermore,

~pb
CM = −~pa

CM . (2.58)

Finally, by boosting the momenta to the computational frame10, we obtain

PaPb = (1 − f(~r, ~pa, t))(1 − f(~r, ~pb, t)) . (2.59)

3. Now we interpret PaPb as a probability that the reaction takes place. A second
Monte-Carlo decision is being performed in which one decides whether the reaction
is accepted or not. This corresponds to substituting PaPb by a Bernoulli distributed
random number with p = PaPb. With this substitution, the expectation value of
the summand is equal to the original summand. In the limit of many ensembles N ,
i.e. many summands, this yields the right loss term.

4. If the reaction is accepted, then we get for this event where i is scattering with j the
loss contribution

wiwj δ(pA − pi)δ(~r − ~ri) , (2.60)

which corresponds to the destruction of the ith test-particle if wj = 1, if wj < 1 then
it is contribution to g< is only decreased. Due to the double sum in eq. 2.62, we get
also the contribution

wiwj δ(pA − pj)δ(~r − ~rj) . (2.61)

This latter term corresponds to the full or partial destruction of the jth test-particle.
Note that we do not evaluate PaPb for this case, but take the same value which leads
to the destruction of i. This reflects that energy is conserved on an event-by-event
basis.

10For our simulations of πA, γA and e−A collisions the computational frame is chosen to be the laboratory frame.
Note that for heavy-ion simulations in GiBUU, the computational frame is usually the CM-frame of the two
colliding ions.
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5. In our simulation, the final states with momenta ~pb
CM and ~pa

CM contribute to the
gain term. New test particles with those momenta are therefore added to the simu-
lation.

A generalization to 2 → 3 and 3 → 2 processes and to finite particle species including degenera-
cies is straight-forward.

Note that we will always have wi = wj = 1 in our simulation: all test-particles are initialized
with wi = 1 and ∂wi/∂t = 0; test-particles which are added due to decays just compensate others
and therefore these two test-particles can then be removed from the simulation (cf. discussion
on page 20). Hence we only need to consider particles with wi = wj = 1 in the two-particle loss
term which leads in case that the collision is accepted during the Monte-Carlo procedure to a
full destruction of the scattering particles (i.e. wiwj = 1 in eqs. 2.60-2.61).

Since the elementary cross sections are based on the fact that the final states are asymptotic,
we have to deter that two final state particles scatter among each other before undergoing a
collision with a third particle. Therefore, we demand as an extra condition that a test-particle
representing a particle labeled as A is not allowed to scatter off more than one member of a
particle labeled as B before undergoing interactions with another particle labeled C with C 6= A
and C 6= B. This is meant to preserve the limit when going to elementary scattering processes,
e.g. there are no double charge exchange processes in elementary πN collisions.

Approximations

Full and parallel ensembles. The kind of simulation for the 2-body processes we described in
the last paragraph, is called a full ensemble calculation. There exists a common simplification
to this method: the parallel ensemble method [Ber88]. In this scheme one performs in parallel
Ñ calculations which all include only one single ensemble (N = 1). The densities used in each
parallel run are the averaged densities of all Ñ parallel runs. Therefore the propagation part
basically stays the same, whereas the collision term gets very much simplified.

Note that the only justification for this simplification is a great gain in computation time. In
a full ensemble method, the propagation part scales according to the number of test-particles
per nucleon N , whereas the two-body collision term scales with N2 - therefore the computation
time is O(N2). In a parallel ensemble method Ñ runs are performed, which results in O(Ñ)
computation time. Thus there is a linear scaling in a parallel ensemble run, but a quadratic one
in a full ensemble run.

The major drawback of the parallel ensemble scheme is the non-locality in the collisions. As
a showcase, let us consider the pion-nucleon interaction. There the maximum cross section
amounts to roughly 200 mb. This leads to a maximal impact parameter of two test-particles
which is given by

√

200mb/π ≃ 2.52 fm. Hence the parallel ensemble scheme may lead to large
non-localities whereas the underlying BUU collision term is strictly local.

In pioneering works, it was shown by Welke et al. [Wel89] and Lang et al. [Lan93], that
the parallel ensemble scheme is a good approximation to the full ensemble scheme under the
conditions of high-energy heavy ion collisions. However, it is still an open question whether this
also applies to more surface sensitive processes such as, e.g., pion double charge exchange in
nuclei. We will discuss this problem together with our numerical results.

The local ensemble method. The so-called local ensemble method, which was first applied to
heavy ion collisions by Lang et al. [Lan93], is a method allowing for a full-ensemble run which
is less time consuming than the standard algorithm. Here one divides the position space into
small cubical boxes Vi with equal volumes ∆V . The loss term is then represented by
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2.5 Simulating the collision term

∆t I2
loss(~r, t, ~pA) = lim

N→∞











(2π)4

N

n(t)
∑

i=1

n(t)
∑

j = 1
j 6= i

wiwj δ(pA − pi)δ(~r − ~ri)

× PaPb∆Vij
1

∆V

∫

VA

δ(~r ′ − ~rj)d
3r′
)

, (2.62)

where VA is the box, in which the particle A is situated. Now the whole expression PaPb∆Vij
1

∆V
is interpreted as the probability that an interaction takes place. If there are n test-particles
within one box, then there are n(n−1)/2 possible scattering events. One now chooses randomly
only n/2 collision pairs out of the possible pairs. To conserve the overall reaction rate one must
rescale the collision probability by the factor

number of possible collisions

number of collisions
=
n(n− 1)/2

n/2
. (2.63)

Finally, we obtain the probability that a chosen collision takes place

p =
n(n− 1)/2

n/2
PaPb∆Vij

1

∆V
. (2.64)

This method is faster than the original full-ensemble method, since one can effectively order
all test-particles into the cells before one simulates the collision term. Afterwards only such
test-particles must be correlated/compared which are within one cell. In the limit of ∆V → 0
and N → ∞ this corresponds to a full-ensemble calculation. The only drawback is that one
must adjust beforehand the parameters ∆V and ∆t such that p < 1 for all boxes. Therefore, one
must roughly estimate the mean value of n by the nuclear matter density (n̄ ≈ ρ∆V N) and the
cross section by some meaningful average value. Larger numbers of N lead to better estimates
of n, while low N can lead to huge fluctuations in n. Typical volumes for N ≈ 300− 1500 are11

∆V = (0.25 − 1.0 fm)3.
We implemented all three algorithms (parallel, full, local ensemble) within our model and we

will later explicitly compare them.
We emphasize, that the gain term is in our approach given by test-particles representing the

final-state particles determined by the loss term (cf. item 5. on page 24).

2.5.3 Three-body collisions

The rates for three-body collisions are experimentally not accessible, hence one estimates the
matrix elements for such a process via detailed balance. The whole procedure is detailed in
[Eff99a] and in section 3.3.2.

Numerical implementation In the following, we sketch the numerical implementation. To get
the probability for one test-particle to collide with two others, one must in principle consider all
three-particle combinations which are possible. Since this is rather time consuming, one picks

11The default in our code is chosen to be (0.5 fm)3. If events occur in which p > 1, then the calculation must be
repeated with smaller time step size ∆t.

25



Chapter 2 Transport theory

randomly two test-particles out of a given vicinity with radius r of a regarded test-particle.
This is again considered to be a one-point Monte-Carlo integration. As argued for the 2-body
collisions, we get in the limit of many test-particles the right mean value for the three body
rate. The vicinity is chosen such that it is large enough to find two scattering partners within
this vicinity. This means, one must adjust this parameter to the test particle densities12, hence
the radius of this volume scales like 1/ 3

√
N . Intuitively, one might want to choose the closest

pair in the vicinity. However, this again implies a sorting of the particles within the vicinity
which is time-consuming. Furthermore, in the limit of large N locality is restored anyhow. As
a speed-up, we use the sorting of the particles into the volume boxes (which is being done for
the local collision criteria) to find the scattering partners. Having defined a pair to scatter
with, the rate Γ3 for this process is calculated and then all three particles are annihilated with
the probability ∆tΓ3. Annihilating all three particles means that we implicitly also evaluated
the three-body loss term for the other involved particle species, e.g. for the nucleons in the
πNN → NN process. As gain term we represent the final state particles by new test-particles
which are added to the simulation.

12E.g. for NNπ → NN , we choose the radius r = 2.8 fm/ 3
√

N to define the vicinity in which we search for two
nucleons as scattering partners for a given pion.
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Chapter 3

The GiBUU model

Overview: This chapter introduces the Giessen Boltzmann-Uehling-Uhlenbeck
(GiBUU) transport model, and details the included particle species, interaction rates,
medium modifications, self-energies and the resulting in-medium spectral functions.

3.1 Introduction

Over the last two decades, the Giessen theory group has been developing a Boltzmann-Uehling-
Uhlenbeck (BUU) transport model to describe heavy ion collisions, photon-, electron-, pion- and
neutrino-induced reactions within one unified transport framework. The simulation of transport
processes comes hand-in-hand with an elaborated piece of computer code. We therefore want
to structure the following historical overview giving some key dates concerning the actual code
development and the most significant physics topics which have been addressed.

The code history. First simulations have been undertaken with a modified version of the
original Bertsch code [Ber88]. Starting in 1986, this resulted in predictions for photon production
in heavy-ion collisions [Bau86, Bau89]. The code was undergoing several major development
steps during the following years1. In the mid 90’s, Effenberger [Eff99a] and Teis [Tei96] rewrote
large parts of it. Besides the original field of application, which were heavy ion collisions, the code
was then already applied to the prediction of photon- and pion-induced reactions. In the years
2000-2005, T. Falter worked on the description of high-energy non-resonant electron-induced
reactions. Together with K. Gallmeister a picture for the time-dependence of fragmentation
was established [Fal04b, Gal05]. A. Larionov has been working on the description of heavy
ion collisions in the SIS energy region and above; as a major topic, he studied the influence of
medium-dependent cross sections (see e.g. [Lar03, Lar05]). Together with M. Wagner [Wag05],
he investigated strangeness production in heavy ion collisions. J. Lehr (see [Leh03] and references
therein) included off-shell nucleons in his code version and worked on both photon- and electron-
induced processes in the resonance region. The last results based on the the original Effenberger-
Teis version were published by P. Mühlich [Mü07]. He worked on pion and photon induced
processes both in the resonance and high energy region, thereby focusing on possible signals for
changes of meson properties within the medium [Mü04b, Mü06b, Mü06a].

The rewriting of the code - the GiBUU project. In 2004, we launched the GiBUU project.
The main intention of this project was the restructuring and rewriting of the original source code
using FORTRAN 2003 as a programming language. FORTRAN was chosen since the included
libraries, in particular FRITIOF and PYTHIA, have also been programmed in FORTRAN.

1More details concerning the ancient days can be found in [GiB08a].
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In the beginning, I took the responsibility for the basic framework - especially type defini-
tions, array structure and code management. Thereafter I implemented the propagation of the
test-particles, potentials, evaluation of the densities based on the test-particles and the baryon-
meson cross sections. In the meantime, T. Falter also joined the project and rewrote his version
of the high-energy part, implementing it in the new code structure. Later, also A. Larionov and
K. Gallmeister joined the initiative. A. Larionov took care of the implementation of strangeness
production and improved the baryon-baryon cross sections. Furthermore, he included a relativis-
tic mean field in the propagation which can now be used alternatively to the Skyrme mean field.
K. Gallmeister revised the Makefile and in a joined effort, together we implemented the local en-
semble method. This algorithm was not included in the precursor Effenberger-Teis version and
improved the speed of the full ensemble simulations. K. Gallmeister was also a major player in
the speed-up of the core routines. Furthermore, he managed to replace FRITIOF by a modified
PYTHIA [pyt07] version. In 2006, T. Leitner joined the project and implemented in the follow-
ing her model [Lei06a, Lei06b] for neutrino-nucleon interactions and shared the work-load in the
implementation of the off-shell potential. Lately, also T. Gaitanos (nuclear fragmentation), D.
Kalok [Kal07] (nucleon spectral functions), B. Steinmüller [Ste07](ground state properties) and
J. Weil [Wei08a] (dileptons and vector meson production, gfortran compatibility) contributed to
the new code. In April 2008, the first source-code release was published on our website [GiB08b]
under the GPL [gpl07] license.

From a programmers point of view, the most remarkable successes of the new code version
are the following:

• The structure of the code is now completely modular. Henceforth each fragment can be
tested independently. This was not possible with the old Effenberger-Teis version.

• All GiBUU users work in parallel on one code. Without the prerequisite of a modular
code this would not be possible. Within the old structure, one could rarely exchange small
code pieces but very often a lot of pieces had to be modified at once. So each member of
the group had his own code version. There existed also a so-called standard version, where
every user was supposed to implement important changes to the code. However, this code
has never been used for real calculations and, therefore, the standard implementation was
not fully reliable.

• The code is based on a version control system (SUBVERSION2).

– The standard version is fully reliable and always up-to-date.

– The full code history can be analyzed and published results can be 100% recalculated
at any later stage.

– No source code can get lost, although there are large fluctuations among the group
members.

• No proprietary software is used. All ”imported” code fragments, i.e. fragments which
are not coded by the GiBUU group, are under the GPL license3. The former code ver-
sion included proprietary software, e.g. Numerical Recipes, which impeded open-source
publishing.

2See Appendix C.2 for details.
3See Appendix C.3 for details.
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• The code is running successfully with all so-far tested FORTRAN 2003 compatible com-
pilers: Intel4, Absoft5, gfortran6 and g957.

More details on technical issues concerning the code management, documentation and code
structure can be found in appendix C.

From now on, we will focus on the physics input to the model. First, the list of implemented
particle species and their properties is detailed. Then the hadronic cross sections, the medium
modifications and potentials are addressed. In the following, we investigate the spectral functions
of the baryons. Finally, we deal with ground state properties of nuclei and present numerical
results for off-shell transport of baryons.

3.2 Degrees of freedom: The implemented particle species

3.2.1 Introduction

The relevant degrees of freedom in our model are baryons, mesons, leptons, their anti-particles
and the gauge bosons. Within the hadronic sector, the model rests upon two main pillars. The
πN scattering phase shift analysis performed by Manley and Saleski [Man92] serves as input for
all parameters of hadrons built out of up and down quarks - the so-called non exotic hadronic
matter. For the exotic hadronic matter, we use the parameters collected by the particle data
group [Hag02].

Baryons. There are 31 resonances made up of up- and down-quarks implemented according to
Manley et al.. These resonances are listed in table 3.1 together with their quantum numbers and
ratings according to the Manley analysis. Additionally, 30 resonances with non-zero strangeness
and/or charm content have been included. Their properties are listed in table 3.2. Besides
the nucleon, also the Λ, Σ, Ξ, Ω, ΛC , ΣC , Ξc and ΩC are assumed to be stable due to their
long lifetimes which are much longer than the usual timescales for nuclear reactions. The decay
branching ratios at the resonance pole mass are given in table A.1. In this work, we neglect the
very small branching ratios into dileptons8.

Mesons. There are 21 mesonic states implemented (for details cf. table 3.3). We treat the
lowest-lying state - the π-meson - and also the η, J/Ψ, K, K, D, D, D+

s and D−
s mesons as

stable particles due to their long lifetimes. The decay branching ratios at the resonance pole
masses are given in table A.2.

Leptons and gauge bosons. Neither the leptons nor the electro-weak gauge bosons (γ, W±,
Z0) are explicitly propagated in the simulation. We assume that they decouple due to the small
coupling strength from the hadronic matter after production (e.g. in η → γγ), or after the first
interaction vertex (e.g. in eA → eX). Gluons are also not propagated, but so-called strings or
pre-hadrons which carry information about gluonic excitations (for details cf. [Gal05, Fal04b]).

4Intel: all versions ≥ 9.1. Note that Intel frequently provides bug-fix patches.
5Absoft version 10.0 with the latest bug-fix patch
6gfortran version 4.3, revision ≥ 127750
7g95 version ≥ 0.91
8In 2007, J. Weil [Wei08a] implemented also the dilepton branching ratios according to Mühlich [Mü07] in the

GiBUU code.
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Name Index Mass Width Spin Rating Isospin Strangeness Charm
[GeV] [GeV]

N 1 0.938 0.000 1/2 **** 1/2 0 0
∆ 2 1.232 0.118 3/2 **** 3/2 0 0
P11(1440) 3 1.462 0.4591 1/2 **** 1/2 0 0
S11(1535) 4 1.534 0.151 1/2 *** 1/2 0 0
S11(1650) 5 1.659 0.173 1/2 **** 1/2 0 0
S11(2090) 6 1.928 0.414 1/2 * 1/2 0 0
D13(1520) 7 1.524 0.124 3/2 **** 1/2 0 0
D13(1700) 8 1.737 0.249 3/2 * 1/2 0 0
D13(2080) 9 1.804 0.447 3/2 * 1/2 0 0
D15(1675) 10 1.676 0.159 5/2 **** 1/2 0 0
G17(2190) 11 2.127 0.547 7/2 **** 1/2 0 0
P11(1710) 12 1.717 0.478 1/2 * 1/2 0 0
P11(2100) 13 1.885 0.113 1/2 * 1/2 0 0
P13(1720) 14 1.717 0.4583 3/2 * 1/2 0 0
P13 15 1.879 0.498 3/2 *** 1/2 0 0
F15(1680) 16 1.684 0.139 5/2 **** 1/2 0 0
F15(2000) 17 1.903 0.494 5/2 * 1/2 0 0
F17(1990) 18 2.086 0.535 7/2 ** 1/2 0 0
S31(1620) 19 1.672 0.154 1/2 ** 3/2 0 0
S31(1900) 20 1.920 0.263 1/2 *** 3/2 0 0
D33(1700) 21 1.762 0.599 3/2 * 3/2 0 0
D33(1940) 22 2.057 0.460 3/2 * 3/2 0 0
D35(1930) 23 1.956 0.526 5/2 ** 3/2 0 0
D35(2350) 24 2.171 0.264 5/2 ** 3/2 0 0
P31 25 1.744 0.299 1/2 * 3/2 0 0
P31(1910) 26 1.882 0.239 1/2 **** 3/2 0 0
P33(1600) 27 1.706 0.430 3/2 *** 3/2 0 0
P33(1920) 28 2.014 0.152 3/2 * 3/2 0 0
F35 29 1.752 0.251 5/2 * 3/2 0 0
F35(1905) 30 1.881 0.4527 5/2 *** 3/2 0 0
F37(1950) 31 1.945 0.4500 7/2 **** 3/2 0 0

Table 3.1: Properties of non-exotic baryons in GiBUU. The parameters are chosen according to
the πN scattering analysis by Manley and Saleski [Man92]. The index is used in the code as
an identifier.
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Name Index Mass Width Spin Rating Isospin Strangeness Charm
[GeV] [GeV]

Λ 32 1.116 0.000 1/2 **** 0 -1 0
Σ 33 1.189 0.000 1/2 **** 1 -1 0
Σ(1385) 34 1.385 0.036 3/2 **** 1 -1 0
Λ(1405) 35 1.405 0.050 1/2 **** 0 -1 0
Λ(1520) 36 1.520 0.016 3/2 **** 0 -1 0
Λ(1600) 37 1.600 0.150 1/2 *** 0 -1 0
Λ(1670) 38 1.670 0.035 1/2 **** 0 -1 0
Λ(1690) 39 1.690 0.060 3/2 **** 0 -1 0
Λ(1810) 40 1.810 0.150 1/2 *** 0 -1 0
Λ(1820) 41 1.820 0.080 5/2 **** 0 -1 0
Λ(1830) 42 1.830 0.095 5/2 **** 0 -1 0
Σ(1670) 43 1.670 0.060 3/2 **** 1 -1 0
Σ(1775) 44 1.775 0.120 5/2 **** 1 -1 0
Σ(2030) 45 2.030 0.180 7/2 **** 1 -1 0
Λ(1800) 46 1.800 0.4500 1/2 *** 0 -1 0
Λ(1890) 47 1.890 0.100 3/2 **** 0 -1 0
Λ(2100) 48 2.100 0.200 7/2 **** 0 -1 0
Λ(2110) 49 2.110 0.200 5/2 *** 0 -1 0
Σ(1660) 50 1.660 0.100 1/2 *** 1 -1 0
Σ(1750) 51 1.750 0.090 1/2 *** 1 -1 0
Σ(1915) 52 1.915 0.120 5/2 **** 1 -1 0
Ξ 53 1.315 0.000 1/2 **** 1/2 -2 0
Ξ∗ 54 1.530 0.009 3/2 **** 1/2 -2 0
Ω 55 1.672 0.000 3/2 **** 0 -3 0
Λc 56 2.285 0.000 1/2 **** 0 0 1
Σc 57 2.452 0.000 1/2 **** 1 0 1
Σ∗

c 58 2.520 0.015 3/2 **** 1 0 1
Ξc 59 2.466 0.000 1/2 **** 1/2 -1 1
Ξ∗

c 60 2.645 0.004 3/2 **** 1/2 -1 1
Ωc 61 2.697 0.000 1/2 **** 0 -2 1

Table 3.2: Properties of exotic baryons in GiBUU. The parameters are taken from the PDG
database [Hag02]. The index is used in the code as an identifier.
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Name Index Mass Width Spin Isospin Strangeness Charm
[GeV] [GeV]

π 101 0.1380 0.0000 0 1 0 0
η 102 0.5474 0.0000 0 0 0 0
ρ 103 0.7700 0.1510 1 1 0 0
σ 104 0.8000 0.8000 0 0 0 0
ω 105 0.7820 0.0084 1 0 0 0
η′ 106 0.9580 0.0002 0 0 0 0
φ 107 1.0200 0.0044 1 0 0 0
ηc 108 2.9800 0.0130 0 0 0 0
J/ψ 109 3.0970 0.0000 1 0 0 0
K 110 0.4960 0.0000 0 1/2 1 0

K 111 0.4960 0.0000 0 1/2 -1 0
K⋆ 112 0.8920 0.0500 1 1/2 1 0

K
⋆

113 0.8920 0.0500 1 1/2 -1 0
D 114 1.8670 0.0000 0 1/2 0 1

D 115 1.8670 0.0000 0 1/2 0 -1
D⋆ 116 2.0070 (D⋆)0: .0020 1 1/2 0 1

(D⋆)+: 96 × 10−6

D
⋆

117 2.0070 (D
⋆
)0: .0020 1 1/2 0 -1

(D
⋆
)+: 96 × 10−6

D+
s 118 1.9690 0.0000 0 0 1 1

D−
s 119 1.9690 0.0000 0 0 -1 -1

(D∗
s)

+ 120 2.1120 0.0010 1 0 1 1
(D∗

s)
− 121 2.1120 0.0010 1 0 -1 -1

Table 3.3: Properties of mesons in GiBUU. The parameters are taken from the Manley analy-
sis [Man92] and the PDG database [Hag02]. The index is used in the code as an identifier.
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3.2.2 Vacuum decay widths of the baryonic resonances

Our model allows the baryonic resonances to decay only into two-body final states. Overall,
there are 19 different decay channels: πN , ηN , ωN , KΛ, π∆, ρN , σN , πP11(1440), ρ∆, πΛ,
KN , πΣ, πΣ(1385), ηΛ, K

⋆
N , πΛ(1520), πΞ, πΛc, πΞc. The angular momenta L for the final

state particles depend on the resonance and are listed in table A.1. Following Manley et al., we
assume that the decay width off the resonance pole is given by

ΓR→ab(m) = Γ0
R→ab

ρab(m)

ρab(M0)
, (3.1)

where m =
√
pµpµ is the mass of the resonance, M0 its pole mass and Γ0

R→ab its decay width
into a final state consisting of particles a and b at the pole mass. The function ρ is given by

ρab(m) =

∫

dp2
adp

2
bAa(p

2
a)Ab(p

2
b)
pab

m
B2

Lab
(pabR)F2

ab(m) . (3.2)

In vacuum, the spectral functions A depend only on the square of the four momentum. The term
pab denotes the CM-momentum of the final state products. The Blatt-Weisskopf functions BLab

depend on the the angular momentum Lab of the final state particles a and b, on the so-called
interaction radius R = 1 fm and on the CM momentum pab. The BLab

are given by

B0(x) = 1 (3.3)

B1(x) =
x√

1 + x2
(3.4)

B2(x) =
x2

√
9 + 3x2 + x4

(3.5)

B4(x) =
x3

√
225 + 45x2 + 6x4 + x6

(3.6)

B4(x) =
x4

√
11025 + 1575x2 + 135x4 + 10x6 + x8

. (3.7)

Compared to Manley [Man92] and the Effenberger [Eff99a] implementation, we modified the
large-m behavior by a cut-off function Fab(m). This became necessary since in some channels the
width grew too fast with increasing mass to be used in a dispersion analysis. If the decay channel
included only stable final state particles, this modification was not necessary (⇒ Fab(m) = 1);
for all other decay channels we have chosen a form factor according to Post [Pos04, eq. 3.22 on
page 35]

Fab(m) =
λ4

ab + 1
4(s0 −M2

0 )2

λ4
ab +

(
m2 − 1

2 (s0 +M2
0 )
)2 , (3.8)

where s0 is the Mandelstam s for the threshold of the regarded process. The parameter λ has
been tuned to pion scattering and is chosen to be

λ =







0.85 GeV for the ∆ρ channel
1.6 GeV if there is an unstable meson, but no unstable baryon
2.0 GeV if there is an unstable baryon, but no unstable meson

. (3.9)

The ∆ρ plays a special role, since it is the only channel with two unstable final state particles.
The impact of this cut-off function is discussed in sec. 3.7.
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3.2.3 Vacuum decay widths of the mesonic resonances

The mesonic resonances can decay into 16 different two-body decay channels ( ππ, πρ, KK,
Kπ, ργ, πγ, γγ, D+

s γ, D
−
s γ, πD

+
s , πD−

s , Kπ, Dγ, Dγ, πD, πD) and 4 distinct three-body
channels (π0π0η, π0π−π+, π0π0π0, π+π−η ). For channels with two scalar final-state mesons
with parity P = −1 (i.e. the dominant 2π, KK, πK, πK channels), the angular momentum of
the two final states must equal the spin of the parent resonance. Given this angular momentum,
we can implement for those channels a mass-dependent partial width according to eq. 3.1. The
widths of the other decay channels are assumed to be mass independent.

3.3 Elementary processes

In the following, we address the elementary reaction processes of the GiBUU collision term.
In the previous sections, we already discussed the vacuum decay modes of the resonances.
Additionally to these decay reactions, there are reactions implemented with two or three initial
state particles. Higher correlations, e.g. four particle interactions, are neglected based on the
assumption that the nuclear matter density does not reach too high values during the reactions.
Such multi-particle correlations are only expected to become important at very high nuclear
densities as they may be accessed within high-energy heavy-ion collisions [Lar07].

3.3.1 Two-body interactions

For the two-body interactions, we distinguish a low-energy and a high-energy region. The
low-energy region is dominated by resonance contributions and small non-resonant background
terms. In the high energy region, perturbative QCD becomes relevant and interaction mecha-
nisms as, e.g., the Pomeron exchange are used to model the cross sections. According to the
importance for this thesis, we will first discuss the low-energy processes. Thereafter we briefly
introduce, for completeness, the high-energy processes. Finally, we discuss the matching of the
low-energy and high-energy regions.

Resonant and non-resonant processes in the low-energy region

Baryon-meson processes. The implemented resonance model is reliable for baryon-meson in-
teractions from pion-threshold up to roughly 2.3 GeV center of mass energy. The resonance
production cross sections for a b → R itself are given by (cf. [Tei96, Eff99a] for details and
derivation)

σa b→R(s) =
∑

f

FI
2JR + 1

(2Ja + 1) (2Jb + 1)

1

Sab

4π

p2
ab(s)

sΓab→R(s) ΓR→f (s)
(
s−m2

R − ReΠ(s)
)2

+ sΓ2
tot(s)

︸ ︷︷ ︸

=(ImΠ(s))2

= FI
2JR + 1

(2Ja + 1) (2Jb + 1)

1

Sab

4π

p2
ab(s)

sΓab→R(s) Γtot(s)
(
s−m2

R − ReΠ(s)
)2

+ sΓ2
tot(s)

(3.10)

with

Sab =

{
1 if a,b not identical
1
2 if a,b identical

(3.11)
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being the symmetry factor of a and b. The term pab denotes the CM-momentum of particles a
and b, the Ji’s define the total spin of the particles and

FI =
〈

Ia Ib; iaz i
b
z|IR iaz + ibz

〉2
(3.12)

incorporates the Clebsch-Gordan coefficients due to isospin. The term Γab→R denotes the so-
called in-width. It is for stable particles a and b identical to the out-width ΓR→ab; for unstable
particles the final result is given in [Eff99a, eq. 2.77].

In this energy region, we implemented additional non-resonant background processes to im-
prove the comparison with experimental data and/or trustworthy model calculations. These
background processes are point-like: while the two vertexes of , e.g., πN → R → πN may be
separated in space-time, the background process πN → πN has only one vertex and is therefore
point-like. Such background processes are defined for several channels, see Appendix A.3 for
details.

Baryon-baryon processes. For the baryon-baryon cross sections, matrix elements have been
fitted to π, ππ and ρ0 and strangeness production up to a CM-energy of ca. 2.6 GeV [Tei97].
The following processes are implemented: NN ↔ NN , NN ↔ NR, NN ↔ ∆∆ and the
background point-like contribution NN → NNπ. Details can be found in Appendix A.2.

Meson-meson processes. The impact of meson-meson interactions are negligible for the pur-
pose of this thesis. However, such processes are implemented in the code. Besides the relevant
resonance production channels, e.g. ππ → ρ, also non-resonant background channels are imple-
mented for ππ → X, KK → X, K⋆K → X and KK

⋆ → X. We refer the interested reader for
details to the works of Larionov and Wagner [Wag03, Wag05].

High energy processes

The implemented PYTHIA model [pyt07], based on the LUND string model (for details see
[Fal04a] and the references therein), can be used for high center-of-mass energies above ca.
2 GeV for baryon-meson collisions and ca. 2.6 GeV for baryon-baryon collisions. The total and
elastic cross sections in the high-energy region are fitted to available data. The total interaction
rates are fixed via these cross sections and the final state decision is then performed by PYTHIA.
In former code versions, PYTHIA could not be applied in the energy region defining the upper
energy boundary for the resonance model (ca. 2.6 GeV for baryon-baryon scattering, and
2.3 GeV for meson-baryon scattering). So FRITIOF was used to bridge the gap in between
the PYTHIA energy region and the resonance-model region. Nowadays, this is not necessary
anymore due to a modification of PYTHIA by K. Gallmeister [Gal07] which just forbids the
creation of diffractive events, when kinematics and parameter settings are in conflict (before the
modification these situations lead to configurations, where PYTHIA entered infinite loops).

Matching the high energy processes and the resonance region

Altogether, we have two models (PYTHIA and resonances+non-resonant background) for two
different energy regimes with a small overlap region. Finally, we must match both models in
this overlap region. Therefore, we use a CM-energy interval with length 2∆ and center point√
s0 in which we mix both types of events. The probability for a high energy event is then given
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by

phigh energy(s) =







0 for
√
s <

√
s0 − ∆√

s−(
√

s0−∆))
2∆ for

√
s0 − ∆ <

√
s <

√
s0 + ∆

1 for
√
s >

√
s0 + ∆

, (3.13)

where
√
s is the CM-energy and the probability for a low-energy events is consequently 1 −

phigh energy. We have chosen ∆ = 0.2 GeV and
√
s0 = 2.2 GeV for baryon-meson and

√
s0 =

2.6 GeV for baryon-baryon reactions. This procedure yields a smooth transition also after
modifications of individual cross sections in the low- or high-energy region.

3.3.2 Three-body interactions

Two distinct three-body channels are incorporated: the NNπ → NN and the NN∆ → NNN
processes9. In 2.5.3 the numerical realization was pointed out, however the rates have not yet
been defined.

NNπ → NN. The process NN → NNπ has been extensively studied in several experiments
over the last twenty years [Lan88, And88, Dau02, Har97a, Tsu88, Shi82, Bon95]. We can
therefore construct well defined background cross sections on top of our resonance contributions
for all possible isospin channels. In fig. A.5 we show the relevant cross sections.

The πNN → NN process is described by the two-step process πN → R followed by RN →
NN , and a direct background contribution. One defines the pion absorption rate as

ΓNANBπ→NaNb
= SabSAB

|~pab|
4π

√
s

|M|2
2Eπ

ρNA

2EA

ρNB

2EB
. (3.14)

This rate depends on the densities ρNA
and ρNB

of the nucleons in the initial state. The
symmetry factors are given by

SAB =

{
1
2 if particles A and B are identical
1 otherwise

.

The matrix element M can be calculated by detailed balance, assuming that it only depends
on the Mandelstam variable s.

|M(s)| = |MNaNb→NANBπ(s)| = |MNANBπ→ NaNb
(s)| . (3.15)

To obtain this matrix element we consider more closely the NN → NNπ process. The cross
section for this process is given by

σ NaNb→NANBπ = SAB

∫
(2π)4

4 |~pab|
√
s
δ4 (pa + pb − pA − pB − pπ) |MNaNb→NANBπ|2

× d3pA

(2π)3 2EA

d3pB

(2π)32EB

d3pπ

(2π)32Eπ
(3.16)

∼= SAB
1

(2π)364 |~pab|
√
s
3 |M|2

∫ (m2
AB)max

(m2
AB)min

dm2
AB

∫ (m2
Aπ)max

(m2
Aπ)min

dm2
Aπ ,(3.17)

9A more general approach to three-body interactions in heavy-ion collisions using GiBUU has been studied in
in [Lar07].
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with

m2
xy = (px + py)

2 (3.18)

(m2
AB)min = (mA +mB)2 (3.19)

(m2
AB)max = (

√
s−mπ)2 (3.20)

(m2
Aπ)min/max = (E⋆

A + E⋆
π)2 −

(√

(E⋆
A)2 −m2

A ±
√

(E⋆
π)2 −m2

π

)2

(3.21)

E⋆
π =

s−m2
AB −m2

π

2mAB
(3.22)

E⋆
A =

m2
AB +m2

A −m2
B

2mAB
, (3.23)

where ~pab denotes the momentum of the particles a and b in their center of mass frame. Equation
3.17 holds under the assumption that the matrix element is only dependent on the Mandelstam
s. We therefore obtain

|M(s)|2 =

(

SAB
1

64(2π)3 |~pab|
√
s
3

∫

dm2
ABdm

2
Aπ

)−1

σNaNb→NANBπ . (3.24)

After inserting this result for |M(s)|2 into eq. 3.14 we find that ΓNANBπ→NaNb
depends linearly

on σNaNb→NANBπ. This cross section σNaNb→NANBπ is, according to eq. A.31, a sum of back-
ground and resonance contributions. Therefore, ΓNANBπ→NaNb

can also be split into a resonance
and a background contribution.

ΓNANBπ→NaNb
= ΓBG

NANBπ→NaNb
+ Γresonance contribution

NANBπ→NaNb
(3.25)

with

ΓBG
NANBπ→NaNb

∼ σBG
NN→NNπ (3.26)

Γresonance contribution
NANBπ→NaNb

∼ σresonance contribution
NN→NNπ . (3.27)

More details concerning this absorption rate can be found in [Bus04]. The resonance absorption
part is included in the collision term for the resonances, which are propagated explicitly. The
background absorption rate ΓBG

NANBπ→NaNb
is shown in fig. 3.1 for symmetric nuclear matter

at ρ = ρ0 with ρ0 = 0.168 fm−3 being the normal nuclear matter density. For positive pions
we get the same results as for negative ones due to isospin symmetry. Notice that in-medium
modifications are not accounted for so far.

NN∆ → NNN. The rate for the NN∆ → NNN process is based on the model of Oset et
al. [Ose87]. We will come back to this in the discussion of the ∆ in-medium width in sec. 3.6.1.

3.4 Medium effects

As medium modifications, we include Pauli-blocking and Fermi-motion of the nucleons, Coulomb
forces and hadronic potentials. After discussing these features, we address the cross-section
modifications within the nuclear medium.
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Figure 3.1: The NNπ → NN background absorption rate for symmetric nuclear matter at
ρ = ρ0. In-medium-modifications are not included in these decay widths. The rate for π0 is
shown on the left and for π− on the right panel.

3.4.1 The electromagnetic forces

The electromagnetic potential is implemented according to the fast ADI algorithm presented
in [Tei96, appendix B]. After the reimplementation in the new code, this algorithm has been
successfully cross checked by the slower integral representation of the potential

Φ(~r) =

∫

d3r′
ρ(r′)

|~r − ~r ′| . (3.28)

By default, the electromagnetic potential is considered in the propagation of the test-particles.
However, it is a long-ranging smooth potential which does not fluctuate much within typical
reaction volumes. We assume therefore that it does not influence particle reaction rates, i.e. it
is not considered in the collision term.

3.4.2 Hadronic potentials

The hadronic potentials are introduced as time-like components of vector potentials in the local
rest-frame (LRF)10 [Tei97]. For our purposes the most important mean field potentials are those
acting on the nucleon and the resonances. The nucleon mean-field potential is parametrized by
Welke et al. [Wel88] as a sum of a Skyrme term depending only on the density and a momentum-
dependent contribution

A0
N = a

ρ(~r)

ρ0
+ b

(
ρ(~r)

ρ0

)τ

+
2c

ρ0
g

∫
d3p ′

(2π)3
f(~r, ~p ′)

1 +
(

~p ′−~p
Λ

)2 (3.29)

with ρ0 = 0.168fm−3 and g = 4 is the nucleon degeneracy. Five distinct standard parameter sets,
which differ in the nuclear matter compressibility, were adjusted to nuclear matter properties

10The local rest frame is defined to be the frame in which the baryonic currents vanish.
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Type of parameter set C[MeV ] a[ MeV] b[ MeV] c[ MeV] τ Λ[1/ fm]

Soft mom.-dep. (EQS 1) 215 -108.6 136.8 -63.6 1.26 2.13
Hard mom.-dep. (EQS 2) 380 -10.0 38.0 -63.6 2.4 2.13
Soft (EQS 3) 215 -287.0 233.7 0 1.23 -
Hard (EQS 4) 380 -124.3 71.0 0 2.0 -
Medium mom.-dep. (EQS 5) 290 -29.3 57.2 -63.6 1.76 2.13

Table 3.4: Parameter sets for the nuclear potential presented in eq. 3.29. The five sets dif-
fer only in the nuclear matter compressibility C which is listed in the second column.
Those sets have been obtained by Teis [Tei96] assuming a nuclear matter saturation density
ρ0 = 0.168 fm−3, a binding energy of 16 MeV and the momentum-dependent (mom.-dep.)
parameter sets fulfill A0

N (ρ = ρ0, p = 0) = −75 MeV and A0
N (ρ = ρ0, p = 800 MeV) = 0 MeV.

Cf. appendix A.4.1 for details on the fixing procedure.

by Teis [Tei97] and are listed in table 3.4. By default, the parameter set medium momentum-
dependent (EQS 5) is being used for all calculations. Details on the parameter fixing procedure
are given in appendix A.4.

Phenomenology tells us that the ∆ potential has a depth of about −30 MeV at ρ0 [Eri88,
Pet98]. Compared to a momentum independent nucleon potential, which is approximately
−50 MeV deep, the ∆ potential is assumed to be

A0
∆(~r, ~p) =

2

3
A0

N (~r, ~p) , (3.30)

This incorporates the assumption that there is a common momentum dependence for the nucleon
and the ∆ potentials. For all spin 3/2 resonances the same potential as for the ∆ is used; for
all other non-exotic resonances, we use the same potential as for the nucleon. The strange
resonances with S = −1 get 2/3 of the nucleon potential according to the number of the light
up- and down-quarks. The more exotic nuclei (S < −1 or C 6= 0) are propagated without
potential. Since these potentials are only well defined within the LRF, we must first boost to
the LRF before we evaluate the single test-particle energy or before we convert the potential A0

to the scalar V as shown in eq. 2.29.11

A low-energy potential for the pion up to kinetic energies of 150 MeV is included according
to [Bus04]. However, whenever it is not explicitly stated otherwise then it is not used for the
calculations.

3.4.3 Pauli blocking and Bose enhancement

Within our calculations, Pauli blocking is approximated by the condition that each momentum
state below the Fermi momentum is Pauli blocked. The default implementation is given by the
following procedure:

1. In the test-particle representation, the phase-space density of particles is a sum of δ-
functions. For the Pauli blocking, the δ functions are smeared in position space by a
Gaussian of width σ = 1 fm 12 to get a smoother distribution. We emphasize, that this

11Note there is also an alternative Yukawa potential implemented in the code. However, it was not used for any
calculations.

12This value is tuned to a number of ensembles N greater than 200. Using larger N one could even reduce the
width.

39



Chapter 3 The GiBUU model

procedure is just a numerical trick to compensate for the finite number of test-particles
and has nothing to do with a wave-packet interpretation for the test-particles.

2. Then, we define the integral

I(~r, ~p) =
∑

i∈{1,N(t)} with ~pi∈Vp

1
√

2πσ
3

∫

Vr

d3r e−
(~r−~ri

′)2

σ2 . (3.31)

This integral basically measures the number of test-particles which are in momentum space
within a volume Vp around ~p and at the same time also close to the volume Vr around ~r.

3. Due to spin statistics, only 2 fermionic states can be accommodated in a phase space cell
of size 1/ (2π)3. Therefore, the probability for Pauli blocking is given by

p(~r, ~p) =
I(~r, ~p)

∆Vr∆Vp
2

(2π)3
× number of ensembles

. (3.32)

The volumes ∆Vr and ∆Vp are chosen with radii rr = 1.86 fm and rp = 0.08 fm, respec-
tively. The size of these boxes is chosen to minimize statistical fluctuations so far, such
that the Pauli blocking condition is well fulfilled for ground state nuclei.

4. Via a Monte-Carlo decision one now decides whether a given phase space point (~r, ~p) is
Pauli blocked or not.

The Bose enhancement factors are neglected due to the low phase-space density of bosons
(e.g. pions, kaons) in the regarded reactions.

3.5 Reactions in the medium

Besides the modification of the collision rate via the Pauli blocking term, the presence of po-
tentials modifies the in-medium kinematics and should be considered in the collision term. For
resonance production, we will also include the width modification. After addressing general
aspects, we deal with resonance production and discuss the non-resonant direct processes where
the medium dependence of the cross section is a major unknown.

3.5.1 Preliminaries

In general, the cross section for a process a+ b→ 1 + . . .+N is given by

dσ =
1

vrel
︸︷︷︸

Iflux

× nanbn1 . . . nN |M|2
2p0

a2p
0
b

︸ ︷︷ ︸

IM

×
N∏

i=1

d4pi

(2π)4
A(pi)(2π)4δ4

(

pa + pb −
N∑

i=1

pi

)

︸ ︷︷ ︸

IΦ

(3.33)

where the field normalization factors ni are given by

ni =

{
1 for bosons
2mi for fermions

. (3.34)

The function A denotes the spectral function and M is the matrix element. In a coupled-channel
model like GiBUU, one must consider cross sections for various processes. To evaluate for each
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of the various channels the proper in-medium cross section, e.g. including RPA in-medium
resummations in the matrix elements and a full modification of the final-state phase-space, has
not yet been achieved in any hadronic transport model. Thus approximations have to be applied
when evaluating the in-medium cross section. In eq. 3.33 the cross section is split into three
different terms: the flux Iflux, matrix element IM and phase space IΦ terms. While the Iflux

term can easily be modified in the medium, the phase space term and especially the matrix
element term usually have to be approximated.

A commonly used approximation is the following. Assuming that the amount of potential
energy of incoming resonance and outgoing final states would be the exactly the same, then one
could view the potential as a background field which is assumed not to influence the reaction
rates. E.g. let us consider a momentum independent potential and an elastic NN → NN
scattering process. In this case the potential energy is exactly conserved during the reaction.
One defines a potential-corrected, so-called ‘free’, center of mass energy

sfree = (pa,free + pb,free)
2 (3.35)

where

pfree = (
√

m2 + ~p 2, ~p) . (3.36)

With the help of this free CM-energy, the in-medium cross section is approximated by

σ ≈ σ1 = Iflux
σvac(sfree)

Iflux,vac
. (3.37)

Within this method only the flux factor is explicitly evaluated in the medium, the product
of the two other terms IMIΦ is approximated by the vacuum values shifted in the center of
mass energy to sfree. The problem with this approximation starts as soon as the outgoing and
incoming potential energy differs, which is the case for momentum-dependent potentials and
for in-elastic processes where there are different particles in the incoming and outgoing states.
Henceforth a next step of sophistication would give

σ ≈ σ2 = Iflux
σvac(sfree)

Iflux,vacIΦ,vac
IΦ , (3.38)

where one additionally implements a modification of the outgoing phase space. Our model for
in-medium hadron-hadron collisions is mostly based on the assumption σ ≈ σ1 and σ ≈ σ2; for
electron and photon induced processes we use a more involved treatment which is presented in
chapter 5 (pages 91 ff.) and includes also explicit modifications of IM. In the following, we first
consider the hadron-hadron reactions.

3.5.2 Resonance production

In the works of Lehr [Leh03] and Effenberger [Eff99a], the resonance production cross section
has been modeled without taking into account the real part of the self energy. In the following,
we first detail their model, focusing then on the present implementation.

The Lehr and Effenberger ansatz. The ansatz is overall very similar to σ ≈ σ2 with σ2 defined
in eq. 3.38. First the mass µ of the produced resonance without the potential contributions is
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evaluated and hereafter the process is treated like a vacuum collision at s = µ. In the process
ab→ R, energy and momentum conservation yield

~pa + ~pb = ~pR (3.39)

Ea + Eb = ER =
√

~p 2
R + (µ+ V (pR, ρ))2 . (3.40)

The bare mass µ of the resonance is therefore given by the energy and momentum of the incoming
particles13

µ =
√

E2
R − ~p 2

R − V (pR, ρ) . (3.41)

Now, we replace in a first step in the vacuum cross section (cf. eq. 3.10) s by µ,

σa b→R(s) ∼ 1

p2
ab(µ)

µ2 Γab→R(µ) Γtot(µ)
(
µ2 −M2

R

)2
+ µ2Γ2

tot(µ)
. (3.42)

As a next step we need to consider a correction due to the relative velocities of the colliding
particles which was introduced by Effenberger [Eff99a, cf. especially eq. 3.45]. According to our
preliminary considerations this gives the σ ≈ σ1 approximation scheme

σ(s) = Iflux
σ (µ)

Iflux,vac
. (3.43)

Hence the cross section in the case of a resonance produced in a potential is given by

σa b→R(s) =
vab
rel,vac

vab
rel

FI
2JR + 1

(2Ja + 1) (2Jb + 1)

1

Sab

× 4π

p2
ab(µ)

µ2 Γab→R(µ) Γtot(µ)
(
µ2 −M2

R

)2
+ µ2Γ2

tot(µ)
. (3.44)

In the medium the widths of the resonances will be modified. Either there might be Pauli-
blocking of final states in the medium, or new decay channels may open in the medium. The ∆
resonance, for example, has a much smaller ∆ → πN partial width due to the Pauli-Blocking
of the nucleons, but gains a collisional width due to ∆NN → NNN and ∆N → NN processes.
Therefore, we have to take these modified widths and new final state scenarios into account,
replacing in eq. 3.44

Γvacuum
tot (s) → Γmedium

tot (s, ~p) (3.45)

in the propagator and in the numerator. The so called in-width Γab→R [Eff99a, eq. 2.77] is
not to be modified since we do not assume a modification of the couplings. The Pauli-blocking
of the resonances could have an influence on the in-width but generally it does not, since the
resonance-densities are too low.

In terms of our preliminary considerations this means nothing else than setting

IM(s) = vab
rel,vacFI

2JR + 1

(2Ja + 1) (2Jb + 1)

1

Sab

4πµΓab→R(µ)

p2
ab(µ)

= IM,vac(µ) (3.46)

13Note that eq. 3.41 must be evaluated in the local rest frame, since only there the potential is well defined. This
is a technical complication of the procedure, because one needs to boost all variables to this system.
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and

IΦ =
µΓmedium

tot (µ)
(
µ2 −M2

R

)2
+ µ2(Γmedium

tot )2(µ)
= IΦ,vac(µ,Γ → Γmedium) . (3.47)

However, especially the last term IΦ which is nothing else then the resonance spectral function
(IΦ = AR) can be evaluated exactly given that the in-medium self-energies of the resonances
have been determined.

The new ansatz Thus in our new ansatz, we still evaluate µ and set

IM(s) = IM,vac(µ) , (3.48)

but we use the proper phase space factor IΦ = AR(pR). Thus the cross section is given by

σa b→R(s, pR) = IfluxIM,vac(µ)IΦ (3.49)

= IfluxIM,vac(µ)AR(pR) , (3.50)

which exactly corresponds to the σ ≈ σ2 scheme introduced in eq. 3.38. The real and imaginary
part of the self energy Π will be evaluated in the medium and the resonances will be dressed
resonances. We will address the self energies in sec. 3.7.

3.5.3 Resonance decays

For the decays of the resonances we make the assumption that in the medium

ΓR→ab(s) =

{
ΓR→ab,vac(µ) if there is a solution to pR = pa + pb

0 else
, (3.51)

where µ is again the bare mass of the resonance. Within this assumption we do not include
modifications of the final state phase space, except that we reject decay events where we can not
fulfill energy and momentum conservation given the intial momentum pR. E.g. if µ is greater
than the sum of the vacuum masses of particles a and b, then ΓR→ab(s) is non-zero. But if the
in-medium mass s of the resonance is smaller than the in-medium masses ma and mb, then the
event must be rejected. This basically corresponds for two-body reactions to a slightly modified
σ ≈ σ1 scheme.

3.5.4 Direct processes

Besides resonance contributions, there are also direct contributions (e.g. πN → ηN). The
cross section and/or matrix element parametrizations for these contributions are obtained from
vacuum kinematics, either measured in elementary processes or determined in calculations which
do not take any potentials into account. As an approximation, we assume that the in-medium
cross sections depend – as the vacuum ones – only on s and use the σ ≈ σ1 scheme in which the
in-medium cross section is given by

σ(s) =
vrel,vac
vrel

σ (sfree) , (3.52)

including the flux factor correction. For the evaluation of sfree we choose the CM-frame of both
particles as a preferred frame of reference. Therefore we boost with the full kinematics to this
frame and evaluate there sfree. The decision for the final state momenta is performed according
to the algorithm presented in appendix B.2.
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3.6 Self energies

3.6.1 Imaginary part of the self energy

In our ansatz, the imaginary part of the self energy Π is given by

ImΠ = −
√
pµpµ (Γcoll(p,~r, t) + Γfree,P.b.(p,~r, t)) (3.53)

where Γfree,P.b. denotes the Pauli-blocked free decay width of the regarded particle and Γcoll

denotes the collisional broadening of the considered particle due to 2- and 3-body scattering
processes. For calculations at low density and in the approximation that the nucleus stays close
to its ground state, one can approximate the collisional broadening by

Γcoll(p,~r, t) =

∫

Fermi sea at ~r
σ(p, p′) vrel(p, p

′)
d~p ′

(2π)3
, (3.54)

where σ(p, p′) are vacuum cross sections and the dispersion relation for the particles in the Fermi
sphere is the vacuum one, i.e. p′0 = (~p ′ 2 + m2

N )1/2. This approximation for Γcoll is first order
in density since the cross sections are not density dependent. To get a self-consistent result,
one could now reinsert our first-order result for Γcoll into the cross section evaluation of eq. 3.54
and iterate the procedure until a self-consistent width was generated. Such an effort has been
performed for simpler systems with less reaction channels by, e.g., Frömel et al. [Fro07] for
quark matter and Lehr et al. [Leh02] for nuclear matter. However, this task is at present too
demanding within our model given the large number of possible channels and the large number
of involved particle species.

Cut-Off. If the mass of the resonance is smaller than the mass of its lightest decay channel,
then the contribution of the Pauli-blocked free width is vanishing Γfree,P.b. = 0. For numerical
reasons 14, we neglect also the collisional width Γcoll below this threshold15. This is justified
since the collisional broadening is anyhow small, especially at low masses.

The nucleon. For the nucleon, we have no information on the off-shell cross sections. Therefore,
we assume that the interaction cross sections with other particles are independent of the nucleon
mass; cf. appendix A.2 for details on the implemented cross sections. Henceforth, the collisional
broadening is also mass independent. In fig. 3.2, we show this mass-independent collisional
width for different nuclear densities. At low momentum (. 0.5 GeV) the curves show different
slopes and different threshold behaviors. In the region where the momentum is smaller than the
specific Fermi momentum (pf ∼ ρ2/3), Pauli blocking does not allow for any scattering process
to occur. Increasing the momentum, one slowly overcomes Pauli blocking and arrives in the
regime where the width is proportional to the number of scattering partners, i.e. proportional
to ρ. At 1 GeV momentum, one observes that the slopes of all four curves become already very
similar and the regime of Γ ∼ ρ is almost reached. Note, that according to our ansatz, the width
should vanish below the Fermi momentum and the spectral function should be proportional to a
δ function. However, we represent the δ-function in the numerical implementation by a Gaussian

14We want to avoid that resonances leave the nucleus with a mass lower than the mass of its lightest vacuum
decay channel. The resonance would then be stable in vacuum. This may occur if one performs simulations
which neglect the off-shell potential.

15As an example, let us consider the ∆ resonance: we set Γ = 0 for
q

(
p

m2 + ~p 2, ~p)2 < mN + mπ.
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Figure 3.2: Collisional width of the nucleon in symmetric nuclear matter of density ρ =

0.05, 0.10, 0.15, 0.20 fm−3 as a function of the nucleon momentum.

of 1 MeV width. Thus in fig. 3.2, the width does not go to 0 MeV but to 1 MeV below the
Fermi momentum.

D. Kalok [Kal07, cf. especially fig. 5.5] compared the width discussed above with the width
obtained with a self-consistent Hartree-Fock method. He shows that both models yield similar
results for momenta larger than the Fermi momentum. However, the more sophisticated model
generates also a width below the Fermi momentum since it also includes the gain contribution
to the width. This leads to a smearing of the Fermi sphere and to a high-momentum tail in the
momentum distribution. The high-momentum tail is not generated in our simplified approach.

The baryon resonances. As already pointed out by Effenberger [Eff99a], the collisional width
of the ∆ within a σρv ansatz differs from the results of Oset et al. [Ose87]. Analogous to fig. 12
of [Ose87], we choose a special kinematical situation for our study. In an isotropic medium, the
width is a function of both E∆ and |p∆|. However, we now want to assume that the ∆ has been
excited by a pion colliding with a nucleon out of the Fermi sea. Due to this, an average E∆

and |p∆| can be evaluated as soon as we fix the pion energy. Varying the energy of the pion, we
henceforth follow a special cut in the (E∆, |p∆|) plane. This cut is given by

|~p∆| = <
√

(~pπ + ~pN )2 >Fermi sea=

√

~p2
π +

3

5
p2
F =

√

E2
π −m2

π +
3

5
p2
F , (3.55)

E∆ = < Eπ +EN >Fermi sea= Eπ +
3

5

p2
F

2mN
+mN , (3.56)

where pF denotes the Fermi momentum. For the ∆N → ∆N and ∆N → NN reactions
Effenberger [Eff99a] proposed a single-pion exchange model as detailed in appendix A.2.1 where
also plots of the resulting cross sections are shown. In fig. 3.3 we compare our result including this
single tree-graph model to the results of Oset et al.. The total width obtained within our model
is represented by the double dashed line and must be compared to the result of Oset and Salcedo
(solid curve) which is phenomenologically consistent. Obviously, our model underestimates the
collisional width considerably at low pion energies and predicts considerably larger width at
high pion energies. Note that the Oset model should not be used for too high energies16. While

16We assume a validity range given by the plot ranges in [Ose87]: Tπ / 0.35 GeV
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Figure 3.3: [color online] The left panel shows a comparison of the collisional width of the ∆ in

comparison to the result of Oset and Salcedo [Ose87] at ρ = 0.75ρ0 fm−3. We choose analogous
kinematics to fig. 12 of [Ose87]. We assume that the ∆ was excited by a πN collision. The
energy of the ∆ is then a function of the kinetic energy of the pion Tπ. On the right panel,
we show only the quasi-elastic width for different model approaches.

there is at least qualitative agreement for the 2-body absorption contributions (dashed and
dashed-double-dotted), the quasi-elastic contribution (dashed-dotted vs. short-dashed) shows
differences in shape and absolute magnitude. To investigate this QE-width further we have
compared in the right panel of fig. 3.3 different approaches to estimate this width. The solid
and dashed lines show the result of the 1π-exchange model as presented in appendix A.2.1 for
the two parameter sets:

set # 1: Λ = 0.6 GeV, f∆∆π = 4/5fNNπ ,
set # 2: Λ = 1.2 GeV, f∆∆π = 9/5fNNπ .

Both show the same qualitative behavior, but differ in the absolute magnitude. In former code
versions, the elastic ∆N → ∆N cross section was assumed to be same as the NN → NN one.
The dotted curve shows the result within this assumption where the NN → NN cross section
has been charge averaged. However, the center of mass energy in NR → NR scattering is
shifted by mR −mN in comparison to NN → NN scattering. As an educated guess one might
therefore assume

σNR→NR(
√
s) = σNN→NN (

√
s−mR +mN ) , (3.57)

where mR is the mass of the incoming resonance. The qualitative behavior and absolute magni-
tude of this educated guess (dashed-dotted curve) is similar to the 1π exchange model (dashed
and solid curves). Note that the ∆N → ∆N cross section and especially the coupling con-
stants including two ∆’s are basically unknown and not accessible for a direct measurement.
The comparison with NN elastic scattering shows that our estimate looks reasonable. However,
one might ask why there is such a discrepancy, both qualitatively and quantitatively, to the
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Figure 3.4: The upper figure shows schematically the type of diagrams being included in the
work of Oset and Salcedo [Ose87]. The double-lines represent ∆ propagators, the solid ones
nucleon propagators and the wavy ones pion propagators. This picture is taken from the work
of Oset and Salcedo [Ose87, fig. 2].

result obtained by Oset and Salcedo who focused on so-called RPA-ladder-diagrams as shown
in fig. 3.4. They accounted for loop contributions and short-range correlations but not for a
direct π∆∆ coupling. However, this direct π∆∆ coupling is in our estimate found to be siz-
able. We emphasize that the simple tree-graph model for N∆ → N∆ as detailed in appendix
A.2.1 should not be taken too serious before one really evaluates the impact of this tree-graph
in a unitary coupled channel scheme. Nevertheless, the two approaches presented here – the
Oset/Salcedo RPA-approach and the 1π-exchange model approach according to appendix A.2.1
– include complementary model ingredients. In future, it might be interesting to include the
π∆∆ vertex in the Oset-and-Salcedo approach which is, however, out of scope for the present
work. Finally, we will have to compare the implications of our estimate to the ones of the Oset
model when analyzing πA and γ⋆A experiments to evaluate the quality of our assumptions.

The Oset/Salcedo model gives, additionally, a non-negligible 3-body contribution (solid green
curve), which has not been included in our approach. Note that the Oset/Salcedo model is not
applicable for energies higher than Tπ ≃ 350 MeV - so we can not use this model for a dispersion
analysis. Whenever there is a curve including this width, the real part is just given by the mean
field. Due to this we get a normalization error of the order of ±5%.

For all other resonances we include the inelastic cross sections detailed in appendix A.2.1.
In the following will use three different models to perform our calculations and evaluate

the influence of the in-medium change of the ∆ and other resonances on our observables. To
summarize the options:

mass-shift option. For the ∆ and other baryons, we use the implemented baryon-baryon reac-
tion channels (NR → NR, NR → NN , NR → NR′) and the ordinary vacuum decays
to determine the width. In this case we do not incorporate any explicit NN∆ → NNN
processes.

no mass-shift option. As the first option, but we use σNR→NR(
√
s) = σNN→NN (

√
s).

mass-shift+Oset option. As the first option, but we use different cross sections for the ∆ reso-
nance. The Oset/Salcedo model [Ose87] gives probabilities for a quasi-elastic ∆ collision,
a 2-body or 3-body absorption. These probabilities are then included as reaction rates in
the collision term17.

In fig. 3.5 and-3.6, we compare the collisional width of the four most prominent resonances in
γN scattering (P33(1232), S11(1535), D13(1520), F15(1680)) using the three different prescrip-
tions. The left panels of fig. 3.5 and 3.6 show the result for the collisional broadening including

17See appendix A.2.1 for details.
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Figure 3.5: The collisional width of the P33(1232) resonance in symmetric nuclear matter of

density ρ = 0.168 fm−3 as a function of resonance momentum and mass. The left panel shows
the result according to the mass-shift scenario, the middle panel shows the no-mass-shift result
and the right panel shows our adaptation of the collisional broadening according to Oset et
al. [Ose87].

the mass-shift, whereas the middle panel in fig. 3.5 and the right panels in fig. 3.6 show the
no-mass-shift result. One observes that the shifted cross section leads to more collisional broad-
ening, especially at low resonance momentum. For the ∆, the right panel of fig. 3.5 shows also
our adaptation of the collisional broadening according to Oset et al. [Ose87] which we assume
to be momentum independent and only mass-dependent.

Numerical implementation

As detailed before we assume that the nuclear matter is mostly undisturbed by the reaction
process such that we can treat the nuclear phase-space density as constant in time. Additionally,
we approximate the nuclear phase space density by a Fermi sphere at position ~r. With this
prerequisites, the width Γ(~r, p) according to eq. 3.54 depends only on the neutron- and proton-
density at position ~r, the mass and the absolute three-momentum of the resonance. To save
CPU-time, we tabulate the width for each resonance as a function of these four variables with
a grid size of

∆|~p| = 40 MeV (3.58)

∆m ≃ 15 MeV (3.59)

∆ρproton = ∆ρneutron = 0.025 fm−3 (3.60)

Since we later want to use the width for a dispersion relation analysis we need a very large grid
size in m (400 grid points) and we need a large grid size in |~p| (75 grid points) for high resonance
momenta. For the density dependence only a few grid points (5 points) are needed since the
collisional width is anyhow close to linear in the density. Altogether we need for each of the 31
non-strange resonances a grid of size 400 × 75 × 52. On this grid we store both the collisional
width and the Pauli blocked free width. Even in single precision, this array causes roughly 180
MB memory usage. To evaluate Γ(~r, p) we use a Monte Carlo algorithm with 2000 integration
points. The tabulation of the width takes roughly 1.5 CPU days per resonance on a Dual-Core
AMD Opteron 3.0 GHz.
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Figure 3.6: The collisional width of the D13(1520), S11(1535) and F15(1680) resonances in sym-

metric nuclear matter of density ρ = 0.168 fm−3 as a function of resonance momentum and
mass. The left panels show the result according to the mass-shift scenario, whereas the right
panels show the no-mass-shift result.
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Given this large cost for the numerical implementation, one must raise the question whether
this effort pays off or whether we could also use a more simplified prescription, as e.g. using an
average σ to evaluate the collisional broadening. We will address this issue in sec. 7.2.2, where
we compare the results of quasi-elastic electron scattering obtained using the full model for Γcoll

to the results obtained in a more approximate model.

3.6.2 Real part of the self energies

In the same line as J. Lehr [Leh03, cf. chapter 3] we demand that at the pole energy, the
off-shellness is given by the mean-fields. Henceforth, we demand that at the pole

ppole
0 =

√

~p 2 + (m0 + Umf (~p))2 . (3.61)

such that

ReΠ(ppole
0 , ~p) = 2m0Umf (~p) + Umf (~p)2 . (3.62)

In the following, we construct the off-shell behavior of this real part via dispersion relations.

Dispersion relations

Demanding that the self energy is an analytic function of p0, we can connect the real part of the
self energy to its imaginary part. To fix the real part of the self energy at the pole, we choose a
once-subtracted dispersion relation which is based on Cauchy’s relation18. We choose a contour
Cǫ as depicted in figure 3.7 to express the self energy as a contour integral

Π(p)

p0 − ppole
0 (p)

= limǫ→0
1

2πi

∮

Cǫ

dp′0
Π(p′0, ~p)

(p′0 − ppole
0 )(p′0 − p0)

. (3.63)

Applying complex calculus, we get in the limit of ǫ→ 0

Π(p) =
Π(ppole

0 , ~p)

2
+
p0 − ppole

0

πi
℘

∫ ∞

−∞
dp′0

Π(p′0, ~p)

(p′0 − ppole
0 )(p′0 − p0)

+ C∞ , (3.64)

where C∞ denotes the contribution of the semi-circle at ∞ and ℘ denotes a principle value
integral. The real and imaginary parts of the self energy are given by

ReΠ(p) = ReΠ(ppole
0 , ~p) +

p0 − ppole
0

π
℘

∫ ∞

−∞
dE′ ImΠ(p′0, ~p)

(p′0 − ppole
0 )(p′0 − p0)

+ReC∞ (3.65)

ImΠ(p) = ImΠ(ppole
0 , ~p) − p0 − ppole

0

π
℘

∫ ∞

−∞
dp′0

ReΠ(p′0, ~p)

(p′0 − ppole
0 )(p′0 − p0)

+ImC∞ . (3.66)

In the numerical realization, we approximate the dispersion integral for ReΠ by

ReΠ(p) = ReΠ(ppole
0 , ~p) +

p0 − ppole
0

π
℘

(
∫ E1

Emin

dp′0
ImΠ(p′0, ~p)

(p′0 − ppole
0 )(p′0 − p0)

+

∫ E2

E1

dp′0
ImΠ(p′0, ~p)

(p′0 − ppole
0 )(p′0 − p0)

E2 − p′0
E2 − E1

)

(3.67)

18for details see in particular [Bjo93, chapter 18.1].
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Figure 3.7: The contour Cǫ which is stretching along the Re p′0 axis and closing at infinity.

with the cut off parameters E1 = 5 GeV and E2 = 7 GeV. The value of Emin is chosen such
that it corresponds to the cut-off’s for the width.

3.7 Spectral functions

Given the information about the real and imaginary parts of Π, the spectral function can be
readily evaluated and is given by

A(p) =
1

π

−ImΠ(p)

(p2 −m2
0 − ReΠ(p))2 + (ImΠ(p))2

. (3.68)

This spectral function is normalized to
∫ ∞

−∞
A(p)d(p0)

2 = 1 . (3.69)

Since we demand Γ = 0 for p0 < Emin, the normalization integral can be written as
∫ ∞

Emin

A(p)2p0dp0 = 1 . (3.70)

3.7.1 Numerical results for the nucleon

In fig. 3.8, we show the normalization of the spectral function as function of the nucleon momen-
tum at a sample density of ρ = 0.15 fm−3. It is fulfilled up to a 1% level. Fig. 3.9 demonstrates
the shape of the spectral function for different momentum cuts. Obviously, the spectral functions
is broadened due to the larger width when going to larger momenta. Note that we introduced a
lower cutoff for the nucleon mass at mmin = 0.4 GeV - this is needed to prevent nucleons being
propagated to negative masses during the time evolution. Also for a width of 0.15 GeV, this
cut has only a minor influence.

3.7.2 Numerical results for the baryonic resonances

Normalization

In fig. 3.10, the normalizations of the spectral functions of the baryonic resonances are shown
on the interval p0 ∈ [0, 6.5] GeV and at vanishing density (upper panel) and finite density
ρ = 0.15 fm−3 (lower panel). In the upper panel, the solid line shows the result for the full
calculation. The dotted curve does not include the real parts of the spectral functions, and
in the dashed one also the additional cut-of function Fab has been neglected. Obviously, the
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Figure 3.8: The normalization of the spectral function of the nucleon in symmetric nuclear matter

of density ρ = 0.15 fm−3 as a function of the nucleon momentum.
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Figure 3.10: The upper panels show the normalization of the spectral function of non-strange
baryons for the full model (solid), without a consistent real part (dotted), and additionally
without the additional cut-off Fab (dotted line) for a resonance momentum of |~p| = 0.6 GeV.
The upper plot shows the result for density ρ = 0 and the lower one for ρ = 0.15 fm3. The
resonances are labeled by their ID as given in table 3.1 on page 30.

normalization condition is considerably improved by the inclusion of a proper real part for the
self energy Π. In this case the normalization is fulfilled up to a 2% level; the missing 2% may also
be due to our finite integration interval. When one neglects the real part of Π in the spectral
function, very large normalization errors occur: Note that normalizations larger than 1 hint
to errors, normalizations smaller than 1 may in principle also be due to the finite integration
range. However, resonance strengths of more than 20% at masses higher than 6 GeV are rather
unexpected and not very physical. We emphasize that in the previous calculations (in particular
in [Eff99a] and [Leh03]), the real parts of the resonance self energies have not been included for
the resonance states.

In the lower panel, we see that the spectral functions for both the mass-shift and the no-
mass-shift scenario are properly normalized up to a 2% − 5% level.

Spectral shape

Let us now come back to the additional cut-off Fab which was introduced in the preceding
section 3.2.2. We study the dependence of the resonance spectral function on this cut-off at a
fixed resonance momentum of 0.4 GeV. In figures 3.11-3.12, we show the spectral functions of
six sample resonances for both ρ = 0 and ρ = 0.15 fm−3.

Let us focus on the zero-density case which is shown in figure 3.11. The dotted line denotes the
result without cut-off, the dashed the one with cut-off. Both do not include a real part for the
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Figure 3.11: Spectral functions of the baryonic resonances for three different scenarios at ρ = 0:
with the full model (solid curve), with ReΠ excluded (dashed curve), with ReΠ excluded and
without Fab (dotted curve). The absolute momentum is chosen to be |~p| = 0.4 GeV.
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Figure 3.12: Spectral function with the full model at ρ = 0.0 fm−3 (solid curve) and at ρ =

0.15 fm−3 for the mass-shift (dashed curve), no mass-shift (dashed) and mass-shift+Oset
(dashed-dotted) options of the in-medium self-energies. The absolute momentum is chosen to
be |~p| = 0.4 GeV.
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self energy. One observes that the cut-off itself has only a minor influence on the spectral shape,
except for the S11(2090) resonance which has a large ρN branching ratio. For this resonance,
the old width parametrizations resulted in extraordinary unphysical values of more than 1 GeV
at large off-shell masses. We therefore had to regulate this width in order to perform the
dispersion integrals. The solid curve denotes the result with the proper real part included. Here
one observes larger differences than the ones induced by the cut-off. Obviously, the area under
the curves, which corresponds to the integral strength of the spectral functions, is modified.

In figure 3.12, we compare the different scenarios for the in-medium modifications of the
width to the vacuum spectral function (solid line). For all scenarios (mass shift, no mass shift,
mass-shift+Oset model), the spectral shape is shifted towards lower energies due to the slightly
attractive potential at |~p| = 0.4 GeV. Additionally, the peak height is decreased due to a larger
width caused by the collisional broadening. Including the mass shift of eq. 3.57, the resonances
are broadened and the peak height is decreased as compared to the no-mass-shift case. For
the ∆ we show also the non-normalized spectral function which results when using the Oset
model for the ∆ width. As compared to the other two scenarios, the spectral shape is broader.
Especially at low masses, there is more strength due to the stronger ND → NN absorption and
due to the three-body absorption channel.

Impact of the cut-off parameters

Finally, we want to discuss the cut-off parameters which have been introduced in eq. 3.67 to cut
the dispersion integrals. And the question arises: how sensitive are our results on the cut-off
parameters E1 = 5 GeV and E2 = 7 GeV? We choose the ∆ resonance as a show-case and
study the real part while varying the parameters. In fig. 3.13, we show the difference of the
results for the parameters E1 = 3 GeV, E2 = 5 GeV and E1 = 4 GeV, E2 = 6 GeV to the
standard result normalized to the standard result. We conclude that in the most relevant region
(m ≈ 1.1− 1.4) the deviation is within an acceptable level. We note that the variation obtained
with the E1 = 4 GeV, E2 = 6 GeV set is almost everywhere only ca. 8%, the sensitivity being
thus rather moderate.

3.7.3 Exotic baryons and mesons

For the mesons and baryons with strange or charm quark content, the real parts of the self
energy have been neglected and no collisional broadening has been included.

3.8 Nuclear ground state

The target nucleus is treated within a local Thomas-Fermi approximation as a Fermi gas of
nucleons bound by a mean-field. In position space the nucleons are distributed according to a
given density distribution. In momentum space, we assume that the nucleons occupy a sphere
of radius pf . The local Fermi momentum pf (~r) for neutrons and protons is given by

pn,p
f (~r) = 3

√

3π2ρn,p(~r) . (3.71)

Density profiles For 16
8 O, 18

8 O, 27
13Al, 40

20Ca, 44
20Ca, 197

79 Au and 207
82 Pb we have implemented

density profiles ρ(r) according to the parametrizations collected in ref. [Nie93b], which are of
Woods-Saxon type for heavier nuclei and of harmonic-oscillator type for lighter ones. The
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Figure 3.13: The impact of the cut off parameters E1 and E2 on the evaluation of the real

part of the ∆ self energy at density ρ = 0.15 fm−3. The two different panels show the
relative difference for the results obtained with E1 = 3 GeV, E2 = 5 GeV (left panel) and
E1 = 4 GeV,E2 = 6 GeV (right panel) when compared to the result obtained with the
standard cut-off.

proton densities are based on the compilation of ref. [De 74] from electron scattering. The
neutron densities are provided by Hartree-Fock calculations.

Additionally, we implemented for comparison Woods-Saxon density distributions

ρn(r) =
ρ0

n

1 + exp((r −Rn)/an)
(3.72)

ρp(r) =
ρ0

p

1 + exp((r −Rp)/ap)
, (3.73)

with the parameters given in table 3.5 [Len05]. As will be shown in sec. 6.4, the larger neutron
radii of heavy nuclei play a relevant role in the double charge exchange (DCX) of pions in the
interaction with a nuclear target. For the deuteron we implemented special momentum and
density distributions which will be addressed in sec. 8.4.1.

Evaluation of the baryon densities based on the test-particle densities The real density
must be evaluated out of the test-particle density. As a numerical trick, we convolute the test-
particles with a Gaussian, i.e. we smear the test-particle, to get a smooth density distribution.
The smearing vector ~σ = (σx, σy, σz) is chosen such that it equals the grid-spacings. The density
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nucleus ρ0
p[fm

−3] ρ0
n[fm−3] Rp[fm] Rn[fm] ap[fm] an[fm]

16
8 O 0.080 0.081 2.607 2.615 0.490 0.469
40
20Ca 0.079 0.081 3.731 3.707 0.490 0.469
56
26Fe 0.076 0.082 4.170 4.263 0.481 0.474
103
45 Rh 0.071 0.083 5.194 5.358 0.474 0.478
197
79 Au 0.064 0.086 6.538 6.794 0.465 0.483
207
82 Pb 0.064 0.086 6.649 6.920 0.464 0.484

Table 3.5: Parameters of the Woods-Saxon parametrizations presented in eq. 3.73 which are
obtained within the Hartree-Fock calculations of Lenske [Len05]. In principle, parameters for
all stable nuclei are included in the GiBUU code. We present here only those ones which are
being addressed in this thesis.

at ~r = (x, y, z) is then given by a sum over all test-particles 19

ρ(~r) =
∑

i

1
√

2πσ2
x

√

2πσ2
y

√

2πσ2
z

e
−

„

(xi−x)2

2σ2
x

+
(yi−y)2

2σ2
y

+
(zi−z)2

2σ2
z

«

. (3.75)

Consequently, the density profile depends on the value of σ. This value must be chosen such that
there are only minor fluctuations within the density profile. To decrease σ, one must therefore
increase the statistics by choosing large numbers of ensembles (> 1000). As an example, we
show in fig. 3.14 the density profile of a 16

8 O-nucleus with two different values of σ and two
different numbers of test-particles. In this figure, it becomes obvious that the size of σ has a
definite impact on the density profile of the light Oxygen nucleus. For σ = 0.4 fm, the number
of ensembles used for the dotted curve is obviously too small - the fluctuations are too high.
For σ = 0.8 fm, both the curve with 5000 ensembles (dashed) and the one with 500 ensembles
(dashed-dotted) have very little fluctuations. However, the smearing width is now so large
that the surface of the nucleus is washed out. Obviously, the result with many ensembles and
small smearing width (solid line) represents the best approximation to the underlying density
parametrization (open squares) according to eq. 3.73. In the following, we choose the smearing
width to be of the order of 0.4 fm.

Binding energies. The binding energies depend on the density, therefore also on the smearing
width σ. The larger the smearing, the smaller the binding energy since the average density
decreases. However, for the above example of an Oxygen nucleus the difference is only of the
order of 0.8 MeV.

The binding energy is obtained by representing a nucleus of atomic mass A by A×N (N is
the number of ensembles) test-particles. Then the binding energy is given by a sum over the
test-particle energies taking into account the so-called rearrangement terms R (cf. [Tei96, pages

19Note, that we use in the actual numerical implementation an additional cut-off for the Gaussians (C =
√

5 fm)
such that

1√
2πσ2

e
−

(xi−x)2

2σ2 → 1

N Θ (C − |xi − x|) e
−

(xi−x)2

2σ2 . (3.74)

The factor N represents the proper normalization.
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Figure 3.14: The density of a 16
8 O nucleus weighted by r2 along the x-axis. The solid and

dashed curves represent calculations with 5000 ensembles, the dashed-dotted and dotted ones
are produced with only 500 ensembles. Concerning the size of the smearing width, the solid
and the dotted ones represent σ = 0.4 fm, the other two σ = 0.8 fm. The open squares
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76ff.]) 20

Ebind

A
=

1

A×N

A×N∑

i

(
p0

i +R(pi)
)
−mN . (3.76)

Note that the contribution due to the Coulomb potential is not included in the binding energy.
In fig. 3.15, we compare the results obtained with σ = 0.4 fm, 5000 ensembles and the EQS 5
potential to the sum of the Bethe-Weizsäcker volume and surface term. The asymmetry energy
and pairing energy are neglected. Our results show an over-binding by ca. 1.5 MeV for all
nuclei. Performing a fit to our data with the Bethe-Weizäcker parametrization

Ebind = avA− asA
2
3 , (3.77)

we find

av = 15.8 ± 0.1 MeV , (3.78)

as = 13.5 ± 0.4 MeV . (3.79)

The resulting volume term av is in accordance to the standard value (e.g. [MK94, page 49]), but
the surface term as comes out too low by approximately 5 MeV which explains the too strong
binding energies. However, for our needs this level of agreement is sufficient given the generally
large energy transfers to the target nucleons21. Comparing to Effenberger’s results [Eff99a,
fig. 3.8] for the binding energy obtained with the former numerical implementation, we find
satisfying quantitative agreement.

20Confer subroutine evaluateBindingEnergy theiss in module checks.f90 for the numerical implementation.
21An improvement to this has recently been implemented by B. Steinmüller [Ste07].
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Figure 3.15: The binding energies per nucleon of 16
8 O, 40

20Ca, 56
26Fe, 103

45 Rh and 207
82 Pb for the

Wood Saxon density distribution (full circles) and the density distributions according to the
ones collected in ref. [Nie93b] (open circles). The solid line represent the sum of volume and
surface term of the Bethe-Weizäcker formula [Pov99]. The dashed curve represents a Bethe-

Weizäcker fit (Ebind = avA + asA
2
3 ) to our result for the Wood-Saxon density, which gives

av = 15.8 ± 0.1 MeV and as = 13.5 ± 0.4 MeV.

Ground state stability. A problem already addressed by Effenberger [Eff99a] is the stability
of the ground state. The density distributions discussed above do not represent the ground
state density distributions according to the implemented potentials. The potentials are local
– therefore, the ground state according to the potentials must be perfect spheres of constant
density. Already in [Eff99a], an oscillation of the root-mean-square (RMS) radius in time was
observed. Stable oscillations show that no energy loss due to numerical friction occurs and this is,
therefore, a good signature for stable numerics. We repeated the oscillation measurements and
the results are shown on the upper panel of fig. 3.16. The oscillation frequency depends on the
smearing width σ, and amounts to ca. 22 fm/c. In the case of σ = 0.4 fm and 5000 ensembles,
the RMS-radius returns to its initial value within an accuracy better than 0.025 fm/c. On the
lower panel of fig. 3.16, the binding energy is shown as a function of time during the oscillation
period. We observe that the energy conservation is fulfilled within the order of 0.6 − 1.1 MeV.
This accuracy is acceptable for our needs since we usually deal with several hundred MeV’s
energy transfers during the reactions. After one oscillation, the binding energy comes very close
to its initial value. We conclude that the numerics behaves properly and very similar to what has
been shown for the previous code version in [Eff99a]. Furthermore, the oscillating behavior can
not be much improved by smaller values of σ. The oscillations may, however, lead to improper
results. E.g. for π absorption on nuclei, the size of the nucleus is crucial. Henceforth, the
oscillations will have a definite impact on the total absorption cross sections.

In order to suppress the undesirable oscillations, we can within the ground state assumption -
in particular within the perturbative mode22- freeze the test-particles which represent the nucleus
and thus kill the oscillations hereby.

22cf. sec. B.1 for the definition of real and perturbative particles and an explanation of the perturbative mode.
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Figure 3.16: The upper panel shows the RMS radius
√

(
∑N

i=1 r
2
i )/N of 40

20Ca as a function of

time. The lower panel shows the binding energy per nucleon of 40
20Ca as a function of time.

In both panels, three different calculations are shown: 5000 ensembles and σ = 0.4 fm (solid
lines), 1000 ensembles and and σ = 0.4 fm (dashed line), 1000 ensembles and and σ = 1 fm
(dashed-dotted line). For the initialization, the Wood-Saxon density distribution was used.
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3.9 Details on the off-shell transport

In sec. 2.4, we introduced the concept of transporting broad particles. Each test-particle is being
propagated under the influence of the so-called off-shell potential. For the i-th test-particle it is
defined by eq. 2.33

∆µi(~r, p) =
∆µi(~ri(t0), pi(t0))

Γtot(~ri(t0), pi(t0))
Γtot (~r, p) . (3.80)

At production time of the i-th test-particle, we store the parameter

αi =
∆µi(~ri(t0), pi(t0))

Γtot(~ri(t0), pi(t0))
(3.81)

representing its offshellness at production time divided by the width of the particle at production
time. To propagate the test-particle according to eq. 2.21-2.23, we need to evaluate the four-
momentum and spatial derivatives of the Hamilton-function. The Hamilton function defined in
eq. 2.37 depends on the off-shell potential:

Hi =

√

(m+ ∆µi + V )2 + ~p2 . (3.82)

Hence derivatives acting on ∆µi have to be performed

∂∆µi(~r, p)

∂pµ
= αi

∂Γ(~r, p)

∂pµ
, (3.83)

∂∆µi(~r, p)

∂~r
= αi

∂Γ(~r, p)

∂~r
. (3.84)

Eventually, the resulting gradients acting on the width create major difficulties. As pointed out
in the end of sec. 3.6.1, the tabulation of the width for all non-strange baryons costs roughly
50 CPU days. This long computation time is mainly needed to achieve high enough statistics
in the Monte-Carlo integrations, such that we get a smooth tabulation which can then be used
for the derivatives. Large fluctuations, i.e. errors of the Monte-Carlo integration, in the width
tabulation lead to large derivatives of the width. Finally, this yields test-particles which are
accelerated to velocities greater than the speed of light. Additionally we get some test-particles
which become tachyons since the off-shell potential becomes too stiff for large off-shell parameters
αi. To prevent this feature, we additionally introduce a maximum off-shellness by demanding
|αi| < 5, which translates into a maximal and minimal mass at production time. However,
this cut should not have any impact on any observable since the spectral function is anyhow
small at 5Γ away from the pole mass. Additionally, we cut on the resonance spectral functions
demanding that mpole + ∆µi(~ri(t0), pi(t0)) is larger than the masses of the lightest resonance
decay products in vacuum. E.g. for a ∆ we get

m∆ + ∆µi(~ri(t0), pi(t0)) > mπ +mN (3.85)

⇒ ∆µi(~ri(t0), pi(t0)) > mπ +mN −m∆ . (3.86)

For the nucleons we choose 700 MeV as a minimal mass. These cuts simplify our numerics and
are justified by the smallness of the resonance and nucleon spectral functions below the cuts.

The implementation of an off-shell potential would be very much simplified if the in-medium
widths of the particles were constant in momentum and mass. Then there would be no problem
due to tachyons, since the offshell potential would not give any contribution to ṙ = ∂H/∂p. In
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sec. 7.2.2 we compare the consequences of a simplified collisional broadening on quasi-elastic
electron scattering, and conclude that a simplified procedure must go hand-in-hand with a fine-
tuning of a free-parameter which in the worst case must even be readjusted for each specific
reaction. Hence a simplified collisional broadening does not represent a good approximation to
be used. The right questions to be asked, are the following: ‘How large is the impact of the off-
shell-potential on our results? Is it negligible?’ Given that the interaction rates are high, then
the time in-between collisions would be short. Hence there would also be a small mass change
in-between collisions and neglecting the off-shell potential might even be a good approximation.
We will address this question in sec. 7.4.1, were we study the impact of the off-shell potential
on photon induced pion production.

Numerical results As a test of the off-shell propagation we want to consider six different
scenarios:

test #1 A ∆ is produced in the center of a Calcium nucleus with momentum ~p = 0.5 GeV ~ex.

test #2 Same as test #1 but at a higher momentum of 1.5 GeV.

test #3 A ∆ is initialized at position ~r = (−8, 1, 0) fm with momentum ~p = (0.5, 0, 0) GeV and
starting to propagate through the nucleus.

test #4 Same as test #3 but at a higher momentum of 1.5 GeV.

test #5 A nucleon is produced at the center of a Calcium nucleus with momentum 0.5 GeV.

test #6 Same as test #5 but at a higher momentum of 1.5 GeV.

For the initialization, we distribute the test-particle masses according to the full spectral
function. Thereafter, we propagate the test-particles according to their equations of motion,
in particular including the off-shell potential. The collision term is switched off during the
propagation to focus on the change of the mass-distribution of the test-particles due to the
off-shell potential. Fig. 3.17 shows the results for those six test scenarios23. The two top
panels show the tests #1 and #2 where ∆ test-particles propagate out of the nucleus. One
observes that the spectral functions are deformed during the propagation such that the final
spectra (solid curves) resemble the vacuum spectral functions (dotted curves). Note that the
initial spectral functions for 0.5 and 1.5 GeV momentum differ quite considerably due to the
momentum-dependent in-medium width, however the final ones are almost identical since the
vacuum width is momentum-independent. Especially in the top left panel, the influence of
the low-mass cut-off on the initial spectral function at mπ + mN becomes visible. Since the
test-particles, which are initiated at this low-mass cut-off, all propagate to higher masses, the
cut-off reappears in the final spectra at roughly 1.15 GeV - a slightly higher mass than the sum
of pion and nucleon mass. The middle panel depicts tests #3 and #4 where ∆ test-particles
propagate through the nucleus. During this propagation, the spectral functions are completely
deformed (dotted curves). But when all test-particles have finally left the nucleus, then the
original spectral function is restored which proves the correct numerical implementation. The
lower panels show tests #5 and #6: the propagation of a nucleon with 0.5 GeV (lower left panel)
and 1.5 GeV (lower right panel) out of Calcium. Obviously most of the nucleon test-particles
propagate back to mass-shell. However, there is also a tiny contribution of test-particles which
get caught in the nucleus due to the attractive nature of the off-shell potential for very negative

23Movies of the whole process can be found on http://gibuu.physik.uni-giessen.de/GiBUU/wiki/testOffshell.
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Figure 3.17: The upper panels show the results of the off-shell tests as described in this section.
The dashed curves represent the initial spectral functions, the full ones the final spectral
functions after propagation for a time of 40 fm/c. The dotted curve in the top panels depict
the vacuum spectral function of the ∆ resonance, whereas the dotted curve in the middle
panel show the spectra 20 fm/c, respectively 10 fm/c, after initialization.
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αi. These test-particles then propagate for all times within the nucleus (if the collision term is
switched off) and produce the low mass shoulder in the lower left panel.

CPU time
per time-step [s]

Propagating 200.000 ∆ test-particles without off-shell potential 29.5
Propagating 200.000 ∆ test-particles with off-shell potential 68.3
Propagating 200.000 nucleon test-particles with off-shell potential 69.4

Table 3.6: Average CPU time for one time-steps with 200.000 test-particles on a Single-Core
AMD Opteron 2.2GHz. For the above time measurements, the collision term has been switched
off.

Table 3.6 shows the average CPU-time being used for one time-step using 200.000 test-particles
representing the off-shell particle. Switching the off-shell potential on, we observe a slow-down
by roughly a factor 2.4 since we need to evaluate the derivatives of the width for the propagation
step. Therefore, we need to interpolate the 4-dimensional tabulation in all dimensions which
costs CPU time. Since the off-shell potential may become stiff, we also need to reduce the time-
step sizes from 0.25 to 0.05 fm/c, if the off-shell potential is switched on. This causes a factor
of 5 more time steps. Altogether the off-shell potential causes a slow-down of the propagation
step by approximately a factor of 12 both due to the increase in time steps and the increased
CPU time per time-step.
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Chapter 4

Interaction of electrons and photons with
nucleons

Overview: This chapter introduces a model for the electron- and photon-nucleon
interaction. The elastic scattering of virtual photons and nucleons is treated using
the latest form factor parametrizations based on recent Jefferson-Lab data, pion
production and resonance excitation rates are based on the MAID model.

4.1 Introduction

In the last preceding chapter, we have only addressed hadron-hadron interactions and hadron
decays. The topic of this chapter is the so-far untouched interaction of photons and electrons
with hadrons, in particular with nucleons. This sets the stage for the study of photons and
electrons interacting with nuclei, which will be addressed in the next chapter.

Due to the smallness of the electromagnetic coupling, we assume a dominance of one-photon
exchange (OPE) mechanisms in the electron-nucleon scattering. This assumption is also known
as Born approximation. Fig. 4.1 shows typical Feynman graphs for photon-nucleon scattering
and electron-nucleon scattering within OPE approximation visualizing the similar nature of both
processes. Both, electron scattering in OPE approximation and photon scattering would be fully
understood if it was possible to calculate the so-called hadronic current jµ, denoted by the ovals
in both graphs, from first principles. However, this is a formidable task within non-perturbative
QCD. A full understanding via ab initio calculations, e.g. via Lattice QCD, is not available so
far1. Alternatively, the experimental data have been interpreted in terms of hadronic degrees of

1For an introduction into the description of electromagnetic couplings to baryons within Lattice QCD see, e.g.,

jµ

q

l

l′ q

jµ

Figure 4.1: The upper figure shows photon-nucleon scattering (left panel) and electron-nucleon
scattering in OPE approximation (right panel). Both processes share the same photon-nucleon
interaction vertex. However, for the electron scattering process the Q2 = −qµqµ, i.e. the
virtuality, of the exchanged photon is non-vanishing. The yellow blobs within the panels
represent the hadronic current which is denoted by jµ.
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freedom. The idea of resonance excitations interfering with so-called background processes is the
most common model basis (for a recent review cf. [Bur05]). Also in our approach, we assume
a dominant contribution of the nucleon resonances and an additional background contribution,
which together add up to generate the hadronic current. Eventually we are interested in the
modification of this current within the nuclear medium. Recently, it was observed that the
extraction of nucleon form factors in electron-nucleon scattering via the so-called Rosenbluth
extraction method and via a method based on polarization transfer yield different results for
high four-momentum transfers (Q2 > 1.0 GeV2) [Jon00]. To solve this puzzle, also the influence
of two-photon exchange (TPE) processes is studied with increasing interest - see, e.g., the recent
articles [Kon06, Bra06, Arr07] and references therein. As we want to deal with rather low-Q2

processes, the effects of two-photon processes are neglected in this work.

This chapter is organized as follows. First, the matrix elements for the e−N and γN scattering
processes are introduced. In earlier BUU works performed by Falter [Fal04a] and Lehr [Leh03],
the so-called Hand convention [Han63] was exploited to connect electron and photon scattering.
After introducing this method, we will motivate why we follow a different procedure. There-
after, the different contributions to the hadronic current are addressed: quasi-elastic scattering,
single-pion production and, closely-connected, the excitation of baryon resonances. In the final
discussion of the total cross sections for photon and electron scattering off nucleons, the issue
of background extraction is being addressed. Prohibiting double-counting, we there have to ac-
count for the resonance contribution to pion production. Finally, we also discuss a non-resonant
2π contribution to photon induced reactions.

This chapter is meant to introduce the formalism for scattering of photons with free nucleons.
In the forthcoming chapter 5, we will then, based on the vacuum case, address the scattering of
nucleons being embedded in a nuclear environment.

4.2 Matrix elements

The matrix elements defined by the diagrams of fig. 4.1 are given by

Me−-induced = hadronic current × photon propagator × electromagnetic coupling

× electromagnetic current of electron

= jµ
−i gµν

q2
(−ie)v(l ′, tf )γνv(l, ti) , (4.1)

Mγ-induced = hadronic current × photon polarization vector × electromagnetic coupling

= jµǫ
µ(−ie) . (4.2)

Our notation is chosen according to fig. 4.1. The incoming and outgoing lepton momenta are
denoted l and l ′ and its spins ti and tf , the spins of the incoming nucleon and the outgoing
hadrons are si and sf . The electron charge is denoted e, q is the photon momentum.

In the following, polarized nucleons or photons will not be considered. Thus one can sum
and average over all incoming and outgoing spins and polarizations. With this prerequisite, the

[Lei93] and for recent progress on the γN → ∆ process see [Ale07].
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4.3 Photon flux and virtual photon cross sections

squared matrix elements are given by

|Me−-induced|2 =
1

2

∑

si,sf

[jµ(si, sf )j⋆ν(si, sf )]

︸ ︷︷ ︸

=hadronic tensor Hµν

× 1

q4
1

2

∑

si,sf

[
v(l ′, tf )γµv(l, ti)

(
v(l ′, tf )γµv(l, ti)

)⋆]
e2

︸ ︷︷ ︸

=leptonic tensor Lµν

, (4.3)

|Mγ-induced|2 =
1

2

∑

si,sf

[jµ(si, sf )j⋆ν(si, sf )]

︸ ︷︷ ︸

=hadron tensor Hµν

1

2

∑

λ

[ǫµ(λ)(ǫν(λ))⋆]

︸ ︷︷ ︸

=−gµν

e2 . (4.4)

In the equations above, we introduced the so-called hadronic tensor Hµν and leptonic tensor
Lµν . The latter can be simplified to2

Lµν = e2
1

2

∑

si,sf

v(l ′, sf )γµv(l, si)
(
v(l ′sf )γνv(l, si)

)⋆

= e2
1

2
Tr

[
/l ′ +me

2me
γµ/l +me

2me
γν

]

=
e2

8m2
e

(
m2

eTr[γ
µγν ] + Tr[/l ′γµ/lγν ]

)

=
e2

q4 2m2
e

(
m2

eg
µν + lµl ′ν + lν l ′µ − gµν l ′ · l

)
, (4.5)

where me denotes the electron mass. Furthermore, we can simplify the polarization sum of
eq. 4.4 by means of the QED Ward-identity3

∑

λ

[ǫµ(λ)(ǫν(λ))⋆] = −gµν . (4.6)

4.3 Photon flux and virtual photon cross sections

As has been shown in the previous section, e−N and γN scattering processes share an identical
hadron tensor. To evaluate the cross section for one of these processes, this hadron tensor is con-
tracted with either the lepton tensor or the polarization vectors, multiplied by the corresponding
flux factor and integrated over the corresponding finale-state phase-space. In this approach, it
is just the hadron tensor which reflects the similar nature of both processes.

However, there is also a method to connect directly the electron cross-section to the photon
cross-section. Hereby one defines a flux of photons, which is sent out by the incoming electron
and then the electron cross section is defined to be a product of this flux and the photon-nucleon
cross section. How to split the electron cross section into flux and virtual photon cross section is
a matter of convention. One of the most prominent conventions is the so-called Hand convention
(HC) [Han63], in which the differential cross section for electron scattering is given by

d2σ

dl ′0dΩl ′
= Γv(σT + ǫσL) , (4.7)

2For numerical implementation see leptonTensor.f90.
3For details see e.g. [Pes, chapter 5.5].
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where

Γv =
α

2π2

l ′0

l0
K

Q2

1

1 − ǫ
, (4.8)

withK = (s−Mn)/(2 Mn), denotes the flux of virtual photons. The variable s is the Mandelstam
s and Q2 = −q2, with q being the photon four momentum.

The quantity

ǫ =

(

1 + 2
~q 2

Q2
tan2

(
θl

′

2

))−1

(4.9)

represents a measure for the longitudinal and transverse polarization of the virtual photon. It
is zero for Q2 = 0, i.e. for a real photon. The factors σT /σL in eq. 4.7 denote the cross section
for the scattering of a transversely/longitudinally polarized photon with a nucleon. So the
cross-section for electron-induced processes is directly proportional to the photon-induced one.

HC has been used in the precursor works of Falter [Fal04a] and Lehr [Leh03]. It is a very
convenient method, if one starts out with a known parametrization of the photon cross section
at Q2 = 0. Then one can parametrize the additional Q2 dependence to model σT (Q2), the small
σL can often be neglected. Finally, one obtains the electron cross section by multiplying with
the corresponding flux.

As a major drawback, HC is defined in the nucleon rest frame (NRF). Therefore, the electron
cross section must be constructed in this very frame and only there σv = σT + ǫσL can be
isolated. In the lab, the nucleon may have arbitrary momentum, e.g. due to Fermi motion
within a nucleus. Thus the cross section is not invariant and we obtain in the lab frame (for
details cf. appendix G.1)

σ = σNRF

√
pµpµ

∣
∣~q NRF

∣
∣

|~p q0 − p0~q |
, (4.10)

where q and p are the photon and nucleon four-momenta in the lab frame, qNRF is the photon
momentum and σNRF the cross section in the nucleon rest frame.

However, the whole procedure of boosting momenta from lab to nucleon rest frame is nu-
merically intensive and the potentials are all defined in the lab frame. Therefore, the direct
calculation of the matrix elements in the lab frame based on eq. 4.4 is for our needs more ap-
propriate and, most important, faster. Additionally, we aim to modify the hadronic tensors,
the flux and the phase space elements in the medium. So we anyhow have to evaluate the full
cross-section in the medium, instead of working with pre-parametrized σT and σL.

4.4 (Quasi-)elastic scattering

We start discussing the different reaction channels for γ⋆N scattering considering first the most
trivial case of the nucleon-photon interaction: the elastic scattering. In this process the photon
is simply absorbed by a nucleon. Due to kinematics, for a real photon this process can only
occur when scattering off a bound nucleon. If the target nucleon is bound, one, traditionally,
calls this a quasi-elastic scattering process since there is some energy loss involved owing to
binding effects. In later sections we will then also address resonance excitations, single-π and
double-π production.

Our notation for the γ⋆N → N process is chosen according to fig. 4.2: the in- and outgoing
nucleon momenta are denoted p and p ′, the photon momentum q and the masses of the in-
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Jµ
QE

p

p′
q

Figure 4.2: This Feynman diagram shows the absorption of a photon by a nucleon. The photon
momentum is denoted q, the in- and outgoing nucleon momenta p and p ′. The vertex is
parametrized by the functional Jµ

QE.

and outgoing nucleons m and m ′. In vacuum the masses of in- and outgoing particles are
identical, in the medium the masses may differ due to momentum-dependent potentials and
collisional broadening of the spectral function. Although this chapter deals primarily with the
vacuum case, we will keep the m and m ′ dependence explicitly to simplify the generalization
to the medium-case as presented in chapter 5. Our spinor normalization is chosen according to
Bjorken and Drell [Bjo93] (ū(p)u(p) = 1).

4.4.1 Construction of the vertex operator

In the following, we will mainly repeat the derivation of the vertex operator as has been pre-
sented in standard textbooks4. However, in contrast to the standard derivation, we will for a
later generalization keep track of the incoming and outgoing nucleon masses, although they are
identical in vacuum and given by m = m′ = mN .

The hadronic current

jµ = u(p ′, sf )Jµ
QEu(p, si) (4.11)

must be a Lorentz-vector, therefore also the operator JQE must transform as a Lorentz vector.
We start by constructing the most general form of the vertex. There are two independent four-
momenta which can be constructed out of the available three momenta q, p and p ′ – let us
choose q = p ′ − p and P = p ′ + p as our basis. The most general form of a parity-conserving
vertex is then given by

Jµ
QE = a qµ + b Pµ + c γµ + d σµνqν + e σµνPν (4.12)

with the scalar functions a(q, P ), b(q, P ), . . . , e(q, P ) and

σµν =
i

2
[γµ, γν ] . (4.13)

The term σµνPν can also be expressed as a linear combination of qµ and γµ terms:

u(p ′, sf )σµνPνu(p, si) =
i

2
u(p ′, sf )[γµ, Pνγ

ν ]u(p, si)

=
i

2
u(p ′, sf )[γµ, (p ′ + p)νγ

ν ]u(p, si) =
i

2
u(p ′, sf )

(
γµ(/p

′ +m) − (m ′ + /p)γ
µ
)
u(p, si)

=
i

2
u(p ′, sf )

(
2p ′µ − 2pµ − 2γµ(m ′ −m))

)
u(p, si)

= i u(p ′, sf )
[
qµ − γµ(m ′ −m)

]
u(p, si) . (4.14)

4cf., for example, Steve Ellis’ excellent lecture notes about particle physics [Ell08]
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As a next step the term including Pµ is expressed as a linear combination of γµ and σµνqν :

u(p ′, sf )σµνqνu(p, si) =
i

2
u(p ′, sf )[γµ, qνγ

ν ]u(p, si)

=
i

2
u(p ′, sf )[γµ, (p ′ − p)νγ

ν ]u(p, si) =
i

2
u(p ′, sf )

(
γµ(/p

′ −m) − (m ′ − /p)γ
µ
)
u(p, si)

=
i

2
u(p ′, sf )

(
(−/p ′γµ + 2pµ −mγµ) = i u(p ′, sf )

[
Pµ − γµ

(
m ′ +m

)]
u(p, si)

⇔ i u(p ′, sf ) Pµ u(p, si) = i u(p ′, sf )
[
σµνqν + γµ

(
m ′ +m

)]
u(p, si) . (4.15)

So choosing a linearly independent basis set, the operator can be reduced to

Jµ
QE = e2

(

F1γ
µ +

i

2mN
F2σ

µνqν + F3q
µ

)

(4.16)

with the functions F1(q, P ), F2(q, P ) and F3(q, P ), the square of the elementary charge e2 =
αQED/(4π) and the charge-averaged nucleon vacuum mass mN ≃ 0.938 GeV. Charge conserva-
tion at the vertex, i.e. qµj

µ = 0, yields

0 = u(p ′, sf )

(

F1/q +
i

2mN
F2σ

µνqνqµ + F3q
2

)

u(p, si) . (4.17)

The term σµνqνqµ is antisymmetric in µ and ν and the implicit sum over ν and µ is therefore
zero. Using

u(p ′, sf )/qu(p, si) = u(p ′, sf )(p − p ′)u(p, si) = u(p ′, sf )(m−m ′)u(p, si) (4.18)

we get

0 = u(p ′, sf )
(
F1(m−m′) + F3q

2
)
u(p, si) (4.19)

⇒ F3 =
F1(m

′ −m)

q2
. (4.20)

Finally, we get

Jµ
QE = e2

(

F1γ
µ +

i

2mN
F2σ

µνqν +
F1(m

′ −m)

q2
qµ

)

, (4.21)

which simplifies to

Jµ
QE = e2

(

F1γ
µ +

i

2mN
F2σ

µνqν

)

, (4.22)

since m′ = m = mN . The form factors F1 and F2 are the standard Dirac and Pauli form
factors5. There is only one independent Lorentz scalar in vacuum, such that both form factors
can be chosen to be functions of Q2.

5In some parts of the literature you will find another definition of F2: F2 → κF2 with κ being the anomalous part
of the magnetic moment of the nucleon (for the proton κ = µp − 1 = 1.793, for the neutron κ = µn = −1.913)
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Evaluation of the hadronic tensor

The hadronic tensor for QE scattering is given by

Hµν
QE =

1

2

∑

si,sf

u(p ′, sf )Jµ
QEu(p, si)

(
u(p ′, sf )Jν

QEu(p, si)
)⋆

(4.23)

=
1

2
Tr

[
/p ′ +m ′

2m ′ Jµ
QE

/p+m

2m
γ0(Jν

QE)†γ0

]

. (4.24)

Using eq. 4.15, we transform the current operator defined in eq. 4.22 to

Jµ
QE = αγµ + βµ (4.25)

with the scalar α and the 4-vector β given by

α = e2 (F1 + F2) ∈ R , (4.26)

βµ = −e2 F2

2mN
Pµ ∈ R

4 . (4.27)

In this notation, we get

8m ′mHµν
QE = Tr

[

(/p
′ +m ′)Jµ

QE(/p +m)γ0(Jν
QE)†γ0

]

(4.28)

= Tr
[
(/p

′ +m ′) (αγµ + βµ) (/p+m)γ0
(
α⋆γ0γνγ0 + (βν)⋆

)
γ0
]

(4.29)

= Tr
[
(/p

′ +m ′) (αγµ + βµ) (/p+m)
(
αγν + βν )] . (4.30)

The traces over the γ matrices can be evaluated using the following identities:

Tr [1] = 4 , (4.31)

Tr[γµγν ] = 4gµν , (4.32)

Tr[#odd number of γ’s] = 0 , (4.33)

Tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgµρ) . (4.34)

Thus we get

Hµν
QE =

1

8m ′m
Tr
[
α2
/p
′γµ

/pγ
ν + αmβν

/p
′γµ + βµβν

/p
′
/p+ βµmα/p

′γν

+m ′αβνγµ
/p+m ′mα2γµγν +m ′βµα/pγ

ν + βµβνm ′m
]

(4.35)

=
1

2m ′m

[
α2(p ′µpν + p ′νpµ − gµνp ′ · p) + αmβνp ′µ + βµβνp ′ · p+ βµmαp ′ν

+m ′αβνpµ +m ′mα2gµν +m ′βµαpν + βµβνm ′m
]

(4.36)

=
1

2m ′m

[
α2(p ′µpν + p ′νpµ − gµνp ′ · p+m ′mgµν) + βµβν(p ′ · p+m ′m)

+αβν(m ′pµ +mp ′µ) + αβµ(m ′pν +mp ′ν)
]

, (4.37)

which simplifies again due to m = m′ = mN to our final result

Hµν
QE =

1

2m2
N

[
α2(p ′µpν + p ′νpµ − gµνp ′ · p+m2

Ng
µν) + βµβν(p ′ · p+m2

N )

+mNα
(
βν(pµ + p ′µ) + βµ(pν + p ′ν)

)]
. (4.38)
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Form factors

The form factors F1 and F2 are connected to the so-called Sachs form-factors Ge and Gm, which
have in the Breit-frame6 an interpretation as charge form-factor and magnetic form-factor. Given

Ge(Q
2) = F1(Q

2) − Q2

4m2
N

F2(Q
2) , (4.39)

Gm(Q2) = F1(Q
2) + F2(Q

2) (4.40)

we obtain

F1(Q
2) =

Ge(Q
2) + Q2

4m2
N

Gm(Q2)

1 + Q2

4m2
N

, (4.41)

F2(Q
2) =

Gm(Q2) −Ge(Q
2)

1 + Q2

4m2
N

. (4.42)

The Sachs form factors have originally been determined using the so-called Rosenbluth method.
This method relies on the OPE approximation, in which the cross section for electron scattering
off a free nucleon is given by

dσ

dΩl′
= σMott

(

G2
E +

τ

ǫ
G2

M

) 1

1 + τ
(4.43)

with τ = Q2/(4m2
N ), ǫ = 1/(1 + 2(1 + τ) tan((θl′/2)) and the Mott cross section σMott. Plotting

the measured cross section as a function of 1/ǫ for a constant Q2, one can extract the form
factors by a linear fit to the resulting data points – the so-called Rosenbluth-extraction method.

Another, more modern, method relies on the polarization transfer to the recoiling nucleon.
Within this method the ratio of the electric to the magnetic form factor is proportional to the
ratio of transverse and longitudinal polarization of the final state nucleon

Ge

Gm
∼ Pt

Pl
. (4.44)

This ratio is considered to be a robust observable, since several systematic errors are expected
to drop out in the ratio. As a great surprise, one noted in JLab experiments [Jon00], that
the Rosenbluth method and the polarization method yield contradicting results. As has been
mentioned in the introduction of this chapter, this puzzle is nowadays attributed to the influence
of two-photon exchange processes which are now being studied with increasing interest [Kon06,
Bra06, Arr07].

There exists a recent parametrization of the Sachs form-factors according to Bradford et
al. [Bra06], the so-called BBBA05 parametrization, which does not include Rosenbluth data for
Q2 > 1 GeV2. In their publication, the Rosenbluth data are referred to as unreliable. We will
use this parametrization for all four Sachs form-factors (Gp

e , G
p
m, Gn

e , Gn
m), which are then given

by

Gn,p
e,m(Q2) =

∑2
k=0 akτ

k

1 +
∑4

k=1 bkτ
k

(4.45)

with the constants ak and bk as given in table 4.1.

6The Breit frame (or brick-wall frame) is the frame in which q0 = 0. For an elastic event, this corresponds to
the CM-frame.
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a0 a1 a2 b1 b2 b3 b4

Gp
e 1. -0.0578 0. 11.1 13.6 33. 0.

Gp
m 1. 0.15 0. 11.1 19.6 7.54 0.

Gn
e 0. 1.25 1.3 -9.86 305. -758. 802.

Gn
m 1. 1.81 0. 14.1 20.7 68.7 0.

Table 4.1: Parameters for the form factor parametrization according to eq. 4.45 deduced by
Bradford et al. [Bra06].

4.4.2 Vacuum cross sections

In the following we treat only the vacuum case for which m ′ = m = mN – the evaluation of the
in-medium cross section will be demonstrated in chapter 5.

Electron induced processes

In appendix D, different cross section formulas are derived for eN → eN scattering in vacuum
(cf. eq. D.9 and eq. D.11). The cross section for fixed electron scattering angle θl ′ is given

dσ

d cos θl ′
=

m2
e m

2
N

π(s −m2
N )

|~l ′|
r0 − |~r| cos θl ′

|M|2
∣
∣
∣
∣
∣
|~l ′|= r2−m2

N
2(r0−|~r| cos θ

l ′
)

. (4.46)

with r = p+ q and

|M|2 = LµνH
µν
QE . (4.47)

In fig. 4.3, the resulting cross section is compared to the experimental result obtained by Christy
et al. [Chr04]. One observes excellent agreement which proves the correct numerical implemen-
tation of the quasi-elastic cross-section in our model.

Photon induced processes

The cross section for the in-vacuum γN → N process is given by

σγN→N =
4m2

N

4
√

(qαpα)2
dp ′4

(2π)4
2πA(p ′2 −m2

N ) |M|2 (2π)4δ4
(
p+ q − p ′) (4.48)

=
4m2

N

4
√

(qαpα)2
2πA(p ′2 −m2

N ) |M|2
∣
∣
∣
∣
∣
p+q=p ′

. (4.49)

The spectral function of the free nucleon is a δ function which peaks at its vacuum mass. Thus
the absorption of a real photon by a nucleon is impossible due to kinematics, and the cross
section vanishes

σγN→N = 0 . (4.50)
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Figure 4.3: This figure shows dσ/dΩ for the elementary reaction ep→ ep as a function of Q2 for
two different beam energies (dashed line: 3.114 GeV, solid line: 1.148 GeV) of the incoming
electron. The data are taken from Christy et al. [Chr04].

Jµ
π

k
p′

p

q

Figure 4.4: The upper panel shows the vertex for photon induced single pion production. We
denote the photon momentum q, the in- and outgoing nucleon momenta p and p ′, the pion
momentum k. The vertex functional Jµ

π is chosen according to an ansatz by Berends et
al. [Ber67].

4.5 Single-pion production

Single pion production contributes to the total interaction probability of (virtual) photons and
nucleons, as soon as the center of mass energy exceeds the sum of nucleon and pion mass
(≈ 1.076 GeV). A comprehensive review on this topic can, e.g., be found in [Dre92]. In the
following paragraphs we primarily introduce the technical framework and emphasize on the
structure and the explicit evaluation of the hadronic vertex. The ansatz used to parametrize
the vertex structure is based on the work of Berends et al. [Ber67].

Our notation for single-pion production is chosen according to fig. 4.4: the nucleon momenta
are denoted p and p ′, the photon momentum by q, the pion momentum k and the masses of the
in- and outgoing nucleons m and m ′. The electron mass is denoted me, the in- and outgoing
lepton momenta are denoted l and l ′. The hadronic vertex for pion production is parametrized
by the vertex function Jµ

π . In principle, we get for each charge configuration of the in- and
outgoing nucleons and the pion a different vertex function - this will later be absorbed into
different sets of form-factors. Owing to the scalar nature of the outgoing pion field, the hadronic
tensor is given in the same shape as in eq. 4.23 by

Hαµ
π =

1

2

∑

si,sf

u(p ′, sf )Jα
π u(p, si)

(
u(p ′, sf )Jµ

π u(p, si)
)⋆

. (4.51)

76



4
.5

4.5 Single-pion production

4.5.1 Structure of the hadronic vertex

In the same spirit as Berends et al. [Ber67], but in the notation of MAID [Pas07], we parametrize
the hadronic vertex by

Jµ
π =

6∑

i=1

AiM
µ
i (4.52)

with

Mµ
1 =

−i
2
γ5(γµ

/q − /qγ
µ) = −iγ5(γµ

/q − qµ) , (4.53)

Mµ
2 = 2iγ5(Pµq · (k − q

2
) − P · q(k − q

2
)µ) , (4.54)

Mµ
3 = −i γ5(γµk · q − /qk

µ) , (4.55)

Mµ
4 = −2i γ5(γµq · P − /qP

µ) − 2mNM
µ
1 , (4.56)

Mµ
5 = i γ5(qµk · q − q2kµ) , (4.57)

Mµ
6 = −i γ5(/qq

µ − q2γµ) (4.58)

and

P =
p ′ + p

2
. (4.59)

The form factors A1, . . . , A6, the so called invariant amplitudes, can be taken from a para-
metrization performed by the MAID group [MAI, Dre92]. These form factors are functions
depending on all possible scalars which one can construct out of the available 4-vectors at the
vertex. One can choose for a 2 → 2 vertex the Mandelstam variables s, t, u as a minimal set of
scalars. L. Tiator supplied us with a parameter table7 being prepared using the following set of
variables

W =
√
s (4.60)

Q2 = −qµqµ (4.61)

and the CM scattering angle θ between ~q and ~k

θ = arccos

(

~qCM · ~kCM

|~qCM | |~kCM |

)

. (4.62)

4.5.2 Evaluation of the hadronic tensor

For the later numerical evaluation of the hadronic tensor, we sort the hadronic current according
to the number of γ-matrices

Jµ
π = iγ5

(
γµ
/qa+ γαb µ

α + cµ
)

(4.63)

with the following factors

a = −(A1 − 2mNA4) , (4.64)

b µ
α = −A3(g

µ
αk · q − qαk

µ) − 2A4(g
µ
αq · P − qαP

µ) −A6(qαq
µ − gµ

αq
2) (4.65)

= gµ
α(−A3k · q − 2A4q · P +A6q

2) + qα(A3k
µ + 2A4P

µ −A6q
µ) , (4.66)

cµ = (A1 − 2mA4)q
µ + 2A2(P

µq · (k − q

2
) − P · q(k − q

2
)µ) +A5(q

µk · q − q2kµ) ,(4.67)

7One finds these input files in the directory buuinput/electronNucleon of the GiBUU trunk.
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A / B /qγνγ5 γβγ5 γ5

γ5γµ/q Sµν
1 Sµβ

2 Sµ
3

γ5γα Sνα
4 Sαβ

5 Sα
6

γ5 Sν
7 Sβ

8 S9

Table 4.2: Overview over all possible traces Tr[(/p ′ +m ′)A(/p +m)B]

which commute with the γ-matrices. As for the QE-case, we will for later usage keep track of
the in- and outgoing nucleon masses m and m′, although they are identical in vacuum and given
by m = m′ = mN . In this notation, the hadronic tensor is given by

Hµν
π =

1

2

∑

si,sf

u(p ′, sf )Jµ
πu(p, si)

(
u(p ′, sf )Jν

πu(p, si)
)⋆

(4.68)

=
1

2
Tr

[
(/p ′ +m ′)

2m ′ Jµ
π

(/p +m)

2m
γ0(Jν

π )†γ0

]

(4.69)

=
1

8 m ′m

6∑

i=1

6∑

j=1

Tr
[
(/p

′ +m ′)
{
iγ5
(
γµ
/qa+ γαb µ

α + cµ
)}

(/p+m) (4.70)

γ0
{

iγ5
(

γν
/qa+ γβb ν

β + cν
)}†

γ0

]

. (4.71)

Using (γ5)† = γ5 and (γµ)† = γ0γµγ0 we derive

Hµν
π =

1

8 m ′m

6∑

i=1

6∑

j=1

Tr
[
(/p

′ +m ′)
{
γ5
(
γµ
/qa+ γαbαµ + cµ

)}
(/p +m) (4.72)

{(

−/qγνa⋆ − γβ(b ν
β )⋆ − (cν)⋆

)

γ5
}]

. (4.73)

Altogether, nine different traces have to be evaluated which will be named according to table
4.2. One obtains

Sµν
1 = Tr[(/p

′ +m ′)γ5γµ
/q(/p +m)/qγ

νγ5] = Tr[(/p
′ +m ′)γµ

/q(−/p+m)/qγ
ν ]

= −Tr[/p
′γµ

/q/p/qγ
ν ] +mm ′Tr[γµ

/q/qγ
ν ]

= −Tr[/p
′γµ(−/p/q + 2p · q)/qγν ] + 4mm ′q2gµν

= q2Tr[/p
′γµ

/pγ
ν ] − 2p · qTr[/p

′γµ
/qγ

ν ] + 4mm ′q2gµν

= (q2p ′
κpλ − 2p · qp ′

κqλ)Tr[γκγµγλγν ] + 4mm ′q2gµν

= 4(q2p ′
κpλ − 2p · qp ′

κqλ)(gκµgλν + gκνgµλ − gµνgλκ) + 4mm ′q2gµν

= 4q2
(
p ′µpν + p ′νpµ − gµνp · p ′)− 8p · q(p ′µqν + p ′νqµ − gµνp ′ · q)

+4mm ′q2gµν , (4.74)

Sµβ
2 = Tr[(/p

′ +m ′)γ5γµ
/q(/p +m)γβγ5] = Tr[(/p

′ +m ′)γµ
/q(/p −m)γβ]

= −mTr[/p
′γµ

/qγ
β ] +m ′Tr[γµ

/q/pγ
β]

= −4m(p ′µqβ + qµp ′β − gµβp ′ · q) + 4m ′(−pµqβ + qµpβ + gµβp · q) , (4.75)
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Sµ
3 = Tr[(/p

′ +m ′)γ5γµ
/q(/p+m)γ5] = Tr[(/p

′ +m ′)γµ
/q(−/p+m)]

= −Tr[/p
′γµ

/q/p] +m ′mTr[γµ
/q]

= −4
[
p ′µp · q + qµp · p ′ − pµp ′ · q

]
+ 4m ′mqµ , (4.76)

Sνα
4 = Tr[(/p

′ +m ′)γ5γα(/p+m)/qγ
νγ5] = Tr[(/p

′ +m ′)γα(/p−m)/qγ
ν ]

= m ′Tr[γα
/p/qγ

ν ] −mTr[/p
′γα

/qγ
ν ]

= 4m ′(pαqν + gναp · q − pνqα) − 4m(p ′αqν − gναp ′ · q + p ′νqα) = Sνα
2 , (4.77)

Sαβ
5 = Tr[(/p

′ +m ′)γ5γα(/p+m)γβγ5] = Tr[(/p
′ +m ′)γα(−/p+m)γβ ]

= 4mm ′gαβ − Tr[(/p
′γα

/pγ
β ]

= 4mm ′gαβ − 4(p ′αpβ + p ′βpα − p ′ · pgαβ) , (4.78)

Sα
6 = Tr[(/p

′ +m ′)γ5γα(/p+m)γ5] = Tr[(/p
′ +m ′)γα(/p −m)]

= 4mpα − 4mp ′α , (4.79)

Sν
7 = Tr[(/p

′ +m ′)γ5(/p +m)/qγ
νγ5] = Tr[(/p

′ +m ′)(−/p +m)/qγ
ν ]

= 4mm ′qν − Tr[(/p
′
/p/qγ

ν ]

= 4mm ′qν − 4(p ′ · pqν + q · pp ′ν − p ′ · qpν) = Sν
3 , (4.80)

Sβ
8 = Tr[(/p

′ +m ′)γ5(/p +m)γβγ5] = Tr[(/p
′ +m ′)(/p −m)γβ]

= −4mp ′β + 4mpβ = Sβ
6 , (4.81)

S9 = Tr[(/p
′ +m ′)γ5(/p +m)γ5] = Tr[(/p

′ +m ′)(−/p+m)]

= 4m′m− 4p ′ · p . (4.82)

After having evaluated these traces, the hadronic tensor can now be rewritten and we obtain

− 8m ′m Hµν
π = aa⋆Sµν

1 + a(b ν
β )⋆Sµβ

2 + a(cν)⋆Sµ
3

+b µ
α a

⋆Sνα
4 + b µ

α (b ν
β )⋆Sαβ

5 + b µ
α (cν)⋆Sα

6

+cµa⋆Sν
7 + cµ(b ν

β )⋆Sβ
8 + cµ(cν)⋆S9

= aa⋆Sµν
1 + a(b ν

β )⋆Sµβ
2 + a(cν)⋆Sµ

3

+b µ
α a

⋆Sνα
2 + b µ

α (b ν
β )⋆Sαβ

5 + b µ
α (cν)⋆Sα

6

+cµa⋆Sν
3 + cµ(b ν

β )⋆Sβ
6 + cµ(cν)⋆S9 . (4.83)

4.5.3 Vacuum cross sections

As for the quasi-elastic contribution, we postpone the more involved evaluation of the in-medium
cross section to the next chapter (cf. sec. 5.3.2 for details). The following section treats the
vacuum case in which m ′ = m = mN ≈ 0.938 GeV and mπ ≈ 0.138 GeV, and compares our
results to elementary data.
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Electron induced events

According to Bjorken and Drell ([Bjo93], formula B.1), the cross section for the e−N → e−Nπ
process in vacuum is given by

dσπ =
1

|ve − vN |
me

l0
mN

p0

d~k

2k0(2π)3
me

l ′0
d~l ′

(2π)3

mN

p ′0
d~p ′

(2π)3
LµνH

µν
π (2π)4δ4

(
l + p−

(
l ′ + k + p ′)) , (4.84)

where l, l ′ are the initial and final electron momenta, p and p ′ the nucleon momenta and k is
the pion momentum. This reaction is usually described in the lab frame, where the nucleon is
at rest (p = (mN ,~0)). In this special frame, we get

1

|ve − vN | =
l0
∣
∣
∣~l
∣
∣
∣

(4.85)

and

dσπ =
m2

e m
2
N

2 (2π)5
1

∣
∣
∣~l
∣
∣
∣ p0

d~k

k0

d~l ′

l ′0
d~p ′

p ′0 LµνH
µν
π δ4

(
l + p−

(
l ′ + k + p ′)) .

Eventually we are aiming for an equation for dσπ/dΩ~k/d
~l ′. First, we integrate out the ~p ′

dependence
∫

d~kd~p ′ δ4
(
l + p−

(
l ′ + k + p ′)) . . . =

∫

~k2 d|~k| dΩk δ
(
l0 + p0 −

(
l ′0 + k0 + p ′0)) . . .(4.86)

and transform the δ-function to

δ
(
l0 + p0 −

(
l ′0 + k0 + p ′0)) = δ

(

|~k| − ξ
) 1
∣
∣
∣
d(k0+p ′0)

d|~k|

∣
∣
∣
|~k|=ξ

= δ
(

|~k| − ξ
) 1
∣
∣
∣
∣
∣

d(
√

|~k|2+m2
π+

q

| ~p ′|2+m2
N )

d|~k|

∣
∣
∣
∣
∣
|~k|=ξ

= δ
(

|~k| − ξ
) 1
∣
∣
∣
∣
∣

d(
√

|~k|2+m2
π+

q

(~q−~k)2+m2
N )

d|~k|

∣
∣
∣
∣
∣
|~k|=ξ

= δ
(

|~k| − ξ
) 1
∣
∣
∣
∣
∣

|~k|√
|~k|2+m2

π

+ |~k|−~q~k/|~k|
q

(~q−~k)2+m2
N )

∣
∣
∣
∣
∣
|~k|=ξ

= δ
(

|~k| − ξ
) 1
∣
∣
∣
|~k|
k0 + |~k|−~q~k/|~k|

p ′0

∣
∣
∣
|~k|=ξ

, (4.87)

where ξ is the solution for
∣
∣
∣~k
∣
∣
∣ which solves the energy conservation condition

q0 + p0 =

√
∣
∣
∣~k
∣
∣
∣

2
+m2

π +

√

(~q − ~k)2 +m2
N . (4.88)

So we get

∫

d~kd~p ′ δ4
(
l + p−

(
l ′ + k + p ′)) . . . =

∫

|~k|2 dΩk
1

∣
∣
∣
|~k|
k0 + |~k|−~q~k/|~k|

p ′0

∣
∣
∣

. . .

∣
∣
∣
∣
∣
∣
∣
|~k|=ξ

, (4.89)

80



4
.5

4.5 Single-pion production

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65

dσ
/(

 d
Ω

l’ 
dl

’0  )
 [µ

b/
(G

eV
 s

r)
]

q0 [GeV]

O’Connell et al.

Figure 4.5: Electron scattering off a proton at an incoming electron energy of 730 MeV and
an electron scattering angle of 37.1◦. The plot shows a comparison of our elementary cross
section to the experimental data obtained by O’Connell et al. [O’C84] in lab coordinates
as a function of the virtual photon energy q0. The statistical errors of the data points are
negligible, therefore they have been omitted.

which leads to the desired result

dσπ

d~l ′fdΩk

=
m2

e m
2
N

2 (2π)5
1

∣
∣
∣~l
∣
∣
∣ p0 k0 p ′0 l0

|~k|2
∣
∣
∣
|~k|
k0 + |~k|−~q~k/|~k|

p ′0

∣
∣
∣

LµνH
µν
π . (4.90)

Using

d~l ′ = ~l ′
2
d|~l ′|dΩl ′ ≃ (l ′0)2dl ′0dΩl ′ , (4.91)

where we neglected the electron mass, we get together with l0 ≃
∣
∣
∣~l
∣
∣
∣ and p0 = mN

dσπ

dl ′0dΩl ′dΩk

=
m2

e mN

2 (2π)5
|~k|2 l ′0
k0 p ′0 l0

1
∣
∣
∣
|~k|
k0 + |~k|−~q~k/|~k|

p ′0

∣
∣
∣

LµνH
µν
π . (4.92)

Fig. 4.5 shows a comparison of our result for σeN→e′N ′π to the experimental data for σeN→e′X

measured by O’Connell et al. [O’C84] at the Bates Linear Accelerator Center with an electron
beam of 730 MeV. We observe very good agreement to the data, which makes us very confident
in the successful implementation of the MAID form factors and the elementary cross sections
for π production in our simulation8. Note that appendix F shows also how to evaluate the cross
section using the so-called Hand convention, which becomes useful when comparing to other
models.

8To compare this result obtained in the rest-frame of the initial nucleon to the results on the MAID website
[MAI] one must keep in mind that MAID is calculating dσπ

dl ′0dΩ
l ′dΩCM

k

with the pion angular element given in

the CM frame of the hadronic vertex. To transform one exploits the Jacobian (derivation in [Byc73])

dΩCM
k

dΩk

=
W~k2

|~k|CM (|~k|(mN + q0) − |~q|k0 cos(θk))
. (4.93)

with W =
p

(p + q)µ(p + q)µ.
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Photon induced events

Assuming that the nucleon spectral function is given by a δ function, we get for the γN → Nπ
cross section

dσγN→Nπ =
2mN

4
√

(qαpα)2
|M|2 1

2k0

d~k

(2π)3
mN

p ′
0

d~p ′

(2π)3
(2π)4δ4(q + p− p ′ − k) . (4.94)

Analogous to eq. 4.88 and 4.89 one derives

∫

d~kd~p ′ δ4
(
q + p−

(
k + p ′)) . . . =

∫

|~k|2 dΩk
1

∣
∣
∣
|~k|
k0 + |~k|−~q~k/|~k|

p ′0

∣
∣
∣

. . .

∣
∣
∣
∣
∣
∣
∣
|~k|=ξ

(4.95)

with ξ being a solution for |~k| to

q0 + p0 =

√
∣
∣
∣~k
∣
∣
∣

2
+m2

π +

√

(~q − ~k)2 +m2
N . (4.96)

Finally, we obtain

dσγN→Nπ

dΩk
=

m2
N

4p ′
0 k0

√

(qαpα)2
1

(2π)2
|~k|2

∣
∣
∣
|~k|
k0 + |~k|−~q~k/|~k|

p ′0

∣
∣
∣

|M|2

∣
∣
∣
∣
∣
∣
∣
|~k|=ξ

(4.97)

with

|M|2 = −1

2
Hµν

π gµν . (4.98)

In fig. 4.6, the total cross sections for photon-induced pion production is shown for both proton
(left panel) and neutron targets (right panel). Let us first compare the sum of π0 and π+

production off the proton (solid line, left panel) to the experimental cross section for the inclusive
reaction γp→ X (filled circles). We observe that the single-pion-production contribution makes
up for the total cross section in the region below Eγ < 0.5 GeV. However, at higher energies also
other channels can be populated, especially 2π channels, and the single-π contribution becomes
less important. The open squares in the left panel represent the experimental findings of the
CB-ELSA TAPS collaboration [Bar05] for the exclusive process γp→ pπ0. We emphasize, that
the perfect agreement of our result (dashed curve) to the latter data points proves the proper
implementation of the MAID form factors in our model.

4.6 Resonance excitations

Resonance excitations play a dominant role in the spectrum of low-energy γ⋆N scattering (for a
comprehensive review see, e.g., [Bof96]). Applying a partial wave analysis to the world data on
photon and electron scattering, e.g. the MAID group [MAI] provides resonance information. An
important result of such an analysis are the so-called helicity amplitudes, which give information
about the possibility to excite a resonance at its pole mass. These helicity amplitudes can then
be used to determine resonance form factors, as shown in appendix E. In the following we
establish the framework for resonance excitations and discuss the hadronic tensors for different
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Figure 4.6: The upper plot shows photon induced pion production off proton (left panel) and
neutron (right panel) as a function of the photon energy. The data in the left panel represent
the experimental findings for γp → pπ0 of the CB-ELSA TAPS collaboration [Bar05] (open
squares) and a compilation of data for the inclusive cross section σγp→X [Yao06](filled circles).
The dashed curves show our results for π0 production, the dotted ones show π± production
and the solid curves represent the sum of both charge channels.

name spin isospin parity

P33(1232) 3/2 3/2 +
P11(1440) 1/2 1/2 +
D13(1520) 3/2 1/2 -
S11(1535) 1/2 1/2 -
S31(1620) 1/2 3/2 -
S11(1650) 1/2 1/2 -
D15(1675) 5/2 1/2 -
F15(1680) 5/2 1/2 +
D33(1700) 3/2 3/2 -
P13(1720) 3/2 1/2 +
F35(1905) 5/2 3/2 +
P31(1910) 1/2 3/2 +
F37(1950) 7/2 3/2 +

Table 4.3: Resonances which are included in the MAID analysis [MAI].
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J
µ
R

p

p′
q

Figure 4.7: The upper Feynman diagram represents photon-induced resonance excitation and
visualizes our notation. The photon momentum is denoted q, the incoming nucleon momentum
p and the outgoing resonance momentum p ′. The vertex is parametrized by the functional
Jµ

R.

isospin and parity. We aim for an implementation of all those resonances in our model, which
are also included in the present MAID analysis [MAI] – namely the ones given in table 4.3.

Our notation for (virtual) photon induced resonance excitation is chosen according to fig. 4.7.
The photon momentum is denoted q, the incoming nucleon momentum p and the outgoing
resonance momentum p ′. In the following, the structure of the hadron tensor is discussed,
which includes the hadronic vertex denoted Jµ

R.

4.6.1 Structure of the hadron tensors

Spin 1/2 resonances. The nucleon resonances with spin S = 1/2 are treated on the same
footing as the nucleon itself. Only the notation for the form factors differs slightly, here we use
instead of the Pauli and Dirac form-factors a similar notation as, e.g., Devenish et al. [Dev76].
The hadronic flux is defined by

jν1/2 = φ(p ′, sf )Jν
R,1/2u(p, si) , (4.99)

where u is the nucleon spinor and φ is the resonance spinor. The vertex operator is parametrized
for positive-parity resonances by

(J+
R,1/2)

ν =
g1

(2mN )2
(Q2γν + /qq

ν) +
g2

2mN
iσνρqρ (4.100)

and for negative-parity ones by

(J−
R,1/2)

ν = (J+
R,1/2)

νγ5 . (4.101)

We assume that the form factors g1 and g2 depend solely on Q2; and the form factors are fixed
using the MAID helicity amplitudes as shown in appendix E.1. Analogous to eq. 4.23, the
hadronic tensor is given by

Hµν
R,1/2 =

1

2

∑

si,sf

φ(p ′, sf )Jµ
R,1/2u(p, si)

(
φ(p ′, sf )Jν

R,1/2u(p, si)
)⋆

(4.102)

=
1

2
Tr

[
/p ′ +m ′

2m ′ Jµ
R,1/2

/p+mN

2mN
γ0(Jν

R,1/2)
†γ0

]

(4.103)

with the resonance mass m ′ =
√
p ′ · p ′ and the nucleon mass mN =

√
p · p.
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Spin 3/2 resonances. The spin 3/2 resonances can be described using Rarita-Schwinger spinors
ψα. Within this framework, the hadronic flux is given by

jν1/2 = ψα(p ′, sf )Jαν
R,3/2u(p, si) (4.104)

where u is the nucleon spinor and ψα is the resonance Rarita-Schwinger spinor. The vertex
operator for negative-parity resonances can be parametrized by

(J−
R,3/2)

αν = gαν

(
C3

mN
/q +

C4

m2
N

p′ · q +
C5

m2
N

p · q
)

− qα

(
C3

mN
γν +

C4

m2
N

p′ ν +
C5

m2
N

pν

)

and for positive-parity ones by

(J+
R,3/2)

ν = (J−
R,3/2)

νγ5 . (4.105)

The constant mN = 0.938 GeV denotes the charge-averaged nucleon mass. Again, we assume
that the form factors C3, C4 and C5 depend solely on Q2; and these form factors are again fixed
using helicity amplitudes (cf. appendix E.2 for details). The hadronic tensor is given by

Hµν
R,3/2 =

1

2

∑

si,sf

ψα(p ′, sf )Jαµ
R,3/2u(p, si)

(

ψβ(p ′, sf )Jβν
R,3/2u(p, si)

)⋆
(4.106)

=
1

2
Tr

[
Λβα

2m ′J
αµ
R,3/2

/p+mN

2mN
γ0(Jβν

R,3/2)
†γ0

]

. (4.107)

In the equation above, we used the identity for the spin 3/2 projector

∑

sf

ψβ(p ′, sf )ψα(p ′, sf ) =
Λβα

2m ′ (4.108)

with

Λµν(p) = −(/p
′ +m ′)

(

gµν − 2

3

p′µp′ ν

(m ′)2
+

1

3

p′µγν − p′ νγµ

m ′ − 1

3
γµγν

)

(4.109)

and the resonance mass is given by m ′ =
√
p ′ · p ′.

Resonances with spin > 3/2. The description of spinors with spin greater 3/2 within a La-
grange framework is highly complicated. As a simplifying assumption, we will treat all particles
with spin greater than 3/2 within the spin 3/2 formalism.

4.6.2 Vacuum cross sections

Again, we first treat the vacuum case and postpone the in-medium treatment to chapter 5, as
a consequence m = mN = 0.938 GeV. Analogous to the nucleon case (cf. eq. D.1), the cross
section to produce a specific resonance R is given by

dσeN→e′R

dΩl ′ d|~l ′|
=

1
√

(lαpα)2
m2

e mN m ′

2π2
|~l ′| AR(p ′2) |MR|2 . (4.110)

The matrix element

|MR|2 = Hµν
R Lµν (4.111)
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includes the leptonic tensor defined in eq. 4.5 and the hadron tensor is evaluated numerically9.
Since the resonances are broad particles, the spectral function of the resonance AR(p ′2) replaces
the δ function of eq. D.1.

The in-vacuum cross section for γN → R is given by

σγN→R =
2mN

4
√

(qαpα)2
2m ′ dp

′4

(2π)4
2πAR(p ′2) |MR|2 (2π)4δ4

(
p+ q − p ′)

=
2mN 2m ′

4
√

(qαpα)2
2πAR(p ′2) |MR|2

∣
∣
∣
∣
∣
p+q=p ′

, (4.112)

where the squared matrix element is given by eq. 4.4 using the corresponding hadronic tensor.

4.7 Total cross section

For electron induced events, the total cross section contains all contributions which we elaborated
on in the last sections: quasi-elastic scattering, resonance production and direct pion production.
However, for the photon induced events only resonance excitation and pion production are
relevant. There one may neglect the QE contribution since the outgoing nucleon has large
off-shellness for Q2 = 0.

For both cases, one must be careful to avoid double counting since also the resonances con-
tribute to pion production. Thus one must subtract these resonance contributions from the
direct pion production cross section. We interpret this subtracted contribution as a single-π
background and denote it by σBG

π . With this prerequisite, we define the total cross sections for
the electron

dσe,tot

dΩl ′ d|~l ′|
=

dσQE

dΩl ′ d|~l ′|
+

dσBG
π

dΩl ′ d|~l ′|
+
∑

R

dσR

dΩl ′ d|~l ′|
(4.113)

and for the photon

σγ,tot = σBG
π +

∑

R

σR . (4.114)

Note that the background terms σBG
π include all kind of interferences among the resonances and

among resonance and background amplitudes.

Contribution of the resonances to pion production

In the following, the single-π background dσBG
π , which was introduced in the preceding para-

graph, is evaluated.
The MAID model (cf. sec. 4.5.3) fits its parameters to the world data on electron- and photon-

induced pion production, hence it represents a physically motivated fit to the world data and
can also be used as a parametrization of the world data. With the overall assumption of our
model that the resonances do not interfere and using the single-pion production cross sections σπ

9Note that the hadron tensors for single-π and QE scattering have been simplified by hand. For the resonance
production, we evaluate the traces and matrix multiplications for the calculation of Hµν numerically. This
job is performed online during run-time by a set of routines being especially developed for this function (see
in particular minkowski.f90 and matrix module.f90 within the GiBUU code).
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according to the MAID model (cf. sec. 4.5.3) as a parametrization of data, we get the following
definition of the single-π background for the electron

dσBG
π

dΩl ′ d|~l ′| dΩk

=
dσπ

dΩl ′ d|~l ′| dΩk
︸ ︷︷ ︸

MAID input

−
∑

R

dσeN→eR→eNπ

dΩl ′ d|~l ′| |dΩk

(4.115)

and for the photon induced events

dσBG
π

dΩk
=

dσπ

dΩk
︸︷︷︸

MAID input

−
∑

R

dσγN→Nπ

dΩk
, (4.116)

with Ωk denoting the solid angle of the pion (for notation see also fig. 4.4).
In our model, the resonances are assumed to decay isotropically in their rest-frames. This

approximation is based upon the numerical result that the information contained in non-isotropic
distributions is mostly lost during repeated rescatterings of the resonances or resonance decay
products within the nuclear medium [Eng94]. Thus the resonance contributions are given by

dσeN→eR→eNπ

dΩl ′ d|~l ′ |dΩk

=
dσR

dΩl ′ d|~l ′|
ΓR→Nπ

ΓR

1

dΩCM
k

=
dσR

dΩl ′ d|~l ′|
ΓR→Nπ

ΓR

1

dΩk

√
p ′µp ′

µ
~k2

|~kCM|
(

|~k|p′ 0 − |~p ′|k0 cos(θk)
) (4.117)

and

dσγN→R→eNπ

dΩk
= σγN→R

ΓR→Nπ

ΓR

1

dΩk

√
p ′µp ′

µ
~k2

|~kCM|
(

|~k|p′ 0 − |~p ′|k0 cos(θk)
) , (4.118)

with θk = ∡(~k, ~p ′) 10.
Note that there remains one subtle issue: the cross section dσBG

π /(dΩl ′ d|~l ′| dΩk) or, respec-
tively, dσBG

π /dΩk can become negative at some value of dΩk. The reason for this is given by
the assumption of isotropic decays of the resonances and, most important, in the fact that our
so-called background includes all kind of interferences among the resonances themselves and in-
terferences among the resonances and the physical background processes (e.g. u- and t-channel
processes). This feature is somewhat reduced for the integrated cross sections: the resonances
of different partial waves do not interfere in the total cross section, and the information about
the angular distribution of the resonance decay is integrated out. The fact that the background
may become negative is no short-coming of our model. Rather it is a physical feature based
on the way we divide our cross section into resonances and background. One must emphasize
that it is natural that the background cross section may become negative, since the background
explicitly includes all the interferences. Sec. 5.5 sketches the implementation of such negative
cross sections in our GiBUU Monte-Carlo framework via negative weight factors.

10The Jacobian for the transformation from CM- to lab-frame has been derived, e.g., in [Byc73]:

dΩCM
k

dΩk

=

p

p ′µp ′
µ
~k2

|~kCM|
“

|~k|p′ 0 − | ~p ′|k0 cos(θk)
” . (4.119)
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Figure 4.8: The upper figure shows photon induced reactions on the proton (upper panels)
and the neutron (lower panels) as a function of the incoming photon energy without a 2π
background cross section. The plots on the left panel show the total cross section (without
ππ background) and the contribution of the resonances. The right hand plots detail the single
pion production contributions: for the different outgoing pion charges, resonance contributions
and total cross sections are given. The data are taken from [Yao06] and [Bar05].
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4.7 Total cross section

Photon scattering The cross section for photon reactions with the proton and neutron are
shown in fig. 4.8. Evidently, the ”non-interfering” resonance model alone describes the cross
sections only qualitatively. Comparing the single-π0 production cross sections off the proton
(upper right panel of fig. 4.8) to the experimental data, it becomes evident that it is necessary
to include the single-π backgrounds to achieve also quantitative agreement. Furthermore, the
total cross section (cf. the upper left panel of fig. 4.8) is well described at low energies. However,
there is some missing strength in the higher energy region, especially missing ππ strength. Thus
we must also introduce an additional ππ background. Double pion production is addressed in
detail in chapter 8. There, the total cross sections for all charge channels are defined and their
uncertainties are discussed. Given parametrizations σdata

ππ of the experimental data (cf. sec. 8.3
for details), we can define the 2π background by

σBG
ππ = σdata

ππ − σRes
ππ . (4.120)

This subtraction must be done independently for all possible charge channels: π+π−,π0π0 and
π0π±. Double pion production via resonances can only occur via the four channels

γN → R → π∆ → 2πN ,
γN → R → πP11(1440) → 2πN ,
γN → R → ρN → 2πN ,
γN → R → σN → 2πN .

(4.121)

Given σγN→R, the evaluation of σγN→R→Nππ involves a weighting with the partial decay widths
into the channels listed above and the relevant isospin Clebsch-Gordan factors. The distribution
of the final state momenta of the ππ background events are assumed to follow a phase space
distribution11. The resulting 2π contributions are shown in fig. 4.9 for both proton and neutron
targets. Obviously, the total cross section is now very well described and the resonance contri-
bution to ππ is in fact small as compared to the total ππ production cross section, especially at
energies below 600 MeV.

Electron scattering Furthermore, we show in fig. 4.10 the single-π production for electron
induced reactions with and without background contributions. Also here, the background has
a profound impact and must be taken into account. However, we can not introduce a sensible
2π background due to a lack of such data, and so we consider only a single-π background. This
leads to a restriction of our model, such that we can not trust the model far above the ππ
threshold.

11In chapter 8 we will also address a more involved model - however, the there derived momentum distribution
is already including all resonances in the intermediate state and it is not possible to split the momentum
distribution into a resonance like and background like part. Therefore, it is not possible to use this distribution
for the background events.
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Figure 4.9: Photon induced reactions on proton (left panel) and neutron (right panel) as a
function of the incoming photon energy including a 2π background. The solid line shows
the result for σtot for the full model, the dashed line shows the result without single-π and
ππ background contributions. The contribution of the resonances to double-π production is
shown by the dotted line, the full 2π contribution is shown by the dashed-dotted line. The
data are taken from [Yao06].
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Figure 4.10: Electron scattering off a proton at an incoming electron energy of 730 MeV and an
electron scattering angle of 37.1◦. The plot shows a comparison of our elementary cross section
with and without background to the experimental data obtained by O’Connell et al. [O’C84]
in lab coordinates as a function of the virtual photon energy q0. The statistical errors of the
data points are negligible, therefore they have been omitted.
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Chapter 5

Interaction of electrons and photons with nuclei

Overview: This chapter generalizes the elementary cross sections presented in
chapter 4 to the case that the target nucleon is embedded in a nuclear medium.
Therefore, the kinematics are revisited and the modeling of in-medium form factors is
addressed. Finally, the nuclear cross sections and the implementation in the GiBUU
framework are specified.

5.1 Introduction

In the previous chapter, we studied the interaction of photons and electrons with single nucleons.
This is now generalized to the case that those probes scatter off an ensemble of nucleons, i.e.
nuclei. Therefore, we must take nuclear effects into account: nucleons and resonances within a
nuclear medium are bound by mean fields, which modify their dispersion relations (cf. sec. 3.4.2),
and the finite density leads to Fermi motion among the nucleons (cf. sec. 3.8). First, the
in-medium matrix elements are discussed and then the rather technical issue of in-medium-
kinematics of the final state products. In the end of this chapter, we will then derive a formula
for the electron- and photon-nucleus interaction cross-section.

To study the impact of mean-field potentials on the cross sections, let us first recall the
structure of the hadronic potentials. They are defined in the so called local rest-frame (LRF) in
which the baryon flux is identical to zero. For a nucleus in its ground state, this corresponds to
the nucleus rest-frame, which we will from now on use as our calculation frame. As discussed in
sec. 3.4.2, the four momenta of the initial- and final- state nucleons in the LRF are given by

pi,f =
(√

~p 2
i,f +m2

N +A0
N (~pi,f ), ~pi,f

)

, (5.1)

where mN denotes the bare mass of the baryon in vacuum and A0 represents the mean-field
potential, which is introduced in sec. 3.4.2 as the 0th component of a vector potential. The
invariant mass of the incoming nucleon is given by

m2 = pµpµ =

(√

~p 2 +m2
N +A0

N (~p)

)2

− ~p 2 = m2
N + 2

√

~p 2 +m2
N A0

N (~p) +A0
N (~p) 2 , (5.2)

and in analogy the one of the outgoing nucleon by

m ′2 = m2
N + 2

√

~p ′ 2 +m2
N A0

N (~p ′) +A0
N (~p ′)2 . (5.3)

The masses of outgoing resonances and pions are modified in the same manner. The matrix
elements are calculated with the medium-modified 4-vectors and all masses are replaced by the
in-medium masses. And those medium-modified 4-vectors must also be taken into account for
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energy and momentum conservation and the flux factor 1/|ve − vn| must be evaluated taking
the real value of vn in the medium into account.

The next two sections are devoted to the matrix elements in the medium and derivation of
in-medium photon-nucleon and electron-nucleon cross sections. Thereafter, the nuclear cross
sections are addressed.

5.2 Matrix elements in the medium

If one wants to evaluate the matrix elements in the medium, one must reconsider the structure
of the hadronic currents in the medium.

5.2.1 Resonance excitations and quasi-elastic scattering

As detailed by Naus et al. [Nau90], the most general in-medium vertex for the quasi-elastic
γ⋆N → N ′ process has in general 12 linearly independent Lorentz structures, which yields also
12 different form factors. These form factors may, unlike the vacuum ones, depend on all the
possible independent Lorentz scalars - e.g. q2, P 2 and P · q where P = p+ p′. However, there is
to my knowledge no feasible way to extract all these different form factors out of the available
experimental data. Therefore, we model the in-medium nucleon-photon vertex in the same spirit
as de Forest [DF83], which means that the in-medium vertex structure is assumed to be the same
as the vacuum one. We only introduce for the QE contribution an additional charge-conserving
term, which is motivated by eq. 4.21. Thus the in-medium vertex is given by

Jµ
QE = e2

(

F1

{

γµ +
/q

Q2
qµ

}

+
i

2mN
F2σ

µνqν

)

. (5.4)

The term e2F1
/q

Q2 q
µ is absent if the masses of in- and outgoing nucleons are equal; note that

a very similar expression shows up for the resonance-production current, which was defined in
eq. 4.100 according to Devenish et al. [Dev76].

Pollock et al. [Pol96] find that this extra term F1/q/Q
2qµ, which guarantees charge conservation

at the vertex, can also be generated via a gauge transformation of the result obtained in Landau
gauge to Feynman gauge. So they argue that the above term is no more than a gauge relict.
Thus we checked the impact of the above extra term on our results, and found that it does not
modify any of our results.

In fact there are several ways to conserve the charge at the vertex. De Forest [DF83], for
example, does not include the last term of eq. 4.22, but proposes to replace the component of
the hadronic current which is parallel to ~q by

J|| →
q0J0

|~q| . (5.5)

Also using this scheme, charge is conserved (qµJ
µ = 0) at the vertex. In de Forest’s work [DF83]

one finds an extensive discussion of different cross section models, i.e. off-shell extrapolations.
He also concludes that at high electron energies and small angle ∢(p′, p) the ambiguities of most
models tend to decrease.

Using different masses for the incoming and outgoing nucleons has the following consequences
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on α and βµ presented in eq. 4.26 and 4.27

α = e2
(

F1 +
1

2mN
F2(m

′ +m)

)

∈ R , (5.6)

βµ = e2
(

F1
m′ −m

q2
qµ − 1

2mN
F2 P

µ

)

∈ R
4 . (5.7)

We fulfill for both resonance production and quasi-elastic scattering the condition qµJµ = 0
which guarantees charge conservation at the vertex. Any further violation of gauge invariance
due to the momentum dependent potentials has not been considered so far and should be studied
in the near future.

5.2.2 Single pion production

According to section 4.5.1, the hadronic current for single-pion production in the vacuum
depends on 6 complex valued functions depending on Q2, W and θ. These functions are
parametrized in elementary scattering processes. Again, we use the approximation, that the
in-medium vertices are identical to the vacuum ones. However, we have to be careful since W
can get modified in the medium since the momentum of a nucleon gets modified in a medium.
In the medium, the full momentum of a nucleon is given by

kµ = pµ +Aµ
N , (5.8)

where p is the bare (vacuum) momentum and A is the contribution due to potentials. One
conventionally defines a fourth momentum

pvac = (

√

~k2 +m2
N ,
~k) , (5.9)

which does not include the zeroth component of the potential, but still includes the 3-components
of the potential. This momentum is then used to define

W vac =
√

(q + pvac)µ(q + pvac)µ . (5.10)
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Since this quantity W vac is frame-dependent due to the tricky definition of pvac
1, we choose

the CM-frame as our reference frame to evaluate it. Finally, the in-medium form-factors are
assumed identical to the vacuum form-factors Ai, which are traditionally called invariant am-
plitudes [Ber67], evaluated at the vacuum point

(
Q2,W vac, θ

)
:

Amedium
i = Ai(Q

2,W = W vac, θ) . (5.12)

The medium caption will be suppressed in the following. However, one should keep this replace-
ment in mind.

5.3 Cross sections in the medium

5.3.1 Quasi-elastic scattering and resonance excitations

For the cross sections of processes with only one hadronic final state, e.g. resonance excitation or
quasi-elastic scattering, the implementation of medium-modifications is straight-forward. The
vacuum spectral function gets replaced by the in-medium one

Avac → Amedium , (5.13)

and the four-momentum p ′ of the outgoing hadronic particle is directly given by energy and
momentum conservation. Thus the in-medium cross section for electron scattering is given by

dσ =
1

√

(lαpα)2
m2

e m m ′

2π2
dΩl ′ d|~l ′| |~l ′| A(p ′2 −m ′2) |M|2 (5.14)

and for photon absorption by

dσ =
2mm ′
√

(qαpα)2
2πA(p ′2 −m ′2) |M|2 . (5.15)

1 If pvac was a proper 4-vector then W vac would be frame independent. However, p vac is no proper Lorentz
4-vector. This we want to show in the following.

For each Lorentz-4-vector a, its square aµaµ is a constant under Lorentz-boosts. However, the opposite
statement that each vector b for which bµbµ is a Lorentz scalar must also be Lorentz-vector is not true. The
vector b is only then a Lorentz-4-vector if it transforms under boosts like a 4-vector would do. Thus is the
fact that we get by definition (eq. 5.9) p2

vac = m2
N no proof for pvac being a Lorentz-4-vector! Let us rather

investigate its transformation properties.
In the LRF we get pvac = k−AN since AN = (AN

0 ,~0) in the LRF frame. If pvac was a proper 4-momentum,
then it should be in any frame given by

pvac = k − AN = (k0 − AN
0 ,~k − ~AN) . (5.11)

Let us now consider another frame where we have the boosted momenta k′ and AN ′. According to its definition
in eq. 5.9 we would get for pvac in this frame

pvac ′ = (

q

(~k ′)2 + m2
N ,~k ′) ,

which contradicts, however, eq. 5.11

pvac ′ = (k′
0 − AN

0
′,~k ′ − ~A N ′)

since ~A N ′ 6= 0 in the general case. Hence pvac has no proper transformation properties, although (pvac)2 is a
Lorentz scalar. As a consequence, W vac is frame dependent.
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5.3.2 Single-pion production

Electron-induced processes

To describe electron-induced single-pion production in the medium, the results of eq. 4.87 must
be generalized. The following notation for the momenta is used: l and l ′ denote initial and final
lepton momenta, p and p ′ the ones for the nucleons, k is the pion momentum. Including a pion
potential A0

π, and considering momentum-dependent nucleon masses m according to eq. 5.2 and
Fermi motion we get

δ
(
l0 + p0 −

(
l ′0 + k0 + p ′0))

= δ
(

|~k| − x0

)






∣
∣
∣
∣
∣
∣

d(

√

|~k|2 +m2
π +A0

π(~k) +

√

(~p + ~q − ~k)2 +m ′2)

d|~k|

∣
∣
∣
∣
∣
∣
|~k|=x0






−1

= δ
(

|~k| − x0

)






∣
∣
∣
∣
∣
∣

|~k|
√

|~k|2 +m2
π

+
dA0

π(~k)

d|~k|
+

|~k| − (~q + ~p)~k/|~k| + dm ′2

d|~k|
p ′0

∣
∣
∣
∣
∣
∣
|~k|=x0






−1

.(5.16)

The derivative of the squared nucleon-mass with respect to the absolute pion momentum is given
by

dm ′2

d|~k|
=

d

(

m2
N + 2

√

~p ′2 +m2
N A0

N (~p ′) +A0
N (~p ′)2

)

d|~k|

=

d

(

2

√

~p ′2 +m2
N A0

N (~p ′) +A0
N (~p ′)2

)

d|~k|

=




2

|~p ′|d| ~p ′|
d|~k|

√

~p ′2 +m2
N

A0
N (~p ′) + 2

√

~p ′2 +m2
N

dA0
N (~p ′)

d|~p ′|
d|~p ′|
d|~k|

+ 2A0
N (~p ′)

dA0
N (~p ′)

d|~p ′|
d|~p ′|
d|~k|






= 2
|~k| − (~q + ~p ′)~k/|~k|

|~p ′|

×




|~p ′|

√

~p ′2 +m2
N

A0
N (~p ′) +

√

~p ′2 +m2
N

dA0
N (~p ′)

d|~p ′|
+A0

N (~p ′)
dA0

N (~p ′)

d|~p ′|



 . (5.17)

In the LRF, the mean field potential is only dependent on |~p| and not on the direction of ~p.
Thus we get working in this frame A0

N (~p ′) = A0
N (|~p ′|). The value x0 in eq. 5.16 is the solution

for |~k| to the energy conservation condition

q0 + p0 = k0 + p ′0

=

√

|~k|2 +m2
π +A0

π(~k) +

√

|~p ′|2 +
[

m ′(~p ′)
]2

=

√

|~k|2 +m2
π +A0

π(~k) +

√

|~p + ~q − ~k|2 +
[

m ′(~k)
]2

, (5.18)
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which is solved numerically using a Newton method. Finally, we get

δ
(
l0 + p0 −

(
l ′0 + k0 + p ′0)) = δ

(

|~k| − x0

)(
∣
∣
∣
∣

|~k|√
|~k|2+m2

π

+ dA0
π(~k)

d|~k| (5.19)

+

(|~k|−(~q+~p)~k/|~k|)

0
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0

@

| ~p ′|
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N (| ~p ′|)+

q
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2
+m2

N

dA0
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+A0
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1

A

1

A
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∣
∣
∣
∣
∣
∣
∣
∣
∣
|~k|=x0








−1

,

and the cross section for single-pion production in the medium is given by2

dσπ

dl ′0dΩl ′dΩk
= 1

|ve−vn|
m2

e m ′ m
2 (2π)5

|~k|2 l ′0
k0 p ′0 l0 p0

LµνH
µν
π

(∣
∣
∣
∣

|~k|√
|~k|2+m2

π

+ dA0
π(~k)

d|~k| (5.20)
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∣
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−1

.

Note that all the final state momenta and masses |~k|, p ′, m, m ′ depend on the momentum of
the target nucleon. The structure of the hadron tensor Hµν

π has been evaluated in sec. 4.5.2,
the lepton tensor Lµν is defined in eq. 4.5.

Photon-induced events

For photon-induced pion production we obtain in an analogous fashion as for the electron-
induced process

dσγN→Nπ

dΩk
= m m ′|~k|2

4p ′
0 k0

√
(qαpα)2

|M|2
(2π)2 ×

(∣
∣
∣
∣

|~k|√
|~k|2+m2

π

+ dA0
π(~k)

d|~k| (5.21)
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−1

with

|M|2 = −1

2
Hµν

π gµν . (5.22)

5.3.3 Single-pion production as background process

Let us now consider the case that the resonances are also included and contribute to single-pion
production. Then the direct single pion production channel is treated as a background channel
(cf. discussion in sec. 4.7). So we consider the single pion cross section as a parametrization of
the vacuum data and the background is the difference of data and resonance contributions. Thus

2For numerical implementation of this cross section see electronPionProduction medium.f90
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5.4 Nuclear cross sections

we first construct the total single pion cross section using the MAID input and the contribution
of the resonances to single-pion production using vacuum kinematics (no modifications besides
Fermi motion, in particular no potentials, no Pauli blocking). Then we evaluate the difference
of both cross sections using vacuum kinematics– this yields for electron induced events the
background cross section dσbg

π /dΩπ/dlf and for photon induced events dσbg
π /dΩπ.

This background cross section is now assumed not to be influenced by the potentials, which
means that in-medium background cross section is for electron scattering given by

dσbg, medium
π

dΩπdlf
(p, q) =

dσbg, vacuum
π

dΩπdlf
(pvac, q) (5.23)

and for photon-induced reactions by

dσbg, medium
π

dΩπ
(p, q) =

dσbg, vacuum
π

dΩπ
(pvac, q) , (5.24)

where pvac =
(√

m2
N + ~p2, ~p

)

.

5.3.4 Double-pion production backgrounds

For the photon-induced reactions we introduced in sec. 4.7 a ππ-production background. Unlike
for the single-pion production, we do not use an underlying microscopic model for the total
cross sections. The total cross section is parametrized in the nucleon rest-frame as a function
of Mandelstam s. However, in the medium the nucleon is in motion so we must consider the
boost of the cross section. Analogous to the single-pion background we neglect the impact of
potentials on the background, such that

σbg, medium
ππ (s) =

√

p2
vac

∣
∣~q NRF

∣
∣

|~pvac q0 − p0
vac~q |

︸ ︷︷ ︸

boost factor

σbg, vacuum
ππ (svac) (5.25)

=
mN

∣
∣~q NRF

∣
∣

|~pvac q0 − p0
vac~q |

σbg, vacuum
ππ (svac) , (5.26)

where svac = (pvac + q)2 with pvac =
(√

m2
N + ~p2, ~p

)

and ~q NRF is the photon momentum in the

nucleon rest-frame (cf. appendix G.1 for details on the boost of the cross section).

5.4 Nuclear cross sections

Having established the eN and γN cross sections in the medium, let us now consider the nuclear
cross sections. Assuming a small wavelength of the incoming photon, we will treat the whole
problem in impulse approximation (IA). Hence the nuclear current operator is assumed to be a
sum of one-body currents JA →∑

i J
µ
i . Furthermore, we assume that the nucleus is constructed

out of a sum of single particle plane-wave states, for which the dispersion relations are modified
due to the potentials. In Bjorken Drell notation, each plane wave state |k, s〉 (s denotes spin)
has the normalization 1/

√

2m(k)/(2Ek). So the nuclear wave function is given by

Ψ(r) =
∑

s=± 1
2





∫ kF (protons) d3k

(2π)3

√

2m(k)

2Ek
|k, s〉 +

∫ kF (neutrons) d3k

(2π)3

√

2m(k)

2Ek
|k, s〉



 ,(5.27)
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which is normalized to the number of nucleons A
∫

d3rΨ†(r)Ψ(r) = A . (5.28)

Electron scattering. Within the above approximations, the matrix element for electron scat-
tering off a nucleus with mass number A is given by a contraction of the lepton tensor with the
sum of all hadronic currents generated by the A nucleons within the nucleus . In formulas, we
get (cf. also [DF83, i.e. eq. 1-3])

|MA|2 = Lµν

∫

d3rHµν
A (r) , (5.29)

where

Hµν
A (r) =

1

2

∑

s,s′,...

∑

α=p,n

∫ pα
f (r) d3p

(2π)3

√

2m(p)

2Ep

√

2m(p′)
2Ep′

. . .
〈
p′, s′; . . .

∣
∣Jµ |p, s〉

×
√

2m(p)

2Ep

√

2m(p′)
2Ep′

. . .
(〈
p′, s′; . . .

∣
∣ Jν |p, s〉

)⋆

=
∑

α=p,n

∫ pα
f (r) d3p

(2π)3
2m(p)

2Ep

2m(p′)
2Ep′

. . .

× 1

2

∑

s,s′,...

〈
p′, s′; . . .

∣
∣ Jµ |p, s〉

(〈
p′, s′; . . .

∣
∣Jν |p, s〉

)⋆

︸ ︷︷ ︸

Hµν

. (5.30)

Note that the dots ”. . .” should just remind us that there could be more than one final state
particle. Obviously, the previous equation is just an integral over single particle hadronic currents
Hµν , which were already evaluated in the last chapter. Thus the nuclear cross section is given
by

dσA =
∑

α=p,n

1

vrel

2me

2l0

2me

2l′0
Lµν

∫

d3r

∫ pα
f
(r) d3p

(2π)3

∫

dΦf
2m(p)

2Ep

2m(p′)
2Ep′

× . . .

×Hµν(r, p,Φf ) × (2π)4 δ4(p+ l − l′ − p′ − . . .) × PPB(~r,Φf ) (5.31)

where vrel ≃ 1 is the relative velocity of nucleus and electron. The variable Φf denotes the
phase space of all the final state particles, which includes also p′ and l′. The function PPB(~r,Φf )
includes Pauli blocking of the final state fermions. Comparing to the single particle cross sections
σN , one realizes that

dσA =
∑

α=p,n

∫

d3r

∫ pα
f (r) d3p

(2π)3
|vN − vE |

vrel
dσN (5.32)

=
∑

α=p,n

∫

d3r

∫ pα
f (r) d3p

(2π)3
1

vrel

lµp
µ

l0p0
dσN . (5.33)

The variable vN denotes the single particle velocity due to the Fermi motion and ve is the
electron velocity. Note, that the Pauli blocking factor has been included in the single particle
cross section.
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5.5 Implementation in the BUU simulation

Photon scattering. For photon induced reactions we get an analogous result

dσA =
∑

α=p,n

1

vrel

1

2q0
gµν

∫

d3r

∫ pα
f (r) 2m(p)

2Ep

2m(p′)
2Ep′

× . . .

×Hµν(r, p,Φf )
d3p

(2π)3
PPB(~r,Φf )dΦf , (5.34)

where vrel ≃ 1 is the relative velocity of nucleus and photon. Finally, we obtain

dσA =
∑

α=p,n

∫

d3r

∫ pα
f (r) d3p

(2π)3
|vN − vγ |
vrel

dσN

=
∑

α=p,n

∫

d3r

∫ pα
f (r) d3p

(2π)3
1

vrel

qµp
µ

q0p0
dσN (5.35)

with vγ being the photon velocity. Again, we included the Pauli blocking probability in the
single particle cross section.

5.5 Implementation in the BUU simulation

Eventually, we want to evaluate eq. 5.33 and eq. 5.35 within the GiBUU framework. There
the electron-nucleus scattering process is assumed to be a two-step process. First, the electron
scatters off a single nucleon and generates new particles, respectively excites a resonance –
this is the so-called initial state. In the so-called final state process the produced particles are
propagated out of the nucleus. This may, owing to rescattering effects, lead to a change in the
final state particle multiplicities.

For the numerical implementation, the integrals of eq. 5.33 and eq. 5.35 are being solved using
a Monte-Carlo sampling method. Therefore, let us rewrite these integrals in the test-particle
representation of the nuclear ground state

∫

d3r

∫ pα
f
(r) d3p

(2π)3
. . . =

∫

d3r
d3p

(2π)3
Θ(pf − p) . . . (5.36)

=

∫

d3r
d3p

(2π)3
f(~r, ~p, t = t0) . . . (5.37)

=

∫

d3r
d4p

(2π)4
g<(~r, p, t = t0) . . . (5.38)

=

∫

d3rd4p
1

N

N×A∑

i=1

δ4(p− pi)δ
3(r − ri) . . . . (5.39)

Note that g< includes only nucleons. Evaluating the δ-functions, we get for each nucleon test-
particle a distinct contribution to the integrals. For instance for electron-scattering we get

dσA =
1

N

N×A∑

i=1

1

vrel

lµ(pi)
µ

l0(pi)0
dσN (~ri, pi) , (5.40)

where dσN (~ri, pi) is the cross section to scatter off the ith test-particle. Now dσN (~ri, pi) is given
by a sum of all contributing channels

dσN (~ri, pi) =
∑

f∈{N,πN,ππN,∆,P11(1440),...}
dσN→f (~ri, pi) . (5.41)
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For each of the channels above the final-state phase-space integral is now performed using just
one random phase space point φf , which is a good approximation in the limit of large number of
subsequent choices. Thereafter, one chooses by a Monte-Carlo decision which final-state channel
to populate and propagate in the transport step. The kinematics of the propagated channel is
given by the random point φf . If all partial cross sections are positive, then the probability
P (f) to choose a special channel f is simply given by the usual importance sampling algorithm

P (f) =
dσN→f

dσN
; (5.42)

and the chosen channel is attributed the Monte Carlo weight w = dσN .
As we pointed out in sec. 4.7, the background cross section for single pion production may

become negative due to the fact that it implicitly includes all kind of interferences among the
resonances and among resonance and background amplitudes. So the problem appears how to
treat negative cross sections during the importance sampling procedure. We resolved this issue
choosing the event according to a modified importance sampling algorithm in which

P (f) =
|dσN→f |

∑

f∈{N,πN,ππN,∆,P11(1440),...} |dσN→f |
. (5.43)

and attribute to the event a Monte-Carlo weight which includes the sign of the partial cross
section

wi =
dσN→f

|dσN→f |
︸ ︷︷ ︸

=sign(dσN→f )

∑

f∈{N,πN,ππN,∆,P11(1440),...}
|dσN→f | . (5.44)

Within this scheme, the total cross section approaches its expectation value if large enough
number of subsequent Monte-Carlo decisions are performed. To show this let us assume that we
make n subsequent decisions where we populate ni times the ith channel. Then we get in the
limit n→ ∞ as a mean value for the total cross section

〈dσN 〉 = lim
n→∞

1

n

∑

i

niwi = lim
n→∞

∑

i

ni

n
wi (5.45)

=
∑

i

P (i)wi =
∑

i

dσN→i = dσN . (5.46)

Additionally, also each partial channel approaches its expectation value

〈dσN→i〉 = lim
n→∞

1

n
niwi (5.47)

=
∑

i

P (i)wi = dσN→i . (5.48)

The number of subsequent decisions is determined by the product of the number of ensembles
times the number of subsequent simulation runs. To get a statistical meaningful result this
product must be sufficiently large. In order to control the statistical fluctuations we estimate
our statistical uncertainty by the standard deviation of the mean value of subsequent runs.

Since the final electron is assumed not to interact after the collision, we can neglect it in the
final state step. Thus we only need to transport the hadronic test-particles. After the transport
step, particle multiplicities and exclusive cross sections (e.g. pion production) can be evaluated.
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5.5 Implementation in the BUU simulation

5.5.1 Parallel ensembles, full ensembles and the perturbative mode

In the simulation, the whole problem is treated on an event-by-event basis: different events
are assumed not to interfere during the propagation step. In sec. 2.5.2, the technique of full
and parallel ensembles was introduced. In a full ensemble run with real final state particles one
generates one event choosing a random test-particle i and dσA is then approximated by

dσA ≃ A× 1

vrel

lµ(pi)
µ

l0(pi)0
dσN (~ri, pi) . (5.49)

This event is then propagated and several subsequent runs are needed to gain sufficient statistics.
For a parallel ensemble run with real final state particles the ensembles do not interfere and

one can propagate one event per ensemble. So one initializes also one event per ensemble and
we get

dσA ≃
N∑

j=1

A

N
× 1

vrel

lµ(pi(j))
µ

l0(pi(j))0
dσN (~ri(j), pi(j)) , (5.50)

where i(j) is a random test-particle in the jth ensemble. For a parallel ensemble run with
perturbative final state particles3, even the final state particles of one ensemble do not interfere.
Thus for each test-particle an event can be generated and all events can be propagated in parallel.
In this scheme one gets

dσA =
N×A∑

i=1

1

N
× 1

vrel

lµ(pi)
µ

l0(pi)0
dσN (~ri, pi) . (5.51)

After the propagation, each event must be analyzed independently. Each event is categorized by
its multiplicities and the exclusive cross sections are generated - in principle, like the experimen-
talist would do. Several subsequent initialization and propagation steps have to performed to
generate enough events for a statistical stable result. It is clear that one needs to perform more
subsequent runs when using the full ensemble technique, since one generates only one event per
run. Let us denote the number of runs necessary for a full-ensemble run by R. To collect the
same statistics within a parallel ensemble run, one only needs to perform R/N runs. Introducing
additionally the concept of perturbative final-state particles, one gains an additional factor of
A in the number of events per run – thus only R/(N ×A) runs have to performed. Almost all
the precursor calculations [Eff99a, Leh03] have been performed within the computational fast
”parallel & perturbative” approximation and it has proven to be a proper approximation.

3cf. appendix B.1 for an explanation of the perturbative method
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Chapter 6

Pion induced reactions

Overview: Results on pion scattering off nuclei are presented. After discussing the
pion mean free path within our model and comparing simulations for pion absorption
to the data, we primarily address the double-charge exchange process, which serves
as a strict model benchmark. In the course of this chapter we investigate numerical
approximations to the collision term and evaluate their impact on the observables.
Thereby it is shown that the full ensemble method is superior to the parallel
ensemble method. We achieve good agreement with the available data in the regime
of 30 − 200 MeV kinetic energy.

6.1 Introduction

The interaction of pions and nucleons is a crucial cornerstone of every hadronic transport ap-
proach. Both particle species are most abundant and, therefore, very important within the
coupled channel calculations. To benchmark our pion-nucleon interaction model, we discuss in
this chapter pion induced reactions. This will set the stage for the subsequent chapters, where we
discuss single pion production in electron and photon induced processes as well as double-pion
production in photon induced processes.

We especially aim for a description of low-energetic pions with kinetic energies down to
30 MeV. Hence we first need to establish whether it is meaningful to discuss pions with a long
wave length in a semi-classical BUU picture. Especially for the analysis of the ππ production ex-
periment performed by the TAPS collaboration [Mes02, Sch05, Sch06b, Sch06a], low-energy pions
are crucial. For this experiment, it has already been shown using GiBUU [Mü04a, Bus05, Bus06c]
that pion rescattering in the final state description of photon induced double-pion produc-
tion produce a considerable modification of the ππ invariant mass distributions as observed
by the TAPS collaboration. Moreover, neutrino-induced pion production, a source of back-
ground for neutrino oscillation experiments [Dra04], is very sensitive to pion final state inter-
actions [Lei06a, Lei06b]. The BUU picture for low-energy pions is tested by comparison to
quantum calculations and experimental data on πA scattering.

Already in earlier works of Salcedo et al. [Sal88], with a simulation of pion propagation in
nuclear matter, and of Engel et al. [Eng94], with a precursor of our present simulation, pions with
kinetic energies in the regime of 85 − 300 MeV have been investigated in transport models. As
motivated above, we now investigate even less energetic pions. Therefore, we carefully account
for Coulomb corrections in the initial channel of π-induced processes and improve the description
of the threshold behavior of the cross sections in the model (cf. appendix A.3.1 for details on the
implemented cross sections). Additionally, a momentum dependent hadronic pion potential has
been implemented [Bus04]. This potential sketched in fig. 6.1 is based upon a low-energy result
by Oset et al. [Nie93a] and a first order ∆-hole model calculation [Bus04]. Both models are
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Figure 6.1: Hadronic potential A0
π of the pion [Bus04] as a function of pion momentum for

symmetric nuclear matter density at different densities.

matched using a cubic interpolation in the regime pπ = 80−140 MeV (for details confer [Bus04,
sec. 5.3]). The potential shows a repulsive nature at low momenta which is due to S-wave
interactions of pions and nucleons, whereas the P -wave ∆-hole excitations lead to an attractive
contribution which dominates at higher momentum.

This chapter is structured in the following way. First we consider the pion mean free path in
nuclear matter and discuss the consequences of medium modifications of the pion. Hereafter we
compare our simulations to experimental results on pion scattering off complex nuclei to validate
our model. Finally, we address - as a very stringent benchmark - double-charge exchange (DCX)
of pions in πA collisions 1.

If not explicitly stated otherwise, all results have been obtained using the mass-shift+Oset
model option for the baryon-baryon cross sections (cf. sec. 3.6.1 for details).

6.2 Pion properties in the medium

The simplest properties of the pion to investigate are its total width

Γtot = ln

(

−d(ln (Nπ))

dt

)

,

its velocity v and its mean free path λ = v/Γtot. In our model the loss of pions per time-step
∆t is given by

1

Nπ

∆Nπ(E, ρn, ρp)

∆t
= −

∑

N=n,p

∫

d3pNe
−σN (pπ,pN )ρN v(pπ ,ρp,ρn)∆t

−
∑

(N,M)∈{(n,p),(n,n),(p,p)}

∫

d3pN

∫

d3pMe
−ΓBG(pπ,pN ,pM ,ρN ,ρM )∆t = −e−Γtot∆t , (6.1)

where v denotes the pion velocity in the medium, σN the πN scattering cross section and ΓBG

is the absorptive three-body width of the pion and Γtot the total width. For the cross sections

1Results presented in this chapter have also been published in [Bus06a, Bus06b, Bus06c, Bus07a].
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Figure 6.2: BUU results without electromagnetic forces inside symmetric nuclear matter at ρ0 =

0.168 fm−3. The results are shown without (dashed line) and with (solid line) hadronic pion
potential. The upper panels show the velocity of the pions in nuclear matter, the lower ones
visualize the full width of the pion. The lower curves in the lower panel denoted ”only NNπ →
NN” shows the strength of the direct non-resonant NNπ → NN three-body absorption rate
(cf. sec. 3.3.2 on page 36 for details), i.e. this rate does not include the resonant πNN →
NR→ NN pion absorption mechanism.

and the width we include the medium modifications discussed earlier. The integrals above are
performed over the Fermi spheres of neutrons and protons.

In practice, we obtain Γtot by performing a Monte-Carlo simulation with pions and nucleons
initialized in a box with continuous boundary conditions within our BUU framework, including
all the medium modifications and necessary collision rates.

The momentum pπ is calculated in the medium from the dispersion relation

Etotal =
√

p2
π +m2

π +Aπ
0 (p) + VC (6.2)

with the hadronic potential Aπ
0 and the Coulomb potential VC . Finally, Γtot and λ can be easily

extracted by observing the time evolution of the pions. All results are shown as functions of the
experimental observable

EVacuum
kin = Etotal −mπ (6.3)

in the classically allowed region EVacuum
kin ≥ Aπ

0 (p) + VC .

Isospin dependence. To begin with, we study the case in which we omit all potentials. In
the GiBUU-simulation we use the same mass of mπ = 138 MeV for all pions regardless of their
charge. For both positive and negative pions the same data are used as input for the vacuum
cross sections. Due to isospin symmetry the positive and negative charge states have the same
properties in symmetric matter if electromagnetic forces are neglected. In fig. 6.2 we observe
that the positive and neutral pions do actually have the same velocities, but not the same width
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in nuclear matter. The difference is quite small except for very low energies. The reason for
this can be found in the elementary absorption and scattering processes. As mentioned before,
we have used vacuum data to pin down the elementary reaction rates. Therefore the absorptive
width of the charged pions is fixed by the elementary reactions

p p → p n π+ , (6.4)

p n → p p π− , (6.5)

while the absorptive width of the π0 is determined by

p p → p p π0 , (6.6)

p n → p n π0 (6.7)

through detailed balance. Fig. 3.1 of chapter 3 shows that the non-resonant three-body absorp-
tion rate for the neutral pions at low energies is higher than for the charged ones (cf. sec. 3.3.2
on page 36 for details on this rate). This explains the larger width of the π0 near threshold. The
kinks in the velocity at roughly 45 MeV come from the hadronic pion potential, which has been
determined using two different models for low and high momentum matched in the momentum
region of pπ = 80− 140 MeV [Bus04, sec. 5.3.3]. This matching guarantees a continuous deriva-
tive of the pion potential, but not a continuous second derivative which explains the velocity
kink.

Collisional width in the medium. Using the neutral pion as an example, we first discuss the
lower right panel of fig. 6.2. At low energies there is practically no difference in the width
between the simulation with (dashed lines) and without (solid lines) pion potential. Due to the
absence of resonance contributions in this energy regime, the width of the pion is dominated by
its absorption via the NNπ → NN background. At higher energies a small difference in the
two curves can be observed. Here the decay width is somewhat smaller if the pion potential is
included.

This difference can be understood by investigating the resonance production process Nπ → ∆
in detail [Bus04]. At fixed pion energy, the attractive pion potential leads to a higher momentum
of the pion and, therefore, also to a higher momentum of the produced ∆, resulting in a decrease
of its mass. In the considered energy regime this mass is smaller than the pole mass. As a
consequence, the production of the ∆ resonance is less probable and the width of the pion
decreases.

Pion velocity in the medium. The velocity of the pions is given by Hamilton’s equation

∂ri
∂t

=
∂H

∂pi
=
∂
(√

p2 +m2 +Aπ
0 + VC

)

∂pi
=

pi
√

p2 +m2
+
∂Aπ

0

∂pi
. (6.8)

The hadronic potential is repulsive for low values of Etot and of the same order as Ekin. Therefore,
in the first term of equation (6.8) the pion momentum is considerably smaller and, as shown in
the upper panels of fig. 6.2, the velocity is strongly modified at low values of Ekin. The second
term ∂Aπ

0/∂p is always negative. It is large in absolute magnitude for low energies and small
for energies greater than 80 MeV and leads to an overall reduction of the velocities.
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Figure 6.3: Mean free path of a neutral pion in symmetric nuclear matter at ρ0 = 0.168 fm−3.
We show the result with (solid line) and without (dashed line) hadronic potential for the pion;
all other standard medium modifications are included. For comparison, the result of Mehrem
et al. [Meh84] is also shown (circles linked by a dashed-dotted interpolating line).

Results for the mean free path. After having extracted the width of the pion in the nuclear
matter rest-frame directly from our numerical simulation, the mean free path is obtained by
λ = v/Γ. Therefore we now consider the two effects discussed earlier in order to understand the
changes in the mean free path: modification of the decay width Γ and modification of the velocity
v due to the potentials. The effect of including the hadronic potential becomes visible in fig. 6.3,
where the mean free path is plotted as a function of pion momentum. Especially at very low
energies, the mean free path drops rapidly at low energies compared to the simulation without
hadronic potential. This sharp decrease of the mean free path as a function of asymptotic kinetic
energy stems from the velocity decrease at low energies when including the repulsive hadronic
potential. At larger values of the kinetic energy the effect of width and velocity just compensate
each other.

We have also studied the density dependence of the mean free path, choosing the π0 as a
showcase. The results are shown in fig. 6.4. It is important to note that the density dependence
is highly nonlinear, contrary to the low-density limit. This non-linearity is generated by the
NNπ → NN process, which goes to quadratically with density, and by the implicit density
dependence in the medium modifications.

Full and parallel ensembles. All previous results have been calculated using the parallel en-
sembles technique (cf. sec. 2.5.2 for details). However, this should not have any impact on the
observables since we performed the calculations within a homogeneous box of nuclear matter.
Due to the homogeneous density distribution, the locality of the scattering processes is not
expected to play any role.

To check the consistency of the local and parallel techniques, we performed runs without
a pion potential as a benchmark. In fig. 6.5 we observe good agreement between the results
obtained in the different approximation methods2.

2For the BUU specialist: Note that we expect at higher energies some differences. The local ensemble scheme
does not use a maximal impact parameter bmax as cut-off, but the parallel ensemble scheme includes such a
cut-off (e.g. bmax = 2.52 fm for baryon-meson collisions).
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Figure 6.6: Mean free path of the charged pions in the naive low-density approximation. The
inclusion of Fermi motion does not have a sizable impact. A BUU calculation without Coulomb
forces and without hadronic potential for the pion is shown for comparison.

The vacuum approximation. We now compare our results to the low-density approximation,
commonly found in the literature as, e.g., in [Eri88, Cas90]. In this approximation the mean
free path is given by

λ =
1

2 ℑ(p)
=

1

ρ σvac
, (6.9)

with σvac denoting the pion-nucleon scattering cross section in vacuum. In the equation above
ℑ(p) denotes the imaginary part of the momentum. Using the total cross sections shown in
fig. A.6, we can now evaluate the mean free path. Due to the lack of pion-neutron scattering
data, we assume σπ−n→X = σπ+p→X and σπ+n→X = σπ−p→X .

In the case of symmetric matter, we calculate σvac for the π+ and π− by averaging over the
neutron and proton contribution to the cross section:

σ±vac =
1

2

(
σπ±n→X + σπ±p→X

)
=

1

2

(
σπ+p→X + σπ−p→X

)
. (6.10)

For charged pions the mean free path in this approximation is shown in fig. 6.6. Comparing it
to a full BUU calculation, which considers the Pauli blocking of the final states, as well as the
Fermi motion of the initial states and three-body interactions, we see a dramatic discrepancy at
small energies.

For completeness we have also investigated the influence of Fermi-motion and calculated the
mean free path by integrating over the interactions in the Fermi sea,

λ =
1

4
∫∫∫

pF

σvac(
√
s) d3p

(2π)3

. (6.11)

The result can also be seen in fig. 6.6. The modifications of the mean free path due to the Fermi
motion in the vacuum approximation are very small.

The low-density approximation does not consider any kind of many-body interactions at
low energy. Only the two body πN interaction is allowed. In our model, the principle of
detailed balance forced us to take the NNπ → NN process into account since also its inverse
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NN → NNπ channel is included. In fig. 6.2 we see the large contribution of this process to
the width at low energies. Such a three body NNπ interaction is not included in the vacuum
approximation. At higher energies, especially above 120 MeV the low-density approximation
coincides with our results, since there the dominant process is the two body process Nπ → ∆.

We conclude that the naive low-density approximation is qualitatively and quantitatively not
reliable in the energy regime of Ekin . 70 MeV where multi-body collisions, potential effects
and Pauli-blocking are important.

Comparison to optical model results. In [Hec81] Hecking published calculations of the pion
mean-free-path based on two different types of phenomenological optical potentials Vopt. Starting
from equation (6.9) one can calculate the imaginary part of the momentum using the disper-
sion relation p2 = E2 −

(
m2 + 2E Vopt(p,E)

)
approximating Π = 2E Vopt by ignoring terms

of the order O
(
V 2

opt/m
2
)
. Instead of solving the real and imaginary parts of the dispersion

relation, Hecking approximates the real part of the dispersion relation by the vacuum solu-
tion ℜ

[
p2
]

= E2 − m2 and uses this approximation in the equation for the imaginary part

ℑ
[
p2
]

= −ℑ
[

2E Vopt(p,E =
√

p2 +m2)
]

. This last equation now defines also ℑ [p], which can

be used in equation (6.9) to obtain the mean free path. Hecking’s results [Hec81, fig. 1] show two
solutions for the mean free path which give maximal values of 4 fm and 5.7 fm. Our result is not
only at the peak position but over the full energy range lower than Hecking’s. Eventually, the
work performed by Mehrem et al. [Meh84] explains this discrepancy. Solving the full dispersion
relation with an optical potential calculated by J. A. Carr3, it [Meh84] reports a mean free path
of the pion which is smaller than Hecking’s result. Mehrem et al. attribute this discrepancy to
Hecking’s approximations described above.

As a benchmark for our model, the result of Mehrem et al. [Meh84] for the mean free path is
shown in fig. 6.3 in comparison to our result obtained with the BUU simulation 4. Including the
hadronic potential in our model we notice that the mean free path decreases considerably at low
pion kinetic energies. There the hadronic potential becomes repulsive with V & Ekin and the
semi-classical model breaks down, as mentioned earlier. In contrast to this, quantum mechanics
allows for tunneling, i.e. propagation, into such classically forbidden regions.

A proper discussion of the mean free path is obviously important in the analysis of experiments
with final state pions being produced inside the nuclear medium. When working in a quantum
mechanical framework, solving the full dispersion relation, as done e.g. by Mehrem et al., is very
important. Ad hoc assumptions have a large effect on the pion mean free path and this has a
dramatic effect on any final state analysis.

Since the mean free path is not directly observable, it is ultimately an open question whether
transport gives a reasonable mean free path for the pion. This can only be answered by experi-
ment. A test for our model assumptions will, therefore, be the absorption cross sections which
we address in the next paragraph.

6.3 Pion absorption and quasi-elastic scattering

Low-energy pion scattering experiments have been studied extensively with elementary targets
(e.g. [Car71, Dav72, Kri99, Sad04]). However, there exist only a few data points for pions

3The parameters are given in [Meh84]
4The real part of Vopt, which is used in Mehrem’s work, is very strong at low energies with Vopt ≈ 48 MeV

at Evac
kin = 0. A direct comparison by including this real part in our semi-classical model is, therefore, not

possible.
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Figure 6.7: Reaction (”reac”; solid and dashed) and charge exchange (”CX”; dotted and dashed-
dotted lines) cross sections for 12C and 209Bi. The data points are taken from [Ash81] (open
squares: σCX , open circles: σreac) and [Fri91] (full circles: σreac).

scattering off complex nuclei [Car76b, Clo74, Wil73, Ash81, Fri91, Nak80, Byf52].

The total cross section [Car76b, Clo74, Wil73] includes the coherent contribution, which
would have to be subtracted before comparing them to our results (for a discussion on this issue
see e.g. [Ash81]). We study here solely reaction, charge exchange (CX) and absorption cross
sections. In the considered energy regime, reaction and CX cross-section measurements are
rare [Ash81, Fri91]. In fig. 6.7 we present our results for reaction and CX cross sections for 12C
and 209Bi. The overall agreement with the few existing data points is good. Fortunately, the
experimental situation for absorption cross sections [Ash81, Nak80, Byf52] is more promising.
Therefore, we now will concentrate on this observable.

In a quantum mechanical approach one cannot calculate absorption cross sections in the
general case. Such an absorption cross section can be obtained only at very low energies
(e.g. [Nie93a]), where the quasi-elastic contribution to the total reaction cross section is neg-
ligible. One thus relies on eikonal approximations to split the reaction cross section into a
quasi-elastic and absorptive part. On the contrary, in the BUU simulation the calculation of an
absorption cross section is straightforward due to the semi-classical treatment.

In fig. 6.8 we show calculations for different nuclei as a function of the pion energy. Comparing
the curves obtained without any potential (dotted) to those with the Coulomb potential included
(dashed), we see that the Coulomb potential alone has only a small influence on light nuclei, but
is very important at low energies for heavy nuclei. Its long range leads to a sizable deformation
of the trajectories already long before the pions reach the nucleus. Therefore the negative pions
can interact with the nucleus even if they have large impact parameter while the positive pions
are deflected. In the presence of the Coulomb potential we see a reduction of the cross section for
the π+ and a large increase of the cross section for the π− meson. This agrees to the findings of
Nieves et al. [Nie93b], who pointed out the relevance of the Coulomb potential in their quantum
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Figure 6.8: Absorption on light nuclei depending on the choice of potentials for the pion. The
data points are taken from [Ash81] (open circles), [Nak80] (open squares) and [Byf52] (full
squares) . In all plots the standard hadronic potentials for the nucleon and ∆ resonance
are used. The dotted line represents a calculation without Coulomb potential and hadronic
potential for the pion such that the pion feels no potentials. All other lines are obtained with
the Coulomb potential included. The dashed-dotted line additionally includes a hadronic
potential for the pion. Finally, the solid line has been obtained using all potentials and, in
contrast to the other results, in a full-ensemble calculation.
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mechanical calculation of absorption and reaction cross sections.

When one includes the hadronic potential for the pion (dashed-dotted line), another overall
effect sets in. Once the pion enters the nucleus it is influenced by the short-range hadronic
potential, which amounts to −40 MeV at high momenta and to +20 MeV at low momenta, as
well as the Coulomb potential which amounts to roughly ±10 MeV in a medium size nucleus,
and to roughly ±20 MeV in the case of a 207

82 Pb nucleus. At very low energies the two potentials
nearly compensate for the negative pion, while they add up to a strongly repulsive potential in
the caseof a π+.

In fig. 6.8 we see qualitative agreement for 12
6 C and 27

13Al nuclei with the data, when the
hadronic potential is included. The heavier the nuclei, the better the calculations including a
hadronic potential agree with the data. The curves which include a hadronic potential for the
pion show a prominent kink structure at roughly 30 MeV (20 MeV) for the positive (negative)
pion. This kink is caused by the repulsive character of the pion potential at low energies. On the
one hand, the mean free path decreases rapidly at very low energies (compare fig. 6.3) and this
causes the absorption cross section to rise. On the other hand, the repulsive potential pushes
the pions out of the nucleus or even reflects them. Below the kink the repulsive feature is more
prominent; above the kink the decreasing mean free path is more important.

Impact of the full ensemble scheme. All above discussed results have been obtained using
the parallel ensemble scheme. The solid lines in the upper, middle and lower panels of fig. 6.8
show the result using the superior local ensemble scheme (box size=0.5 fm3) with all previously
discussed potentials being included. We observe deviations as compared to the dashed-dotted
line, which shows the result using the same physics input in the parallel ensemble scheme. The
local ensemble scheme produces at higher energies less absorption and at smaller energies more
absorption. The overall agreement to the data is slightly improved. We expect two effects to be
responsible for this. If the reactions are non-local then also pion test-particles which in a local
interaction would just fly by the nucleus without interaction might be deflected during a reaction
towards the nucleus. So the absorption cross section rises due to the non-locality - the difference
to the local description should increase with rising 2-body cross section (i.e. rising energy). And
as a second effect, pions might be deflected outward too early before reaching a region of higher
nuclear density, which would be reached with a local collision criteria. This should counteract
the increasing effect discussed before. We expect this decreasing influence to be quite constant
in energy: as soon as there is a non-vanishing two-body strength, an incoming pion which would
anyhow hit the nucleus can be deflected before it enters a region of higher density where the
absorption probability is high. Overall, the time-consuming full ensemble scheme is expected to
yield a more reliable result since it represents a better approximation of the underlying BUU
equation.

Conclusions. As an overall conclusion, we find that it is critical to include Coulomb corrections.
On top, the absorption cross sections are sensitive to the hadronic potential of the pion, in
particular to the real part of the self energy in the medium. As we have already seen in fig. 6.3,
the mean free path is quite insensitive to the hadronic potential except at very low energies.
We thus conclude that the modification of the trajectories of the pion is the main effect of the
hadronic potential. In its repulsive regime the hadronic potential pushes the pion outwards and
the overall path of the pion inside the nucleus becomes shorter. The probability of absorption
is therefore decreased. The attractive behavior at larger energies causes the opposite effect.

The overall agreement to the data is satisfactory in spite of some discrepancies, especially for
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the 12
6 C and 27

13Al nuclei. Considering the fact that the pions have very large wave lengths at
such low energies, the success of the semi-classical BUU model is quite astonishing. Due to the
large wave length one expects also many-body correlations and quantum interference effects to
be important. Many-body effects are partially included via the mean fields acting on pions and
baryons and the modification of the ∆ width. Besides this we included only 1 ↔ 2, 2 ↔ 2 and
2 ↔ 3 body processes in the collision term. We take the success as an evidence that no higher
order correlations than the latter ones are necessary to describe pion absorption.

In our earlier publication [Bus06c], we achieved a slightly better agreement with the data. At
that stage, we also included the Oset model for the ∆ width. However, we implemented it as a
purely absorptive width. As outlined in appendix A.2.1, we now improved on this by dividing
the width into quasi-elastic and absorptive contributions. As a consequence, we absorb less
∆’s since the quasi-elastic contribution is no longer treated as an absorptive contribution. This
explains why we achieved in [Bus06c] slightly higher (≈ 15% at Ekin = 0.1 GeV) absorption
cross sections, especially at higher kinetic energies.

6.4 Double charge exchange

Pionic double charge-exchange (DCX) in πA scattering is a very interesting reaction – as a
model benchmark but also concerning the underlying physics itself. The fact that DCX requires
at least two nucleons to take place makes it a very sensitive benchmark for pion rescattering and
absorption. This reaction received a considerable attention in the past (see for instance refer-
ence [Gib90] and references therein). The mechanism of two sequential single charge-exchanges
has traditionally succeeded to explain the main features of this reaction [Bec70, Gib77] at low
energies although the contribution of the A(π, ππ)X reaction becomes progressively important
as the energy increases [Vic89, Alq02]. At higher (∼ 1 GeV) energies, the sequential mecha-
nism becomes insufficient to account for the reaction cross section [Abr03, Kru05]. Extensive
experimental studies performed at LAMPF obtained high precision data for doubly differential
cross sections on 4

3He [Yul97] and heavier nuclei ( 16
8 O, 40

20Ca, 207
82 Pb) [Woo92] in the region of

Ekin = 120 − 270 MeV.

Hüfner and Thies [Hüf79] explored for the first time the applicability of the Boltzmann equa-
tion in πN collisions and achieved qualitative agreement with data on single and double charge
exchange. Their method to solve the Boltzmann equation was based upon an expansion of the
pion one-body distribution function in the number of collisions. There, in contrast to our work,
the Boltzmann equation is not solved with a test-particle ansatz, but by reformulating it into a
set of coupled differential equations which can then be solved in an iterative manner. However,
this approach was based on simplifying assumptions of averaged cross sections and averaged
potentials. The work by Vicente et al. [Vic89] was based upon the cascade model described
in [Sal88]. There, a microscopic model for πN scattering was used as input for the pion reaction
rates in the simulation. In ref. [Vic89], pion DCX off 16

8 O and 40
20Ca nuclei was explored and

fair quantitative agreement with the data has achieved.

In our work, we explore DCX on heavier nuclei, comparing with the data measured by Wood
et al. [Woo92]. We also address the scaling of the total cross section discussed by Gram et
al. [Gra89]. To focus only on single-pion rescattering, we consider incoming pion energies below
Ekin = 180 MeV; above this energy 2π production becomes prominent and DCX does not happen
necessarily in a two-step process anymore. Due to the small mean free path of the incoming
pions, the process is mostly sensitive to the surface of the nucleus. Therefore, we will discuss and
compare two widely used numerical schemes for the solution of the Boltzmann equation: parallel
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ensemble method employed in the BUU models [Aic85, Bau86, Ber88, Cas90] and in the Vlasov-
Uehling-Uhlenbeck model [Mol85]; and full ensemble method used in the Landau-Vlasov [Gre87],
Boltzmann-Nordheim-Vlasov [Bon89, Bon94] and Relativistic BUU [Fuc96, Gai05] models. Both
schemes are based on the test-particle representation of the single-particle phase space density,
but they differ in the locality of the scattering processes (c.f. discussion in section 2.5.2). In the
following, we first compare both schemes and, thereafter, point out the impact of neutron skins.
Finally, the transport results are confronted with the experimental data obtained at LAMPF by
Wood et al. [Woo92].

6.4.1 Comparison of full and parallel ensemble runs

The fact that the DCX reaction depends considerably on the spatial distributions of protons and
neutrons implies that it is also sensitive to the degree of locality of the scattering processes. In
the non-discretized version of the BUU equation, the interactions are strictly local in space-time.
Utilizing the so called test-particle ansatz to solve the problem numerically, this is no longer the
case. Therefore, we want to elaborate on this degree of locality of the scattering processes in our
simulation. In section 2.5.2 we introduced the concept of the parallel ensemble approximation.
For DCX, surface effects are expected to be important, so that the spatial resolution could be
relevant in this context. Indeed, a major problem of the parallel ensemble scheme is that the
interaction volume ∆Vij can become very large. In the energy regime under consideration, the
incoming pions interact strongly with the nucleons so that the total cross section can reach more
than 200 mb. For a parallel ensemble run, the typical volume has therefore the size of 5 fm3

for a typical time-step size ∆t = 0.25 fm/c. Since it is not obvious that the parallel ensemble
scheme should be reliable in this regime, we have decided to evaluate this approximation scheme
by comparison to the full ensemble method.

In fig. 6.9, the results for dσ/dΩ at 180 MeV kinetic energy of the pion are presented for
both methods. The error bars in fig. 6.9 show the statistical uncertainties of our results. As an
improvement to our earlier publication [Bus06a], we resolve due to an improved error analysis
a slight difference between the results using the full (solid lines) and the parallel (dashed lines)
ensemble scheme. While the results are consistent with each other for the 40

20Canucleus and
within the statistical uncertainties also more or less for 16

8 O, we see some major discrepancy for
the lower left panel which shows the π+Pb → π−X reaction. As a consequence we decided to
perform all calculations with both the parallel ensemble method and the full ensemble method to
compare the results to the data. Note that in the present problem, in order to obtain a result at a
given energy for one specific nucleus one CPU-day is required in the parallel ensemble scheme. In
the full scheme this takes of the order of approximately 4 CPU-days for an acceptable statistics,
as shown in fig. 6.9.

6.4.2 Influence of the density profile

The DCX is, due to the low pion mean free path in nuclear matter, very sensitive to the surface
properties of the nuclei. Therefore, we compare the results with the present parametrization
for 208Pb according to [Nie93b], as described in section 3.8, to the results obtained with the
one used in previous publications [Bus06c, Mü04a, Eff97b]. For 208Pb, both distributions are
parametrized according to eq. 3.73 with the parameters given in table 6.1. However, neutron
skins are very interesting because in these skins only π+ mesons can undergo charge exchange
reactions. For the positive pions this causes an enhancement of DCX processes at the surface,
so the pions do not need to penetrate deeply for this reaction. Hence, the probability for their
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Figure 6.9: Comparison of the full (solid lines) and parallel (dashed lines) ensemble methods. The
upper panels show angular distributions for the double-charge exchange process π±A→ π∓X
at Ekin = 180 MeV. The yellow and red error bands denote the 1σ confidence level based
upon our statistics.

ρ0
p [ fm−3] ρ0

n [ fm−3] Rp [ fm] Rn [ fm] ap = an [ fm]

default parametrization [Nie93b] 0.0631 0.0859 6.624 6.890 0.549
old parametrization [Bus06c] 0.0590 0.0900 6.826 6.826 0.476

Table 6.1: Parameters of the Woods-Saxon parametrizations for 207
82 Pb.
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absorption is reduced. In fig. 6.10 we present the results for π+Pb → π−Pb for an incoming
pion energy of 180 MeV. Comparing the result obtained in a calculation including a neutron
skin having the diameter of Rn − Rp = 0.266 to the one neglecting it, we conclude that the
enhancement in the total cross section is roughly 35%.

The accurate determination of neutron skins is relevant for different areas of physics such as
nuclear structure, neutron star properties, atomic parity violation (PV) and heavy ion collisions
[Hor01, Hor06, Pie06]. The Parity Radius Experiment (PREX) at JLab [Mic] plans to measure
the neutron radius with high precision (1%) using PV electron scattering. We have just shown
that the DCX cross section is very sensitive to the size of the difference between the proton and
the neutron radii of the 207

82 Pb nucleus. The effect is specially large (ca. a factor 2) at forward
angles, where our model performs very well (see next section). Indeed, without neutron skin,
due to strong pion absorption in the bulk of nuclear matter, the DCX cross section is small at
forward angles. The presence of neutron skins favors DCX in peripheral reactions, where the
pion propagates in practically pure neutron matter. This naturally enhances the DCX cross
section at forward angles. Hence, a precise measurement of DCX at forward angles, combined
with a realistic theoretical analysis could be a valuable source of information on the neutron
skins complementary to the one obtained with PV electron scattering. Note that following
similar arguments for the π−-lead reaction, we expect a reduction of the cross section.

6.4.3 Comparison to the data

To compare with the data measured at LAMPF by Wood et al. [Woo92], we discuss first the
total cross section. Hereafter, we explore angular distributions and, finally, the double differential
cross section is addressed as a function of both angles and energies of the outgoing pions.

In fig. 6.11 one can see the good quantitative agreement to the total cross section data at 120,
150 and 180 MeV for the 16

8 O, 40
20Ca, 103

45 Rh and 207
82 Pb nuclei. Only for the 16

8 O nucleus and the
low energy of 120 MeV we see statistically significant discrepancies. The difference of full and
parallel ensemble runs is rather small. Notice that we reproduce the different A dependencies
of both (π+, π−) and (π−, π+) reactions. This is due to the fact that, when A increases, the
number of neutrons increases with respect to the number of protons, and this favors the π+

induced reaction.
In [Gra89], Gram et al. discuss a scaling law of the total cross section. Their line of argument

starts with the assumption that the first collision takes place predominantly at the surface and,
therefore, the cross section should scale with A2/3. Furthermore they assume that DCX is mainly
a two-step process, and that a pion which undergoes an elastic process at the first collision will
not contribute. This is reasonable because the incoming pions loose energy in the elastic process,
and their cross section for a second charge-exchange reaction is hereafter very much reduced.
For a negative pion the first charge exchange reaction occurs with a probability of Z/N where
Z(N) denotes the number of protons (neutrons). This is the case if the interaction is dominated
by the ∆ resonance, as it should be in this energy region. Finally, the second charge exchange
process then takes place with the probability (Z − 1)/(A − 1) since, in the isospin limit, the
π0 interacts equally well with protons and neutrons. Putting these considerations together and
extending them to the π+ case, the cross section for DCX is expected to scale according to

σtot ∼ A2/3 Q

A−Q

Q− 1

A− 1
, (6.12)

where Q denotes the number of protons in the case of π− induced and the number of neutrons
in π+ induced DCX.
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Gram et al. [Gra89] found good agreement of this scaling law with experimental data. This
scaling law is fulfilled also in the GiBUU simulations as can be seen in fig. 6.12, which shows
the obtained results in comparison to the predicted scaling law. Nevertheless, one may wonder
why this scaling law works in a process which is so sensitive to the neutron skin on heavy nuclei,
as has been shown in fig. 6.10. Since the first collision takes place on the surface, a neutron
skin causes an enhancement in the A(π+, π−)X reaction while A(π−, π+)X is suppressed. This
effect leads to a deviation from the scaling. However there are also Coulomb forces which are not
negligible. The Coulomb force enhances A(π−, π+)X by attracting the negative projectiles and
repelling the positive products, which therefore have a smaller path in the nucleus and undergo
less absorption. And, due to similar arguments, the reaction A(π+, π−)X is suppressed. We find
that this effect counteracts the one from the neutron skin restoring the scaling. In any case, the
approximate scaling exhibited by the cross section shows that the reaction is very much surface
driven and can be very well understood in terms of a two-step process.

In fig. 6.13 we show dσ/dΩ for DCX at Ekin = 120 (lowest curves), 150 and 180 MeV (highest
curves) on 16

8 O, 40
20Ca and 207

82 Pb as a function of the scattering angle θ in the laboratory frame
for both the full (black curves) and parallel (gray curves) ensemble schemes. Our results (lines)
are shown together with their statistical uncertainties (error bands). The uncertainties are well
under control except at very small and very large angles, where statistics is very scarce. Again,
there is a very good quantitative agreement for both 40

20Ca and 207
82 Pb nuclei. For 16

8 O, the data
is somewhat overestimated for low kinetic energies of the pion.

Going into further details of the energy distribution of the produced pions, we show in figures
6.14, 6.15 and 6.16 the results for dσ/(dΩ dEkin) at different laboratory angles θ, as a function
of the kinetic energy of the outgoing pion Ekin. The overall agreement is good, better at forward
and transverse angles than at backward angles. Astonishingly, the discrepancy for the 16

8 O data
is less prominent than for the integrated cross sections. However, we observe an overall lack
of pions with energies below Ekin≃30 MeV. This feature becomes more prominent when going
from O to Pb and is present for both incoming π+ and π−. The same problem also shows up
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Figure 6.13: Angular distributions for the DCX process π±A → π∓X at Ekin = 120, 150 and
180 MeV. The data points are taken from [Woo92]; only systematical errors are shown.
The solid lines represent the GiBUU results obtained using the full ensemble scheme, the
dashed ones the result for the parallel ensemble scheme. For 207

82 Pb (lower panels) we only
show the result and the corresponding experimental data for 180 MeV kinetic energy of the
pion. For 16

8 O (upper panels) and 40
20Ca (middle panels) we show the results for all three

energies 120 MeV (experimental data: open circles), 150 MeV (open squares) and 180 MeV
(full squares). The lowest curves of our results correspond to 120 MeV, the highest ones to
180 MeV. The yellow and red error bands denote the 1σ confidence level based upon our
statistics.
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in the work of Vicente et al. [Vic89] (see their fig. 9). An explanation of this feature is not
clear. One may speculate whether quantum mechanical effects, which should be sizable for the
low-energy pions with long wavelength, lead to the enhancement in the data compared to the
semi-classical transport theory.

Summarizing this last section, we resolved small inaccuracies of the parallel ensemble scheme
for the DCX reaction by comparing the results with those obtained in the more precise but time
consuming full ensemble method. Henceforth, we suggest to use the full ensemble method for
further studies. Furthermore, we compared the results of our model with the extensive set of data
taken at LAMPF [Woo92], achieving a good agreement, not only for the total cross section, but
also for angular distributions and double differential cross sections. Still, we miss some strength
at backward angles and pion energies below Ekin ≈ 30 MeV. The scaling of the total cross
sections pointed out in [Gra89] could be reproduced. However, we found that the effects of
neutron skins and Coulomb forces, which both break this scaling, compensate each other such
that the scaling is restored in a non-trivial fashion. We have shown in section 6.4.2 that the
DCX cross section is very sensitive to the size of the neutron skin. A precise measurement of
DCX at forward angles combined with a theoretical analysis could bring quantitative results on
the neutron skins of heavy nuclei.

6.5 Summary: ”Is transport applicable for low energetic pions?”

In the beginning of this chapter, the key question arose ”Is transport applicable for low energetic
pions?”. In pion absorption and charge exchange reaction we achieved agreement with the
available experimental data. However, we also had to realize that the propagation of pions
with too long wavelength (Ekin < 30 MeV) is not very meaningful and that the semi-classical
treatment starts to break down in this energy regime. Finally, after addressing DCX we can
conclude that the implementation of pion rescattering and absorption in the GiBUU transport
model successfully passes the demanding test of describing DCX reactions. Thus our answer
to the initial question is the following: the semi-classical approach is well suited to describe
pion dynamics in nuclei for pion kinetic energies greater Ekin ≈ 30 MeV on a level of 10 − 20%
accuracy.
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Figure 6.14: Double differential cross sections for the DCX process π±O → π∓X at Ekin =
120, 150 and 180 MeV obtained using the parallel ensemble scheme. The results at differ-
ent angles are shown as functions of the kinetic energies of the produced pions. Data are
taken from [Woo92]; only statistical errors are plotted. The GiBUU results are presented as
histograms, where the fluctuations indicate the degree of statistical uncertainty.
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Figure 6.15: Same as fig. 6.14 for Ca.
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Figure 6.16: Same as fig. 6.14 for Pb at Ekin = 180 MeV.
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Chapter 7

Electron and photon induced reactions

Overview: Inclusive electron and photon scattering off nuclei is addressed and a
good description of existing data is obtained. The role of a momentum-dependent
mean field is emphasized and the impact of different model ingredients is
investigated. Finally, simulations for photon-induced pion production are presented.

7.1 Introduction

Scattering electrons and photons off the nucleon, a wealth of information on its properties such
as, e.g., structure functions, charge radius, the distribution of its quark and gluon constituents
and its excitation spectrum has been gathered. As a next step of sophistication one might wonder
how these properties change when embedding the nucleon in a nuclear medium. In particular,
the question arises whether its structure changes in the medium due to the interaction with
the other nucleons, an effect which is now known as the EMC-effect1 [Aub83]. Furthermore,
the properties of the resonance excitations in the medium are under investigation. Both the
resonances and the nucleon acquire complex self-energies within in the medium which may lead
both to mass-shifts and modifications of the life-times. Calculating life-times and mass-shifts
with a given interaction model and comparing such predictions to the measured quantities,
one is testing our understanding of the hadronic many body problem. Such studies have first
been performed via inclusive experiments with nuclear targets where only the outgoing electron
was detected2. Studying exclusive processes in the intermediate energy regime with an energy
transfer of 0.1−2 GeV, one gains further sensitivity on in-medium changes of baryonic resonances
and the nucleon since such modifications may also lead to unexpected final-state interaction
patterns. A related hot topic is the modification of mesons such as, e.g., σ [Mes02] and ω [Trn05]
within the medium due to chiral symmetry restoration and/or collisional broadening. Since
those mesons decay also to pions, such modifications must result in a modified pion yield in the
detectors. Here the quest is to gain first a proper understanding of the amount of pion production
one would expect assuming no modifications. Only given this understanding, conclusions on
chiral symmetry restoration may be drawn. In high energy reactions at center of mass energies
greater than 2 GeV, one is trying to deduce information on the build-up of the wave-function
of a hadron – in other words the formation of a hadron or simply hadronization – via the
measurement of the attenuation of these hadrons within the medium3. Especially at large Q2

one expects to observe the onset of color transparency.
There are three key issues in the theoretical understanding of photon- or electron-scattering

off nuclei. First and foremost, one needs to model effectively the nuclear ground state and

1EMC=European Muon Collaboration
2For a recent review cf. [Ben08].
3For details cf. [Fal04c, Gal05] and references therein.
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take into account the modification of the elementary lepton-nucleon vertex within the nuclear
medium. Furthermore, the study of exclusive channels such as pion production or nucleon
knockout demands for a proper description of final state interactions of the produced particles
with the nuclear medium. The last-mentioned issue can ideally be addressed within our Giessen
BUU (GiBUU) framework. In this work we focus on the intermediate energy regime, where the
γ⋆N cross-section is dominated by elastic scattering, resonance excitations and non-resonant
meson production. We aim at a consistent treatment of the initial γN vertex and the final state
processes. Applying a precursor version of our present transport model, Lehr et al. [Leh03] have
already been studying π, η and nucleon production within the same energy region. However,
their model for the γ⋆N reaction was less complex. In particular, there was no direct consid-
eration of in-medium kinematics for the cross sections. Additionally, we improved the physical
input to the BUU collision-term and its numerical implementation.

Another rather closely related subject is the scattering of neutrinos and nucleons, where
experiments propose to shed light on the nucleon axial form factor and its strange quark content.
However, such an elementary experiment would need to have a very large tank containing several
tons of liquid hydrogen as a target: with a small target the count rate would be too low due to the
tiny interaction cross section. Since such an explosive target is considered to be a major security
risk, there is no such experiment running or even planned. So all present neutrino experiments
use nuclear targets [nui] and all the measured cross sections incorporate nuclear corrections to
the underlying nucleon-neutrino interaction. To draw conclusion on the underlying νN process
it is therefore necessary to master these corrections. The neutrino and electron scattering off the
nucleon are interconnected via iso-spin symmetry and one can treat both processes within the
same formalism. So the proper description of the electron nucleus interaction is for the neutrino
community a necessary benchmark of their nuclear corrections. In this work we do not consider
neutrino scattering off nuclei. However, Leitner et al. [Lei06b, Lei06a, Lei] have developed
a model for this process which uses the here presented formalism for the γ⋆N interaction to
constrain the iso-vector part of the νN interaction. Furthermore, they apply the same nuclear
model and in-medium modifications as presented here. So our work serves as a direct benchmark
for the work of Leitner et al.

This chapter is organized as follows. First, we investigate the impact of different assumptions
on the nuclear ground-state. Therefore, we will study inclusive e−A and γA scattering which
is mostly sensitive to this aspect. Finally, we will also consider exclusive pion production and
investigate the role of final state rescattering4.

7.2 Inclusive electron scattering off complex nuclei

7.2.1 Introduction

Electron scattering off nuclei in the regime of energy transfers between 0.1 and 1 GeV2 has been
addressed by several experiments within the last two decades, for a recent review cf. [Ben08].
Comparing the measured nuclear cross sections to the nucleon cross sections, several modifica-
tions could be observed. First, the Fermi motion within the nuclei leads to a smearing of the
peak structures such as the quasi-elastic and the ∆ peak. Furthermore, one observed a quench-
ing of the spectral strength in the region of the quasi-elastic peak which was also addressed as
violation of the Coulomb sum-rule [Bar88, Day93, Zgh94]. In contrast to the quenching in the
peak region one observed an enhancement in the so-called dip-region in between quasi-elastic

4Results presented in this chapter have also been published in [Bus07a, Bus07b, Lei07, Bus08].
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and ∆ peak. The peak position of the ∆ resonance was found to be both A and Q2 depen-
dent [Bar83, Sea89]: a shift towards lower masses for Q2 . 0.1 and a shift towards higher
masses for higher Q2 [O’C84, Sea89, Che91, Ang96]. There is a considerable amount of theoreti-
cal work aiming at a good description of the inclusive electron cross section; cf. the recent review
given by Benhar et al. [Ben08] for an overview. Benhar and collaborators [Ben05] employ the
impulse approximation with realistic spectral functions obtained from electron-induced proton
knockout data and theoretical calculations based on nuclear many body theory (NMBT). With
this model, they achieve impressive agreement in the quasi-elastic (QE) peak region; however,
they underestimate the data in the ∆ region. In [Ben06, Nak07] they improved on this and a
good description of the data also in the single-pion production region could be reached. Also,
Szczerbinska et al. [Szc07] use Benhar’s spectral functions [Ben05] for the QE contribution, but
in the ∆ region they apply the dynamical Sato-Lee model developed to describe photo- and
electron-induced pion-production off the nucleon. A different approach, which – as our model
– yields a combined investigation of neutrino and electron interactions, makes use of the super-
scaling properties of the electron scattering data (cf. [Ama05] and references therein). More
work has been done in the QE region. In particular the model by Gil et al. [Gil97] yielded a
particular successful description of the dip region in between the QE and ∆ peak.

7.2.2 Results

Scattering of Oxygen

In the following, the results of our model are compared to data and the impacts of the most
prominent model ingredients are investigated. To start the discussion, we show in fig. 7.1 our
results for the inclusive reaction 16

8 O (e−, e−)X for a beam energy of 700 MeV and different
nucleon mean fields, in-medium changes to the width have been neglected. The solid curve
denotes the result without potentials, including only Fermi motion and Pauli blocking. Including
a momentum-independent potential (dashed curve) does not change anything to the QE peak
(q0 = 0. − 0.15 GeV). However, the single-pion region (q0 & 0.2 GeV) is modified. This is
due to the effect that the ∆ is less strongly bound than the nucleon. Therefore, more energy
must be transferred by the photon such that this binding effect is compensated. When the
momentum-dependent mean field is included (dashed-dotted curve), then the faster (on average)
final state nucleons experience a shallower potential than the initial state nucleons. Also the
resonance potential gets shallower towards higher momentum. Therefore, even more energy
must be transferred by the photon. Hence, the QE peak is broadened towards a higher energy
transfer q0 and shifted by approximately 8 MeV; also the single pion spectrum is slightly shifted
towards higher energies and broadened. A similar result has also been obtained within the
Walecka model [Ros80]. There the nucleon mass becomes in the medium an effective mass
m⋆(~r) and the energy of the nucleon is given by E~p =

√

~p 2 +m⋆(~r) which can be rewritten as

E~p =
√

~p 2 +m+ V (~r, ~p) with the momentum-dependent potential

V (~r, ~p) =
√

~p 2 +m⋆(~r) −
√

~p 2 +m .

For small momenta (|~p| ≪ m⋆, |~p| ≪ m), one obtains a simple harmonic dependence of the
potential on the momentum:

V (~r, ~p) ≈ p2m−m⋆(~r)

2mm⋆(~r)
+m⋆(~r) −m .
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Figure 7.1: The inclusive electron cross section dσ/(dΩdlf ) on 16O as a function of the energy
transfer q0 for a beam energy of 0.7 GeV and a scattering angle of θlf = 32◦. The graph shows
the results for different nucleon potentials: no potential (solid line), momentum-independent
potential EQS 3 (dashed line) and momentum-dependent potential EQS 5 (dashed-dotted
line). The calculations do not include in-medium changes of the widths.

Rosenfelder [Ros80] shows that the value of m⋆ can then be used to fit the QE peak. We
emphasize however, that we do not fit our potential to the electron data but the potential has
been fixed before by nucleon-nucleus scattering [Tei97].

In fig. 7.2, we additionally included different scenarios for the in-medium width modifications
which are named according to sec. 3.6.1. Obviously, all different scenarios for the in-medium
width yield very similar results. Since the scenario including the Oset model (mass-shift+Oset)
has yielded good results also for pion scattering in chapter 6, we use in the following this
scenario for the in-medium width. Comparing the different in-medium width scenarios to the
result obtained assuming no in-medium changes of width (dotted curve), we notice that the
larger in-medium width leads to a broadening in both the QE- and pion-region.

Figure 7.3 shows the comparison of our model to the data measured by Anghinolfi et al. [Ang96].
From this figure we conclude that our model is considerably improved by including the in-medium
width. One also notices a short-coming of our model for the QE-region in the upper left panel
(beam energy=0.7 GeV). This problem could not yet been resolved. In the work of Kalok [Kal07]
it was shown that the inclusion of short-range-correlations in our model lead to a lowering of the
peak. These short-range correlations imply a modified momentum distribution of the ground
state nucleus. However, also with Kalok’s improvements [Kal07] no quantitative satisfactory
result could be obtained. However, when going to larger beam energies (cf. fig. 7.3) then we see
already at a slightly higher beam energy of 880 MeV very good agreement with the experimental
data. The solid curves in fig. 7.3 represent our full result which agrees well with the available
data. Especially the dip-region in between QE-region and single-pion region is well reproduced.
At very high beam energies, a lack of ππ strength leads to a too low result at large photon
energies. Overall, the in-medium width leads to an improvement of the model.

To analyze the problem at Ebeam = 0.7 GeV more closely, we also compare our model
to the experiment performed by O’Connell et al. [O’C84], which has very similar kinemati-
cal constraints (Ebeam = 0.737 GeV, θlf = 37.1◦) as the run performed by Anghinolfi et al.
(Ebeam = 0.700 GeV, θlf = 32.0◦). To compare experiments one often defines the so-called Q2

at the QE-peak. It corresponds to the Q2 at which the center of mass energy at the hadronic
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Figure 7.2: The inclusive electron cross section dσ/(dΩdlf ) on 16O as a function of the energy
transfer q0 for two beam energies of 0.7 GeV and 1.5 GeV and a scattering angle of θlf = 32◦.
All results include the momentum-dependent potential (EQS 5). The upper graph shows
results for a variety of in-medium width scenarios: no modifications (dotted curve), collisional
broadening via mass-shift scenario (solid line), via no mass-shift scenario (dashed line) and
via mass-shift + Oset scenario. The data are taken from [Ang96, QEW08].

vertex equals the nucleon mass if one assumes a free nucleon target at rest. This parameter
is determined by two conditions which relate Q2 to the initial and final beam energy (Ebeam,
Efinal) and to the scattering angle θlf :

Q2
QE-peak = 2mNq0 = 2mN (Ebeam − Efinal) , (7.1)

Q2
QE-peak = 2EbeamEfinal(1 − cos θlf ) . (7.2)

Solving these equations we get

Q2
QE-peak =

2E2
beam(1 − cos θlf )

1 + Ebeam
mN

(1 − cos θlf )
. (7.3)

This parameter does not include any in-medium input, but it gives a simple estimate on the real
in-medium Q2 at the QE-peak. The Anghinolfi and the O’Connell experiments differ slightly
in this Q2

QE-peak value (Anghinolfi: Q2
QE-peak = 0.13 GeV2, O’Connell: Q2

QE-peak = 0.19 GeV2).
Figure 7.4 shows that our model describes the O’Connell data quite well. This feature is quite
astonishing and hints to some missing physics input at rather low Q2.

In fig. 7.5, we show the contribution of the different production mechanisms to the total
electron-nucleus cross section which we calculated including all in-medium modifications and
in particular the in-medium changes of the width according to the mass-shift+Oset scenario.
The dashed line shows the quasi-elastic contribution, the dashed-dotted the single-π and the
dotted one the 2π contribution to the initial scattering process. One observes that going from
low too high beam energies, the importance of single-π and 2π production mechanism gradually
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Figure 7.3: The inclusive electron cross section dσ/(dΩdlf ) on 16O as a function of the energy
transfer q0 at five distinct fixed electron energies (0.7, 0.88, 1.08, 1.2 and 1.5 GeV) and a scat-
tering angle of θlf = 32◦. The dashed line denotes our result, where we include all in-medium
modifications besides collisional broadening. The solid line denotes the full calculation, which
includes in-medium changes of the width according to the mass-shift+Oset scenario. The
data are taken from [Ang96, QEW08] and the parameter Q2

QE-peak is evaluated according to
eq. 7.3.
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increases, whereas at low energies the quasi-elastic contribution is dominating. Note that this
result does not yet include any FSI of the outgoing particles and the classification into different
channels is solely based on the initial vertex and not on the final-state multiplicities.

Impact of the initial phase space distribution. In the following we want to compare results
for two different phase space distributions of the target nucleons. As outlined in sec. 3.8, we
assume for the nuclear ground state that the positions of the nucleons are distributed accord-
ing to density parametrizations obtained from low-energy electron scattering and Hartree-Fock
calculations. The momenta of the nucleons are distributed according to a local Thomas-Fermi
(LTF) approximation, i.e. it is assumed that at each space-point ~r the nucleon momenta occupy
a uniform sphere in momentum space with a radius given by the Fermi momentum pf (~r). This
gives phase space distributions for the ground-state protons and neutrons which are given by

fn,p(~r, t, ~p) = Θ
(

pn,p
f (~r) − p

)

(7.4)

with the Fermi momenta

pn,p
f (~r) = 3

√

3π2ρn,p(~r) . (7.5)

In the literature, one may also find a more simplistic model which we denote ‘naive Fermi gas
model’ (FG). Here the Fermi momentum is a direct input parameter and the whole nucleus is
assumed to have the same Fermi momentum. As a consequence the nuclear density becomes
constant all over the nucleus and is given by

ρFG =
2

3π2
p3

f , (7.6)

which means that the surface region of the nucleus is neglected. Especially for small nuclei,
where the surface is large compared to the core, this approximation is questionable.

For a nucleon at rest, there is according to eq. G.28 only one photon energy (if the incoming
beam energy and scattering angle are fixed)

q0 =
Q2

2m
=

E2
beam(1 − cosθf )

Ebeam(1 − cos θf ) +m
, (7.7)
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Figure 7.5: The inclusive electron cross section dσ/(dΩdlf ) on 16O as a function of the energy
transfer q0 at five distinct fixed electron energies (0.7, 0.88, 1.08, 1.2 and 1.5 GeV) and
a scattering angle of θlf = 32◦. The solid line denotes our full result, where we include
all in-medium modifications and in particular in-medium changes of the width according to
the mass-shift+Oset scenario. The data are taken from [Ang96, QEW08]. The dashed line
shows the quasi-elastic contribution, the dashed-dotted the single-π and the dotted one the
2π contribution to the initial scattering process. This result does not yet include any FSI of
the outgoing particles. The parameter Q2

QE-peak is evaluated according to eq. 7.3.
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Figure 7.6: The inclusive electron cross section dσ/(dΩdlf ) on 16O as a function of the energy
transfer q0 for a beam energy of 0.7 GeV and a scattering angle of θlf = 32◦. The graphs on the
left panel show the results for a calculation where we neglected potentials and in-medium width
modifications. The results for various assumptions concerning the momentum distribution
of the target nucleons are shown: Fermi gas with Fermi momentum pf = 0.2 GeV (solid
line), Fermi gas with Fermi momentum pf = 0.25 GeV (dashed line), momentum distribution
according to local Thomas-Fermi (LTF) approximation (dashed-dotted line). The calculations
shown on the right left panel include mean field potentials, but also no in-medium changes
of the widths. The FG result on the right panels was obtained with a Fermi momentum of
212 MeV.

for which a quasi-elastic (QE) event is possible. In appendix sec. G.2.2 it is shown, that the finite
target nucleon momenta within a Fermi gas lead to a finite range of possible q0 centered roughly

around q0 = Q2

2m , for which a QE-event can be realized. The size of this range is determined
by the Fermi momentum: the larger the Fermi momentum the larger the possible range of
q0’s. Thus going from a nucleon target to a Fermi gas target, the sharp δ-like QE-peak for the

nucleon target gets replaced by a smeared structure with a peak at q0 ≈ Q2

2m . The momentum
distribution for the LTF scheme represents an integral of several different Fermi gases having
different Fermi momenta. Thus one also expects for the LTF scheme a smearing of the QE-peak

around q0 ≈ Q2

2m .

To compare the LTF and FG schemes we use the very same physics input, in particular same
potentials and widths, and vary only the initial ~r and ~p distributions focusing on the quasi-elastic
peak.

On the left panel of fig. 7.6, we show the results for different input distributions neglecting
all in-medium modifications besides Pauli blocking and Fermi motion. The dashed-dotted curve
represents the result with our standard momentum distribution according to the local-Thomas-
Fermi (LTF) ansatz. One observes, that using an initial distribution according to the FG
scheme with a constant Fermi momentum of 0.2 GeV yields already a slightly lower and broader
QE-peak compared to the LTF result. In correspondence to the result derived in eq. G.34 of
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appendix sec. G.2.2, we observe for pf = 200 MeV a QE-contribution in the photon energy
region of 0− 140 MeV, which corresponds to a final electron energy of 560 − 700 MeV. Fig. 7.7
shows the momentum densities of the target nucleons for the LTF scheme (solid line) and the
Fermi gas with pf = 200 MeV. Both distributions have the same average value for the nucleon
momentum of 150 MeV. However, within the LTF scheme there are more nucleons with low

momenta which leads to more strength around the original QE-pole at q0 ≈ Q2

2m . The surplus
of high-momentum nucleons for the LTF compared to the FG scheme leads to a slightly higher
maximal photon energy for LTF and to a slight broadening of the peak at low and high photon
energies for LTF. With a further increase of the Fermi momentum to 0.25 GeV we conceive a
further broadening of the QE peak, which leads to a prominent drop of the peak height. The
peak position is however insensitive to the magnitude of the Fermi momentum. Thus one could
fit the height of the QE-peak within the FG scheme by a variation of its free parameter, namely
the Fermi momentum. Note that a Fermi momentum of 0.25 GeV is not very realistic: on
the basis of a proper density profile for Oxygen (cf. sec. 3.8) one can not generate such a high
average Fermi-momentum in LTF for the dilute Oxygen nucleus.

On the right panel of fig. 7.6, we additionally considered the impact of two different mean-field
potentials for the nucleons and compare the LTF results to FG results with pf = 212 MeV (this
Fermi momentum gives a nuclear density of 0.84 fm−3 which is approximately the same as the
average nuclear density of an 16

8 O nucleus). For the FG scheme, the density is constant and
therefore all nucleons are bound by a similar potential which only differs due to its momentum-
dependence. For the LTF scheme, however, the nucleons feel quite different potentials depending
on their position: in the surface the potential is weak whereas in the core the potential is strongly
attractive. The solid and dotted curves on the right panel of fig. 7.6 show the results for a
momentum-independent potential (EQS 3). Comparing our results with such a potential to the
ones without potential (on the left panel) shows that a momentum independent potential has
almost no visible impact on the results. This feature is based on the fact that the potentials
for the incoming and outgoing nucleons are the same. Therefore, there is no change in the
energy transfer to the nucleon. Also the slightly lower nucleon in-medium masses due to the
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∫
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mean-field potential do not lead to a sizable modification of the cross section. The dashed and
dashed-dotted curves on the right panel of fig. 7.6 show the results for the FG and LTF schemes
when including a momentum dependent potential. One observes in both cases a shift of strength
towards higher photon energies. This shift comes from the potential difference of the slow and
strongly bound target nucleon to the faster and less strongly bound final-state nucleon. However,
there is a qualitative difference in the spectra for LTF and FG: the QE-peak for the FG scheme
is shifted by roughly 25 MeV towards higher q0 while it hardly shifts for the LTF scheme.

This astonishing feature comes from the fact that the LTF scheme yields a strong correlation
of the initial nucleon momenta and the density at the position of the initial nucleon. This
correlation is depicted in fig. 7.8, where the probability to find a nucleon within an 16

8 O nucleus
with a given momentum at a position with a given density is plotted. One observes that the
probability to find a low-momentum nucleon is highly concentrated at low densities. Without
potentials, the region close to the peak of the quasi-elastic contribution comes from scattering
events with nucleons which have low-momentum. The larger the momentum of the nucleon,
the more the necessary photon energy for a QE-event differs from the mean photon energy in
a Fermi gas which is roughly the same as for the free nucleon q0 = Q2/2m (cf. the discussion
in appendix G.2.2). Including potentials the kinematics for those nucleons with low-momenta
barely change in the LTF scheme, since they sit mostly in a low-density environment. Thus the
region close to the original peak does not change very much. Those nucleons which have high
momenta and which are mostly sitting within a high-density environment contributed without
potentials to the regions to the left and to the right of the peak. In fact one observes in fig. 7.6
that the momentum-dependent potential modifies the overall spectrum quite considerably, due
to the fact that the formerly off-peak strength is shifted due to the strong potentials at high
densities. For the FG scheme, however, there is no such correlation of density and momentum
since the density is constant all over the nucleus. Thus the peak is shifted in the same manner
as the off-peak strength and one observes within the FG scheme also a large shift of the peak.

Impact of the collisional broadening of the resonances. In fig. 7.2, we have already observed
that all different scenarios for the in-medium width yield very similar results. We discussed in
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sec. 3.6.1 the complicated numerical implementation of the collisional broadening using the full
model. Thus the question remains, whether a very much simplified model for the collisional
broadening could be implemented which reproduces the main features of the full model, but
costs less computation time than the full model. Let us consider the ∆ resonance as a showcase.
In the mass-shift scenario the which is given by eq. 3.54:

Γcoll(p,~r, t) =

∫

Fermi sea at ~r
σ(p, p′) vrel(p, p

′)
d~p ′

(2π)3
, (7.8)

with σ = σN∆→N∆ + σN∆→NN + σN∆→NR (cf. appendix A.2 for details on the cross sections).
Let us approximate this width using an constant total cross section σ̂ which gives

Γcoll(p,~r, t) ≈ σ̂ρ
|~p|
p0

. (7.9)

The free parameter σ̂ must be estimated, we choose the value of the p∆+ → X interaction cross
section of a ∆+ at its pole mass having a momentum |~p| = 0.6 GeV with a proton at rest. In
our model this value is given by σ̂ ≈ 36mb, so we get

Γcoll(p,~r, t) ≈ 119 MeV
ρ

ρ0

|~p|
p0

. (7.10)

⇔ Γcoll,resonance r.f.(p,~r, t) ≈ 119 MeV
ρ

ρ0

|~p|√
pµpµ

. (7.11)

This formula for the width can now easily be implemented, even without the need to tabulate
it. Fig. 7.9 shows the ∆ contribution to the inclusive electron-oxygen scattering cross section at
a fixed electron energy of 0.88 GeV and a scattering angle of θlf = 32◦. We neglected the real
part of the self energies and focused on the impact of the collisional broadening. The solid curve
shows the result obtained with the vacuum width for the ∆, i.e. without collisional broadening.
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The dashed curve has been obtained with the full in-medium width, whereas the dotted one has
been obtained by setting

Γmed
tot = Γvac + Γcoll,resonance r.f. (7.12)

with the approximation for Γcoll,resonance r.f. according to eq. 7.11. One sees that both the full
width and the approximation lead to a broadening of the ∆ peak. Tuning the value of σ̂ one
could even get a better agreement, however: is this what we want? The value of σ̂ depends on
the average ∆ momentum during the reaction. At higher Q2 the 3-momentum transfers at the
∆-peak are higher than at low Q2, hence the average ∆ momentum is higher. Thus one would
need to consider different σ̂ as input for different reactions, which is not very aesthetic. From
the author’s point of view, the tabulation of the width as a function of mass, |~p| and density
has the great advantage that one doesn’t need to tune parameters such as σ̂. Finally, we will
anyhow mostly be interested in the simulation of exclusive events where the computation time
used for the width tabulations is of the order of 10% (confer sec. B.3 for details on CPU time
consumption). Hence using the full model for the width does not hinder us from performing
calculations.

Impact of the normalization of the spectral functions. In sec. 3.7, we pointed out the im-
portance of a proper real part of the self energies (Π) for the normalization of the resonance
spectral functions. To study the impact of this normalization procedure, we want to study two
different scenarios in which we include or neglect the dispersive contribution to Re[Π] while
keeping the mean field contribution in both cases. In fig. 7.10, we show the results for a beam
energy of 1080 MeV at the same electron scattering angle (θlf = 32◦) as above. The solid lines
in the figure denote the results including the dispersive contributions, the dashed one have been
obtained neglecting these contributions. The left upper panel shows the sum of all resonance
contributions for the e−p reaction, i.e.

∑

R dσe−p→Re−/(dΩdlf ). Since the normalization of the
spectral function was mostly too large without the dispersive contributions (cf. sec. 3.7), it is in-
tuitive that including the dispersive contributions, which normalize the spectral function, yields
smaller resonance contributions in e−p-scattering. In the total e−p-scattering cross-section,
which is shown on the right upper panel of fig. 7.10, one can not observe any impact of the
dispersive contributions. This becomes clear when recalling the definition of the background
cross section for the dominating single-π production mechanism. By definition (cf. eq. 4.116)
the sum of background cross section and resonances yield the MAID cross section, no matter
how large the resonance contributions are. This means that including the dispersive contribu-
tions, i.e. restoring the normalization of the spectral functions, we simply move strength from
the resonances to the background. This fact becomes important in the medium, since we only
modify the resonance part of the cross section in the medium while the background cross section
stays untouched. To evaluate this in-medium effect, we show in the lower panels of fig. 7.10
the same comparison with an Oxygen nucleus instead of a proton as target. Again, there is
a difference in the resonance contribution which is almost fully compensated in the total cross
section by the differing backgrounds. Note that the resonance cross sections are smaller when
the dispersive contributions are included, however the total cross section is slightly larger for this
case. We conclude that our background treatment, which basically absorbs the normalization
error of the spectral functions into the absolute magnitude of the background, leads to the fact
that including or neglecting the dispersive parts of the real parts of the self energies has almost
no impact on inclusive electron-nucleus cross sections.
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Figure 7.10: The inclusive electron-proton (upper panels) and electron-oxygen (lower panels)
cross section dσ/(dΩdlf ) as a function of the energy transfer q0 at a fixed electron energy of
1.08 GeV and a scattering angle of θlf = 32◦. The left panel shows the sum of all resonance
contributions, the right one the total cross section. The dotted line denotes the resonance
contributions neglecting the dispersive contributions to the real parts of the self energies, the
solid one has been calculated including the dispersive contribution. The arrow in the upper
right panel denotes the proper photon energy for quasi-elastic scattering, which gives for the
proton target a δ-like contribution to dσ/(dΩdlf ).
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Scattering off Iron

We performed the same analysis as for the 16
8 O target also for the heavier 56

2 Fe target, which is
one of the preferred target materials of many neutrino experiments. Our results for dσ/(dΩdlf )
with Q2 = 0.09− 0.13 at the QE-peak, which is almost the same Q2 as for the 700 GeV Oxygen
run performed by Anghinolfi et al., are shown in the upper four panels of fig. 7.11. Comparing
these results to the data measured by Baran et al. [Bar88] exhibits the same features as for
the low-Q2 results for Oxygen: the quasi-elastic peak is considerably overestimated whereas the
dip region is underestimated. In the lower panels of fig. 7.11 and in fig. 7.12 we again show
the inclusive cross section – however, at different kinematical set-ups according to experiments
performed by Sealock et al. [Sea89], Chen et al. [Che91] and Day et al. [Day93], which lead to
higher Q2 at the QE-peak. The data show a melting of the peak structures when going from
those experiments with low Q2 at the QE-peak to those with high Q2. Altogether the agreement
with data is at a satisfying level of 10-20% for most of the energy ranges. However, there is
a tendency to underestimate strength at high energy transfer which is at high photon energies
due to missing 2π strength, but at the QE-peak not yet understood.

Conclusions

We conclude, that the overall agreement to the data is improved by a calculation which in
addition to a local Fermi gas momentum distribution also includes a mean field and in-medium
spectral functions. Especially at low energies, a proper treatment of the nucleon spectral function
is important. The increase of the energy loss due to a momentum-dependent nucleon potential
reshapes the QE peak considerably. An additional modification of the nucleon width leads to
further broadening and decrease of the QE peak height. In the single-π and ∆ production
region5, we achieve a good description for all energies for the 16

8 O-target – for the 56
26Fe target

the description is not as good as for 16
8 O. The in-medium modifications improve the overall

correspondence with the data. In the dip region, which is conventionally attributed to 2N
excitations, the description is considerably improved due to the previously discussed broadening
of the QE peak. At higher beam energies, the data are underestimated at high photon energies
q0 due to the fact that 2π-production channels have not yet been included.

An impulse approximation calculation by Benhar et al. [Ben05] that uses nuclear many-
body theory (NMBT) spectral functions yields in the QE-region a better result for the Anghi-
nolfi [Ang96]-experiment at 700 MeV beam energy. However, already at a slightly higher beam
energy of 1080 MeV our model and the NMBT one yield equally good results for the QE peak.
We thus conclude, that our simple ansatz for the in-medium width (cf. eq. 3.54) and the inclu-
sion of a proper potential incorporate the main features of the nucleon spectral function in the
medium. The pion production in the NMBT calculation of Benhar et al. [Ben05] has lately been
improved in [Nak07] using similar methods as in our calculations.

7.2.3 Tuning the mean field potential

In the previous sections we used a mean field potential according to eq. 3.29 with potential
parameters which have been fixed by Teis [Tei96] using input from nucleon-nuclei scattering (cf.
table 3.4 for the parameter values). However, the question arises how reliable these parameters
are and whether our results could be improved by fine-tuning the parameters in a sensible
manner.

5In the medium, the ∆ has also pion-less decay modes and contributes, therefore, not only to single-π production.
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Figure 7.11: The inclusive electron cross section dσ/(dΩdlf ) on 56Fe as a function of the energy
transfer q0 for various electron beam energies Ebeam and electron scattering angles θlf . In each
panel, the parameter Q2

QE-peak evaluated according to eq. 7.3 is given as an estimate of Q2 at
the quasi-elastic peak. The curves represent results obtained with our full model, i.e. both the
momentum-dependent potentials and the in-medium broadening of the widths are included.
The data are taken from [Sea89, Bar88] and the parameter Q2

QE-peak is evaluated according
to eq. 7.3.
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Figure 7.12: Same as fig. 7.11 for different electron kinematics. The data are taken from [Sea89,
Che91, Day93].
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Appendix A.4.1 details the fixing of the parameters which depends on five physical inputs: the
nuclear matter saturation density ρ0, the nuclear matter compressibility C, the nuclear matter
binding energy Ebind, the depth U of the single particle potential A0

N for ~p = 0 at saturation
density and the momentum p0 at which A0

N vanishes at saturation density.
In the following we choose

ρ0 = 0.16 fm−3 , (7.13)

C = 220 MeV , (7.14)

Ebind = 16 MeV . (7.15)

The choices for ρ0 and for the compressibility C differ slightly from Teis’ choice for those pa-
rameters. Teis used ρ0 = 0.168 fm−3 which we replaced by a more up-to-date value. Both a
compressibility of 290 MeV (EQS 5) and 220 MeV are in correspondence with data on trans-
verse and longitudinal flow in high-energy heavy-ion reactions [Dan02]. However, the analysis
by Danielwicz [Dan02] seems to prefer a lower value of C such as 220 MeV. For the determi-
nation of the parameter sets presented in table 3.4 the potential depth at saturation density
and vanishing momentum was assumed to be U = −75 MeV. Additionally the momentum p0

was set to 800 MeV. Those parameters have been estimated by Welke et al. [Wel88] based
on a comparison of different optical model fits to nucleon-nuclei scattering. We consider those
two parameters to be the most suited ones for our fine-tuning procedure, since the momentum
dependence of the potential does have a prominent impact on the observed inclusive electron
scattering cross section.

Let us first analyze our freedom in choosing p0 and U . For this, fig. 7.13 shows all pos-
sible combinations of p0 and U which fulfill the conditions stated in eq. A.77-A.81 with the
choice of ρ0, C and Ebind according to eq. 7.13-7.15. Obviously, there is wide range of possible
(p0, U)-combinations also if we restrict ourselves to solutions with τ < 2.5. This limitation is
meant to restrict the second term of eq. 3.29 to a mainly three-body interaction.

Fig. 7.14 shows the results for a, b, c, τ and Λ as a function of p0 and U keeping ρ0, C and
Ebind fixed according to eq. 7.13-7.15. Decreasing the value of U must lead to shift of attractive
strength from the non-momentum dependent part of the potential to the momentum dependent
part. Consequently fig. 7.14 shows that the influence of the first two terms in eq. 3.29 decrease,
i.e. a increases and b decreases, and the influence of the third term increases, i.e. c decreases, if
U decreases. At low U (U . −0.1 GeV) the value of a becomes even positive. Thus the first term
in eq. 3.29 starts counter-acting the third one. Both terms describe a pure two-body interaction:
the first one describes a momentum independent short-range interaction while the second one
depends on momenta, represents therefore a more long-ranged contribution to the nucleon force.
In the panel showing the Λ parameter one observes that a more attractive potential at p = 0
leads to a lower value of λ, hence the Yukawa mass of the exchanged meson decreases, i.e. the
interaction described by the third term becomes more long-ranged.

Now let us try to tune the potential to improve on the results presented in fig. 7.3. The two
upper panels of fig. 7.3 show that the shift of the quasi-elastic peak is underestimated by roughly
20 − 30 MeV at these Q2 values. Around the nucleon QE-peak the three-momentum transfer
of the photon amounts to roughly 300 − 400 MeV. To shift the peak to a higher photon energy
transfer one must generate a higher energy loss during the reaction, which is determined by the
difference of the incoming to outgoing nucleon potentials. Thus we would get a larger shift, if our
potential offered a larger momentum gradient at momenta in the range of 0−600 MeV. To cure
this problem one can decrease the value of U which has two major consequences: first of all the
momentum dependent term becomes more important, i.e. |c| increases, and as a second effect Λ
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Figure 7.13: The upper figure depicts the possible parameter space for p0 and U , if one sets
ρ0, C and Ebind according to eq. 7.13-7.15. The star at p0 = 0.8 GeV and U = 0.075 GeV
shows the (p0, U)-combination chosen by Teis [Tei96]; the open circles depict the parameter
sets chosen according to table 7.1.

U0[GeV] p0[GeV] a[GeV] b[GeV] τ c[GeV] Λ[fm−1]

Set #1 -0.09 0.8 -0.0229 0.0339 1.82 -0.102 0.960
Set #2 -0.1 0.6 0.00572 0.0136 2.61 -0.144 0.807
Set #3 -0.11 0.45 0.0567 0.00475 3.69 -0.145 1.180

Table 7.1: Different parameter sets a, b, τ , c and Λ for the nuclear mean field potential defined
in eq. 3.29. The parameters sets differ in the potential depth U and the root momentum p0

and share a common definition of ρ0, C and Ebind according to eq. 7.13-7.15.

decreases and therefore the momentum dependence becomes stiffer. For our studies we choose
three different sets for U and p0 given in table 7.1 and the resulting single particle-potentials
for the nucleon are depicted in fig. 7.15 in comparison to the EQS 5 potential used before.
Fig. 7.15 shows the potential as a function of momentum for four distinct density cuts. It is very
remarkable that at ρ = 0.08 fm−3, which is close to the average nuclear density6 in Oxygen of
0.085 fm−3, set #1-3 produce a potential difference A0

N (p = 0 MeV)−A0
N (p = 400 MeV) of 30-40

MeV, while EQS 5 gives there only approximately 20 MeV. Additionally, this higher potential
difference is visible for all density cuts. Hence the stiffer momentum dependence must also be
visible in electron-scattering via a higher energy loss in the problematic regime of 400 MeV
3-momentum transfer.

The results obtained with the new potential parameter sets for the inclusive electron- 16
8 O

scattering cross-section are shown in fig. 7.16, where on observes a shift of strength towards
higher energies for the new parameter sets but almost no shift in the peak position. The

6 The average density is given by 〈ρ〉 =
R

ρ(r)2d3r
R

ρ(r)d3r
.
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E/A=-0.016 GeV, ρ0=0.16 fm-3, C=0.220 GeV
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Figure 7.14: The upper figure shows the value of the potential parameters as a function of p0

and U , if one sets ρ0, C and Ebind according to eq. 7.13-7.15. The star in each panel at
p0 = 0.8 GeV and U = 0.075 GeV shows the (p0, U)-combination chosen by Teis [Tei96]; the
open circles depict the parameter sets chosen according to table 7.1.
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Figure 7.15: The upper panels shows the single-particle nucleon potential A0
N as a function of

nucleon potential for different nuclear matter densities. The solid line represents the result
according to the parameter set EQS 5 presented in table 3.4 ; the other three curves show the
results for the three parameter sets given in table 7.1.
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Figure 7.16: Impact of potential parameters p0 and U on inclusive electron- 16
8 O scattering

cross sections. In each panel, we compare the inclusive electron cross section dσ/(dΩdlf ) on
16
8 O obtained with the standard potential EQS 5 (solid line) to the ones obtained with the
parameter sets chosen according to table 7.1 (dashed curves=set 1, dotted= set 2, dashed-
dotted = set 3). Each panel shows the result for one fixed electron beam energy (0.7, 0.88, 1.08,
1.2 and 1.5 GeV) and a scattering angle of θlf = 32◦. The data are taken from [Ang96, QEW08]
and the parameter Q2

QE-peak is evaluated according to eq. 7.3. All results have been obtained
with the ”mass-shift option” for the imaginary parts of the in-medium self-energies and include
dispersive contributions to the real parts (cf. sec. 3.6.1 for details).
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latter feature is caused by the initial phases space distribution of the target nucleons, which
has been discussed in detail on page 137. Especially parameter set #1 describes the data well
and especially better than the EQS 5 parameter set. However, a value of p0 = 450 MeV is
not in agreement with nuclear optical model fits and, therefore, parameter set #3 must be
rejected. The more realistic sets 1 and 2 also describe the data better than EQS 5, however
the improvement is rather moderate. We conclude that varying the potential parameters it is
very well possible to improve the correspondence of our model with inclusive electron scattering
data. However, the level of improvement is within a sensible p0 window of 800 ± 50 MeV and
for sensible τ . 2.5 rather small.

7.3 Total photon absorption cross sections for complex nuclei

In the total photon absorption cross section on nucleons, one observes three major peaks, which
are according to our present knowledge generated by several overlapping resonances. The most
important ones are the P33(1232), S11(1535), D13(1520) and F15(1680) resonance states. To
study the properties of those resonance states embedded in nuclear matter, one has investigated
their photon-induced excitation in nuclei. First experiments using a tagged high-energy photon-
beam (Eγ = 0.3 − 2.6 GeV), which offered sufficient energy to excite the second resonance
region, were performed by the Yerevan group [Ara83, Ana87]. Following up this pioneering
work, the photon absorption of photons on nuclei was measured at the Mainz microton (MAMI)
facility [Fro92, Fro94] with a beam energy of Eγ = 0.05 − 0.8 GeV, with higher energy of
Eγ = 0.2− 1.2 GeV at the Adone storage ring facility (Frascati, Italy) [Bia93b, Bia93a, Bia93c,
Bia94, Bia96], using the SAPHIR tagged photon beam of Eγ = 0.5 − 2.67 GeV at ELSA (Bonn,
Germany) [Muc99] and at Hall B of the Jefferson Laboratory (Newport News, USA) [Cet00,
Cet02] with a beam energy of Eγ = 0.17 − 3.84 GeV. In fact, some of the above experiments
did not measure directly the photon absorption cross section but only the photo-fission cross
section [Fro92, Fro94, Bia93c, Bia93b, Cet00, Cet02]. Contrary to earlier assumptions, it has
been shown by Cetina et al. [Cet00, Cet02] that these two cross sections must not be identical.
So we focus for our analysis on a comparison with the direct measurements of photon absorption
as presented by Bianchi et al. [Bia94, Bia96] and Muccifora et al. [Muc99].

Let us briefly summarize the experimental findings. First, the ∆ resonance region is also
within the nucleus still exhibiting a peak like structure. However, one has observed a slight shift
to higher energies and a broadening as compared to the vacuum structure. At higher energies,
one has observed a more interesting and a somewhat unexpected effect. The experimental results
show no structures in the second and third resonance region, often quoted as the disappearance
of the resonances in the medium.

In the last two decades, various theoretical attempts have been performed to explain these
data. The elaborate work of Carrasco et al. [Car92] showed in a microscopic model approach,
that it is possible to describe the data in the ∆ resonance region in a very satisfactory manner
when including the ∆ self-energy. This work emphasizes the importance of multi-body absorp-
tion channels. After the publication of the surprising results in the second resonance region,
Kondratyuk et al. [Kon94] set up a baryon resonance model including the collisional widths
of the resonances as free parameters. Then these parameters were fitted to the existing data
and thereby the collisional widths of the resonances were extracted. However, these extracted
widths were extraordinary large (ca. 320 MeV for the S11(1535), D13(1520) and F15(1680)
resonance) and the whole analysis has offered several points for criticism (cf. pages 368-369 in
[Eff97a]). Rapp et al. [Rap98] applied a vector-meson dominance (VMD) model to the problem.
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Figure 7.17: The photon absorption cross section for 12
6 C. The upper panels show the full cross

section including background contributions whereas the lower ones show only the resonance
contribution. In the left panel we show the the impact of different assumptions on the baryon
potential: the red solid line denotes the result with a momentum-dependent potential (EQS
5), the dashed blue one represents a calculation with a momentum-independent potential
(EQS 3) and the green dashed-dotted a calculation where the baryon potentials have been
neglected (EQS 0). In the right panels we keep the potential the same (EQS 5) and vary
the modification of the in-medium self-energy: no modification (red solid curve), mass-shift
option (blue dashed), mass-shift without dispersion relation analysis for the real part (green
dashed-dotted) and the result using the Oset option for the ∆ (black dotted). The data are
taken from Bianchi et al. [Bia96] (full circles) and Muccifora et al. [Muc99] (open circles) ,
the error bars denote the sum of statistical and systematical errors.
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Figure 7.18: Same as fig. 7.17, but for a 207
82 Pb absorber.
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An energy-independent collisional broadening of the baryon resonances of 15 MeV for the ∆,
250 MeV for the D13 and 50 MeV for all other contributing resonances has been included by
hand. The model fails to reproduce the elementary data on the proton in the region in-between
∆ and second resonance region, but it describes the nuclear data in a satisfactory manner. The
work of Hirata [Hir02] points out that according to their model the interference patterns among
the resonances and the background change when going from vacuum to medium which is in
then the driving force for the disappearance of the resonances. Iljinov et al. [Ili97] extended
the Dubna/Moscow INC model, a hadronic transport model, such that it can be used for high
photon energies up to 10 GeV. They achieved good correspondence with exclusive channels such
as single-pion production. Based on the Dubna/Moscow INC model, the RELDIS code [Psh05]
achieved good results for photo-absorption on large nuclei. Both the INC and RELDIS model
include a phenomenological two-body absorption channel on top of single-particle absorption.
Also the LAQGSM model [Mas05] is based on the Dubna/Moscow INC model, which also re-
sults in a good model for nuclear fissibilities. Deppman et al. [Dep02] have successfully applied
the so-called MCMC/MCEF cascade model, to evaluate photon fission cross sections using the
photon absorption cross section as given input. Complementary to this first work, Deppman
achieved with the CRISP code [Dep04, Dep06], where the photon absorption is modeled via a
microscopic resonance model, also satisfactory results for photon absorption.

Within a precursor version of our present model, also Effenberger et al. [Eff97a] tried to
explain the experimental observation of resonance disappearance. A quite good description of
the ∆ peak was achieved, however the model failed explaining the data at higher energies: the
results still showed a prominent structure in the second and third resonance region. Our present
model, which was also used for the analysis of the inclusive electron scattering presented in the
previous section, differs from Effenberger’s one in four major aspects. First, we use the up-to-
date input for the photon-nucleon interaction, in particular for the helicity amplitudes of the
resonances and for the invariant amplitudes used to parametrize pion production (cf. chapter 4).
Second, the single-pion background terms are treated differently: Effenberger et al. rescaled
the resonance contributions to fit the single-pion data while we include a point-like single-pion
production vertex which includes all background and interference terms. So in our case the
background and interference terms are not modified in the medium, whereas in Effenberger’s
case those two terms are hidden in the resonance contributions and, therefore, they are modified
in the same way as the resonances. Third, the absolute magnitude of the collisional width is
different. While the ”no-mass-shift scheme” almost reproduces the collisional broadening as
presented by Effenberger, we get with the ”mass-shift scheme” more collisional broadening due
to a larger elastic cross section (cf. fig. 3.5-3.6 for the implemented width of the four most
prominent resonances: P33(1232),S11(1535), D13(1520), F15(1680)). This possibility of having
a larger elastic cross sections was not discussed earlier, and increasing this elastic contribution
might help to solve the problem of too prominent resonance structures in Effenberger’s results.
Finally, Effenberger neglected the real parts of the self energies which lead to non-normalized
spectral functions.

Our results for photon absorption in Carbon are shown in fig. 7.17. For the calculations
shown in the graphs on the left panel, the width of the resonances in the medium has not
been modified and the dispersive contributions to the real part of the self energy have not been
included. Again, as for the quasi-elastic peak in the electron-nucleus scattering, one observes
a broadening of the spectra just due to the momentum-dependent mean field. The solid curve
shows the result when including such a mean-field, which describes the data properly in the
∆ region and overestimates the data slightly in the second resonance region. It is however
remarkable, that the mean field smears the spectra so much that the second resonance peak
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is dissolved. Given this level of agreement with data on might now declare complete success.
However, we know from pion absorption in nuclei and from pion scattering off nuclei that the
broadening of the ∆ resonance plays an essential role. Hence one must take such in-medium
resonance broadenings into account.

The right panels show additionally to the result calculated with a momentum-dependent mean
field (solid line), the results for which the in-medium width and the dispersive contributions to
the real parts have been taken into account (dotted and dashed lines). The lower right panel
shows that the resonance contributions are decreased due the dispersive contributions and the
larger width in medium. Both features are well understood: a larger width leads to smearing
of the peaks and therefore to a lowering of the resonance contributions, including the dispersive
parts also leads to a lowering of the peaks as we have seen in sec. 3.7.2. The upper right panel
shows the sum of the resonances and the background contributions. Note that the background
contributions differ for all calculations which is caused by the inclusion of the dispersive parts.
These dispersive parts basically shift strength from the resonances to the background. As for
the elementary γp scattering shown in fig. 7.19, the background is smallest for the calculation
without dispersive contributions (solid line), larger for the case that all resonances besides the ∆
receive dispersive contributions to the self energy (dotted line, Oset option) and largest for the
case that we account for the dispersive contributions of all resonances (dashed line, mass-shift
option). Be reminded that one can not evaluate the real part of the self energy of the ∆ based
on a dispersion approach when using the Oset option for the imaginary part, since the imaginary
part is simply not defined for large enough energies. The upper right panel shows that the ∆
region is underestimated for both options for the in-medium width. The situation also does
not improve in the second resonance region where a strong in-medium broadening, as in the
mass-shift scenario (blue dashed curve), even leads to an enhancement of the peak structure due
to a shift of ∆ spectral strength towards higher masses as shown in fig. 3.12.

As a summary one must conclude that the full model describes the model worse than the
model neglecting a modification of the in-medium width which hints either to a problem in our
understanding of the in-medium broadening of the resonances or to a yet not included physical
effect such as an in-medium modified background or in-medium modified resonance-background
interferences.

Comparing to the former result by Effenberger (double dashed curves in the upper panels),
we must state that both models describe the data equally well. In our approach it is however
interesting to see, that the proper treatment of the medium-dependent potential leads all by
itself to a smearing of the second resonance peak. As a consequence, it should be interesting to
include the in-medium kinematics also in the background treatment, which was too involved for
our approach since one would need a microscopic model for the background. For completeness,
we show in fig. 7.18 also the photon absorption in Lead. Compared to the Carbon case we do
not see a qualitative change of the picture. We observe the same level of correspondence with
the experimental data as for the Carbon case.

Fig. 7.20 shows again the photon absorption in Carbon. To obtain the results shown in the
latter graph, we have ignored the resonance model and have just used the in-medium modified
γN → Nπ process (cf. sec. 5.3.2) and added the 2π production channel. The ∆ peak structure is
in its magnitude well described by a calculation which includes both a pion and nucleon potential
(red solid line). However, the width of the ∆ peak is underestimated and the peak structure in
the second resonance region is not present in the data. We conclude that the resonance model
framework gives a far better description of the data at high photon energies q0.
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Figure 7.19: The upper figure shows photon scattering off the proton in vacuum as a function of
the incoming photon energy for different choices on the treatment of the dispersive contribu-
tions for the real part of the self energy. The left panel shows the total cross section, the right
panel shows only the non-resonant background contribution to the cross section. The full line
depicts a scenario, where no dispersive contributions are included. The dashed line includes
all dispersive contributions but the one for the ∆ resonance. The dashed curve includes all
dispersive contributions. Note that all curves in the right panel are identical by construction,
and should only differ by the statistical uncertainties of the Monte-Carlo integration. The
background contributions may become negative since they also include the interference terms.
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Figure 7.20: The photon absorption cross section for 12C without resonances in the intermediate
state. The curves in the upper panel represent calculation where we did not include resonances
but treated the γN → Nπ reaction as a point-like vertex. The red solid line denotes the result
with a momentum-dependent potential (EQS 5) and a low-energy potential for the pion,
the other curves have been obtained without a pion potential using different types of the
nucleon potential: no potential (dot-dashed), a momentum independent potential (dashed)
and a momentum dependent potential (dotted curve). The data are taken from Bianchi et
al. [Bia96] (full circles) and Muccifora et al. [Muc99] (open circles) , the error bars denote the
sum of statistical and systematical errors.
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Figure 7.21: A typical plot for dσπ0,total/d(∆E) for a γ40Ca → π0X reaction at 0.5 GeV and
0.7 GeV right after production (i.e. FSI effects are not included). This result was obtained
with a momentum dependent potential (EQS = 5) and the Oset choice for the self energies
(400 ensembles).

7.4 Photon and electron induced meson production

The GiBUU transport model is explicitly designed to allow for the study of exclusive reactions,
like pion production and nucleon knockout, taking into account rescattering effects leading to a
change in the final state particle multiplicities and distributions. To my knowledge, there exist
only few data for pion production in electron induced reactions in the resonance region. However
for photon induced reactions, there exist high quality data on π0-meson production measured
by Krusche et al. [Kru04b, Kru04a] using the TAPS spectrometer, which has been installed at
the MAMI facility in Mainz, and on π+-meson production by Fissum et al. [Fis96] taken at
the Saskatchewan Accelerator Laboratory. The Fissum data are taken in the very threshold
region, where most of the produced pions have energies in the regime below 40 MeV, where
our FSI model becomes unreliable. In the following we, therefore, consider only the experiment
performed by Krusche.

7.4.1 π0 production for Eγ = 0.2 − 0.8 GeV

For the π0 production experiment performed by Krusche et al. [Kru04b, Kru04a], the MAMI
facility delivered a photon beam of 200 − 800 MeV energy on Deuterium, Carbon and Lead
targets. Since the TAPS spectrometer did not have a charged-particle identification at that
time, there are only data on neutral pion production. The experiment counted each produced
neutral pion as a single event, therefore events with 2π0 in the final state are doubly counted.
So the cross section for neutral pion production can be written as

σπ0, total = σπ0 + 2σπ0π0 + σπ0π+ + σπ0π− + βση

where β ≈ 1.2 is the expected number of π0’s in the final state of a η decay.

In the experimental analysis one was trying to differentiate between quasi-free pion production
and in-medium pion production. For the production of quasi-free pions one assumed that the
energy of those should be similar to the energy of a pion being produced on a nucleon at rest.
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This energy is in the πN CM-frame given by

Efree
π =

√

|~pCM|2 +m2
π (7.16)

with

|~pCM| =

√
(
s−m2

π −m2
N

2mN

)2

−m2
π , (7.17)

where s = (Eγ +mN )2 −E2
γ = m2

N + 2mnEγ . The difference of the reconstructed energy in the
πN CM-frame to that quasi-free energy is defined as ∆Eπ (cf. also [Kru04a]):

∆Eπ = EπN−CM
π − Efree

π (Eγ) .

A typical plot of such a distribution without final state interactions is shown in fig. 7.21. Indeed,
one observes a peak at ∆Eπ ≈ 0 but the peak is not sharp but rather smeared out due to
potentials and Fermi motion. Additionally, there is a broad background at lower ∆Eπ which
stems from ππ production. Since this background leaks into the single-π peak, one has introduced
an asymmetric cut and one has counted all those events for σπ0, quasi-free which have positive
∆Eπ. Note that there is no reason for this peak to be exactly at ∆Eπ = 0. For instance, let us
consider the case that we include Fermi motion but no potentials. For this scenario, one gets a
higher mean center-of-mass energy than in an elementary collision. In an elementary collision
one gets

selementary = m2
N + 2q0mn (7.18)

and in a collision with a nucleus

snucleus(~r) = m2
N + 2

4

ρ(~r)

∫ pf (~r)

0

d3~p

(2π)3
pµqµ (7.19)

= m2
N + 2q0

4

ρ(~r)

∫ pf (~r)

0

d3~p

(2π)3
p0 (7.20)

= m2
N + 2q0

4

ρ(~r)

∫ pf (~r)

0

d3~p

(2π)3

√

m2
N + ~p2 (7.21)

> m2
N + 2q0

4

ρ(~r)

4πp3
f

3 (2π)3
mN = m2

N + 2q0mN = selementary , (7.22)

which gives

snucleus > selementary . (7.23)

Since the average center-of-mass energy is higher for the Fermi sea case compared to the ele-
mentary case, also the average pion kinetic energy must be higher. This should translate into a
slight positive shift of the ∆Eπ spectrum right after production – a feature which is observable in
fig. 7.21, although for this result also potentials have been included. However, since the particles
have to transverse the medium before being detected, an additional energy loss of the particles
has to be considered, which should result in an additional downward shift of the ∆Eπ spectrum.
Overall, it is important to realize that the spectrum must not be symmetric around ∆Eπ = 0.
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Figure 7.22: Quasi-free and total cross section for the γ40Ca → π0X reaction: the left panel
shows the so-called quasi-free yield, whereas the right one depicts the total yield of π0’s. The
statistical error bars of the data are negligible and have been omitted. The squares show the
data for the coherent π0 production cross section [Kru02] and the circles depict the data for the
quasi-free, respectively total, cross section [Kru04a]. The dotted line represents a calculation
without in-medium width and without potential (EQS 0), the dashed one includes also no
in-medium widths but a momentum-dependent potential (EQS 5), both the dashed-dotted
and the dotted curves have been obtained by a calculation which included in-medium widths
and a momentum-dependent potential (EQS 5). Additionally, the off-shell potential (OP) has
been included when calculating the solid curve while all other results do not include any OP.
The thin solid line connecting the coherent data points (squares) represents our fit of these
data, which is given in table 7.2.

For the analysis one approximated the spectrum as a symmetric one, such that the left-hand
side of the quasi-free peak was assumed to equal the right-hand side which means

σπ0, quasi-free =
2 × rate of events with ∆Eπ > 0

photon flux× density of targets
.

To compare to data, we will apply the very same counting and cutting scheme also in our
analysis. Note that the sizable coherent contribution [Kru02] also contributes to σπ0,quasi-free

and σπ0, total. However, our model just gives the incoherent contribution. So we fitted the data
for the coherent process [Kru02], depicted in fig. 7.22 by open squares, by a polynomial

σcoherent(Eγ) =
2∑

i=−1

aiE
i
γ , (7.24)

where the fit parameters are given in table 7.2 and the fitted curve is also shown in fig. 7.22.
This fit of the coherent data has then been added to our incoherent result. The resulting curves
are shown in fig. 7.22, both for the quasi-free cross section σπ0, quasi-free on the left panel and for
σπ0, total on the right panel. Including in-medium width and momentum-dependent potentials
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Figure 7.23: Quasi-free and total cross section for the γ40Ca → π0X reaction with and without
final state interactions: the left panel shows the so-called quasi-free yield, whereas the right
one depicts the total yield of π0’s. The lines represent calculations which have been performed
neglecting the in-medium width and potentials. The dashed line does not include any FSI,
whereas the solid line includes them. Note that without FSI the quasi-free yield is at low
photon energies higher than the total yield. This is caused by the analysis procedure. Since the
quasi-free peak is without FSI treatment slightly shifted towards positive ∆Eπ (see fig. 7.21),
we get σquasi-free = 2 σ|∆Eπ>0 > σtot.

Target a−1 [mb/GeV] a0 [mb/GeV] a1 [mb/GeV] a2 [mb/GeV]

Ca −2.29696 × 104 279.07 -0.904315 9.0384 × 10−4

Table 7.2: Parameters for the fit of σcoherent(Eγ) =
∑2

i=−1 aiE
i
γ to the data of Krusche et al.

[Kru02].

one retrieves the dashed-dotted curves, which give a quite good description of the quasi-free cross
section. The influence of the off-shell potential, which has only been included when calculating
the dashed curved, is rather minor. Considering the large slow-down of our simulations due to
this off-shell potential (cf. sec. 3.9 on page 62ff), it is good news that neglecting this potential
does not change our results in a significant manner.

For the total cross section we get no improvement of the description when comparing to
earlier results by Lehr et al. [Leh03], although the model is much more advanced. Since the
description of the quasi-free data is fine one might speculate whether there is a problem with
the 2π contribution, which rises continuously from almost 0% at q0 = 0.45 GeV to roughly 30% of
the π0 yield at q0 = 0.8 GeV. An additional in-medium modification of the ππ background could,
therefore, have a major impact on the spectra. Such a modification has not been included so far.
One should also note that interference effects play a major role in single-π0 production at the
energy region of discrepancy (see also fig. 4.8). So one must conclude that it will be unavoidable
to take both a dynamical model for the ππ and single-π background into account to improve
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on the present situation which is, however, out of the scope for the present work. Furthermore,
there is major impact of FSI on the spectra. Fig. 7.23 shows that for a basic calculation which
does not include any medium modifications of the self energies, i.e. no potentials or collisional
broadening, there is an overall reduction of the pion yield by approximately a factor of 3 just
due to FSI. Thus the accuracy of the FSI must be very high to achieve a proper agreement with
the data. We tried to estimate the FSI accuracy performing the pion DCX and pion absorption
analysis in chapter 6. Although the description of pion interaction with the nuclear medium was
quite successful, we can in principle not rule out that we are still missing some effect which could
help to improve the correspondence to data. However, the close agreement for the quasi-free
case makes us confident on the FSI description.
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Chapter 8

Double pion photo-production

Overview: This chapter is devoted to photon-induced ππ production off nucleons
and nuclei. After a survey on the available data for the elementary reaction, we
analyze the implications of nuclear corrections on the extraction of the neutron data
from the deuteron data. It is concluded that only a minor impact of such corrections
has to be expected. Finally, we address ππ production off complex nuclei and outline
the dominant role of final-state interactions on the resulting spectra.

8.1 Introduction

In the limit of vanishing quark masses QCD incorporates chiral symmetry, which is sponta-
neously broken in vacuum. The order parameter 〈q̄q〉 of this symmetry breaking is expected
to decrease by about 30% already at normal nuclear matter density [Dru90, Coh92, Bro96].
Therefore, signals for partial chiral symmetry restoration should be observable in nuclear reac-
tion experiments and, in particular, in photon induced processes, which are highly suited due to
two key reasons. The reaction leaves the nucleus close to its ground state, so the reaction takes
place under well defined conditions. Second, the photon penetrates deeply into the nucleus,
giving rise to a high effective density. The modification of the so-called σ or f0(600) meson
inside the nuclear medium was proposed as a signal for such a partial symmetry restoration.
Theoretical models predict a shift of its spectral strength to lower masses and a more narrow
width due to the onset of the restoration [Ber87, Hat99]. The σ-meson is a very short-lived state
with a width of roughly 600 − 1000 MeV [Hag02], decaying predominantly into a ππ final state
in S-wave. Owing to its short life time, this decay occurs very close to its production place,
i.e. in the medium. If there were no final-state interactions acting on the pionic decay products,
then the mass of the σ-meson could be directly determined measuring the 4-momentum of the
pions. So the experiments devoted to this topic have been focusing on ππ production in nuclei
and studied the ππ production rate as a function of the total mass of the ππ pair. The major
aim was to observe a modification of this signal when comparing the nuclear production rate to
the vacuum rate. Using different nuclear targets one probes different effective densities, which
allows for a detailed study of the density dependence of this production rate. Experiments on
ππ production in nuclear matter have been performed with incident pions by the CHAOS col-
laboration [Bon96, Bon00] and with photons by the TAPS collaboration [Mes02, Blo07, Gre07].
Both experiments have shown an accumulation of strength near the ππ threshold in the de-
cay channel of the σ in large nuclei. A possible interpretation of this effect is the in-medium
modification of the σ resonance due to partial symmetry restoration. However, already in an
earlier work [Mü04a] we have pointed out the importance of conventional final-state effects in
the analysis of the experiment performed by the TAPS collaboration. In this chapter we want
to improve on our early calculations using up-to-date input for the elementary rates and using
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an improved final-state model.
In [Mü04a], we have presented results on the double-pion photoproduction off nuclei using

the transport approach. There the treatment of the pion final state differed from the treatment
presented in the previous chapters. In order to compare to a work by Roca et al. [Roc02], we
implemented there the same absorption probability for the pion as in their work. Therefore
we did not propagate the resonances explicitly, but rather used experimental data to describe
the quasi-elastic Nπ → Nπ scattering. We also used contributions to the imaginary part of
the optical potential of [Nie93a] to model pion absorption. The aim there was to indicate the
relevant role of conventional final-state interaction (FSI) effects in two-pion photoproduction in
nuclei. The authors of [Roc02] achieved quite an impressive agreement with the experimental
data, when studying double pion production in a many-body approach which allowed for pion-
pion correlations. However their treatment of the pion FSI was based upon a purely absorptive
Glauber damping-factor calculated along straight line trajectories. Additionally, the calculation
was missing a factor 2 for the π0π± channel.

Note that we need to consider pions with very low energy in nuclear matter to analyze the ex-
periment performed by the TAPS collaboration [Mes02, Blo07, Gre07]. We have already shown
in chapter 6 that our GiBUU transport model successfully describes pion absorption and rescat-
tering off complex nuclei. Since there is no fully quantum description for the incoherent 2π
reaction available, we utilize this semi-classical final state description to simulate the ππ-photo
production reaction.

This section is organized in the following way. First we present an overview on the existing
data on double pion production. Thereafter, the modeling of the elementary reaction is dis-
cussed. Finally, our results for ππ production off complex targets are compared to experimental
data [Mes02, Blo07, Gre07] 1.

8.2 Experimental evidence

8.2.1 Elementary data

Already in the 1960’s and 70’s, first extensive photo-induced ππ production experiments on
elementary targets have been performed (cf. [Hau67, Aac68, Car76a] and references therein).
More recently, the TAPS2 [Har97b, Wol00, Kot04, Lan01, Kle00], DAPHNE [Zab97, Bra95],
GDH/A2 [Ahr03, Ahr05] and GRAAL3 [Ass03] collaborations have been examining ππ pro-
duction with high statistical accuracy. In fig. 8.1, we plotted as an overview over the regarded
threshold region the most recent data sets. This plot shows only results of the second generation
experiments save for the γn → nπ+π− channel, where there are only the old bubble-chamber
data of Carbonara et al. [Car76a] available. In [Ahr03] (cf. page 178, first paragraph) it was
pointed out, that there was a systematic error in the DAPHNE [Zab97, Bra95] analysis program.
Henceforth, the original DAPHNE data are now superseded by the more accurate TAPS and
GDH/A2 experiments. Furthermore, there are data which are still preliminary and not yet
published. GDH/A2 [Ped07a, Ped07b] provided us preliminary data on γn → pπ−π0 and
γp → pπ−π+ and Crystal Ball-TAPS (CB-TAPS) reported preliminary results on γn → pπ0π0

and γp→ pπ0π0 [Jae07].
Taking TAPS and GDH/A2 for granted, the proton channels are measured to a satisfying

precision. However, the neutron channels (left panels of fig. 8.1) are still poorly know. In the

1Results presented in this chapter have also been published in [Mü04a, AR05, Bus05, Bus06b, Bus06c]
2Two Arm Photon Spectrometer [TAP08]
3Grenoble Anneau Accélérateur Laser [GRA08]
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channel γn → pπ0π−, Pedroni et al. [Ped07c] corrected the original DAPHNE data [Zab97]
for their systematical error. The resulting corrected data are shown together with the original
data, the Carbonara data [Car76a] and the preliminary GDH/A2 data [Ped07b] in the lower
right panel of fig. 8.1. In the latter channel, the discrepancies of Carbonara et al. and the
corrected DAPHNE data raise also doubts concerning the quality of the Carbonara data, and
as a consequence discredit also the γn → nπ+π− data of Carbonara. For the γn → nπ0π0

reaction, which is depicted in the middle panel of the right row, new preliminary TAPS data
(provided by Jaegele [Jae07]) hint to a somewhat larger cross section than estimated by Kleber
et al. [Kle00]. To sum up, one must realize that the neutron data have still large uncertainties,
whereas the proton data seem to be reliable after a period of contradiction between different
experiments, in particular TAPS and DAPHNE.

8.2.2 Complex targets

For photon induced ππ production on complex targets such 12C, 40Ca and 208Pb, there exist
only data by the TAPS collaboration which performed two different independent measurements.
The first pioneering measurement [Mes02, Sch05, Sch06b, Sch06a, Blo07] was performed 1999
at the MAMI-B accelerator. The TAPS detector covered roughly 40% of the solid angle in a
setup being sketched in fig. 8.2.

Since the TAPS detector does not include a magnetic field, positively and negatively charged
pions could not be distinguished. The uncharged pions are identified via the measurement of
their two-photon decay channel. The most celebrated observable was the ratio of the mass-
differential cross section per nucleon on Pb over the one on C

R =

(
1
A

dσ
dmππ

)

Pb(
1
A

dσ
dmππ

)

C

.

Figure 8.3 shows the first results, published in [Mes02], for this ratio for photon energies
averaged over a 400− 460 MeV bin. The low photon-energy window was chosen to suppress the
η production background and to enhance the production of low energetic pions, for which one
assumed a very large mean free path. The experimental finding was that there is no modification
of the π0π± channel when going from Pb (high effective density) to C (low effective density),
whereas the experiment found a strong modification in the π0π0 channel which was interpreted
as an in-medium modification within the I = J = 0 channel of the initial γN → N ′ππ reaction.
Preliminary results for higher photon energies, in particular total cross sections, have also been
presented in [Sch06a, Sch06b]. Recently, Bloch et al. [Blo07] published a final paper on this
first campaign with the analysis of 40Ca data. The authors show mass-differential cross sections
for the energy bins 400 − 500 MeV and 500 − 550 MeV and total cross sections in the range of
Eγ ≃ 300− 800 MeV. In the latter paper, no significant difference in the π0π0 channel could be
observed when comparing 12C to 40Ca [Blo07, sec. 6].

This first campaign was followed up by a second campaign of measurements with much more
statistics and an considerably improved setup (for details cf. [Gre07]). It also took place at the
MAMI accelerator facilities in Mainz. The detector setup consisted out of the TAPS detector
as a forward wall and the Crystal Ball detector which surrounded the reaction chamber and
lead to an almost 4π coverage in the solid angle. Within the Crystal Ball an additional particle
identification detector and multi-wire proportional chambers enhanced the particle identification
and especially charged particle reconstruction [Gre07, Lug07a].
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Figure 8.1: The upper figure shows the different isospin channels for the reaction γN → Nππ.
For the error bars we added in quadrature the systematical and statistical uncertainties (∆ =
√

∆2
stat + ∆2

sys) as quoted by the experiments. The data are taken from [Car76a, Zab97, Bra95,

Har97b, Wol00, Kot04, Lan01, Kle00, Ahr03, Ahr05]; preliminary data were communicated by
[Jae07, Ped07a, Ped07b]. In the panel representing γn → nπ0π0, the shaded area shows the
cross section measurement by [Kle00]. The solid line represents our parametrizations which
we use as input for the nuclear targets. The dotted-dashed curves show the result obtained
with the original model of Nacher et al. [Nac01, Alv05] based on Tejedor et al. [GT95, GT96].

164



8
.3

8.2 Experimental evidence

Figure 8.2: The setup of the TAPS detector in the experimental campaign at MAMI-B in 1999
[Jan02]. Each of the seven detector blocks (large forward wall and six smaller blocks) consists
out of several hexagonal BaF2 crystals, which is an inorganic scintillator. Particles transvers-
ing a crystal loose energy, which induces scintillation light in the crystal. This light signal is
converted to an electron signal via the photo effect and finally amplified by photo multipliers.

Figure 8.3: The upper figure shows the original plot of Messchendorp et al. [Mes02, fig. 4] for the
ration R = (dσ/dmππ/A)Pb/(dσ/dmππ/A)C and an incoming photon energy Eγ = 400 − 460
MeV. The solid lines show the result of Roca et al. [Roc02].
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8.3 Model for the elementary reaction

In the following sections, γ-induced ππ in nuclei will be analyzed within the GiBUU framework.
For the elementary two pion production process on the nucleon we apply the model of Nacher
et al. [Nac01], which is an updated version of a model developed by Tejedor et al. [GT95,
GT96]. This model provides a reliable input for the momentum distributions of the pions in the
elementary process. It is based upon a set of tree level diagrams, which include the coupling
of the nucleons, pions, photons and baryon resonances (P33(1232), P11(1440), D13(1520) and
P33(1700)).

The dotted-dashed curves in the panels of 8.1 show the result of this model for the total cross
sections. Overall, the agreement of the model to data is satisfactory. However, we decided when
possible to scale the total cross section to the available data such that we exploit as much as
possible this experimental input before analyzing the reaction in complex targets. Hence, we use
for all channels besides γN → Nπ+π− directly the data measured by the TAPS, DAPHNE and
the GDH & A2 collaborations [Zab97, Bra95, Har97b, Wol00, Kot04, Lan01, Kle00, Ahr03,
Ahr05, Ped07a, Jae07, Ped07b] to normalize the calculated cross sections, while we take the
decay mass distributions from theory. In the threshold regions of γp → pπ0π0, γp → pπ−π+,
γn→ nπ0π0 and γn→ pπ0π−, where there are no data sets, we estimate the total cross section
based on the three particle phase space structure. We assume the matrix element M to be
constant in this region and get

σthreshold =
(2π)4

4mNq0
|M|2

∫
d~k1

2k0
1(2π)3

d~k2

2k0
2(2π)3

d~p ′

2p′0(2π)3
δ4

(

q + p− (p′ +
2∑

i=1

ki)

)

=
(2π)4

4mNq0
|M|2 × 16 (2π)7 ×

∫
dm2

12dm
2
13

s
(8.1)

where s is the Mandelstam s of the process; dm2
12 and dm2

13 are defined by4

m12 = (k1 + k2)
2 , (8.2)

m13 = (k1 + p ′)2 . (8.3)

The value of |M|2 is now fixed by the value of the lowest available data point

σthreshold(energy of lowest data point) = σ(lowest data point) .

Table 8.1 shows a compilation of those |M|2.
The solid line shown in the γn → nπ+π− panel shows the model result according to the

implementation by Alvarez-Ruso which differs slightly from the original model by the choice of
parameters. The other solid lines represent our fits and threshold estimates. Altogether, these
six solid lines represent our elementary input cross sections.

8.4 Neutron data

The right hand side panels of fig. 8.1 show evidently, that the available data for neutron targets
do not allow for a precise estimate of the total cross section. To determine the γN → N ′ππ cross
sections, one often measures the cross section on deuteron and subtracts the proton contribution.
Also the TAPS collaboration [Lug07b] intends to apply this procedure to the already measured

4For details on this three-body phase-space confer [Hag02], i. e. chapter 38 ”Kinematics”.
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Channel Eγ [MeV] σ [µb] |M|2 × (2π)11

γp→ pπ0π0 380 0.08128 4.871
γp→ pπ−π+ 398 0.9083 [Ped07a] 34.74
γn→ nπ0π0 387.9 0.3840 [Jae07] 18.60
γn→ pπ0π− 435 1.752 34.96

Table 8.1: Parameters for the threshold estimation of the total cross section: For each channel,
we show the lowest possible energy at which we can reliably estimate the cross section from
experiment and the extracted cross section σ. The fourth column shows the corresponding
value of the threshold matrix element |M|2.
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Figure 8.4: The upper figure shows the distribution of photon energies in the rest frame of the

target nucleons ERF
γ for three different laboratory photon energies Elab

γ = 400, 450 and 500
MeV and a 2H target.

high-precision deuteron data. However, this subtraction is non-trivial since the target nucleons
are in motion within the deuteron. Henceforth, the photon energy in the single nucleon rest
frames is different as compared to the nuclear rest frame. Thus one not only needs to subtract
the proton contribution, but one also needs to account for this smearing due to Fermi motion
to extract the proper energy dependence for the neutron cross section. In fig. 8.4, we show the
distribution of the nucleon rest-frame energies

Erest frame
γ =

s−m2
n

2mn

for Deuteron (2H) as a function of the photon energy in the nuclear rest frame. It is evident
that already in 2H, different regimes of Eγ get mixed due to Fermi motion. Furthermore, final
state rescattering might play a role. However, there is no elementary neutron target and so
there is no better method to extract the neutron data than measuring the cross section on the
deuteron and subtracting the proton contribution. In the following, we want to estimate the
model dependence on the extraction of the neutron cross section out of the deuteron data. Since
the TAPS collaboration [Lug07b] is at present still working on the analysis of the deuteron cross
section, the extraction of the neutron cross section could not yet be performed. To be prepared
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Figure 8.5: This figure shows the relative separation of the two nucleons both in position (upper
plot) and momentum space (lower plot). Both distributions are normalized to one. The solid
curves denote the result based on the underlying wave functions and the fluctuating step
functions represent the Monte Carlo initialization (40.000 ensembles).

for the hopefully soon available data, the following subsections are devoted to this extraction
and outlines the most relevant considerations in a simple model.

8.4.1 Deuteron target

The deuteron is a bound state of proton and neutron with total spin S = 1. It is not bound
by a central potential alone, but by a sum of central potential, the tensor force and spin-spin
interactions. The latter tensor force explains also the non-zero quadrupole moment of the
deuteron. The experimental binding energy amounts to roughly 2.225 MeV.

For the density and momentum distribution of the nucleons in the 2H target, we adopt the
resulting position-space wave-functions (w.f.) Ψ(r) and momentum-space w.f. Ψ(p) of the
so-called Argonne V18 NN-potential5 model by Wiringa et al. [Wir95]. The deuteron wave
function is given by a linear combination of S- and P -wave components, however we neglect
for simplification the minor P -wave part. For the BUU-approach we need to define a classical
phase-space density. Our choice will be

f(~r, ~p) = |Ψ(r)|2 × |Ψ(p)|2

where ~r (~p) is the relative distance of proton and neutron in position (momentum) space. The
latter definition of the phase space density does not exhibit the quantum mechanical correlations
among position and momentum space. Strictly speaking it is not even possible to write down a
quantum mechanical phase space density due to the uncertainty relation. However, our choice
yields when integrated over position or momentum the proper distribution functions in position,
or respectively momentum, space. In the simulation, we sample the phase-space density by
many ensembles (∼ 40.000) of test-particle pairs. This is done on an event-by-event basis, which
implies that test-particles of different ensembles do not interact with one another.

5Cf. [Arg08b, Arg08a] for recent information, deuteron wave function tabulations and the code, which returns
the Argonne V18 potential.
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Figure 8.6: The density distribution of 2H in the x-y plane is shown at different times
(t=0,5,10,15,20,25 fm/c). The propagation in time was performed with the standard mean
field potential EQS 5. (Time step size ∆t=0.25 fm/c, 5000 ensembles, grid-size= σsmearing =
0.15 fm).

In fig. 8.5, the relative separation of the two nucleons is shown both with our Monte-Carlo
initialization and in comparison with the result based on the underlying position and momentum-
space wave functions. Within our test-particle realization, the deuteron target has a root-mean-
square (RMS) radius of r = 1.97 ± 0.01 fm (40.000 ensembles, grid-spacing= σsmearing = 0.15
fm).

In fig. 8.6, we show the propagation of the initialized deuteron configuration according to
[Wir95] under the influence of our standard mean field potential EQS 5. Evidently, the con-
figuration is very unstable since the initialized distribution does not correspond to the ground
state of the potential. To stabilize the initialized configuration in time, we must implement the
Argonne V18 potential into our propagation. In this approach, the Hamiltonian for the nucleons
in each ensemble is given by

H =
√

p2
1 +m2

1 +
√

p2
2 +m2

2 + V (|~r1 − ~r2|)

where p1 and p2 are the momenta of the two nucleons and V denotes the two-body potential,
which depends only on the relative distance of both nucleons and is shown in fig. 8.7. Note, that
there is no mean field anymore and that the different ensembles decouple entirely. The binding
energy amounts to 1.68 ± 0.2 MeV (Experimental value ∼= 2.22 MeV [Hag02]); the error of the
calculation is based upon the Monte-Carlo sampling of the wave function with 40.000 ensembles.
The V18 potential has large space-derivatives close to the origin. Henceforth, the propagation

must be performed with very small time step sizes and within the predictor-corrector scheme.
In fig. 8.8, the binding energy is shown as a function of time for 2000 ensembles. From this
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Figure 8.9: Mass differential cross sections for ππ production off the deuteron: for each possi-
ble charge channel there is a separate panel which shows the mass-differential cross section
dσ/dmππ for two photon energies Eγ = 450, 500 MeV. The higher the photon energy the larger
the cross sections. The solid lines denote the result with Fermi motion (FM) and without
final state interactions (FSI); the dotted lines are calculated without both FM and FSI; the
dashed lines have been obtained with both FM and FSI included.

figure, we conclude that a time-step size of 0.01 fm/c guarantees for a good description of the
deuteron ground state over a period of 50 fm/c. For the latter 2π production simulations, we
will choose the same time step size.

8.4.2 Double pion production off the deuteron

To estimate the importance of final state interaction (FSI) and Fermi motion (FM) in the
deuteron, we performed three runs for photon energies ranging from 400 to 550 MeV: with both
FM and FSI, with FM but without FSI and finally without both FM and FSI. We assumed for
the neutron photon interaction total cross sections as shown by the solid line in the right panel
of fig. 8.1.

The comparison of those three different types of calculations is shown in fig. 8.9 where the
(solid, dotted, dashed) lines denote the result (with,without,with) Fermi motion (FM) an (with-
out,without,with) final state interactions (FSI). From this figure, we first conclude that FM has
very little impact. This can be understood if one realizes that the cross sections are roughly
linear on intervals which equal the width of the Fermi smearing (∼ 30 MeV, cf. fig. 8.4). Since
the smearing is mostly symmetric in the photon energy, this finally leads to almost no FM-
modification. Within our FSI model, the FSI effect is also negligible and is maximal in the

171



Chapter 8 Double pion photo-production

 0

 1

 2

 3

 4

 5

 6

 0.42  0.45  0.48  0.51  0.54

σ/
A

 [µ
b]

γD→π0π0X

no FSI, with FM
no FSI, no FM

FSI+FM

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0.42  0.45  0.48  0.51  0.54

γD→π+π-X

 0

 1

 2

 3

 4

 5

 6

 7

 0.42  0.45  0.48  0.51  0.54

σ/
A

 [µ
b]

γD→π0π+X

Eγ [GeV]

 0

 1

 2

 3

 4

 5

 6

 7

 0.42  0.45  0.48  0.51  0.54

γD→π0π-X

Eγ [GeV]

Figure 8.10: Total cross sections for ππ production off the deuteron: for each possible charge
channel there is a separate panel. The dotted lines have been obtained with Fermi motion
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π0π0 channel which profits most by side-feeding since it is the smallest one among the different
charge channels. We estimate it to have a maximal impact of roughly 5%. Finally, we must con-
clude that it is a very good approximation to subtract simply the proton cross section from the
deuteron cross section to gain the one on the neutron. According to our model, this should be
good within a 5% uncertainty. Fix and Ahrenhövel [Fix05] have drawn very similar conclusions
within a much more sophisticated model – especially in the energy region of 400 to 550 MeV,
there is almost no FSI effect in their work [Fix05, fig. 10].

8.5 Double pion production off medium and heavy nuclei

Our results for ππ photoproduction off 40
20Ca and 207

82 Pb nuclei are presented in fig. 8.11 for
Eγ = 0.4− 0.46 GeV and in fig. 8.12 for Eγ = 0.4− 0.5 GeV; the two shown energy bins are the
ones which are presently considered in the ongoing analysis by the TAPS group [Gre07]. The
impact of a hadronic potential for the nucleon is rather minor, but the reduction of the cross
section due to an in-medium modification of the resonance widths is sizable. These modifications
according to the Oset option for the self energies (cf. sec. 3.6.1) includes a pion-less ∆ decay
contribution (∆NN → NNN) [Ose87], which leads to a reduction of the final pion yield.

As already discussed in [Mü04a], we observe that absorption, elastic scattering and charge
exchange processes cause a considerable change of the spectra with the peak of the mass dis-
tribution moving to lower masses due to rescattering. This effect is visualized in fig. 8.13: the
dashed lines show our results for ππ production of 40

20Ca assuming no FSI, the solid lines have
been obtained including FSI. One observes a reduction of the cross section by a factor of roughly
2-3 and a shift of the peaks towards lower masses due to FSI. There are two major effects, which
lead to the modifications: absorption and rescattering. To point out the role of rescattering,
fig. 8.13 shows a so-called disturbed (dashed-dotted curves) and undisturbed contribution (dotted
curves) to the cross section. The undisturbed contribution includes all those pion pairs which
do not undergo rescatterings and reach the detector mostly undisturbed; the disturbed contri-
bution represents those pairs where at least one of the two pions scattered with the medium
but was not absorbed. The total cross section is a sum of disturbed and undisturbed contri-
bution. Obviously, the disturbed contribution is shifted more towards lower masses than the
undisturbed one since the pions (on-average) loose energy in a scattering event. At low photon
energies the disturbed contribution is small compared to the undisturbed one. Here the energies
of the produced pions is small, such that FSI are dominated by the NNπ → NNN process
and the effect of Nπ → Nπ scattering is small. At higher photon energy (500 MeV) also the
average pion energy is higher and, therefore, elastic and charge-exchange scatterings become
more important. Thus the disturbed and undisturbed contributions are of the same magnitude
for Eγ = 500 MeV.

To analyze the possible impact of additional in-medium modifications, such as e.g. chiral
symmetry restoration, let us study the production points of those pion pairs which are not
absorbed and which are, finally, observed. Fig. 8.14 shows the cross section for ππ production
off 40

20Ca at 400 MeV and 500 MeV as function of those production points Rprod. The light-Gray
areas in fig. 8.14 depict the Rprod region where the density is larger than 0.15 fm−3, in the
dark-Gray regions the density still reaches at least 0.075 fm−3. Without FSI the distribution
dσπ0π0/dRprod is proportional to ρ(Rprod)R

2
prod; including FSI the distribution is shifted towards

higher radius and centered around 3.6 fm which corresponds to roughly ρ = 0.075 fm−3. Most of
the observed signal stems from a low-density region, which means that possible in-medium signals
are expected to be rather weak. Also runs including a pion potential have been performed, only
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Figure 8.11: Two pion invariant mass distributions for π0π0 and π±π0 photoproduction off 40
20Ca

and 207
82 Pb for Eγ = 0.4− 0.460 GeV. The uncharged π0π0 channel is plotted on the left, the

charged channel π±π0 is presented on the right hand side. The solid line depicts the result
including the in-medium width and a momentum-dependent mean field potential (EQS=5);
the dashed line has been obtained using the vacuum width; the dotted one has been obtained
using the vacuum width and assuming no mean field potential.
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Figure 8.12: Same as fig. 8.11 for Eγ = 0.4−0.5 GeV. The dashed-dotted curve in the upper-left
panel shows the result of the full model (Γmed and momentum dependent potential) scaled by
a factor 0.75.
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Figure 8.13: The upper figure visualizes the impact of final-state rescattering on the mass-
differential cross section for ππ production in 40

20Ca. The dashed curve has been obtained
neglecting final state interactions (FSI), while for the calculations represented by the solid,
dotted and dashed-dotted curves the FSI have been included. The solid curve shows the
total result including FSI; the dotted one represents the contribution of pions which left the
medium without rescattering; one of the pions out of each pair contributing to the dashed-
dotted ”disturbed” contribution underwent at least one scattering event.
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8.5 Double pion production off medium and heavy nuclei
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Figure 8.14: Cross section for ππ production in 40
20Ca as a function of the production radius

Rprod = (x2
prod +y2

prod +z2
prod)

1/2: the solid curve depicts the result with final state interaction
(FSI), the dashed one does not include FSI. Additionally, the dotted line depicts the density
profile of the 40

20Ca nucleus; the light-gray areas show the Rprod region with ρ ≥ 0.15 fm−3,
the dark shaded areas show the region with 0.15 fm−3 ≥ ρ ≥ 0.075 fm−3.
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a minor effect on the observed pions was found due to the low density at the initial production
point.

First experimental results for 12
6 C and 207

82 Pb targets have been presented in [Mes02]. These
data have been reanalyzed by the TAPS collaboration; preliminary results of this analysis can be
found in [Sch06a, Sch06b], and a comparison of the former results to this new analysis is given in
[Sch05]. Still the old analysis is being reevaluated, especially in the semi-charged channel. Hence
we do not present these data sets here. At the moment, new sets of data, taken with a 4π setup
with Crystal Ball and TAPS at MAMI, are being analyzed by R. Gregor [Gre07]. With these a
meaningful comparison with experiment will be possible. Additionally, data for a 40

20Ca target
have been taken [Blo07] during the same run time as the ones published in [Mes02]. However,
they have been analyzed independently. In the upper panels of fig. 8.12, we show a comparison
of our results to the latter data. One observes very good agreement in the π0π0 channel, both
in the normalization and the shape of the spectrum. For the π±π0 channel the shape is also in
a good agreement, but the overall normalization is off by a factor of 0.75 (dotted-dashed curve).
Concerning the major impact of FSI, this result is already a major achievement. There are
two dominant theoretical uncertainties in our calculation: pion reaction mechanism and initial
production cross section. The pion FSI reaction mechanism incorporated in the model and its
uncertainties have been discussed in the preceding sections. The influence of the uncertainty in
the elementary cross sections is illustrated in fig. 8.1. In future, it will be essential to achieve
better precision for the elementary neutron channels. Our normalization of the cross section
on the nucleus depends directly on the magnitude of the elementary cross section. Thus the
question whether our normalization error is a real issue can only be answered with improved
experimental input.

To summarize we emphasize that final state interactions of the pions are strong and tend
to shift the maximum of the ππ mass distribution in all channels towards lower masses. This
effect considerably complicates drawing a link between the experimental data and a possible
softening of the in-medium I = 0 channel. Any theory aiming to describe the observed effect
on the basis of a partial chiral symmetry restoration or an in-medium modification of the ππ
production process must take the final state effects into account. Upcoming experimental results
on ππ production on the neutron [Lug07a] will improve the elementary input to our calculations.
Given these data the normalization issue can be readdressed.
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Chapter 9

Summary and Outlook

This study has been devoted to a transport approach to nuclear reactions induced by elementary
probes. In the first part of this work, we have introduced the so-called Giessen-Boltzmann-
Uehling-Uhlenbeck (GiBUU) transport model focusing both on its model ingredients and on its
numerical implementation. The second part has addressed the topic of nuclear reactions induced
by elementary probes, where we have applied the GiBUU model to photon-, electron- and pion-
induced reactions with typical energy transfers to the nucleus in the range of 10 MeV−1000 MeV.
Results obtained via GiBUU simulations have been compared to existing experimental data and
predictions for future experiments have been presented.

In chapter 2, the numerical method to solve the Boltzmann-Uehling-Uhlenbeck (BUU) equa-
tion has been detailed. After introducing the so-called test-particle ansatz, the BUU equation
has been rephrased in terms of such test-particles and the time-stepping algorithm has been de-
rived. In the course of this derivation, the most important approximation scheme, the so-called
parallel-ensemble algorithm, has been introduced and compared to the superior full-ensemble
and local-ensemble algorithms.

While chapter 2 has given a rather general introduction to the BUU equation and its numerical
solution, the following chapter 3 has focused on the application of the BUU equation to hadronic-
matter transport. There the reader has been introduced to the so-called GiBUU model detailing
its degrees of freedom and the included interaction mechanisms. The GiBUU model represents an
improved version of a BUU model, which was developed by the Giessen theory group over the last
two decades [Bau86, Cas90, Eng94, Hom98, Tei96, Eff99a, Lar05, Leh03, Fal04a, Gal05, Mü07].
One of the major improvements comprises a more consistent treatment of the baryonic self-
energies. The imaginary parts have been consistently obtained from the underlying collision
rates as a function of energy, momentum and density. Then we have applied an once-subtracted
dispersion relation to derive the real parts from the imaginary parts, which has led to analytical
self energies. Hence the normalization of the spectral functions has been guaranteed, which was
not to the case within former treatments. The refined resonance model together with readjusted
non-resonant background cross sections has also led to better elementary cross sections, which
are needed as input for the BUU equations. As another major improvement, we have connected
the region of high-energies, which is described in the model based on Pythia [pyt07], to the
low-energy region, where the cross sections are based on the resonance model, by implementing
event-mixing of both the string and the resonance model in a cross-over energy regime.

A major enhancement of the numerical realization of the model has been obtained via the
implementation of the local-ensemble-algorithm [Lan93], such that the results presented in this
work have mostly been obtained in a full-ensemble test-particle scheme which is superior to the
parallel-ensemble approximation within earlier treatments. We have restructured and rewritten
most of the model source code using FORTRAN 2003 instead of FORTRAN 77 and obtained
a modularization of the source code, which has been facilitating the further development and
debugging process. In the course of this effort we have introduced a completely new code
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management structure, with which it is now possible that the complete Giessen transport group1

can work in parallel on the project source code. This feature has been boosting its development
speed and its reliability. In April 2008, we have achieved a major landmark and published the
first release of our model source code under the GPL license on the GiBUU website [GiB08b].

In chapter 4, our model for the interaction of electrons and photons with nucleons has been
detailed. Based on the one-photon exchange approximation, in which the electron-nucleon
scattering process is determined by the interaction of a single virtual photon with the nu-
cleon, the electron-nucleon and photon-nucleon interaction have been treated in an unified pic-
ture. We have considered the quasi-elastic process (γ⋆N → N ′) using modern form factor
inputs parametrized by Bradford et al. [Bra06]. Additionally, a single-π production process
(γ⋆N → N ′π) and resonance production mechanisms (γ⋆N → R) have been implemented based
on the helicity amplitudes and the invariant amplitudes obtained by the MAID group [MAI].
For real photon-induced processes (i.e. Q2 = 0) we have additionally considered a ππ produc-
tion background. Since resonance production leads to both single-π and double-π production,
we have had to split both processes in resonant and non-resonant contributions. The latter ones
have been implemented as background terms and include within our approach also all inter-
ferences among resonances themselves and among resonances and non-resonant amplitudes. In
Chapter 4 detailed formulas for the hadronic tensors have been given and our elementary input
has been compared to electron and photon scattering data on the proton giving excellent cor-
respondence. For real photons our elementary input is very reliable for center of mass energies
in the range mN < W < 2 GeV; for electron scattering the input is very good in W up to
the 2π threshold, above it the model lacks at present a ππ background whereas the resonance
contribution to ππ production is included. Concerning the virtuality of the exchanged photon,
the model may be applied up to Q2 = 5 GeV.

In chapter 5 we have focused on our description of the interaction of electrons and photons with
nucleons embedded in a nuclear medium. The dispersion relations of the nucleons get modified
in a nuclear medium due to hadronic potentials. Thus we account carefully for potentials when
evaluating the hadronic tensors and calculate the cross sections taking the modified in-medium
kinematics into account. For the form factors in the medium we have assumed, that they are
unmodified compared to the vacuum form factors. In the end of this chapter we have derived
the nuclear cross sections and we have detailed the implementation within the GiBUU transport
model.

Chapter 6 has been devoted to the pion-nucleus interaction. The interaction of pions and nu-
cleons is a crucial cornerstone of every hadronic transport approach since both particle species are
most abundant and, therefore, very important within the coupled channel calculations. For our
main goal, namely the treatment of electron and photon induced pion production, it is therefore
essential to have the pion interactions with the medium well under control. We have bench-
marked our pion-nucleon interaction model studying pion absorption, pion reaction and also pion
double charge exchange (DCX) reactions in the pion kinetic energy regime of 10− 200 MeV. In
simulations of pion absorption and charge exchange reactions we have achieved agreement with
the available experimental data. However, we have also shown that the description of pions with
too long wavelength (Ekin < 30 MeV) within a semi-classical treatment starts to break down. In
our study of the DCX process we have found that the implementation of pion rescattering and
absorption in the GiBUU transport model successfully passes the demanding test of describing
DCX reactions. This process shows a high sensitivity on several model details and especially
the high sensitivity on neutron skins of heavy nuclei has been discussed. This high sensitivity

1cf. our website [GiB08b] for a complete list of project members
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could be utilized to extract the thickness of such skins indirectly from pion DCX. During our
studies, we have also evaluated the parallel-ensemble approximation which was introduced in
chapter 2 by comparing results obtained in this scheme to the full-ensemble result. Performing
high statistics full ensemble runs, we found deviations to the results obtained in the parallel
ensemble scheme. Thus we have concluded that it is favorable to use the full ensemble algo-
rithm for further studies, especially since the performance advantage of the parallel ensemble
scheme could be reduced by performing the full-ensemble simulations using the local ensemble
algorithm [Lan93].

To summarize our study of pion-nucleus interactions using GiBUU, we have found out that in
the kinetic energy region above Ekin ≈ 30 MeV the semi-classical BUU approach is trustworthy.
In this region we have described pion absorption, reaction and DCX data on a level of 10− 20%
accuracy. This result has been setting the stage for the two following chapters, where we have
shown results on inclusive cross sections and pion-production cross sections for electron and
photon scattering off nuclei.

In chapter 7 we have first addressed inclusive cross sections to focus on the description of
the initial γ⋆N vertex. There we have outlined the importance of a momentum-dependent
nucleon potential and the possibility to tune the included mean field potential has been discussed.
Within proper limits on the mean field parameters given by optical model fits to nucleon-nuclei
scattering, we have found only a decent improvement when comparing our results to experimental
data on inclusive electron scattering off Oxygen [O’C84, Bar88, Sea89, Che91, Day93, Ang96].
Overall, we have achieved a quite good description of experimental data, comparable to state-of-
the-art nuclear many-body calculations by Benhar et al. [Ben08]. We have also analyzed photon
absorption in nuclei [Bia94, Bia96, Muc99], where we have found a good description of data
when neglecting the in-medium modifications of the resonance spectral functions. Including
the in-medium spectral functions the correspondence to data degraded. Since for the pion-
nuclear reactions it is essential to have in-medium resonance modifications, in particular for
the ∆(1232) resonance, this does not mean that there are no in-medium modifications of the
resonances. It has rather been concluded that an important model ingredient has still been
neglected, such as maybe two-nucleon absorption mechanisms which go beyond the standard
impulse approximation. The success of the incomplete model, which neglected the in-medium
broadening of the resonances, has been assumed to rather accidental.

For neutral pion production in the energy regime of 0.25 − 0.8 GeV [Kru04b, Kru04a] we
have achieved a proper description for the quasi-free production mechanism. For the total cross
section we have not been able to improve on earlier results by Lehr et al. [Leh03], although
our present model is much more advanced compared to Lehr’s model. Since the description
of the quasi-free data has been fine, we have speculated that there is a problem with the 2π
contribution, which rises continuously from almost 0% at q0 = 0.45 GeV to roughly 30% of the
π0 yield at q0 = 0.8 GeV. An additional in-medium modification of the ππ background could,
therefore, have a major impact on the spectra. Such a modification has not been included so
far. We have also pointed out that interference effects play a major role in single-π0 production
at the energy region of discrepancy. Thus we have concluded that it will be unavoidable to take
both a dynamical model for the ππ and single-π background into account to improve on the
correspondence with data.

Beyond its general interest, the studies presented in chapter 7 have served as a benchmark for
ν-induced processes, which are at present performed using the very same model basis by Leitner
et al. [Lei06b, Lei06a]. We have found that the off-shell potential, which causes a dramatic slow-
down of our simulations, has only a very minor impact on the presented results on exclusive
pion production and could safely be neglected.
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In chapter 8 we have addressed photon-induced ππ-production off nuclei. First, we have
investigated closely the present situation on the elementary data, before having analyzed the
nuclear data. Since the TAPS collaboration [Lug07b] is at present still working on the analysis of
the deuteron cross section, the data for the γ neutron → Nππ reaction are still not very accurate.
To be prepared for the hopefully soon available data for the deuteron, we have outlined the
most relevant considerations for the extraction of the neutron data out of the deuteron data in a
simplified model. We have concluded that it is a very good approximation to simply subtract the
proton cross section from the deuteron cross section to gain the one on the neutron. According
to our simple model, this should be good within a 5% uncertainty.

The modification of the so-called σ or f0(600) meson inside the nuclear medium was proposed
as a signal for a partial restoration of chiral symmetry in nuclear matter. Theoretical models
have predicted a shift of its spectral strength to lower masses and a more narrow width due to the
onset of the restoration [Ber87, Hat99]. The experimental aim has been to find modifications of
the σ state in its ππ decay products, in particular via the study of ππ production in finite nuclear
systems close to threshold. Such experiments have been performed with incident pions by the
CHAOS collaboration [Bon96, Bon00] and with photons by the TAPS collaboration [Mes02,
Blo07]. Both experiments have shown an accumulation of strength near the ππ threshold in
the decay channel of the σ in large nuclei. A possible interpretation of this effect is the in-
medium modification of this resonance due to partial symmetry restoration, but also conventional
final state interactions (FSI) must be treated properly. Lately new high-precision data for ππ
production in complex nuclei have been taken by the TAPS collaboration [Gre07], but they are
not yet completely analyzed.

We have shown and emphasized that for the γA → ππA′ reaction final state interactions
of the pions are indeed strong and tend to shift the maximum of the ππ mass distribution in
all channels towards lower masses. Thus this effect complicates considerably drawing a link
between the experimental data and a possible softening of the in-medium I = 0 channel. We
have emphasized that any theory aiming to describe the observed effect on the basis of a partial
chiral symmetry restoration or an in-medium modification of the ππ production process must
take final state effects into account. Our simulations have shown that most of the final pion
pairs stem from the surface of the nucleus. Hence in-medium effects are expected to be rather
weak due to the low effective density.

Finally, let us investigate possible future improvements or extensions of our model. Con-
cerning the photon and electron induced reactions, the most needed improvement concerns the
background treatment in γ⋆N reactions. Here one must try to medium-modify the backgrounds
like it has already been done for the resonance and quasi-elastic processes by implementing the
in-medium kinematics and in-medium spectral functions into the background evaluation. A
formidable task is, given an in-medium model for the background amplitudes, also the descrip-
tion of medium-modified interference patterns among resonances and background. Furthermore,
a background for electron-induced ππ production must be added to improve on our elementary
input for electron induced processes. In ππ production at Q2 = 0 the data situation is still
vague for the neutron targets. With more precise elementary data one could surely improve our
predictions for the nuclear cross sections.

In the GiBUU transport simulations, we still neglect the impact of an in-medium modifi-
cation of the final-state phase-spaces for the 2 and 3 particle final-states. Due to the density
and momentum dependent potentials and spectral functions, one would need to integrate the
final-state phase-spaces for each collision separately, since each collision takes place at another
density and with a different total momentum. Given several possible final-state channels for
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each collision, this task can easily become demanding. Hence the main challenge is to develop
an efficient treatment, which does not cost too much computation time. Another open issue
is the ground state stability. At present our nucleus initialization has the problem, that the
density parametrizations from experiment are not identical to the ground state of the applied
mean field potential. Lately Steinmüller [Ste07] improved our description by deriving density
distributions which are really consistent with a given mean field potential. However, he had to
assume a momentum-independent mean-field potential which does not reproduce the peak-shifts
seen in quasi-elastic electron-nucleus scattering. A future extension based on Steinmüller’s work
would be the derivation of a phase-space distribution which then gives the proper ground state
for a momentum-dependent potential.

Looking further ahead, hardware trends seem to favor codes which are capable of running on
several CPUs in parallel. The algorithms applied in the GiBUU model, in particular the local
ensemble algorithm, are highly suited for such a task. Already today, it is possible to execute
several identical jobs having different random seeds to work in parallel and one finally averages
the results by hand or via shell scripts. Hereby the jobs do not communicate with each other,
hence one can not really speak of one ‘real’ parallel job running on several nodes. Given a
‘really’ parallel implementation, collecting a lot of statistics could be facilitated and one could
also think about working with higher numbers of ensembles than it is presently possible. This
increase of ensembles would lead to better densities and an improved Pauli blocking procedure
for the heavy-ion runs.

To infer hadronic in-medium properties from nuclear reactions is a formidable task, which how-
ever promises to reveal insights on the strong-coupling regime of QCD. Hereby transport models
are still among the best suited tools to bridge the gap in between the experimental observables
obtained in nuclear reactions and the underlying physics by differentiating profane final-state
effects from the interesting effects caused by changes of hadronic in-medium properties.
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Appendix A

GiBUU - physical inputs

Overview: This appendix contains parameters and explicit details on the reaction
rates implemented in the GiBUU collision term.

A.1 Decay channels of baryon and meson resonances

The decay channels of the implemented baryons and mesons are summarized in tables A.1 and
A.2. For the baryons we list besides the strength of the individual channels at the pole mass of
the resonance also the angular momenta of the outgoing states.

Strength ΓR→AB/Γtot at pole mass Product A Product B Angular Momentum

∆ 1.0000 π N 1

P11(1440) 0.6900 π N 1
0.2200 π ∆ 1
0.0900 σ N 0

S11(1535) 0.5100 π N 0
0.4300 η N 0
0.0300 ρ N 0
0.0100 σ N 1
0.0200 π P11(1440) 0

S11(1650) 0.8900 π N 0
0.0300 η N 0
0.0200 π ∆ 2
0.0300 ρ N 0
0.0200 σ N 1
0.0100 π P11(1440) 0

S11(2090) 0.1000 π N 0
0.0600 π ∆ 2
0.4900 ρ N 0
0.0500 σ N 1
0.3000 π P11(1440) 0

D13(1520) 0.5900 π N 2
0.0500 π ∆ 0
0.1500 π ∆ 2
0.2100 ρ N 0
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Strength ΓR→AB/Γtot at pole mass Product A Product B Angular Momentum

D13(1700) 0.0100 π N 2
0.0500 π ∆ 0
0.7900 π ∆ 2
0.1300 ρ N 0
0.0200 σ N 1

D13(2080) 0.2300 π N 2
0.0300 π ∆ 0
0.2100 π ∆ 2
0.2600 ρ N 0
0.2700 σ N 1

D15(1675) 0.4700 π N 2
0.5300 π ∆ 2

G17(2190) 0.2200 π N 4
0.4900 ω N 4
0.2900 ρ N 2

P11(1710) 0.0900 π N 1
0.3700 K Λ 1
0.4900 π ∆ 1
0.0300 ρ N 1
0.0200 σ N 0

P11(2100) 0.1500 π N 1
0.0200 K Λ 1
0.2400 π ∆ 1
0.2700 ρ N 1
0.3200 σ N 0

P13(1720) 0.1300 π N 1
0.8700 ρ N 1

P13 0.2600 π N 1
0.3000 ω N 1
0.4400 ρ N 1

F15(1680) 0.7000 π N 3
0.1000 π ∆ 1
0.0100 π ∆ 3
0.0500 ρ N 1
0.0200 ρ N 3
0.1200 σ N 2

F15(2000) 0.0800 π N 3
0.1200 π ∆ 1
0.6000 ρ N 1
0.1500 ρ N 3
0.0500 σ N 2

F17(1990) 0.0600 π N 3
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A.1 Decay channels of baryon and meson resonances

Strength ΓR→AB/Γtot at pole mass Product A Product B Angular Momentum

0.9400 η N 3

S31(1620) 0.0900 π N 0
0.6200 π ∆ 2
0.2500 ρ N 0
0.0400 ρ N 2

S31(1900) 0.4000 π N 0
0.1600 π ∆ 2
0.0500 ρ N 0
0.3300 ρ N 2
0.0600 π P11(1440) 0

D33(1700) 0.1400 π N 2
0.7400 π ∆ 0
0.0400 π ∆ 2
0.0800 ρ N 0

D33(1940) 0.1800 π N 2
0.0700 π ∆ 0
0.4000 π ∆ 2
0.3500 ρ N 0

D35(1930) 0.1800 π N 2
0.8200 ρ ∆ 2

D35(2350) 0.0200 π N 2
0.9800 ρ ∆ 2

P31 0.0800 π N 1
0.2800 π P11(1440) 1
0.6400 ρ ∆ 1

P31(1910) 0.2300 π N 1
0.1000 ρ N 1
0.6700 π P11(1440) 1

P33(1600) 0.1200 π N 1
0.6800 π ∆ 1
0.2000 π P11(1440) 1

P33(1920) 0.0200 π N 1
0.8300 π ∆ 1
0.1500 π P11(1440) 1

F35 0.0200 π N 3
0.2800 π ∆ 1
0.4800 π ∆ 3
0.2200 ρ N 1

F35(1905) 0.1200 π N 3
0.0100 π ∆ 1
0.8700 ρ N 1
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Strength ΓR→AB/Γtot at pole mass Product A Product B Angular Momentum

F37(1950) 0.3800 π N 3
0.1800 π ∆ 3
0.4400 ρ ∆ 3

Σ(1385) 0.8800 π Λ 2
0.1200 π Σ 1

Λ(1405) 1.0000 π Σ 0

Λ(1520) 0.4600 K N 2
0.4300 π Σ 2
0.1100 π Σ(1385) 2

Λ(1600) 0.3500 K N 1
0.6500 π Σ 1

Λ(1670) 0.2500 K N 0
0.4500 π Σ 0
0.3000 η Λ 1

Λ(1690) 0.2500 K N 2
0.3000 π Σ 2
0.4500 π Σ(1385) 2

Λ(1810) 0.3500 K N 1
0.2000 π Σ 1

0.4500 K
∗

N 1

Λ(1820) 0.6000 K N 3
0.1200 π Σ 3
0.2800 π Σ(1385) 3

Λ(1830) 0.0500 K N 2
0.6000 π Σ 2
0.3500 π Σ(1385) 2

Σ(1670) 0.1500 π Λ 1

0.1500 K N 2
0.7000 π Σ 2

Σ(1775) 0.2000 π Λ 3

0.4500 K N 2
0.0500 π Σ 2
0.1000 π Σ(1385) 2
0.2000 π Λ(1520 3

Σ(2030) 0.2500 π Λ 4

0.2500 K N 3
0.1000 π Σ 3
0.1500 π Σ(1385) 3

0.0500 K
∗

N 3
0.2000 π Λ(1520 4
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A.1 Decay channels of baryon and meson resonances

Strength ΓR→AB/Γtot at pole mass Product A Product B Angular Momentum

Λ(1800) 0.3500 K N 0
0.3500 π Σ 0
0.3000 π Σ(1385) 0

Λ(1890) 0.3000 K N 1
0.1000 π Σ 1
0.3000 π Σ(1385) 1

0.3000 K
∗

N 1

Λ(2100) 0.3000 K N 4
0.0500 π Σ 4
0.4500 π Σ(1385) 4

0.2000 K
∗

N 4

Λ(2110) 0.1500 K N 3
0.3000 π Σ 3

0.5500 K
∗

N 3

Σ(1660) 0.4000 π Λ 0

0.2000 K N 1
0.4000 π Σ 1

Σ(1750) 0.1000 π Λ 1

0.3000 K N 0
0.6000 π Σ 0

Σ(1915) 0.4500 π Λ 2

0.1000 K N 3
0.4500 π Σ 3

Ξ∗ 1.0000 π Ξ 0

Σ∗
c 1.0000 π Λc 0

Ξ∗
c 1.0000 π Ξc 0

Table A.1: The resonance decay channels for baryons in the GiBUU model. The given strength
corresponds to the value of the branching ratio at the resonance pole mass.
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Strength ΓR→AB(C)/Γtot at pole mass Product A Product B Product C

η 0.400 γ γ
0.280 π0 π− π+

0.320 π0 π0 π0

ρ 1.000 π π

σ 1.000 π π

ω 0.020 π π
0.090 π γ
0.890 π0 π− π+

η′ 0.310 ρ γ
0.220 π0 π0 η
0.470 π+ π− η

φ 0.130 π ρ

0.840 K K
0.030 π0 π− π+

K⋆ 1.000 K π

K
⋆

1.000 K π

(D⋆)0 0.381 γ D
0.619 π D

(D
⋆
)0 0.381 γ D

0.619 π D

(D⋆)+ 0.016 γ D
0.984 π D

(D
⋆
)− 0.016 γ D

0.984 π D

(D⋆
s)

+ 0.950 γ D+
s

0.050 π D+
s

(D⋆
s)

− 0.950 γ D−
s

0.050 π D−
s

Table A.2: The resonance decay channels for mesons in the GiBUU model. The given strength
corresponds to the value of the branching ratio at the resonance pole mass. For two-body
decay channels the branching into different charge states is not shown explicitly, it is governed
by isospin symmetry.
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A.2 Baryon-baryon cross sections

A.2.1 Low-energy baryon-baryon cross sections

NN ↔ NN

For elastic NN scattering we use a parametrization by A. Larionov for the low-energy region
and Cugnon et al. [Cug96] for the higher-energy region. The elastic pn cross section is given by

σ =







17.05 mb GeV mN/(s −m2
N ) − 6.83 mb for plab ≤ 0.525 GeV

33 mb + 196 mb| plab
GeV − 0.95|5/2 for 0.525 GeV < plab ≤ 0.8 GeV

31 mb /
√

plab
GeV for 0.8 GeV < plab ≤ 2 GeV

77 mb /
( plab

GeV + 1.5
)

for 2 GeV < plab ≤ 6 GeV

, (A.1)

where plab denotes the momentum in the target rest frame and mN = 0.938 GeV the averaged
nucleon mass. The cross section for nn and pp scattering is given by

σ =







5.118 mb GeV mN/(s −m2
N ) + 1.673 mb for plab ≤ 0.435 GeV

[
23.5 + 1000( plab

GeV − 0.7)4
]

mb for 0.435 GeV < plab ≤ 0.8 GeV
[
1250 /( plab

GeV + 50) − 4( plab
GeV − 1.3)2

]
mb for 0.8 GeV < plab ≤ 2 GeV

77 mb/
( plab

GeV + 1.5
)

for 2 GeV < plab ≤ 6 GeV

. (A.2)

NN ↔ N∆

For the description of theNN ↔ N∆ process, Effenberger[Eff96] adopted the successful model of
Dmitrievet al. [Dmi86] for the Giessen BUU model. We include here for the sake of completeness
also the derivations of the matrix elements. Within the Dmitriev model, the interaction between
nucleons and ∆’s is mediated via the exchange of pions. The interaction Lagrangian is given by

L =
fπF (t)

mπ
Ψ̄γµγ5τaΨ∂

µΠa +
f⋆

πF (t)

mπ
Φ̄µTaΨ∂

µΠa , (A.3)

which includes the spin 3/2 spinor Φµ for the ∆, the spin 1/2 spinor for the nucleon, the isospin
1/2 matrices τa and the isospin 1/2 → 3/2 matrices Ta. The coupling constants are given by

fπ = 1.008 , (A.4)

f⋆
π = 2.202 . (A.5)

And the vertex form factor is chosen to be

F (t) =
Λ2 −m2

π

Λ2 − t
, (A.6)

where t is the mass of the virtual pion and Λ = 0.63 GeV. For each ∆Nπ vertex one assumes
an additional form factor

√
z (cf. [Dmi86] for motivation), which is given by

z(t,m∆) =
p2
cm(

√
s = m∆,mN ,mπ =

√
t) + κ2

p2
cm(

√
s = mpole

∆ ,mN ,mπ =
√
t) + κ2

, (A.7)

where pcm(
√
s,mN ,mπ) denotes the CM-momentum of a pion with mass mπ and a nucleon with

mass mn for a given center-of-mass energy
√
s. The parameter κ is set to 0.2 GeV.

Let us now consider ∆ production as depicted in fig. A.1. The cross section for this process
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p

qq q′

a b

p′p p′

q′

direct crossed

Figure A.1: The direct and crossed diagrams for the NN → N∆ process.

Id Ic

pp→ n∆++
√

2 −
√

2

pp→ p∆+
√

2/3 −
√

2/3

np→ p∆0
√

2/3 −
√

2/3 .

Table A.3: Isospin factors for the NN → N∆ process.

is given by

dσ

dΩ
=

∫

dM2
∆

1

64π2s

p′cm
pcm

|M2|A∆(M∆) , (A.8)

where pcm and p′cm are the initial and final CM momenta. Since the ∆ is broad particle, we
need to integrate over the spectral function A∆ of the resonance. The matrix element is given
by a sum of the crossed and direct contribution

M = Id
fπf

⋆
πF

2(a2)

m2
π(a2 −m2

π)
ū(p′)γµγ5(ia

µ)u(p)Φ̄µ(q′)(−iaµ)u(q)

︸ ︷︷ ︸

=Md=direct term

+Ic
fπf

⋆
πF

2(b2)

m2
π(b2 −m2

π)
ū(p′)γµγ5(ib

µ)u(q)Φ̄µ(q′)(−ibµ)u(p)

︸ ︷︷ ︸

=Mc=crossed term

, (A.9)

with the pion momenta

a = p− p′ , (A.10)

b = q − p′ . (A.11)

The isospin factors Ic and Id are summarized in table A.3. In the following we will sum and
average over the spins of the in- and outgoing particles. We get three terms in the squared
matrix element: direct, crossed and interference

M2 =
1

4

∑

sp,sp′ ,sq,sq′

I2
d |Md|2 + I2

c |Mc|2 + IdIc(MdM
⋆
c +M⋆

dMc) . (A.12)
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Direct contribution The direct contribution is given by

∑

sp,sp′ ,sq,sq′

|Md|2 =

(
fπf

⋆
πF

2(a2)

m2
π(a2 −m2

π)

)2

z(
√
a2,m∆)Tr

[
(/p

′ +m)/aγ5(/p
′ +m)γ0γ5γ0/aγ0γ0

]

×Tr
[
(/q

′ +m)aµaνΛ
µν
]

=

(
fπf

⋆
πF

2(a2)

m2
π(a2 −m2

π)

)2

z(
√
a2,m∆)Tr

[
(/p

′ +m)/a(/p
′ −m)/a

]

×Tr
[
(/q +m)aµaνΛ

µν(q′)
]

, (A.13)

with Λµν as defined in eq. 4.109. The first trace gives

Tr
[
(/p

′ +m)/a(/p
′ −m)/a

]
= Tr[/p

′/a/p/a] −m2Tr[/a2]

= 4(2(p′a)(pa) − (p′p)a2 −m2a2) = −8m2t , (A.14)

where we denoted t = a2 and used p′p = m2 − t
2 . Our result for the second trace in the direct

contribution is

Tr
[
(/q +m)aµaνΛ

µν(q′)
]

= Tr

[

(/q +m)aµaν(−1)(/q
′ ′ +m∆)

(

gµν − 2

3

q′µq′ν

m2
∆

+
1

3

q′µγν − q′νγµ

m∆
− 1

3
γµγν

)]

= −Tr
[
(/q +m)(/q

′ ′ +m∆)
]
(

2

3
a2 − 2

3

(aq′)2

m∆

)

= −8

3

(
qq′ +mm∆

)
(

a2 − (aq′)2

m2
∆

)

= − 8

6m2
∆

(
m2

∆ +m2 − t+ 2mm∆

)
(

m2
∆t−

1

4
(m2 −m2

∆ − t)2
)

= − 1

3m2
∆

(
(m∆ +m)2 − t

) (
2t(m2 +m2

∆) − t2 − (m2 −m2
∆)2
)

= − 1

3m2
∆

(
(m+m∆)2 − t

)2
((m−m∆)2 − t) , (A.15)

where we used qq′ = 1
2

(
m2

∆ +m2 − t
)
.

Altogether we get

∑

sp,sp′ ,sq,sq′

|Md|2 = z(t,m∆)

(
fπf

⋆
πF

2(t)

m2
π(t−m2

π)

)2
8m2t

3m2
∆

(
(m+m∆)2 − t

)2
((m−m∆)2 − t) .(A.16)

Crossed contribution Replacing t = a2 → u = b2 in the direct contribution, we get the crossed
one.
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q q′

a b

p′p p′

q′

p

q

a) b)

Figure A.2: The diagrams for the N∆ → N∆ process within a one-pion exchange model.

Interference contribution The interference term is given by
∑

sp,sp′ ,sq,sq′

MdM
⋆
c +M⋆

dMc = 2Re (MdM
⋆
c )

=

(
fπf

⋆
πF

2(t)

m2
π(t−m2

π)

)(
fπf

⋆
πF

2(u)

m2
π(u−m2

π)

)
√

z(t,m∆)z(u,m∆)

× 2Re
{
Tr
[
(/p

′ −m)/a(/p+m)Λνµbνaµ(/q +m)/b
]}

=

(
fπf

⋆
πF

2(t)

m2
π(t−m2

π)

)(
fπf

⋆
πF

2(u)

m2
π(u−m2

π)

)
8m2

2m2
∆

(tu+ (m2
∆ −m2)(t+ u) −m4

∆ +m4)

×(tu+m(m+m∆)(m2
∆ −m2)) − 1

3
(tu− (m∆ +m)2(t+ u) + (m+m∆)4)

×(tu−m(m∆ −m)(m2
∆ −m2)) . (A.17)

For a detailed comparison of these result with data we refer the reader to the work of Dmitriev
et al. [Dmi86], where the authors demonstrate excellent agreement with data on dσ/dm∆ and
also for the measured angular distributions.

N∆ → N∆

Inspired by the successful description of the NN → N∆ process within the one-pion exchange
model, we also want to treat the elastic nucleon-∆ scattering within this approximation. The
relevant Feynman diagrams are depicted in fig. A.2 where the diagram to the right includes also
a ∆∆π interaction vertex. In [Eff96], a model based on Dönges et al. [Dö95] was applied to the
N∆ → N∆ process. Diagram a) of fig. A.2 contains a divergence in case that the intermediate
pions goes on on-shell. Effenberger argues that this dominant pole is already included in our
model by the two step process of ∆ decay and nucleon-pion scattering. Effenberger’s result1

[Eff96, eq. 3.45] for the elastic N∆ → N∆ process is

d2σ

dµfdΩ
= I 1

8

1

64π2s

p′cm
pcm

(
fNNπf∆∆π

m2
π

)2 F 4(t)

(t−m2
π)2

16(µi + µf )2m2t

9µ2
iµ

2
f

×

×(−µ2
i + 2µiµf − µ2

f + t)(µ4
i − 2µ3

iµf + 12µ2
iµ

2
f − 2µiµ

3
f + µ4

f − 2µ2
i t

+2µiµf t− 2µ2
f t+ t2)

2µf

π

µfΓ∆(µf )

(µ2
f −m2

∆) + (µfΓ∆(µf ))2
, (A.18)

with the monopole form factor F (t) as in eq. A.6 and the Dmitriev coupling fNNπ = 1.008.
The isospin factor I is given in table A.4. µf and µi denote initial and final mass of the ∆,

1Be careful: the plot 3.16 in [Eff96] does not include isospin factors, although the label says so.
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IN∆→N∆

p∆++ → p∆++ 9/4
p∆+ → n∆++ 3
p∆+ → p∆+ 1/4
p∆0 → p∆0 1/4
p∆0 → n∆+ 4
p∆− → p∆− 9/4
p∆− → n∆0 3

Table A.4: Isospin factors for the N∆ → N∆ process according to Effenberger [Eff96, table 3.6]
including also the values for and p∆− → n∆0 and p∆0 → n∆+. For the neutron channels,
the isospin factors follow by isospin inversion.

m∆ is the ∆ pole mass, m is the nucleon mass, t = b2. Let us now consider the remaining free
parameters of eq. A.18: Λ∆∆π and f∆∆π. Effenberger uses Λ∆∆π = 1.2 GeV and as a coupling
constant f∆∆π = 4/5fNNπ where he cites [Dö95] for. However, it might be more consistent to
use Λ∆∆π = ΛNNπ = 0.6 GeV which has also been used to describe the NN → ND process
(cf. previous section) and extract f∆∆π using the large Nc limit which gives [Pas06]

f∆∆π = 9/5fNNπ . (A.19)

In fig. A.3 we contrast both scenarios. There we show the cross section for p∆+ → N∆, as a
function of the mass and momentum of an incoming ∆ scattering off a resting nucleon target.
Due to the larger ∆∆π coupling, we get in general larger results than Effenberger. However,
also the cutoff parameter has a profound impact on the shape of the cross section and mostly
counter-balances the effect of the larger coupling. Finally, one must state that the quality of
the N∆ → N∆ cross section is hard to evaluate since there are no elementary ∆ beams. So it
stays a major uncertainty factor within our model.

Implementation of the ∆ width based on the model of Oset et al.

For comparison to our usual collisional width for the ∆, we included a description of the ∆
width which is based on the work of Oset et al. [Ose87]. As Effenberger [Eff99a, appendix A.6],
we use the parametrization given in [Ose87] for the special kinematical situation that the ∆ was
created by a Nπ collision. This is only an approximation since the real width depends both
on energy and momentum of the ∆. As detailed in [Eff99a, appendix A.6], our implementation
depends only on the ∆ mass and is in principle only fully correct if the ∆ was created by πN
scattering. However, this excitation via pions is the most relevant excitation channel.

In former code versions (in particular in the codes of Effenberger and Lehr), the absorptive
part of the collisional width according to Oset et al. was implemented and interpreted as an
absorption probability for the ∆. For each time step, one decided based on this probability
whether the ∆ was to be absorbed or not. In case that it was chosen to be absorbed, then it was
simply deleted and there was no final state created. One assumed that the final state nucleons
would not be relevant for the final particle spectra. However, this is only true if one is solely
interested in meson-production: the probability that such an outgoing nucleon recreates a pion
is indeed small. But if we want to analyze nucleon spectra, then we need to consider the final
state nucleons.
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Figure A.3: The upper figure shows the total cross section for ∆+p→ ∆N as a function of mass
and momentum of the incoming ∆. The contours lines denote lines of constant cross section
in units of mb. We summed over the final state charges and assumed a resting proton target.
The left panel shows the result for Λ = 1.2 GeV and f∆∆π = 4/5fNNπ, the right one shows
the outcome for Λ = 0.6 GeV and f∆∆π = 9/5fNNπ.
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We improved on this in the following way. The absorptive part due to three-body processes is
implemented as a three-body reaction rate in the collision term (cf. sec. 2.5.3 for details) - the
∆ interacts with two random nucleons and we create according to phase-space a three-nucleon
final state. The quasi-elastic width ΓQE and the two-body absorption contribution Γ2-body abs

are included as two-body reaction rates. Therefore, we define a N∆ → NN and a N∆ → N∆
cross section based on these rates and implement them in our 2-body framework. We must
demand that these cross sections fulfill

ΓQE(ρ,m∆) = 4

∫

Fermi sea

d3p

(2π)3
vrel σQE , (A.20)

Γ2-body abs(ρ,m∆) = 4

∫

Fermi sea

d3p

(2π)3
vrel σ2-body abs . (A.21)

This means that the cross sections are chosen such that the original interaction rates ΓQE and
Γ2-body abs are retrieved when propagating the particle through nuclear matter in its ground
state. Since we can not reconstruct the dependence of σ on the nucleon momentum out of the
given parametrizations, we assume that σ is independent of this momentum. Finally, the cross
sections to be implemented are given by

σQE =
ΓQE(ρ,m∆)

v̄rel(p∆)ρ
, (A.22)

σ2-body abs =
Γ2-body abs(ρ,m∆)

v̄rel(p∆)ρ
, (A.23)

with the average relative velocity

v̄rel(q) =
4

ρ

∫

Fermi sea

d3p

(2π)3
vrel =

4

ρ

∫

Fermi sea

d3p

(2π)3

∣
∣
∣
∣

~q

q0
− ~p

p0

∣
∣
∣
∣

=
4

ρ

∫

Fermi sea

d3p

(2π)3

√

~q2

q20
+
~p2

p2
0

− 2
~q~p

q0p0

=
1

ρ

4

(2π)3
2π

∫ pf

0

∫ 1

−1
d|~p||~p|2d cos θ

√

~q2

q20
+

|~p|2
m2 + |~p|2 − 2

|~q||~p| cos θ
q0
√

m2 + |~p|2

=
1

ρ

4

(2π)3
2π

∫ pf

0
d|~p||~p|2 2

3

(

−q0
√

m2 + |~p|2
2|~q||~p|

)






(

~q2

q20
+

|~p|2
m2 + |~p|2 − 2

|~q||~p|
q0
√

m2 + |~p|2

)3/2

−
(

~q2

q20
+

|~p|2
m2 + |~p|2 + 2

|~q||~p|
q0
√

m2 + |~p|2

)3/2





.

=
1

ρ

4

(2π)3
2π

3

q0
|~q|

∫ pf

0
d|~p||~p|

√

m2 + |~p|2






(

~q2

q20
+

|~p|2
m2 + |~p|2 + 2

|~q||~p|
q0
√

m2 + |~p|2

)3/2

−
(

~q2

q20
+

|~p|2
m2 + |~p|2 − 2

|~q||~p|
q0
√

m2 + |~p|2

)3/2





. (A.24)

This last integral is solved numerically. The factor 4
(2π)3

comes from the 4-fold degeneracy of

nucleons (spin+isospin) and the phase-space volume. A proof for the right implementation of
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Figure A.4: The upper panel shows a comparison of the original Oset 2-body widths with the
widths obtained from the GiBUU implementation. The solid line denotes the quasi-elastic
width according to Oset et al. [Ose87], the dashed-dotted line the corresponding GiBUU
implementation. For 2-body absorption the dashed (Oset et al. ) and dotted (GiBUU) curves
have to be compared. The width is shown as a function of the kinetic energy Tπ of a pion
which created the resonance in a scattering process with a nucleon out of the Fermi sea; for
details confer also sec. 3.6.1.

the obtained cross sections is shown in fig. A.4. There, the width obtained with this GiBUU-
implementation and the original Oset width are compared. We find good agreement within the
statistical uncertainties.

NN ↔ NR, NN ↔ ∆∆, NR ↔ NR′

We use the same cross sections as detailed in Appendix A1.2 of [Eff99a] based on the analysis
presented by Teis [Tei96]. Note, that we have chosen the NN → NS11(1535) matrix element to
be 20× 16π mb GeV2 (Effenberger has presented three different values in table A.1 of [Eff99a]).

NR ↔ NR

For all resonances besides the ∆, we assume

σNR→NR(
√
s) = σNN→NN (

√
s−mR +mN ) . (A.25)

NN ↔ NNπ

For the NN ↔ NNπ process, we consider besides resonance processes, as e.g. NN → N∆ →
NNπ, also a point-like background cross-section. The process NN → NNπ has been extensively
studied in several experiments over the last twenty years [Lan88, And88, Dau02, Har97a, Tsu88,
Shi82, Bon95]. Hence we are in a position to define proper background cross sections on top of
our resonance contributions for all possible isospin channels. In fig. A.5 we show the relevant
cross sections.
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Figure A.5: Elementary cross sections for different NN → NNπ isospin channels. The solid lines
show the full cross section, whereas the dashed lines represent the non-resonant background
contribution. The data are taken from [Lan88, And88, Dau02, Har97a, Tsu88, Shi82, Bon95].
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A.2.2 High-energy baryon-baryon cross sections

For PYTHIA events we use for all baryon-baryon scattering events the same parametrization
[Mon94] which is fitted to proton-proton data

σtot =

{

48.0 + 0.522
[

log
( plab

GeV

)]2
− 4.51 log

( plab

GeV

)}

mb , (A.26)

σelast =

{

11.9 + 26.9
( plab

GeV

)−1.21
+ 0.169

[

log
( plab

GeV

)]2

−1.85 log
( plab

GeV

)}

mb . (A.27)

For BB scattering, the following parametrizations [Mon94] are implemented

σtot = max

(

0, 38.4 + 77.6
( plab

GeV

)−0.64
+ 0.26

(

log
( plab

GeV

))2

−1.2 log
( plab

GeV

))

mb , (A.28)

σelast = max

(

0, 10.2 + 52.7
( plab

GeV

)−1.16
+ 0.125

(

log
( plab

GeV

))2

−1.28 log
( plab

GeV

))

mb . (A.29)

A.3 Baryon-meson cross sections: Non-resonant background cross

sections in the resonance energy region

Besides the resonance cross sections, non-resonant cross section contributions have been im-
plemented in the collision term. The background cross sections denoted by σBG are chosen in
such a manner, that the elementary cross section data in the vacuum are reproduced. Back-
ground contributions are instantaneous in space-time, whereas the resonances propagate along
their classical trajectories until they decay or interact with one or two nucleons in the nuclear
medium.

For relevant channels, we introduce additional background terms due to non-propagated res-
onances2, which are also not allowed to be produced in the collision term. To consider their
contribution to the total cross section, we include their contribution to the cross section as a
direct interaction. Denoting the contribution of all resonances σAll resonances and the one of the
propagated ones by σPropagated resonances, we get the background definition

σBG
res = σAll resonances − σPropagated resonances . (A.30)

A.3.1 πN → X

πN → πN

The cross section for quasi-elastic pion-nucleon scattering is in our model given by an incoherent
sum of background σBG and resonance contributions

σπN→πN = σπN→R→πN + σBG
πN→πN . (A.31)

2 A reason for not propagating some resonances might, e.g., be to speed up the simulation.
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There is a background due to non-propagated resonances. Additionally, we get a background
term due to a lack of strength of the resonance cross sections (cf. sec. 3.3.1 for a definition of
the resonance cross sections). Thus we define

σBG
low = max (σexp − σAll resonances, 0) . (A.32)

Therefore the full direct cross section is given by

σπN−→πN = σBG
low + σBG

res . (A.33)

All different events in pion nucleon scattering can be categorized into four different isospin
channels

σπ−n→π−n = σπ+p→π+p , (A.34)

σπ−p→π0n = σπ0n→π−p = σπ+n→π0p = σπ0p→π+n , (A.35)

σπ−p→π−p = σπ+n→π+n , (A.36)

σπ0n→π0n = σπ0p→π0p . (A.37)

The cross sections in the individual channels are either connected by time reversal or isospin
symmetry. The first channel (eq. A.34) is a pure isospin I = 3/2 scattering process, whereas the
other three channels are mixtures of I = 1/2 and I = 3/2. The cross section for the I = 3/2
channel σπ N→∆→π N is given explicitly in [Eff99a] based on the resonance analysis by Manley
and Saleski [Man92].

There are good data sets for the first, second and third channel (eq. A.34-A.36)

π+p→ π+ p ,

π−p→ π− p ,

π−p→ π0 n .

down to very low energies. Hence, we introduce a background term on top of our resonance
contributions for a better description of those channels. The last channel (eq. A.37) is inaccessible
for experiment, therefore we can not introduce any background term. In this approach, we
describe in a satisfying manner all available data as can be seen in fig. A.6. In this figure,
the elastic (left panels) and total cross sections (right panels) for all pion proton channels are
plotted. The solid lines depict the full cross section and the dashed lines show the background
contributions.

The cross sections on the neutron follow by isospin inversion.

Angular distributions As an improvement in the earlier treatment [Bus06c, Eff97b, Eng94], we
now included a more realistic angular distribution for the elastic scattering of the pions. Due to
the P -wave nature of the ∆(1232) resonance, we assume for πN → ∆ → πN in the resonance
rest frame a distribution of the pion scattering angle θ 3 according to

f∆(s, θ) =
(
1 + 3 cos2(θ)

)
g(s, θ) , (A.38)

which is peaked in forward and backward scattering angles. The function g(s, θ), depending
on Mandelstam s, parametrizes the energy dependence of the πN angular distribution. In a

3The angle θ is spanned by the incoming and outgoing pion momenta. In the simulation, we must store for each
∆ produced in a πN collision the momentum of the corresponding pion in the resonance rest frame.
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Figure A.6: Elastic (left panels) and total (right panels) cross sections for the scattering of pions
and protons. The solid curves show the results with our default parameters: all resonances
besides the I = 1/2 1*-resonances are included, the real parts of the self energies are included
in the propagators. The dashed curves show the background contributions. The data are
taken from [Hag02].
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Figure A.7: The angular distributions for the charge exchange process π−p → π0n in the CM-
frame of pion and proton. The plots are labeled by the kinetic energies of the pions in the
laboratory frame. The data are taken from ref. [Sad04].

coherent calculation the angular distribution is generated by interference effects, which can not
be accomplished by our transport model. In our ansatz we need to split the cross section in an
incoherent way to preserve our semi classical resonance picture. Therefore we take

g(s, θ) = (α− cos(θ))β(m∆−√
s)/m∆ (A.39)

with the ∆ pole mass m∆ = 1.232 GeV. For the background events we assume

fBG(s, θ) = g(s, θ) . (A.40)

The constants α = 1.9 and β = 26.5 are fitted to the angular distributions measured by Crystal
Ball [Sad04]; a comparison of our parametrization to this data is shown in fig. A.7.

πN → ππN

The πN → ππN cross section is given by

σπN→Nππ =
∑

R

σπN→R
ΓR→Nππ

Γtot
. (A.41)

In A.8, we show the model results for all pion proton channels: π−p → π0π0n, π−p → π+π−n,
π−p → π0π−pX, π+p → π+π+n, π+p → π+π0p. The short-dashed curve denotes the result
which was obtained with the former choice [Eff99a] of included resonances, which was neglecting
all 1*-resonance of the Manley analysis. For the solid and long dashed curves, we included the
I = 3/2 1*-resonances and excluded only the I = 1/2 1*-resonances. Obviously, this choice fits
better the data, especially in the π+p → π+π+n and π+p → π+π0p channels. The difference
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between the solid and long dashed curve is given by the inclusion of the self energy real parts
in the resonance propagators: the long-dashed line does not include it. However, there is only
a modest impact of that real part. We conclude that the choice to exclude only the I = 1/2
1*-resonances seems fits the data better than the former choice to exclude all 1*’s.

πN → η∆

This cross section is given by

dσπN→η∆

dm∆
=

〈

1
1

2
; qN qπ|

3

2
q∆

〉2

|MπN→η∆|2 p
final
cm (m∆)

s pinitial
cm

A∆(m∆) . (A.42)

Assuming a constant matrix element |MπN→η∆|2 = 7 mB GeV2 we can integrate over the mass
of the ∆ resonance and get

σπN→η∆ =

〈

1
1

2
; qN qπ|

3

2
q∆

〉2

|MπN→η∆|2 1

s pinitial
cm

∫

pfinal
cm (m∆)A∆(m∆)dm∆ . (A.43)

πN → φN

Using the result of Golubeva et al. [Gol97] for π−p→ φn we define

σπ−p→φn = σGolubeva
π−p→φn , (A.44)

σπ+n→φp =

〈
1 1

2 ; 1 − 1
2 |12 1

2

〉2

〈
1 1

2 ;−1 1
2 |12 − 1

2

〉2 σ
Golubeva
π−p→φn , (A.45)

σπ0p→φp =

〈
1 1

2 ; 0 1
2 |12 1

2

〉2

〈
1 1

2 ;−1 1
2 |12 − 1

2

〉2 σ
Golubeva
π−p→φn , (A.46)

σπ0n→φn =

〈
1 1

2 ; 0 − 1
2 |12 − 1

2

〉2

〈
1 1

2 ;−1 1
2 |12 − 1

2

〉2 σGolubeva
π−p→φn . (A.47)

πN → φπ∆

As for the φ meson we utilize the model of Golubeva et al. [Gol97] and assume the cross section
for different charge channels to be the same. Thus we define

σπN→φπN = σGolubeva . (A.48)

πN → ωN

Utilizing the result of Golubeva et al. [Gol97] for π−p→ ωn we define

σπ−p→ωn = σGolubeva
π−p→ωn , (A.49)

σπ+n→ωp =

〈
1 1

2 ; 1 − 1
2 |12 1

2

〉2

〈
1 1

2 ;−1 1
2 |12 − 1

2

〉2 σ
Golubeva
π−p→ωn , (A.50)

σπ0p→ωp =

〈
1 1

2 ; 0 1
2 |12 1

2

〉2

〈
1 1

2 ;−1 1
2 |12 − 1

2

〉2 σ
Golubeva
π−p→ωn , (A.51)

σπ0n→ωn =

〈
1 1

2 ; 0 − 1
2 |12 − 1

2

〉2

〈
1 1

2 ;−1 1
2 |12 − 1

2

〉2 σGolubeva
π−p→ωn . (A.52)
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Figure A.8: Cross sections for π−p → π0π0n, π−p → π+π−n, π−p → π0π−pX, π+p → π+π+n,
π+p → π+π0p. The solid line represents the full model in which only those 1*-resonances
are not included which have isospin 1/2. The dashed curve neglects the effects of the dis-
persion relations and the dotted line represents the result according to the former choice of
parameters [Eff99a].
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πN → ωπN

Here we utilize once again the results of Golubeva et al. [Gol97] and assume a constant cross
sections for all channels and define

σπN→ωπN = σGolubeva . (A.53)

πN → ΣK

As implemented in [Eff99a], we use a parametrization according to Tsushima et al [Tsu97] for

σΣ K(1) = σπ+p→K+Σ+ , (A.54)

σΣ K(2) = σπ0p→K+Σ0 , (A.55)

σΣ K(3) = σπ−p→K0Σ0 , (A.56)

σΣ K(4) = σπ−p→K+Σ− . (A.57)

Assuming isospin symmetry and isospin I = 1
2 dominance, we get

σπ0p→K0Σ+ = σπ−p→K0Σ0 = σΣK(3) . (A.58)

These last five cross sections (A.54) to (A.58) define all possible channels with a proton in the
initial state. Channels with an initial neutron are defined by charge conjugation:

σπ−n→K0Σ− = σπ+p→K+Σ+ = σΣ K(1) , (A.59)

σπ0n→K0Σ0 = σπ0p→K+Σ0 = σΣ K(2) , (A.60)

σπ+n→K+Σ0 = σπ−p→K0Σ0 = σΣ K(3) , (A.61)

σπ+n→K0Σ+ = σπ−p→K+Σ− = σΣ K(4) , (A.62)

σπ0n→K+Σ− = σπ−p→K0Σ0 = σΣ K(3) . (A.63)

πN → ΛK

As implemented in [Eff99a] we use a parametrization according to Tsushima et al [Tsu97] for
π−p → ΛK0. We define a πN −→ ΛK background cross section by subtracting the resonance
contributions.

σBG

π−p→ΛK0 = σTsushima
π−p→ΛK0 − σResonances

π−p→ΛK0 . (A.64)

The other channels follow by isospin considerations since all processes need to go through an
isospin I = 1

2 channel:

σBG

π+n→ΛK+ = σBG

π−p→ΛK0 ,

σBG

π0p→ΛK+ =

〈
1
2 1; 1

2 0|12 1
2

〉2

〈
1
2 1; 1

2 − 1|12 − 1
2

〉2 σ
BG

π−p→ΛK0 =
1

2
σBG

π−p→ΛK0 ,

σBG

π0n→ΛK0 =

〈
1
2 1;−1

2 0|12 − 1
2

〉2

〈
1
2 1; 1

2 − 1|12 − 1
2

〉2σ
BG

π−p→ΛK0 =
1

2
σBG

π−p→ΛK0 .

208



A
.3

A.3 Baryon meson cross sections: non-resonant backgrounds

πN → KK̄N

This cross section is parametrized according to Sibirtsev et al. [Sib97]. Details concerning the
Clebsch-Gordan coefficients an be found in [Eff99a]. The cross-sections are given by

σπ−p→nK0K̄0 = σSibirtsev σπ−p→pK0K̄− = 1
2 σ

Sibirtsev ,

σπ−p→nK+K̄− = σSibirtsev σπ0p→nK+K̄0 = σSibirtsev ,

σπ0p→pK0K̄0 = 1
4 σ

Sibirtsev σπ0p→pK+K̄− = 1
4 σ

Sibirtsev ,

σπ+p→pK+K̄0 = 1
2 σ

Sibirtsev ,

where

σSibirtsev = 1.121
(

1 − s0
s

)1.86 (s0
s

)2
mB (A.65)

with s0 = (mN + 2mK)2. All channels with an incoming neutron are given by charge conjuga-
tion.

A.3.2 π∆ → X

Besides resonance production channels, backgrounds for ΛK and ΣK production are imple-
mented according to [Tsu97].

A.3.3 ρN → X

Besides resonance production channels, a πN background is introduced to absorb missing in-
elasticities above

√
s > 1.8 GeV:

σρN → πN = σtot, data − σtot, resonances . (A.66)

A.3.4 ηN → X

ηN → πN

Additionally to resonance production, a πN background is defined for
√
s > 2 GeV

σηN → πN = σtot, data − σtot, resonances . (A.67)

In this approach, missing resonance strength is attributed to the πN channel.

A.3.5 η∆ → X

η∆ → πN

Due to detailed balance we get

ση∆ → πN =
1

2
|MπN→∆η|2

pf

s pi
. (A.68)

The factor 1/2 is due to (2j+1)-terms in the cross sections and different spins in initial and final
state.
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A.3.6 ω/φN → X

The results of Golubeva et al. [Gol97] are used for the background in ωN and φN scattering.
Since we introduced πN ↔ ω/φN channels, we must introduces a corresponding reversed channel
to conserve detailed balance. Additionally, an elastic background

σω/φN → ω/φN = σelast,Golubeva − σelast, resonances . (A.69)

and a ππN channel

σω/φN → ππN = σtot,Golubeva − σtot, resonances , (A.70)

is implemented. The latter one is attributed all the missing strength in the total cross section.

A.4 Nucleon mean field potential

The hadronic potentials have been introduced in sec. 3.4.2 as time-like components of vector
potentials in the local rest-frame (LRF) (The local rest frame is defined to be the frame in which
the baryonic currents vanish). This section is devoted to the fixing of the potential parameters
a, b, c, τ and Λ, which have been introduced in eq. 3.29

A0
N (~r, ~p) = a

ρ(~r)

ρ0
+ b

(
ρ(~r)

ρ0

)τ

+
2c

ρ0
g

∫
d3p ′

(2π)3
f(~r, ~p ′)

1 +
(

~p ′−~p
Λ

)2 . (A.71)

The parameter g = 4 denotes the nucleon degeneracy factor. As we already pointed out in
sec. 3.4.2, Teis [Tei96] fitted five distinct standard parameter sets (listed in table 3.4) to nuclear
matter properties. By default, the parameter set medium momentum-dependent (EQS 5) is
being used for all calculations. The aim of this section is to point out how these parameter sets
have been fixed. This then opens the possibility to fine-tune the sets with the help of inclusive
electron scattering data.

A.4.1 Fixing the potential parameters

The energy density of nuclear matter is given by

ǫ(~r) = g

∫
d~p

(2π)3

√

~p2 +m2
Nf(~r, ~p)

︸ ︷︷ ︸

kinetic energy density

+ VN (ρ(~r))
︸ ︷︷ ︸

potential energy density

. (A.72)

Our parametrization for the above potential energy density VN has been proposed by Welke [Wel88]

VN (ρ) =
a

2

ρ2

ρ0
+

b

τ + 1

ρτ+1

ρτ
0

+
c

ρ0
g2

∫
d~p d~p ′

(2π)6
f(~r, ~p)f(~r, ~p ′)

1 + (~p−~p ′)2

Λ2

. (A.73)

Given this potential energy density, the single-particle potential A0
N can be derived via the

relation

A0
N =

(2π)3

g

δVN

δf
. (A.74)
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Note that the momentum dependent term of the mean field potential corresponds to a potential
resulting from Yukawa interaction. Additionally, one finds that the parameter Λ translates into
the mass of the scalar exchange meson (cf. [Tei97, sec. 3.1] for derivation).

Let us assume infinite nuclear matter. There the phase space density is given by

f(~r, ~p = Θ(pf − |~p|) (A.75)

with the Fermi momentum

pf =
3

√

3π2

2
ρ . (A.76)

For this infinite nuclear matter, one formulates five conditions to fix the potential parameters

Binding energy: E
A (ρ0) = ǫ

ρ −mN = Ebind , (A.77)

Compressibility:
(

9ρ2 ∂2

∂ρ2
E
A (ρ)

)

ρ=ρ0

= C , (A.78)

Saturation point: ∂
∂ρ

E
A (ρ0) = 0 , (A.79)

Potential for |~p| = 0: A0
N (ρ = ρ0, |~p| = 0) = U , (A.80)

Root of potential: A0
N (ρ = ρ0, |~p| = p0) = 0 . (A.81)

Within these five conditions we have introduced five constants: the nuclear matter saturation
density ρ0, the nuclear matter compressibility C, the nuclear matter binding energy Ebind, the
depth U of the single particle potential A0

N for ~p = 0 at saturation density and the momentum
p0 at which A0

N vanishes at saturation density. Now the problem is to relate the constants ρ0,
C, Ebind, U , p0 to the potential parameters a, b, c, τ and Λ.

For this let us first solve the integrals showing up in the single-particle potential and in the
energy density

tkin(ρ) = g

∫
d~p

(2π)3

√

~p2 +m2
Nf(~r, ~p)

=
g 4π

(2π)3

[pf

4
(p2

f +m2
N )2/3

−m
2
N

8



pf

√

p2
f +m2

N +m2
N ln







pf +
√

p2
f +m2

N

mN













 , (A.82)

f1(Λ, ρ) = g2

∫
d~p d~p ′

(2π)6
f(~r, ~p)f(~r, ~p ′)

1 + (~p−~p ′)2

Λ2

=
g2

(2π)6
32π2

3
p4

fΛ2

{

3

8
− Λ

2pf
arctan

(
2pf

Λ

)

− Λ2

16p2
f

+

(

3

16

Λ2

p2
f

+
1

64

Λ4

p4
f

)

ln

(

1 +
4p2

f

Λ2

)}

, (A.83)

f2(Λ, ρ, p) = g

∫
d~p ′

(2π)3
f(~r, ~p ′)

1 + (~p−~p ′)2

Λ2

=
g

(2π)3
πΛ3

{

p2
f + Λ2 − p2

2pΛ
ln

(
(p + pf )2 + Λ2

(p − pf )2 + Λ2

)

+ 2
pf

Λ

−2

(

arctan

(
p+ pf

Λ

)

− arctan

(
p− pf

Λ

))}

, (A.84)
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and let us evaluate the binding energy and its derivatives at nuclear matter saturation density

E

A
(ρ0) =

tkin(ρ0)

ρ0
+
a

2
+

b

τ + 1
+

c

ρ2
0

f1(Λ, ρ0) , (A.85)

∂

∂ρ

E

A
(ρ0) = − tkin(ρ0)

ρ2
0

+
1

ρ0

∂

∂ρ
tkin(ρ0) +

a

2ρ0
+

bτ

(τ + 1)ρ0

+
c

ρ2
0

(

−f1(Λ, ρ0)

ρ0
+

∂

∂ρ
f1(Λ, ρ0)

)

︸ ︷︷ ︸

=f4(Λ,ρ0)

, (A.86)
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Given these derivatives we can reformulate eq. A.77-A.81:
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a+ b+
2c

ρ0
f2(Λ, ~p = 0) = U , (A.91)

a+ b+
2c

ρ0
f2(Λ, ~p = p0) = 0 . (A.92)

Using eq. A.92 we get

a = −b− 2c

ρ0
f2(Λ, p = p0) . (A.93)
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Inserting this in eq. A.88-A.91 gives

b(
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2
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= C1 , (A.94)
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Eq. A.97 yields

c =
U

f7(Λ, ρ0, p0)
, (A.98)

which gives in A.96
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Inserting our result for the parameters b and c in eq. A.95 gives τ as a function of Λ
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. (A.100)

Finally, eq. A.94 yields the equation to determine the final free parameter Λ

0 = 1 +
1

ρ0

(

C3 − U f6(Λ,ρ0,p0)
f7(Λ,ρ0,p0)

)

(

C1 − U
f5(Λ, ρ0, p0)

f7(Λ, ρ0, p0)

)

. (A.101)

This final equation A.101 is highly non-linear and must be solved numerically. It may happen
that there is a value Λ0 such that the denominator vanishes

C3 − U
f6(Λ0, ρ0, p0)

f7(Λ0, ρ0, p0)
= 0 . (A.102)

Therefore, we choose a bisection method with which we search a solution for Λ in the region
Λ ∈ (0, 30 fm−1]. The upper cut-off is already so large that it relates to an exchange boson
heavier than 5.9 GeV, which is already unrealistic. An even larger cut-off would not make
sense concerning physics. If there is a pole Λ0, then we divide the interval (0, 30 fm−1] into two
separate intervals (0,Λ0) and (Λ0, 30 fm−1] and perform separate root-searches in both intervals.
Given reasonable values for the input parameters ρ0, C, Ebind, U , p0 we never found more than
one solution for Λ within (0, 30 fm−1]. The numerical implementation of the full problem can
be found in the FORTRAN module ”code/potential/skyrme/skyrme.f90”.
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Appendix B

GiBUU - details on the numerics

Overview: This appendix introduces to special algorithms used for the GiBUU
model. In particular, the concept of perturbative particles is explained and the
final-state decision algorithm is detailed.

B.1 Real and perturbative test-particles

For some calculations, e.g. low-energetic πA or γA collision, it is a good assumption, that the
target nucleus stays very close to its ground state. Henceforth, one keeps as an approximation
the target nucleus constant in time. This basically means that the phase space density of
the target is not allowed to change during the run. The test-particles which represent this
constant target nucleus are called real test-particles. However, one also wants to consider the
final state particles. Thus one defines another type of test-particles which are called perturbative.
The perturbative test-particles are propagated and may collide with real ones, the products are
perturbative particles again. However, perturbative particles may not scatter among each other.
Furthermore, they are neglected in the calculation of the actual densities. One can simulate in
this fashion the effects of the almost constant target on the outgoing nucleons without modifying
the target. E.g. in πA collisions we initialize all initial state pions as perturbative test-particles.
Thus the target stays automatically constant and all products of the collisions of pions and
target nucleons are assigned to the perturbative regime.

Furthermore, since the perturbative particles do not react among each other or modify the real
particles in a reaction, one can also split a perturbative particle in n pieces (several perturbative
particles) during a run. Each piece is given a corresponding weight 1/n and one simulates like
this n possible final state scenarios of the same perturbative particle during one run.

Using perturbative particles it is also possible to enhance rare particle production as sketched
in [Eff99a]. One lets the real particles perform their collisions, but during these collisions one
produces not only the real final state particles but also perturbative particles. For instance, let
us consider Λ production in NN scattering. This process is very rare, such that the statistical
information on this channel is very scarce in an usual run. However, one can also produce in each
NN collision a NΛK final state (if the threshold condition is fulfilled) if one initializes them
as perturbative particles and gives to each NΛK event a weight, which corresponds to its real
production probability σNΛK/σtot. Thus one achieves huge statistics - under the assumptions
that these rare events do not lead to an overall change of particle flows.

B.2 Final State Decisions for hadron-hadron scattering events

The final state decision is straight forward in the case of resonance production. If there are
two or three particles in the final state, the treatment is more involved. First, the treatment is
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discussed with vacuum in sec. B.2.2-B.2.3. Then the medium corrections are discussed.

B.2.1 Resonance Production

In the case of resonance production we get the final mass of the resonance by eq. (3.41), which
completely fixes the kinematics.

B.2.2 Two body final states : X → cd in the vacuum

The general definition of the cross section is given by (e.g. [Hag02])

dσa b→f1,f2,f3,...,fn = (2π)4 Sfinal
Ma b→f1,f2,f3,...,fn

j
dΦn , (B.1)

where Φn denotes the n-particle phase space of the final-state particles, Sfinal stands for the
symmetry factor of the final state and

j = 4

√

(papb)
2 −m2

am
2
b (B.2)

represents the flux factor of the particles a and b. This flux factor can be expressed in the center
of mass system by

j = 4pcm

√
s , (B.3)

with the CM-momentum pcm of the particles a and b. It can be shown, e.g. in [Leh03, cf. espe-
cially sec. 4.7]1, that one can express the cross section for the production of unstable particles c
and d in the final state by

dσab→cd

dµc dµd dΩ
(s) =

1

64π2 s

pcd

pab
2µcAc(µc, pc(µc,Ω))2µdAd(µd, pd(µd,Ω)) |Mab→cd(s)|2 , (B.4)

with pab and pcd denoting the CM momenta of the a b and the c d-system. Here one needs to
assume that the Matrix element is only dependent on s. The spectral functions depend only in
the medium, which explicitly breaks Lorentz-invariance, on the four-momenta of the particles.
Considering the vacuum-case they will only depend on the squares µ2 = pνpν .

We want to use a Monte-Carlo method to choose the final state. In eq. B.4, we note that the
two-particle final state depends both on the masses of the outgoing particles and their directions
of motion. The Mandelstam s and pab are determined by the initial state. So we choose the
masses µc and µd at the same time as we choose Ω. The substitution

dyi =
Γ0

(µi −M0
i )2 +

(
Γ0
2

)2dµi (B.5)

gives by integration the variable transformation

yi(µi) = 2 arctan

[

2
µi −M0

i

Γ0
i

]

; i ∈ {c, d} , (B.6)

1Note that Lehr uses a slightly different convention for the spectral function which differs by a factor 2m from
the one used in this work.
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with M0
i and Γ0

i being the values at the pole position in the vacuum. The function

dyi

dµi
=

Γ0

(µi −M0
i )2 +

(
Γ0
2

)2 (B.7)

has a similar dependence on µi as µiAi, which makes the function

dσab→cd

dyc dyd dΩ
(s) =

1

16π2 s

pcd

pab

µcAc(µc, pc(µc,Ω))
dyc

dµc

µdAd(µd, pd(µd,Ω))
dyd

dµd

|Mab→cd(s)|2 , (B.8)

smoother than the original function presented in eq. B.4 which is advantageous for the applica-
tion of a rejection method. For this we choose yc, yd and Ω according to a flat distribution. The
probability that a random ensemble (yc, yd,Ω) will be accepted is then given by

paccept(yc, yd,Ω) =
pcdµcAc(µc, pc(µc,Ω))µdAd(µd, pd(µd,Ω))dµc

dyc

dµd

dyd(

pcdµcAcµdAd
dµc

dyc

dµd

dyd

)

max

. (B.9)

The maximal value
(

pcdµcAcµdAd
dµc

dyc

dµd

dyd

)

max
is actually hard to find. We parametrize this

maximal value by

(

pcdµcAcµdAd
dµc

dyc

dµd

dyd

)

max

= Qcd × max{pvac
cd } . (B.10)

The dimensionless factor Q is of the order of 10 and depends on the outgoing particles. It has
to be readjusted if one establishes new in-medium effects.

B.2.3 Three body final states : X → cde in the vacuum

For a three-particle final state one gets a more complicated structure

dσab→cde

dµc dµd dµe d|~pc| dΩc d|~pd| dφd
(s) =

1

8 (2π)5
1

pab
√
s

|~pc| |~pd|
EcEd

2µcAc(µc, pc)2µdAd(µd, pd)

× 2µeAe(µe, pe) |Mab→cde(s)|2 . (B.11)

Here ~pc,d denote the CM-momenta of the particles c and d. The CM-momentum of e is given
by total momentum conservation

~pc + ~pd + ~pe = 0 . (B.12)

In analogy to the two-particle final, we use the variable transformation

yi(µi) = 2 arctan

[

2
µi −M0

i

Γ0
i

]

; i ∈ {c, d} . (B.13)

applied to eq. B.11. We obtain

dσab→cde

dyc dyd dye d|~pc| dΩc d|~pd| dφd
(s) =

µcµdµe

(2π)5
1

pab
√
s

|~pc| |~pd|
EcEd

Ac(yc, pc)Ad(yd, pd)

×Ae(ye, pe) |Mab→cde(s)|2
dµc

dyc

dµd

dyd

dµe

dye
. (B.14)
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Hence we need to choose yc, yd, ye, |~pc|,Ωc, φd and |~pd| independent of each other. The limits for
the yi are given by the smallest and largest possible masses. The absolute values of the momenta
|~pi| are limited by the energy conservation. Evaluated in the CM-System

∑

i

Ei =
∑

i

√

m2
i + p2

i =
√
s (B.15)

this condition sets the limits to

|~pi| <
√
s . (B.16)

The value of Ωc is determined by choosing a random cos(θ) ∈ [−1, 1] and φ ∈ [0, 2π]. Once we
have chosen those parameters, the full kinematics is fixed. We can define a probability to accept
such a configuration by

paccept =
µcµdµe

|~pc||~pd|
EcEd

Ac(yc, pc)Ad(yd, pd)Ae(ye, pe)
dµc

dyc

dµd

dyd

dµe

dye

m
(B.17)

where m is chosen such that it is larger than the maximum of the nominator. With a Monte-
Carlo decision we now accept or reject this configuration. We evaluate different configurations
until we get one which is accepted.

B.2.4 Medium Corrections

In the medium we have a more complicated dispersion relation. Therefore also the phase space
factors differ from the ones used above. Already in [Eff99a] possibilities to implement the right
phase-space factors for ∆N and NN scattering were discussed. Our treatment does not include
such modifications, but preserves the energy in the medium for all collisions. We use the following
algorithm:

1. Evaluate svacuum.

2. Do the final state decision with vacuum kinematics assuming s = svacuum.

3. Correct the final state by scaling the final state momenta by a factor x in the CM frame.

The last point needs special discussion. Therefore we go to the CM-frame of the final state.
Here energy and momentum conservation in step 2 result in a solution for the momenta ~pi which
obeys

∑

i

√
(
~p CM

i

)2
+ (mi)

2 =
√
svacuum

∑

i

~p CM
i = 0 .

Now we want to define the four momenta in the medium. Let them be denoted by qi. In the
medium momentum and energy conservation demand

∑

i

q0i (~qi) =
√
s (B.18)

∑

i

~qi = 0 . (B.19)
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The zeroth components of qi are, due to the potentials, highly non-trivial functions of the vector
components ~qi. Hence our recipe is the following: Using the vacuum result for ~pi we choose

~qi = x ~pi ∀ i , (B.20)

where the scaling factor x is fixed by equation (B.18). Since all momenta are scaled by the same
factor, momentum conservation is fulfilled trivially.

B.3 Time consumption

This section is devoted to the time consumption of the GiBUU code. For this the time con-
sumption of different code modules is compared choosing two exemplary physics cases.

B.3.1 Inclusive electron scattering

First, let us consider the simulation of an inclusive electron-nucleus cross section as presented in
fig. 7.3. We choose a fixed electron beam energy of 1.08 GeV and fixed final electron energies of
0.5 which corresponds to one single point in fig. 7.3; the scattering angle is chosen as in fig. 7.3
to be θlf = 32◦. A full calculation is performed, which includes in-medium spectral functions
according to the mass-shift scenario for the self-energy. Note that this physics case does not
include the propagation of final states and almost the complete CPU-time is consumed by the
initialization and analysis procedures. A calculation using 20 runs with 1000 ensembles/run takes
3644s (≈ one hour). Fig. B.1 shows that most of the time (≈ 75%) is used for the calculation
of the resonance and single-pion background cross sections (σR and σπ, bg), which depend on
the four-momentum of the target test-particle momenta. Therefore, we need to evaluate σR and
σπ, bg for each test-particle separetely. All other tasks (the resonance decays in the collision
term, the analysis, the management of the particle arrays and anything else) consume less than
25% in total. The right columns in fig. B.1 show in detail where the computation time goes.
To evaluate σR and σπ,bg one needs to evaluate hadron tensors for resonance excitation. In the
code, the hadronic currents are defined using γ-matrices and form factors. To evaluate the spin-
traces for the hadron tensors, one then needs to perform matrix multiplications and contractions
during run time. To speed this procedure up, one could evaluate all the traces by hand as for
the total single-pion production cross section presented in sec. 4.5.2. However, we will see for
the next physics case that the initialization takes very little time compared to the full final-state
treatment. Hence we did not focus on a speed-up of the resonance hadron-tensors yet.

B.3.2 π0 production in a γ40Ca → π0X reaction

As a second scenario we consider the simulation of π0 production in a γ40Ca → π0X reaction,
which was presented in fig. 7.22. For this physics case all the final states must be propagated,
which is done within the local-ensemble method (cf.sec. 2.5.2 for details). Again, we consider
a full calculation which includes in-medium spectral functions and the off-shell potential (OP)
presented in sec. 2.4. The photon energy is chosen to be q0 = 400 MeV, which corresponds
to one single point in fig. 7.22. For one point of the curves shown in fig. 7.22 the code needs
roughly one CPU day using the full model. Fig. B.2 shows that most of the computation time is
consumed by the propagation, but the initialization needs almost no time compared to all other
tasks. During the propagation most of the time (35.5% of the total CPU time) is consumed
for the evaluations of the gradients of the Hamilton functions. During the evaluation of the
Hamilton functions, especially the interpolation for the baryon width is slow and consumes 11%
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Figure B.1: Relative CPU time consumption for the calculation of an inclusive electron-nucleus
cross section. The four right green (respectively brighter) columns represent routines which are
called during the initialization of resonance and single-π background events: the multiplication
of 3 complex matrices (matrix mult. 3), the multiplication of 4 complex matrices (matrix mult.
4), the hadron tensor for spin 3/2 resonances (Hµν(3/2)) and the entry “Contract, SP, . . .”
represents the CPU time needed for routines which evaluate scalar products, contract vectors
and γ matrices, return γ matrices, unit matrices or σµν .
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Figure B.2: CPU time consumption for π0 production in a γ40Ca → π0X reaction.
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of the complete computation time. Switching off the off-shell potential there are no gradients
of the width to be calculated anymore, so the latter 11% can be saved. Additionally, one can
increase the time-step size by almost a factor of 10 just by neglecting (i.e. switching off) the off-
shell potential, which decreases the computation time of the propagation part by approximately
the same factor.

Using the full model, i.e. including the off-shell potential and the in-medium baryon widths,
there is not much potential to speed the code up. During run-time the baryon width must be
interpolated, otherwise the gradients may have jumps which generate velocities larger than the
speed of light. Additionally, there is no single routine consuming extraordinary much CPU time,
but there are a lot of routines consuming small amounts of CPU time – a feature, which deters
at the moment a further improvement on the performance.

B.3.3 Outlook

From the author’s point of view, the present speed of the simulation is no severe issue except
for high-statistics runs looking for rare observables. However, the algorithm is highly suited
for a multi-threaded realization. Thus it might be an interesting option to convert the present
implementation to a parallel code. Then one could use several slow and often unoccupied nodes
of a computer cluster in parallel to perform a job which must at present be run on a very fast
node.
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Appendix C

GiBUU - Technical details concerning the code,
code management and documentation

Overview: This appendix focuses on technical details of the GiBUU framework.
The directory structure of the repository is outlined, the documentation and version
control system is presented.

C.1 Directory structure

The GiBUU repository is structured into several directories and the source code itself is sorted
into different topics. The following (incomplete) list outlines the directory structure. Within
the base directory, one finds the sub-directories:

Documentation Includes the automatic documentation which is being generated by the
ROBODOC documentation tool [rob07].

Documentation Extra Includes all non-automatic documentation, e.g. supplementing pdf or
tex-files.

TAGS Includes tex source-files for the published papers, diploma and phd theses. Furthermore,
the job cards to relevant results should be included here and the revision of the code which
was used for the relevant runs. With this prerequisite, the results can be fully reproduced
at any later stage.

branches Includes copies of workingCode which are meant to be non-permanent. A branch
opens the possibility for several users to work on a limited project which is later merged
back into the workingCode directory. Additionally, the released versions are included in
this directory.

workingCode The workingCode directory includes the main source code of the GiBUU project.
The file Makefile steers the compilation process and is being documented in the file
README.Makefile.txt. Furthermore, an example for the documentation usage is pre-
sented in DemoFoRobodoc.f90. The file robodoc.css includes the style sheets for the HTML
documentation, and the ROBODOC configuration is included in the file GenerateDoku.rc.
The file Makefile.SUB is distributed via make renew as a Makefile to all sub-directories
within the code directory. Important sub-directories within workingCode are:

buuinput Includes all input files to the code. Within the directory, the file Makefile is
used to unzip large files and to prepare necessary input.

testRun Here the executable ”main.x” is found after successful compilation. The sub-
directory jobCards includes sample job cards for different scenarios.
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code This directory includes the full source code. The main steering program is called
main.f90. Several sub-directories split the code into different topics:

analysis Includes all analysis routines.
collisions The collision term.
database Includes particle ID’s, particle properties and decay channels.
density Density and Pauli blocking routines.
dilepton Dilepton yields and analysis.
init Initialization routines.
inMediumWidth Includes the routines which are used to calculate the in-medium-

width.
inputOutput Includes the input module input.f90 for the most important switches,

such as e.g. the number of ensembles. Furthermore, this directory provides rou-
tines to generate output.

numerics Includes numerical subroutines, includes also QUADPACK and CERNLIB
fragments.

potential Potential routines and energy determination routines.
propagation Routines for propagating the test-particles in time.
run Run-time check routines.
rmf Relativistic mean field potential implementation.
spectralFunctions Routines connected to self energies and spectral functions.
storage Routines to generate histograms and to store information based on pointer

lists.
typeDefinitions Includes all underlying type definitions, e.g. the definition of the

particle type.
width Includes all kinds of routines which are connected to the width and spectral

functions of the baryons and mesons.

C.2 Version control via Subversion

To work in parallel with several programmers on a software project, requires a proper version
control management. Within the GiBUU project, this is presently realized with the Subversion
package. For a detailed introduction into Subversion, I suggest the well-written manual [CS04],
in particular the first chapters.

The so-called repository is basically a data bench which holds all the information about the
present status of the code, all the changes to it in the past and the log-messages which go along
with these changes. Each user checks out a copy of this repository and has then a local copy,
his so-called working copy, of the code. After modifying files in that working copy, the user can
submit changes to the repository.

A typical working cycle is sketched in fig. C.1. First, user A commits his changes of file X
to the repository. Then user B simply updates his file X by retrieving the patches from the
repository. However, it might also be possible that user A and B work on the same files. Such
a situation is called a conflict and is sketched in fig. C.2. If they would both commit their
changes to the repository without knowing about the changes of the co-worker, then the code
could get corrupted. Therefore, Subversion forbids user B to commit his changes before he has
not updated his code to the version of user A. After this update, user B must solve the conflict
within his local working copy. Thereafter, he can commit the file back to the repository. User
A retrieves the changes of user B by a simple update. Usually, conflicts appear rather seldom,
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since the code is modular and, therefore, users usually work on different files without disturbing
each other. Only if a user does not update or commit his code for a long time, such a situation
occurs with higher probability. Therefore, frequent updating and committing is a good strategy.

C.3 License issues - imported code fragments

The code includes at the present stage several imported subroutines which are not originally
coded by any member of the GiBUU group. The following list gives an overview over the present
situation (revision 2162):

Pythia The Pythia model [pyt07] is included as a high-energy event generator. It is under
the Gnu Public License (GPL) and refers to the MCNET guidelines for event generators
authors and users.

Strictly speaking past Pythia versions have not come with a license, so you are
not allowed to redistribute them AT ALL. You could only tell people that so-
and-so a Pythia version is required and tell them to download it from the official
Pythia web page. This has not been a consequence of deliberate policy, simply a
lack of interest in such issues. It has been taken for granted that people can do
minor modifications and appropriate redistributions in a responsible manner.

The paradoxical consequence of the rise of the free software movement is that
we now are forced to think much more about legal issues that we were used to.
Only the last half year the newly started MCnet EU-funded network has tried
to work out a common policy. We now have an agreement ”hot off the press”
(maybe still with some i’s to be dotted). This policy primarily would apply to
future versions, but if you were to apply them to the Pythia version then all
would be well. To a large part they just encode a commonsense behavior of
”treating the code of other people with the respect that you would like others
to treat your code”. For the rest we rely on GPL v. 2.
Torbjorn Sjostrand, e-mail conversation, June 14th, 2007

Quadpack QUADPACK is a numerics library for estimating integrals [RP83]. According to my
knowledge, there is no explicit statement about license issues on any QUADPACK website.
However, the package is included in the Gnu Scientific Library (GSL) [gsl07]. Therefore,
it is supposed to be published under GPL since GSL is under the GPL.

CERNLIB The CERN program library [cer07] is packaging several mathematical subroutines.
The whole package is published under the GPL license.

MAID L. Tiator kindly allowed us to publish his source code for the MAID 2003 and 2005
helicity amplitudes together with the GiBUU code.

Hallo Oliver,
ist in Ordnung, diesen Programmcode könnt ihr weitergeben. Die Unter-

schiede zu Maid2007 sind nicht sehr groß und spielen für eure Anwendung
wahrscheinlich keine Rolle.

Beste Grüße
Lothar
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Figure C.1: A usual work cycle using Subversion version control management.

Figure C.2: Handling a conflict using Subversion version control management.
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Oliver Buss wrote:
> Hallo Lothar
>
> Im Anhang findet sich zum einen Dein Originalfile für MAID 2005 (”formfac-
tors05.f”) und eine von uns adaptierte f90-Version (”helicityAmplitudes.f90”),
die MAID 2005 und 2003 beinhaltet. Um die adaptierte Version ”helicityAmpli-
tudes.f90” zu nutzen, muß man auch das Modul ”IdTable.f90” einbinden, welches
unsere Teilchen-Ids beinhaltet.
>
> Viele Grüße, Oliver
E-mail conversation with Lothar Tiator in April 2008

Fritiof The authors of Fritiof state:

Licensing provisions: none.
Hong Pi [Pi92, page 1]

Summarizing, all the imported code fragments are under the GPL license, or we are allowed
to publish them in a package which is under the GPL license. The copy-left principle of GPL
(cf. [gpl07] for details) implies, that any code, which includes GPL licensed fragments, must be
published under GPL, too. Therefore, the GiBUU code may not be published under any other
license than GPL as long as it includes GPL licensed fragments. Since a lot of GPL fragments
have been customized, it would be very difficult to single out the used packages and to link
them as external packages. So the only feasible way to publish the code is to publish
it under the GPL license.

For the future code development, it will be very important not to include any
proprietary software (e.g. Numerical Recipes (NR) or IMSL) in the project. This
would spoil the possibility to publish the code. And it would diminish all our effort which we
put in to clean the code from all the proprietary pieces (in particular the replacement of all
Numerical-Recipes routines by cernlib routines).

C.4 Documentation system

Document my code? Why do you think they call it ”code”?
unknown programmer

The above quote reflects a very common line of thinking. Often, documentation is considered
as too time consuming. However, for a long-term university project it is viable to document
properly the source code. First and foremost, a lot of different programmers use the same pieces
of code. And very often, the ”mother” or ”father” of a special module is no longer available
since he has already left the institute. Second, the programs are usually rather involved and,
therefore, hard to understand without proper guidance. Hence the GiBUU group agreed on
a minimal set of necessary documentation which should be provided to modules, subroutines,
functions, global variables and namelists. As a technical realization we decided for ROBODOC
[rob07], which enables us to generate a set of web pages out of documentation which is provided
within the source code. To generate and use the documentation, type make doku and make
showdoku in the workingCode directory.

As a guideline, the following piece of code demonstrates the proper usage of the
ROBODOC [rob07] keywords (e.g.: NAME, PURPOSE, INPUTS, NOTES, OUTPUT, SIDE
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EFFECTS) and the necessary information which should be provided to guarantee a meaningful
documentation. The syntax ”!****m*” starts the documentation of a module, ”!****s*” is for
subroutines, ”****f*” is for functions, ”!****n*” is for namelists and ”!****g*” for global mod-
ule variables. The construct following this start syntax is given by ”/moduleName” for module
documentations and by ”moduleName/componentName” for all other cases.

!***************************************************************************

!****m* /TemplateModule

! NAME

! module TemplateModule

!

! PURPOSE

! This module defines ...

!

! INPUTS

! The Namelist "TemplateModule_nl" in the Jobcard.

!

! NOTES

! In order to get best results from RoboDoc, you should respect the spelling

! of modules, subroutines, functions etc throughout all doku lines:

! usage of capital or small letters should be consistent all over the files!

!***************************************************************************

!***************************************************************************

!****n* TemplateModule/TemplateModule_nl

! NAME

! NAMELIST /TemplateModule_nl/

! PURPOSE

! This Namelist for module "TemplateModule" includes:

! * var1 -- The variable Nr1

! * var2 -- The variable Nr2

!***************************************************************************

module TemplateModule

PRIVATE

!*************************************************************************

!****g* TemplateModule/var1

! SOURCE

!

integer, save :: var1

! PURPOSE

! The variable Nr1

!

! This variable has the function ...

!*************************************************************************

PUBLIC :: Sub1, Fun1
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contains

!*************************************************************************

!****s* TemplateModule/Sub1

! NAME

! subroutine Sub1(par1,par2,par3)

!

! PURPOSE

! The first Subroutine.

!

! This Subroutine calculates ...

! ...

!

! INPUTS

! * integer :: par1 -- The parameter Nr1

! * real :: par2 -- The parameter Nr2

!

! OUTPUT

! * real :: par2 -- The parameter Nr2

! is modified according ...

! * integer :: par3 -- The parameter Nr3

!

! * The global parameter PARAMETERNAME is set to .TRUE.

!

!*************************************************************************

subroutine Sub1(par1,par2,par3)

integer, intent(in) :: par1 ! please do not place any explanation

real, intent(inout) :: par2 ! here. do it in the header

integer, intent(out) :: par3

! ...

end subroutine Sub1

!*************************************************************************

!****f* TemplateModule/Fun1

! NAME

! real function Fun1()

!

! PURPOSE

! The first Function

!

! This Function calculates ...

! ...

! INPUTS
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! (-- no input --)

!

! OUTPUT

! Returns the function value of "functionName"

!

! SIDE EFFECTS

! (-- no side effects --)

!

!*************************************************************************

real function Fun1()

end function Fun1

end module TemplateModule
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Appendix D

The cross section for elastic electron-nucleon
scattering

Overview: In this appendix several formulas for elastic electron-nucleon scattering
are derived.

We consider a process, where an electron is scattering off a nucleon and creating a two body
final state including a final state electron and a nucleon. Our notation for the eN → e′N ′ process
is chosen according to fig. 4.2: the incoming nucleon momentum is denoted p and the outgoing
nucleon momentum p ′, the incoming electron momentum is denoted l and the outgoing one l ′,
the photon momentum is denoted q. The initial and final nucleon masses are given by m and
m ′. According to Bjorken and Drell ([Bjo93], formula B.1), the cross section is given by 1

dσ =
2me2m

4
√

(lαpα)2 −m2
em

2

︸ ︷︷ ︸

≈0

me

|~l ′|
d~l ′

(2π)3
2m ′ dp

′4

(2π)4
2πδ(p ′2 −m ′2)

×|M|2 (2π)4δ4
(
r −

(
l ′ + p ′))

=
1

√

(lαpα)2
m2

e m m ′

2π2
dΩl ′ d|~l ′| |~l ′| δ((r − l ′)2 −m ′2) |M|2 (D.1)

with r = l + p being the total incoming 4-momentum.

D.1 Numerical realization

Let us consider an arbitrary momentum of the incoming nucleon. Starting with eq. D.1

dσ =
1

√

(lαpα)2
m2

e m m ′

2π2
dΩl ′ d|~l ′| |~l ′| δ((r − l ′)2 −m ′2) |M|2 ,

we represent in our numerical realization the δ function by a Breit-Wigner function of vanishing
width

δ((r − l ′)2 −m ′2) =
δ(
√

(r − l ′)2 −m ′)

2m ′ =
1

2m ′ lim
Γ→0

(

1

2π

Γ

(
√

(r − l ′)2 −m ′)2 + Γ2/4

)

.(D.2)

Thus we get

dσ

dΩl
′dl ′0

=
1

√

(lαpα)2
m2

e m

4π2
l ′0 lim

Γ→0

(

1

2π

Γ

(
√

(r − l ′)2 −m ′)2 + Γ2/4

)

|M|2 . (D.3)

1We used for the flux factor 1
4|ve−vn|l0p0

= 1

4
√

(lαpα)2−m2
e
m2

.

231



Appendix D The cross section for elastic electron-nucleon scattering

D.2 Including a broad spectral function

For the nucleon being a broad particle we must substitute

δ((r − l ′)2 −m ′2) → A(p ′2 −m ′2) (D.4)

in the above formulas and we get

dσ =
1

√

(lαpα)2
m2

e m m ′

2π2
dΩl ′ d|~l ′| |~l ′| A((r − l ′)2 −m ′2) |M|2 . (D.5)

D.3 Vacuum cross sections

In the following, we consider the vacuum case in which the masses are constant m = m′ = mN

and do not dependent on the momentum of the nucleon. Furthermore, let us consider the lab
frame where the initial nucleon is at rest, i.e. ~p = 0. In this frame we get

lαp
α = l0p0 = l0mN =

s−m2
N

2
⇒ l0 =

s−m2
N

2mN
(D.6)

with the Mandelstam s

s = (l + p)2 = (l0 +mN )2 − ~l ′
2

= l20 − ~l ′
2

︸ ︷︷ ︸

=l ′2=0

+m2
N + 2l0mN = m2

N + 2l0mN . (D.7)

And furthermore

dσ =
1

s−m2
N

2

m2
e m

2
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∣
∣
∣
∣
∣
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N

2
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(D.8)

with θl ′ = ∠(~r, ~l ′) = ∠(~l, ~l ′) . Finally, we get

dσ

dl0d cos θl ′
=

2π
s−m2

N

2

m2
e m

2
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2π2
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∣
∣
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∣
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∣
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∣
∣
∣
∣
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Hereafter, a transformation to invariant variables can be done using

dt

d cos θl ′
=

d
(

(l − l ′)2
)

d cos θl ′
=
d (−2ll ′)
d cos θl ′

=
d
(

−2|~l||~l ′|(1 − cos θl ′)
)

d cos θl ′

= −2|~l|
d
(

r2−m2
N

2(r0−|~r| cos θl ′ )
(1 − cos θl ′)

)

d cos θl ′

= −|~l|(r2 −m2
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−(r0 − |~r| cos θl ′) + (1 − cos θl ′)|~r|
(r0 − |~r| cos θl ′)2
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N
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|~r| − r0
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= 2|~l||~l ′| r0 − |~r|
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, (D.10)

such that the formula is given in invariant form by2

dσ

dt
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1
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=
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2See also [Ell08], i.e. lecture 6, page 11 (Attention: Not ”Bjorken & Drell” but ”Peskin” notation.)
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Appendix E

The resonance form factors: Fixing the form
factors using helicity amplitudes

Overview: This appendix makes the connection between resonance form-factors and
helicity amplitudes.

The resonance excitations play a dominant role in the spectrum of low-energy γ⋆N scatter-
ing. Applying a partial wave analysis to the world data on photon and electron scattering, e.g.,
the MAID group [Dre92, MAI] provides information about resonance properties. An impor-
tant result of such an analysis are the so-called helicity amplitudes, which can be used to fix
the resonance form factors [AR98, AR03, Lal06] defined in sec. 4.6.1. Note that the results by
Lalakulich et al. [Lal06] have been obtained in the lab-frame, whereas MAID defines its ampli-
tudes in the CM frame ([Alv06]). Henceforth, the results of L. Alvarez-Ruso [Alv05] obtained
in the CM-frame are the proper ones to be used and we summarize his findings in the following.

Let us assume that the photon momentum points in z-direction

qµ = (q0, 0, 0, qz) . (E.1)

The photon can have three different polarizations which all fulfill ǫµq
µ = 0:

ǫ±µ = ± 1√
2
(0, 1,±i, 0) transverse polarizations , (E.2)

ǫ0µ = 1√
Q2

(qz, 0, 0, q0) longitudinal polarization . (E.3)

The helicity amplitudes give the nucleon to resonance transition-probability dependent on the
specific polarization of the incoming photon and the spin orientations of nucleon and resonance.
The definition of the helicity amplitudes depends on spinor normalizations and may differ from
on work to another. In the following, we work with a definition which is consistent with the
MAID group (cf. especially [Tia04, eq. 16] using that ρ = qµJ

µ/q0 in their work [Dre92, eq. 5])

A1/2 =

√
2πα

kW

〈
R, Jz = 1/2|ǫ+µ Jµ|N,Jz = −1/2

〉
, (E.4)

A3/2 =

√
2πα

kW

〈
R, Jz = 3/2|ǫ+µ Jµ|N,Jz = 1/2

〉
, (E.5)

S1/2 = −
√

2πα

kW

〈
R, Jz = 1/2|ǫ0µJµ|N,Jz = 1/2

〉 |~q|
√

Q2
, (E.6)

where kW = (W 2 −M2)/(2W ) and W denotes the CM energy.
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E.1 Spin 1/2

E.1.1 Positive parity

A1/2 =

√

2πα

MN

(MR −MN )2 +Q2

M2
R −M2

N

[
Q2

4M2
N

F p,n
1 +

MR +MN

2MN
F p,n

2

]

(E.7)
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E.1.2 Negative parity
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E.2 Spin 3/2

E.2.1 Positive parity
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E.2 Spin 3/2

E.2.2 Negative parity
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Appendix F

Virtual photon cross sections for pion
production

Overview: This appendix makes the connection between virtual-photon
cross-section for pion production and the underlying hadron tensor.

In the literature, e.g. [Dre92], the cross section for electron-induced pion production is often
defined in terms of the so called virtual photon cross sections which has already been addressed
in sec. 4.3. These virtual photon cross sections are widely used for pion production, so we shortly
introduce the notation and show how this notation is connected to the underlying hadron tensor
Hπ as defined in sec. 4.5.2.

Our notation for single-pion production is chosen according to fig. 4.4: the nucleon momenta
are denoted p and p ′, the photon momentum by q, the pion momentum k and the masses of the
in- and outgoing nucleons m and m ′. The electron mass is denoted me, the in- and outgoing
lepton momenta are denoted l and l ′.

In the lab-frame, the total cross section is parametrized by

dσπ

dl ′0dΩl ′dΩk

= Γ
dσπ

v

dΩk

where

Γ =
α

2π2

l ′0

l0
kγ

Q2

1

1 − ǫ

is the flux of the virtual photon field. The variable

kγ = (W 2 −m2)/(2m)

denotes the laboratory energy which is necessary to excite a hadronic system with CM-energy
W and

ǫ =

(

1 + 2~q2/Q2 tan2

(
θk

2

))−1

is called the degree of transverse polarization. Furthermore

dσπ
v
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dσπ
v
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+
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)
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with h denoting the electron polarization. Note that in the case of non-polarized electrons h = 0.
The various cross sections in the equation above are now related to the hadronic tensor by

dσπ
T

dΩCM
k

= c ((Hπ)xx + (Hπ)yy) /2 , (F.1)

dσπ
L

dΩCM
k

= c (Hπ)zz , (F.2)

dσπ
LT

dΩCM
k

= −c 1

cos(φk)
Re((Hπ)xz) , (F.3)

dσπ
TT

dΩCM
k

= c
1

cos(2φk)
((Hπ)xx − (Hπ)yy) /2 , (F.4)

dσπ
TL′

dΩCM
k

= c
1

sin(φk)
Im((Hπ)yz) , (F.5)

dσπ
TT ′

dΩCM
k

= c Im((Hπ)xy) (F.6)

with

c =
|~k|

m
W kγ

( m

4πW

)2
.

It is important to remember that equations F.1-F.6 are all defined in the CM-frame of the
hadronic vertex, i.e. the πN rest-frame.
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G.1 Boosting a cross section

In the following we derive how to transform a cross section under Lorentz boosts. This is done
using vacuum kinematics neglecting potentials, since the effect of this boost is anyhow small
and because we only need this boost for the γN → Nππ background cross section, where we
anyhow assume that the whole cross section is not modified by the medium.

Let us consider particles A and B colliding. The cross section σ is usually defined in a frame
where particle A or B is resting. Since σ is invariant against boosts parallel to the motion of the
particles, the cross section must be the same in both rest frames and the same as in any frame
where the particles have co-linear (i.e. parallel or anti-parallel) momenta. The cross section is
defined as

σ =
dN
dt

Φ
, (G.1)

where N is the number of events, t the time and Φ the flux. In a frame where A is the target
and at rest we get

Φ = ρBvrel = ρBvB = ρB |~vB | = ρB

∣
∣
∣
∣

~pB

EB

∣
∣
∣
∣
. (G.2)

which yields

dN = σdtρB

∣
∣
∣
∣

~pB

EB

∣
∣
∣
∣
. (G.3)

Let us now consider an arbitrary frame F ′ where particles A and B have no co-linear momenta.
Since the number of events is a Lorentz invariant, we get for the cross section σ′ in that frame

σ′ =
dN
dt′

Φ′ . (G.4)

The flux is given by

Φ′ = ρ′Bv
′
rel , (G.5)

where the relative velocity in frame F ′ is given by

v′rel =
∣
∣~vA

′ − ~vB
′∣∣ =

∣
∣
∣
∣

~pA
′

E′
A

− ~pB
′

E′
B

∣
∣
∣
∣
. (G.6)
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So we get

σ′ =

σdtρB

˛

˛

˛

~pB
EB

˛

˛

˛

dt′

Φ′ (G.7)

= σ
1

γ

ρB

∣
∣
∣

~pB

EB

∣
∣
∣

ρ′B

∣
∣
∣
~pA

′

E′
A
− ~pB

′

E′
B

∣
∣
∣

. (G.8)

Furthermore, we use that ρ/E is a Lorentz-invariant and the boost factor to the rest-frame of
particle A is given by γ = E′

A/mA. Finally, we obtain

σ′ = σ
mA

E′
A

|~pB|
∣
∣
∣
~pA

′E′
B

E′
A

− ~pB
′
∣
∣
∣

(G.9)

= σ
mA |~pB|

∣
∣~pA

′E′
B −E′

A~pB
′
∣
∣
. (G.10)

G.2 Electron and photon kinematics

G.2.1 Ef , θf ↔ Q2, W

The following relations are useful to relate electron kinematics to the so-called momentum trans-
fer Q2 and the center-of-mass energy at the hadronic vertex W . Assuming a resting nucleon
target with mass mN and four-momentum

p = (mN ,~0) ,

and initial and final electrons with momenta

li = (Ei, 0, 0, Ei)
t ,

lf = (Ef , Ef sin(θf ), 0, Ef cos(θf ))t ,

the photon momentum is given by

q = (Ei − Ef ,−Ef sin(θf ), 0, Ei − Ef cos(θf ))t . (G.11)

Thus the square of the center of mass energy at the hadronic vertex is given by

W 2 = (q + p)2 = q2 + p2 + 2qp = −Q2 +m2
N + 2mN (Ei − Ef ) . (G.12)

Here we introduced the momentum transfer Q2 = −q2, which is in terms of Ef and cos(θf )
given by

Q2 = −q2 = −(Ei − Ef )2 + E2
f sin2(θf ) + (Ei −Ef cos(θf ))2

= 2EiEf (1 − cos(θf )) . (G.13)

Combining eq. G.12 and G.13 one gets the relations which connect the set of variables (Q2,W )
to the set (θf , Ef )

Q2 = 2EiEf (1 − cos(θf )) , (G.14)

W 2 = −2EiEf (1 − cos(θf )) +m2
N + 2mN (Ei − Ef ) (G.15)

242



G
.2

G.2 Electron and photon kinematics

and

Ef =
1

2mN

(
−W 2 −Q2 +m2

N + 2mNEi

)
, (G.16)

cos(θf ) = 1 − Q2

2EiEf
= 1 − Q2 2mN

2Ei

(
−W 2 −Q2 +m2

N + 2mNEi

) . (G.17)

Transformation matrix

Finally, we want to evaluate the Jacobian J for the transformation

d cos(θf )dEf = |J |dQ2dW . (G.18)

Therefore, we evaluate

d cos(θf )

dQ2
= − 2mN

2Ei

(
−W 2 −Q2 +m2

N + 2mNEi

) − Q2 2mN

2Ei

(
−W 2 −Q2 +m2

N + 2mNEi

)2 ,

d cos(θf )

dW
= − Q2 2mN 2W

2Ei

(
−W 2 −Q2 +m2

N + 2mNEi

)2 ,

dEf

dQ2
= − 1

2mN
,

dEf

dW
= − 2W

2mN
,

which gives

|J | =

∣
∣
∣
∣
∣

(
d cos(θf )

dQ2

d cos(θf )
dW

dEf

dQ2

dEf

dW

)∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

2W

2Ei

(
−W 2 −Q2 +m2

N + 2mNEi

) +
Q2 2W

2Ei

(
−W 2 −Q2 +m2

N + 2mNEi

)2

− Q2 2W

2Ei

(
−W 2 −Q2 +m2

N + 2mNEi

)2

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

W

Ei

(
−W 2 −Q2 +m2

N + 2mNEi

)

∣
∣
∣
∣
∣
. (G.19)

G.2.2 Q2 at the quasi-elastic peak

This section is devoted to the kinematics of quasi-elastic electron-nucleon scattering in vacuum.
For a nucleon at rest we get by setting W = mN in eq. G.16 that the final electron energy is
determined by

Ef =
1

2mN

(
−Q2 + 2mNEi

)
. (G.20)

Hence the Q2 for this reaction is in the nucleon rest-frame given by

Q2
QE = 2mN (Ei − Ef ) = 2mnq0 . (G.21)
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Now let us consider a nucleon moving with arbitrary momentum p. Boosting to its rest frame
F we get the boosted photon energy

qF
0 =

q0 − ~p
p0
~q

√

1 −
(

~p
p0

)2
. (G.22)

Given this rest-frame photon energy, we can apply eq. G.21 which gives

Q2
QE = 2mNq

F
0 = 2mN

q0 − ~p
p0
~q

√

1 −
(

~p
p0

)2
(G.23)

= 2 (p0q0 − ~p~q) = 2pq . (G.24)

So the general result, which is valid in any frame, is given by

Q2
QE = 2pq . (G.25)

An alternative derivation starts from p′ = q+p where p′ is the final nucleon momentum. Squaring
this identity we get

p′2 = (q + p)2 = −Q2
QE + 2pq + p2 (G.26)

⇔ Q2
QE = 2pq + p2 − p′2 = 2pq +m2

N −m2
N = 2pq . (G.27)

Average photon energy and possible Q2 range for a Fermi gas

Let us study the implications of eq. G.25 for the scattering of electrons off a nucleon Fermi gas,
where potentials are neglected.

Let us consider the scenario that we have a fixed electron beam energy Ei and a fixed electron
scattering angle θf . Using Q2 = ~q 2 − q20 = 2qp and our choice for ~q given in eq. G.11 we get

q0QE =
pxEi sin θf − pzEi(1 − cos θf ) − E2

i (1 − cosθf )

px sin θf + pz cos θf − Ei(1 − cos θf ) − p0
. (G.28)

The mean value of all possible photon energies, which generate a QE-event in the gas is then
given by

〈q0QE〉 =

∫

pf
d3p q0QE
∫

pf
d3p

(G.29)

and plotted in fig. G.1 as a function of the Fermi momentum. For a Fermi momentum of
pf = 0.2 GeV representing approximately nuclear matter density, this gives < q0 >≈ 70.2 MeV.
We emphasize that this value shows only a 1.4% deviation from the result for a nucleon at rest,
where the photon energy is given by 71.3 MeV. For pf = 0.25 GeV the average is shifted to
69.6 MeV, which is also only a 2.4% shift.

The maximum and minimum Q2
QE, which can be absorbed by a Fermi gas, are determined by

those cases where ~q~p = ±|~q||~p|:

Q2
QE(min) = 2

(√

p2
f +m2

nq0 + |~q|pf

)

, (G.30)

Q2
QE(max) = 2

(√

p2
f +m2

nq0 − |~q|pf

)

. (G.31)
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Figure G.1: The average photon energy 〈q0QE〉 at the QE-peak within a Fermi gas of nucleons
having Fermi momentum pf . The initial electron energy is fixed to 700 MeV and the scattering
angle is given by 32◦.

Again, let us keep the electron beam energy Ei and the electron scattering angle θf constant.
Using eq. G.13, one gets the following equations for the final electron energy Ef at the minimal
and maximal Q2

QE

2EiEf (max)(1 − cos θ) = 2
(√

p2
f +m2

n(Ei − Ef (max))

+
√

E2
i + Ef (max)2 − 2EiEf (max) cos θpf

)

, (G.32)

2EiEf (min)(1 − cos θ) = 2
(√

p2
f +m2

n(Ei − Ef (min))

−
√

E2
i + Ef (min)2 − 2EiEf (min) cos θpf

)

. (G.33)

As an example, let us again consider a beam energy of Ei = 700 MeV, a scattering angle of
32◦ and a Fermi momentum of pf = 0.2 GeV. Solving eq. G.32-G.33, we get for this scenario

560 MeV . Ef . 700 MeV ,

which gives the following range of allowed Q2’s:

0.119 GeV2 . Q2 . 0.149 GeV2 . (G.34)

So the maximal spread within Q2 is 20% which is quite considerable. We conclude that a Fermi
sphere of nucleons can absorb photons having different Q2 and we have shown with the preceding
example that the allowed Q2 range can become large compared to the mean Q2.
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Deutsche Zusammenfassung

Einleitung und Motivation

Im letzten Jahrhundert änderte sich unser Bild der Materie drastisch aufgrund mehrerer revolu-
tionärer Erkenntnisgewinne. Am Anfang des 20. Jahrhunderts glaubte man, dass Atome, welche
die fundamentalen Bausteine der Festkörperphysik, Chemie und Biologie darstellen, aus einer
homogenen Masse positiv geladener Teilchen mit darin eingebetteten Elektronen bestünden und
ungefähr 10−10m Durchmesser hätten. Dieses von Thomson 1903 vorgeschlagene Modell wur-
de auch als Rosinenkuchenmodell bekannt. Danach erfolgte im Jahr 1911 die Entdeckung des
Atomkerns mittels der grundlegenden Experimente von E. Rutherford. Dadurch realisierten die
Physiker zum ersten Mal, dass ein Stück Materie zu großen Teilen genauso leer ist wie das uns
umgebende Weltall, denn der Atomkern besitzt lediglich eine Größe von 10−15m.

Basierend auf innovativen Detektionsmethoden wie zum Beispiel der Blasenkammer kam es
zur Entdeckung des Neutrons durch J. Chadwick (1932). Das Muon (1937 durch C.D. Ander-
son) und auch das Pion (1947 durch C.F. Powell) wurden danach in der kosmischen Strahlung
nachgewiesen. Neuartige auf Beschleunigern basierende Experimente führten schließlich zur Ent-
deckung eines ganzen Zoos von Teilchen, welche wiederum als zusammengesetzte Objekte von
sogenannten Quarks verstanden und kategorisiert werden konnten. Mesonen sind die leichtesten
jener Objekte und bestehen aus einem Quark und einem Antiquark, wohingegen die schwereren
Baryonen – darunter fallen zum Beispiel das Proton und das Neutron– aus drei Quarks zusam-
mengesetzt sind. Diese Quarks wurden zuerst in hochenergetischer Elektronen-Proton-Streuung
aufgelöst, wobei auch deren Multiplizität aus den Formfaktoren extrahieren konnte.

Heutzutage kennt man drei verschiedene elementare Bauteile der Materie. Zum einen sind es
die Quarks, die allerdings fest in den Hadronen gebunden sind und nicht isoliert werden können.
Die Leptonen, darunter fallen zum Beispiel das Elektron und das Neutrino, koppeln nicht an die
starke Wechselwirkung, welche die Quarks bindet, und interagieren nur elektromagnetisch oder
mittels der schwachen Kraft. Die Wechselwirkungen werden von Eichbosonen übertragen: die
Starke durch Gluonen, die Schwache durch den Austausch von W±- und Z0-Bosonen und die
elektromagnetische Wechselwirkung durch das Photon.

Das Standardmodell der Teilchenphysik erklärt alle bisher durchgeführten Messungen, um es
mit den Worten des Nobelpreisträgers F. Wilczek zu sagen:

”
At present, the standard model of

particle physics stands triumphant“ [Wil07]. Allerdings gibt es einige bisher ungelöste Proble-
me. Zum einen führten astrophysikalische Observationen zu den Schlussfolgerungen, dass nur
ungefähr 4% der Energiedichte des Universums durch baryonische Materie gegeben ist und der
Rest durch eine bisher unbekannte Materie- bzw. Energieform: dunkle Energie (≈ 76%) und
dunkle Materie (≈ 20%) [Yao06]. Neben diesem Hauptproblem des Standardmodells, gibt es
auch größere Unbekannte in dem baryonischen Sektor des Standardmodells.

Die starke Wechselwirkung der Quarks – den Bauteilen der Baryonen– wird im Standard-
modell mittels der Theorie der Quantum-Chromo-Dynamik (QCD) beschrieben. Während die
daraus resultierende Wechselwirkung für hohe Impulsüberträge schwach ist, wird sie sehr stark
für kleine Impulsüberträge, so dass traditionelle Störungstheorie nicht zu einer erfolgreichen
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Beschreibung verwendet werden kann. In den letzten Jahrzehnten eröffnete die ständige Ver-
besserung der Computerhardware eine Möglichkeit, jenes Regime der starken Wechselwirkung
mittels der sogenannten Gitter-QCD (lattice QCD=LQCD), welche QCD-Erwartungswerte auf
einem Raum-Zeit-Gitter auswertet, zu erforschen. Ein weiterer Zugang zum Regime der starken
Wechselwirkung stellt Chirale Störungstheorie (χPT) dar, die für Niederimpulsprozesse ange-
wendet werden kann. Zum Beispiel werden die Herkunft der Hadronmassen und der Ursprung
der Nukleon-Nukleon-Wechselwirkung zur Zeit mittels dieser beiden Methoden untersucht1.

Eine weitere wichtige Forschungsrichtung untersucht das QCD Phasendiagramm, welches in
Abb. 1.1 auf Seite 2 dargestellt ist. Bei hohen Temperaturen erwartet man einen Phasenübergang
von der hadronische Phase, in welcher die Quarks in Hadronen gebunden sind, zu einer Pha-
se in welcher die Quarks sich frei in einem sogenannten Quark-Gluon-Plasma (QGP) bewe-
gen können. Zur Erforschung jenes Phasenübergang bringt man zum Beispiel mit dem RHIC-
Beschleuniger [RHI08] oder den zukünftigen LHC [LHC08] und FAIR [FAI08] Beschleunigeranla-
gen hochenergetische Schwerionen zur Kollision, um dadurch ein solch heißes und dichtes System
aus hadronischer Materie zu erzeugen, welches schließlich in ein QGP übergeht. Allerdings er-
schwert die komplizierte zeitliche Entwicklung der Einteilchen-Phasenraumdichte die Trennung
verschiedener Phänomene, wodurch der experimentelle Nachweis des QGP immer noch in der
Diskussion steht. Neben dem Phasenübergang von gebundenen zu freien Quarks erwartet man
in einem heißen und/oder dichten Medium auch die Wiederherstellung der Chiralen Symmetrie.
Diese Symmetrie ist im Vakuum zum einen explizit durch die endlichen Quarkmassen verletzt,
und wird zum anderen auch spontan aufgrund des nicht verschwindenden Erwartungswertes
des q̄q Operators (dem sogenannten 〈q̄q〉-Kondensat) gebrochen. Der Wert des 〈q̄q〉-Kondensats
stellt einen Ordnungsparameter der spontanen Symmetriebrechung dar und man erwartet, dass
er bereits bei normalen Kernmateriedichte um circa 30% abgesenkt wird [Dru90, Coh92, Bro96].
Darum sollte man bereits in normalen Kernreaktionen Signale einer Symmetriewiederherstel-
lung beobachten können – dafür sollten speziell auch photoninduzierte Reaktionen aufgrund
zweier Hauptargumente bestens geeignet sein. Erstens bleibt die Kernkonfiguration während
der Reaktion nahe am Grundzustand, so dass die Reaktion unter wohldefinierten Bedingungen
stattfindet. Zweitens dringt das Photon tief in den Kern ein, wodurch die effektive Dichte, bei
der die Reaktion stattfindet, relativ groß wird.

Besonders die Modifikation des σ-Mesons (auch bekannt als f0(600)-Meson) in Kernmaterie
wurde als eine Signal einer solchen partiellen Symmetriewiederherstellung vorgeschlagen. Theo-
retische Modelle sagen basierend auf jenem Effekt eine Verschiebung seiner spektralen Stärke
zu niedrigeren Massen und eine schmälere Breite der Spektralfunktion voraus [Ber87, Hat99].
Das σ-Meson ist ein sehr kurzlebiger Zustand mit einer Breite von 600 − 1000 MeV [Yao06],
der primär in eine ππ S-Welle zerfällt. Darum bestand das experimentelle Bestreben darin, Mo-
difikationen jenes Zustand in ππ Produktionsreaktionen in endlicher Kernmaterie nahe an der
kinematischen Schwelle nachzuweisen. Solche Experimente wurden mit Pionen im Eingangskanal
von der CHAOS Kollaboration [Bon96, Bon00] und mit Photonen von der TAPS Kollaborati-
on [Mes02, Blo07] durchgeführt. Beide Experimente zeigten für schwere Kerne eine Anreicherung
spektraler Stärke nahe der ππ-Schwelle im Zerfallskanal des σ-Mesons. Eine mögliche Interpre-
tation dieses Effekts stellt die Modifikation dieser Resonanz im Medium aufgrund der partiellen
Symmetriewiederherstellung dar, aber auch konventionelle Endzustandswechselwirkungen (final
state interactions = FSI) müssen vorsichtig berücksichtigt werden. Generell spielen FSI eine
große Rolle in Kernreaktionen. Teilchen, die in Kernen produziert werden (z.B. mittels einer
γA → πA′ Reaktion), durchdringen das nukleare Medium bevor sie möglicherweise im De-

1Details dazu finden sich zum Beispiel in dem aktuellen Übersichtsartikel von W. Weise [Wei08b].
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tektor beobachtet werden. Aufgrund der großen Interaktionsraten mit dem Medium kommt es
zu Störungen der Teilchentrajektorien, Ladungsaustauschreaktionen und Teilchenabsorption, so
dass das beobachtete Spektrum verglichen zum ursprünglichen Spektrum ohne FSI stark verzerrt
werden kann.

Mit den exakten QCD-Näherungen LQCD und χPT ist es momentan nicht möglich kom-
plexe Vielteilchenreaktionen wie z.B. ππ-Produktion in Kernen zu untersuchen. Diese Tatsache
eröffnet eine Spielwiese für Modellbauer. Generell muss man zwischen Prozessen mit einer sim-
plen Zeitentwicklung der Phasenraumverteilung (z.B. γA-Reaktionen bei niedrigen Energien)
und Prozessen mit einer sich zeitlich schnell entwickelnden Phasenraumverteilung unterscheiden
(z.B. Schwerionenkollisionen). Die erste Reaktionsklasse können auch mit komplett quanten-
mechanische Methoden angenähert werden (z.B.

”
distorted-wave“(DWIA) oder

”
plain-wave“-

Impulsnäherung (PWIA)) , obwohl jene Modelle oft keine gekoppelten Kanäle berücksichtigen
können. Speziell die oft verwendeten DWIA- und PWIA-Methoden berücksichtigen keine gekop-
pelten Kanäle aufgrund der komplexen Implementierung.

Als Beispiel für eine Reaktion innerhalb der zweiten Reaktionsklasse zeigt Abb. 1.2 (Sei-
te 4) den Plot einer typischen Zeitentwicklung einer fast zentralen, hoch-energetischen (40 A
GeV) Kalzium-Kalzium-Kollision. Neben der Produktion von vielen neuen Teilchen kommt es
dabei auch zum Aufbruch beider Atomkerne. Für solche Reaktionen mit sich rapide ändernden
Phasenraumverteilungen weit entfernt vom thermodynamischen Gleichgewicht wird die allge-
meinste Beschreibung im Rahmen der Quantenfeldtheorie durch die sogenannte Kadanoff-Baym-
Gleichung [Kad94] gegeben. Diese Gleichung vereinfacht sich unter gewissen Annahmen (spe-
ziell: kleine, langsam variierende Störungen und Born-Näherung für die Selbstenergien) zur
sogenannten Boltzmann-Uehling-Uhlenbeck(BUU)-Gleichung. [Kad94, speziell Kapitel 9.2]. Die
BUU-Gleichung ist semiklassischer Natur und beschreibt die Zeitentwicklung der sogenannten
Wigner-Transformierten [Wig32], welche eine generalisierte Phasenraumdichte darstellt. Mit-
tels der Simulation der BUU-Gleichung erhält man somit ein komplettes Bild der Raum-Zeit-
Entwicklung der Phasenraumverteilung aller an der Reaktion beteiligten Teilchenarten. Die ers-
ten BUU-Modelle zur Simulation von Schwerionenkollisionen wurden in den Anfängen der 1980er
entwickelt [Ber84, Ber88]. Parallel dazu haben sich auch Quantum-Molekular-Dynamik(QMD)-
Modelle etabliert, welche die Teilchen basierend auf Zwei- und Dreiteilchenkräften propagieren,
anstatt mittlere Felder wie in BUU einzuführen. Heutzutage entwickeln, bzw. verbessern, etli-
che rege Gruppen anerkannte und hochkomplexe Transportmodelle. Einige der prominenteren
Modelle sind zum Beispiel Dubna/Moscow INC [Ili97], HSD [Cas99, HSD08], LAQGSM [Mas05],
MCMC/MCEF [Dep02], RELDIS [Psh05], RQMD [Fuc96, Gai05] und URQMD [Bas98, URQ08].
Die Modelle unterscheiden sich in den enthaltenen Reaktionsmechanismen, in der Vielfältigkeit
der enthaltenen Teilchenspezien und vor allem auch in der numerische Realisation.

Im Jahr 1986 begann die Gießener Theoriegruppe mit der Entwicklung des ersten BUU-
Modells. Basierend auf einer Neufassung des originalen Bertsch-Codes [Ber88], wurde die Ra-
te für Photonproduktion in Schwerionenkollisionen vorhergesagt [Bau86, Bau89]. Ursprünglich
wurde der Code zwar zur Beschreibung von Schwerionenkollisionen konzipiert [Cas90, Tei96,
Hom98, Lar05], aber dann wurde er im letzten Jahrzehnt auch zu einem kompetitiven Mo-
dell zur Beschreibung von elektron- und photoninduzierten Reaktionen weiterentwickelt [Eff99a,
Leh03, Fal04a, Gal05, Mü07]. In der Beschreibung solcher Reaktionen muss sich ein solches Mo-
dell der Konkurrenz von DWIA- und PWIA-Modellen stellen, wobei es den Vorteil bietet, die
gekoppelten Kanaleffekte der FSI vollständig simulieren zu können. Während der Weiterentwick-
lung des Transportmodells wurde ein universales Anwendungsgebiet als Hauptziel ausgegeben
und die Tatsache, dass es sowohl für hoch-energetische Reaktionen (z.B. [Lar05, Fal04c, Gal05])
also auch für nieder-energetische Reaktionen (z.B. [Eng94, Mü04a]) geeignet war, machte es
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zu einem hervorragenden Modell. Unglücklicherweise wurde die schnelle Entwicklung des Mo-
dells nicht von einer Änderung der Code-Infrastruktur begleitet. Dadurch existierten im Jahr
2004 mehrere parallele Zweige des Quellcodes und die Quellcodestruktur war sehr verwinkelt
geworden, was eine weiterführende Entwicklung erschwerte. Als Konsequenz dieser Entwicklung
haben wir 2004 das GiBUU-Projekt ins Leben gerufen, um den Code umzustrukturieren und um
den Quellcode in einer Multi-User-Umgebung weiterentwickeln zu können. Unabdingbar waren
dabei die Einführung einer Versionskontrolle, welche einen einheitlichen Hauptzweig des Quell-
codes garantiert, und eine vernünftige Dokumentation, sowie Kompatibilität mit den wichtigsten
Compilern.

Ergebnisse

Diese Doktorarbeit ist der Studie von Kernreaktionen mittels eines Transportzugangs gewidmet,
wobei wir im Speziellen Kernreaktionen untersuchten, die von elementaren Teilchen induziert
wurden. Im ersten Teil dieser Arbeit wird das Gießen-Boltzmann-Uehling-Uhlenbeck(GiBUU)-
Transportmodell erläutert, wobei der Fokus auf den Modellannahmen und -parametern sowie
dessen numerischer Implementation beruht. Der zweite Teil der Arbeit befasst sich mit dem
Hauptthema, nämlich der Beschreibung von pion-, photon- und elektroninduzierten Kernreak-
tionen. Die Resultate dafür wurden mittels GiBUU-Simulationen gewonnen und mit existieren-
den experimentellen Daten verglichen, bzw. es wurden Vorhersagen für zukünftige Experimente
getätigt.

In Kapitel 2 werden die numerischen Methoden zur Lösung der Boltzmann-Uehling-
Uhlenbeck(BUU)-Gleichung detailliert dargelegt. Dabei führen wir den sogenannten Testteil-
chenansatz ein, schreiben die BUU-Gleichung in die Testteilchenrepräsentation um und leiten
den Zeitentwicklunsalgorithmus her. Im Zuge dieser Herleitung wird das wichtigste Näherungs-
schema, der sogenannte Parallelensemble-Algorithmus, eingeführt und mit den exakteren Voll-
ensemble- und Lokalensemble-Algorithmen verglichen.

Während Kapitel 2 eine eher generelle Einführung zur BUU-Gleichung und deren numeri-
scher Lösung gibt, spezialisiert sich das darauf folgende Kapitel 3 auf die Anwendung der
BUU-Gleichung auf die Beschreibung von hadronischem Materietransport. Dort wird der Le-
ser in das GiBUU Modell eingeführt, wobei speziell dessen Freiheitsgrade und die enthaltenen
Wechselwirkungsmechanismen detailliert dargestellt werden. Das GiBUU-Modell stellt eine ver-
besserte Version desjenigen BUU-Modells dar, welches von der Gießener Transportgruppe seit
über 20 Jahren entwickelt wurde [Bau86, Cas90, Eng94, Hom98, Tei96, Eff99a, Lar05, Leh03,
Fal04a, Gal05, Mü07]. Eine der Hauptverbesserungen stellt eine konsistentere Behandlung der
Selbstenergien der Baryonen dar. Die Imaginärteile der Selbstenergie werden als Funktion von
Energie, Impuls und Dichte aus dem zugrunde liegenden Kollisionsterm abgeleitet. Danach wird
eine Dispersionsrelation verwendet, um den Realteil aus dem Imaginärteil zu gewinnen, was
zu analytischen Selbstenergien führt. Dadurch wird die Normalisierung der Spektralfunktionen
garantiert, was in früheren Behandlungen nicht der Fall war. Die Verbesserung des Resonanz-
modells führte zusammen mit neu adjustierten Hintergrundtermen auch zu einer verbesserten
Beschreibung der elementaren Querschnitte, welche als Input für die BUU-Gleichung dienen.
Eine zweite wichtigere Verbesserung betrifft den Übergang von niedrigen zu hohen Energien im
Kollisionsterm. Dabei wurde die Hochenergieregion, welche im Modell mittels Pythia [pyt07]
beschrieben wird, an die Niederenergieregion, wo die Querschnitte auf dem Resonanzmodell ba-
sieren, mittels einem Verfahren angeglichen, bei dem in einer Übergangsregion die resultierenden
Events beider Modelle gemischt werden.
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Eine wichtige Verbesserung der numerischen Realisierung konnte durch die Einführung des
Lokalensemble-Algorithmus [Lan93] erzielt werden, wodurch die Resultate in dieser Arbeit nicht
mehr auf der Parallelensemble-Näherung basieren. Der Quellcode wurde restrukturiert und ein
sehr großer Teil des Quellcodes in FORTRAN 2003 neu geschrieben (die Vorgängerversion ba-
sierte auf FORTRAN 77). Dadurch erzielten wir eine Modularisierung des Quellcodes, was die
Weiterentwicklung und eventuelle Fehlersuchen vereinfacht. Im Zuge dieser Entwicklung haben
wir eine auf Subversion [CS04] basierende Code-Management-Struktur eingeführt, wodurch jetzt
die komplette Gießener Transportgruppe2 parallel am Quellcode arbeiten kann. Dies hat unse-
re Entwicklungsgeschwindigkeit positiv beeinflusst und vor allem auch die Zuverlässigkeit des
Quellcodes. Im April 2008 erreichten wir dann einen wichtigen Meilenstein, indem wir die erste
Releaseversion des Quellcodes unter GPL-Lizenz [gpl07] auf unserer Website [GiB08b] publizier-
ten.

In Kapitel 4 wird unser Modell zur Interaktion von Elektronen und Photonen mit Nukleonen
detailliert dargelegt. Auf der Ein-Photon-Austausch-Näherung basierend, welche den Elektron-
Nukleon-Streuprozess durch die Interaktion eines einzelnen virtuellen Photons mit dem Nu-
kleon annähert, wird die Elektron-Nukleon- und die Photon-Nukleon-Interaktion in einem ein-
heitlichen Verfahren behandelt. Der quasielastische Prozess (γ⋆N → N ′) wird mit Hilfe mo-
derner Formfaktoren [Bra06] beschrieben. Zusätzlich werden auch der 1-π-Produktionsprozess
(γ⋆N → N ′π) und Resonanzproduktionsmechanismen (γ⋆N → R) implementiert, wobei wir die
Helizitätsamplituden und invarianten Amplituden der MAID-Analyse [MAI] verwenden. Für
Prozesse, die von reellen Photonen (d.h. Q2 = 0) induziert werden, haben wir zusätzlich einen
ππ-Produktionshintergrund eingeführt. Da die Resonanzproduktion zu π- und ππ-Produktion
führt, gibt es für beide Prozesse einen resonanten und nicht-resonanten Querschnitt. Den letz-
teren betrachten wir als Hintergrundterm, welcher auch alle Interferenzen zwischen Resonanzen
und zwischen Resonanzen und Hintergrund beinhaltet. Im Kapitel 4 werden detaillierte Formeln
für den hadronischen Tensor angegeben und unsere elementaren Querschnitte werden mit Daten
verglichen. Dabei ergibt sich exzellente Übereinstimmung. Für reelle Photonen ist unser Input in
einem Schwerpunktsenergiebereich von mN < W < 2 GeV sehr zuverlässig; für Elektronenstreu-
ung ist der Input sehr gut bis zur 2π-Schwelle, darüber ist ein Resonanzanteil zur ππ-Produktion
berücksichtigt, aber ein ππ-Hintergrundterm fehlt. Das Modell kann für alle Virtualitäten des
Photons bis zu Q2 = 5 GeV verwendet werden.

In Kapitel 5 adressieren wir die Beschreibung der Interaktion von Elektronen und Photonen
mit Nukleonen, welche in einem nuklearen Medium eingebettet sind. Im Medium kommt es
zu Modifikationen der Dispersionrelationen aufgrund der hadronischen Potentiale. Wir berück-
sichtigen darum jene Potentiale bei der Berechnung der hadronischen Tensoren und berechnen
die Wirkungsquerschnitte unter Berücksichtigung der vollen In-Medium-Kinematik. Wir nehmen
allerdings an, dass sich die Formfaktoren im Medium nicht ändern. Am Ende dieses Kapitels wird
eine Formel für den Elektron-Kern-Wirkungsquerschnitt hergeleitet und die Implementation in
das GiBUU-Transportmodell erläutert.

Kapitel 6 widmet sich der Pion-Kern-Interaktion. Die Wechselwirkung von Nukleonen und
Pionen ist ein wichtiger Eckpfeiler eines jeden hadronischen Transportansatzes, da diese beiden
Teilchenspezien in Reaktionen die höchsten Dichten erreichen und deshalb auch sehr wichtig für
die gekoppelten-Kanal-Effekte sind. Auch für unser Hauptziel, nämlich der Beschreibung der
elektron- und photoninduzierten Pionproduktion, ist es unabdingbar die Pioninteraktion mit
dem Medium unter Kontrolle zu haben. Wir evaluieren die Pion-Nukleon-Interaktion in unse-
rem Modell durch die Simulation von Wirkungsquerschnitten zur Pionabsorption, Pionreaktion

2Eine Liste mit allen ehemaligen und derzeitigen Projektmitgliedern findet sich auf unserer Website [GiB08b].
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und zum Pion-Doppel-Ladungsaustausch (pion double charge exchange (DCX)) in der kineti-
schen Energieregion von 10 − 200 MeV. Wir erreichen für Pionabsorption und Pionreaktion
gute Übereinstimmung mit den Daten. Allerdings zeigen wir auch, dass die Beschreibung von
Pionen mit extrem langen Wellenlängen (Ekin < 30 MeV) in einem semiklassischen Transport-
modell problematisch ist. Das Transportmodell beschreibt auch erfolgreich den DCX-Prozess.
Wir zeigen in den Studien zu DCX, dass dieser Prozess eine hohe Sensitivität bezüglich Modell-
details besitzt, besonders sensitiv ist er bezüglich dem Durchmesser der Neutronenhäute von
schweren Atomkernen. Mittels dieser hohen Sensitivität könnte man DCX verwenden um die
Neutronenhäute indirekt zu vermessen.

Zusammenfassend kann man über unsere Studien zur Pion-Kern-Interaktion sagen, dass wir
jene Region bestimmen (Ekin > 30 MeV) für die das semiklassische BUU-Modell anwendbar
ist. Dort beschreiben wir Pionabsorption, Pionreaktion und DCX mit 10 − 20% Genauigkeit.
Dieses Resultat stellt eine wichtige Aussage für die folgenden Kapitel dar, wo es sich um die
Pionproduktion in elektron- und photoninduzierten Reaktion dreht.

Im Kapitel 7 behandeln wir zunächst inklusive Wirkungsquerschnitten um auf den γ⋆N -
Eingangsvertex zu fokussieren. Wir betonen die Wichtigkeit impulsabhängiger Potentiale und
diskutieren die Möglichkeit das verwendete Potential zu verbessern. Innerhalb vernünftiger
Schranken für die Potentialparameter, welche durch Fits von optischen Potentialen an die
Nukleon-Kern-Streuung gegeben sind, konnten wir allerdings nur eine leichte Verbesserung un-
sere Resultate zur Elektron-Sauerstoff-Streuung [O’C84, Bar88, Sea89, Che91, Day93, Ang96]
erreichen. Insgesamt erreichen wir eine gute Übereinstimmung mit den Daten – vergleichbar zu
modernen Kern-Vielteilchen-Rechnungen von Benhar et al. [Ben08]. Wir haben ebenfalls Pho-
tonabsorption in Kernen [Bia94, Bia96, Muc99] studiert, wobei wir eine gute Beschreibung der
Daten erreichen, falls wir die In-Medium-Breiten vernachlässigen. Eine Berücksichtigung jener
Breiten verschlechtert die Übereinstimmung mit den Daten. Da wir allerdings wissen, dass die
Verbreiterung der ∆(1232)-Resonanz essentiell zur Beschreibung der Pion-Kern-Wechselwirkung
beiträgt, kann dieses Resultat nicht bedeuten dass es keine In-Medium-Verbreiterung der Re-
sonanzen. Sondern es wird vermutet, dass ein wichtiger Modellbestandteil, wie z. B. die Zwei-
Nukleon-Absorption, bisher vernachlässigt wird und die Übereinstimmung der Rechnung ohne
In-Medium-Breite wird eher als zufällig angesehen.

Bezüglich der Produktion von neutralen Pionen im Energiebereich von 0.25−0.8 GeV [Kru04b,
Kru04a] erreichen wir gute Übereinstimmung für den quasi-freien Reaktionsquerschnitt. Unser
Resultat für den totalen Querschnitt zeigt leider keine Verbesserung verglichen zu früheren Rech-
nungen von Lehr et al. [Leh03], obwohl unser Modell verglichen mit dem Lehr’schen Modell stark
verbessert wurde. Da die Beschreibung der quasi-freien Daten vernünftig ist, spekulieren wir,
dass es eine Problem mit den 2π-Beiträgen gibt. Eine zusätzliche In-Medium-Modifikation des
ππ-Hintergrunds könnte einen Einfluss auf die Daten haben. Wir betonen ebenfalls, dass Inter-
ferenzen in der π0-Produktion einen wichtige Rolle spielen und deren In-Medium-Modifikation
bisher auch noch nicht berücksichtigt werden konnte.

Diese Studien dienen auch als Benchmark für neutrinoinduzierte Prozesse, welche mit Hilfe
des gleichen Modells von Leitner et al. [Lei06b, Lei06a] untersucht werden.

Kapitel 8 bezieht sich auf photoninduzierte ππ-Produktion in Atomkernen. Zuerst wir die mo-
mentane Datenlage zur elementaren Reaktionen dargelegt, und danach werden Kerndaten simu-
liert. Da die TAPS-Kollaboration [Lug07b] momentan noch mit der Auswertung der Deuteron-
daten beschäftigt ist, ist die Datenlage für die γ Neutron → Nππ Reaktion leider noch unbefrie-
digend. Um die Extraktion der Neutron- aus den Deuterondaten zu unterstützen, erläutern wir
die wichtigsten Effekte, die dabei zu berücksichtigen sind. In einem vereinfachten Modell kom-
men wir zu dem Ergebnis, dass man in einer Genauigkeit von ca. 5% den Neutronenquerschnitt
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erhält, indem man einfach den Protonenquerschnitt vom Deuteronquerschnitt subtrahiert.
Für die γA → ππA′ Reaktion zeigen wir, dass Endzustandswechselwirkungen essentiell sind

und dazu beitragen, dass Maximum der ππ-Massenverteilung in allen Kanälen zu niedrigen Mas-
sen hin zu verschieben. Dadurch wird es schwierig eine Verbindung zwischen den experimentellen
Ergebnissen und einer möglichen Veränderung des Isospin I = 0 Kanals zu ziehen. Wir betonen,
dass jedes theoretische Modell, dass den beobachteten Effekt der Massenabsenkung mit partieller
Chiraler Symmetriewiederherstellung in Verbindung bringen möchte, auch Endzustandswechsel-
wirkungen berücksichtigen muss. Unsere Simulationen zeigen, dass die meisten Pionen aus der
Oberfläche des Kerns kommen, wodurch die möglicherweise beobachtbaren In-Medium-Effekte
schwach sein sollten.

Hadronische In-Medium-Eigenschaften aus Kernreaktionen abzuleiten, ist eine schwierige Auf-
gabe, welche allerdings Einsichten in das stark wechselwirkende Regime der QCD verspricht. Für
diese Herausforderung stellen Transportmodelle gute Werkzeuge dar, um den Graben zwischen
experimentellen Observablen und der zugrunde liegenden In-Medium-Physik zu überbrücken.
Vor allem erlauben sie profane, auf Endzustandswechselwirkungen beruhende, Effekte von den
wirklich interessanten Effekten, welche auf einer Änderung hadronischer In-Medium-Eigenschaften
basieren, zu trennen.
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1 Errata to Chapter 7.2: Inclusive electron scattering off complex

nuclei

In revision 2483 (cf. especially http://gibuu/GiBUU/changeset/2483#file1) , we corrected for a
numerical mistake in the single-π background which influences some of the results published in
section 7.2 of my thesis [Bus08].

In the following we want to outline the issue and investigate its impact on results published
in section 7.2 of [Bus08]. We use the same notation as in [Bus08]: the pion momentum is k, the
in- and outgoing electron momenta are l and l′, the in- and outgoing nucleon momenta are p
and p′ and q denotes the photon momentum. The z-axis is chosen in direction of ~l.

To compute the single-π background, we use (cf. [Bus08, pages 87 ff.]):

dσBG

π

dΩl ′ d|~l ′| dΩk

=
dσπ

dΩl ′ d|~l ′| dΩk
︸ ︷︷ ︸

MAID input

−
∑

R

dσeN→eR→eNπ

dΩl ′ d|~l ′| |dΩk

. (1)

Since the resonances are assumed to decay isotropically in their rest-frames, the resonance
contributions are given by

dσeN→eR→eNπ

dΩl ′ d|~l ′ |dΩCM
k

=
dσR

dΩl ′ d|~l ′|

ΓR→Nπ

ΓR

1

4π

⇒
dσeN→eR→eNπ

dΩl ′ d|~l ′ |dΩk

=
dσR

dΩl ′ d|~l ′|

ΓR→Nπ

ΓR
︸ ︷︷ ︸

=A

1

4π

dΩCM
k

dΩk
︸ ︷︷ ︸

=B

(2)

with [Byc73]

dΩCM
k

dΩk
=

√
p ′µp ′

µ
~k2

|~kCM|
(

|~k|p′ 0 − |~p ′|k0 cos(θk)
) . (3)

The mistake resolved in revision 2483 concerned only the evaluation of
(dσeN→eR→eNπ)/(dΩl ′ d|~l ′ |dΩk), and is somewhat subtle. In eq. 2, we have split this con-
tribution in a term named A and another one named B. Term A does not depend on k and can
be computed independently from B. The problem was now, that A was computed using

~l ′ = (l′0 sin θl′ , 0, l
′

0 cos θl′) (4)

while B was computed using

~l ′ = (−l′0 sin θl′ , 0, l
′

0 cos θl′) , (5)

such that the two l′ differed by a π-rotation in φl′ . Given a resting nucleon target, this does not
cause any problems since there is a φl′ rotational symmetry. The code was tested by comparing
the cross sections obtained for a resting nucleon to the ones predicted by MAID, and perfect
agreement was obtained.

But for a moving nucleon (~p 6= 0), the φl′ symmetry is broken! This case was not tested against
data or other models. Fortunately, for small photon momenta the term B is anyhow close to
1 since the boost is small. Hence this mistake does not have any visible effect on any results
obtained at low energies. Only at higher photon momenta the boost becomes sizable, and the
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difference in the definition of the l′’s becomes important. After spotting this issue, we resolved it
in revision 2483 (cf. especially http://gibuu.physik.uni-giessen.de/GiBUU/changeset/2483#file1),
and the relevant patch is given by (the ”+” and ”-” signs show the relevant changes):

Index: workingCode/code/init/lowElectron/resonanceProduction.f90

===================================================================

--- a/workingCode/code/init/lowElectron/resonanceProduction.f90

+++ b/workingCode/code/init/lowElectron/resonanceProduction.f90

@@ -87,11 +92,11 @@

lin(3)=e_in

lin(1:2)=0.

!lepton: Assume phi=0.

lout(0)=E_out

- lout(1)=E_out*sin(radian(theta_lepton_out))

+ lout(1)=-E_out*sin(radian(theta_lepton_out))

lout(2)=0.

lout(3)=E_out*cos(radian(theta_lepton_out))

Comparison to former results

In the following we want to compare the results presented in my thesis to the ones obtained
with the present revision 2856. Changes in the results are only due to the issue described above.
All the model inputs are otherwise identical: same self energies for the baryon resonances; only
QE-scattering, resonance excitation and single-π background are included; same MAID form
factors.

A comparison of the present and former results for the inclusive cross sections dσ/(dΩldlf )
are shown for oxygen in fig. 1 and for iron in fig. 2 and fig. 3. The solid lines denote the results
presented in my thesis, the dashed ones the present outcome. First, one notes that both results
agree very well for low beam energies (upper panels in fig. 1 and fig. 2). Especially for 16

8 O there
are no major changes, except for the beam energy of 1500 MeV. So all low-energy statements
in [Bus08] stay unchanged.

However, there is an increasing discrepancy for higher electron beam energies and especially
for 56

26Fe, where also Fermi momentum plays a more important role. This discrepancy can be
back-traced to the l′ issue! So only figures 7.11-7.12 of [Bus08] should be replaced by
figures 2 and 3 of this addendum. In 3 one observes for both results a missing strength not
only in the ππ production region, but also at lower q0. As already stated in [Bus08], this feature
is still not understood.

Note that our latest papers, especially [Lei08], already include the revision 2483 bug fix. Hence
its results are not influences by this problem.
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Figure 1: The inclusive electron cross section dσ/(dΩdlf ) on 16O as a function of the energy
transfer q0 at five distinct fixed electron energies (0.7, 0.88, 1.08, 1.2 and 1.5 GeV) and a
scattering angle of θlf = 32◦. The curves have been obtained using all in-medium modifications
and in particular in-medium changes of the width according to the mass-shift scenario. The
solid curve shows the result published in [Bus08], the dashed one has been obtained with
revision 2856. No ππ or DIS background have been taken into account. The data are taken
from [Ang96, QEW08]. In each panel, the parameter Q2

QE-peak (evaluated according to [Bus08,

eq. 7.3]) is given as an estimate of Q2 at the quasi-elastic peak.

4



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  0.1  0.2  0.3  0.4  0.5  0.6

dσ
/d

Ω
/d

l f 
[n

b/
M

eV
/s

r]

 Baran et al. 
 

 Ebeam=1.5 GeV 
 

 θlf
=11.9° 

 
 Q2

QE-peak=0.09 GeV2

thesis
GiBUU, rev. 2899

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  0.1  0.2  0.3  0.4  0.5  0.6

 Baran et al. 
 

 Ebeam=1.5  GeV 
 

 θlf
=13.5° 

 
 Q2

QE-peak=0.12 GeV2

 0

 500

 1000

 1500

 2000

 2500

 0  0.1  0.2  0.3  0.4  0.5  0.6

dσ
/d

Ω
/d

l f 
[n

b/
M

eV
/s

r]

 Baran et al. 
 

 Ebeam=1.65  GeV 
 

 θlf
=11.9° 

 
 Q2

QE-peak=0.11 GeV2

 0

 200

 400

 600

 800

 1000

 1200

 0  0.1  0.2  0.3  0.4  0.5  0.6

 Baran et al. 
 

 Ebeam=1.65  GeV 
 

 θlf
=13.5° 

 
 Q2

QE-peak=0.14 GeV2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

dσ
/d

Ω
/d

l f 
[n

b/
M

eV
/s

r]

q0[GeV]

 Sealock et al. 
 

 Ebeam=0.961 GeV 
 

 θlf
=37.5° 

 
 Q2

QE-peak=0.32 GeV2

 0

 5

 10

 15

 20

 25

 30

 35

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8
q0[GeV]

 Sealock et al.  
 

 Ebeam=1.108 GeV 
 

 θlf
=37.5° 

 
 Q2

QE-peak=0.41 GeV2

Figure 2: Same as fig. 1 for an 56
26Fe nucleus. Data are taken from [Sea89, Bar88].
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Figure 3: Same as fig. 2 for different electron kinematics. The data are taken from [Sea89, Che91,
Day93].
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