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God does not play dice with the universe. He plays an ineffable game of his own
devising, which might be compared, from the perspective of any of the other players,
to being involved in an obscure and complex variant of poker in a pitch-dark room,
with blank cards, for infinite stakes, with a Dealer who won’t tell you the rules, and
who smiles all the time.

– Terry Pratchett, Good Omens
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1 Introduction

1.1 From SU(3) symmetry to flavor dynamics

Nuclear physics is a demanding field incorporating the dynamics of a quantum many-
body system and accounting for the specific nature of the interacting entities namely
mesons and baryons being governed by the strong interaction and the rules of quan-
tum chromodynamics (QCD) [Ynd98]. The building blocks of QCD are the quarks
and gluons. The bosonic gluons are responsible for the interaction of the fermionic
quarks, which are the fundamental constituents of matter. There are six types of
quarks, known as flavors, up (u), down (d), strange (s), charmed (c), top (t) and
bottom (b). The up, charm and top quarks carry +2/3 and the down, strange and
bottom carry −1/3 of the elementary charge. Therefore, the quarks are the only
particles which have a fractional electric charge. The three lightest quarks, namely
the u, d and s quark can be grouped together to a triplett. Mathematically the un-
derlying symmetry can be described by the special unitary group SU(3) [A+08].

The main part of the visible matter in the universe consists of baryons, which are
made out of three quarks. The baryons can be characterized by their rest mass and
spin. Beyond that one introduces the quantum number isospin I and strangeness
S. We note that in analogy to the spin, the total isospin is denoted with I, while
the third component is denoted with I3. The quantum numbers (I, I3, S) for the u,
d and s quarks are (I=1/2, I3=1/2, S=0), (I=1/2, I3=-1/2, S=0) and (I=0, I3=0,
S=-1), respectively. Baryons with almost same masses can be grouped together in
multiplets. The dynamics of the u, d and s quark is mathematically also described
by special unitary group SU(3). All multiplets can be formed out of the fundamental
SU(3) triplett of u, d and s quarks and their antiparticles. As fermions, the baryons
must fulfill the Pauli principle and have a antisymmetric wavefunction. If we restrict
ourselves to the lowest mass states, i.e. the orbital angular momentum of the quarks
l = 0, we have two options to couple the spins of the quarks. Since each of the quarks
has spin s = 1/2, the total angular momentum of the baryons can be either J = 1/2
or J = 3/2. For the total angular momentum J = 1/2 and J = 3/2 we then
obtain eight and ten possible states forming the baryon octet and decuplet, shown
in Fig. 1.1. The particles are sorted from left to right with increasing isospin I3
and from top to bottom with decreasing strangeness S. Stellar objects made out of
dense baryonic matter is believed not only made out of proton and neutrons, but
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1 Introduction

Figure 1.1: The left picture shows the baryon octet and the right picture the baryon
decuplet.

also containing strange baryons, the hyperons. Due to the short lifetime of hyperons
there are neither hyperon targets nor hyperon beams with proper energy available.
Hypernuclei, where a hyperon is bound in the nuclear system, provide information on
the YN and YY interaction. Since hyperons bound in a nucleus do not underlie the
Pauli principle, the physics of hypernuclei provides also a good tool to examine the
struture of nuclei. The first hypernucleus was observed in September 1952 [Wro04]
by Marian Danysz and Jerzy Pniewski. They discovered nuclei with a Λ-hyperon by
observing cosmic ray in emulsion chambers. Since that time, hypernuclei have been
observed and studied in many experiments, such in (K−,π−) and (π−,K−) reactions
at CERN, KEK, MAMI, JLAB and other facilities. At the future facility FAIR at
GSI, PANDA will give new insights to ΛΛ-double-hypernuclei. Also the NUSTAR
facility at FAIR will give access to exotic hypernuclei away from the β-stability
line using rare isotope beams. In Fig. 1.2, the extension of the nuclear chart to
strangeness is shown, where Λ-hypernuclei and ΛΛ-double-hypernuclei appears as
an additional degree of freedom above the chart of pure isospin (i.e. p and n) nuclei.

Another source, which provides information on hypernuclear physics, is provided
by the examination of neutron stars. Neutron stars are the smallest and densest
compact objects bulit by matter known in the universe. Instead of consiting only of
neutrons and protons, dense stellar objects, such as neutrons stars, may also contain
a core of hyperons or quarks. A neutron star can be dived into the atmosphere, the
outer crust, the inner crust an the outer and inner core, as shown in Fig. 1.3. But
the specific composition of the inner of a neutron star, especially the inner core, is
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1.1 From SU(3) symmetry to flavor dynamics

Figure 1.2: The nuclear chart including known the hypernuclei. The picture is
taken from ”IX International Conference on Hypernuclear and Strange
Particle Physics” at Johannes Gutenberg-Universität Mainz.

still an open question (see e.g. [Gle96, HPY07]) and is depending on the model.
Neutron stars are formed during a supernova explosion, after the fusion reaction
of massive stars reaches the endpoint of energy release, the core collapses. Under
the immense gravitational force the matter is compressed to such high densities
that nuclear and particle physics play an important role for their understanding.
Neutrinos, for example, are important to understand the cooling of the neutron
stars. Due to angular momentum conservation and the magnetic flux conservation,
a fast rotating relict with high magnetic dipole field is left over as neutron star. This
neutron star can be detected as the periodic signal of a pulsar. The basis for the
calculation of neutron stars are the Tollman-Oppenheimer-Volkoff (TOV) equations
[OV39], which shows that the maximum mass of a neutron star is directley connected
with the equation of state of nuclear matter. A more stiff equation of state leads
to a higher pressure, which then leads to more massive neutron star. The weak
interaction allows the conversion of nucleon into hyperons which is energetically
favorable because the Fermi energy of the highest lying nucleon will otherwise exceed
the masses of the hyperons. Therefore, hyperons in many models necessary to bring
maximum masses of the TOV equations down to the upper limit of neutrons stars
of about 3 times the solar mass. In this work, we will point out the role of hyperons
in infinite nuclear matter and their correlations.
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1 Introduction

Figure 1.3: Schematic structure of a neutron star according to [HPY07]. The pic-
ture is taken from http://commons.wikimedia.org.

1.2 From the independent particle model to
short-range correlations

In recent years, the interest in correlations inside nuclei became an important issue
in nuclear physics. Indeed, many properties such as binding energies of nuclei can be
described by an independent particle model. In this model the many-body problem
is reduced to a single particle moving in an overall potential. Historically, the
independent particle model was introduced to describe the structure of atoms. The
model of Hartree [Har28] and Fock [Foc30] is very successful in describing the shell
structure of noble-gas atoms. In the Hartree-Fock method the electron is assumed to
move in a single particle potential which is created by the Coulomb interaction with
the other electrons and by itself. Later, the Hartree-Fock method was also applied to
nuclear physics by Negele [Neg82] and [DG80] using effective interactions or energy-
density functionals. Together with the shell model, many nuclear properties, such
as the existence of magic nuclei with extra stability, spins and parities of the nuclear
ground states as well as the existence of deformed nuclei could be explained by these
calculations.

However, nucleon knockout experiments A(e, e′p)X or A(e, e′pp)X, where on nucleon
or two nucleons are knocked out from the target nucleus, show that the nucleons
in a nucleus do not move independently [CdAPS91, DH90]. Fig. 1.4 shows the
excitation energy spectrum of the reaction 12C(e, e′p)11B [dWH90]. The shell model
calculation predicts that the 1s1/2 (1/2+), 1p3/2 (3/2−) and the 1p1/2 (1/2−) shells
are occupied by the protons. The knockout of 1p-protons leads to three final states,
the 3/2− ground state and the 1/2− (Ex = 2.125 MeV) and 3/2− (Ex = 5.020 MeV)
excited states of 11B. These states can clearly be seen in Fig. 1.4. However, there are
also states for (Ex > 6 MeV), corresponding to the knockout of protons populating
the 2s1/2 (1/2+) and the 1d (5/2+, 3/2+) states. This shows that correlations play
an important role for understanding nuclear physics and we refer to [PSH97] for a
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1.2 From the independent particle model to short-range correlations

Figure 1.4: The spectral function found in the 12C(e, e′p)11B nucleon knockout
reaction as a function of the excitation energy. (Figure taken from
[dWH90])

more detailed discussion.

On the theoretical, side several calculations using different models including short-
range correlation have been done for symmetric nuclear matter for temperature
T = 0 (e.g. [RPD89, RDP91, BFF92]) and at finite temperature (e.g. [FLM03]).
First results for asymmetric nuclear matter are reported in [Boz04, HM04, KLM05].
A good overview of theoretical models can be found in [DB04].

However, there is still not much known about the role of correlations of nucleons
and hyperons in neutron star matter. The first calculation including correlations
are done by [HJPRM96] and [RD04] for a single Λ in nuclear matter. But so far, no
systematic investigations of their in infinite strange nuclear matter have been done.
The aim of this work is to examine short-range correlations of nucleons and especially
of Λ-hyperons in nuclear matter at extreme isospin and neutron star matter.

In chapter 2, we give a general introduction to the Green’s function method, which
provides a good basis for describing dynamical correlations. After the basic prop-
erties of the single particle Green’s function we define the spectral function and we
use perturbation theory to expand the single particle Green’s functions in terms
of the interaction. Finally, we show how the spectral function is connected to the
self-energy. In our approach, correlations are included by the one-particle-two-hole
(1p2h) and the two-particle-one-hole (2p1h) self-energy. For our calculations, we
assume the interaction matrix elementM to be independent of energy and momen-
tum, which corresponds to a contact interaction. Lehr et al. [LEL+00, LLLM02]
showed that this assumption leads to good results, which are in good agreement
with other many-body calculations.

5



1 Introduction

In our approach, the mean-field effects are included by the Skyrme parameterization
of the energy density functional. In chapter 3 we discuss the parameterization. After
the introduction of the basic ideas of the parameterization and different parameter
sets, we discuss results for the equation of state, the effective mass and the effective
potential for different sets of the Skyrme parameterizations.

The main idea of our approach is using a contact interaction matrix element. In
chapter 4, we discuss how we calculate an average energy and momentum indepen-
dent interaction matrix element. First we give an introduction to the Fermi liquid
theory and Landau-Migdal parameters. Then we use the Landau-Migdal parameters
to calculate an average interaction matrix element. Finally, we show results for the
interaction matrix elements in nuclear matter.

Results for the dynamical correlation in nuclear matter are shown in chapter 5. We
start the chapter with a short discussion of calculational details. Afterwards we show
results for the self-energies, the spectral function and the momentum distribution
for symmetric and asymmetric nuclear matter. In particular we point out how
using different Skyrme parameterizations influence our results. At the end of the
chapter, we introduce the quasiparticle strength, which we use to discuss results for
correlations.

In chapter 6, we investigate results for dynamical correlations in hypernuclear mat-
ter. At the beginning of the chapter, we introduce an extension of the Skyrme
parameterization to the strange sector. We show results for the equation of state,
the effective mass and the effective potential as a function of the the strangeness
fraction. Thereafter, we calculate the average interaction matrix element for the
nucleons and Λ-hyperons. We show results for the imaginary part of the self-energy,
the spectral function and the momentum distribution in hypernuclear matter with
a certain strangeness fraction. At the end of the chapter, we discuss results in β-
equilibrium. We show the influence using different Skyrme parameterizations to
the fraction of particles. Finally, we discuss results for the imaginary part of the
self-energy, the spectral function and the quasiparticle strength for different densi-
ties.
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2 Introduction to the Green’s Function
Formalism

A very powerful concept of many-body theory is based on the fact, that one can
approximately describe interacting many-body systems in terms of non-interacting
”quasi-particles” plus appropriately chosen residual interactions. Since the theory of
quasiparticles is very closely related to the theory of Green’s functions, we introduce
the basic ideas of Green’s functions methods in this chapter. After introducing the
basics definitions of the single particle Green’s function, we discuss some analytic
properties, which leads us to the definition of the spectral function. At the end we
shortly discuss the perturbation expansion of the single particle Green’s function.
For a more detailed discussion of the Green’s function methods and many-body
theory we refer to [DVN05], [FW71] or [GR86].

2.1 The Single Particle Green’s Function

The single particle Green’s function G(~r1, t1, ~r2, t2) of a system of N interacting
particles is given by means of the exact wave function ΨN

0 and the field operators
ΨH(~r, t) and Ψ†

H(~r, t) in the Heisenberg picture

G(~r1, t1, ~r2, t2) = − i

~

〈
Ψ0

∣∣∣T {ΨH(~r1, t1)Ψ
†
H(~r2, t2)

}∣∣∣Ψ0

〉
. (2.1)

We note that we define for simplicity |Ψ0〉 ≡ |ΨN
0 〉. The creation operator Ψ†

H(~r, t)
attaches an additional particle at the space-time coordinate (~r, t) to the ground state
|Ψ0〉, whereas the annihilation operator ΨH(~r, t) removes a particle at the space-time
coordinate (~r, t) from the ground state. The time evolution of the creation operator
Ψ†(~r) and annihilation operator Ψ(~r) in the Heisenberg picture is given by the
relations

ΨH(~r, t) = eiHt/~Ψ(~r)e−iHt/~, (2.2)

Ψ†
H(~r, t) = e−iHt/~Ψ†(~r)eiHt/~. (2.3)

Since the Heisenberg ground state |Ψ0〉, which we assume to be normalized, is the
exact ground state of the Hamiltonian H, it fullfills the Schrödinger equation

H|Ψ0〉 = E|Ψ0〉. (2.4)
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2 Introduction to the Green’s Function Formalism

Finally, the time ordering operator T for fermions is defined by the relation

T
{
Ψ(~r1, t1)Ψ

†(~r2, t2)
}

=

{
Ψ(~r1, t1)Ψ

†(~r2, t2) for t1 > t2

−Ψ†(~r2, t2)Ψ(~r1, t1) for t1 < t2
. (2.5)

According to the definitions of the time ordering operator T , the Green’s function
is given by the propagation of a particle or hole depending on whether t1 > t2 or
t1 < t2:

G(~r1, t1, ~r2, t2) = θ(t1 − t2)G
>(~r1, t1, ~r2, t2) + θ(t2 − t1)G

<(~r1, t1, ~r2, t2). (2.6)

Here we introduced the particle and hole correlation function

G>(~r1, t1, ~r2, t2) = − i

~
〈Ψ0|ΨH(~r1, t1)Ψ

†
H(~r2, t2)|Ψ0〉, (2.7)

G<(~r1, t1, ~r2, t2) =
i

~
〈Ψ0|Ψ†

H(~r2, t2)ΨH(~r1, t1)|Ψ0〉. (2.8)

The particle correlation function G>(~r1, t1, ~r2, t2) denotes the propagation of an addi-
tional particle in the medium. Whereas the hole correlation function G<(~r1, t1, ~r2, t2)
denotes the propagation of a removed particle in the medium. Since for our next
consideration this aspect does not play a role, we will consider the time-ordered
Green’s function.

2.2 The Spectral Representation

From the definition of the single particle Green’s function Eq. (2.1), one can derive
some interesting results which will lead us to the definition of the spectral function.
Inserting a complete set of Heisenberg states between the field operators yields the
expression

G(~r1, t1, ~r2, t2) = − i

~

{
θ(t1 − t2)

∑
n

〈Ψ0|ΨH(~r1, t1)|ΨN+1
n 〉〈ΨN+1

n |Ψ†
H(~r2, t2)|Ψ0〉

− θ(t2 − t1)
∑
m

〈Ψ0|Ψ†
H(~r2, t2)|ΨN−1

m 〉〈ΨN−1
m |ΨH(~r1, t1)|Ψ0〉

}
.

(2.9)

Here |ΨN+1
n 〉 and |ΨN−1

m 〉 are the states where a particle is added and removed from
the ground state |Ψ0〉 of the N -particle system, respectively. The included set of
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2.2 The Spectral Representation

state are assumed to be complete, and since the eigen-states are exact according to
the full Hamiltonian H, they fullfill the Schrödinger equations

H|ΨN+1
n 〉 = EN+1

n |ΨN+1
n 〉, (2.10)

H|ΨN−1
m 〉 = EN−1

m |ΨN−1
m 〉. (2.11)

Using Eq. (2.3) together with Eq. (2.10) and Eq. (2.11) allows us to make the time
dependence of the matrix elements explicit

G(~r1, t1, ~r2, t2) = − i

~
{θ(t1 − t2)

∑
n

e−
i
~ (EN+1

n −E)(t1−t2) (2.12)

× 〈Ψ0|Ψ(~r1)|ΨN+1
n 〉〈ΨN+1

n |Ψ†(~r2)|Ψ0〉

−θ(t2 − t1)
∑
m

e
i
~ (EN−1

m −E)(t1−t2)

×〈Ψ0|Ψ†(~r2)|ΨN−1
m 〉〈ΨN−1

m |Ψ(~r1)|Ψ0〉
}

.

For a translational invariant systems the single particle Green’s function G will only
depend on the differences in space ~r1−~r2 and time t1− t2 and the Fourier transform
of the single particle Green’s function G is given by the expression

G(~k, ω) =

∫
d3(~r1 − ~r2)

∫
d(t1 − t2)e

−i~k·(~r1−~r2)eiω(t1−t2)G(~r1 − ~r2, t1 − t2). (2.13)

After some algebra, where we use the integral representation for the step function

θ(t1 − t2) = −
∞∫

−∞

dω

2πi

e−iω(t1−t2)

ω + iη
, (2.14)

we obtain the Lehmann representation [FW71, GR86] for the single particle Green’s
function

G(~k, ω) =
1

~
∑

n

〈Ψ0|Ψ(~k)|ΨN+1
n 〉〈ΨN+1

n |Ψ†(~k)|Ψ0〉
ω − µ/~− wN+1

n + iη
(2.15)

+
1

~
∑
m

〈Ψ0|Ψ†(~k)|ΨN−1
m 〉〈ΨN−1

m |Ψ(~k)|Ψ0〉
ω − µ/~− wN−1

m − iη
.

Where µ denotes the chemical potential and wN±1
n = ± 1

~(EN±1
n −E) is the excitation

energy of a N + 1 and N − 1 particle state, respectively. The convergences factor
±iη means that the limit η → 0+ is taken. Eq. (2.15) shows the the single particle

Green’s function G(~k, ω) is neither analytic in the upper nor in the lower complex

ω plane. As shown in Fig. 2.1 the Green’s function G(~k, ω) has a cut at µ/~. For
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2 Introduction to the Green’s Function Formalism

Re

/ℏwn
N1−i

/ℏw n
N−1i

Im

/ℏ

Figure 2.1: Singularities of the Green’s function G(~k, ω) in the complex ω plane.

energies ω < µ/~ we have poles in the upper complex ω plane at the exact eigen-
energies of the N − 1 particle states. Whereas for energies ω > µ/~ we have poles
in the lower complex plane at the exact eigen-energies of the N + 1 particle state.
For contour integration it is useful to consider a function analytic in one half of the
plane. Therefore, we define the retarded and the advanced Green’s function

G(r)(~r1, t1, ~r2, t2) = − i

~
〈Ψ0|[ΨH(~r1, t1)Ψ

†
H(~r2, t2)]+|Ψ0〉θ(t1 − t2), (2.16)

G(a)(~r1, t1, ~r2, t2) =
i

~
〈Ψ0|[ΨH(~r1, t1)Ψ

†
H(~r2, t2)]+|Ψ0〉θ(t1 − t2). (2.17)

From that relation we immediately find[
G(r)(~r1, t1, ~r2, t2)

]∗
= G(a)(~r1, t1, ~r2, t2). (2.18)

The analytic properties of these function follow closely those of the time-ordered
Green’s function G(~r1, t1, ~r2, t2). After a Fourier transformation in the case of a
homogenous system we obtain the retarded and advanced Green’s function in the
Lehmann representation

G(r,a)(~k, ω) =
1

~
∑

n

〈Ψ0|Ψ(~k)|ΨN+1
n 〉〈ΨN+1

n |Ψ†(~k)|Ψ0〉
ω − µ/~− wN+1

n ± iη

+
1

~
∑
m

〈Ψ0|Ψ†(~k)|ΨN−1
m 〉〈ΨN−1

m |Ψ(~k)|Ψ0〉
ω − µ/~− wN−1

m ± iη
. (2.19)

Comparing Eq. (2.15) with Eq. (2.19) shows that the retarded, advanced and the
time ordered Green’s functions only differ in the convergence factors ±iη, which
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2.2 The Spectral Representation

are important near the singularities. As discussed before, the time ordered Green’s
function is neither in the upper nor in the lower complex ω plane analytic, but as
seen in Eq. (2.19), the retarded and advanced Green’s functions are analytic in the
upper and lower complex ω plane, respectively. If ω is real and greater than µ/~,
then the convergence factors ±iη do not play a role. Therefore, we conclude for a
real ~ω > µ

G(r)(~k, ω) = G(~k, ω) (2.20)

and

G(a)(~k, ω) = G(~k, ω). (2.21)

In thecase of a spectral distribution as e.g. in the thermodynamic limit, where the
discrete index n can be replaced by an integration, Eq. (2.15) can be written (see
[FW71]) as

G(~k, ω) =

∞∫
0

dω′

2π

[
Ap(~k, ω′)

ω − µ/~− ω′ + iη
+

Ah(~k, ω′)

ω − µ/~ + ω′ − iη

]
. (2.22)

Here Ah and Ah are the hole and the particle spectral function, respectively, defined
as

Ah(~k, ω) = 2π
∑

n

∣∣∣〈ΨN−1
n |Ψ(~k)|Ψ0〉

∣∣∣2 δ(ω − wN−1
n ), (2.23)

Ap(~k, ω) = 2π
∑

n

∣∣∣〈ΨN+1
n |Ψ†(~k)|Ψ0〉

∣∣∣2 δ(ω − wN+1
n ). (2.24)

For the advanced and retarded Green’s functions, we obtain the same results, except
with other convergence factors:

G(r,a)(~k, ω) =

∞∫
0

dω′

2π

[
Ap(~k, ω′)

ω − µ/~− ω′ ± iη
+

Ah(~k, ω′)

ω − µ/~ + ω′ ± iη

]
. (2.25)

As seen in Eq. (2.22), the time ordered, retarded and advanced Green’s functions
can be constructed out of the knowledge of the hole and particle spectral functions.
Since the spectral functions also play an important role for our later discussion of
correlations, we will examine some of its analytic properties.

11



2 Introduction to the Green’s Function Formalism

2.3 Analytic Properties of the Spectral Function

As seen from the definition Eq. (2.23) and Eq. (2.24) the spectral functions are real
and positive:

A∗
h(

~k, ω) = Ah(~k, ω) ≥ 0, (2.26)

A∗
p(

~k, ω) = Ap(~k, ω) ≥ 0. (2.27)

Since the excitation energies wN±1
n > 0, we conclude from the definition of the

spectral functions that

Ah(~k, ω) = Ap(~k, ω) = 0 for ω < 0. (2.28)

Furthermore we use the symbolic expression valid for real ω

1

ω ± iη
= P 1

ω
∓ iπδ(ω) (2.29)

to rewrite Eq. (2.22) and Eq. (2.25) as

G(~k, ω) =

∞∫
0

dω′

2π

[
−Ap(~k, ω′)

ω′ + µ/~− ω − iη
+

Ah(~k, ω′)

ω′ + ω − µ/~− iη

]

= P
∞∫

0

dω′

2π

Ap(~k, ω′)

ω − µ/~− ω′ + P
ω∫

0

dω′

2π

Ah(~k, ω′)

ω − µ/~ + ω′

− i

2
Ap(~k, ω − µ/~) +

i

2
Ah(~k, µ/~− ω). (2.30)

and

G(r,a)(~k, ω) =

∞∫
0

dω′

2π

[
−Ap(~k, ω′)

ω′ + µ/~− ω ∓ iη
+

Ah(~k, ω′)

ω′ + ω − µ/~± iη

]

= P
∞∫

0

dω′

2π

Ap(~k, ω′)

ω − µ/~− ω′ + P
∞∫

0

dω′

2π

Ah(~k, ω′)

ω − µ/~ + ω′

∓ i

2
Ap(~k, ω − µ/~)∓ i

2
Ah(~k, µ/~− ω) (2.31)

We now see that the imaginary part of the retarded Green’s function is directly
related to the spectral functions

Im
[
G(r,a)(~k, ω)

]
= ∓1

2
[Ap(~k, ω − µ/~) +Ah(~k, µ/~− ω)] ≡ ∓1

2
A(~k, ω). (2.32)

12



2.3 Analytic Properties of the Spectral Function

Here we introduced the sum of the particle and whole spectral functions as A(~k, ω),
corresponding to the total spectral function. From Eq. (2.28) and Eq. (2.32) follows
that the spectral function is given by the particle and hole spectral function for
ω > µ/~ and ω < µ/~

A(~k, ω) =

{
Ap(~k, ω − µ/~) for ω > µ/~
Ah(~k, µ/~− ω) for ω < µ/~

. (2.33)

From Eq. (2.31) and Eq. (2.32), the real part of the retarded and advanced Green’s
function the dispersion relation is found to be given by

Re
[
G(r,a)(~k, ω)

]
= ±1

2
P

∞∫
−∞

dω′

2π

A(~k, ω)

ω − ω′ . (2.34)

For our later considerations it is usefull to find relations between the spectral func-
tion and the hole and particle Green’s functions. Therefore, we initially examine
the case of a many-particle system at finite temperature T in the thermodynamic
equilibrium and then take the limit T → 0.

In the thermodynamic equilibrium, the Green’s functions are defined as ensemble
averages with respect to the grand canonical density operator ρ = e−β(H−µN) (see
[KB62, BM90]). Where β = 1/kT is the inverse temperature, N = Ψ†Ψ the number
operator and µ and H as before the chemical potential and the full interaction
Hamiltonian, respectively. Using the cyclic invariance of the ensemble trace and
the specific property from of the density operator leads to a relation between the
particle and the hole correlation function

G>(~k, ω) = −eβ(~ω−µ)G<(~k, ω). (2.35)

With the definitions of the particle, the hole, the retarded and the advanced spectral
function Eq. (2.7), Eq. (2.8), Eq. (2.16) and Eq. (2.17) we can rewrite Eq. (2.32)
as

A(~k, ω) = −2Im
[
Gr(~k, ω)

]
= i
[
Gr(~k, ω)−Gr(~k, ω)

]
= i
[
G>(~k, ω)−G<(~k, ω)

]
. (2.36)

We can make use of Eq. (2.35) and Eq. (2.36) to express the particle and hole Green’s

function by the spectral function A(~k, ω)

G<(~k, ω) = iA(~k, ω)f(ω), (2.37)

G>(~k, ω) = −iA(~k, ω)[1− f(ω)], (2.38)

f(ω) =
1

eβ(~ω−µ) + 1
. (2.39)

13



2 Introduction to the Green’s Function Formalism

Here f(ω) denotes the Fermi distribution function for the energy ω, which becomes
a step function for T → 0.

2.4 Perturbation Expansion of the Single Particle
Green’s Function

In the last section, we defined the single particle Green’s function and examined
its properties. However, we still have to solve the many-body problem to obtain a
solution for the Green’s function. Since the general many-body problem might not
be easy to solve, we have to develop appropriate techniques to obtain a solution.
One procedure might be the perturbation expansion of the Green’s function. The
technical details of the derivation are a standard topic of many-body theory and
discussed in many textbooks (see for example [DB04, FW71, GR86]), therefore we
will just summarize some results.

Consider the time-dependent Hamiltonian with an adiabatic perturbation

H = H0 + e−ε|t|H1, (2.40)

where ε is a small positive quantity. Starting from a large time in the past and going
to a large time in future, the perturbation is adiabatically switched on. At large
times in the past or in the future our problem reduces to the free Hamiltonian H0

for which we can solve the problem. For the time t = 0 we obtain the full interacting
Hamiltonian. Therefore, if we do the perturbation expansion of our problem and let
the parameter ε tend to zero at the end, any meaningfull result will be independent
of ε and we have solved the problem for the full interaction Hamiltonian H. After
some lengthy calculation (e.g. [FW71]), we obtain the perturbation expansion of
the time-ordered Green’s function

G(~r1, t1, ~r2, t2) = − i

~

∞∑
n=0

(
−i

~

)n
1

n!

∞∫
−∞

dt1 · · ·
∞∫

−∞

dtne
−ε(|t1|+···+|tn|)

×
〈
Ψ0

∣∣T {H1(t1) · · ·H1(tn)Ψ(~r1, t1)Ψ
†(~r2, t2)

}∣∣Ψ0

〉
〈Ψ0 |Uε(∞,−∞)|Ψ0〉

(2.41)

where the time-evolution operator Uε(t, t0) is defined as

Uε(t, t0) =
∞∑

n=0

(
−i

~

)n
1

n!

t∫
t0

dt1 · · ·
t∫

t0

dtn

× e−ε(|t1|+···+|tn|) 〈Ψ0 |T {H1(t1) · · ·H1(tn)}|Ψ0〉 . (2.42)

14
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We note that the divergent formfactors e−ε(|t1|+···+|tn|) in Eq. (2.41) and Eq. (2.42)
cancel each other and the limit ε → 0 can be taken. Eq. (2.41) shows how to
expand the Green’s function G(~r1, t1, ~r2, t2) in a series of fully contracted products
of field operators in the interaction picture. This corresponds to an expansion in
terms of the non-interacting Green’s function G0(~r1, t1, ~r2, t2). Wick’s theorem (e.g.
[FW71]) tells us how to evaluate this kind of expressions. Using Feynman rules, we
can associate a physical interpretation in terms of diagrams with each term in the
expansion. Using the Feyman rules from the appendix, we obtain for the Green’s
function at the lowest order (n = 1)

G(x1, x2) = G0(x1, x2) + G1(x1, x2) + O(n = 2)

=
x2 x1

+ x2 y1
x1

y2

+
x2 y2 y1 x1

+ O(n = 2). (2.43)

A detailed analysis shows that the Feynman diagrams can be classified into vari-
ous contribitions. The exact Green’s function consists of the unperturbed Green’s
function plus all connected terms with a free Green’s function at each end.

2.5 The Self-Energy

The self-energy is defined as any part of a Feynman diagram which is connected
to the rest by two particle lines, where one is going in and one is going out. The
expansion of the Green’s function can then be expressed by the self-energy, which
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2 Introduction to the Green’s Function Formalism

leads to the Dyson equation

G(x1, x2) =
x2 x1

(2.44)

=
x2 x1

+
Σ

x2 x1y2 y1

,

where the double line corresponds to the full Green’s function G, the single line
to the unperturbed Green’s function G0 and the box to the self-energy Σ. The
corresponding analytic expression to Eq. (2.44) is given by

G(x1, x2) = G0(x1, x2) +

∫
d4y1

∫
d4y2G0(x1, y1)Σ(y1, y2)G(y2, x2). (2.45)

The analysis of the self-energy shows that it can be separated into various types
of diagrams. All diagrams contributing to the self-energy and which can not be
separated into sub-diagrams without cutting lines are called proper self-energies

Σ(x1, x2) = Σ∗(x1, x2) +

∫
d4y1

∫
d4y2Σ

∗(x1, y1)G(y1, y2)Σ
∗(y2, x2) + . . . . (2.46)

Using these definitions, we can rewrite the Dyson equation Eq. (2.44) as

G(x1, x2) =
x2 x1

(2.47)

=
x2 x1

+
Σ∗

x2 x1y2 y1

.
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2.5 The Self-Energy

Again corresponds the double line to the full Green’s function G, the single line
to the unperturbed Green’s function G0 and the box to the proper self-energy Σ∗.
Finally, the analytic expression is given by

G(x1, x2) = G0(x1, x2) +

∫
d4y1

∫
d4y2G0(x1, y1)Σ

∗(y1, y2)G(y2, x2). (2.48)

In a translational invariant system, the self-energy will only depend of the difference
in the space coordinates and we can introduce the four dimensional Fourier transform
of the self-energy

Σ∗(x1, x2) =
1

(2π)4

∫
d4keik·(x1−x2)Σ∗(k). (2.49)

Carring out the Fourier integrals in Eq. (2.48) leads to the Dyson equation

G(k) = G0(k) + G0(k)Σ∗(k)G(k) (2.50)

for which we can find the formal solution

G(k) =
1

[G0(k)]−1 − Σ∗(~k, ω)
. (2.51)

The unperturbed Green’s function G0 is defined by the relation(
~ω − ε0(~k)

)
G0(k) = 1, (2.52)

where ε0(~k) is the energy of a free particle. We replace the inverse of the unperturbed
Green’s function by

[G0(k)]−1 = ~ω − ε0(~k) (2.53)

and obtain for Eq. (2.51)

G(k) ≡ G(~k, ω) =
1

~ω − ε0(~k)− Σ∗(~k, ω)
. (2.54)

In analogy to the time-ordered Green’s function we can also define the retarded
and advanced self-energy. Using the Dyson equation for the retarded and advanced
Green’s function we obtain

G(r,a)(k) = G
(r,a)
0 (k) + G

(r,a)
0 (k)Σ∗(r,a)(k)G(r,a)(k). (2.55)

Here Σ∗(r) and Σ∗(a) are the retarded and advanced self-energy, respectively. The
causal, retarded and advanced self-energy are quite different functions, but they are
related in a simple manner. Comparing Eq. (2.30) with Eq. (2.31) shows that the
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2 Introduction to the Green’s Function Formalism

real and the imaginary parts of the retarded and time-ordered Green’s functions are
related by

Re
[
G(r)(~k, ω)

]
= Re

[
G(~k, ω)

]
(2.56)

and

Im
[
G(r)(~k, ω)

]
=

Im
[
G(~k, ω)

]
for ω > µ/~

−Im
[
G(~k, ω)

]
for ω < µ/~

. (2.57)

Therefore we can conclude [Nol02] that the same relations should hold for the time
ordered and retarded self-energy:

Re
[
Σ∗(r)(~k, ω)

]
= Re

[
Σ∗(~k, ω)

]
(2.58)

and

Im
[
Σ∗(r)(~k, ω)

]
=

Im
[
Σ∗(~k, ω)

]
for ω > µ/~

−Im
[
Σ∗(~k, ω)

]
for ω < µ/~

. (2.59)

Furthermore, the Lehmann representation [FW71] ensures that for real ω

Im
[
Σ∗(~k, ω)

]
≥ for ω < µ/~, (2.60)

Im
[
Σ∗(~k, ω)

]
≤ for ω > µ/~. (2.61)

From the sign change at ω < µ/~ it follows that Im
[
Σ∗(~k, µ/~)

]
= 0, which reflects

the stability of the ground state.

2.6 Dynamical Correlations

In the previous sections, we developed the formulation of many-body theory in terms
of the Green’s function G0 and we showed that all information on the interacting
systems is contained in the spectral function A. In principle we could write down
the self-energy and solve the Dyson equation. But in practical applications, one
has always to introduce cut-offs at a limited number of terms. It also might not be
sufficient to approximate a strongly interacting system by a nth-order approximation
of the self-energy, since higher order correlations might have contributions to the
results. But we can make use of a hierarchal scheme of the Green’s function. For a
first approximation of the Dyson equation we replace the fully interacting Green’s
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2.6 Dynamical Correlations

function on the right hand side of Eq. (2.50) by the free Green’s function G0, which
is then used as an approximation for the next step. In this way, we make sure that
with a rising number of approximations the system contains more information on
higher order correlations:

G1(k) = G0(k) + G0(k)Σ∗(k)G0(k),

G2(k) = G0(k) + G0(k)Σ∗(k)G1(k),

... (2.62)

Gn(k) = G0(k) + G0(k)Σ∗(k)Gn−1(k).

We note that also the self-energy Σ∗(k) contains the Green’s function G0(k). In
terms of Feynman diagrams, this means a summation of all diagrams at a certain
order. By replacing all free Green’s function G0 by the Green’s function G of the fully
interacting system, it is possible to solve the many-body problem self-consistently.

For a system of particles interacting by the two-body interaction V (~r1−~r2), we can
write down the first order of the self-energy using Feynman rules as

Σ∗(x1, x2) =
x2 x1

x3

+
x2 x1

(2.63)

= −i~δ(t1 − t2)[δ(~r1 − ~r2)

∫
d3x3G(~r3, t3, ~r3, t

+
3 )V (~r1 − ~r3)

− V (~r1 − ~r2)G(~r1, t1, ~r2, t
+
1 )].

We note that we, as discussed before, replaced all free Green’s G0 function by the
fully interacting Green’s function G. Making use of the hierarchal scheme we can
solve the problem self-consistently. It can be shown that this approximation is
equivalent to the mean-field or Hatree-Fock approximation [Kon04, DVN05]. Since
the self-energy Eq. (2.63) is local in time, a particle feels the other particles just by
an effective static energy-independent potential [DVN05].

For the second order contribution n = 2 there are two diagrams left, which can
not be obtained by summation of other diagrams. These terms contribute to the
polarization of the medium and, as we will see later, can be interpreted as collision
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2 Introduction to the Green’s Function Formalism

terms,

ΣC(x1, x2) =
x2 x1

x4 x3

+
x2 x3

x4 x1

.

(2.64)

The analytic expression of the diagram on the left side is given by

Σd(x1, x2) = g~2

∫
d3r3

∫
d3r4V (~r2 − ~r4)V (~r1 − ~r3)

× [G(x1, x2)G(x4, x3)G(x3, x4)]
∣∣
t1=t3,t2=t4

(2.65)

and the exchange diagram on the right side is given by

Σe(x1, x2) = −g~2

∫
d3r3

∫
d3r4V (~r2 − ~r4)V (~r1 − ~r3)

× [G(x3, x2)G(x4, x3)G(x1, x4)]
∣∣
t1=t3,t2=t4

, (2.66)

where g is the number of degenerated states. In contrast to the mean-field contribu-
tion Eq. (2.63), this polarization self-energy is not local in time. Therefore, we split,
in analogy to the Green’s function Eq. (2.6), the contribution to the polarization
self-energy into two parts, whether t1 > t2 or t2 < t1

ΣC(x1, x2) = θ(t1 − t2)Σ
>(x1, x2) + θ(t2 − t1)Σ

<(x1, x2). (2.67)

According to the Feynman rules we obtain for the polarization self-energy in energy-
momentum space

Σ>(~k, ω) =
k k3 k

k4

k2
+

k k3

k2

k4 k

= −g
i2~2

(2π)8

∫
d3k2dω2

∫
d3k3dω3

∫
d3k4dω4 δ3(~k + ~k2 − ~k3 − ~k4)

× δ(ω + ω2 − ω3 − ω4)
[
(V (k − k3)

2 − V (k − k3)V (k − k4)
]

×G<
0 (~k2, ω2)G

>
0 (~k3, ω3)G

>
0 (~k4, ω4) (2.68)
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and

Σ<(~k, ω) =
k k3 k

k2

k4

+
k2

k3 k

k k4

= −g
i2~2

(2π)8

∫
d3k2dω2

∫
d3k3dω3

∫
d3k4dω4 δ3(~k + ~k2 − ~k3 − ~k4)

× δ(ω + ω2 − ω3 − ω4)
[
V (k − k3)

2 − V (k − k3)V (k − k4)
]

×G>
0 (~k2, ω2)G

<
0 (~k3, ω3)G

<
0 (~k4, ω4). (2.69)

Because of the symmetry of the integrand and limits in respect of k3 and k4, the
transformation

V (k − k3)
2 − V (k − k3)V (k − k4) =

1

2
[V (k − k3)− V (k − k4)]

2 (2.70)

under the integral is allowed. Since the two diagrams Eq. (2.68) and Eq. (2.69)
contain different potentials in the integrand, but have the same Green’s function
structure, we can make use of Eq. (2.70) to write down Eq. (2.68) and Eq. (2.69) in
a more compact way:

Σ>(~k, ω) = g
~2

(2π)8

∫
d3k2dω2

∫
d3k3dω3

∫
d3k4dω4 δ3(~k + ~k2 − ~k3 − ~k4)

× δ(ω + ω2 − ω3 − ω4) | M |2

×G<
0 (~k2, ω2)G

>
0 (~k3, ω3)G

>
0 (~k4, ω4) (2.71)

and

Σ<(~k, ω) = g
~2

(2π)8

∫
d3k2dω2

∫
d3k3dω3

∫
d3k4dω4 δ3(~k + ~k2 − ~k3 − ~k4)

× δ(ω + ω2 − ω3 − ω4) | M |2

×G>
0 (~k2, ω2)G

<
0 (~k3, ω3)G

<
0 (~k4, ω4), (2.72)

where we introduced the matrix element

| M |2≡ 1

2
[V (k − k3)− V (k − k4)]

2 . (2.73)
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We note that in Eq. (2.71) and Eq. (2.72) the exchange terms are now included in
the matrix element | M |2. Since in the expression of Σ> appear two particle and
one hole Green’s function, Σ> is called a two-particle-one-hole (2p1h) self-energy.
In the same manner, Σ< is called a one-particle-two-hole (1h2p) self-energy.

We can find a physical interpretation For Σ≷ [KB62, Kon04]. Consider a particle

with energy ω and momentum ~k, colliding with a particle having the energy ω2 and
momentum ~k2. After the collision, the particles have the energies ω3 and ω4 and the
momenta ~k3 and ~k4:

ω,~k

ω2, ~k2

ω3, ~k3

ω4, ~k4

In the Born approximation, the differential cross section is then given by [V (k− k3)
−V (k − k4)]

2 [KB62] times a delta function to conserve energy and momentum .
To obtain a scattering rate, we have to multiply the differential cross section by the
density of incoming particles and outcoming particles and integrate over all internal
degrees of freedom. This procedure leads to Eq. (2.71). Therefore, we can interprete
the (1p2h) polarization self-energy Σ> as a scattering-out rate. In the same manner,
the (2p1h) polarization self-energy Σ< can be interpreted as a scattering-in rate. In

this case two particles with the energies ω3 and ω4 and momenta ~k3 and ~k4 scatter
into states with energies ω and ω2 and momenta ~k and ~k2:

ω,~k

ω2, ~k2

ω3, ~k3

ω4, ~k4
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2.7 Calculation of the Spectral Function A

In the case of an infinite medium, as it is the case for nuclear matter, all quantities
will only depend on the absolute value of the momentum. It follows from Eq. (2.55),
that the retarded Green’s function is given by the relation

G(r)(k, ω) =
1

~ω − ~2k2

2m
− Σ(r)(k, ω)

. (2.74)

Further analysis of the self-energy shows that it consists of a local and a non-local
part. The local part can be identified with the mean-field, whereas the non-local
part can be identified with the collisional part:

Σ(r)(k, ω) = ΣMF (k) + ΣC(k, ω). (2.75)

We will discuss the mean-field part in more detail in the following chapter. As
seen in Eq. (2.67), the collisional part of the self-energy can be expressed by the
two-particle-one-hole (2p1h) and the one-particle-one-hole (1p2h) self-energies:

Σ>(k, ω) = −ig
~2

(2π)8
| M |2

∫
d3k2dω2

∫
d3k3dω3

∫
d3k4dω4 δ3(k + k2 − k3 − k4)

× δ(ω + ω2 − ω3 − ω4)A(k2, ω2)f(ω2)

×A(k3, ω3) [1− f(ω3)]A(k4, ω4) [1− f(ω4)] , (2.76)

Σ<(k, ω) = ig
~2

(2π)8
| M |2

∫
d3k2dω2

∫
d3k3dω3

∫
d3k4dω4 δ3(k + k2 − k3 − k4)

× δ(ω + ω2 − ω3 − ω4)A(k2, ω2) [1− f(ω2)]

×A(k3, ω3)f(ω3)A(k4, ω4)f(ω4). (2.77)

We note that we made use of Eq. (2.37) and Eq. (2.38) to express the correlation
functions G> and G< in terms of the spectral function A and the Fermi distribution
f(ω). We assume the matrix element | M |2 to be independent of energy and
momentum, which corresponds to a contact interaction in coordinate space. In
chapter 4, we dicuss the matrix element | M |2 in more detail. Taking the imaginary
part of the retarded Green’s function Eq. (2.74), we obtain the spectral function (see
Eq. (2.36))

A(k, ω) =
Γ(k, ω)(

~ω − ~2k2

2m
− ReΣ(r)(k, ω)

)2
+
(

Γ(k,ω)
2

)2 , (2.78)

where we defined the width Γ > 0

Γ(k, ω) = −2ImΣ(r)(k, ω). (2.79)
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Since the real part of the self-energy plays an important role to fulfill analyticity,
we calculate the real part from the imaginary part by using a dispersion relation

ReΣ(r)(k) = ΣMF (k) + P
∫

dω′

2π

Γ(k, ω′)

ω − ω′ . (2.80)

24



3 The Mean-Field

An appropriate way to include mean-field effects is using an energy density func-
tional. A convenient and realistic approach is the Skyrme method, which param-
eterizes the interaction energy density in terms of contact terms plus a quadratic
dependence on momenta. The simple structure of this kind of interaction allows one
to write down the energy density in an algebraic form. From the energy density one
can derive the mean-field properties of nucleons in the nuclear medium. Therefore,
we discuss in this chapter how to obtain the mean-field properties needed for our
calculations from the Skyrme energy density functional. After a short discussion
of the Skyrme interaction and how to derive the energy density functional, we de-
rive expressions for the effective mass and the effective potential in infinite nuclear
matter. At the end our results are compared for different kind of parameter sets.

3.1 The Skyrme Interaction

The Skyrme approach uses 9 parameters to write down the nuclear force and pro-
vides a simple tool for calculating the properties of nucleons in the nuclear medium
and in finite nuclei. Because of its simple analytic structure, one can express the
Hamiltonian density for a system as a function of the nuclear and the kinetic density.
A practical approach is obtained by approximating the ground state of the system
by a single Slater determinant, i.e. using the mean-field underlying Hartree-Fock
scheme. The parameterization allows one to fit the parameters to experimental re-
sults such as saturation density of infinite nuclear matter, binding energies single
particle separation energies and rms-radii of some finite nuclei. This approach is
very successful over the whole nuclear mass range.

In his original work [Sky59], Skyrme defined the nuclear force as a sum of two- and
three-body forces

V =
∑
i<j

v
(2)
ij +

∑
i<j<k

v̄
(3)
ijk. (3.1)
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3 The Mean-Field

For simplification we write down the two-body interaction part as a short-range
expansion [VB72]

v
(2)
ij (r1 − r2) = t0(1 + x0Pσ)δ(r1 − r2)

+
1

2
t1(1 + x1Pσ)

[
k′2δ(r1 − r2) + δ(r1 − r2)k

2
]

(3.2)

+ t2(1 + x2Pσ)~k′δ(r1 − r2)~k

+ iW0~σ · [~k′ × δ(r1 − r2)~k].

Using the spin- and isospin-operator Pσ and Pτ , we antisymmetrize the interaction
by

ṽ
(2)
ij (r1 − r2) = v

(2)
ij (r1 − r2)(1− PσPτ ). (3.3)

The operator ~k is a relative wave vector

~k =
1

2i
(~∇1 − ~∇2) (3.4)

acting to the right. The operator ~k′ is the complex conjugate to the operator ~k

~k′ = − 1

2i
(
←−
∇1 −

←−
∇2) (3.5)

and acting to the left. Finally, the operators Pσ, Pτ and ~σ are given by the Pauli
matrices

Pσ =
1

2
(1 + ~σ1 · ~σ2), (3.6)

Pτ =
1

2
(1 + ~τ1 · ~τ2), (3.7)

~σ = ~σ1 + ~σ2. (3.8)

For the three-body force we also assume a zero range force

v̄
(3)
ijk(r1, r2, r3) = t3δ(~r1 − ~r2)δ(~r2 − ~r3). (3.9)

It can be shown that for Hartree-Fock calculations Eq. (3.9) can be written as
[VB72]

v
(3)
ij (r1, r2) =

1

6
t3(1 + x3Pσ)ρα

N

(
r1 + r2

2

)
δ(r1 − r2), (3.10)

giving rise to an effective density-dependent two-body interaction. To derive the
Hartree-Fock equations, we assume the ground to be given by a slater determinant
of the single-particle wave functions φi:

φ(~r) =
1√
A!

det|φq
i (~r, s)|. (3.11)
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3.1 The Skyrme Interaction

We note that the single particle wave functions are characterized by the orbital, the
spin and isospin quantum numbers, i, s and q, respectively. The isospin quantum
number is defined by the eigenvalues of t3 = 1

2
σ3, i.e. q = +1/2 for protons and

q = −1/2 for neutrons. The expectation value of the energy is the given by relation

E = 〈φ|(T + V )|φ〉

=
∑

i

〈i| p
2

2m
|〉+ 1

2

∑
ij

〈ij|ṽ12|ij〉+
1

6

∑
ijk

〈ijk|ṽ123|ijk〉 (3.12)

=

∫
H(~r)d3r.

Here, H denotes the energy density

H = K +H0 +H3 +Heff +Hfin +HSO +HSG +HCoul, (3.13)

where K is the kinetic energy term, H0 a zero-range term, H3 the density-dependent
three-body term, Heff an effective mass term, Hfin a finite range term, HSO a spin-
orbit term, HSG a term due to the tensor coupling with the spin gradient and HCoul

the Coulomb part calculated with the Slater approximation.

We introduce the local matter ρq, the local kinetic τq and local spin density ~Jq,

ρ(~r) =
∑
i,s

|φq
i (~r, s)|2n

q
i , (3.14)

τ(~r) =
∑
i,s

|~∇φq
i (~r, s)|2n

q
i , (3.15)

~Jq(~r) =
∑
i,s,s′

φq∗
i (~r, s′)~∇φq

i (~r, s)× 〈s′|~σ|s〉n
q
i , (3.16)

where ni denotes the occupation number of the corresponding state i, s, q. After
some algebra the energy density H can be expressed by local densities as:

H0 =
1

4
t0[(2 + x0)ρ

2 − (2x0 + 1)(ρ2
p + ρ2

n)]

H3 =
1

24
t3ρ

σ[(2 + x3)ρ
2 − (2x3 + 1)(ρ2

p + ρ2
n)]
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3 The Mean-Field

Heff =
1

8
[t1(2 + x1) + t2(2 + x2)]τρ

+
1

8
[t2(2x2 + 1)− t1(2x1 + 1)](τpρp + τnρn) (3.17)

Hfin =
1

32
[3t1(2 + x1)− t2(2 + x2)](~∇ρ)2

− 1

32
[3t1(2x1 + 1) + t2(2x2 + 1)][(~∇ρp)

2 + (~∇ρn)2]

HSO =
1

2
W0[ ~J · ~∇ρ + ~Jp · ~∇ρp + ~Jn · ~∇ρn]

HSG = − 1

16
(t1x1 + t2x2) ~J2 +

1

16
(t1 − t2)[ ~J

2
p + ~J2

n]

Here, ρ = ρp +ρn, τ = τp + τn and ~J = ~Jp + ~Jn are the total matter, the total kinetic
and the total spin densities, respectively. For a detailed calculation of the energy
density functional Eq. (3.17), we refer to [VB72]. As we will see in the next steps,
the energy functional is the basis to determine the mean-field quantities. To obtain
the Hartree-Fock equations, the variation of the energy density functional has to be
stationary with respect to the single particle states φi

δ

δφi

(
E −

∑
i

ei

∫
|φi(~r)|2d3r

)
= 0. (3.18)

We note that the single particle states φi are assumed to be normalized. Using the
definition for the variation of the energy density functional,

δE = E(φi + δφi)− E(φi), (3.19)

one yields, by using equation Eq. (3.17) and after integration by parts, for the
binding-energy difference

δE =
∑
q=p,n

∫
d3r

[
~2

2m∗
q(~r)

δτq(~r) + U eff
q (~r)δρq(~r) + ~W (~r)δ ~Jq(~r)

]
. (3.20)

In Eq. (3.20) we introduced the effective mass m∗ and the effective potential U eff
q ,

which we will discuss later in detail. We assume our system to have time-reversal
invariance, therefore, only such variations that obey δφq

i (~r, s) = −2sδφq∗
i (~r,−s) are

allowed. For the variations of the local, kinetic and spin densities one then yields

δρq(~r) = 2
∑
i,s

δφq∗
i (~r, s)φq

i (~r, s)n
q
i ,

δτq(~r) = 2
∑
i,s

[~∇δφq∗
i (~r, s)] · ~∇φq

i (~r, s)n
q
i , (3.21)

δ ~Jq(~r) = −2i
∑
i,s,s′

δφq∗
i (~r, s′)~∇φq

i (~r, s)× 〈s′|~σ|s〉n
q
i .

28



3.2 The Parameter Set

Using these expressions with Eq. (3.20) and integrating the δτq terms by parts, we
obtain

δE = 2
∑
i,q

∫
d3rδφq∗

i

{
−~∇ · ~2

2m∗
q

~∇φq
i +

[
Uq + ~Wq · (−i)(∇× ~σ)

]
φq

i

}
. (3.22)

We note that here φq
i is a two-component spinor, which was introduced for simplicity

reason. Since the total energy has to be stationary, each component in the sum of
equation Eq. (3.22) has to vanish. Hence the single particle wave functions φi have
to fulfill the Schrödinger like equation[

−~∇ ~2

2m∗
q(~r)

~∇+ U eff
q (~r) + ~W (~r)(−i)(~∇× ~σ)

]
φq

i (~r, s) = eiφ
q
i (~r, s). (3.23)

We note that the effective mass m∗
q and the effective potential U eff

q are generated
by the interaction of the particles.

3.2 The Parameter Set

The simple analytic structure of the Skyrme interaction allows us to determine its
parameters so that the properties of nuclear matter and finite nuclei, such as binding
energies and other experimental informations are reproduced. Since the fundamen-
tal work of Skyrme [Sky59] in the late fifties and Vautherin and Brink [VB72] in the
early seventies, a lot of effort has been made to improve that kind of approach. One
of the first realizations of the approach led to the so-called SIII Skyrme interaction
[BFvGQ75], which was very successful throughout the entire mass table. Since that
time a lot of other parameter sets have been constructed depending on which nuclear
properties they should reproduce. From a better understanding of the nuclear mat-
ter incompressibility modulus, obtained by the experimental measurement of the
giant iscoscalar monopole resonance, the SkM Skyrme parameterization [KTB80]
was developed. Later information of the nuclear surface tension, which was ob-
tained by detailed studies of fission barriers in the actinide region, was included and
the SkM∗ parameterization [BQB+82] was developed. Reinhard and others modi-
fied the spin-orbit term in the SkM∗ parameterization to obtain a better agreement
of the isotope shifts in the Pb region for relativistic and non-relativistic calcula-
tions and developed the SkI3 Skyrme parameterization [RF95]. Later, Tondeur et
al. examined the influence of different parameters and developed a set of Skyrme
parameterization [TBFP84]. The Skyrme Lyon series [CMB+97, CBH+98] contains
not only information of nuclei along the line of stability, but also information of
exotic nuclei from the proton to the neutron drip line. The most advanced of the
parameterizations is the SLy10 force, which provides a good basis to study exotic
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3 The Mean-Field

Model SLy10 SkI3 SkM∗

t0 -2506.77 -1762.88 -2645.00
t1 430.98 561.608 410.00
t2 -304.95 -227.09 -135.00
t3 13826.41 8106.2 15595.00
x0 1.0398 0.3083 0.09
x1 -0.6745 -1.1722 0.00
x2 -1.0 -1.0907 0.00
x3 1.6833 1.2926 0.00
σ 1/6 1/4 1/6
W0 - 0.00 130.0
W1 75.86 - -
W2 105.50 0.00 130.0

Table 3.1: Some Skyrme parameters for the NN interaction (t0 is given in MeV
fm3, t1,t2 and W0, W1 and W2 are given in MeV fm5, t3 is given Mev
fm3+3σ, all other parameters are dimensionless)

nuclear matter. In table 3.1 some Skyrme parameters which we will use later are
listed. We note that the parameters W0, W1 and W2 are given for completeness. For
the definition of the parameters W1 and W2 we refer to [CBH+98]. A detailed dis-
cussion of the properties of different Skyrme parameter sets can be found in [SR07].

3.3 Infinite Nuclear Matter

In the case of infinite nuclear matter, which is represented by a Fermi gas in a volume
sufficiently large so that surface effects can be neglected, we consider ~∇ρq = ~∇· ~Jq =
0. Since the existence of stars, bound together by the gravitational force, which is
many orders weaker than the electromagnetic force, we assume the Coulomb force
to be absent. In a Fermi gas at zero temperature the relations for the density ρq

and the kinetic energy density τq can immediately be written down for protons and
neutrons as

ρq =
1

3π2
k3

fq, (3.24)

τq =
3

5
(3π2)

2
3 ρ

5
3
q , (3.25)
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3.3 Infinite Nuclear Matter

where kfq is the Fermi momentum for protons and neutrons, respectively. This
allows us to express the energy per particle as

E

A
(ρ) =

V

A
H(ρ) =

H(ρ)

ρ
. (3.26)

Using Eq. (3.26) with the energy density functional Eq. (3.17) yields

E

A
(ρ, Y ) =

3

5

~2

2m

(
3π2

2

) 2
3

F5/3 +
1

8
t0ρ [2(x0 + 2)− (2x0 + 1)F2]

+
1

48
t3ρ

σ+1 [2(x3 + 2)− (2x3 + 1)F2] (3.27)

+
3

40

(
3π2

2

) 2
3

ρ
5
3{[t1(x1 + 2) + t2(x2 + 2)] F5/3

+
1

2
[t2(2x2 + 1)− t1(2x1 + 1)] F8/3},

where we defined the asymmetry factor Fm(Y ) = 2m−1[Y m + (1 − Y )m] and the
asymmetry coefficient Y = Z

A
. Fig. 3.1 shows the equation of state for different

Skyrme parameterizations in the case of symmetric nuclear matter. All parameter-
izations reproduce the properties of nuclear matter and they agree very well up to
a density of ρ =0.4 fm−3. Especially the saturation density ρ =0.16 fm−3 and the
binding energy at the saturation point Esat =-16 MeV of nuclear matter are well
reproduced by all the parameterizations. On the other hand, there is a variation in
the high density region. Unfortunately, the high density behavior of the equation
of state is still an open question. In the case of asymmetric nuclear matter the
saturation point of all Skyrme parameterizations is shifted to lower densities. With
increasing number of neutrons, nuclear matter is less bound until, as seen in Fig. 3.2
for the case Y = 0.1, very neutron rich nuclear matter is not bound anymore. In
Fig. 3.2 neutron rich nuclear matter for the asymmetry coefficient Y = 0.1 is shown,
while the SLy10 and SkM∗ parameterizations agree very well, provides the SkI3
parameterization a more stiff equation of state.

Fig. 3.3 shows a comparison of the equation of state for symmetric nuclear matter
using different models. The full line shows the result which was received with the
SLy10 Skyrme parameterization, the dashed line the results of the Urbana group
[APR98], the dotted line the results for the density dependent relativistic hadron
field model (DDRH) [Fed09] and the thin line results of a relativistic phenomeno-
logical model with density dependent coupling constants [NcvacVFR02]. All model
agree in the low density region, while the relativistic density dependent models
predict a more stiff equation of state. Especially the results of the SLy10 param-
eterization agrees very well with the results obtained by the Urbana group. The
same behavior is see in the case of pure neutron matter Fig. 3.4. Here also a more
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Figure 3.1: The equation of state in symmetric nuclear matter for the Skyrme
parameter sets SLy10, SkI3 and SkM∗.
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Figure 3.2: The equation of state in asymmetric nuclear matter with asymmetry
coefficient Y = 0.1 for the Skyrme parameter sets SLy10, SkI3 and
SkM∗.
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Figure 3.3: Comparison of the results for the equation of state of symmetric nu-
clear matter using different models. The results are compared for the
SLy10 Skyrme parameterization, the Urbana IX model [APR98], the
density dependent relativistic hadron field (DDRH) model [Fed09] and
a relativistic phenomenological model with density dependent coupling
constants (DDME1) [NcvacVFR02].

stiff equation of state is predicted by the density dependent relativistic models by a
good agreement of the two non-relativistic models.

The pressure P of nuclear matter is given by the partial derivative of the energy ac-
cording to the volume [CMB+97] keeping the total number of particle A constant:

P = − ∂E

∂V

∣∣∣∣
A

=
A

V 2

∂E

∂ρ

∣∣∣∣
A

= ρ2∂ E
A
(ρ)

∂ρ

∣∣∣∣∣
A

(3.28)

We then can define the incompressibility modulus at non-zero pressure [CMB+97]:

K =
18P

ρ
+ 9ρ2 ∂ E

A

∂ρ2
. (3.29)

At the equilibrium density ρ0 the pressure P vanishes and the incompressibility
coefficient K∞ is given by

K∞ = 9ρ2
0

∂ E
A

∂ρ2

∣∣∣∣∣
ρ=ρ0

. (3.30)
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Figure 3.4: Comparison of the results for the equation of state of pure neutron
matter using different models. The results are compared for the SLy10
Skyrme parameterization, the Urbana IX model, DDRH model and
DDME1 model.

The incompressibility coefficient K∞ is the second derivative of the equation of state
and is therefore a measure of the stiffness of the equation of state, the higher K∞
the stiffer is the equation of state. In Fig. 3.3 and Fig. 3.3 results for incompress-
ibility coefficient K∞ using different models are shown for symmetric nuclear and
pure neutron matter. All models, except the relativistic phenomenological model
with density dependent coupling constants [NcvacVFR02], predict the right phe-
nomenological value of K∞ ≈ 230 MeV at saturation point density. The SLy10
Skyrme parameterization is in good agreement with the results obtained with the
Urbana IX model for symmetric nuclear matter and for pure neutron matter, while
the relativistic models predict a higher value of the incompressibility coefficient.
This observation is in agreement with the observation of a stiffer equation of state
in Fig. 3.1 and Fig. 3.4

We can also derive the symmetry energy coefficient [CMB+97] which occurs in the
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Figure 3.5: Comparison of the results for the incompressibility coefficient K∞ of
symmetric nuclear matter using different models. The results are com-
pared for the SLy10 Skyrme parameterization, the Urbana IX model,
DDRH model and DDME1 model.

expansion of the liquid drop model [Wei35] from Eq. (3.27):

as =
1

2

∂2 E
A
(ρ)

∂I2
|I=0

=
1

3

~2

2m

(
3π2

2

) 2
3

ρ
2
3 − t0(2x0 + 1)ρ (3.31)

+
1

24

(
3π2

2

) 2
3

Θsymρ
5
3 − 1

48
t3(2x3 + 1)ρσ+1.

Where I and Θsym are given by the expressions I = (N − Z)/A and Θsym =
3t1x1 − t2(4 + 5x2), respectively. The symmetry energy plays an important role of
the understanding of many phenomena in nuclear physics and astrophysics. Results
for the symmetry energy coefficient as are shown inFig. 3.7. So far no experimental
information of the symmetry energy at high densities are available. The symme-
try energy at normal matter density is usually tuned such that it reproduces the
empirical value from the liquid drop model of about 30 MeV [LCK08]. As see in
Fig. 3.7, all parameterizations reproduce the properties of the symmetry energy at
the saturation point. In the high density region the three Skyrme parameterizations
show a different behavior, the asymmetry energy grows for the SkI3, decreases for
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Figure 3.6: Comparison of the results for the incompressibility coefficient K∞ of
pure neutron matter using different models. The results are compared
for the SLy10 Skyrme parameterization, the Urbana IX model, DDRH
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Figure 3.7: The density dependence of the symmetry energy coefficient for different
sets of Skyrme parameterizations.
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3.3 Infinite Nuclear Matter

the SkM∗ and saturates for the SLy10 parameterization.

The single particle energy of a particle with momentum k in infinite nuclear matter
is given by

εq(k) = ~2 k2

2mq

+ ΣMF
q (k, ρ). (3.32)

Absorbing the momentum-dependent part up to the second order in k into the
kinetic energy term leads to an effective mass m∗

q and a momentum-independent
effective potential U eff

q

εq(k) = ~2 k2

2m∗
q(ρ)

+ U eff
q (ρ). (3.33)

The effective mass can be obtained by collecting the ρτ -terms from the energy-
density functional Eq. (3.17), the residual density dependent part can be related
to the effective potential. For the effective mass in asymmetric nuclear matter we
obtain

mq

m∗
q

= 1 +
2mN

~2
(
1

8
[t1(2 + x1) + t2(2 + x2)]ρ (3.34)

+
1

8
[t2(2x2 + 1)− t1(2x1 + 1)]ρq).

The residual density dependent part, which we interpret as an effective potential, is
then given by:

U eff
q =

1

4
t0[2(2 + x0)ρ− 2(2x0 + 1)ρq]

+
1

24
t3ρ

α[2(2 + x3)ρ− 2(2x3 + 1)ρq]

+
1

24
αt3ρ

α−1[(2 + x3)ρ
2 − (2x3 + 1)(ρ2

p + ρ2
n) (3.35)

+
1

8
[t1(2 + x1) + t2(2 + x2)]τ

+
1

8
[t2(2x2 + 1)− t1(2x1 + 1)]τq.

In table 3.2 some properties of symmetric nuclear matter at the saturation point
can be found for SLy10, SkM∗ and SkI3 Skyrme parameterizations.

Fig. 3.8 shows the effective mass in symmetric nuclear matter for the SLy10, SkI3 and
SkM∗ Skyrme force . One clearly sees that the effective mass for all Skyrme forces
drops with higher density. One interesting results of the effective masses is obtained
when comparing the results for different Skyrme forces in asymmetric nuclear matter.

37



3 The Mean-Field

Model SLy10 SkI3 SkM∗

ρ0 [fm−3] 0.156 0.158 0.160
E/A [MeV] -15.901 -15.96 -15.770
K∞ [MeV] -229.7 258.1 216.6
m∗/m 0.68 0.577 0.79
as [MeV] 31.98 34.8 30.03

Table 3.2: Properties of symmetric nuclear matter at saturation density for differ-
ent Skyrme parameter sets. The values for SLy10 and SkM∗ parameter
sets are taken from [CBH+98] and for SkI3 from [RF95].
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Figure 3.8: The effective mass for symmetric nuclear matter obtained with the
Skyrme forces SLy230a, SkI3 and SkM∗

Fig. 3.9 and Fig. 3.10 show results for the SLy10, SkM∗ and SkI3 Skyrme force in
nuclear matter depending on the asymmetry coefficient, starting with pure neutron
matter (Y=0). For the SkM∗ force one sees an increase of the neutron mass when
going to very neutron rich systems, while the proton mass decreases. However the
picture is different for the SLy10 and SkI3 force, here the proton mass increases
and the neutron mass decreases for neutron rich systems. On the other hand side
microscopic many-body theories, such as relativistic Dirac-Brückner-Hartree-Fock
calculations, predict that m∗

n > m∗
p [LCK08]. Unfortunately, so far almost nothing

is known experimentally about the effective mass a the neutron-rich medium.
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Figure 3.9: The proton effective mass at nuclear matter saturation density as a
function of the asymmetry coefficient Y .
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Figure 3.10: The neutron effective mass at nuclear matter saturation density as a
function of the asymmetry coefficient Y .
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Figure 3.11: The effective potential for different sets of Skyrme parameters in sym-
metric nuclear matter depending on the density.

Results for the effective potential using different type of Skyrme parameterizations
are found in Fig. 3.11, Fig. 3.12 and Fig. 3.13. In Fig. 3.11 results depending on
the number density in symmetric nuclear matter are shown. Again, there is a good
agreement on the qualitative level for all Skyrme parameterizations. The effective
potentials for all here considered Skyrme parameterizations show a minimum which
lies between ρ =0.15–0.3 fm−3. For asymmetric nuclear matter also all parameteri-
zations show the same behavior, as seen in Fig. 3.12 and Fig. 3.13 for protons and
neutrons, respectively. Protons in neutron rich nuclear matter are stronger bound
than neutrons.
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Figure 3.12: The proton effective potential at nuclear matter saturation as a func-
tion of the asymmetry coefficient Y .
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Figure 3.13: The neutron effective potential at nuclear matter saturation density
as a function the asymmetry coefficient Y .
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4 The Short-Range Interaction

In this chapter we determine the structure of the matrix elements Mqq′ which we
need for the calculation of the self-energies. An appropriate way to get information
about the matrix elements is provided by Landau-Migdal theory. In the late fifties
Landau developed his theory of Fermi liquids. He dealt with infinite systems such
as liquid 3He or nuclear matter. His theory is based on the idea that information on
the interacting system can be obtained from the non-interacting one by an adiabatic
switching of the interaction. He introduced the concept of quasi-particles, which
correspond to particles in the non-interacting system. These quasi-particles in the
correlated system behave like the particles in the non-interacting system and obey
Fermi-Dirac statistics. Quasi-particles differ from real particles essentially by their
mass. The interaction of quasi-particles, which in general depends on spin (in nuclear
systems also on isospin) and momentum, can be expanded at the Fermi surface
in terms of Legendre polynomials, the so called Landau-Migdal parameters. The
Landau-Migdal parameters can be deduced from experiment. Landau used this
approach to calculate the properties of excited Fermi liquids, such as the zero mode
of liquid 3He. In the late sixties Migdal applied Landaus’s soundtheory to finite
Fermi systems such as atomic nuclei [Mig75]. Here, one has to deal with two kinds
of fermions, protons and neutrons, and a relative small number of particles. In
atomic nuclei the quasi-particles correspond to single particle states of the nuclear
shell model. The quasi-particle interaction is determined in the same way as in
Landau’s theory but is not only spin but also isospin dependent. In particular, the
interaction is expanded in the same way at the Fermi surface in terms of Legendre
polynomials and the parameters of the expansion, the Landau-Migdal parameters,
are considered as universal quantities, characterizing the dynamical properties of a
many-body system.

At the beginning of this chapter, we give a short introduction of the basic ideas of
Landau-Midgal theory. For a more detailed introduction of the theory, see [Mig75,
KST04, PN66, KST04]. Therafter, we determine the Landau-Migdal parameters
from the Skyrme energy density functional and we discuss the results for different
sets of parameters. We also dicuss the influence of the long range pion part. At the
end we show results for the matrix element in nuclear and hypernuclear matter for
different sets of Skyrme parameters.
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4 The Short-Range Interaction

4.1 The Landau-Migdal Interaction

The energy of an interacting system in the ground state can be expressed as a
functional of the occupation probabilities nq(k) of the quasiparticle state Eq =
Eq(n(k)). An Excitation of the system leads to a change δnq(k) of the occupation
probability nq(k), where q = p, n denotes the charge-flavor states of the baryons.
This change in energy can be expressed as

δE =
∑

q

∫
d3k ε0

q(k)δnq(k) (4.1)

+
1

2

∑
qq′

∫ ∫
d3k d3k′ f qq′(k, k′)δnq(k)δnq′(k

′)

∑
q

∫
d3k εq(k)δ(k) =

∑
q

∫
d3k [ε0

q(k)δn(k) (4.2)

+
1

2

∑
q′

∫
d3k′ f qq′(k, k′)δnq(k)δnq′(k

′)],

where ε0 is the energy of the non-interacting system in equilibrium. Eq. (4.2) shows
that the single particle energy εq(k) and the quasiparticle interaction f qq′(k, k′) can
be obtained by first and second variation of the energy functional with respect to
the occupation probability:

εq(k) =
δE

δnq(k)
, f qq′(k, k′) =

δ2E

δnq(k)δnq′(k′)
. (4.3)

In an isotropic system the quasi-particle interaction f(k, k′) only depends on the
angle θ between the momenta k and k′, thus the interaction can be expanded in
terms of Legendre polynominal

f qq′(k, k′) =
∑

l

f qq′

l Pl(cos θ). (4.4)

In nuclear matter the interaction can be related to observables such as the effective
mass [Sjo76]

m∗
q

m
= 1 +

1

3
F q

1 , (4.5)

the isoscalar and isovector incompressibility [RD92]

Ks =
9

ρ

∑
q

ρ2
q(1 + F q

0 )/N q
0 , (4.6)

Kv =
9

ρn − ρp

[
ρ2

n(fnn
0 +

1

Nn
0

)− ρ2
p(f

pp
0 +

1

Np
0

)

]
. (4.7)
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4.2 Landau-Migdal Parameters from a Skyrme Interaction

The parameters F q
0 and F q

1 are given in terms of the interaction amplitudes at the

Fermi-surface f qq′

l ≡ f qq′

l (kFq , kFq′
) as

F q
0 = N q

0

[
f qq

0 +

(
kFq′

kFq

)
f q′q

0

]
, (4.8)

F q
1 = N q

0

[
f qq

1 +

(
kFq′

kFq

)2

f q′q
1

]
, (4.9)

here q 6= q′ (with q, q′ = p, n), kFq is the Fermi-mommentum and N q
0 is the inverse

density of state at the Fermi surface

N q
0 =

m∗
qkFq

π2~2
, (4.10)

which takes the value 1/N ≈ 300 MeVfm−3 in symmetric nuclear matter. The
dimensionless parameters F q

l are called Landau-Migdal parameters and measure the
strength of the interaction as compared to the kinetic energy.

4.2 Landau-Migdal Parameters from a Skyrme
Interaction

As we saw in the previous section one can extract informations of the quasiparticle
interaction from the energy density functional by doing the second variation with
respect to the occupation numbers. The occupation probabilities are related to the
particle density by

ρ =
N

V
=

1

V

∑
k

n(k), (4.11)

where V is the volume and N the total number of particles in system. Therefore,
the variation with respect to the occupation functions can be rewritten as:

δE

δn(k)
=

δE(ρ)

δρ
(4.12)

For deriving the Landau parameters for a Skyrme interaction, we need the polarized
energy functional E(ρp↑, ρp↓, ρn↑, ρn↓, ρΛ↑, ρΛ↓). The interaction amplitudes are given
by the second variation with respect to the partial spin-flavor density

f qsq′s′ =
δ2E

δρqsδρq′s′
, (4.13)
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4 The Short-Range Interaction

where q = p, n, Λ. The interaction amplitudes in the spin singlet (S = 0) channel
are obtained from

f qq′ =
1

4
[f q↑q′↑ + f q↓q′↓ + f q↑q′↓ + f q↓q′↑] (4.14)

and the interaction amplitudes in the spin triplet (S = 1) channel are given by

gqq′ =
1

4
[f q↑q′↑ + f q↓q′↓ − f q↑q′↓ − f q↓q′↑]. (4.15)

At this step we do not reproduce these somewhat lengthly calculations, the results
can be found in an explicit form in Ref. [Mor05] and appendix B.

The interaction of the nucleons in nuclear matter then is given by

V qq′ = f qq′ + g′qq′ ~σ1 ~σ2 (4.16)

For a Skyrme energy density functional only the l = 0 and l = 1 contributions are
non vanishing. Anyhow, for our purpose only the l = 0 contributions play a role. A
restriction to the lowest order l = 0 in Eq. (4.4) leads to a constant in momentum
space, which corresponds to an δ-function in ~r-space. The next order l = 1 is the
derivative a δ-function, which leads to a momentum dependent contribution to the
quasiparticle interaction. We note that most calculations are performed with the
lowest order l = 0 contribution.

Fig. 4.1 and Fig. 4.2 show the Landau-Migdal parameters for nucleons in symmetric
nuclear matter in the S = 0 and S = 1 channel using different Skyrme parameteri-
zations. Since in case of symmetric nuclear fpp = fnn and gpp = gnn, only the results
for protons are shown. Except for the fpn channel, the results show considerable
variations. These variations reflecting the persisting uncertainties in the isospin and
spin interaction. However, all parameters, except for gpn, show similar properties at
the qualitative level. For gpn the SkM∗ parameterization predicts a constant value
over the whole density region, while the SLy10 predicts a strong increase and the
SkI3 an increase with saturation at high densities. This behavior is directly con-
nected to the Skyrme parameters x1, x2 and x3 (see chapter 3) , which are all zero
for the SkM∗. Entering the values in the explicit expression for gpn in appendix B
leads to a constant value.

4.3 Landau-Migdal Parameters for the Pion
Contribution

The Landau-Migdal parameters obtained from the Skyrme energy density functional
include short- and long-range interactions. However, the origin and nature of the

46



4.3 Landau-Migdal Parameters for the Pion Contribution

-600

-400

-200

 0

 200

 400

 600

 800

 1000

 0  0.1  0.2  0.3  0.4  0.5  0.6

f p
p 

[M
eV

fm
3 ]

ρ [fm-3]

SLy10
SkM*
SkI3

-2000

-1500

-1000

-500

 0

 500

 1000

 0  0.1  0.2  0.3  0.4  0.5  0.6

f p
n 

[M
eV

fm
3 ]

ρ [fm-3]

SLy10
SkM*
SkI3

Figure 4.1: Landau-Migdal parameters in the singlet (S = 0) channel obtained
with the Skyrme parameterizations SLy10, SkM∗ and SkI3 in symmet-
ric nuclear matter.
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Figure 4.2: Landau-Migdal parameters in the triplet (S = 1) channel obtained
with the Skyrme parameterizations SLy10, SkM∗ and SkI3 in symmet-
ric nuclear matter.
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4.3 Landau-Migdal Parameters for the Pion Contribution

various pieces cannot be identified directly. Here we are interested mainly in the
short-range parts. A simple but meaningful way to extract the short-range parts is
to identify the long range components with the pion exchange. We define the short-
range part of the interaction by subtracting the central part of the pion exchange NN
interaction from the nucleon interaction, derived from the Skyrme energy density
functional. We note that the Λ hyperons do not couple to the pions, so we do not
subtract the pion contribution from the Λ interactions. We split the pion interaction
into a central and a tensor interaction part

Vπ(~k1, ~k2) = − f 2
π

m2
π

Dπ(~k1, ~k2)~σ1 · ~k1~σ2 · ~k2~τ1 · ~τ2 (4.17)

= V C(~k1, ~k2) + V T (~k1, ~k2) (4.18)

where V C
π is the central and V T

π the tensor interaction part. Hence, we use the
central interaction obtained from pion exchange and include anti-symmetrization
explicitly by means of the spin and isospin exchange operators Pσ,τ , respectively,
thus leading to

V C
π (~k1, ~k2) =

1

3
f 2

πDπ(~k1, ~k2)~σ1 · ~σ2~τ1 · ~τ2(1− PσPτ ) , (4.19)

which can be arranged into

V C
π (~k1, ~k2) =

∑
S,T=0,1

V
(π)
ST (~k1, ~k2)(~σ1 · ~σ2)

S(~τ1 · ~τ2)
T . (4.20)

Above, the momentum space pion propagator is denoted by

Dπ(~k1, ~k2) =
1

(p2 + m2)
F (p2), (4.21)

including a form factor which we choose to be of monopole shape with a cutoff
Λ = 800 MeV/c. The 3-momentum transfer in the t-channel is ~p = ~k2 − ~k1 while in

the u-channel we have ~p = ~Q = ~k2 + ~k1. Numerically, we use fπ ' 0.075, which is
the standard value for the pseudo-vector πNN coupling constant.

Hence, we cast the energy density functional into the form

E(ρ) = Es(ρ) + Eπ(ρ), (4.22)

where Es ≡ E − Eπ is the short-range contribution. The long range pionic part Eπ

is given by a sum over the various spin and isospin transfer contributions as defined
in Eq. (4.20). Formally, Eπ can be written as a sum over all spin-isospin channels

Eπ(ρ) =
1

2

∑
qq′=p,n

∑
S,T=0,1

∫
d3k1

(2π)3

∫
d3k2

(2π)3
Θ(kFq − k1)Θ(kFq′

− k2)

× V
(π)
ST (~k1, ~k2)〈(~σ1 · ~σ2)

S(~τ1 · ~τ2)
T 〉 (4.23)
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4 The Short-Range Interaction

although in spin-saturated nuclear matter only the S = 0 parts are non-vanishing. In
symmetric nuclear matter the T = 1 components will not contribute. The brackets
indicate traces over spin and expectation values on isospin and the step functions
constrain the momentum integrals to the proton and neutron Fermi-spheres with
Fermi-momenta kFq (with q = p, n), respectively. Second variation of the energy
density in 4.23 with respect to particle densities leads to

∂2Eπ(ρ)

∂ρq∂ρq′
=

∑
S,T=0,1

∑
q′′

VST (kFq , kFq′
)〈(~σ1 · ~σ2)

S(~τ1 · ~τ2)
T 〉 (4.24)

+
1

k2
Fq′

∫
dkk2Θ(kFq′′

− k)
∂

∂q |kFq′

VST 〈(~σ1 · ~σ2)
S(~τ1 · ~τ2)

T 〉.

We can now identify the Landau-Migdal parameters:

f (π) = N q
0V00 + f (r)(kFq), (4.25)

f ′(π) = N q
0V10, (4.26)

g(π) = N q
0V01, (4.27)

g′(π) = N q
0V11, (4.28)

where f r(kFq) is an rearrangement term which appears for spin-saturated symmetric
nuclear matter only in the S = 0, T = 0 channel.

Expanding the Landau-Migdal parameters in a Legendere series, which is common,
leads to

f
(π)
l =

1∫
−1

2l + 1

2
Pl(cos θ)f (π)(cos θ)d cos θ. (4.29)

The integration over the angle θ involves the Newman formula

Ql(t) =
1

2

1∫
−1

Pl(x)

t− x
dx, (4.30)

where the Ql(t) are Legendre functions of the 2nd kind [AS72]. The lowest order
functions are given by

Q0(z) =
1

2
ln

(
1 + z

1− z

)
, (4.31)

Q1(z) =
z

2
ln

(
1 + z

1− z

)
− 1,
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4.3 Landau-Migdal Parameters for the Pion Contribution

and those of higher order l ≥ 2 can be obtained recursively [AS72].

Using equation (4.30) together with our expressions Eq. (4.25)–Eq. (4.28) for the
Landau-Midgal parameters leads to

f
(π)
l (kFq) = −4π

9

4
N q

0

f 2
π

2k2
Fq

Ql(1 +
m2

π

2k2
Fq

) + f
(r)
l (kF ), (4.32)

f ′l
(π)(kFq) = 4π

3

4
N q

0

f 2
π

2k2
Fq

Ql(1 +
m2

π

2k2
Fq

), (4.33)

g
(π)
l (kFq) = 4π

3

4
N q

0

f 2
π

2k2
Fq

Ql(1 +
m2

π

2k2
Fq

), (4.34)

g′l
(π)(kFq) = −4π

1

4
N q

0

f 2
π

2k2
Fq

Ql(1 +
m2

π

2k2
Fq

) + δl04πN q
0f 2

π

1

m2
π

. (4.35)

Note that there is an additional term for l = 0 in the T = 1, S = 1 channel which
enters due to the central interaction term. For the additional rearrangement term
in Eq. (4.25) we get

f (r)(kFq) = N q
0

1

k2
Fq

∫
dkk2Θ(kFq − k)

∂

∂q |kFq

V
(π)
0 (q, k), (4.36)

where V π
0 (q, k) is the monopole component of the S = 0, T = 0 u-channel pion

exchange interaction. To subtract the pion contribution from the nucleon inter-
action obtained from the Skyrme density functional, we define the Landau-Migdal
parameters in the particle channel as

f qq′

π (kFq) =
1

2N q
0

(
f

(π)
l (kFq)(−)T f ′l

(π)(kFq)
)

(4.37)

gqq′

π (kFq) =
1

2N q
0

(
g

(π)
l (kFq)(−)T g′l

(π)(kFq)
)

, (4.38)

where T = 0 and T = 1 for q = q′ and q 6= q′, respectively. Finally, the short range
interactions are given by the relations

f qq′

s = f qq′ − f qq′

π , (4.39)

gqq′

s = gqq′ − gqq′

π , (4.40)

(4.41)

for the NN interaction.

In Fig. 4.3 and Fig. 4.4 the results for the Landau-Migdal parameters with and
without subtraction of short-range part are shown. The results are obtained using
the SLy10 Skyrme parameterization. While the subtraction leads to more attraction
for gpp, it leads to more repulsion in the other channels.
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Figure 4.3: Landau-Migdal parameters with and without pion subtraction in the
S = 0 channel obtained with the Skyrme parameterization SLy10.
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Figure 4.4: Landau-Migdal parameters with and without pion subtraction in the
S = 1 channel obtained with the Skyrme parameterization SLy10.
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4.4 The Matrix Element

As shown by Lehr et al. [LLLM02, LEL+00] correlation in nuclear matter are dom-
inated by phase space effects rather than by the off-shell momentum structure of
the interactions. Lehr treated the interaction matrix element for nuclear matter
M as a universal constant and adjusted it to the spectral function from Benhar et
al. [BFF89]. The so obtained results for the nucleon width, spectral function and
occupation number were in good agreement with other results using full many-body
calculations, such as [BFF89] and [CdAS96]. In [KLM05] we applied the approach
from Lehr to asymmetric nuclear matter. Comparing our results to the Tübin-
gen group [HM04] we found that the universal character of short-range correlations
holds also for asymmetric nuclear matter. In particular, we were able to describe the
strong depletion of protons in neutron rich matter without using the tensor force
explicitly. Thus, for including short-range effects the detailed modeling does not
matter, but the overall strength of the interaction and a reliable description of the
collisional phase space. Therefore, we will use the Landau-Migdal parameters, which
match with an point-like interaction on the Fermi surface, to get information about
the interaction matrix element. To obtain an average interaction matrix element,
we sum over the weighted spin degrees of freedom

Mqq′ =
1

2

√
(f s

qq′)
2 + 3(gs

qq′)
2. (4.42)

We note that because of isospin symmetry, the matrix elements must fulfill the rela-
tionMpn =Mnp in symmetric nuclear, while the in the general case of asymmetric
nuclear matter we have Mpp 6= Mnn. In Fig. 4.5 the interaction matrix element
for symmetric nuclear matter is shown. The upper figure shows the results for the
isospin T = 1 channel and the lower picture for the isospin T = 0 channel. The
interaction matrix element obtained from the SkM∗ and the SkI3 Skyrme energy
functional show a similar behavior on a quantitative level. The matrix elementMpp

starts at a strength of about 1000 MeVfm3 and has a minimum at around twice nu-
clear matter saturation density, while the results obtained from the SLy10 Skyrme
energy density functional shows a more stiff behavior. The picture changes for the
interaction matrix Mpn in the isospin T = 0 channel. Here the matrix elements
obtained from the SkM∗ and the SkI3 Skyrme energy functional show a more stiff
behavior the the matrix element obtained with the SLy10 parameterization. The
matrix elements start at around 1200 MeVfm3 and have their minima at around 1.5
times nuclear matter saturation density. The overall behavior of all curves, start-
ing with an high value reaching a minimum and rising again, can be explained by
an interplay between the increase of the number of available states and the Pauli
principle. At one hand, with rising density more states are blocked, at the other
hand more interactions are possible. This leads to the very high value at very low
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4.4 The Matrix Element

densities. We identify the long range part with pion contribution to the interac-
tion, Fig. 4.5 shows the pion subtracted interaction matrix element. The influence
of the pion subtraction is shown in Fig. 4.6. The results are obtained using the
SLy10 Skyrme parameterization. For the isospin T = 1 channel, the subtraction
of the pion contribution leads to an increase of the interaction matrix element in
the region up to 1.5 times the nuclear matter saturation density. The minimum is
shifted to higher densities. In the higher density region, the subtraction leads to a
decrease of the interaction matrix element. The picture is different in the isospin
T = 0 channel, here the subtraction leads to an increase of the interaction over the
full range of density. The overall slope and the increasing strength can be under-
stood in a microscopic picture. With increasing number of particles more states are
blocked, therefore, is the matrix element higher for lower densities. The increase
of strength when subtracting the long range part can be understood when having
a closer look at the interaction potential of the nucleons. While the strong short
range potential is repulsive, the long range part of the interaction is attractive.
Therefore, both contributions average out in the density functional. Subtracting
the long range contribution leads to the stronger repulsive short range interaction.

Fig. 4.7 shows the influence of asymmetry on the matrix element, starting with
pure neutron matter and ending with symmetric nuclear matter. The results are
taken at nuclear matter saturation density ρ = 0.16 fm−3. From top to bottom the
results are obtained using the SLy10, SkM∗ and SkI3 Skyrme energy density func-
tional respectively. All investigated Skyrme parameterizations show the behavior
on a qualitative level. Isospin symmetry demands that the pp interaction Mpp in
symmetric nuclear matter is equal to the nn interaction Mnn. Going to asymmet-
ric nuclear matter this is no longer the case. With increasing number of neutrons,
the interaction strength of the pp collisionMpp starts to rise, while the interaction
strength of the nn interaction Mnn decreases. The interaction between neutrons
and protons Mpn stays on a nearly constant value. However, there are differences
between the Skyrme parameterizations on the quantitative level. We note that we
can not make any predictions on the influence of the tensor force like in [HM04],
since the tensor force is not included explicitly, but rather in a phenomenological
way by the fits to nuclear properties.

55



4 The Short-Range Interaction

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 0  0.1  0.2  0.3  0.4  0.5  0.6

M
pp

 [M
eV

fm
3 ]

ρ [fm-3]

SLy10
SkM*
SkI3

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  0.1  0.2  0.3  0.4  0.5  0.6

M
pn

 [M
eV

fm
3 ]

ρ [fm-3]

SLy10
SkM*
SkI3

Figure 4.5: The pion subtracted interaction matrix elements in symmetric nuclear
matter. The upper panel shows Mpp and the lower Mpn. We note
that in case of symmetric nuclear matterMpp =Mnn.
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5 Dynamical Correlations in Nuclear Matter

We now use the previous results and apply it to nuclear matter. At the beginning, we
discuss the calculational details of our approach. After that, we examine the Skyrme
parameterization influences the imaginary part of the self-energy and compare the
results for neutron rich matter to the results of a recent Brueckner-Hartree-Fock
(BHF) calculation from the Tübingen group [HM04]. Before we present results for
the spectral function, we show how we calculated the real part of the self-energy.
At the end, we introduce the momentum distribution and the spectroscopic factor.
The influence of the pion contribution to the momentum distribution is shown and
the results are compared to the results of Benhar et al. [BF00]. Finally, we compare
the results for the spectroscopic factor to the results of [Leh03] and [BFF92].

5.1 Calculational Details

In the numerical calculations we use an iterative approach. Starting with an initial
value for the width Γ, we calculate the spectral function A(k, ω) using Eq. (2.78),
thereby updating the imaginary part, i.e. the width Γ, and obtaining the dispersive
real part leading to an energy shift. Afterwards, we use this result for the spectral
function to calculate the self-energies using Eq. (2.76) and Eq. (2.77). We stop
this procedure, if the changes in the obtained results are less than a lower limit ε,
chosen typically as ε = 10−4. The chosen accuracy is typically achieved after 5 or
6iterations. In the language of Feynman diagrams this approach corresponds to the
summation of the self-energies Eq. (2.77) and Eq. (2.76) to all orders.

In principle we saw in chapter 2.7 how to calculate the spectral function for a one
component infinite system. Since we are interested in asymmetric nuclear matter, we
have to modify Eq. (2.77) and Eq. (2.76) to incorporate the new degrees of freedom.
The two-particle-one-hole (2p1h) and the one-particle-one-hole (1p2h) self-energies
for a more component nuclear system are given by a summation of the additional
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5 Dynamical Correlations in Nuclear Matter

degrees of freedom

Σ>
q (k, ω) = −i

2~2

(2π)8

∑
q′

{
| Mqq′ |2

∫
d3k2dω2

∫
d3k3dω3

∫
d3k4dω4

× δ3(k + k2 − k3 − k4)δ(ω + ω2 − ω3 − ω4)Aq′(k2, ω2)fq′(ω2)

×Aq′(k3, ω3) [1− fq′(ω3)]Aq(k4, ω4) [1− fq(ω4)]

}
, (5.1)

Σ<
q (k, ω) = i

2~2

(2π)8

∑
q′

{
| Mqq′ |2

∫
d3k2dω2

∫
d3k3dω3

∫
d3k4dω4

× δ3(k + k2 − k3 − k4)δ(ω + ω2 − ω3 − ω4)Aq′(k2, ω2) [1− fq′(ω2)]

×Aq′(k3, ω3)fq′(ω3)Aq(k4, ω4)fq(ω4).

}
. (5.2)

Therefore, we have to sum over protons and neutrons in the case of asymmetric
nuclear matter.

With the help of the delta-functions in Eq. (5.1) and Eq. (5.2) we can carry out

the six integrations over ω4, ~k4 and the integration over the azimuthal angels φ1, φ2

analytically [LLLM02], so that only six integrations are left

Σ>
q (k, ω) = −i

2~2

(2π)6

∑
q′

{
| Mqq′ |2

∫
dω2

∫
dω3

∫
dk3k

2
3

∫
dk2k

2
2

d cos θ2

ktotk3

×Aq′(k2, ω2)fq′(k2, ω2)Aq′(k3, ω3)(1− fq′(k3, ω3))

×
∫

dk4d

∫
ω4k4Aq(k4, ω4)(1− fq(k4, ω4))

}
, (5.3)

Σ<
q (k, ω) = i

2~2

(2π)6

∑
q′

{
| Mqq′ |2

∫
dω2

∫
dω3

∫
dk3k

2
3

∫
dk2k

2
2

d cos θ2

ktotk3

×Aq′(k2, ω2)(1− fq′(k2, ω2))Aq′(k3, ω3)fq′(k3, ω3)

×
∫

dk4d

∫
ω4k4Aq(k4, ω4)fq(k4, ω4)

}
. (5.4)

Here ktot =| ~k +~k2 | is the total momentum and ω4 = ω +ω2−ω3. The integrand in
Eq. (5.3) and Eq. (5.4) contains the spectral function A(k, ω) for each integration.
Numerical problems might occur due to the fact that the spectral function is sharply
peaked near the on-shell point. Therefore, we use a substitution to remove the peak
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from the integrand in our numerical simulation

kmax∫
kmin

dkkA =

k2
max∫

k2
min

dk2

2
A =

y(kmax)∫
y(kmin)

dy. (5.5)

Inspired by the denominator of the spectral functionA(k, ω) and using d arctan(x)/dx =
(x2 + 1)−1, we construct the function

y

2
= arctan

[
2

Γ

(
~ω − ~2k2

2m∗ − U eff − ReΣ

)]
, (5.6)

dy

dk2
=

~2Γ

2m∗
1

Γ2

4
+
(
~ω − ~2k2

2m∗ − U eff − ReΣ
) =

~2

2m∗A. (5.7)

We note that Γ and ReΣ are taken at the on-shell point and the derivative is only
taken with respect to the momentum k. Using Eq. (5.7) and Eq. (5.6) with the
integral Eq. (5.5) yields

k2
max∫

k2
min

dk2A =

y(kmax)∫
y(kmin)

dy
dk2

dy
A =

2m∗

~2

y(kmax)∫
y(kmin)

dy, (5.8)

which is easier to handle numerically than the original integral. We refer to [Fro06]
for a more detailed dicussion. For the multidimensional integration we use the
routine CUBPACK [CH03]. The numerical calculations were done on an energy and
momentum grid (E, q) with −1.0 GeV ≤ E ≤ 1.0 GeV and 0 ≤ q ≤ 1.25 GeV/c,
where E = ~ω and q = ~k using 120 steps in each direction. It turned out that using
a narrower grid affects the results only at an insignificant level, but leads to higher
numerical effort in the calculation. Therefore, using 120 steps in each direction is a
choice of good balance between accuracy and numerical effort.

For technical reasons we introduced the form factor

Fq(ω2, ω3) = e(ω2−ω3−ωFq )4/Λ4

, (5.9)

where we used Λ = 0.5 GeV. The influence of the form factor is shown in Fig. 5.1.
Without the form factor the width is increasing with increasing energy. This be-
havior is unrealistic and leads, as we will see later, to mathematical problems when
we calculate the real part of the self-energy. The form factor Fq(ω2, ω3) leads to a
decrease of the width in the high energy region and leaves the width unchanged near
the Fermi surface.
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Figure 5.1: The width of the nucleons with momentum q = 0.300 GeV/c in sym-
metric nuclear matter at saturation density .

5.2 The Width

In the width, which corresponds to the imaginary part of the self-energy (see Eq. (2.79)),
the influence of correlations is reflected most clearly and directly. If we add a particle
with momentum q and energy E to or remove such a particle from the many-body
ground state the life time τ of that state is given by the inverse of the width Γ
[DVN05, KB62]

τ ∼ 1/Γ. (5.10)

Therefore, the width is directly proportional to the correlations taking place, for
a lager width we have more correlations in a many-body system. The boundary
condition for the Green’s functions Eq. (2.35) implies [KB62] that

Σ<(~k, ω) = e−β(~ω−µ)Σ>(~k, ω), (5.11)

where β = 1/kT . In a fermion system at zero temperature the Σ< vanishes for
ω > µ and can be interperted as the life time of a hole state, while Σ> vanishes for
ω < µ and can be interperted as the life time of a particle state. Therefore, the
width Γ below the Fermi energy εf is given by the one-particle-two-hole self-energy
(1p2h) Σ< and by two-particle-one-hole (2p1h) self-energy Σ>. At the Fermi-edge
it vanishes, which means that particles close to the Fermi-surface have an infinitely
long life-time as required for a stable ground state.
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5.2 The Width

Results for the nucleon width for different Skyrme parameterizations in nuclear
matter at the saturation density ρ = 0.16 are shown in Fig. 5.1 for symmetric
nuclear matter and in Fig. 5.2 for neutron rich nuclear matter with an asymmetry
coefficient Y = 0.25. For symmetric nuclear matter the width Γ agrees for all Skyrme
parameterizations in the global energy dependence and shows a strong increase of
the width for high energies. While the width for E < εf agrees very well for all
Skyrme parameter set the width shows variations for energies above the Fermi edge
E > εf . These variations are due to differences in the interaction strength, which
we observed in chapter 4.

For neutron rich matter the results obtained with different Skyrme parameteriza-
tions show a slightly different behavior. Comparing the proton width to the neutron
width, one sees a shift of the Fermi edge. Since there are less proton states occu-
pied the proton Fermi energy is smaller than in symmetric nuclear matter. For the
neutrons the situation is reversed, more neutron states are occupied and the Fermi
edge lies higher than in the symmetric case. All Skyrme parameterizations, which
we examined in this work, shows this splitting into a neutron and proton Fermi
sphere with good agreement. Qualitatively the total slope of the width agrees for
all parameterizations. Quantitatively there is a deviation reflecting again the fact
that we obtained different interaction matrix elements for the parameterizations.
However similar differences are observed in Brueckner-Hartree-Fock (BHF) calcula-
tions when using different NN-potentials. In Fig. 5.3 we compare our results for the
SLy10 Skyrme parameterization in neutron rich matter with Y = 0.25 to the results
of recent BHF calculation using the Bonn and Nijmegen NN-potentail [HM04]. Our
results agree qualitatively in the global energy dependence, but in detail differences
are seen on the quantitative level. However, the results of the [HM04] show also
differences when using different NN-potentials, as seen in Fig. 5.3.
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Figure 5.2: The width for protons (upper graph) and neutron (lower graph) in
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to a momentum of q=0.300 GeV/c.
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5.3 Real Part of the Self-Energy

As shown by Lehr et al. [LLLM02], neglecting the real part of the collisional self-
energy violates the analyticity of the spectral function, which leads to the wrong
behavior of the momentum distribution and contradicts the conservation of the
quantum mechanical probability. We have seen in chapter 2.7 that the real part of
the self-energy is given by

ReΣ(r)(k, ω) = ΣMF (k) + Σdis(k, ω), (5.12)

where Σdis(k, ω) is calculated from the collisional part of the self-energy using the
dispersion relation. Since the dispersion integral in general determines the real part,
except for a constant which comes from complex integration [BD67], we impose the
constraint

Σ(r)(k, εon)
!
= ΣMF (k) (5.13)

at the energy shell εon = ~2k2/(2m∗) + U eff . This condition is fullfilled for the
subtracted dispersion relation

ReΣdis(k, ω) = P
∫

dω′

2π
Γ(k, ω′)

{
1

ω − ω′ −
1

εon − ω′

}
(5.14)

= (εon − ω)P
∫

dω′

2π

Γ(k, ω′)

(εon − ω′)(ω − ω′)
.

For the calculation of the real part we have to solve integrals of the form

I(ω) = P
∫

dω′

2π

f(ω′)

ω − ω′ . (5.15)

The integrand in the last line of Eq. (5.15) is not analytic at the point ω, this
is actually the reason why we have to take the principal value. To remove the
singularity at the point ω, we use

P
∫

dω′

2π

1

ω′ − ω
= 0, (5.16)

allowing to add and subtract the term P
∫

dω′

2π
f(ω)
ω′−ω

to and from Eq. (5.15), respec-
tively:

I(ω) = P
∫

dω′

2π

f(ω′)

ω − ω′ + P
∫

dω′

2π

f(ω)

ω′ − ω
− P

∫
dω′

2π

f(ω)

ω′ − ω

= P
∫

dω′

2π

f(ω′)− f(ω)

ω − ω′ − f(ω)P
∫

dω′

2π

1

ω′ − ω

= P
∫

dω′

2π

f(ω′)− f(ω)

ω − ω′ . (5.17)
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Figure 5.4: The real part of the self-energy obtained by the dispersion relation in
symmetric nuclear matter for different momenta, calculated with the
SLy10 Skyrme parameterization.

The integrand of the integral in the last line of Eq. (5.17) is now analytic, since

lim
ω′→ω

f(ω′)− f(ω)

ω − ω′ = −df(x)

dx
. (5.18)

Therefore, we can replace the Cauchy principal value P Eq. (5.17) by an ordinary
integration

I(ω) =

∫
dω′

2π

f(ω′)− f(ω)

ω − ω′ . (5.19)

We note that the formfactor Eq. (5.9) ensures that the integral is ultraviolet con-
vergent.

Fig. 5.4 shows the results for the real part of the self-energy, which is obtained by the
dispersion relation . Compared to the width, the real dispersive part is much smaller.
One clearly sees that the real part fulfills initial assumption and the dispersive part
of the real self-energy ReΣdis(k, ω) vanishes at the on-shell point.

5.4 The Spectral Function

The peak of the spectral function A is mainly influenced by the first term in the
nominator of Eq. (2.78), hence the spectral function is peaked around the root of
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the on-shell energy

εon =
~2k2

2m
+ ΣMF (k) + ReΣ(k, εon). (5.20)

We note that in our approach the real part is defined such that ReΣ(k, εon) = 0 (see
Eq. (5.13)). Therefore, it follows that the position of the peak is mainly affected by
the mean-field

εon =
~2k2

2m
+ ΣMF (k). (5.21)

This can be observed in Fig. 5.5 and Fig. 5.6, where the spectral functions for
nucleon in symmetric and asymmetric nuclear matter are shown. Fig. 5.5 shows the
spectral function A for momenta q = 0.1 GeV/c (upper panel) and q = 0.3 GeV/c
(lower panel) in symmetric matter using different parameterizations for the Skyrme
energy functional. All results obtained using the different Skyrme parameters agree
very well. For both momenta the quasi-particle peak can be clearly seen, for the
momentum q = 0.1 GeV/c inside the Fermi sea and for q = 0.3 GeV/c outside the
Fermi sea. This is easy to understand, since εon < εF for q < qF and since εon < εF

for q < qF . Comparing the width of the quasiparticle peaks shows that the peak
for q = 0.1 GeV/c is broader than the peak for q = 0.3 GeV/c. The width, which
determines the profile of the quasiparticle peak, becomes very small close to the
Fermi edge, hence the quasiparticle peak becomes very sharp. For q = 0.3 GeV/c
the quasiparticle peak is closer to the Fermi edge than for q = 0.1 GeV/c, therefore,
it is even sharper.

In Fig. 5.6 results for the proton and neutron spectral function in neutron rich nu-
clear matter (Y = 0.25) are shown. Both types of particles have the momentum
q = 0.3 GeV/c. Since in neutron rich matter the Fermi sphere is greater for neu-
trons than for protons, the Fermi energy for neutrons is higher. This leads to the
observation that the protons leave the Fermi sea earlier than the neutrons, as can
be seen in Fig. 5.6. Both types of particles carry the same momentum, but while
the neutrons are still in the Fermi sea, the protons have already left it. For different
Skyrme parameterizations we obtain similar results. While for the protons we have
good agreement, the results for the neutrons show slight differences. For the SkI3
Skyrme parameterization the Fermi energy is shifted to a higher energy. Because of
its sharp structure, this is better seen for the spectral function than for the width.
These differences reflect the uncertainties of the Skyrme parameters fitted to differ-
ent data and they are comparable to the differences observed in BHF calculations
when using different NN-potentials (see Fig. 5.3).
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Figure 5.5: The nucleon spectral function in symmetric nuclear matter at satu-
ration density. The upper panel refers to a momentum of k = 0.100
GeV/c and the lower panel to a momentum of k = 0.300 GeV/c.
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Figure 5.6: The spectral function for protons (upper panel) and neutrons (lower
panel) for momentum q = 0.3 GeV in asymmetric nuclear matter (Y =
0.25).
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5.5 The Momentum Distribution and the
Spectroscopic Factor

The influence of correlations can very clearly bee seen by the examination of the
nucleon momentum distribution. For a Fermi gas of pure quasiparticles the mo-
mentum distribution is a step function nq(k)0 = θ(k2

Fq
− k2). In a correlated Fermi

gas the momentum distribution can be generated from the hole part of the spectral
function [DVN05]

nq(k) =

εFq∫
−∞

dE

2π
Aq(E, k), (5.22)

where εFq is the Fermi energy.

In Fig. 5.7 we compare the momentum distribution of the nucleon in nuclear matter
at saturation density for different Skyrme parameterization. One sees the depletion
of the Fermi-sphere of about 10%. This fraction of spectral strength is shifted into
the high momentum tail, as can be seen in the lower panel of Fig. 5.7. The results
for the SLy10 and SkM∗ Skyrme parameterization, where the pion contribution is
subtracted, are in good agreement with the result of a full many-body calculation
taken from [BF00]. The importance of the substraction of the pion contribution is
also shown in Fig. 5.7. The result, where we did not subtract the pion contribution,
leads to less depletion in the Fermi sphere. As we saw in chapter 4, the subtraction
of the pion contribution leads to an increase of the interaction matrix element.
Therefore, subtracting the long range contribution in our approach seems to be
essential.

Results for the momentum distribution in neutron rich matter at saturation density
are shown in 5.8. In asymmetric nuclear matter the structure of the momentum
distribution follows closely the same pattern as found already in symmetric nuclear
matter. Also here, the sates in the Fermi sea are shifted into the high energy
tail. However, there are seen differences when comparing the results for protons and
neutrons. In asymmetric nuclear matter the Fermi edges for neurons and protons are
different due to higher number of neutrons in the medium. Beyond that, one sees a
higher depletion of the Fermi sea for protons than for neutrons. This has two reasons,
at the one hand more states in the phase space are Pauli blocked for the protons, at
the other hand this effect is increased by the higher interaction matrix element for
protons than for neutrons in neutron rich matter (see Fig. 4.7). This observation
is in agreement with our previous work [KLM05] and with BHF calculations of
theTübingen group [HM04]. Hassaneen et al. claimed that the depletion of the
protons is mainly due to the tensor interaction. Since our approach does not contain
an explicit tensor interaction, we cannot make any prediction about that.
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tribution for nucleons in symmetric nuclear matter.

It can be shown that the discontinuity of the momentum distribution is directly
related to the quasi particle strength [DVN05]. As we saw in the previous section,
the spectral function is peaked around the on-shell energy εon. If we expand the real
part of the self-energy around the on-shell point, we obtain for the first term in the
nominator of the spectral function A Eq. (2.78)

(E − εon − ReΣ(k,E)) ' (E − εon)

(
1− ∂ReΣ(k,E)

∂E

∣∣∣∣
E=εon

)
(5.23)

We define the quasiparticle strength, or spectroscopic factor ZF (k), as

ZF (k) =

(
1− ∂ReΣ(k,E)

∂E

∣∣∣∣
E=εon

)−1

. (5.24)

The quasiparticle strength tells us how much strength is left in the quasiparticle
state. The lower the quasiparticle strength the more particles are correlated and
strength is shifted into many-body configurations. It can be shown that the discon-
tinuity of the momentum distribution is given by the particle strength ZF at the
Fermi surface [DVN05]

lim
η→0

[n(kf − η)− n(kf + η)] = ZF , (5.25)
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which is called Migdal-Luttinger theorem [Mig57], [Lut60].

In the upper panel of Fig. 5.9 results for the quasiparticle strength in symmetric nu-
clear matter are shown. The results are compared to results of [Leh03] and [BFF92]
and agree very well besides for small variations. One clearly sees that the quasiparti-
cle strength only differers from unity near the Fermi edge. At the Fermi-momentum
q = qF the strength reaches a minimum. This observation confirms the assumption
of our approach, where we assumed a local interaction in nuclear matter taking place
basically at the Fermi surface. However, the results of [BFF92] predict a smaller
value for the quasiparticle strength at the Fermi edge than our model. This fact is
directly connected with the momentum distribution in Fig. 5.7, where the results of
Benhar showed a higher depletion of the Fermi sea.

Results for protons and neutrons in neutron rich nuclear matter are shown in the
lower panel of Fig. 5.9 in comparison to symmetric nuclear matter. We observe
less correlations for the neutrons in neutron rich nuclear matter than in symmetric
nuclear matter. For the protons we observe a small increase of the correlations.
Again, this effect is directly connected with the momentum distribution in neutron
rich matter. As we observed in Fig. 5.8, the protons show a higher depletion in the
Fermi sea in neutron rich nuclear matter than in symmetric nuclear matter. For
neutrons the situation is reversed: neutrons in neutron rich nuclear matter are not
so strongly correlated than in symmetric nuclear matter. This fact can be explained,
as we pointed out before, by the change in the phase space and the higher interaction
matrix element for protons than for neutrons in neutron rich nuclear matter.
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6 Dynamical Correlations in Hypernuclear
Matter

In this chapter we investigate correlations in hypernuclear matter. So far results for
dynamical correlations of a single Λ-hyperon in nuclear matter have been reported by
[HJPRM96] and [RD04], but no systematical investigation of dynamical correlations
in hypernuclear matter has been done. At the beginning of this chapter we show
how to extend our approach from chapter 5 to the strange strange sector. Since the
Λ-hyperons interact with the nucleons, it is not sufficient to just add the Λ-hyperons
as independent particles, rather the self-consistent calculation affects all parts of the
self-energies of all baryons. At the end we show results for hypernuclear matter and
β-equilibrated nuclear matter.

6.1 The Mean-Field Contribution

The first extension of the Skyrme approach to the hypernuclear sector was done
by Rayet [Ray81]. This approach was essentially phenomenological due to the fact
of poor amount of hypernuclear data. With the first measurements of the Λ hy-
pernuclear energy levels in medium and heavy systems at BNL [P+91], reasonable
Λ-nucleon Skyrme parameterizations appeared [YBZ88, MDG88, FLAP89]. Lan-
skoy and Yamamoto [YBZ88] determined the parameters by using data from Λ
hypernuclear spectra of nuclear mass numbers up to 208

Λ Pb by the (π+, K+) reac-
tion at KEK [HHH+96]. The interaction of their parameterization was motived by
G-matrix calculations performed with the Jülich and Nijmegen potentials. Finally,
Lanskoy extended the Skyrme interaction to the ΛΛ sector [Lan98] using data from
double-Λ hypernuclei. We adopt the notation from Ref. [Mor05] and name the set
numbered I-V from [LY97] for the NΛ interactions LYI-LYV and the sets numbered
1-6 from [YBZ88] are named YBZ1-YBZ6.

In Table 6.1 and table 6.2 a selection of Skyrme parameters for for the NΛ-interaction
[LY97, YBZ88] and ΛΛ-interaction [Lan98] can be found.
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6 Dynamical Correlations in Hypernuclear Matter

Model LY-I LY-IV YBZ-1 YBZ-5 YBZ-6
u0 -476.0 -542.5 -349.0 -315.3 -372.2
u1 42.0 56.0 67.61 23.14 100.4
u2 23.0 8.0 37.39 -23.14 79.60
u3 1514.1 1387.9 2000.0 2000.0 2000.0
y0 -0.0452 -0.1534 -0.108 -0.109 -0.107
y3 -0.280 0.1074 0.0 0.0 0.0
β 1/3 1/3 1 1 1

Table 6.1: Skyrme parameters for the NΛ interaction [LY97, YBZ88], u0 is given
in MeV fm3, u1 and u2 are given in MeV fm5, u3 is in given Mev fm3+3β,
all other parameters are dimensionless.

Model SLL1 SLL2 SLL3
λ0 -312.6 -437.7 831.8
λ1 57.5 240.7 922.9

Table 6.2: Skyrme parameters for the ΛΛ interaction [Lan98], λ0 is given in MeV
fm3 and u1 is given in MeV fm5.

The Skyrme approach can be generalized by using the following ansatz for the NΛ
and ΛΛ interaction

vNΛ(rN − rΛ) = u0(1 + y0Pσ)δ(rN − rΛ) +
1

2
u1[k

′2δ(rN − rΛ)

+ δ(rN − rΛ)k2] + u2k
′δ(rN − rΛ)k (6.1)

+
3

8
u3(1 + y3Pσ)ρβ

N

(
rN + rΛ

2

)
δ(rN − rΛ)

vΛΛ(r1 − r2) = λ0δ(r1 − r2) +
1

2
λ1[k

′2δ(r1 − r2) + δ(r1 − r2)k
2]

+ λ2k
′δ(r1 − r2)k +

3

8
λ3ρΛργ

N , (6.2)

where we neglected spin orbit terms, since they play no role in infinite matter. For
the expectation value of the energy we obtain

E = 〈φ|H|φ〉 =

∫
H(~r)d3r, (6.3)

where the Hamiltonian is given by

H =
∑

I=N,Λ

TI +
1

2

∑
I,J=N,Λ

VIJ . (6.4)

78



6.1 The Mean-Field Contribution

Due to the additional NΛ and ΛΛ interactions in the Hamiltonian Eq. (6.4), we
obtain additional terms for the energy density H Eq. (3.13)

H = HNN +HNΛ +HΛΛ. (6.5)

Here, the NΛ and ΛΛ energy densities are given by

HNΛ = u0(1 +
y0

2
)ρNρΛ +

3

8
u3ρ

β+1
N ρΛ(1 +

y3

2
) (6.6)

+
1

8
[u1(2 + y1) + u2(2 + y2)](ρNτΛ + ρΛτN),

HΛΛ =
~2

2mΛ

+
λ0

4
ρ2

Λ +
1

8
(λ1 + 3λ2)ρΛτΛ +

λ3

4
ρ2

λρ
γ
N . (6.7)

We note that ρN = ρn + ρp and τN = τp + τn are the total nucleon and total nucleon
kinetic density, respectively. From the energy densities Eq. (6.6) and Eq. (6.7)
directly follows the equation of state (see Eq. (3.26)).

In Fig. 6.1 the equation of state for hypernuclear matter is shown. The results
are obtained by using the SLy10 Skyrme parameterization together with the LYI
and SLL2 Skyrme parameterization for the NΛ and ΛΛ interaction, respectively. In
the upper panel the energy per particle is shown without considering the particle
masses, while in the lower panel the particle masses are considered. The number
density of protons and neutrons are assumed to be equal. Interestingly, the local
minimum of the energy per particle is shifted to higher densities when mixing in more
Λ particles, as seen in the upper panel. The absolute minimum of the energy per
particle is achieved for YΛ ' 0.15. However, since the mass of the Λ-hyperon is about
170 MeV higher than the masses of the nucleons, matter under normal conditions
contains no strange particles and normal nuclear matter remains to defining the
ground state of baryonic matter. This can bee seen in the lower panel, where the
masses of the particles are taken into account. Here, the absolute minimum is found
a nuclear matter density and YΛ = 0, which matches with our common experience.
But for nuclear matter at extreme high densities, as found i.e. in neutrons stars or
heavy ion collisions, strange particles are found. We will discuss that point later in
connection with the particle fraction in β-equilibrated nuclear matter.

The effective Λ-hyperon mass m∗
Λ and the effective Λ-hyperon potential U eff

Λ can be
extracted from Eq. (6.6) and Eq. (6.7), respectively:

mΛ

m∗
Λ

= 1 +
2mΛ

~2

(
1

8
[λ1 + λ3]ρΛ +

1

8
[u1(2 + y1) + u2(2 + y2)]ρΛ

)
, (6.8)

U eff
Λ =

λ0

2
ρΛ +

λ3

2
ρλρ

γ
N

1

8
(λ1 + 3λ2)τΛ + u0(1 +

y0

2
)ρN (6.9)

+
3

8
u3(1 +

y3

2
)ρβ+1

N +
1

8
[u1(2 + y1) + u2(2 + y2)]τN .
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6 Dynamical Correlations in Hypernuclear Matter

In presence of Λ-hyperons also the effective masses and the effective potentials for
the nucleon are modified

mN

m∗
q(Λ)

=
mN

m∗
q

+
2mN

~2
(
1

8
[u1(2 + y1) + u2(2 + y2)]ρΛ) (6.10)

U eff
q(Λ) = U eff

q +
λ3

4
γρ2

Λργ−1
N + u0

(
1 +

y0

2

)
ρΛ (6.11)

+
3

8
u3(β + 1)

(
1 +

y3

2

)
ρβ

NρΛ
1

8
[u1(2 + y1) + u2(2 + y2)τΛ.

In Fig. 6.2 and Fig. 6.3 the effective mass and the effective potential in hyper nuclear
matter are shown, respectively. The results are compared using the SLy10, LY1 and
SLL2 and SkI3, YBZ6 and SLL2 Skyrme parameterization for the NN, NΛ and ΛΛ
interaction, respectively. The effective mass increases for the nucleons nearly lin-
early with increasing strangeness, as seen in upper panel of Fig. 6.2. The situation
of the Λ-hyperons is different, here the behavior depends on the chosen Skyrme pa-
rameterization. While for the SLy10+LYI+SLL2 Skyrme parameterization sets the
mass decreases with increasing strangeness fraction, the Λ-hyperon behave opposite
for the SkI3+YBZ6+SLL2 parameter sets, with increasing strangeness the mass in-
creases nearly linearly. In Fig. 6.3 we show results for the effective potential. The
upper panel we see that nucleons in hypernuclear matter are less bound, while the
Λ-hyperon is stronger bound, as seen in the lower panel.
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Figure 6.1: The equation of state for hypernuclear matter obtained with the SLy10,
SLY1 and SLL2 Skyrme parameterization.In the lower picture we ac-
counted for the baryon masses and subtracted (mΛ + mN)/2 for con-
venience.
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6 Dynamical Correlations in Hypernuclear Matter

6.2 The Short-Range Interaction

According to our discussion in chapter 4 the ΛN and the NN interaction can be
written down as

V NΛ = fNΛ + g′NΛ ~σ1 ~σ2 (6.12)

and

V ΛΛ = fΛΛ + g′ΛΛ ~σ1 ~σ2, (6.13)

respectively. The Landau parameters fNΛ, g′NΛ, fΛΛ and g′ΛΛ are given by the
second variation with respect to the partial spin-flavor densities from the energy
density functional E(ρp↑, ρp↓, ρn↑, ρn↓, ρΛ↑, ρΛ↓) [Mor05]. Since the Λ-hyperons do
not couple to the pions, we do not need to subtract the pion contribution and can
directly average over the weighted spin degrees of freedom to obtain the correspond-
ing interaction matrix elements

MNΛ =
1

2

√
(f s

NΛ)2 + 3(gs
NΛ)2 (6.14)

and

MΛΛ =
1

2

√
(f s

ΛΛ)2 + 3(gs
ΛΛ)2. (6.15)

In Fig. 6.4 results for the NN interaction matrix element in hypernuclear matter are
shown. The results are presented as a function of the strangeness fraction YΛ = ρΛ/ρ
at nuclear matter saturation density. We extracted the NN interaction matrix el-
ement from the SLy10 Skyrme energy density functional. Even though this is not
fully consistent with the later use of ΛN [LY97] and ΛΛ [Lan98] energy density func-
tional. The values given by Lanskoy and Yamato assumed that the nucleon sector
is parameterized with the SkM∗ or SIII interactions. However, Mornas [Mor05] pre-
ferred the set SLy10+LYI+SLL2 and SkI3+YBZ6+SLL2 for his calculation of the
transition to a ferromagnetic state in neutron stars. At this point we refer to the
discussion of the particle fraction in β-equilibrated nuclear matter in section 6.4. As
we mentioned before, we adopted the notation from [Mor05] and name the param-
eter sets for the ΛN Skyrme energy density functional I-IV from [LY97] LYI-LYIV,
the parameter sets 1-6 from [YBZ88] YBZ1-6 and the parameter sets for ΛΛ Skyrme
energy functional in [Lan98] SLL1-3. The number of protons and neutrons are again
assumed to be equal. Fig. 6.4 shows that with rising number of Λ-hyperons, the NN
interaction matrix elements Mnn and Mnp increase. This result is not surprising,
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Figure 6.4: The nucleon interaction matrix element at nuclear matter saturation
density ρ = 0.16 fm−3 as a function of the strangeness fraction YΛ using
the SLy10 Skyrme parameter set.

since the strangeness fraction enters by decreasing the number of nucleon with in-
creasing number of Λ-hyperons. As seen in Fig. 4.5, the decrease of the number of
nucleons leads to a higher interaction NN matrix element.

The ΛN and the ΛΛ interaction matrix elements at nuclear matter saturation density
as a function of the strangeness fraction YΛ are shown in Fig. 6.5 and Fig. 6.6
respectively. In the naive quark picture, using SU(3) arguments, the Λ-N and ΛΛ
interaction strength should evolve according to the ratio of strange to non-strange
quarks in the baryons. This would predict a value of 2/3 for the Λ-N and 1/3 for
the ΛΛ interaction vertex. However, naive quark counting models can not explain
all experimental facts, such as the decrease of the spin-orbit splitting in Λ nuclei.
Therefore, it is is not surprising that our results differ from the naive quark counting.
Comparing the ΛN interaction matrix element in Fig. 6.5 with the NN interaction
matrix element in Fig. 6.4 shows that the reduction of the interaction strength,
depending on the parameter set taken, is between 8 − 17% for the parameter sets
LYI-LYIV (upper panel) and even lower for the parameter sets YBZ1, YBZ5, YBZ6
(lower panel). Keil et al. [KHL00] determined values around 50% for the meson
reduction factor for their density dependent hadron field theory model. While the
coupling of the Λ-N interaction seems to be underestimated, the ΛΛ interaction
seems to be overestimated, see Fig. 6.6, and is larger than the Λ-N interaction.
Especially this strong overestimation of the ΛΛ interaction matrix element reflects
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sity ρ = 0.16 fm−3 as a function of the strangeness fraction YΛ using
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the the limited amount of experimental data for interaction of the Λ-hyperon in the
medium. The only experimental information on the ΛΛ interaction is limited to the
ground states of the double-Λ hypernuclei. On theoretical site soft-core hyperon-
nucleon potentials [RSY99] give information on the free interactions. But so far not
much is known about the hyperon interactions in the medium.

6.3 Dynamical Self-Energies in Hypernuclear Matter

The influence of strangeness to the nuclear medium are best observed when keep-
ing the total baryon density constant by varying only the strangeness fraction
YΛ = ρΛ/ρ. Since we use different Skyrme parameterizations, we a look at the differ-
ences between the different parameterizations. For the following considerations we
investigate dynamical correlations in a medium with variable strangeness content on
top of a background of symmetric proton-neutron matter. Hence, the total density
is ρ = ρn + ρp + ρΛ with ρn = ρp = ρN and ρΛ = ρ − 2ρN .The self-consistency
affects all parts of the self-energies of all baryons. Therefore, the self-energies of the
nucleons will also be change in the presence of Λ-hyperons and it is not enough to
treat the nucleons and the strange sector independently.

87



6 Dynamical Correlations in Hypernuclear Matter

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-0.4 -0.2  0  0.2  0.4

Γ 
[G

eV
]

E-εF [GeV]

SLy10+LY1+SLL2
SkI3+YBZ6+SLL2

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

-0.4 -0.2  0  0.2  0.4

Γ 
[G

eV
]

E-εF [GeV]

SLy10+LY1+SLL2
SkI3+YBZ6+SLL2
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In Fig. 6.7 results for the width of nucleons and Λ-hyperons in hypernuclear matter
are shown using SLy10+LYI+SLL2 and SkI3+YBZ6+SLL2 Skyrme parameteriza-
tion. The results are shown for YΛ = 0.1 at saturation density and a momentum
q = 0.3 GeV/c. The Results for the nucleons are shown in the upper panel and for
the Λ-hyperons are shown in the lower panel. In principle we see that the results re-
semble those in nuclear matter. Except that the Λ hyperons couple less strong to the
other particles which leads to an decrease of the width. Comparing the widths shows
that the width for nucleons is about 10 times larger as the width for the Λ-hyperons.
This result is not surprising, since the imaginary part of the self-energy in our ap-
proach scales with the interaction matrix element and we found that the interaction
matrix element for the Λ-hyperons the is around 10 times smaller than for the nucle-
ons. For the different Skyrme parameterizations we observe slight differences in the
high energy region. These differences mainly caused by the uncertainties of the ΛN
interaction. We have shown in chapter 4 that the YBZ6 Skyrme parameterization
leads to a smaller matrix element for the ΛN interaction than using the LYI Skyrme
parameterization. This fact is directly reflected in the lower panel of Fig. 6.8, where
we observe a lower width for the SkI3+YBZ6+SLL2 parameterization than for the
SLy10+LYI+SLL2 parameterization.

The weak coupling of the Λ-hyperons can also be seen very clearly in the spectral
function and the momentum distribution. In Fig. 6.8 the spectral function of nu-
cleons and Λ-hyperons are shown using the SLy10+LYI+SLL2 (upper panel) and
SkI3+YBZ6+SLL2 (lower panel). The results are shown for a momentum q = 0.3
GeV/c, a strangeness fraction YΛ = 0.1 and at saturation density ρ = 0.16 fm−3.
One clearly sees the quasiparticle peaks for nucleons and Λ-hyperons above the Fermi
energy. The nucleon spectral function resembles in principle the feature already seen
in nuclear matter, while the spectral function of the Λ-hyperons shows a sharper
structure. This observation agrees perfectly well with the sharp spectral structure
seen in hypernuclear spectra e.g. [Hot01]. The momentum distribution of nucleons
and Λ-hyperons is shown in Fig. 6.9 for a strangeness fraction YΛ = 0.1. For both
particles we observe a high energy tail and a depletion of the Fermi sea. Due to the
weaker coupling, we observe that less states are shifted from the Fermi sea to higher
momentum for the Λ-hyperons and the high momentum tail is less pronounced.

In Fig. 6.10 we compare results for different strangeness fractions for nucleons and
Λ-hyperons in the upper and lower panel, respectively. We observe that the width
below the Fermi-energy directly scales with the number of particles for nucleons
and Λ-hyperons, since with rising strangeness fraction, the width decreases for the
nucleons and rises for the Λ-hyperons. The width below the Fermi energy is given
by the one-particle-two-hole (1p2h) self-energy Σ<, which scales with the particle
number [KB62]. For energies E > εF the width is, except for a small variation at
very high energies, constant for the nucleons, while the Λ-hyperons saturate at a
high strangeness fraction.

89



6 Dynamical Correlations in Hypernuclear Matter

 1e-04
 0.001

 0.01
 0.1

 1
 10

 100
 1000

 10000

-0.4 -0.2  0  0.2  0.4

A
 [G

eV
-1

]

E [GeV]

SLy10+LY1+SLL2

N
Λ

 1e-04
 0.001

 0.01
 0.1

 1
 10

 100
 1000

 10000

-0.4 -0.2  0  0.2  0.4

A
 [G

eV
-1

]

E [GeV]

SkI3+YBZ6+SLL2

N
Λ
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SLy10+LYI+SLL2 parameter set.
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6.4 Hypernuclear Matter in β-Equilibrium

6.4 Hypernuclear Matter in β-Equilibrium

6.4.1 The Particle Fractions

β-equilibrated nuclear matter is a medium containing hadrons and leptons, coupled
by the weak interaction. Restricting the investigations to npΛ-matter, all processes
are allowed which conserve charge and baryon number. These processes can be
used to fix the particle fractions. In npΛ matter the particles are subject to the
processes

p + e− ←→ n + νe (6.16)

p + e− ←→ Λ + νe (6.17)

From the equilibrium conditions we can determine the chemical potentials by

µp + mp + µe = µn + mn + µν , (6.18)

µp + mp + µe = µΛ + mΛ + µν . (6.19)

We note that the electron is relativistic so that the chemical potential is given by

the expression µe =
√

k2
fe + m2

e. Eq. (6.18) and Eq. (6.19) are solved imposing elec-

tric charge conservation ne = np. Furthermore, we assume that the neutrinos are
not trapped but leave instantly, implying µν = 0. This assumption is true in cold
neutron star matter. We note that in this simple model the other hyperons and the
muons are missing. The muons appear around the saturation density and their effect
is not very important in the present case, where we neglected the Σ−-hyperons (see
[Mor05] for details). Mornas estimated the error by using models of Balberg et al.
[BG97] and Bandyopadhyay [BB00]. Mornas also calculated the properties of neu-
tron stars formed by hypernuclear matter using the Tolman-Oppenheimer-Volkoff
(TOV) equation. The SLy10+LYI+SLL2 and the SkI3+YBZ6+SLL2 parameteriza-
tion were found to describe the hypernuclear mater in β-equilibrium the best. These
sets mainly describe the features observed in microscopic models such as Brueckner-
Hartree-Fock or relativistic mean-field calculations, not only qualitatively but also
quantitatively. Results from [Mor05] solving the TOV equation are given in table
6.3. The chosen parameter sets reach masses for the neutron stars greater than 1.4
times the mass of the sun and the central density reached with the maximum mass
is slightly larger than the density at which the velocity of sound reaches the velocity
of light, so causality is not violated. Therefore we will use the SLy10+LYI+SLL2
and SkI3+YBZ6+SLL2 parameter sets as a model for hypernuclear matter in β-
equilibrium.

Fig. 6.11 shows the results for the particle fractions when solving Eq. (6.18) and
Eq. (6.19). The particle fraction in β-equilibriated hypernuclear matter is a com-
plicated cut through the phase diagram of pure pnΛ-matter; the path is defined
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6 Dynamical Correlations in Hypernuclear Matter

parameter set SLy10+LYI+SLL2 SkI3+YBZ6+SLL2
ρS(c2

s = c2) 16.032ρ0 13.077ρ0

ρC(1.4M�) 9.39ρ0 2.39ρ0

R(1.4 M�) 9.0 km 13.19 km
ρmax 12.38ρ0 6.79ρ0

Mmax 1.425Msun 1.642Msun

R(Mmax) 8.11 km 11.02 km

Table 6.3: Results taken from [Mor05] for neutron star matter. ρS(c2
s = c2) denotes

the density when the velocity of sound reaches the velocity of light and
ρC(1.4Msun) the central density of neutron star with 1.4 times the mass
of the sun. The density of the saturation point in nuclear matter is
given by ρ0.

by the equilibrium conditions. The results are obtained using SLy10+LYI+SLL2
and SkI3+YBZ6+SLL2. It can bee seen that the hyperons appear at about 2.7
times saturation density for the SLy10+LYI+SLL2 and around two times satu-
ration density for SkI3+YBZ6+SLL2 and the hyperons are less abundant for the
SLy10+LYI+SLL2 than for the SkI3+YBZ6+SLL2 parameter set. This fact can
be understood, if remind that using the SkI3 Skyrme parameterization leads to a
stiffer equation of state than using the SLy10 Skyrme parameterization (see chapter
3). A stiffer equation of state reaches the required energy for hyperon formation
at lower densities. For the SLy10+LYI+SLL2 parameter set we have a high excess
of neutrons up to three times saturation density, while the fraction of the neu-
trons is dropping fast for densities higher than the saturation density using the
SkI3+YBZ6+SLL2.

6.4.2 The Width and the Spectral Function

The spectral functions in β-equilibrated hypernuclear matter resemble in princi-
ple the features of the spectral function in hypernuclear matter with a certain
strangeness fraction. In Fig. 6.12 the spectral functions for protons, neutrons and Λ-
hyperons are shown. The upper panel shows the SLy10+LY1+SLL2 Skyrme results
at density ρ=0.48 fm−3 and the lower panel the results using the SkI3+YBZ6+SLL2
Skyrme parameterization at density ρ=0.40 fm−3. The chosen densities are just at
or slightly above the threshold densities for hyperon formation. One clearly sees
the quasiparticle peaks of particles at different positions and all spectral function
show a wide spectral distribution. All particles carry the momentum q = 0.3. The
quasiparticle peak for the neutrons is still located in the Fermi sea, while the protons
and Λ-hyperons can be found above the Fermi edge.
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Figure 6.11: The particle fractions in β-equilibrium reproduced from [Mor05].

However, we see differences to hypernuclear matter with a fixed strangeness fraction
when we examine the width. In Fig. 6.13, Fig. 6.14 and Fig. 6.15 results for pro-
tons, neutrons and Λ-hyperons in β-equilibrated hypernuclear matter at ρ = 0.48
fm−3 are shown, respectively. The particles carry the momentum q = 0.3 GeV/c.
Results are shown for the SLy10+LY1+SLL2 and SkI3+YBZ6+SLL2 Skyrme pa-
rameterizations. Comparing the results for protons in β-equilibrated hypernuclear
matter to the results in (asymmetric) nuclear matter (see Fig. 5.2), shows that
the protons resemble the global energy behavior qualitatively and also quantita-
tively with small variations. The differences of the SLy10+LY1+SLL2 and the
SkI3+YBZ6+SLL2 Skyrme parameterizations can be explained by the different
fractions of protons in β-equilibrated hypernuclear matter using the different pa-
rameterizations (see Fig. 6.11). For a density ρ = 0.48 fm−3 the SLy10+LY1+SLL2
parameterization predicts less protons than the SkI3+YBZ6+SLL2 parameteriza-
tions, which is connected to the higher symmetry energy coefficient of the SkI3
Skyrme parameterization (see Fig. 3.7). Hence, the width for the protons is lower
for the SLy10+LY1+SLL2 since the one-particle-two-hole (1p2h) self-energy scales
with the number of particles [KB62].

For neutrons the results of the width seem to be surprising since we find a sup-
pression for the densities shown here. Comparing the results for protons, neutrons
and Λ-hyperons shows that the neutron width is of the same size as the width for
Λ-hyperons rather than the width for the protons. Also, there are differences be-
tween the two models at the quantitative level, the particle width for the neutrons
and the Λ-hyperons are both smaller, when using the SLy10+LY1+SLL2 than the
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Figure 6.12: The spectral function for proton, neutrons and Λ-hyperons with a mo-
mentum q = 0.3 GeV/c in β-equilibrated hypernuclear. The upper
panel shows results using the SLy10+LY1+SLL2 Skyrme parameter-
ization at density a ρ = 0.48 fm−3 and the lower panel results using
the SkI3+YBZ6+SLL2 Skyrme parameterization at density ρ = 0.40
fm−3.
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6.4 Hypernuclear Matter in β-Equilibrium

SkI3+YBZ6+SLL2 Skyrme parameterization. The suppression of the neutron width
can be explained by the high excess of neutrons in β-equilibrated hypernuclear mat-
ter. Due to the high neutron number, many states are Pauli blocked. This effect
is comparable to the saturation for nuclear matter at high densities seen by Frömel
et al. [FLM03]. Since the two models predict different fractions of particles, the
differences of the two models can also be explained by the higher excess of neutrons
for SLy10+LY1+SLL2 at ρ = 0.48 fm−3 and Pauli blocking.
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Figure 6.13: The width for protons in β-equilibrated hypernuclear matter at the
ρ = 0.48 fm−3. The momentum of the protons is q = 0.3 GeV/c
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Figure 6.14: The width for neutrons in β-equilibrated hypernuclear matter at the
ρ = 0.48 fm−3. The momentum of the neutrons is q = 0.3 GeV/c
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Figure 6.15: The width for Λ-hyperons in β-equilibrated hypernuclear matter at
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6 Dynamical Correlations in Hypernuclear Matter

6.4.3 The Quasiparticle Strength

Since the quasiparticle strength provides a good measure for particle correlations,
we now compare it for the SLy10+LYI+SLL2 and SkI3+YBZ6+SLL2 Skyrme pa-
rameter set. In β-equilibrated hypernuclear matter the features of the quasiparticle
strength in nuclear matter are recovered and the quasiparticle strength deviates
from unity only close to the Fermi edge, where it shows a minimum. The quasipar-
ticle strength for protons, neutrons and Λ-hyperons at the Fermi edge are shown in
Fig. 6.16 for the SLy10+LYI+SLL2 and the SkI3+YBZ6+SLL2 Skyrme parameter-
ization in the upper and lower panel, respectively.

The proton quasiparticle strength shows an increase for SLy10+LYI+SLL2 param-
eter set in the low density region. For densities higher than 0.2 fm3 it is slightly de-
creasing and stays constant for densities above 0.4 fm3. For the SkI3+YBZ6+SLL2
parameterization the proton quasiparticle strength shows a slight decrease before
staying constant above 0.4 fm3. For the neutrons we have for both parameter-
izations an increase of the quasiparticle strength before decreasing. Finally, the
quasi-particle strength of Λ-hyperons is equal to unity before the threshold of Λ-
hyperons formation. After the threshold is reached, the Λ quasiparticle strength
differs slightly from unity.

Since the quasiparticle strength is inverse proportional to the number of correlations,
we can interprete this results by the interplay between the number of particles and
Pauli-blocking in β-equilibrated nuclear matter, which we can clearly see for the
quasiparticle strength of neutrons obtained using the SkI3+YBZ6+SLL2. In the
lower panel of Fig. 6.16 we see that the correlations for low energies is decreasing,
i.e. the quasiparticle strength is increasing. This is realted to the high abundance
of neutrons in Fig. 6.11, with higher density more states are Pauli blocked. But as
we also see in Fig. 6.11, decreases the fraction of neutrons with increasing density
and we see an increase of the neutrons correlations, i.e. the quasiparticle strength is
decreasing, in the lower panel of Fig. 6.16. In the same manner the results for the
protons and the Λ-hyperons can be interpreted.

Because of the weak coupling of the Λ-hyperons, the dependence of the correlations
on the number of particles is not as strong as for the nucleons and the quasiparticle
strength does not deviate much from unity. However, in summary we conclude that
correlations in our approach are connected rather directley to the abundance of the
particles and the available phase space e.g. constrained by Pauli blocking.
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Figure 6.16: The quasiparticle strength for q = qF of protons, neutrons and
Λ-hyperons in β-equilibrated hypernuclear matter as a function of
the baryon density. The upper panel shows the results of the
SLy10+LY1+SLL2 Skyrme parameterization and the lower for the
SkI3+YBZ6+SLL2 parameterization.
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7 Summary

In this work we examined dynamical correlations in infinite nuclear and hypernuclear
matter. We used a self-consistent approach to calculate the dynamical self-energy
and the spectral function. The self-energy is approximated by the one-particle-two-
hole (1p2h) and two-particle-one-hole (2p1h) polarization self-energy by neglecting
higher order terms. For a realistic treatment of the nuclear mean-field incorporating
an accurate description of finite nuclei, we used modern Skyrme parameterizations
for the energy density functional. As shown by [LEL+00, LLLM02], dynamical
correlations are more influenced by the strength of the interaction and the available
phase space rather by the details of the interaction. Therefore, we assumed an
energy- and momentum-independent interaction matrix element to approximate the
polarization self-energies.

A general introduction to the Green’s function method and their impact to the many-
body problem was given in chapter 2. After the basic definitions of the Green’s
function and its connection to the spectral function, we showed how to expand
the Green’s function in terms of the interaction and introduced the self-energy.
Further, we discussed the contributions to the self-energy. Finally, we showed how
the spectral function can be calculated from the self-energy.

In chapter 3 we gave an introduction to the Skyrme parameterization and showed
results using different Skyrme parameterizations. Comparing the SLy10, SkI3 and
the SkM∗ Skyrme parameter sets, shows that all parameter sets reproduce the prop-
erties of infinite nuclear matter, such as the saturation point density, the binding
energy, the incompressibility coefficient and the asymmetry coefficient, very well.
Also, the qualitative behavior of the equation of state is in good agreement except
for variations in the high density region for all Skyrme parameterizations. The SLy10
parameterization shows also a good agreement for the equation of state with results
from the Urbana group [APR98] for symmetric nuclear and pure neutron matter.
Qualitatively, also the effective potential for all Skyrme parameterizations agrees
well, while the picture for the effective mass is different. Increasing strangeness
fraction the SLy10 and the SkI3 parameterizations shows a decrease of the proton
effective mass, while the neutron effective mass increases. For the SkM∗ parameter-
ization the situation is reversed, here, the proton effective mass is increasing with
increasing strangeness fraction and the neutron effective mass is decreasing. Unfor-
tunately, so far almost nothing is experimentally known about the effective mass in
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neutron rich matter.

We examined the short-range interaction in chapter 4. To get information of the
interaction matrix elements, we used Fermi liquid theory and extracted the Landau-
Migdal parameters from the Skyrme energy-density functional. An average interac-
tion matrix was obtained by a weighted sum of the Landau-Migdal parameters over
the spin degrees of freedom. To account only for the short-rang part of the nucleon-
nucleon interaction, we identified the long-range contribution with pion exchange.
Therefore, we calculated the Landau-Migdal parameters for the pion exchange con-
tribution and subtracted it from the Landau-Migdal parameters obtained from the
Skyrme parameterization. The subtraction of the pion contribution leads to an in-
crease of the nucleon-nucleon interaction matrix elements. A comparison for the
nucleon-nucleon matrix element obtained with the SLy10, SkI3 and SkM∗ Skyrme
parameterization showed a good agreement with slight differences of the strength
for all parameterizations. Qualitatively, the interaction matrix element decreases
with increasing density. This fact can be explained by increase of the Pauli blocked
states at higher densities.

At the beginning of chapter 5 we discussed the numerical and mathematical de-
tails of our approach. Thereafter, we showed results for the width, the spectral
function, the momentum distribution and the quasi-particle strength in symmetric
and neutron rich infinite nuclear matter using different Skyrme parameterizations.
The comparison of the results for the width obtained with the SLy10, SkI3 and the
SkM∗ Skyrme parameter sets shows that they are in good agreement. All parameter
sets resemble the overall energy behavior of the particle width, known from many-
body calculations. Differences of the parameter sets are seen in the high energy
region. They are caused by the differences of the interaction strength when using
different Skyrme parameter sets. In neutron rich matter the results for the different
Skyrme parameter sets show similar deviations. However, the differences for protons
seem to be less pronounced than for neutrons. A comparison of our results for the
SLy10 parameterization with a recent Brueckner-Hartree-Fock (BHF) calculation of
Hassaneen al. [HM04] showed a good agreement on a qualitative level. Quantita-
tively, there are differences when comparing the results of the two calculations, but
using different nucleon-nucleon potential in the BHF calculation leads also to differ-
ences in the obtained results. Also, the spectral function shows a behavior known
from other many-body calculations, a sharp quasi-particle peak with a wide spectral
distribution. The location of the quasi-particle peak is mainly given by the mean-
field contribution of the self-energy, while the collisional part is responsible for the
spectral distribution. The comparison of different Skyrme parameterizations shows
that the results for the different parameterization agree very well in symmetric and
asymmetric nuclear matter.

The momentum distribution of the nucleons in symmetric nuclear matter shows
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a reduction of the occupancy inside the Fermi sea and this fraction is shifted to
higher momenta. This observation is well known from many-body theory [DVN05].
When we use a pion subtracted interaction matrix element, our results show good
agreement with the results of full many-body calculations. While the results, where
we did not subtract the pion contribution put less strength in the high momentum
states. We conclude that subtracting the pion contribution from the interaction is
essential for our approach, making contact to a full-scale many-body calculation.

Hassaneen et al. [HM04] observed less depletion of the Fermi sea in the momentum
distribution for neutrons than for that of the protons in neutron rich matter. They
claimed that this observation can be explained by an additional tensor interaction.
In our approach we are, however, able to describe this feature without a explicit use
of a tensor interaction.

Finally, we introduced the quasi-particle strength, which tells us how many states are
still left in the quasi-particle state and not shifted into many-body configurations.
The obtained results for the quasi-particle strength seems to confirm the assumption
of our approach, since we observe that the quasi-particle strength is much different
from unity only close to the Fermi edge. This means that the many-body system is
only strong correlated close to the Fermi edge. This observation seems to confirm our
assumption of a local interaction at the Fermi-edge, as which the Landau-Migdal
parameters can be seen. Compared to the results of [Leh03] and [BFF92], our
calculations show a good qualitative agreement, while at the quantitative level our
results show slightly less reduction of the quasi-particle strength than the results
of [BFF92]. In asymmetric nuclear matter we observe less correlations for neutrons
than for protons. This fact is directly related to our observation of the momentum
distribution in asymmetric nuclear matter, where the neutrons show less depletion in
the Fermi sea than the protons. For completeness, it is worthwhile to mention that in
finite nuclei the local width of particle states above the threshold includes additional
contributions from the decay into the (A-1)+N-continuum with an asymptotically
escaping nucleon.

In chapter 6 we examined dynamical correlations in hypernuclear matter and in
nuclear matter in β-equilibrium. At the beginning of the chapter we showed how
to extend our approach to the strange sector. Using an extension for the Skyrme
parameterization, we showed results for the equation of state, the effective mass and
the effective potential. Interestingly, the energy per particle shows a local minimum
at a strangeness fraction YΛ of about YΛ ' 0.15. However, the higher mass of the
Λ-hyperons is responsible for the absence of Λ-hyperons in nuclear matter under
normal conditions. For the mean-field properties we choose the SLy10+LYI+SLL2
and the SkI3+YBZ6+SLL2 Skyrme parameter sets for the NN, NΛ and ΛΛ inter-
action. For nucleons we observe an increase of the effective mass with increasing
strangeness fraction. The situation for the Λ-hyperons is different and the behavior

105



7 Summary

depends on the chosen Skyrme parameterization. While for the SLy10+LYI+SLL2
Skyrme parameterization sets the mass decreases with increasing strangeness frac-
tion, the opposite is true for the SkI3+YBZ6+SLL2 parameter sets,i.e. with in-
creasing strangeness the mass increases nearly linearly. Since the Λ-hyperons do not
couple to the pions, the interaction matrix element of the ΛN and ΛΛ interaction
matrix element is directely obtained by a weighted sum from the Landau-Migdal
parameters of the Skyrme energy density functional. On a qualitative level the NN
and the ΛN interaction matrix elements are increasing with increasing strangeness
fraction YΛ, while the ΛΛ interaction matrix element is decreasing. The ΛN and
the ΛΛ interaction matrix elements depends quantitatively very much on the chosen
parameter sets. The matrix element for ΛN is between 8 − 17% of NN interaction
matrix element the for the parameter sets LYI-LYIV (upper panel) and even lower
for the parameter sets YBZ1, YBZ5, YBZ6. While the coupling of the Λ-N inter-
action seems to be underestimated, the ΛΛ interaction seems to be overestimated
and is larger than the Λ-N interaction. Especially this overestimation of the ΛΛ
interaction matrix element reflects the limited amount of experimental data for in-
teraction of the Λ-hyperon in the medium. Having more experimental data would
help to improve the Skyrme density functional in the hypernuclear sector.

We kept the total baryon number fixed by varying the strangeness fraction to exam-
ine the influence of dynamical correlations in hypernuclear matter. Qualitatively,
the results for the width, the spectral function and the momentum distribution of
the nucleons and Λ-hyperons are similar to those found in nuclear matter. Quanti-
tatively, the Λ-hyperons are less correlated since the interaction strength is reduced,
while the correlations of the nucleons are of the same order as in nuclear matter.
Thus Λ-hyperons show a smaller width, a sharper structure of the spectral function
and a less pronounced high energy tail of the momentum distribution than the nu-
cleons. This observation agrees perfectly well with the sharp spectral structure seen
in hypernuclear spectra e.g. [Hot01].

The situation in β-equilibriated nuclear matter is different. To observe the role of
correlations we, calculated the particle fractions using the SLy10+LYI+SLL2 and
the SkI3+YBZ6+SLL2 Skyrme parameter sets for the NN, NΛ and the ΛΛ interac-
tion, which were found by Mornas [Mor05] to describe the properties of neutron stars
the best. The particle fraction shows a strong dependence on the Skyrme parameter-
ization used. For SLy10+LYI+SLL2 the Λ-hyperons appear at higher densities and
are less abundant than for SkI3+YBZ6+SLL2. Also the excess of neutrons is higher
using SLy10+LYI+SLL2 than SkI3+YBZ6+SLL2. This observation is directly re-
lated to properties of the equation of state: a stiffer equation of state reaches the
required energy for hyperon formation at lower density. The particle width and the
spectral function resemble qualitative the same properties as in nuclear matter. It
is, however, surprising that the width of the neutrons is about the same size as the
hyperons rather the protons. This can be explained by the high excess of neutrons in
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β-equilibrated nuclear matter, as already seen in neutron rich matter, Pauli-blocking
leads to a decrease of the neutrons. This observation is confirmed when we examine
the quasiparticle strength at the Fermi-edge as a function of the density. This shows
that the correlations in our approach are connected directly to the abundance of the
particles and the available phase space rather than the details of the interaction.

In future it will be of interest to also include the other hyperons, especially the
Σ-hyperons, to our approach and observe the results at finite temperature T . Also
a examination of the equation of state including dynamical correlation might be of
helpfull for the better understanding of neutron stars.
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A Feynman Diagrams

For convenience we give here a summary of Feynman rules according to Ref. [FW71].

A.1 Feynman Diagrams in Coordinate Space

1. Draw all topologically distinct connected diagrams with n interaction lines V
ans 2n + 1 directed Green’s functions G0.

2. Label each vertex with a four-dimensional space-time point xi = (~ri, ti).

3. Each solid line represents a Green’s function G0(x1, x2) running from x2 to x1.

G0(x1, x2)
x2 x1

(A.1)

This corresponds according to Eq. (2.6) to a propagation of a particle for
t1 > t2 and a propagation of a hole for t1 < t2.

G>
0 (x1, x2)

x2 x1

t1 > t2

G<
0 (x1, x2)

x2 x1

t1 < t2

(A.2)
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A Feynman Diagrams

4. Each wavy line represents an interaction U(x1, y1) = V (~r1, ~r2)δ(t1 − t2).

U(x1, x2)
x1 x2

(A.3)

5. Integrate all internal variables over space and time.

6. There is a spin matrix product along each continuous fermion line, including
the potentials at each vertex.

7. Affix a sign factor (−1)F to each term, where F is the number of closed fermion
loops in the diagram.

8. To compute G(x1, x2) assign a factor (i~)n to each nth-order term.1

9. A Green’s function with equal time variables must be interpreted as
G0(~r1, t1, ~r2, t

+
1 ).

A.2 Feynman Diagrams in Momentum Space

1. Draw all topologically distinct connected diagrams with n interaction lines V
ans 2n + 1 directed Green’s functions.

2. Assign a direction to each interaction line, whereas hole lines point in the
opposite direction than particle lines. Associate a directed four-momentum
with each line and conserve four-momentum at each vertex.

3. Each particle line corresponds to a factor G>
0 (~k, ω) and each hole line to a

factor G>
0 (~k, ω).

k

G>
0 (~k, ω)

k

G<
0 (~k, ω)

(A.4)

1Different from Ref. [FW71], see Eq. (2.41).
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A.2 Feynman Diagrams in Momentum Space

4. Each interaction corresponds to a factor U(k) = V (~k).

5. Perform a spin summation along each continuous particle (hole) line including
the potential at each vertex.

6. Integrate over the n independent internal four-momenta

7. Affix a factor (i~)n(2π)−4n(−1)F where F is the number of closed fermion
loops.

8. Any single-particle line that forms a closed loop or that is linked by the same
interaction line is interpreted as eiωηG0(~k, ω), where η → 0+ at the end of the
calculation.
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B Landau-Migdal Parameters

Explit expressions for the Landau-Migdal parameters taken from [Mor05].
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B Landau-Migdal Parameters

Spin S=1 channel:
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Deutsche Zusammenfassung

In den letzten Jahren ist das Interesse an Korrelationen in Atomkernen weiter
gewachsen. Viele Eigenschaften von Atomkernen, wie etwa die Bindungsenergien,
können zwar mit Hilfe der Annahme unabhängiger Teilchen, die sich in einem mitt-
leren Potential bewegen, beschrieben werden. Allerdings zeigt sich in Experimenten
bei denen ein oder zwei Nukleonen aus einem Atomkern durch ein einlaufendes Elek-
tron heraus gestoßen werden [CdAPS91, DH90], dass sich die Nukleonen im Atom-
kern alles andere als unabhängig bewegen, es gibt sogenannte Korrelationen. Theore-
tisch wurden bisher Korrelationen in symmetrischer Kernmaterie bei der Temperatur
T = 0 (z.B. [RPD89, RDP91, BFF92]) und bei endlicher Temperatur (z.B. [FLM03])
untersucht. Mittlerweile gibt es auch Rechnungen in asymmetrischer Kernmate-
rie mit einem hohen Überschuss an Neutronen [Boz04, HM04, KLM05]. Ein guter
Überblick über die bisher verwendeten theoretischen Modelle gibt [DB04].

Über die Rolle, die Korrelationen von Nukleonen und Hyperonen in Neutronenster-
nen spielen, ist bisher noch wenig bekannt. Hyperonen sind Baryonen, die mindestens
ein Strange-Quark enthalten, sie treten vor allem in Materie unter extremen Bedin-
gungen auf, wie es zum Beispiel in Neutronensternen oder Schwerionenkollisionen der
Fall ist. Es gibt zwar theoretische Untersuchungen, die sich mit Korrelationen von
einzelnen Λ-Hyperonen, dem leichtesten der Hyperonen, in unendlich ausgedehnter
Kernmaterie beschäftigen [HJPRM96, RD04], allerdings fehlen bisher systematische
Untersuchungen von Korrelationen in Systemen mit einem hohen Anteil von Hype-
ronen sogenannter Hyperkernmaterie.

Ziel dieser Arbeit ist es, die Rolle von dynamischen Korrelationen in Hyperkern-
materie und in Kernmaterie im β-Gleichgewicht zu untersuchen. Dazu berechnen
wir die dynamischen Selbstenergien und die Spektralfunktionenen der Baryonen
selbstkonsistent. Dabei näheren wir die Selbstenergie mit der 1-Teilchen-2-Loch und
der 2-Teilchen-1-Loch Polarisations-Selbstenergie und vernachlässigen Terme höhere
Ordnung. Den Anteil des mittleren Baryonenfeldes wird mit Hilfe einer modernen
Skyrme Parametrisierung des Energiedichtefunktionals in unsere Rechnungen inte-
griert. Für die Wechselwirkung der Baryonen nehmen wir eine Punktwechselwirkung
an, welche sich bei Rechnungen von J. Lehr [LEL+00, LLLM02] als sinnvoll erwiesen
hat. Informationen über die Stärke der Wechselwirkung erhalten wir aus dem Skyr-
me Energiedichtefunktional. Dazu benutzen wir die Theorie der Fermiflüssigkeiten
und bestimmen die Restwechselwirkung aus dem Energiedichtefunktional. Um nur
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dem kurzreichweitigen Anteil der Wechselwirkung Rechnung zu tragen, berechnen
wir den Anteil der Pionen, welche wir mit dem langreichweitigen Anteil identifi-
zieren, und subtrahieren diesen von der Restwechselwirkung welche wir aus dem
Energiedichtefuntional erhalten haben.

Nach einer allgemeinen Einführung in die Vielteilchen-Theorie und die Theorie der
Greens Funktionen in Kapitel 2, untersuchen wir in Kapitel 3 die Skryme Parametri-
sierung des Energiedichtefunktionals. Dafür vergleichen wir verschiedene Eigenschaf-
ten des mittleren Feldes, wie die Zustandsgleichung, den Kompressibilitätskoeffizent,
die Asymmetrieenergie, die effektive Masse und das effektive Potential für die SLy10,
SkI3 und die SkM∗ Parametrisierungen. Es zeigt sich, dass die Eigenschaften von un-
endlicher Kernmaterie, wie die Sättigungsdichte, die Bindungsenergie und der Kom-
pressibilitätskoeffizent, sehr gut von diesen Parametrisierungen beschrieben werden.
Ein Vergleich der Zustandsgleichung, welche wir mit der SLy10 Skyrme Parame-
trierstation erhalten, mit Ergebnissen der Zustandsgleichungen des Urbana Modells
[APR98], zeigt auch dort eine gute Übereinstimmung für symmetrische Kern- und
reine Neutronenmaterie.

Im Kapitel 4 beschäftigen wir uns mit dem mittleren Wechselwirkungs-Matrix-
element, welches wir für unsere Rechnungen verwenden. Aus dem Energiedichtefunk-
tional berechnen wir die Landau-Migdal Parameter, welche einer Wechselwirkung an
der Fermikante entsprechen. Nach dem Subtrahieren des langreichweitigen Pionen-
Anteils von der Nukleonen-Restwechselwirkung, erhalten wir das Wechselwirkungs-
Matrixelement durch eine Mittelung über die Spin-Freiheitsgarde. Es zeigt sich, dass
die Subtraktion des Pionen-Anteil zu einer Erhöhung der Wechselwirkung führt.
Qualitativ zeigen die Wechselwirkungs-Matrixelemente das gleiche Verhalten für die
verschiedenen Skyrme Parametrisierungen: mit zunehmender Dichte wird die Wech-
selwirkung kleiner. Dies kann man damit erklären, dass mit zunehmender Dichte
mehr Zustände besetzt sind und daher durch das Pauliprinzip geblockt werden.
Quantitativ zeigt allerdings die Stärke der Wechselwirkungs-Matrixelemente leichte
Abweichungen für die verschiedenen Skyrme Parametrisierungen.

Die Ergebnisse für Nukleoen Breite,die Spektralfunkion, die Impulsverteilung und
den Spetroskopischen Faktor für unendlich ausgedehnte Kernmaterie und verschie-
dene Skyrme Parametrisierungen haben wir in Kapitel 5 untersucht. Die Resultate
der Breite in symmetrischer Kernmaterie zeigen dabei ein sehr gute Übereinstim-
mung für alle betrachteten Skyrme Parametrisierungen und stimmen quantitativ
mit dem aus der Vielteilechen-Theorie zu erwartenden Verhalten überein. Leichte
Abweichungen der Breiten für verschiedene Skyrme Parametrisierung ergeben sich
allerdings für sehr hohe Energien. Ein Vergleich der Nukleonen Breite in neutronen-
reicher Kernmaterie zeigt, dass dort die Abweichungen etwas größer sind, wenn man
verschiedene Skyrme Parametrisierungen benutzt. Allerdings treten solche Abwei-
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chungen auch bei anderen vielteilchentheoretischen Rechnungen auf, wenn verschie-
dene Nukleon-Nukleon-Wechselwirkungen benutzt werden (z.B. [HM04]).

Ein Vergleich von unseren Ergebnissen mit den Ergebnissen einer Brückner-Hartree-
Fock (BHF) Rechung von [HM04] zeigt, dass es auch für neutronenreiche Kernma-
terie ein gute qualitative Übereinstimmung gibt. Lediglich quantitativ gibt es Ab-
weichungen, die aber vergleichbar mit den Abweichungen für verschiedene Nukleon-
Nukleon-Wesechlewirkungen bei der BHF Rechung von [HM04] sind.

Auch die Spektralfunktionen zeigen ein realistisches Verhalten, wie es aus der Viel-
teilchen-Theorie bekannt ist. Man sieht einen scharfen Quasiteilchen Pol mit aus-
geprägter spektralen Verteilung. Während die Lage des Quasiteilchen Pols durch
das mittlere Nukleonfeld gegeben ist, wird die spektrale Verteilung durch die Breite
der Nukleonen bestimmt. Die Impulsverteilung der Nukleoen zeigt, dass im Vergleich
mit einer Fermi-Verteilung die Zustände in der Fermikugel reduziert und zu höherem
Implus verschoben werden. Auch dieser Effekt ist aus der Vielteilchen-Theorie be-
kannt. Ein Vergleich mit den Ergebnisse von [Leh03] and [BFF92] zeigt, dass die
Subtraktion des langreichweitigen Pionen-Anteils für unser Modell eine große Rolle
spielt. Während die Ergebnisse mit der Subtraktion des langreichweitigen Anteils
gut mit den Ergebnissen von [Leh03] and [BFF92] übereinstimmen, ist der Effekt
der Entvölkerung des Fermisees für Rechnungen ohne diese Subtraktion zu klein.
Ein Vergleich der Implusverteilung für Protonen und Neutronen in neutronenrei-
cher Kernmaterie zeigt, dass weniger Neutronen zu höhren Impulsen verschoben
werden als dies für die Protonen der Fall ist. Dieser Effekt wurde auch bei den
BHF Rechnungen von [HM04] beobachtet und durch die Tensorwechselwirkung des
Nukleon-Nukleon-Potentials erklärt. In unserem Modell können wir darüber keine
Aussage machen, da in unseren Rechnungen die Tensorwechselwirkung nicht explizit
auftritt.

Am Ende des Kapitels untersuchen wir den Spektroskopischen Faktor in Kernam-
terie. Der Spektroskopischen Faktor sagt aus, wie viele Zustände in einem Quasi-
teilchenzustand bleiben und sich nicht in anderen Vielteilchen Zuständen befinden.
Daher ist der Spektroskopische Faktor umgekehrt proportional mit der Anzahl der
Korrelationen, je stärker ein System korreliert ist, desto niedriger ist der Spektro-
skopische Faktor. Er beträgt eins für ein unkorreliertes System. In Übereinstimmung
mit [Leh03] and [BFF92] ist der Spektroskopische Faktor nur nahe der Fermikan-
te stark von eins abweichend. Diese Beobachtung bestätigt unsere Annahme einer
Punktwechselwirkung an der Fermikante.

Schließlich untersuchen wir in Kapitel 6 Korrelationen ind Hyperkernmaterie und
in Kernmaterie im β-Gleichgewicht. Dazu benutzen wir eine Erweiterung der Skyr-
me Parametrisierung, welche auch die Λ-Hyperonen enthält. Es zeigt sich dabei,
dass das lokale Minimum der Bindungsenergie bei einem Strangeness-Verhältnis
YΛ ' 0.15 liegt, allerdings sorgt die höhere Masse der Λ-Hyperonen dafür, dass
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unter normalen Bedingungen keine Hyperonen in der Materie vorhanden sind. Um
die Eigenschaften des mittleren Baryonenfeldes zu untersuchten, benutzten wir die
SLy10+LYI+SLL2 und die SkI3+YBZ6+SLL2 Parametrisierung für die NN -, ΛN-
und ΛΛ-Wechselwirkung. Es zeigt sich dabei, dass die effektive Masse für die Nu-
kleonen mit steigendem Strangeness-Verhältnis zunimmt. Hingegen hängt die ef-
fektive Masse für die Λ-Hyperonen von der verwendeten Parametrisierung ab. Da
die Λ-Hyperonen nicht an die Pionen koppeln, erhalten wir das Wechselwirkungs-
Matrixelement direkt aus den Landau-Migdal Parametern des Energiedichtefunk-
tionals, ohne dass wir den Pionen Anteil abziehen. Qualitativ werden die NN- und
und die ΛN-Wechselwirkungs-Matrixelemnte größer mit steigendem Strangeness-
Verhältnis, während das ΛΛ-Matrixelemnt kleiner wird. Quantitativ hängt die Größe
der ΛN- und der ΛΛ-Matrixelemente von der gewählten Skyrme Parametrisierung
ab. Die Parametersätze LYI-LYIV ergeben dabei etwas 8 − 17% der NN-Wechsel-
wirkung und die Parametersätze YBZ1, YBZ5, YBZ6 sogar noch niedriger Werte.
Während die ΛN-Wechselwirkungs Matrixelement scheinbar unterschätzt wird, wird
das ΛΛ-Matrixelemente überschätzt und es ist sogar größer als das ΛN-Matrixelement.
Diese Abweichung hängt mit dem beschränkten Zugang zu experimentellen Daten
über die Wechselwirkung Λ-Hyperonen im Medium zusammen. Mit mehr experi-
mentellen Daten könnte man die Parameter des Skyrme Energiedichefunktionals
besser bestimmen.

Um Korrelationen in Hyperkernmaterie zu untersuchen, halten wir die Dichte der
Baryonen konstant und variieren das Strangeness-Verhältnis. Qualitativ stimmen die
Ergebnisse der Breite und der Spektralfunktion für die Nukleonen und Λ-Hyperonen
mit denen in Kernmaterie überein. Quantitativ zeigen die Λ-Hyperonen weniger
Korrelationen, da ihre Wechselwirkung mit den anderen Baryonen im Vergleich zu
den Nukleonen reduziert ist. Daher zeigen die Λ-Hyperonen eine kleinere Breite, eine
schärfer ausgeprägte Spektralfunktion und weniger Zustände oberhalb der Fermikan-
te. Diese Beobachtung stimmt gut mit in Experimenten gesehen scharfen Strukturen
in Hyperkernspektren überein [Hot01].

Es zeigt sich, dass die Situation für Kernmaterie im β-Gleichgewicht etwas anders
ist. Um die Teilchenverhältnisse in Kernmaterie zu berechnen benutzen wir die
SLy10+LYI+SLL2 und die SkI3+YBZ6+SLL2 Skyrme Parametrisierung, da die-
se Auswahl der Skyrme Parametrisierungen die Eigenschaften von Neutronenster-
nen am besten beschreibt [Mor05]. Die Teilchenverhältnisse zeigen dabei eine große
Abhängigkeit von der gewählten Parametrisierung. Für die SLy10+LYI+SLL2 Pa-
rametrisierung setzt die Bildung der Λ-Hyperonen bei eine höheren Dichte ein und
die Anzahl der Λ-Hyperonen ist geringer als bei der SkI3+YBZ6+SLL2 Skyrme Pa-
rametrisierung. Gleichzeitig ist aber die Anzahl der Neutronen mit der SLy10+LYI-
+SLL2 Parametrisierung höher als mit SkI3+YBZ6+SLL2. Diese Beobachtungen
sind direkt mit den Eigenschaften der Zustandsgleichung verbunden, eine steifere
Zustandsgleichung erreicht die Energie zur Hyperonenbildung bei einer geringeren
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Dichte. Qualitativ zeigen die Breite der Teilchen und die Spektralfunktion wiederum
dieselben Eigenschaften wie in Hyperkernmaterie. Es überrascht allerdings, dass die
Breit der Neutronen von derselben Größenordnung wie die Breit der Λ-Hyperonen
und nicht wie die der Protonen ist. Diese Tatsache läßt sich durch den hohen An-
teil an Neutronen in Kernmaterie im β-Gleichgewicht erklären. Dies führt dazu,
dass ein großer Anteil der Neutronen durch das Pauli-Prinzip geblockt ist und führt
zu weniger Korrelationen. Dieses Resultat wird auch durch den Spetroskopischen
Faktor an der Fermi-Kante bestätigt. Die Korrelationen in unserem Modell werden
eher durch den zur Verfügung stehenden Phasenraum und nicht von den Details der
Wechselwirkung bestimmt.

Von zukünftigen Interesse ist eine Erweiterung unseres Modells um die restlichen Hy-
peronen, spezielle die Σ-Hyperonen. Auch Rechnungen bei endlichen Temperaturen
würden zu einem besseres Verständnis von Neutronensternen beitragen.
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