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1
Introduction

More than 75 years ago, Wolfgang Pauli concluded “I have done a terrible thing,
I have postulated a particle that cannot be detected.” Indeed, it took Reines and
Cowan a quarter of a century to prove the existence of the neutrino in the “Poltergeist”
experiment [RC53, Rei95]. Even today, neutrinos remain elusive particles, only weakly
interacting and thus hard to detect. They can only be observed by detecting the
secondary particles they create when interacting with matter. This thesis is devoted
to the study of the interaction of neutrinos with matter.

1.1 Motivation

Since the early days of neutrino physics we have learned much about these objects. We
now know that the neutrino appears as (at least) three different species, all uncharged
with spin 1/2. Only since recently, we know that neutrinos change their flavor and
have non-zero masses — in contrast to the predictions of the Standard Model of par-
ticle physics and interactions. These findings have triggered a tremendous theoretical
and experimental interest in the last years. Given that the neutrino interaction cross
sections are tiny, neutrino experiments are very challenging, or, as Haim Harari put
it: “Neutrino physics is largely an art of learning a great deal by observing nothing.”

Neutrino oscillations and the Standard Model

The Standard Model of particle physics combines the theory of the strong interac-
tions of quarks, named Quantum Chromodynamics (QCD), with the theory of the
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1 Introduction

electroweak interactions of quarks and leptons. It has been proven to be extremely
successful in describing experimental data with high precision.

The Standard Model incorporates three neutrino flavors, νe, νµ and ντ, which are
all experimentally observed. The number of light neutrinos can be predicted from
the Z0 decay width and it was measured to equal 3, long before the tau-neutrino was
detected not even 10 years ago [DONUT01]. Neutrinos are massless and purely left-
handed, i.e., their spin is anti-parallel to their momentum, (anti-neutrinos are right-
handed) which reflects the fact that parity is maximally violated in weak interactions.
Charged leptons appear left- and right-handed.

Our picture of neutrinos has changed dramatically in the last decade. In 1998,
the Super-Kamiokande collaboration reported the observation of atmospheric neutri-
nos changing flavor [Super-K98]. Next, the SNO experiment showed that the long-
standing solar neutrino problem — the observation that less solar-νe than expected
reach the earth — is due to neutrino oscillations [SNO01]. In the following years, these
findings were confirmed with man-made neutrinos from reactors [KamLAND03] and
particle accelerators [K2K03].

Neutrinos change their flavor when their weak eigenstates, νe, νµ and ντ, differ
from their mass eigenstates, ν1, ν2 and ν3, which evolve in time. Like the Cabbibo-
Kobayashi-Maskawa matrix in the quark sector, there is a neutrino mass-mixing ma-
trix which relates both sets of eigenstates in terms of three mixing angles, θ13, θ23 and
θ12, and a possible CP-violating phase δ. The oscillation probability further depends
on the two mass-squared differences, ∆m2

21 = m2
2 − m2

1 and ∆m2
32, but also on the trav-

eled distance, L, and the neutrino energy, Eν. The conclusive evidence that neutrino
oscillations exist implies that neutrinos are massive.

The discovery of neutrino oscillations opens many more questions including1

• How many neutrino species are there? Do sterile neutrinos exist?
The findings of the LSND experiment imply the existence of a forth neutrino,
a non-interacting sterile neutrino [LSND01]. The MiniBooNE experiment was
built to confirm or reject this claim [MiniBooNE07b].

• What are the masses of the mass eigenstates νi?
Oscillation experiments can access only the mass-squared differences but not
the absolute neutrino masses. Present values are ∆m2

21 = (7.59 ± 0.20) · 10−5 eV
and |∆m2

32| = (2.43 ± 0.13) · 10−3 eV [PDG08]. Still unknown is the sign of ∆m2
32

and thus the mass hierarchy.

Using the kinematics of nuclear β decay, one can determine directly the mass of
the electron neutrino by studying the endpoint of the β spectrum. The KATRIN
experiment, currently under construction, with its expected sub-eV sensitivity

1Taken from the review article of B. Kayser in Ref. [PDG08].
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1.1 Motivation

[KATRIN01] will significantly improve the current upper limit of mνe < 2.3 eV
[K+05].

By measuring the half-life of neutrinoless double-beta decay or from current cos-
mological data one gains further information about absolute neutrino masses,
but as of today, the masses are still unknown.

• Are the neutrino mass eigenstates Majorana particles?
This question can be conclusively answered when one observes neutrinoless
double-beta decay. This process can only take place if the neutrino is its own
anti-particle, i.e., it is not a Dirac but a Majorana particle.

• What are the mixing angles in the leptonic mixing matrix?
Only the solar mixing angle θ12 is rather well determined (sin2(2θ12) = 0.87 ±
0.03). The atmospheric mixing angle θ23 is only constrained by sin2(2θ23) > 0.92.
θ13 is still unknown, only upper limits have been placed at sin2(2θ13) < 0.19 (all
numbers taken from Ref. [PDG08]).

• Does the behavior of neutrinos violate CP?
One knows that CP violation in the quark sector is not sufficient to cause the
baryon asymmetry of the universe. Possible leptonic CP violation could be
responsible for this asymmetry.

However, CP violation, driven by the phase δ, can only be measured when θ13

turns out to be non-vanishing (in the mixing matrix, this phase appears only
proportional to sin θ13).

To address these questions, an extensive experimental program is being developed
around the world. Among them are several long-baseline (LBL) experiments, i.e.,
accelerator oscillation experiments, aiming at the precise determination of the mixing
parameters [K2K, MiniBooNE, MINOS, OPERA, T2K]. All of them use heavy nuclei
as target material. The success of these experiments depends critically on a good
knowledge of the neutrino-nucleus interactions as we will explicate in the following.

Neutrino-nucleus interactions

Neutrinos interact with matter only weakly with very small cross sections and can be
identified solely through the particles produced in the reaction. Neutrino interactions
are classified as charged-current (CC) or neutral-current (NC) processes depending on
whether a W or a Z boson is exchanged. In the first case, a charged lepton is emitted,
whereas the neutrino preserves its nature in the second one. The experimental study
of NC neutrino interactions is an even more demanding task than the study of CC
reactions due to the considerable difficulties of collecting data on reactions with cross
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1 Introduction

sections even smaller than those of CC processes, and in which the outgoing neutrino
leaves no signal, so that the event identification has to rely on the detection of one or
more hadrons.

To increase the neutrino cross section, experiments often use targets with a large
atomic mass number A, e.g., current and future LBL experiments use carbon, oxy-
gen, iron and lead [K2K, MiniBooNE, MINOS, OPERA, T2K]. This causes a major
difficulty: particles produced in neutrino interactions can reinteract before leaving
the nucleus and can be absorbed, change their kinematics or even charge before be-
ing detected. Nuclear reinteractions limit our ability to identify the reaction channel
and they change the topology of the measured hadronic final state. Consequently,
the detected rates on nuclei are changed significantly compared to the ones on free
nucleons.

Nuclear effects are known to be the largest source of systematic error in LBL ex-
periments [NUINT09]. The discovery of neutrino oscillations has therefore renewed
the interest in and the need for a better determination of the neutrino-nucleus cross
sections. The SciBooNE and the MINERνA experiments have been constructed to this
aim [SciBooNE, MINERvA04].

The oscillation probability depends directly on the neutrino energy: νµ disappear-
ance experiments for example search for a distortion in the neutrino flux in the de-
tector positioned far away from the source. By comparing the un-oscillated with the
oscillated flux, one gains information about the oscillation probability and with that
about mixing angles and mass squared differences. However, the neutrino energy
cannot be measured directly but has to be reconstructed from the final-state particles
that are detected. But, as we have pointed out before, they are affected by in-medium
effects and final-state interactions in the nucleus. Appearance experiments, for in-
stance, search for a specific neutrino flavor in a neutrino beam of different flavor. The
flavor of the neutrino can only be determined from the charged lepton it produces in
the interaction. π0 production events in neutral current reactions are a source of back-
ground in νe appearance searches in a νµ beam because they might be misidentified
as charge current (νe, e−) interactions.

To extract the oscillation parameters from the measured particle yields, the exper-
imental analyses have to rely on models for the neutrino-nucleus interaction. Thus,
the theoretical understanding of nuclear effects is essential for the interpretation of
the data and represents both a challenge and an opportunity. Only with precise and
well-tested models it is possible to minimize the systematic uncertainties in neutrino
fluxes, backgrounds and detector responses.

The interest in neutrinos goes beyond the study of their oscillations and extends
to a variety of topics in astro-, nuclear and hadronic physics. In particular, they
are a valuable tool for nuclear and hadronic physics. By studying the scattering
of electrons off the nucleon, a wealth of information on nucleon properties such as
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1.1 Motivation

Figure 1.1: Schematic overview of the nuclear response to a electroweak probe as a
function of the energy transfer ω. Taken from Ref. [Pra09].

its structure functions and charge radius, as the distribution of its quark and gluon
constituents, and its excitation spectrum has been gathered. Neutrinos provide a
unique opportunity to gain even more information on the structure of the nucleon and
baryonic resonances since they probe not only the vector but also the axial structure.
Current and future experiments address relevant problems like the extraction of the
nucleon and N − ∆ axial form factors. NC neutrino-nucleus interactions are also
relevant to answer a fundamental question of hadronic structure, namely, the strange-
quark contribution to the nucleon spin.

Fig. 1.1 shows schematically what processes contribute to the neutrino-nucleus re-
action in the few-GeV region. There, the nuclear response is plotted as a function of
the energy ω that is transferred from the neutrino to the system. At very small en-
ergy transfers of only a few MeV, one scatters into discrete nuclear states and excites
so-called giant resonances. We focus on the energy region of the quasielastic (QE),
∆ and N∗ peaks with energy transfers of few hundred MeV up to about a GeV. The
QE peak is caused by processes like ℓN → ℓ′N′ where one has only nucleons, both in
the initial and final state. With increasing ω, one can excite the ∆ resonance (second
peak) or even higher lying resonances (third peak) via ℓN → ℓ′R. At even higher ω,
one reaches the deep-inelastic scattering (DIS) region where one starts to probe quark
degrees of freedom.
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1.2 Survey

Inclusive quasielastic scattering on nuclei has been investigated within relativistic
Fermi-gas models [SM72, DP79, HKMP93, BDPD+96, ABB+97, ABB+98]. Other ap-
proaches go beyond the plane-wave approximation and apply more realistic wave
functions [ABB+97, ABB+98, MGP04a, MLJ+06, vdVP06, MGP06, JRHR99] or a so-
called “scaling analysis” of electron data to predict neutrino cross sections [ABC+05].
Realistic nuclear spectral functions have been used as well [BFN+05].

The treatment of semi-inclusive quasielastic nucleon knockout reactions requires
a good understanding of the final-state interactions. Often they are fully neglected
[HKMP93, BDPD+96, vdVP06] or purely absorptive [ABB+97, ABB+98, MGP04a,
vdVP04, MGP06, MLJ+06]. However, in these approaches the nucleons that go into
unobserved states as a result of an interaction are lost, while, in fact, they are ejected
with a different energy, angle and maybe charge. Monte Carlo methods permit to
take into account interactions of nucleons leading to energy losses, charge exchange
and multiple nucleon emission [NVVV06]. All these theoretical models consider only
QE processes, but one should bear in mind that the excitation of resonances also
contributes to nucleon knockout; those resonance excitation events where a nucleon
is emitted but there are no pions in the final state (or they are produced but not de-
tected) represent a source of background for the neutrino energy reconstruction which
commonly relies on the QE reaction. Only coupled-channel models can provide a re-
alistic description of this scenario, but none of the ones mentioned.

A good knowledge of pion production is essential for the interpretation of neutrino
oscillation experiments, not only for the flavor identification: charged-current π+ pro-
duction represents the major background to the QE “signal channel”. If the pion is
absorbed in the nucleus, the event appears QE-like. However, the available literature
on neutrino-induced pion production is scarce: medium-modification for the ∆ exci-
tation have been discussed [SVVO98] as well as the rescattering and absorption of the
pions inside the nucleus [SVVO98, PPY00].

The available models focus either on QE scattering or on pion production, but none
includes both simultaneously. However, in particular the entanglement between both
has important implications for LBL experiments as outlined before. Hence, the ex-
perimental collaborations have developed their own Monte Carlo event generators
[Cas02, Hay02, A+09] in order to quantify these effects. Their nuclear-physics mod-
eling, however, is simplistic and has not been tested extensively for similar problems
like electron scattering.

The intention of this thesis has been to develop a model that provides a combined
description of neutrino-nucleus scattering from the quasielastic to the resonance re-
gion, i.e., which is applicable for neutrino energies from a few hundred MeV to about
2 GeV. Our approach is based on two pillars, both equally important: a good descrip-
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1.3 Overview: neutrino-nucleus scattering in the GiBUU approach

tion of the neutrino-nucleon reaction and a realistic treatment of in-medium effects
and final-state interactions.

1.3 Overview: neutrino-nucleus scattering in the GiBUU

approach

Since the wavelength of the exchanged boson is small compared to intra-nucleon dis-
tances in the nucleus, we treat the nuclear reaction in impulse approximation which
assumes that the lepton interacts with a single nucleon embedded in the nuclear
medium. We divide the lepton-nucleus reactions into a two-step process: In the
initial step the elementary projectile scatters off one single bound nucleon and gen-
erates a quasielastic event, excites a resonance, or a non-resonant background process
within the nucleus. Thus, the first essential ingredient is a reliable description of
the νN collision. For that we use a fully relativistic formalism with state-of-the-art
parametrizations of the form factors.

When scattering off bound nucleons, the elementary cross section has to be modi-
fied in order to account for nuclear effects. We describe the nucleus by a local Fermi
gas, leading to density dependent Fermi momenta. We further account for the binding
of the nucleons in a density and momentum-dependent mean field. Pauli blocking of
the final-state nucleons is also considered as well as collisional broadening.

Once produced the particles are propagated out of the nucleus undergoing final-

state interactions. A realistic treatment of the final-state interactions can be achieved in
the framework of a coupled-channel transport theory — the Giessen BUU model —
which allows the investigation of semi-inclusive channels. The GiBUU transport ap-
proach is a microscopic description of the final-state process with all kind of coupled
channel effects included, e.g., elastic and inelastic scattering, charge-exchange scatter-
ing, resonance production and decays in the medium. All particles are propagated in
hadronic mean fields, and full off-shell propagation of the hadronic resonances has
been implemented.

1.4 Outline

This work is organized as follows. In Part II, we first present our model for lepton-
nucleon scattering. An introduction to electroweak interactions is given in Chapter 2.
Chapter 3 explains how leptons interact with nucleons and gives an estimate of the
relative importance of the various contributions. Starting in Chapter 4 we discuss
in detail lepton scattering in the case of the free nucleon beginning with quasielastic
scattering. Chapter 5 introduces our model for resonance excitation focussing on the
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extraction of form factors. Finally, Chapter 6 is devoted to the non-resonant pion
background and its phenomenological implementation in our approach.

Proceeding from nucleons to nuclei in Part III, we present in Chapter 7 the main
relevant features of the GiBUU transport model. Chapter 8 specifies the in-medium
modifications that apply when the neutrino scatters with a bound nucleon.

First results for electron and neutrino scattering on nuclei are presented in Chapter 9
where we focus in particular on model dependencies in the leptonic observables. Our
main results for semi-inclusive scattering on nuclei are given in Chapter 10 for pion
production and in Chapter 11 for nucleon knockout. There we investigate in particular
the influence of final-state interactions.

Applications of the model are presented in Part IV. Chapter 12 gives a brief over-
view over current neutrino experiments and the Monte Carlo event generators used
by the experiments to interpret their data. All present experiments use nuclear tar-
gets, thus, Chapter 13 covers CC neutrino-nucleus reactions and their importance for
νµ disappearance measurements while Chapter 14 focuses on NC neutrino-nucleus
reactions and their importance for νe appearance searches. Both chapters address the
question how nuclear effects influence the oscillation measurements and we discuss
specific examples. We give predictions and compare to available data in Chapter 15.

We close with a summary, conclusions and outlook in Chapter 16. The appendices
complete the discussion by giving all necessary details.

10



Part II

Lepton-nucleon interactions





2
Electroweak interactions, symmetries

and currents

The electroweak interaction as part of the Standard Model is covered in full detail
in any textbook on Quantum Field Theory or High Energy Physics, e.g., in Refs.
[TW01, MS93, AH96, Mos99], and will not be repeated here. Nonetheless, it is the
theoretical basis for large parts of this work, thus, we briefly present the basics of the
electroweak interaction and summarize basic facts on the currents and their relations.

2.1 Electroweak interactions of quarks and leptons

2.1.1 Interaction Lagrangian

According to the Standard model of particle physics, there are three mass-less neutri-
nos, νe, νµ and ντ. Neutrinos appear only left-handed, i.e., have spin anti-parallel to
their momentum, while anti-neutrinos are right-handed.1

The Standard Model of the electroweak interaction is based on a local SU(2)×U(1)

1Throughout this thesis, neutrinos are considered mass-less and purely left-handed. This is in contrast
to the experimental evidence for non-zero neutrino masses as discussed in the introduction, but a
very good approximation for neutrino-nucleon scattering — the neutrino mass is too small to be
relevant or even visible in neutrino-nucleon reaction cross sections at neutrino energies of about 1
GeV.
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gauge symmetry and its interaction Lagrangian reads (cf., e.g., Ref. [TW01])

Lint = −eJ
µ
EMAµ −

g

2
√

2

(
J

µ
CCWµ

† + h. c.
)
− g

2 cos θW
J

µ
NCZµ. (2.1)

The electromagnetic current (EM) J
µ
EM, the weak charged current (CC) J

µ
CC and the

weak neutral current (NC) J
µ
NC couple to the photon field Aµ, the charged W-boson

fields W±
µ , and the neutral Z-boson field Zµ. Since parity is maximal violated in weak

interactions, the weak currents have to have a vector-axialvector (V − A) structure.
Note that the electroweak currents in Eq. (2.1) include sums over all quarks and lep-
tons. The quark currents are specified below, for the leptonic currents, we refer the
reader to Section 3.2. The Feynman rules and the relations between the coupling
constants are summarized in Appendix C.

The resulting interactions of leptons with quarks are sketched in Fig. 2.1: charged
leptons, i.e., electrons, muons and tau leptons, scatter electromagnetically exchanging
a photon (EM: ℓ−q → ℓ−q). This process, which only probes the vector part of the cur-
rents, is visualized in Fig. 2.1a. For neutrino-induced reactions, we have to distinguish
two cases depending on the nature of the exchanged gauge boson. In charged-current
scattering (CC: νℓq → ℓ−q′), indicated in Fig. 2.1b, the neutrino turns into a charged
lepton via W exchange affecting also the charge of the final quark. No charge is trans-
ferred in neutral-current scattering mediated by the Z boson (NC: νq → νq) shown in
Fig. 2.1c. Also possible but not of interest for this work (and therefore not shown) is
the scattering of charged leptons and quarks via Z exchange instead of EM scattering.

2.1.2 Quark currents

We now specify the quark currents J
µ
EM, J

µ
CC and J

µ
NC.2 Omitting the heavy quark

sector, u-, d- and s-quarks are the building blocks of matter. They form a triplet field

q =




qu

qd

qs


 (2.2)

with charges Qu = +2/3, Qd = Qs = −1/3. With a charge matrix, defined as

Q =




2/3 0 0
0 −1/3 0
0 0 −1/3


 , (2.3)

2For details, we refer the reader to Chapter 1 of Ref. [TW01] and to Chapters 11 and 12 of Ref. [Mos99].
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ℓ− ℓ−

γ

q q

(a) Electromagnetic scattering

νℓ ℓ−

W+

q q′

(b) Charged-current scattering

ν ν

Z0

q q

(c) Neutral-current scattering

Figure 2.1: Possible interactions of leptons with quarks.
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the electromagnetic current reads

J
µ
EM = q̄Qγµq (2.4)

=
2
3

q̄uγµqu −
1
3

(q̄dγµqd + q̄sγµqs) .

(see Appendix A.3 for our metric and conventions).
For neutral currents, the coupling depends on the helicity of the quarks fields and

the current reads

J
µ
NC =

∑

q

q̄γµ
[
(t3 − eqsin2 θW)(1 − γ5) − eqsin2 θW(1 + γ5)

]
q, (2.5)

with eq being the electric charge and t3 the third component of the weak isospin. For
up quarks we have t3 = 1/2, for down and strange quarks t3 = −1/2. Thus, the
neutral current is explicitly written as

J
µ
NC = q̄uγµ

[
1
2
− 2

2
3

sin2 θW − 1
2

γ5
]

qu

+ q̄dγµ

[
−1

2
− 2

(
−1

3

)
sin2 θW +

1
2

γ5
]

qd

+ q̄sγ
µ

[
−1

2
− 2

(
−1

3

)
sin2 θW +

1
2

γ5
]

qs. (2.6)

For the charged current, we have to consider that the mass eigenstates with weak
isospin −1/2 (the d and s quark) are not the weak eigenstates. However, both sets of
eigenstates are connected through a unitary transformation with the Cabbibo mixing
matrix (

q′d
q′s

)
=

(
cos θC sin θC

− sin θC cos θC

)(
qd

qs

)
, (2.7)

where θC is the Cabbibo mixing angle with cos θC = 0.9745 (note that we later include
cos θC into the coupling). The charged current then reads

J
µ
CC = q̄γµ(1 − γ5)q′

= q̄uγµ(1 − γ5) (cos θCqd + sin θCqs) , (2.8)

which reflects the (V − A) structure: we define the vector current as

V
µ
CC = q̄γµq′, (2.9)

and the axial current
A

µ
CC = q̄γµγ5q′, (2.10)

so that J
µ
CC = V

µ
CC − A

µ
CC.
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2.2 Strong interactions and isospin symmetry

In the following, we discuss general properties and symmetries of the introduced
currents.

2.2.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory of quarks and gluons and their in-
teractions. The QCD Lagrangian is built upon a local SU(3) color gauge invariance
and has the form

L = ψ̄
(
iγµDµ − m

)
ψ − 1

4
Ga

µνG
µν
a (2.11)

with the quark field ψ and the non-Abelian gluon field tensor G
µν
a , a = 1, . . . , 8. The

couplings of the quarks and gluons is contained in the gauge covariant derivative Dµ.
The interaction of quarks is independent of their flavor, the only difference comes
from their different masses. We refer the reader to Chapter 5.1 in Ref. [TW01] or any
other textbook for details.

Apart from its local color gauge symmetry, QCD has global unitary symmetries.
They imply conserved currents, which impose constraints on the dynamics of strongly
interacting systems, regardless of whether those are quarks, gluons or composite
hadrons.

2.2.2 Isospin symmetry and conserved flavor currents

In the limit of mu = md = ms, the QCD Lagrangian has a global SU(3) flavor symme-
try and is invariant under3

q → exp
(

iθa λa

2

)
q, (2.12)

where λa are the Gell-Mann matrices listed in Appendix A.3 and θa denotes a set of
arbitrary rotations independent of the space-time coordinate. q is given in Eq. (2.2).
The corresponding eight conserved Noether currents are

V
µ
a = q̄γµ λa

2
q, (2.13)

with ∂µV
µ
a = 0.

Combinations of these flavor currents appear in the quark electromagnetic current.
Q in Eq. (2.4) can be written as

Q =
Y

2
+ I3, (2.14)

3We closely follow the discussion in Chapter 6 of Ref. [TW01].
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where Y stands for the hypercharge Y = B + S = λ8/
√

3 with the baryon number B

and the third component of the strong isospin I3 = λ3/2. Applying this to Eq. (2.4)
yields

J
µ
EM =

1
2

V
µ
Y + V

µ
3 . (2.15)

V
µ
3 is the isovector (isospin) current,

V
µ
3 = q̄γµ λ3

2
q, (2.16)

and V
µ
Y is the isoscalar (hypercharge) current,

V
µ
Y = q̄γµ λ8√

3
q (2.17)

Also the vector part of the charged current, V
µ
CC (cf., Eq. (2.9)), can be expressed in

terms of V
µ
a , namely

V
µ
CC = q̄γµ λ1 + iλ2

2
q = q̄γµ λ+

2
q = V

µ
1 + iVµ

2 . (2.18)

Finally, we rewrite the vector part of the neutral current given in Eq. (2.5) in terms
of the flavor currents and obtain

V
µ
NC = (1 − 2sin2 θW)V

µ
3 − 2sin2 θW

1
2

V
µ
Y − 1

2
V

µ
S , (2.19)

with V
µ
3 and V

µ
Y as above and V

µ
S given by

V
µ
S = q̄sγ

µqs. (2.20)

To conclude, we have shown that the isovector part of the electromagnetic current,
V

µ
3 , and the vector part of the weak currents, V

µ
1,2, are components of the same con-

served SU(3) f vector current.

2.2.3 Chiral symmetry and axial currents

QCD has an additional global symmetry in the limit of mass-less quarks, i.e., mu =
md = ms = 0, the so-called chiral symmetry. Then, the QCD Lagrangian is invariant
under the transformations

qL → exp
(

iθa
L

λa

2

)
qL, qR → exp

(
iθa

R

λa

2

)
qR, (2.21)
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where qL and qR are the left and right-handed quark fields defined as

qL,R =
1
2

(
1 ∓ γ5

)
q. (2.22)

The corresponding sixteen conserved Noether currents are

J
µ
a,L = q̄Lγµ λa

2
qL, J

µ
a,R = q̄Rγµ λa

2
qR, (2.23)

with ∂µ J
µ
a,L = ∂µ J

µ
a,R = 0.

Combining J
µ
a,L and J

µ
a,R gives the already introduced vector current

V
µ
a = J

µ
a,R + J

µ
a,L = q̄γµ λa

2
q (2.24)

and the axial current

A
µ
a = J

µ
a,R − J

µ
a,L = q̄γµγ5 λa

2
q. (2.25)

The weak axial charged current introduced in Eq. (2.10) is written in terms of A
µ
a as

A
µ
CC = q̄γµγ5 λ+

2
q = A

µ
1 + iAµ

2 . (2.26)

Similarly, we obtain for the axial part of the neutral current given in Eq. (2.5)

A
µ
NC = A

µ
3 +

1
2

A
µ
S, (2.27)

with

A
µ
3 = q̄γµγ5 λ3

2
q (2.28)

and
A

µ
S = q̄sγ

µγ5qs. (2.29)

Chiral symmetry is explicitly broken by the non-zero quark masses, and the diver-
gence of the axial current becomes

∂µ A
µ
a = iq̄

{
m,

λa

2

}
γ5q, (2.30)

with m = diag(mu, md, ms). For example, the divergence of A
µ
CC reads

∂µ A
µ
CC = (mu + md)q̄uiγ5qd, (2.31)

and is thus conserved only in the chiral limit mu → 0 and md → 0.
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2.3 Hadronic currents

2.3.1 Conserved vector current hypothesis

In the previous section it has been shown, that, at the quark level, one can directly
relate the electromagnetic and the weak vector currents assuming only isospin sym-
metry of the strong interactions. If isospin symmetry is a good symmetry of the
particular hadronic system, one expects the obtained relations to be independent of
the details of the hadronic structure, or, in other words, the relations hold also for
hadrons.

Then, we find the following structure for the electromagnetic current

J
µ
EM =

1
2

V
µ
Y + V

µ
3 . (2.32)

V
µ
3 is the third component of the isovector (isospin) current and V

µ
Y the isoscalar

(hypercharge) current. The vector part of the charged current is given by

V
µ
CC = V

µ
1 + iVµ

2 , (2.33)

and the vector part of the neutral current by

V
µ
NC = (1 − 2 sin2 θW)V

µ
3 − sin2 θWV

µ
Y − 1

2
V

µ
S , (2.34)

where V
µ
Y is the hypercharge, V

µ
S the strange (both isoscalar), and V

µ
1,2,3 the isovector

current.
We assume that V

µ
1,2 and V

µ
3 form a vector in isospin space, i.e., the weak hadronic

vector current can be identified with the isospin current. This is known as “con-
served vector current hypothesis” (CVC). An immediate consequence of CVC is the
conservation of the weak hadronic vector current.

Further predictions of CVC and possible measurements are reviewed in Ref. [TH95];
altogether, there is impressive experimental support for the validity of CVC.

2.3.2 Partially conserved axial current hypothesis

Also for the axial part, we assume the hadronic currents to have the same structure as
the quark current discussed in the previous section and find

A
µ
CC = A

µ
1 + iAµ

2 , (2.35)

for charged currents, and

A
µ
NC = A

µ
3 +

1
2

A
µ
S, (2.36)
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for neutral currents. Eq. (2.36) includes the isoscalar strange axial current A
µ
S. A

µ
1,2

and A
µ
3 are components of the same isospin vector.

The divergence of the axial current Aµ can be connected to the pion field φ via

∂µ Aµ = − fπm2
πφ. (2.37)

A detailed discussion and derivation is given in Chapter 9 of Ref. [EW88]. This re-
lation implies that the axial current is conserved in the chiral limit mπ → 0 which is
known as “partially conserved axial current hypothesis” (PCAC).

Predictions of PCAC and their experimental verifications are discussed, e.g., in the
review article by Towner and Hardy [TH95]. Overall, the predictions are found to
deviate from the measurements by a few percent to at most 10%4 which reflects the
accuracy to which PCAC is realized.

4See also the discussion on page 33.
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3
General properties of the

lepton-nucleon interaction

In this and in the following three chapters we explain in detail our model for neu-
trino scattering off nucleons. We shall start with a general section giving an overview
about the neutrino nucleon reaction while the following chapters address the various
reaction channels considered in this thesis.

3.1 Contributions to the lepton-nucleon interaction

Leptons interact with nucleons in various ways (compare Fig. 2.1 where we have dis-
cussed the interactions of leptons with quarks): charged leptons, i.e., electrons, muons
and tau leptons, exchange a photon1 (EM: ℓ−N → ℓ−X) as sketched in Fig. 3.1a.
Neutrino-induced reactions are very similar; however, here the nucleon is not probed
by a (virtual) photon but by a weak gauge boson and the coupling now contains both
vector and axial-vector parts. In charged-current scattering (CC: νℓN → ℓ−X) me-
diated by W exchange (cf., Fig. 3.1b) the neutrino turns into a charged lepton and
also the charge of the final hadronic system is changed. No charge is transferred in
neutral-current scattering via the Z boson (NC: νN → νX) shown in Fig. 3.1c. In this
work, we treat EM, CC and NC scattering within the same formalism.

1Charged leptons can also scatter via Z0 exchange which is highly suppressed by the smallness of the
coupling although relevant for experiments with polarized beams and/or targets. It is disregarded
in this work.
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ℓ− ℓ−

γ

N X

(a) Electromagnetic scattering

νℓ ℓ−

W+

N X

(b) Charged-current scattering

ν ν

Z0

N X

(c) Neutral-current scattering

Figure 3.1: Possible interactions of leptons with nucleons.
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ℓ ℓ′

γ, W, Z

N N′

(a) Quasielastic scattering

ℓ ℓ′

γ, W, Z

N R

(b) Resonance excitation

ℓ ℓ′

γ, W, Z

N

π

N′

(c) Non-resonant single-pion pro-
duction (background)

ℓ ℓ′

γ, W, Z

N X

(d) Deep-inelastic scattering

Figure 3.2: Contributions to ℓN scattering

The total lepton-nucleon cross section contains contributions from different possi-
ble final states which are outlined in Fig. 3.2. Most important in the region of in-
termediate lepton beam energies (Ebeam ∼ 0.5 − 2 GeV) is quasielastic scattering (QE:
ℓN → ℓ′N′), where one has only nucleons, both in the initial and final state. In CC
scattering, a neutron is turned into a proton while the charge of the nucleon is not
changed in NC and EM scattering. QE scattering is discussed in detail in Chapter 4.
A significant contribution to the total cross section comes from resonance excitation
(R: ℓN → ℓ′R) covered in Chapter 5 where the nucleon is excited to a baryonic reso-
nance in the final state. Resonances decay into baryons and mesons, mainly pions.2

A prominent channel at intermediate energies is single-pion production, but also the
decay into multiple pions or other mesons, e.g., etas, is possible (and taken into ac-
count in this work). Besides pion production through resonance decay, also direct, i.e.,
non-resonant single-pion production (BG: ℓN → ℓ′πN′), treated in our description as
background, is significant in some cases as will be discussed in Chapter 6. A non-
resonant two-pion background is neglected because its contribution is only minor for

2In the nuclear medium, the resonances may also interact with nucleons which leads to “pion-less
decay modes”. For example, the ∆ can scatter via ∆N → NN and contributes, therefore, not only
to single-π production. These processes will be discussed in Chapter 7.
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Figure 3.3: Total neutrino cross sections for νµN → µ−X for an isoscalar target as a
function of the neutrino energy. The curves are averaged over protons and neutrons:
σ = (σνµ p + σνµn)/2. Left panel: contributions to the total neutrino-nucleon cross
section according to Eq. (3.1), namely quasielastic scattering (solid line), P33(1232)
resonance excitation (dashed line), the sum of the excitation of all other resonances
(dash-dotted line) and the non-resonant single-π background (dotted line). Right
panel: cross sections, divided by Eν, for quasielastic scattering, single-π production
and deep-inelastic scattering (DIS) compared to data. The data are taken from Refs.
[B+77, M+73, B+81, B+79, R+82, K+86, A+90, M+84, Sel97].

the energy region discussed in this work [ADT81b, ADT81a, HNS+08].3

Altogether, the present model assumes

dσtot = dσQE +
∑

R

dσR + dσBG. (3.1)

The relative importance of these contributions is illustrated in the left panel of Fig. 3.3
where the corresponding CC cross section are shown as a function of the neutrino
energy.

In the right panel of Fig. 3.3 we show the QE cross section, the total single-π pro-
duction cross section and also the contribution from deep-inelastic scattering (DIS),
a process visualized in Fig. 3.2d where one scatters off partonic degrees of freedom.
Note that we divided the cross section by the neutrino energy, thus, the DIS part
increases linearly with energy and is by far the most important process for energies
above ≈ 5 GeV.

As we focus on neutrino scattering up to about 2 GeV, an energy regime where DIS
is not very important, we neglect this contribution. The uncertainties related with

3Note, however, that it is not negligible in photon-induced reactions.
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3.2 Dynamics of the lepton-nucleon interaction

the neglect of DIS are discussed in Appendix G.2 where also more details on the
calculation are given.

From Fig. 3.3, we conclude that our νN model characterized by Eq. (3.1) contains
the most important ingredients for neutrino scattering at medium energies and can
be reliably applied to nucleon-knockout reactions and pion production on nuclei.

3.2 Dynamics of the lepton-nucleon interaction

The dynamics of the lepton-nucleon interaction is encoded in the absolute value of
the matrix element squared, summed and averaged over initial and final spins,

|M̄QE,R,BG|2 = C2 Lµν H
µν
QE,R,BG , (3.2)

where the coupling C stands either for CEM = 4πα/q2, CCC = GF cos θC/
√

2, or CNC =
GF/

√
2 (cf. Appendix C) and q2 stands for the four-momentum transfer squared. Lµν

and Hµν are the leptonic and hadronic tensors, respectively.
Throughout this work, the incoming lepton defines the z-axis and all quantities, if

not stated otherwise, are given in the laboratory (lab) frame, i.e., in the target rest
frame. Our notation is summarized in Table A.3.

The leptonic tensor Lµν is constructed from the leptonic current, jµ = ū(k′)lµu(k),
as

Lµν =
1 + |a|

2

∑

si

∑

s f

jµ
† jν =

1 + |a|
2

∑

si

∑

s f

ū(k)l̃µu(k′)ū(k′)lνu(k)

=
1 + |a|

2
Tr

[
(/k + mℓ)l̃µ(/k ′ + mℓ′)lν

]
, (3.3)

where
lµ = γµ(1 − aγ5), (3.4)

and
l̃µ = γ0l†

µγ0. (3.5)

Here, k (k′) denotes the four-vector of the incoming (outgoing) lepton and mℓ (mℓ′) the
corresponding masses. The parameter a depends on the reaction process: a = 0 for
EM and a = 1 (−1) for CC and NC (anti-)neutrino scattering. For incoming neutrinos
there is no averaging over initial neutrino helicities since they are left-handed. For this
reason, we include the factor (1 + |a|)/2. However, one can formally sum over both
helicity states, since the factor (1 − γ5) guarantees anyhow that neither right-handed
neutrinos nor left-handed anti-neutrinos contribute to the cross section.

The hadronic currents in H
µν
QE,R,BG have to be parametrized in terms of form factors.

They depend not only on the final state but also on the specific process, namely
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3 General properties of the lepton-nucleon interaction

EM, CC or NC. This will be discussed in Chapters 4 to 6. Contracting the hadronic
tensor H

µν
QE,R,BG with the leptonic tensor given in (3.3), one obtains the matrix element

|M̄QE,R,BG| (see Eq. (3.2)).4

3.3 Kinematics of the lepton-nucleon interaction

A detailed derivation of the cross section formula is given in Section B.2; here, we
summarize the final results.

The cross section for quasielastic scattering ℓ(k)N(p) → ℓ′(k′)N′(p′) reads [cf.
Eq. (B.11) on page 275 with M = M′ = MN where MN denotes the nucleon mass]

dσQE

dω dΩk′
=

|k′|
32π2

δ(p′2 − M2
N)

[
(k · p)2 − m2

ℓ M2
N

]1/2
|M̄QE|2, (3.6)

where ω = k0 − k′0 is the energy transfer and dΩk′ = dφ dcos θ includes the angles
between incoming and outgoing leptons. In the lab frame the initial nucleon is at rest,
hence pµ = (MN, 0).

A similar expression holds for resonance excitation ℓ(k)N(p) → ℓ′(k′)R(p′) [cf.
Eq. (B.11) on page 275 with M = MN]

dσR

dω dΩk′
=

|k′|
32π2

A(p′)
[
(k · p)2 − m2

ℓ M2
N

]1/2
|M̄R|2, (3.7)

where we have replaced
δ(p′2 − M′2) → A(p′). (3.8)

A(p′) denotes the vacuum spectral function of the particle given by a Breit-Wigner
distribution

A(p′) =

√
p′2

π

Γ(p′)
(p′2 − M2

R)2 + p′2Γ2(p′)
, (3.9)

with the momentum-dependent width Γ and the Breit-Wigner masses MR. The ex-
plicit functional form of Γ is be given in Section 7.6.1. We refer the reader to Section 7.7
for further details, in particular for a discussion on the normalization of Eq. (3.9).

For the cross section for the non-resonant pion background, we refer the reader to
Chapter 6.

4In our numerical realization, we calculate and contract both tensors during run-time numerically.
An analytic expression for the matrix elements is not needed and therefore not given.
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4
Quasielastic scattering

This chapter is devoted to quasielastic scattering. At neutrino energies up to about
2 GeV, QE scattering is the dominant contribution to the total cross section as we have
seen in Fig. 3.3.

4.1 Hadronic current

The hadronic tensor H
µν
QE for quasielastic scattering, ℓN → ℓ′N′, is determined by the

hadronic current

J
µ
QE =

〈
N′(p′)

∣∣∣J
µ
QE(0)

∣∣∣ N(p)
〉

= ū(p′)Γ
µ
QEu(p) (4.1)

as

H
µν
QE =

1
2

∑

si

∑

s f

J
µ
QE

†
Jν
QE =

1
2

∑

si

∑

s f

ū(p)Γ̃
µ
QEu(p′)ū(p′)Γ

ν
QEu(p)

=
1
2

Tr
[
(/p + M)Γ̃

µ
QE(/p

′ + M′)Γ
ν
QE

]
, (4.2)

with Γ̃
µ
QE = γ0Γ

µ
QE

†
γ0 , and M =

√
p2 and M′ =

√
p′2 . In the case of free nucleons,

we have M = M′ = MN. The prefactor 1/2 stems from the averaging over the initial
nucleon spin.

The vertex function Γ
µ
QE has a vector−axial (V − A) Lorentz structure

Γ
µ
QE = Vµ

QE −Aµ
QE . (4.3)
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4 Quasielastic scattering

We construct the most general form for Vµ
QE out of the four vectors at our disposal:

pµ, p′µ and qµ = p′µ − pµ. Gordon identities (cf., e.g., Appendix A.2 in Ref. [IZ05])
limit the number of terms and we find for the vector part

Vµ
QE = F1γµ +

F2

2MN
iσµαqα +

qµ

M
F3 . (4.4)

Current conservation, i.e., qµ

(
ū(p′)Vµ

QEu(p)
)

= 0, gives

0 = ū(p′)
(
F1/q +

F2

2MN
iσµαqµqα +

q2

M
F3

)
u(p)

= ū(p′)
(
F1/q +

q2

M
F3

)
u(p), (4.5)

where we have used that the term σµαqµqα, antisymmetric in µ and α, vanishes. Then,
we get

F1/q +
q2

M
F3 = 0 ⇔ F3 = −F1

/q M

q2 , (4.6)

which leads to

Vµ
QE = F1

(
γµ + /qqµ

Q2

)
+

F2

2MN
iσµαqα . (4.7)

The term /qqµ/Q2 in Eq. (4.7) vanishes when M = M′ since ū(p′)/qu(p) = ū(p′)(M′ −
M)u(p). In the nuclear medium, M and M′ are in general not equal due to the
momentum dependence of the mean-field potential. We come back to this discussion
in Section 8.1.1 and Section 9.3.

For the axial part, we find

−Aµ
QE = FAγµγ5 +

FP

MN
qµγ5 . (4.8)

Fi (i = 1, 2) denotes either the CC form factors, FV
i , the NC form factors, F̃N

i , or
the EM form factors, FN

i , with N = p, n; FA the CC form factor, FA, or the NC form
factor, F̃N

A , (analogous for the pseudoscalar form factor FP) as detailed below. All
form factors depend on Q2 = −q2.

4.2 Form factors of the nucleon

Vector form factors

The vector form factors, FV
i and F̃N

i , can be related to the electromagnetic Dirac and
Pauli form factors, FN

i , with N = p, n as listed in Table 4.1: the conserved vector cur-
rent hypothesis (CVC) implies that the vector part of the current in Eq. (4.7) and the

30



4.2 Form factors of the nucleon

Table 4.1: Relations for the vector form factors; details are given in Appendix D.1.
Note that CCQE scattering is not possible on protons. The strangeness form factors
Fs

i are defined on page 35.

reaction replace Fi in Eq. (4.7) with

ℓ−p → ℓ−p F
p
i

ℓ−n → ℓ−n Fn
i

νn → ℓ−p FV
i = F

p
i − Fn

i

νp → νp F̃
p
i = (1

2 − 2 sin2 θW)F
p
i − 1

2 Fn
i − 1

2 Fs
i

νn → νn F̃n
i = (1

2 − 2 sin2 θW)Fn
i − 1

2 F
p
i − 1

2 Fs
i

electromagnetic current are components of the same isospin multiplet of conserved
currents, and that therefore their form factors are related. Details are given in Ap-
pendix D.1.

Rewriting F
p
i and Fn

i in terms of Sachs form factors defined, e.g., in Ref. [Sto93], one
gets

F
p,n
1 =

[
G

p,n
E +

Q2

4M2
N

G
p,n
M

][
1 +

Q2

4M2
N

]−1

, (4.9)

F
p,n
2 =

[
G

p,n
M − G

p,n
E

]
[

1 +
Q2

4M2
N

]−1

. (4.10)

Here, GM(Q2) and GE(Q2) are the magnetic and the electric form factors of the nu-
cleon, respectively. In the following, we use the updated BBBA-2007 parametrization
[BABB08] which includes recent electron scattering data from JLab and accounts for
deviations from the dipole Q2-dependence.

In Fig. 4.1, the electromagnetic form factors F
p
i and Fn

i (upper panel) and the vector
form factors for CC and NC scattering (cf. Table 4.1; middle and lower panel, respec-
tively) are shown as a function of Q2. At zero momentum transfer the vector form
factors are fixed by the electric charge and the magnetic moment of the nucleon.

Axial form factors

The axial form factors FA and FP introduced in Eq. (4.8) — present in CC and NC
scattering — depend also on the process under consideration as indicated in Table 4.2.
Contracting leptonic and hadronic tensors, one finds that FP appears only multiplied
by the mass of the outgoing lepton. Thus, it does not contribute for NC interactions.
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32



4.2 Form factors of the nucleon

Table 4.2: Relations for the axial form factors; details are given in Section D.1. Note
that CCQE scattering is not possible on protons. The strangeness form factor Fs

A is
defined on page 35.

reaction replace FA in Eq. (4.8) with replace FP in Eq. (4.8) with

ℓ−p → ℓ−p - -

ℓ−n → ℓ−p - -

νn → ℓ−p FA
2M2

N

Q2+m2
π

FA

νp → νp F̃
p
A = 1

2 FA + 1
2 Fs

A -

νn → νn F̃n
A = −1

2 FA + 1
2 Fs

A -

In the case of CC reactions, we assume pion-pole dominance and use the partial
conservation of the axial current (PCAC) to relate FA and FP (details are given in
Appendix F.2.1), so that1

FP(Q2) =
2M2

N

Q2 + m2
π

FA(Q2). (4.11)

The axial vector coupling constant FA(0) is obtained using Eq. (F.17) with Ciso =
√

2,
so that

FA(0) = −2 fπ
f

mπ
≡ −gA. (4.12)

This is known as the Goldberger-Treiman relation (see, e.g., Eq. (9.61) in Ref. [EW88]).
It predicts the axial coupling gA constant with a 2% accuracy compared to the value
measured from neutron beta decay [BEM02, TH95]. These experiments obtained gA =
1.267 [PDG08], which is the value we adopt throughout this work.

For the axial form factor we assume a standard dipole form

FA(Q2) = FA(0)

(
1 +

Q2

M2
A

)−2

. (4.13)

There are two methods to determine the so-called axial mass MA: QE neutrino scat-
tering or charged pion electroproduction. The former method has been applied by
Kuzmin and collaborators to refit MA using the recent BBBA-2007 parametrization

1Experimentally, PCAC and the assumption of pion-pole dominance have been tested by measuring
muon capture in Hydrogen [MuCap07] where good agreement with the predicted values has been
found (see also the review article by Towner and Hardy [TH95]). We note that we neglect a small
non-pion pole correction in FP (see, e.g., Section 4.1 in Ref. [BEM02]).
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Figure 4.2: Nucleonic axial form factors as a function of Q2. In the left panel, we
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p
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scattering (using the strange contribution Fs

A with ∆s = −0.15 discussed on page 35).

for the vector form factors [KLN08]. They analyzed all available experimental data on
the total and differential charged-current cross sections for quasielastic νµN and ν̄µN

scattering, obtained in the accelerator experiments at ANL, BNL, FNAL, CERN, and
IHEP over the the last decades. We take their best fit value

MA = 0.999 ± 0.011 GeV. (4.14)

This value is consistent with the one extracted from pion electroproduction data
which gives MA = 1.014 GeV (Ref. [BEM02], their Eq. (10) together with the correction
in their Eq. (53)). These numbers seem to be in conflict with the recent findings of the
K2K and MiniBooNE experiments [K2K06, MiniBooNE08b]. The new data, obtained
from reactions on nuclei, seem to prefer an axial mass of around 1.2 GeVand higher.
We return to this issue in Section 15.1.

The axial form factors are shown in Fig. 4.2 as a function of Q2 for both, CC and
NC scattering. Note that even though the absolute value of FP becomes very large
(≈ −120 at Q2 = 0), this form factor contributes only very little to the νe and νµ

CCQE cross section since it appears only multiplied by m2
ℓ′ (cf., e.g., Fig. 4.5 and 4.6

in Ref. [Lei05]).

Strange form factors

The strangeness content of the nucleon is contained in Fs
1,2 and Fs

A, which play a
role in NC scattering (see Table 4.1 and 4.2). It can be investigated in a combined
study of parity-violating polarized electron scattering and neutral-current neutrino
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4.2 Form factors of the nucleon

scattering. Parity-violating electron scattering is sensitive to the strange electric and
magnetic form factors (i.e., to the strange vector form factors) and much less to the
strange axial-vector form factor (cf., e.g., Ref. [TW01]). The opposite holds for NC
neutrino scattering. An extensive program studying parity violation experimentally
has evolved in the last years: the SAMPLE experiment at MIT/Bates [SAMPLE04],
HAPPEX [HAPPEX01, HAPPEX06] and G0 [G005] at JLab, and PVA4 [A404] in Mainz
have extracted linear combinations of the strange electric and magnetic form factors
at different Q2 values. Recently, the strange electric and magnetic form factors were
extracted from a combined set of available parity-violating electron scattering data by
Young et al. [YRCT06]. However, data for NC neutrino-nucleon scattering, needed
to determine the strange axial form factor, are scarce. The best measurement to date
has been performed by the E734 experiment at BNL [A+87] which measured neutrino-
proton and anti-neutrino-proton elastic scattering, albeit with large systematical errors
and only small statistics. Former attempts to extract the strange axial form factor
from these data [GLW93, ABB+99] faced the fact that, as pointed out by Alberico et al.

[ABB+99], the experimental uncertainty is still too large to be conclusive about specific
values of the strange form factors of the nucleon and a rather wide range of values
for the strange parameters is compatible with the BNL E734 data. The advent of new
polarized electron scattering data from the above mentioned experiments changes
appreciably the situation because, as shown by Pate [Pat04, PMP08, Pat05], it allows
to perform a simultaneous determination of all (electric, magnetic and axial) strange
form factors with small error bars, in spite of the uncertainties of the E734 data. But
this is only possible in the region of 0.45 < Q2 < 1.05 GeV2 where the E734 differential
cross sections were measured, so new NC neutrino-nucleon scattering data at low Q2

are needed for a reliable extrapolation down to Q2 = 0.
At present, no definite conclusion can be drawn from data, thus we set for simplic-

ity2

Fs
1(0) = 0, (4.15)

Fs
2(0) = 0, (4.16)

and

Fs
A(Q2) =

∆s
(

1 + Q2

M2
A

)2 , (4.17)

assuming that the strange axial mass is equal to the non-strange one. Here ∆s denotes
the strange contribution to the nucleon spin. In line with Ref. [ABB+97] we use
∆s = −0.15 and ∆s = 0 as representative values. If not stated otherwise, the former
value is used by default.

2The NC cross section is more sensitive to the strange axial form factor than to the strange vector
form factors. This has been discussed in detail in Ref. [Lei05].
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4 Quasielastic scattering

4.3 Cross section

Contracting the hadronic tensor defined in Eq. (4.2) at the beginning of this chapter
with the leptonic tensor given in Eq. (3.3) on page 27, one obtains the matrix element
|M̄QE| (see Eq. (3.2)), which, together with Eq. (3.6) (page 28) yields the QE cross
section. Rewriting Eq. (3.6) in terms of t = −Q2 using dt = 2|k||k′| dcos θ, we arrive
at

dσQE

dQ2 =
1

16π

1
(s − M2

N)2
|M̄QE|2, (4.18)

with s = M2
N + 2MNk0 and the Q2 limits given by

Q2
min,max = −m2

ℓ′ + 2Ecm(E′
cm ∓

√
E′2

cm − m2
ℓ′), (4.19)

where

Ecm =
s − M2

N

2
√

s
, E′

cm =
s − M2

N + m2
ℓ′

2
√

s
. (4.20)

The resulting CCQE cross section for νµ scattering on the neutron is presented in
Fig. 4.3. The left panel shows dσ/dQ2 for various neutrino energies. There, the
lines for the different energies end at the kinematical limits. The right panel shows
the integrated cross section, σ, in comparison with the available data on H2 and D2

targets. In our calculations the main source of uncertainty comes from the axial form
factor whose Q2 dependence has to be extracted from ν scattering data. Thus, we
have varied MA within the error band given in Eq. (4.14) but the impact of this error
is not resolvable within the line thickness and consequently not shown.

In Fig. 4.4, we plot the cross sections for NC QE scattering on proton (upper pan-
els) and neutron (lower panels). The left panels show dσ/dQ2 for different neutrino
energies with ∆s = −0.15; ∆s is varied in the right panels where the integrated cross
section σ is presented. We emphasize that the strange spin causes opposite effects
on the cross sections for protons and neutrons because it is an isoscalar contribution
(compare the different signs in the NC axial form factor given in the last two lines in
Table 4.2). In the left panels, as in Fig. 4.3, the lines end at the kinematical limits.
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5
Excitation of baryon resonances

This chapter is devoted to the second part of our general decomposition of the cross
section given in Eq. (3.1), namely the excitation of resonances, ℓN → ℓ′R. As will be
shown, the electromagnetic form factors are taken from the MAID analysis where 13
resonances with invariant masses of less than 2 GeV are included. Consequently, this
restricts the number of resonances in our model to 13 — they are listed in Table 5.1.
In the following, we will split the description according to the spin of the resonances.

5.1 Excitation of spin 1/2 resonances

This section covers the lepton-induced excitation of spin 1/2 resonances. We include
in our model five spin 1/2 resonances, namely the positive parity states, P11(1440)
and P31(1910), and the negative parity states, S11(1535), S31(1620) and S11(1650).

5.1.1 Hadronic current

The hadronic current for the excitation of a spin 1/2 final state is given by

J
µ
1/2 =

〈
R(p′)

∣∣∣J
µ
1/2(0)

∣∣∣ N(p)
〉

= ū(p′)Γ
µ
1/2u(p), (5.1)

and the hadronic tensor reads

H
µν
1/2 =

1
2

Tr
[
(/p + M)Γ̃

µ
1/2(/p

′ + M′)Γ
ν
1/2

]
, (5.2)
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5 Excitation of baryon resonances

Table 5.1: Properties of the resonances included in our model for the ℓN scattering.
The Breit-Wigner mass, MR, spin, J, isospin, I, parity, P, the vacuum total decay
width, Γ0, at the pole, the branching ratio into πN, bR, and the axial coupling (FA(0)
for spin 1/2 states; CA

5 (0) for states with spin 3/2 or higher) are listed. The resonance
parameters are taken from the analysis of Manley et al. [MS92], the axial couplings
are derived in Appendix F.

MR [GeV] J I P Γ0 [GeV] bR FA(0) or CA
5 (0)

P33(1232) 1.232 3/2 3/2 + 0.118 1.00 1.17
P11(1440) 1.462 1/2 1/2 + 0.391 0.69 −0.52
D13(1520) 1.524 3/2 1/2 − 0.124 0.59 −2.15
S11(1535) 1.534 1/2 1/2 − 0.151 0.51 −0.23
S31(1620) 1.672 1/2 3/2 − 0.154 0.09 0.05
S11(1650) 1.659 1/2 1/2 − 0.173 0.89 −0.25
D15(1675) 1.676 5/2 1/2 − 0.159 0.47 −1.38
F15(1680) 1.684 5/2 1/2 + 0.139 0.70 −0.43
D33(1700) 1.762 3/2 3/2 − 0.599 0.14 0.84
P13(1720) 1.717 3/2 1/2 + 0.383 0.13 −0.29
F35(1905) 1.881 5/2 3/2 + 0.327 0.12 0.15
P31(1910) 1.882 1/2 3/2 + 0.239 0.23 0.08
F37(1950) 1.945 7/2 3/2 + 0.300 0.38 0.24

with M =
√

p2 and M′ =
√

p′2 , and Γ̃
µ
1/2 = γ0Γ

µ
1/2

†
γ0.

The vertex function Γµ for states with positive parity (e.g., P11(1440)) is given by

Γ
µ
1/2+ = Vµ

1/2 −Aµ
1/2 , (5.3)

and for states with negative parity (e.g., S11(1535)) by

Γ
µ
1/2− =

[
Vµ

1/2 −Aµ
1/2

]
γ5. (5.4)

Both the vector part, Vµ
1/2, and the axial part, Aµ

1/2, are parametrized in terms of form
factors as

Vµ
1/2 =

F1

(2MN)2

(
Q2γµ + /qqµ

)
+

F2

2MN
iσµαqα (5.5)

−Aµ
1/2 = FAγµγ5 +

FP

MN
qµγ5. (5.6)
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5.1 Excitation of spin 1/2 resonances

Table 5.2: Isospin relations for the vector form factors. R stands for N∗ (I = 1/2) or
∆ (I = 3/2) resonances. Fi is the generalized vector form factor in Eq. (5.5), which
has — depending on the process — to be substituted following the prescription in the
table. Note that in the case of an isospin 1/2 → 3/2 transition, the form factors are
equal for proton and neutron which is indicated by the index N (instead of p or n). A
detailed derivation of these relations is given in Appendix D.1 for I = 1/2 resonances
and in Appendix D.2 for I = 3/2 resonances.

replace Fi in Eq. (5.5) with

for I = 1/2 for I = 3/2

e−p → e−R+ F
p
i FN

i

e−n → e−R0 Fn
i FN

i

νp → ℓ−R++ -
√

3FV
i = −

√
3FN

i

νn → ℓ−R+ FV
i = F

p
i − Fn

i FV
i = −FN

i

νp → νR+ F̃
p
i = (1

2 − 2sin2 θW)F
p
i − 1

2 Fn
i − 1

2 Fs
i F̃N

i = (1 − 2sin2 θW)FN
i

νn → νR0 F̃n
i = (1

2 − 2sin2 θW)Fn
i − 1

2 F
p
i − 1

2 Fs
i F̃N

i = (1 − 2sin2 θW)FN
i

Precisely as in the QE case, Fi (i = 1, 2) stands either for the CC form factors, FV
i ,

for the NC form factors, F̃N
i , or the EM form factors, FN

i , with N = p, n; analogous for
FA and FP. The form factors are functions of Q2 = −q2.

5.1.2 Nucleon–resonance transition form factors

Vector form factors

The vector form factors FV
i are related to the electromagnetic transition form factors

FN
i with N = p, n as listed in Table 5.2, hence, the form factors for neutrino and

electron scattering are related (details are given in Appendix D.1 and D.2).
The form factors F

p,n
i can be derived from helicity amplitudes extracted from elec-

tron scattering experiments. The explicit relations between the form factors F
p,n
i and

the helicity amplitudes A
p,n
1/2, and S

p,n
1/2 are given in Appendix E.1 for both, positive

and negative parity states. We use these relations to extract the form factors from
the results of the recent MAID analysis [TAR, MAID, TK06, DT92, TDK+04, DKT07]
for the helicity amplitudes and their Q2-dependence. The helicity amplitudes from
MAID2005 are shown in Fig. 5.1 for the positive parity P11(1440) (left panel) and
the negative parity S11(1535) (right panel). The extracted form factors are plotted in
Fig. 5.2 for the P11(1440) (left panel) and the S11(1535) (right panel).
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Figure 5.1: Helicity amplitudes S1/2 and A1/2 from MAID2005 for the positive parity
P11(1440) (left panel) and the negative parity S11(1535) (right panel) for both, protons
and neutrons.

Axial form factors

The meaning of the axial form factor FA in Eq. (5.6) is given in Table 5.3 for each
reaction channel. As in QE scattering, FP appears only multiplied by the mass of
the outgoing lepton, hence, it is not present in NC interactions. In the case of CC
reactions, FP is replaced by FP.

Experimental information on the N − R axial transition form factors FA and FP is
very limited. Goldberger-Treiman relations have been derived for the axial couplings
[FN79], but there is no information about the Q2-dependence. We will follow this
approach and apply PCAC and pion pole dominance to derive the axial couplings
FA(0) and to relate FA and FP. The derivation, performed in Appendix F.2.1, leads to

FP(Q2) =
(MR ± MN)MN

Q2 + m2
π

FA(Q2), (5.7)

with + (−) for positive (negative) parity resonances. The Q2-dependence of the axial
form factor is neither fully constrained by theory nor by experiment, so we assume —
as in the QE case — a dipole dependence

FA(Q2) = FA(0)

(
1 +

Q2

M∗
A

2

)−2

; (5.8)

with M∗
A = 1 GeV as for the nucleon. The coupling FA(0) can be related to the πNR-

coupling as detailed in Appendix F.2.1 (off-diagonal Goldberger-Treiman relation) and
we obtain the results summarized in Table 5.4.

The axial form factors for the two lowest lying states are plotted in Fig. 5.3 for the
P11(1440) (left panel) and the S11(1535) (right panel).
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Figure 5.2: Form factors for the P11(1440) (right panels) and S11(1535) (left panels)
resonances as a function of Q2. The upper panels show the form factors F

p,n
i , the

middle panels the form factors for CC, the lower panels the ones for NC scattering as
given in Table 5.2.
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5 Excitation of baryon resonances

Table 5.3: Isospin relations for the axial form factors. R stands for N∗ (I = 1/2) or
∆ (I = 3/2) resonances. FA is the generalized axial form factor in Eq. (5.6), which
has — depending on the process — to be substituted following the prescription in the
table. Note that in the case of an isospin 1/2 → 3/2 transition, the form factors are
equal for proton and neutron which is indicated by the index N (instead of p or n). A
detailed derivation of these relations is given in Appendix D.1 for I = 1/2 resonances
and in Appendix D.2 for I = 3/2 resonances.

replace FA in Eq. (5.6) with
for I = 1/2 for I = 3/2

e−p → e−R+ - -

e−n → e−R0 - -

νp → ℓ−R++ -
√

3FA

νn → ℓ−R+ FA FA

νp → νR+ F̃
p
A = 1

2 FA + 1
2 Fs

A F̃N
A = −FA

νn → νR0 F̃n
A = −1

2 FA + 1
2 Fs

A F̃N
A = −FA

Table 5.4: πNR coupling f and axial coupling FA(0) for the resonances with spin 1/2.
See Appendix F.2.1 for details.

f FA(0)

P11(1440) 0.39 −2 fπ
f

mπ
= −0.52

S11(1535) 0.17 −2 fπ
f

mπ
= −0.23

S31(1620) 0.09
√

2
3 fπ

f
mπ

= 0.05

S11(1650) 0.19 −2 fπ
f

mπ
= −0.25

P31(1910) 0.14
√

2
3 fπ

f
mπ

= 0.08

Strange form factors

As in the nucleon case, strange form factors can contribute for isospin 1/2 → 1/2
transitions (cf. Appendix D.1; and also Table 5.2 and Table 5.3). However, the present
experimental status does not allow any conclusions on the strange transition form
factors, thus, we neglect them in this work and set Fs

i and Fs
A to zero.
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Figure 5.3: Axial form factors for the P11(1440) (right panels) and S11(1535) (left pan-
els) resonances as a function of Q2. The upper panels show the form factors for CC,
the lower panels the ones for NC scattering as given in Table 5.3.

5.2 Excitation of spin 3/2 resonances

In this section we discuss the lepton-induced excitation of spin 3/2 resonances. We
include the following set: P33(1232) and P13(1720) with positive parity, and D13(1520)
and D33(1700) with negative parity.

5.2.1 Hadronic current

The excitation of a spin 3/2 final state is described within a Rarita-Schwinger formal-
ism where the hadronic current is given by

J
µ
3/2 =

〈
R(p′)

∣∣∣J
µ
3/2(0)

∣∣∣ N(p)
〉

= ψ̄α(p′)Γ
αµ
3/2u(p) (5.9)

with the Rarita-Schwinger spinor ψ̄α describing the resonance state.
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5 Excitation of baryon resonances

We deduce the hadronic tensor

H
µν
3/2 =

1
2

∑

si

∑

s f

J
µ
3/2

†
Jν
3/2 =

1
2

∑

si

∑

s f

ū(p)Γ̃
αµ
3/2ψα(p′)ψ̄β(p′)Γ

βν
3/2u(p)

=
1
2

Tr
[
(/p + M)Γ̃

αµ
3/2ΛαβΓ

βν
3/2

]
, (5.10)

with the spin 3/2 projector

Λαβ = −
(
/p
′ + M′)

(
gαβ −

2
3

p′α p′β
M′2 +

1
3

p′αγβ − p′βγα

M′ − 1
3

γαγβ

)
, (5.11)

where M =
√

p2 and M′ =
√

p′2 , and Γ̃
αµ
3/2 = γ0Γ

αµ
3/2

†
γ0. For states with positive

parity as the P33(1232), we have

Γ
αµ
3/2+ =

[
Vαµ

3/2 −Aαµ
3/2

]
γ5, (5.12)

and for the negative parity ones (e.g., D13(1535)),

Γ
αµ
3/2− = Vαµ

3/2 −Aαµ
3/2 . (5.13)

In terms of form factors, the vector part is given by

Vαµ
3/2 =

CV
3

MN
(gαµ

/q − qαγµ) +
CV

4

M2
N

(gαµq · p′ − qα p′µ) +
CV

5

M2
N

(gαµq · p − qα pµ) + gαµCV
6

(5.14)
and the axial part by

−Aαµ
3/2 =

[
CA

3

MN
(gαµ

/q − qαγµ) +
CA

4

M2
N

(gαµq · p′ − qα p′µ) + CA
5 gαµ +

CA
6

M2
N

qαqµ

]
γ5.

(5.15)
As before, the calligraphic CV

i , i = 3, . . . , 6, stands either for the CC form factors CV
i ,

the electromagnetic transition form factors CN
i with N = p, n or the NC form factors

NC̃V
i , analogous for CA

i .

5.2.2 Nucleon-resonance transition form factors

Vector form factors

The vector form factors CV
i and NC̃V

i can be related to the electromagnetic transition
form factors C

p,n
i as detailed in Table 5.5. Note that current conservation implies

CN
6 = 0 for EM transitions. Using information from electron scattering, C

p,n
i can
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5.2 Excitation of spin 3/2 resonances

Table 5.5: Isospin relations for the vector form factors. R stands for N∗ (I = 1/2)
or ∆ (I = 3/2) resonances. CV

i , i = 3, . . . , 6, is the generalized vector form factor in
Eq. (5.14), which has — depending on the process — to be substituted following the
prescription in the table. Note that in the case of an isospin 1/2 → 3/2 transition,
the form factors are equal for proton and neutron which is indicated by the index N

(instead of p or n). A detailed derivation of these relations is given in Appendix D.1
for I = 1/2 resonances and in Appendix D.2 for I = 3/2 resonances.

replace CV
i in Eq. (5.14) with

for I = 1/2 for I = 3/2

e−p → e−R+ C
p
i CN

i

e−n → e−R0 Cn
i CN

i

νp → ℓ−R++ -
√

3CV
i = −

√
3CN

i

νn → ℓ−R+ CV
i = C

p
i − Cn

i CV
i = −CN

i

νp → νR+
pC̃V

i = (1
2 − 2sin2 θW)C

p
i − 1

2Cn
i − 1

2CsV
i NC̃V

i = (1 − 2sin2 θW)CN
i

νn → νR0
nC̃V

i = (1
2 − 2sin2 θW)Cn

i − 1
2C

p
i − 1

2CsV
i NC̃V

i = (1 − 2sin2 θW)CN
i

be parametrized in the same way as in the previous section for spin 1/2 resonances
by relating them to the MAID helicity amplitudes. The explicit relations between
the form factors C

p,n
i and the helicity amplitudes A

p,n
1/2, A

p,n
3/2 and S

p,n
1/2 are given in

Appendix E.2. Note that in the case of isovector transitions, i.e., isospin 1/2 → 3/2
transitions, proton and neutron form factors are identical.

The helicity amplitudes obtained in MAID2005 are plotted in Fig. 5.4 as a function
of Q2 for the positive parity P33(1232) (left panel) and the negative parity D13(1520)
(right panel). The extracted form factors are plotted in Fig. 5.5 for the P33(1232) (left
panel) and the D13(1520) (right panel).

Axial form factors

The substitutions for the axial form factors are summarized in Table 5.6. Pion pole
dominance and PCAC allow us on one side to fix the coupling CA

5 (Q2 = 0) by using
an off-diagonal Goldberger-Treiman relation to the values displayed in Table 5.7, and
on the other side to relate CA

5 and CA
6 (see Appendix F.2.2),

CA
6 (Q2) =

M2
N

Q2 + m2
π

CA
5 (Q2), (5.16)
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Figure 5.4: Helicity amplitudes S1/2, A1/2 and A3/2 from MAID2005 for the positive
parity P33(1232) (left panel) and the negative parity D13(1520) (right panel) for both,
protons and neutrons.

Table 5.6: Isospin relations for the axial form factors. R stands for N∗ (I = 1/2) or ∆

(I = 3/2) resonances. CA
i , i = 3, . . . , 6, is the generalized axial form factor in Eq. (5.15),

which has — depending on the process — to be substituted following the prescription
in the table. Note that in the case of an isospin 1/2 → 3/2 transition, the form factors
are equal for proton and neutron which is indicated by the index N (instead of p or
n). A detailed derivation of these relations is given in Appendix D.1 for I = 1/2
resonances and in Appendix D.2 for I = 3/2 resonances.

replace CA
i in Eq. (5.15) with

for I = 1/2 for I = 3/2

e−p → e−R+ - -

e−n → e−R0 - -

νp → ℓ−R++ -
√

3CA
i

νn → ℓ−R+ CA
i CA

i

νp → νR+
pC̃A

i = 1
2CA

i + 1
2CsA

i NC̃A
i = −CA

i

νn → νR0
nC̃A

i = −1
2CA

i + 1
2CsA

i NC̃A
i = −CA

i
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5 Excitation of baryon resonances

Table 5.7: πNR coupling f and axial coupling CA
5 (0) for the resonances with spin 3/2.

The derivation is performed in Appendix F.2.2.

f CA
5 (0)

P33(1232) 2.15
√

2
3 fπ

f
mπ

= 1.17

D13(1520) 1.61 −2 fπ
f

mπ
= −2.15

D33(1700) 1.54
√

2
3 fπ

f
mπ

= 0.84

P13(1720) 0.22 −2 fπ
f

mπ
= −0.29

which holds for both parity states. The CA
6 form factor appears in the cross section

only multiplied by the mass of the outgoing lepton, such that its contribution vanishes
in NC and is rather small even in CC reactions (except for ντ).

P33(1232). We adopt the Adler model [Adl68] for the axial form factors of the ∆

where

CA
4 (Q2) = −CA

5 (Q2)

4
and CA

3 (Q2) = 0. (5.17)

Then, the only unknown is the Q2-dependence of CA
5 because CA

5 (0) is fixed by PCAC
(see Appendix F.2.2). We will show in Section 5.4 that the cross section for the isospin
3/2 reaction νp → l−pπ+ is in very good approximation described by the excita-
tion of the ∆ and its subsequent decay. Thus, we can use these data to extract the
Q2-dependence of CA

5 . The available data comes mainly from two bubble-chamber
experiments: the 12-ft bubble chamber at Argonne (ANL) [B+79, R+82] and the 7-ft
bubble chamber at Brookhaven (BNL) [K+86, K+90]. The ANL neutrino energy flux
peaks at about 0.5 GeV [B+77] while the BNL one peaks at about 1 GeV [Fur02].

The simplest ansatz, which has also been used for the spin 1/2 states, is a dipole
form, and reads

(
CA

5

)DP
(Q2) = CA

5 (0)

(
1 +

Q2

MDP
A

2

)−2

, (5.18)

with MDP
A = 1 GeV in analogy to the nucleon and the spin 1/2 resonances, and

CA
5 (0) = 1.17 (see Table 5.7).
A alternative parametrization, widely used in the analysis of the neutrino experi-

ments [K+86, K+90, B+79, R+82], is a modified dipole

CA
5 (Q2) = CA

5 (0)

[
1 +

aQ2

b + Q2

](
1 +

Q2

M∆

A
2

)−2

; (5.19)
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5.2 Excitation of spin 3/2 resonances

a, b and M∆

A have to be extracted from data, and CA
5 (0) = 1.17 fixed by PCAC (see

Table 5.7). A fit to the shape of the ANL and BNL dσ/dQ2 data gives a = −0.25,
b = 0.04 GeV2 and M∆

A = 0.95 GeV.
The resulting cross sections for both, the dipole form of Eq. (5.18) and the modified

dipole of Eq. (5.19) are compared to ANL and BNL data in Fig. 5.6. The shape of the
BNL distribution (note: normalized to unit area) is described well by both form factors
(right panel of Fig. 5.6) while the ANL data, which are available as normalized cross
sections, are overestimated by the dipole form, but well described by the modified
dipole form factor.

PCAC, used to fix CA
5 (0), is exact only in the chiral limit of vanishing pion mass.

The left panel of Fig. 5.7 shows CA
5 as in Eq. (5.19) and in Eq. (5.18) with an assumed

error of 10% for the N − ∆ transition axial coupling, i.e., with CA
5 (0) = 1.17 ± 10%.1

The comparison of both form factor shows a steeper behavior for the modified dipole
one. This translates also in a larger axial radius. The resulting integrated cross section
is displayed in the right panel of Fig. 5.7 together with the data of ANL and BNL. The
dipole form factor describes well the BNL data while good agreement to the ANL
data is reached with the modified dipole form. All axial form factors of the ∆ are
plotted in Fig. 5.8.

Describing the ANL and BNL data simultaneously with the same form factors is
impossible and a choice has to be made: thus, if not stated otherwise, we use the
modified dipole form of Eq. (5.19) in the following.

We end this paragraph by stressing known uncertainties. First of all, we have ne-
glected a non-resonant background in the isospin 3/2 channel νp → µ−π+p. Both,
Sato et al. [SUL03] and Hernandez et al. [HNV07] find within their microscopic models
for the non-resonant pion background a correction of the order of 10% in this channel.
We shall return to this discussion in Chapter 6. We have also neglected the effect of
the deuteron structure: Fig. 5.9 shows our calculation on the proton together with a
result including deuterium effects using the Argonne V18 NN potential (details on the
implementation are given in Sec. 8.4.1 of Ref. [Bus08]). We find only a minor correc-
tion — the correction is even smaller in the BNL case because of the higher neutrino
energy. This agrees with the findings of Alvarez-Ruso et al. [ARSVV99] who state that
the correction does not exceed 8% even at low Q2 (they have used the Hulthen, Bonn
and Paris NN potentials).

We note that Hernandez et al. [HNV07] take CA
5 (0) as a free parameter in their

refit of CA
5 . As we rely on PCAC for all other resonance couplings (where no data

are available) we prefer to keep it also here. In addition, this coupling was extracted
from the BNL data in Ref. [ARSVV99] and found to be consistent with the PCAC
prediction; our value of CA

5 (0) = 1.17 agrees also with the one calculated in chiral

1On the nucleon, the Goldberger-Treiman relation derived from PCAC is satisfied at the level of 2%
(cf., Ref. [TH95] and references therein and our discussion on page 33).
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perturbation theory [GMCARVV08] (
(
CA

5 (0)
)

χPT
= 1.16). Moreover, recent lattice

results seem to support the off-diagonal Goldberger-Treiman relation [ALNT07] but
the chiral extrapolation has to be handled with great care.

D13(1520), D33(1700) and P13(1720). As the P33(1232) dominates the cross section (see
Section 5.4), the extraction of the Q2-dependence of the axial form factor from data is
only possible for this state but not for the other resonances. Therefore, we assume for
the other resonances a simple dipole behavior as done for the spin 1/2 resonances,

CA
5 (Q2) = CA

5 (0)

(
1 +

Q2

M∗
A

2

)−2

; (5.20)

with M∗
A = 1 GeV in analogy to the nucleon. The couplings CA

5 (0), extracted by using
PCAC (see Appendix F.2.2), are summarized in Table 5.7. On the basis of various
quark models and dispersion relations, CA

3 and CA
4 are expected to be minor and thus

are neglected [Adl68]. The form factors for the D13(1520) are plotted in Fig. 5.10.

Strange form factors

For isospin 1/2 → 1/2 transitions, strange form factors can contribute (cf. Table 5.5
and Table 5.6), but are neglected in this work due to the lack of experimental infor-
mation, i.e., we set CsV

i and CsA
i to zero.
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5.3 Resonances with spin > 3/2

Table 5.8: πNR coupling f and axial coupling CA
5 (0) for the resonances with spin

higher than 3/2. They are derived in Appendix F.2.2.

f CA
5 (0)

D15(1675) 1.03 −2 fπ
f

mπ
= −1.38

F15(1680) 0.32 −2 fπ
f

mπ
= −0.43

F35(1905) 0.27
√

2
3 fπ

f
mπ

= 0.15

F37(1950) 0.43
√

2
3 fπ

f
mπ

= 0.24

5.3 Resonances with spin > 3/2

Any formalism describing resonances with spin greater than 3/2 is highly com-
plicated [SLMP05]. We thus make as simplifying assumption that all resonances
with spin > 3/2 — we include in our model four spin >3/2 resonances: D15(1675),
F15(1680), F35(1905), and F37(1950) — can be treated with the spin 3/2 formalism.
As we will show, their contributions are anyway negligible in the energy region of
interest for this work.

The axial couplings CA
5 (0) are summarized in Table 5.8; Eq. (5.20) is used for the Q2

dependence.

5.4 Cross sections

5.4.1 Resonance-excitation cross sections

Contracting the hadronic tensor defined in Eq. (5.2) for spin 1/2 resonances and in
Eq. (5.10) for spin 3/2 resonances with the leptonic tensor given in Eq. (3.3) on page 27,
one obtains the matrix element |M̄R| (see Eq. (3.2)) and, together with Eq. (3.7) (page
28) the resonance excitation cross section for the reaction ℓ(k)N(p) → ℓ′(k′)R(p′).

In Fig. 5.11, we show the integrated cross section for CC (top panels) and NC
(bottom panels) induced resonance production on the proton (left panels) and on the
neutron (right panels). The dominant contribution comes from the excitation of the ∆

resonance (solid line).
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5.4 Cross sections

5.4.2 Pion production through resonance excitation

Here, we consider pion production via resonance excitation and their subsequent
decay2. By νN scattering one can excite an isospin 3/2 resonance (e.g., P33(1232)) or
an isospin 1/2 resonance (e.g., P11(1440)). They decay, among other channels, with a
certain branching ratio into πN pairs. We neglect possible interferences between the
resonances. By including the appropriate Clebsch-Gordan coefficients, we obtain in
the case of charged-current scattering for the cross sections of the three possible one-
pion production channels

dσ(νp → ℓ−pπ+) =
∑

I=3/2
resonances

bi dσR++
i

, (5.21)

dσ(νn → ℓ−nπ+) =
1
3

∑

I=3/2
resonances

bi dσR+
i

+
2
3

∑

I=1/2
resonances

bi dσR+
i

, (5.22)

dσ(νn → ℓ−pπ0) =
2
3

∑

I=3/2
resonances

bi dσR+
i

+
1
3

∑

I=1/2
resonances

bi dσR+
i

, (5.23)

and for the neutral-current ones

dσ(νp → νnπ+) =
1
3

∑

I=3/2
resonances

bi dσR+
i

+
2
3

∑

I=1/2
resonances

bi dσR+
i

, (5.24)

dσ(νp → νpπ0) =
2
3

∑

I=3/2
resonances

bi dσR+
i

+
1
3

∑

I=1/2
resonances

bi dσR+
i

, (5.25)

dσ(νn → νpπ−) =
1
3

∑

I=3/2
resonances

bi dσR0
i
+

2
3

∑

I=1/2
resonances

bi dσR0
i

, (5.26)

dσ(νn → νnπ0) =
2
3

∑

I=3/2
resonances

bi dσR0
i
+

1
3

∑

I=1/2
resonances

bi dσR0
i

, (5.27)

where σR++
i

, σR+
i

and σR0
i

are the cross sections for resonance excitation on protons or
neutrons as discussed before. The branching ratios bi = ΓπN/Γtot are taken from the
analysis of Manley and Saleski [MS92] (cf. Table 5.1 for their values).

The three charged-current channels are plotted in Fig. 5.12 together with pion-
production data from ANL and BNL on H2 and D2. The solid line includes all reso-
nances, while only the ∆ is considered in the dashed line. One can see that the isospin

2We note that in the nuclear medium resonances can undergo “pion-less decay” which will be dis-
cussed in later chapters.
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3/2 channel νµ p → µ−π+p (upper panel; note also the different scale there) is totally
dominated by the ∆ resonance. A good agreement with the ANL data is reached (note
that we use the modified dipole form for the ∆ axial form factor CA

5 ).
In the case of the π+n and π0p channels our results lie systematically below the data

(middle and lower panel). This is mainly due to the non-negligible contribution from
the non-resonant πN background which will be discussed in the next chapter. Note,
however, that the isospin-averaged total π+ production cross section is dominated
by the isospin 3/2 channel π+p, thus, the underestimate in the (small) π+n channel
translates into an error of only ≈ 10% at Eν = 1 GeV.

To conclude, we find that the CC pion production cross section is dominated by the
excitation and subsequent decay of the ∆ resonance. The contribution of higher-lying
resonances at neutrino energies . 2 GeV is rather small compared to the total pion
yield. The underestimate in the isospin 1/2 channels, in particular in the π0p channel,
indicates that a non-resonant pion background is needed.

Our results for NC pion production are shown in Fig. 5.13 for protons (left) and neu-
trons (right). Data on NC pion production is extremely sparse. A measurement was
performed on D2 at the ANL bubble chamber for the νn → νpπ− channel [D+80] —
our calculation agrees well with these data (dashed line in the right panel of Fig. 5.13).
The remaining channels have only been measured at the Gargamelle bubble cham-
ber [K+78] (see also the reanalysis by Hawker [Haw02]) on a propane-freon mixture
and not on “elementary targets”. Thus, we do not show them here.
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5 Excitation of baryon resonances

5.5 Comparison to other approaches

Basically, two approaches are considered in the literature for the N − R transition
form factors: a phenomenological one with parameters extracted from neutrino and
electron scattering data or a microscopical one using quark models. As discussed
before, we have chosen the first approach and use phenomenological form factors.

5.5.1 Phenomenological models

Several studies have addressed the properties of the P11(1440) as well as its electro-
magnetic and weak production [LBL92, CG98, AFGM01, CPSS97, ARSVV98, DSFB99,
ARBDM03, HNS+08]. In the works of Refs. [FN79, LPP06] the form factors of the four
lowest lying resonances, P33(1232), P11(1440), D13(1520) and S11(1535), are extracted
using helicity amplitudes for the vector form factors and PCAC for the determination
of the axial couplings.

We compare our form factors to the most recent works by Lalakulich et al. [LPP06]
and Hernandez et al. [HNS+08]. To perform a meaningful comparison, we have cor-
rected for different normalizations3 and sign conventions: both use a different sign in
the definition of the axial current. The result after these corrections for the P11(1440)
and S11(1535) resonance is shown in Table 5.9. We agree in all signs with Hernandez
et al., but with little differences in the numerical values. For the vector form fac-
tors, these differences can be attributed to the different analysis of helicity amplitudes
used, since their Eqs. (28) and (29) coincide with our Eqs. (E.5) and (E.6)4. We also
agree in the expressions for the Goldberger-Treiman relation (their Eq. (21) vs. our
Eq. (F.17) — note the different sign convention); the difference in the axial coupling
comes from a different value for the πNR-coupling.

Comparing to Lalakulich et al., we find major differences. Ignoring a global sign
difference — we and also Hernandez et al. take FV

i = F
p
i − Fn

i while Lalakulich uses
FV

i = Fn
i − F

p
i —, a relative sign difference between FV

1 and FA remains for the
P11(1440) resonance. This is mainly caused by the different sign of F

p
1 , which can

be attributed — as already pointed out by Hernandez et al. [HNS+08] — to the extra
minus sign in the S1/2 amplitude adopted in the analysis of experimental data which
is missing in the work of Lalakulich et al. Furthermore, they perform the calculation in
the lab frame, while it should be done in the cm frame as stated by Refs. [Tia, ABL08]
(this affects S1/2, see also the remarks in Appendix E).

3which, in both cases, introduces factors (2MN)2

µ2

(
2MN

µ

)
with µ = MN + MR in front of the vector

form factors FV
1 (FV

2 )
4While we include the minus sign in the S1/2 amplitude explicitly, they account for it when fitting to

the helicity amplitudes extracted from data.
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5.5 Comparison to other approaches

Table 5.9: Comparison of our couplings for the P11(1440) and the S11(1535) to those
compiled by Hernandez et al. [HNS+08] and Lalakulich et al. [LPP06]. The S11(1535)
resonance is not considered in the work of Hernandez. FN

i with N = p, n stands for
the EM form factors and FV

i for the CC form factors. In our work (see discussions
in connection with Table 5.2), and also in the work of Hernandez, FV

i is taken as
FV

i = F
p
i − Fn

i while Lalakulich uses FV
i = Fn

i − F
p
i . FA stands for the axial form

factor. We have corrected for different normalizations and sign conventions in the
axial current.

this work Hernandez et al. Lalakulich et al.

P11(1440) F
p
1 (0) −1.96 −3.55 1.43

Fn
1 (0) 2.26 0.26 −1.43

FV
1 (0) −4.22 −3.81 −2.86

F
p
2 (0) −0.46 −0.50 −0.60

Fn
2 (0) 0.41 0.34 0.60

FV
2 (0) −0.87 −0.84 1.20

FA(0) −0.52 −0.63 0.51

S11(1535) F
p
1 (0) 0.85 − −1.24

Fn
1 (0) −0.02 − 1.24

FV
1 (0) 0.87 − −2.49

F
p
2 (0) 0.46 − −0.66

Fn
2 (0) −0.35 − 0.66

FV
2 (0) 0.82 − −1.32

FA(0) −0.23 − 0.21

Lalakulich et al. use a modified dipole form for the Q2 dependence of their axial
form factors, FA and CA

5 , which reads

{
FA(Q2)
CA

5 (Q2)

}

LPP
=

{
FA(0)
CA

5 (0)

} (
1 +

Q2

3M′
A

2

)−1 (
1 +

Q2

M′
A

2

)−2

, (5.28)

with M′
A = 1.05 GeV for all four included resonances.

In Table 5.10 we compare our couplings for the P33(1232) and D13(1520) resonance
to the recent compilation of Lalakulich et al. [LPP06]. The agreement is better than in
the spin 1/2 case (cf. Table 5.9): focussing on the dominating form factor C3, we still
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5 Excitation of baryon resonances

Table 5.10: Comparison of our couplings for the P33(1232) and D13(1520) to those com-
piled by Lalakulich et al. [LPP06]. CN

i with N = p, n denotes the electromagnetic tran-
sition form factor while CV

i stands for the CC form factor. In the case of the P33(1232),
the electromagnetic form factors are equal for proton and neutron which is indicated
by the index N (instead of p and n as for the D13(1520)); furthermore, CN

i and CV
i

differ only by their sign (in the table, the upper sign stands for CN
i , the lower one for

CV
i , see Table 5.5). Note that both have the same sign in the work of Lalakulich et al.

CA
i denotes the axial form factor.

this work Lalakulich et al.

P33(1232) CN,V
3 (0) ∓2.12 2.13

CN,V
4 (0) ±11.31 −1.51

CN,V
5 (0) ∓10.22 0.48

CA
5 (0) 1.17 1.20

D13(1520) C
p
3 (0) −2.70 2.95

Cn
3 (0) 0.28 −1.13

CV
3 (0) −2.98 −4.08

C
p
4 (0) 2.62 −1.05

Cn
4 (0) −1.59 0.46

CV
4 (0) 4.21 1.51

C
p
5 (0) −1.17 −0.48

Cn
5 (0) 1.96 −0.17

CV
5 (0) −3.13 0.31

CA
5 (0) −2.15 −2.10

do not agree in the sign of the EM form factors. However, in this case no relative sign
difference remains for the CC form factors as it has been in the case of the P11(1440).

For the ∆ resonance, we show in Fig. 5.14 the differential cross section obtained with
our form factors (solid line) and with the form factor set of Lalakulich et al. [LPP06]
(dashed line). With their form factors, no satisfactory agreement with the ANL data
can be reached since the improvement on the vector form factors has not been applied
to refit the axial form factors.

The difference in the ∆-resonance channel is also present in the integrated cross sec-
tion shown in the upper left panel of Fig. 5.15. The solid lines denote the calculation
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(their Fig. 12). Our result is denoted by the solid line, the dashed line has been
obtained with the form factors of Lalakulich et al. [LPP06], and the dash-dotted one
with the FKR/RS model [RS81]. To compare with data, we apply an invariant mass
cut at W < 1.4 GeV.

using our form factors based on the MAID analysis and Eq. (5.19) while the dashed
lines were calculated using the form factors of Lalakulich et al. [LPP06]. In this figure,
we further investigate the impact of the different sets of form factors on the P11(1440),
D13(1520) and S11(1535) integrated cross sections.

5.5.2 Quark models

Early attempts for quark-model form factors are reviewed in Ref. [SvH73] (see also
references therein); more recent ones are summarized in Ref. [LMZ95]. Among them,
the most widely used approach — which we shall briefly introduce here — is based
on helicity amplitudes derived in a relativistic quark model by Feynman, Kislinger
and Ravndal [FKR71] (FKR). Those have been used to describe the electroproduction
of resonances [Rav71]. Later, Rein and Sehgal [RS81] (RS) applied the FKR model to
describe the excitation of resonances up to W = 2 GeV via CC and NC interactions,
but they also provide the helicity amplitudes for EM interactions in their work (which
from now on we denote by FKR/RS model).

The FKR/RS model in its original version has been widely used in the simulation
and analysis of many neutrino experiments as it is implemented in many neutrino
event generators (see, e.g., Refs. [Cas02, Gal02, Hay02]). The FKR/RS model is very
easy to program in a computer code and is really fast during run-time, which made it
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Figure 5.15: Integrated resonance excitation cross sections on the neutron for the
P33(1232) (upper left panel), P11(1440) (upper right panel), D13(1520) and S11(1535)
resonances. The curves are obtained with different sets of form factors: the solid lines
indicate the calculation with our form factors based on the MAID helicity amplitudes
as described in the previous sections, the dashed lines are calculated with the form
factors of Lalakulich et al. [LPP06], and the dash-dotted ones with the FKR/RS model.
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5.5 Comparison to other approaches

the first choice for many neutrino codes. But, one should keep in mind, that the lepton
masses set to zero in this model which already imposes some corrections in the case
of CC muon neutrino scattering, in the case of CC tau neutrino scattering, however,
the FKR/RS model should not be used without modifications [GS08b, BS07, KLN04].

To compare directly our approach to the FKR/RS model, we simply replace the
matrix element in Eq. (3.7) by the one derived in the FKR/RS model. One obtains the
FKR/RS matrix element in the following way: comparing Eq. (2.13) in Ref. [RS81] to
our Eq. (B.11) (page 275) after substituting dt = 2k0|k′| d cos θ, we find

|M̄FKR/RS|2 =
1
2

∑

spins

|T(νN → ℓN∗)|2, (5.29)

with T(νN → ℓN∗) defined in their Eq. (2.11) in terms of the transition currents F±,0

by

T = −4
√

2 CCC,NC MR Eν

[√
Q2

|q|2
〈N∗ |uF− − vF+| N〉 +

MN

MR

√
2uv 〈N∗ |F0| N〉

]
,

(5.30)
with qµ = (ω, 0, 0, |q|) and

u =
Eν + Eℓ + |q|

2Eν
, v =

Eν + Eℓ − |q|
2Eν

. (5.31)

We obtain

|M̄FKR/RS|2 = 16 C2
CC,NC M2

R E2
ν

Q2

|q|2

×
[

u2
(
| f−3|2 + | f−1|2

)
+ v2

(
| f+3|2 + | f+1|2

)
+ 2uv

M2
N

M2
R

|q|2
Q2

(
| f0+|2 + | f0−|2

)]
.

(5.32)

The amplitudes f depend on the transition currents F±,0 and on the spin projection of
the initial and final states. They are defined as (cf. Eq. (3.19) in Ref. [RS81])

f−3 = 〈N, Jz = 1/2 |F−| R, Jz = 3/2〉 , f−1 = 〈N, Jz = −1/2 |F−| R, Jz = 1/2〉 ,

f+1 = 〈N, Jz = 1/2 |F+| R, Jz = −1/2〉 , f+3 = 〈N, Jz = −1/2 |F+| R, Jz = −3/2〉 ,

f0± = 〈N, Jz = ±1/2 |F0| R, Jz = ±1/2〉 . (5.33)

F+ (F−, F0) corresponds to photons with positive (negative, zero) helicity. They
are determined using the FKR quark model;5 the final result is listed in Table II in
Ref. [RS81].

5For calculational details, we refer the reader to Refs. [FKR71, RS81]
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5 Excitation of baryon resonances

In Fig. 5.15 we compare the integrated cross sections on the neutron obtained in
the FKR/RS model (dash-dotted lines) to the one obtained with our default form
factor set (solid lines) for the four lowest lying resonances. To further investigate the
differences, we focus on the CC excitation of the P33(1232) resonance. For the helicity
amplitudes, one finds in the FKR/RS model (cf. Table II in Ref. [RS81])

f ∆,V
±3 = ∓

√
6 R±, (5.34)

f ∆,V
±1 = ∓

√
2 R±, (5.35)

f ∆,V
±0 = −2

√
2 C, (5.36)

where R± includes both vector and axial vector components (cf. Eq. (3.11) in Ref.
[RS81] with n = 0 for the ∆ resonance)

R± = −(RV ± RA), (5.37)

with

RV =
√

2
MN

MR

|q|(MN + MR)

Q2 + (MR + MN)2 GV
FKR/RS (5.38)

and

RA =
Z
√

2
6MR

(MR + MN)GA
FKR/RS. (5.39)

The variable C depends only on the axial form factor via

C =
Z

6MN |q|
(M2

R − M2
N)GA

FKR/RS. (5.40)

For the form factors, they use

GV,A
FKR/RS(Q2) =

(
1 +

Q2

4M2
N

) 1
2
(

1 +
Q2

M2
V,A

)−2

. (5.41)

with MV = 0.84 GeV and MA = 1.032 GeV, respectively.6 The value of the axial vector
renormalization constant Z has been chosen to be 3/4 in order to, in the words of Rein
and Sehgal, compensate for the difference between the SU6 predicted value 5/3 for
the nucleon’s axial vector form factor at Q2 = 0 and its experimental value of about
5/4.

In Fig. 5.14 on page 63 we show in addition to the total cross section already seen
in Fig. 5.15 also the FKR/RS prediction for dσ/dQ2 (dash-dotted line) for the ∆ res-
onance excitation. From both figures we find reasonable agreement to our results for
CC scattering. Good agreement is also found for NC scattering.

6Rein and Sehgal originally proposed an axial mass of MA = 0.95 GeV, however, we use the value
commonly used in the neutrino event generators [Zel03].

66



5.5 Comparison to other approaches

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  0.5  1  1.5  2

σ 
[n

b]

Ee [GeV]

e- p → e- R+

P33(1232)

our ff
FKR/RS

Figure 5.16: Integrated EM ∆ excitation cross sections on the proton versus the elec-
tron energy. The solid line indicates the calculation with our form factors while the
dash-dotted one is obtained with the FKR/RS model.

A different picture emerges when we look at the electron proton cross section shown
in Fig. 5.16. Our result is denoted by the solid line, the one obtained in the FKR/RS
model by the dash-dotted line. The comparison yields a clear discrepancy in EM scat-
tering.7 This has also been observed by Graczyk et al. [GS08a] who, as a consequence,
refit the FKR/RS form factors. We therefore conclude that the vector contribution of
the FKR/RS model is smaller than ours, but, consequently, their axial part must be
larger than ours to obtain agreement in the CC case when both axial and vector form
factors are important. And indeed, this can be verified from the comparison shown
in Fig. 5.17. The left (right) panel shows in addition to the full curve the result when
only the vector (axial) part is taken into account. We find that the FKR/RS form fac-
tors lead to significantly smaller cross sections than our vector form factors based on
the MAID analysis (left panel, dashed versus dotted lines). We further note that the
FKR/RS model is based on a single vector form factor only (GFKR/RS

V ) while our model
incorporates three independent vector form factors (CV

i , i = 3, 4, 5). The opposite be-
havior is found in the axial channel: there, the FKR/RS overshoots our prediction.
Note that both our vector and axial parts alone give very similar contributions. Axial
and vector parts alone do not add up to the full cross section as interference between
vector and axial part are also important.

To conclude, the FKR/RS model gives reasonable results for neutrino-induced re-
actions, however, one should be aware of its limitations: the major drawbacks are

7See also our comparison to JLAB data at higher energies shown in Fig. 2 of Ref. [LBMAR08] leading
to the same conclusion.
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model (dash-dotted lines). The left (right) panel shows, in addition, the result when
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the neglect of the lepton masses and the outdated and too small vector form factors
leading to too small electron cross sections.
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6
Single-π non-resonant background

The need of a single-π non-resonant background contribution in neutrino scattering
is justified by the fact that we underestimate the total pion production cross section
in the isospin 1/2 channels. We know from the comparison to ANL and BNL data
that the resonance excitation alone does not account for all the pion strength (cf. the
discussion Section 5.4). However, the discrepancy is small compared to the total pion-
production cross section which is dominated by the isospin 3/2 channel.

Early ideas for the non-resonant single-pion background have been formulated by
Fogli and Nardulli [FN79, FN80], and also by Rein and Sehgal [RS81] who include
only a simple nucleon pole term which accounts for the missing strength in the isospin
1/2 channels. Recently, microscopic models for the elementary reaction have been
developed. Nieves and collaborators have extended their model for eN → e′N′π
[GNO97] to describe CC and NC pion production on the nucleon [HNV07]. Besides
the dominant ∆ contribution they have included background terms required by chiral
symmetry. Also the model of Sato and Lee for neutrino-induced pion production
on the nucleon including ∆ excitation and non-resonant background terms [SUL03]
is based on their approach for electrons [SL01]. However, both approaches, include
besides non-resonant terms only the ∆ as intermediate resonance state.

In this chapter, we thus discuss the remaining contribution to the total cross sec-
tion as given in Eq. (3.1): the single-π non-resonant background cross section dσBG.
It is essential to realize that the background must be known for all kinematic vari-
ables if one is interested in calculating also differential cross sections. Therefore, we
heavily rely on models applied to electron-/photon scattering where the background
contribution is even more important and rather well understood.
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6 Single-π non-resonant background

In contrast to the aforementioned models, our ansatz is phenomenological: the
single-π non-resonant background cross section dσBG includes vector, axial and also
interference contributions

dσBG = dσV
BG + dσA

BG + dσV/A
BG

= dσV
BG + dσnon-V

BG . (6.1)

The vector part is fully determined by electron scattering data. The axial and the inter-
ference term collected under the label “non-V” are only present in neutrino scattering
and will be fitted to the available neutrino data.

6.1 Vector part

We first discuss the vector part of the non-resonant pion cross section, dσV
BG. Our

strategy will be to evaluate the unpolarized pion production cross section ℓ(k)N(p) →
ℓ′(k′)π(kπ)N(p′), dσV

Nπ, and to subtract afterwards the resonance contribution. We
understand this subtracted contribution, which then includes also the resonance-
background interference terms, as a single-π background denoted as dσV

BG. We are
actually assuming that the resonances do not interfere among themselves or with the
background, so that

dσV
BG

dωdΩk′dΩkπ

=
dσV

Nπ

dωdΩk′dΩkπ

−
∑

R

dσV
ℓN→ℓR→ℓNπ

dωdΩk′dΩkπ

. (6.2)

We note that with this procedure the background may become negative since it ab-
sorbs the interferences.1

The first term of the rhs, the cross section for ℓ(k)N(p) → ℓ′(k′)π(kπ)N(p′), dσV
Nπ,

is given by (cf. Appendix B.2)

dσV
Nπ

dωdΩk′dΩkπ

=

∫
dk0

π
|k′||kπ |
512π5

[
(k · p)2 − m2

ℓ M2
N

]−1/2
δ(p′2 − M2

N) |M̄Nπ|2, (6.3)

with p′ = k + p − k′ − kπ, |k′| =
√

k′0
2 − m2

ℓ′ and |kπ | =

√
k0

π
2 − m2

π and with Ωkπ

denoting the solid angle of the pion. Note that the lepton mass is kept explicitly in
our work. The δ-function δ(p′2 − M2

N) eliminates the dk0
π integration. The hadronic

tensor H
µν
Nπ entering the matrix element in Eq. (6.3) is written in a form similar to that

of resonance production

H
µν
Nπ =

1
2

Tr
[
(/p + M) Ṽµ

Nπ

(
/p
′ + M′)Vν

Nπ

]
, (6.4)

1We come back to this issue in Section 8.3.
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6.1 Vector part

with M =
√

p2 and M′ =
√

p′2 , and

Ṽµ
Nπ = γ0Vµ

Nπ

†
γ0. (6.5)

The hadronic vertex can be parametrized in the most general way as [BDW67]

Vµ
Nπ =

6∑

i=1

ANπ
i M

µ
i , (6.6)

with (in the notation of MAID [PDT07])

M
µ
1 =

−i
2

γ5(γµ
/q − /qγµ) = −iγ5(γµ

/q − qµ) ,

M
µ
2 = 2iγ5

(
Pµq ·

(
kπ − q

2

)
− P · q

(
kπ − q

2

)µ)
,

M
µ
3 = −i γ5(γµkπ · q − /qk

µ
π) , (6.7)

M
µ
4 = −2i γ5(γµq · P − /qPµ) − 2MN M

µ
1 ,

M
µ
5 = i γ5(qµkπ · q − q2k

µ
π) ,

M
µ
6 = −i γ5(/qqµ − q2γµ)

and Pµ = (p + p′)µ/2. The so-called invariant amplitudes ANπ
1 , . . . , ANπ

6 , depending
both on the probe and the reaction channel, are functions of three scalars which com-
pletely determine all the four-vectors at the vertex. We choose W =

√
s, Q2 = −qµqµ

and the cm scattering angle θ between q and kπ as such a set of independent scalars.
The second part of Eq. (6.2) is obtained in the following way: the resonances are

assumed to decay isotropically in their rest-frame, i.e.,

dΓR→Nπ

dΩcm
kπ

=
ΓR→Nπ

4π
, (6.8)

and consequently the single resonance contributions are given by

dσV
ℓN→ℓR→ℓNπ

dωdΩk′dΩkπ

=
dσV

R

dωdΩk′

1
4π

ΓR→Nπ

ΓR

dΩcm
kπ

dΩkπ

. (6.9)

The vector part of the resonance cross section has been introduced in the previous
section and the solid-angle transformation is given by [BK73]

dΩcm
kπ

dΩkπ

=

√
p′2 k2

π

|kcm
π |

(
|kπ |p′0 − |p′|k0

π cos θπ

) , (6.10)

where θπ = ∡(kπ , p′).
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6 Single-π non-resonant background

Electron scattering

In the case of electron scattering, the possible channels are

e−p → e−pπ0,

e−p → e−nπ+,

e−n → e−nπ0,

e−n → e−pπ−.

For each of these channels, a set of invariant amplitudes ANπ,EM
i can be fitted to data.

We use the MAID parametrization [MAID, TK06, DT92]. More details are given in
Chapter 4.5 of Ref. [Bus08].

Charged-current scattering

In the case of charged-current neutrino scattering, there are three pion production
channels, namely

νp → ℓ−pπ+,

νn → ℓ−nπ+,

νn → ℓ−pπ0.

Applying isospin relations to relate ANπ,CC
i to the known ANπ,EM

i , one gets (for details,
see Appendix D.3)

A
pπ+,CC
i =

√
2Anπ0,EM

i + A
pπ−,EM
i , (6.11)

Anπ+,CC
i =

√
2A

pπ0,EM
i − A

pπ−,EM
i , (6.12)

A
pπ0,CC
i = A

pπ0,EM
i − Anπ0,EM

i −
√

2A
pπ−,EM
i , (6.13)

so that the CC vector part is fully determined.

Neutral-current scattering

The following channels contribute to neutral-current pion production

νp → νpπ0,

νp → νnπ+,

νn → νnπ0,

νn → νpπ−. (6.14)
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6.2 Non-vector part

Isospin relations required to relate the invariant amplitudes ANπ,NC
i to the known

ANπ,EM
i are more complicated than in the CC case and can be found, e.g., in Section

III of Ref. [HNV07]. However, they are not needed here since we do not include any
background in the NC channels (see below).

6.2 Non-vector part

In the case of neutrino scattering, a non-vector background is present. In principle,
one can write down a similar expression as Eq. (6.6) for the axial current. This would
lead to a large number of unknown amplitudes Ai to be fixed by data, but, the scarcity
of available data makes this option impracticable.

However, as pointed out before, the background contribution to the total pion pro-
duction cross section is small because of the dominant isospin 3/2 channel. Thus,
in the present work, we rather use a simple ansatz for the non-vector background
expecting that the final results in nuclei are not sensitive to the background details.

Charged-current scattering

As already discussed in Section 5.2.2, we neglect a non-resonant background in the
isospin 3/2 channel, νp → µ−π+p, where it is only a small correction. Furthermore,
we assume that dσV

BG and dσnon-V
BG have the same functional form, i.e.,

dσBG = dσV
BG + dσnon-V

BG = (1 + bNπ) dσV
BG , (6.15)

where the global factor bNπ depends on the channel, νn → ℓ−nπ+ or νn → ℓ−pπ0.
The data sets for the two CC scattering channels off neutrons allow then the fit of the
two parameters. The influence of this fit parameter for νµ-induced pion production

is shown in Fig. 6.1. With bpπ0
= 3 and bnπ+

= 1.5 a reasonable agreement with
the ANL data is achieved as can be seen from Fig. 6.2 where the solid line denotes
our full calculation and the dashed (dash-dotted) one includes only the resonance (∆)
contribution.

Our numbers are in agreement with general isospin considerations. The dominant
contribution to the non-resonant background comes from the nucleon-pole term [Val,
HNV07], an isospin 1/2 channel. Using Clebsch-Gordon coefficients, we find for the
yields π0/π+ = 2, which nicely corresponds to bpπ0

/bnπ+
= 2.

Even though these parameters were extracted for muon neutrinos, they can safely
be applied for electron neutrinos, since the cross sections for both are almost identical
in this energy region. However, they should not be used for ντ where the cross
sections differ significantly.
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6 Single-π non-resonant background
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Figure 6.1: Influence of the fit parameter bNπ on the total pion production cross sec-
tions in the mixed isospin channels.
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6.2 Non-vector part

Neutral-current scattering

Pion data for NC scattering are even more scarce than for the CC case. The avail-
able data are compared to our results for the resonance induced pion production in
Fig. 5.13 on page 59 and we find a good agreement (compare the dashed line in the
right panel to the data) already without non-resonant background. In view of this, we
abstain from fitting the non-vector part to these data and neglect a NC background.
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Part III

Lepton-nucleus interactions

in the GiBUU model





7
GiBUU transport model

This chapter introduces the semi-classical Giessen Boltzmann-Uehling-Uhlenbeck (Gi-
BUU) transport model [GiBUU, BGG+]. It describes the space-time evolution of a
many-particle system in a mean-field potential including a collision term, and hereby
allows for a realistic treatment of in-medium modifications and for a full microscopic
coupled-channel description of final-state interactions inside the nucleus.

7.1 Introduction

Originally developed to describe heavy-ion collisions [TCE+97, HCTM99, LM03, LM05,
WLM05], the Giessen BUU model has been extended to describe high-energy non-
resonant electron-induced reactions [FCGM04, GF05], photon-, pion- and electron-
induced processes in the resonance region [ECM+94, EBM99, LEM00, LPM03, MFM04,
BARMM06, MM06, Bus08, LBARM09],1 and — presented in this thesis — neutrino-
induced reactions.2 The study of νA scattering is a natural extension of the previous
work and does not introduce any new free nuclear parameters. The applicability to
and validation in many different nuclear reactions is a major strength of our model,
which describes all the different processes using the same physics input. In particular,
the test against existing data on the interaction of photons and electrons with nuclei is

1An overview of the GiBUU history, which goes back to the 1980s, is collected at
http://gibuu.physik.uni-giessen.de/GiBUU/wiki/GiBUU_Code_history.

2Partly published in Refs. [LARM06a, LARM06b, BLMAR07, LBMAR08, LBARM09, LBMAR09].
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7 GiBUU transport model

an important prerequisite for any model aiming at a description of neutrino-nucleus
interactions.

The numerical implementation of the GiBUU model is based on Fortran2003 using
modern programming paradigms and a version control management (Subversion).3

The code runs and has been tested with numerous compilers on different platforms,
details are given on our website [GiBUU]. From 2007, the GiBUU code is open source
under the GPL license and can be downloaded after registration [GiBUU].

In the following, we introduce the GiBUU model focussing on the issues relevant
to this work — for further details on the theoretical foundations and their numerical
implementations we refer to Refs. [Tei97, Eff99, Leh03, Bus08].

7.2 Particle species

The GiBUU model includes a large variety of different particle species, namely 61
baryons and 21 mesons with their corresponding antiparticles. Isospin degrees of
freedom are treated explicitly, while the spin enters only via a statistical factor. In
the energy region of interest for this work, i.e., beam energies of about 0.5 - 2 GeV,
the most relevant states are nucleon, the nucleon resonances (isospin 1/2), the ∆ reso-
nances (isospin 3/2) and the light mesons, in particular the pion. The parameters for
all particles without strangeness and charm, are taken from the πN scattering phase-
shift analysis of Manley and Saleski [MS92]; the parameters for all other particles are
taken from the PDG group [PDG08].

The properties of the included 31 non-strange/non-charm resonances are listed in
Table 7.1 together with their decay channels. We use the common notation which
reads lij with the spin J = j

2 and isospin I = i
2 . l denotes the relative angular

momentum of the πN system. The parity follows from P = (−1)l+1. The light
mesons and their properties are listed in Table 7.2. Their quantum numbers and
decay channels are given explicitly.

At higher energies, particles with higher strangeness and charm quantum numbers
could play a role, thus, in addition to the above listed particles, 30 baryonic and 8
mesonic states of the strange-/charm-sector are included in the GiBUU model (cf. Ta-
bles 3.2, 3.3, A.1 and A.2 in Ref. [Bus08] for their properties and decays).

Leptons are not explicitly propagated in our model; due to their small couplings
we assume that they interact only once in the initial reaction (e.g., νA → µ−X) and
that the final lepton leaves the nucleus undisturbed.

3See the GiBUU website [GiBUU] and Section 3.1 and Appendix C in the dissertation of O. Buss
[Bus08] for detailed information on the current code structure and its programming history.
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7.2 Particle species

Table 7.1: Properties and decay channels for the non-strange/non-charm baryons as
in the Manley analysis [MS92]. Given are the Breit-Wigner masses, MB, the width at
MB, Γ0, and the branching ratios into the various decay channels.

MB Γ0 branching ratio in %

[MeV] [MeV] Nπ Nη Nω KΛ ∆π Nρ Nσ N∗π ∆ρ

N(938) 938 0 0 0 0 0 0 0 0 0 0
P33(1232) 1232 118 100 0 0 0 0 0 0 0 0
P11(1440) 1462 391 69 0 0 0 22 0 9 0 0
S11(1535) 1534 151 51 43 0 0 0 3 1 2 0
S11(1650) 1659 173 89 3 0 0 2 3 2 1 0
S11(2090) 1928 414 10 0 0 0 6 49 5 30 0
D13(1520) 1524 124 59 0 0 0 20 21 0 0 0
D13(1700) 1737 249 1 0 0 0 84 13 2 0 0
D13(2080) 1804 447 23 0 0 0 24 26 27 0 0
D15(1675) 1676 159 47 0 0 0 53 0 0 0 0
G17(2190) 2127 547 22 0 49 0 0 29 0 0 0
P11(1710) 1717 478 9 0 0 37 49 3 2 0 0
P11(2100) 1885 113 15 0 0 2 24 27 32 0 0
P13(1720) 1717 383 13 0 0 0 0 87 0 0 0

P13() 1879 498 26 0 30 0 0 44 0 0 0
F15(1680) 1684 139 70 0 0 0 11 7 12 0 0
F15(2000) 1903 494 8 0 0 0 12 75 5 0 0
F17(1990) 2086 535 6 94 0 0 0 0 0 0 0
S31(1620) 1672 154 9 0 0 0 62 29 0 0 0
S31(1900) 1920 263 4 0 0 0 16 38 0 6 0
D33(1700) 1762 599 14 0 0 0 78 8 0 0 0
D33(1940) 2057 460 18 0 0 0 47 35 0 0 0
D35(1930) 1956 526 18 0 0 0 0 0 0 0 82
D35(2350) 2171 264 2 0 0 0 0 0 0 0 98

P31() 1744 299 8 0 0 0 0 0 0 28 64
P31(1910) 1882 239 23 0 0 0 0 10 0 67 0
P33(1600) 1706 430 12 0 0 0 68 0 0 20 0
P33(1920) 2014 152 2 0 0 0 83 0 0 15 0

F35() 1752 251 2 0 0 0 76 22 0 0 0
F35(1905) 1881 327 12 0 0 0 1 87 0 0 0
F37(1950) 1945 300 38 0 0 0 18 0 0 0 44
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7 GiBUU transport model

Table 7.2: Properties and decay channels for the light mesons. Given are the pole
masses, mm, the width at mm, Γ0, spin, J, isospin, I, strangeness, S, and the branching
ratios into the various decay channels.

meson mm [MeV] Γ0 [MeV] J I S decay channels

π 138 0 0 1 0

η 547 1.2 · 10−3 0 0 0 γγ (40%), π+π−π0 (28%), 3π0 (32%)

ρ 770 151 1 1 0 ππ

σ 800 800 0 0 0 ππ

ω 782 8.4 1 0 0 ππ (2%), π0γ (9%), π+π−π0 (89%)

η′ 958 0.2 0 0 0 ρ0γ (31%), ππη (69%)

φ 1020 4.4 1 0 0 ρπ (13%), KK̄ (84%), π+π−π0 (3%)

K 496 0 0 1/2 1
K̄ 496 0 0 1/2 -1
K∗ 892 50 1 1/2 1 Kπ

K̄∗ 892 50 1 1/2 -1 K̄π

7.3 BUU equation

The Boltzmann-Uehling-Uhlenbeck (BUU) equation describes the space-time evolu-
tion of a many-particle system under the influence of mean-field potentials and a
collision term, or more precisely, the time evolution of the Wigner transform of the
real-time Green’s function which is a generalization of the classical phase-space den-
sity. For each particle species, one gets within the BUU approach an additional dif-
ferential equation. All these equations are coupled through the gain and loss terms
which represent scattering processes, and by the mean fields being included in the
Hamiltonians. In this section, we present the generalized BUU equation and discuss
its approximations.

7.3.1 General properties

The BUU equation can be derived from the Kadanoff-Baym equation, which is based
on quantum-field theory, applying special assumptions. We refer the reader to the
book of Kadanoff and Baym for details [KB94].4 Since the BUU equation has been
extensively discussed in the literature (cf., e.g., Refs. [Nor28, UU33, BK84, BG88, Eff99,
Leh03, Leu00]), we focus in the following on issues relevant to this work.

4A detailed overview is also given in Section 2.2 of Ref. [Leh03].
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7.3 BUU equation

The generalized BUU equation for particle species i, suited also for particles off
their mass shell, is given by [Eff99, Leu00]

[
p0 − Hi, ḡ<

i

]
+ Aoff-shell = Icoll, (7.1)

where
Aoff-shell =

[
Re(gi), Σ

<
i

]
, (7.2)

with the Poisson brackets

[a, b] =
∂a

∂pµ

∂b

∂xµ − ∂a

∂xµ

∂b

∂pµ . (7.3)

The collision term reads
Icoll = −Σ

>
i ḡ<

i + Σ
<
i ḡ>

i . (7.4)

ḡ<
i (r, p)

(
ḡ>

i (r, p)
)

denotes the Wigner transform of the real-time Green’s function and
is interpreted as a generalized particle (hole) phase-space density; gi is the retarded
Green’s function. Σ

<
i

(
Σ

>
i

)
stands for the gain (loss) term of the phase-space density

and are explained in Section 7.6. Hi represents the Hamilton function — note that the
phase space variable p0 and Hi are distinct entities — which is in its relativistic form
given by

Hi =
√

m2
i + p2 + Vi(r, p) , (7.5)

where mi is the pole mass of the ith particle species which is under the influence of a
mean-field potential Vi. For later use, we introduce a scalar potential Ui,

Ui(r, p) =

√(√
m2

i + p2 + Vi(r, p)

)2

− p2 − mi, (7.6)

such that we can rewrite the Hamiltonian as

Hi =
√

m2
i + p2 + Vi(r, p) ≡

√
(mi + Ui(r, p))2 + p2. (7.7)

In general, the potentials may depend on r = (t, r) and p = (p0, p), i.e., time, po-
sition, energy and momentum. Additionally, they may depend on the phase-space
densities of all other particle species and thus couple the BUU equations. Much more
important, however, is the coupling through the collision term Icoll (see Section 7.6).

We can now introduce a spectral function by

Ai(r, p) = ḡ>
i (r, p)∓ ḡ<

i (r, p), (7.8)

and assume that there exits a function f (r, t, p) fulfilling

ḡ<
i (r, p) = fi(r, t, p)Ai(r, p), (7.9)

ḡ>
i (r, p) = (1 ± fi(r, t, p))Ai(r, p), (7.10)
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7 GiBUU transport model

which can be considered as a phase space distribution function. The upper (lower)
sign holds for bosons (fermions). The structure of the spectral function is discussed
in detail in Section 7.7.

7.3.2 Approximations

The BUU equation (7.1) is written in a general form and holds also for broad, i.e.,
unstable states and thus allows, e.g., to transport resonances [Leu00]. In this work,
however, we do not solve the full problem of Eq. (7.1) but follow the lines of Effen-
berger [Eff99] and work with the so-called off-shell potential (OSP) ansatz which we
introduce in detail in Section 7.8. Within this ansatz, we set Aoff-shell = 0 in the BUU
equation (7.1), so that its left side reads (for simplicity, we omit the particle-species
index, i, from now on)

[
p0 − H, ḡ<

] Eq. (7.3)
=

∂(p0 − H)

∂pµ

∂ḡ<

∂xµ − ∂(p0 − H)

∂xµ

∂ḡ<

∂pµ

=

[(
1 − ∂H

∂p0

)
∂

∂t
+

∂H

∂p

∂

∂r
− ∂H

∂r

∂

∂p
+

∂H

∂t

∂

∂p0

]
ḡ<(r, p). (7.11)

The BUU equation can be further simplified for the case of particles with vanish-
ing or very small width. Then, the spectral function becomes a δ-function and after
integration over p0 one finds the BUU equation in on-shell approximation

[
∂

∂t
+

∂H

∂p

∂

∂r
− ∂H

∂r

∂

∂p

]
f (r, t, p) = −Σ

> f + Σ
<(1 ± f ). (7.12)

This equation is the “standard BUU equation” widely used for simulations in nuclear
physics. Basically, it is the classical Boltzmann equation with some modifications in
the collision term for fermions added by Nordheim [Nor28] and later by Uehling and
Uhlenbeck [UU33].

Setting the right hand side of the BUU equation (7.1) or (7.12) to zero, i.e., Icoll = 0,
one obtains the so-called Vlasov equation which describes the phase-space evolution
of particles in a mean field without collision term.

7.3.3 Test-particle ansatz

The next step is to solve the generalized BUU equation (7.1) with Aoff-shell = 0 [see
Eq. (7.11)] numerically. This can be achieved using the so-called test-particle ansatz,
i.e., the continuous phase-space density is replaced by discrete test particles repre-
sented by δ-functions,

ḡ<(r, t, p) = lim
n(t)→∞

(2π)4

N

n(t)∑

j=1

δ(r − rj(t))δ(p − pj(t))δ(p0 − p0
j (t)), (7.13)
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7.4 Potentials

where n(t) denotes the number of test particles at time t, and rj(t) and pj(t) are the
coordinates and the four-momenta of test particle j at time t. As the phase-space
density changes in time due to both, collisions and the Vlasov dynamics, also the
number of test particles changes throughout the simulation: in the collision term, test
particles are deleted and new ones are created. At t = 0 we start with n(0) = N · A

test particles where A is the number of physical particles and N is the number of
ensembles (test particles per physical particle).

Combining the time derivative of Eq. (7.13) and the one obtained from Eq. (7.11),
we find the equations of motion

∂rj

∂t
=

(
1 − ∂H

∂p0

)−1 ∂H

∂p
, (7.14)

∂pj

∂t
= −

(
1 − ∂H

∂p0

)−1 ∂H

∂r
, (7.15)

∂p0
j

∂t
=

(
1 − ∂H

∂p0

)−1 ∂H

∂t
. (7.16)

Within the so-called off-shell potential ansatz — discussed in detail in Section 7.8 —
the Hamiltonian depends on p0. Only then, the term ∂H/∂p0 remains. If ∂H/∂p0 = 0,
Eqs. (7.14) and (7.15) are simply the Hamilton equations of motion which describe
the propagation of the test particles between the collisions. Energy conservation is
enforced by Eq. (7.16) when ∂p0

j /∂t = 0 if ∂H/∂t = 0. Numerically, the Hamilton
equations of motion are solved with a predictor-corrector algorithm.

7.4 Potentials

Besides medium modifications like Fermi motion and Pauli blocking (cf. Section 7.5)
we include hadronic mean-field potentials and also a Coulomb potential.

7.4.1 Hadronic potentials

The relativistic single-particle Hamiltonian given by Eq. (7.5) includes a mean-field
potential Vi for a particle of species i. The nucleon mean-field potential VN, which
describes many-body interactions of the nucleons, can be parametrized according to
Welke et al. [WPK+88] as a sum of a Skyrme term depending only on density and a
momentum-dependent contribution of Yukawa-type interaction

VN(p, r) = A
ρ(r)

ρ0
+ B

(
ρ(r)

ρ0

)τ

+
2C

ρ0

∫
d3p′

(2π)3

g
(

fn(r, p ′) + fp(r, p ′)
)

1 +
(

p−p ′
Λ

)2 , (7.17)
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Figure 7.1: Left panel: density dependence of the nucleon mean-field potential for the
sets EQS 2 (different momenta) and EQS 1. Right panel: momentum dependence of
set EQS 2 for various densities.

Table 7.3: Parameter sets for the nuclear mean-field potential according to Eq. (7.17)
as fitted by Teis [Tei97].

EQS K [MeV] A [MeV] B [MeV] C [MeV] τ Λ [fm−1]
1 215 -287.0 233.7 0 1.23 -
2 290 -29.3 57.2 -63.5 1.76 2.13

with ρ0 = 0.168 fm−3 and the spin degeneracy factor g = 2. Two parameter sets,
used throughout this work, are given in Table 7.3. They were fitted to the saturation
density of nuclear matter, and also to the momentum dependence of the nucleon-
optical potential as measured in pA collisions [Tei97, TCE+97]. If not stated otherwise
we use the set labeled EQS 2 which gives a medium momentum-dependent potential
with a nuclear-matter compressibility of K = 290 MeV. For comparison, we also apply
set 1 which yields a momentum-independent potential with K = 215 MeV. Their
dependence on density and, in the case of EQS 2, on momentum are illustrated in
Fig. 7.1.

Photon-nucleus scattering experiments indicate that the potential of the ∆ resonance
has a depth of about −30 MeV at ρ0 [EW88, PLM98]. Comparing to a momentum-
independent nucleon potential, which is approximately −50 MeV deep, the ∆ poten-
tial is, therefore, approximated by

V∆(p, r) =
2
3

VN(p, r). (7.18)

We assume for all spin 3/2 resonances the same potential as for the ∆ resonance.
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7.5 Nuclear ground state

For all spin 1/2 and spin > 3/2 resonances we assume the same potential as for the
nucleon.

7.4.2 Coulomb potential

The explicit treatment of the isospin degrees of freedom in our model requires that
we include also the effect of the electromagnetic forces on charged particles. The
Coulomb potential for a given charge distribution ρc(r) is given by

Φ(r) =

∫
d3r′

ρc(r′)
|r − r′| , (7.19)

however, for technical reasons, instead of the integral we solve the Poisson equation,

−∇2
Φ(r) = 4πρc(r), (7.20)

using the ADI algorithm discussed in detail in Appendix B of Ref. [Tei97].

7.5 Nuclear ground state

The BUU equation (7.1) is a first order differential equation in time, thus, to solve this
equation, the phase-space distributions of all particle species need to be known at time
t = 0. This concerns the initial distribution of the nucleons in the nucleus (nuclear
ground state), but also the hadrons produced in the initial lepton-nucleon reaction.
We now focus on the nuclear ground state and postpone the latter to Chapter 8.

7.5.1 Local Thomas-Fermi approximation

The phase-space density of the nucleons bound in a nucleus is treated within a local
Thomas-Fermi (LTF) approximation, i.e., at each space point the nucleon momentum
distribution is given by a Fermi sphere

fn,p(r, p) = Θ
(

p
n,p
F (r) − |p|

)
. (7.21)

with the radius in momentum space determined by the local Fermi momentum

p
n,p
F (r) = (3π2ρn,p(r))1/3. (7.22)

The normalization is chosen such that the particle density is retrieved by

ρn,p(r) = g

∫
fn,p(r, p)

d3p

(2π)3 , (7.23)
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Table 7.4: Density parameters Rp, ap for protons and Rn, an for neutrons used in
Eqs. (7.27) and (7.28).

nucleus Rp [fm] ap [fm] Rn [fm] an [fm]
12C 1.692 1.082 Rp ap

16O 1.833 1.544 1.815 1.529
56Fe 3.971 0.5935 4.05 ap

where g = 2 denotes the spin degeneracy factor. The single-particle phase-space
density f (r, p) is then fully determined and the momentum density reads

nn,p(p) = g

∫
fn,p(r, p)

d3r

(2π)3 . (7.24)

with the normalization
∫

d3p n(p) = A.
In the LTF approximation, the Pauli blocking factor is given by

P
n,p
PB (r, p) = 1 − fn,p(r, p) . (7.25)

The Fermi energy reads

ǫF =
√

p2
F + M2

N − MN + VN(r, pF). (7.26)

Provided that the density parameters are known, we can define the initial state for
any nucleus. Later, we shall present results mainly for C, O and Fe nuclei. The density
profiles ρ(r) = ρ(r) for 12C and 16O are parametrized in a harmonic oscillator form
[NOGR93]

ρn,p(r) = ρ0

[
1 + an,p

(
r

Rn,p

)2
]

exp

[
−

(
r

Rn,p

)2
]

, (7.27)

for 56Fe a Fermi ansatz is used,

ρn,p(r) =
ρ0

1 + exp
(

r−Rn,p
an,p

) . (7.28)

The parameters are collected in Table 7.4: the proton density is based on the compila-
tion of Ref. [DJDVDV74] from electron scattering; the neutron density is provided by
Hartree-Fock calculations.

In Fig. 7.2 we show the density and the Fermi momentum together with the mean-
field potential and the resulting Fermi energy for 12C, 16O and 56Fe as a function of
the radius. The test particles are distributed in position and momentum space with
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Figure 7.2: Density, Fermi momentum, mean-field potential and Fermi energy of pro-
tons (left panel) and neutrons (right panel) for 12C, 16O and 56Fe as a function of
radius.

the probabilities 4πr2ρp(r) and 4πp2np(p), respectively, which are plotted in Fig. 7.3.
We emphasize that both distributions are not independent but strongly correlated:
in Fig. 7.4 one observes that the probability N(p, ρ) to find a nucleon with absolute
momentum p in a nuclear environment of density ρ has a ridge structure. The low-
momentum nucleons tend to sit at low densities while the high-momentum nucleons
tend to sit at higher densities.

For comparison, we briefly introduce a model widely used in the literature (see
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7.6 Collision term

also Section 12.2), the global Fermi gas model (GFG).5 In this approach, the Fermi
momentum is constant over the whole nucleus. With Eq. (7.22), also the density is
constant and the nucleus is just a sphere of radius R with

f GFG
n,p (r, p) = Θ(R − r)Θ

(
p

n,p
F − |p|

)
. (7.29)

The probability to find a test particle of momentum p is then given by 4πp2np(p) ∝

p2 Θ
(

p
n,p
F − |p|

)
. Thus, the distribution peaks at pF while it is less peaked in the LTF

approach shown in the left panel of Fig. 7.3. Furthermore, 4πr2ρp(r) and 4πp2np(p)
are not correlated in the GFG model.

7.5.2 Ground-state stability

Finally, we address the problem of the ground-state stability discussed in detail in
Section 3.2 of Effenberger’s thesis [Eff99] and in the diploma thesis of Steinmüller
[Ste07]. The density distributions of Eqs. (7.27) and (7.28) do not coincide with the
ground-state density distribution according to the mean-field potential. The latter
requires the ground state to be perfect spheres of constant density. This discrepancy
leads to oscillations of the root-mean-square radius in time (cf., e.g., Figs. 3.2 and 3.6
in Ref. [Eff99]). Effenberger also showed that the influence on observables in photon-
induced reactions is only minor. However, we circumvent this problem by working in
the so-called “frozen approximation”. This means that the test particles which define
the initial particle distribution of the nucleus (the so-called “real particles”) are not
propagated and are not allowed to undergo any collisions — they are frozen. Thus,
by definition, we obtain a stable ground state. This treatment is justified by the fact
that in lepton-induced reactions at around 1 GeV beam energy the nucleus stays close
to its ground state which means that its phase-space density almost stays constant
during the simulation. Only the reaction products of the lepton-nucleon reactions are
propagated and undergo final-state interactions. Those test particles and also their
reaction products are called “pertubative particles”, and they do not influence the
nucleus phase-space density.6

7.6 Collision term

The BUU equations for the different particle species are coupled through the collision
term Icoll (r.h.s. of Eq. (7.1)),

Icoll(r, p) = −Σ
>(r, p)ḡ<(r, p) + Σ

<(r, p)ḡ>(r, p), (7.30)

5We refer the reader to pages 133ff. of Ref. [Bus08] for an extended discussion and observable conse-
quences.

6The concept of real and pertubative particles is explained, e.g., in Appendix B.1 of [Bus08].
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which comprises all kinds of scattering processes among the particles. The first term,
−Σ>(r, p)ḡ<(r, p), describes the loss of particles (loss term) while Σ<(r, p)ḡ>(r, p)
describes the gain of strength (gain term) caused by scattering into the phase space
element at point (r, p) at time t. We account for one-body (i.e., resonance decay),
two-body and three-body interactions, but neglect processes of higher order. This
assumption is justified by the fact that in lepton-nucleus reactions — as just pointed
out — the nucleus stays close to its ground state, in contrast to, e.g., heavy-ion colli-
sions, and very high densities cannot be reached at which those many-body processes
become may important [LBGM07].

7.6.1 Resonance decays

The one-body loss term describes the rate at which particles decay, and reads

Σ
>,1 = 1/τ = Γ, (7.31)

where τ = 1/Γ is the resonance life time and Γ the decay width in the calculation
frame. Thus, the loss term gives a probability that a certain test particle is absorbed,
i.e., deleted from the simulation. Its possible decay products and their kinematics are
determined with a Monte-Carlo method; these test particles are then added to the
simulation and hereby preserve energy and the quantum numbers. Details on the
algorithm are given, e.g., in Ref. [Bus08].

Decay widths

The properties of the 30 non-strange/non-charm resonances listed in Table 7.1 are, as
outlined already in Section 7.2, taken from the analysis of Manley and Saleski [MS92].
They may decay into the following two-body final states: Nπ, Nη, ΛK, Nω, ∆π, Nσ,
Nρ, P11(1440)π and ∆ρ. Any decay into more than two particles, e.g., R → Nππ, is
treated as a two-step process, e.g., R → Nρ → Nππ. The energy dependence of the
vacuum-decay widths, also taken from Manley and Saleski, is given by

ΓR→ab(W) = Γ
0
R→ab

ρab(W)

ρab(MR)
, (7.32)

where Γ0
R→ab is the decay width of the resonance R into the final state ab at the pole

(given in Table 7.1). W is the invariant mass of the resonance and MR its pole mass.
ρab is given by

ρab(W) =

∫
dp2

a dp2
b Aa(pa)Ab(pb)

pab

W
B2

lab
(pabR)F 2

ab(W). (7.33)
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Aa,b are the vacuum spectral functions of the final-state particles a, b (δ-function for
stable final-state particles), pab is the cm momentum of the particles a and b, lab the
relative angular momentum, and R = 1 fm an interaction radius. B2

lab
is a Blatt-

Weisskopf barrier-penetration factor given by

B0(x) = 1, (7.34)

B1(x) =
x

(1 + x2)1/2
, (7.35)

B2(x) =
x2

(9 + 3x2 + x4)1/2
, (7.36)

B3(x) =
x3

(225 + 45x2 + 6x4 + x6)1/2
. (7.37)

Thus, the partial widths have the proper analytic threshold behavior, i.e., ∼ p
2lab+1
ab . In

the work of Buss [Bus08] (cf., in particular his Sections 3.2.2 and 3.7), the form factor
Fab(W) has been introduced for decays into non-stable particles (Fab(W) = 1 for
stable final states) to prevent the arbitrarily growing of the widths at large invariant
masses W. This became necessary for calculating the self energies with dispersion
relations.

7.6.2 Two-body collisions

The two-body contribution to the collision term includes both gain and loss terms
describing the scattering into and out of a certain phase-space element. Considering,
e.g., the two-body process at point r,

A(pA) B(pB) −→ a(pa) b(pb), (7.38)

the phase-space density decreases at (r, pA) and (r, pB) while it increases around
(r, pa) and (r, pb). The loss and gain terms are given by

I2-body, loss(r, t, pA) = −Σ
>,2(r, t, pA)ḡ<(r, t, pA)

= −
∫

d4pB

(2π)4

∫
dΩcm

dσAB→ab

dΩcm
vAB ḡ<(r, t, pB)ḡ<(r, t, pA)PaPb

(7.39)

and

I2-body, gain(r, t, pA) = Σ
<,2(r, t, pA)ḡ>(r, t, pA)

=

∫
d4pa

(2π)4

d4pb

(2π)4 (2π)3 dσab→AB

d4pA
vab ḡ<(r, t, pa) ḡ<(r, t, pb)PAPB,

(7.40)
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Figure 7.5: Probability that a high-energy event is simulated with PYTHIA for meson-
baryon (solid) and baryon-baryon scattering (dashed line) as a function of

√
s.

with the angular- and the momentum-differential cross sections dσAB→ab/dΩcm and
dσab→AB/d4pA for the processes AB → ab and ab → AB, respectively. vAB and vab

are the relative velocities of the scattering partners AB and ab.
The Pauli principle forbids scattering of fermions into occupied states, leading to

factors of PX = 1− f (r, pX, t) with X = A, B, a, b. In the case of bosons, scattering into
occupied states is allowed, leading to factors of PX = 1 + f (r, pX, t). Besides Pauli
blocking and Fermi motion, the hadronic potentials also affect the collision rates and
have to be accounted for (cf. Section 3.5 in Ref. [Bus08]).

Cross section model

Our model for the two-body cross sections entering the collision term above is based
on two pillars: at low energies up to center of mass energies of

√
s ≈ 2.4 GeV res-

onance contributions and a small non-resonant background are most important. At
higher energies, hard scattering processes described by pertubative QCD dominate
the interaction. In our model they are simulated with the help of PYTHIA which is
based on the Lund string model (for details cf. Refs. [FCGM04, GF05]). To prevent
a sharp cut between the low and the high energy treatment of the cross sections,
K. Gallmeister has introduced a smooth transition using a Monte-Carlo decision on
the probability for a high energy event [Galb]. This probability function is shown
in Fig. 7.5 for both meson-baryon and baryon-baryon scattering. Instead of having a
sharp step, the probability increases linearly in an interval of 0.4 GeV. More relevant
at the energies considered in this thesis are the low-energy cross section treated in the
resonance model which we discuss in the following.
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Figure 7.6: Cross sections for π+p → X (left panel) and π0p → X (right panel) as
function of plab.

Meson-baryon scattering. Meson-baryon cross sections are implemented by means
of a resonance model, i.e., reactions of the type mB → R which are added incoher-
ently.7 Interactions are possible between all particles. The resonance cross sections
have been derived in detail in Chapter 2.4 of Ref. [Eff99] and are not repeated here.
Furthermore, a small non-resonant background has been introduced and fitted so that
we reach agreement with data or reliable models. Details on the extraction and a full
list of all included background channels are given in Appendix A.3 of Ref. [Bus08].

As an example, we show in Fig. 7.6 the cross sections for πN scattering. The total
cross sections are shown by the solid lines, while the elastic contributions, i.e.,

σπN→πN =
∑

R

σπN→R→πN + σBG
πN→πN , (7.41)

are shown by the dashed lines. In addition, the non-resonant background contribu-
tions and the scattering into the two lowest resonances are plotted.

Baryon-baryon scattering. In the GiBUU model, cross sections for the following
reactions have been implemented: NN ↔ NN, NN ↔ NR, NR ↔ NR′, NN ↔
∆∆ and a non-resonant background to NN → NNπ. The explicit expressions are
collected in Appendix A.2 of Ref. [Bus08] — here we focus on the channels that are
relevant to this work.

The parametrization for the NN → NN cross section is taken from Cugnon et al.

[CVL96]. At low plab it has been modified by A. Larionov [Lar] to improve the cor-
respondence with the data. The cross sections pn → pn, nn → nn and pp → pp are
plotted as a function of plab in Fig. 7.7.

7Detailed balance requires that the cross sections for mB → R are consistent with the ones for R → mB.
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The NN → N∆ cross section is based on a model by Dmitriev et al. [DSG86] and
the result is also shown in Fig. 7.7. For the inverse reaction, N∆ → NN, and for the
process N∆ → N∆ the GiBUU model includes two options. One choice is to use again
a one-pion exchange model similar to that of Dmitriev et al. [DSG86]; the outcome is
plotted in Fig. 7.7. However, if one chooses to use the Oset prescription for the in-
medium width of the ∆ (cf., Section 7.7), then for consistency, also the cross sections
for N∆ → NN and N∆ → N∆ are evaluated based on the model of Oset et al. [OS87].
If not stated otherwise, the Oset model is used as our default. Full details on both
options are given on pages 193–200 in Ref. [Bus08].

Meson-meson scattering. Meson-meson interactions are also included in the simu-
lation [WLM05] but are negligible for lepton-nucleus scattering under investigation
in this work.

Numerical implementation

Numerically, the BUU equation can be solved, e.g., by using the so-called parallel
or full ensemble method both described in Section 2.5 of Ref. [Bus08]. They differ
in the locality of the scattering processes. In the parallel ensemble method, all test
particles are subdivided into groups (ensembles), where the number of test particles
in each ensemble equals the number of physical particles. Only particles of the same
ensemble are allowed to collide; the mean field is averaged over all ensembles. While
this method is numerically simpler and faster (and therefore commonly used in many
approaches), it does not converge to the exact solution — in the BUU equation, the
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7.7 Spectral functions and self energies

interactions are local in space-time — in the limit of a large number of test particles.
The exact solution is resembled within the full ensemble method, where collisions
between all test particles are allowed. This method is numerically very demanding.
An approximation to the full ensemble method is the so-called local ensemble method
which is used throughout this work.

7.6.3 Three-body collisions

Two three-body processes are considered in GiBUU: NNπ → NN and NN∆ → NNN.
The matrix element for the former is obtained via detailed balance from the NN →
NNπ cross section, and the latter is based on the model of Oset et al. [OS87].

7.7 Spectral functions and self energies

7.7.1 Formalism

The spectral function — introduced in Eq. (7.8) — is given by

A(p, r) =
1
π

− Im Π(p, r)

(p2 − m2 − Re Π(p, r))
2 + (Im Π(p, r))2 , (7.42)

with the four-momentum p and the self energy Π(p, r) = Π(p0, p, r). In the medium,
Π depends on p0 and p separately.

The vacuum spectral function of a stable particle is — due to the vanishing width
— simply a δ-function situated at its pole mass m. Unstable particles, however, have
a finite lifetime and therefore a non-vanishing width. In the nuclear medium, the
lifetime of all particles is affected by collisions leading to an additional width, or,
in other words, to modifications of the imaginary part of the self energy Π. Thus,
the imaginary part of the self energy is closely connected to the collision term and
therefore to the width by

Im Π = −
√

pµ pµ

(
Σ

> − Σ
<
)

= −
√

pµ pµ Γmed. (7.43)

To deduce Im Π of a particle in the medium, we have to consider the modification of
its free decay width due to Pauli blocking of the final-state nucleons and the collisional
broadening due to its interactions with the surrounding nucleons. Both contributions
sum up to the in-medium width Γmed. In the medium, the spectral function peaks at

p2
pole = m2

pole = m2 + Re Π(p0, p, r), (7.44)
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7 GiBUU transport model

and is thus centered at a mass different from its vacuum pole mass m. The real part
can be calculated via dispersion relations where a mean-field contribution can also
be included using a subtraction constant. Both, real and imaginary part of the self
energy are discussed in the following.

The spectral function is normalized as

∞∫

0

dp2A(p, r) = 1. (7.45)

For the spectral function of the initial-state nucleons, we consider only the real
part of the self energy generated by the mean-field potential and neglect the small
imaginary part. We further neglect the self energies of all mesons.

Imaginary part

To estimate the collisional broadening of a particle with momentum p and energy p0,
we employ the low-density approximation

Γcoll(p0, p, r) = g
∑

i=n,p

∫
fi(p′, r)σi(p0, p, p′)vrel(p0, p, p′) d3p′. (7.46)

Here, the variable vrel denotes the relative velocity of the regarded particle and a nu-
cleon with momentum p′; the nucleon phase-space densities fi have been introduced
in Eq. (7.21). The total nucleon-particle scattering cross sections σi are chosen accord-
ing to the GiBUU collision term discussed in Section 7.6. Thus, the collisional width
Γcoll accounts for additional decay channels of the particle inside the nucleus.

Let us take the ∆ resonance as an example: besides its usual decay, ∆ → πN, there
are also two-body and three-body interaction mechanisms in the nuclear medium
such as ∆N → ∆N, ∆N → NN or ∆NN → NNN. On the other hand, the medium
width is decreased by Pauli blocking. While the nucleons inside the nucleus are
constrained to have momenta below the Fermi momentum, there is no such constraint
for the production of the ∆ resonances. Their decay, however, is influenced by Pauli
blocking, e.g., a ∆ decaying into a pion-nucleon pair is Pauli blocked if the resulting
nucleon’s momentum is lower than the Fermi momentum.

Altogether, the imaginary part of the self energy in the rest-frame of the particle is
given by

Im Π(p0, p, r) = −
√

p2 {Γfree,Pauli blocked (p0, p, r) + γΓcoll (p0, p, r)} , (7.47)

so that
Γmed = Γfree,Pauli blocked + γΓcoll . (7.48)
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γ denotes the boost factor from the nucleus rest-frame to the particle rest-frame (de-
tails are given in Ref. [Bus08]). The vacuum decay widths Γfree are listed in Sec-
tion 7.6.1. If the invariant mass of the particle is less than the mass of its lightest
decay products, then Γfree = 0.

Real part

Since the self energy is an analytic function of p0, we can use dispersion relations to
deduce the off-shell behavior of the real parts from the imaginary part. We apply a
once-subtracted dispersion relation with the energy at the pole, given by Eq. (7.44),

p
pole
0 =

√
p2 + m2 + Re Π(p

pole
0 , p, r) , (7.49)

as a subtraction point. This yields

Re Π(p0, p, r) = Re Π(p
pole
0 , p, r) +

p0 − p
pole
0

π
℘

∞∫

−∞

dp′0
Im Π(p′0, p, r)

(p′0 − p
pole
0 )(p′0 − p0)

+ Re C∞.

(7.50)

In line with Lehr et al. [LLLM02, Leh03], we demand that the in-medium shift of the
on-shell energy is determined by the mean fields, so that

p
pole
0 =

√
p 2 + (m + U(p, r))2 , (7.51)

with the scalar potential U defined in Eq. (7.6). Consequently, the non-dispersive
contribution to Re Π is given by

Re Π(p
pole
0 , p, r) = 2mU(p, r) + U(p, r)2 . (7.52)

In the numerical realization, we approximate the dispersion integral (7.50) for Re Π

by [Bus08]

Re Π(p0, p, r) = Re Π(p
pole
0 , p, r) +

p0 − p
pole
0

π
×

℘




E1∫

Emin

dp′0
Im Π(p′0, p, r)

(p′0 − p
pole
0 )(p′0 − p0)

+

E2∫

E1

dp′0
Im Π(p′0, p, r)

(p′0 − p
pole
0 )(p′0 − p0)

E2 − p′0
E2 − E1


 (7.53)

with the cutoff parameters E1 = 5 GeV and E2 = 7 GeV. Emin is determined by the
mass of the lightest decay product of the particle. The dependence of the results
on the cutoffs has been investigated in Ref. [Bus08] and only a marginal impact has
been found. The whole procedure guarantees analytical self energies and, therefore,
normalized spectral functions.
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7 GiBUU transport model

7.7.2 Numerical implementation

Evaluating the imaginary and real parts for all non-strange baryons is numerically
a highly demanding task — the integral for the collisional widths, Eq. (7.46), is cal-
culated using a Monte-Carlo method — and cannot be performed during run time.
Thus, we tabulated them on a multi-dimensional grid as a function of proton and neu-
tron density, mass and absolute three-momentum assuming that the nuclear phase-
space density is in its ground state during all the process. The advantage is a fast
access to the in-medium width at the cost of a large memory need.8

7.7.3 Results and discussion

Nucleon

For the calculation of Γcoll in Eq. (7.46), we assume — since the off-shell NN cross
sections are not known — that the cross sections are independent of the nucleon mass
(see page 95 for the implemented cross sections). Consequently, also Γcoll depends
only on density and the absolute momentum, but not on the mass. The left panel
of Fig. 7.8 shows the collisional width as a function of momentum for various den-
sities. The threshold is determined by Pauli blocking: collisions are forbidden when
plab < pF(ρ) ∝ ρ1/3 (see (Eq. (7.22)) and the width vanishes below the Fermi mo-
mentum. Increasing plab from threshold to the kink seen in the curves, one slowly
overcomes Pauli blocking. At even larger momentum, the width is approximately
linear in density, or, in other words, it scales with the number of scattering partners.

The right panel of Fig. 7.8 visualizes the spectral function of the nucleon according
to Eq. (7.42) as a function of its energy for different momentum cuts and a fixed
density of ρ = 0.16 fm−3. The spectral function broadens for larger momenta caused
by the increasing width. The norm differs from unity only at the 1% level as can
be seen from Table 7.5 where the normalization is given for some momenta at ρ =
0.16 fm−3.

∆ resonance

As already indicated in Section 7.6.2, we have included two different approaches to
the in-medium width of the ∆. Within the first one (in the following denoted as “one-
pion exchange approach”) we evaluate the imaginary part of the self energy using the
ρσv ansatz as in Eq. (7.46), and the ∆N cross sections are calculated in the one-pion
exchange model as outlined in Section 7.6.2. The real parts are then determined via
Eq. (7.53). We obtain a good normalization within a few percent (cf., the second line

8Roughly 1 GB of memory is needed for the grids.
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Figure 7.8: Left panel: collisional width of the nucleon vs. its momentum for different
nuclear densities. Right panel: resulting nucleon spectral function as a function of its
energy for different fixed momenta at ρ = 0.16 fm−3.

Table 7.5: Normalization of the nucleon and ∆ spectral functions at various momenta
for ρ = 0.16 fm−3. For the ∆ resonance, we show the results for both the one-pion
exchange based and the Oset parametrization of the width.

∫
∞

0 dp02p0A(p0, p)

|p| = 0.2 GeV 0.4 GeV 0.6 GeV 0.8 GeV 1.0 GeV

nucleon 1.000 0.999 0.995 0.994 0.994
P33(1232) (1π-ex. approach) 0.975 0.974 0.975 0.977 0.981

P33(1232) (Oset approach) 0.952 0.911 0.879 0.868 0.868
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in Table 7.5). The missing strength is caused by our finite integration interval — we
integrate up to Mmax = 10.5 GeV.

The second approach, which we will call “Oset approach”, is based on the model of
Oset and Salcedo [OS87]. They evaluate the ∆ self energy in the nuclear medium using
a many-body expansion in terms of ph and ∆h excitations. Quasielastic corrections,
two-body and three-body absorption is included. The latter two are roughly similar
in size. However, this model is only applicable to lower energies up to Tπ ≈ 0.35 GeV
where Tπ is the kinetic energy of the pion which creates the ∆ in an Nπ collision.
In our implementation, we use the parametrization given in their Eq. (4.4) up to
Tπ = 0.45 GeV, and then “freeze” the width at this value. Therefore, the dispersion
integrals needed for the determination of the real part cannot be evaluated, so that
the real parts are given solely by the mean fields. This then leads to normalization
errors as indicated in the last line in Table 7.5. For the above reasons, the integration
interval extends only up to Mmax = 2.5 GeV.

It has been shown by Effenberger [Eff99] and later by Buss [Bus08] that the numer-
ical outcome of both approaches differs (cf., in particular, Fig. 4.3 in Ref. [Eff99] and
left panel of Fig. 3.3 in Ref. [Bus08]). Qualitative agreement is found for the two-
body contribution, ∆N → NN, with differences of the order of 25%. The three-body
channel, ∆NN → NNN is completely missing in the one-pion exchange approach for
the in-medium width. The major disagreement, however, comes from the quasielastic
term (∆N → ∆N) which is the dominating contribution in the one-pion exchange
approach. This problem has been investigated further in Ref. [Bus08] (see right panel
of his Fig. 3.3 and the discussion) by comparing different choices for calculating the
∆N → ∆N cross section. In former code versions, as, e.g., described in Effenberger’s
thesis [Eff99], this cross section has been replaced by the one for NN → NN which
leads to a much smaller contribution in the collisional width. However, the large
difference between the Oset approach and our simple 1π-exchange model tree-level
ansatz for ∆N → ∆N is not yet understood and has to be further investigated.

In Fig. 7.9 we compare the resulting collisional widths of both approaches. In the
left panel, we keep the mass W fixed and vary the absolute momentum, and vice versa
in the right panel. We have chosen two representative values: in the left panel, W is
close to the ∆ pole, while |p| = 0.6 GeV is a characteristic value which can be reached
in lepton-nucleus scattering (compare also Fig. B.3). Overall, the BUU approach leads
to smaller widths at low momentum and mass than the Oset approach — which is
constant in |p| — caused in particular by the larger ∆N → NN contribution of Oset
and Salcedo. The opposite behavior is found at high momentum/mass where the
BUU approach is dominated by the ∆N → ∆N contribution.

The impact of the choice of the ∆ in-medium width on observables in lepton-
nucleus scattering will be investigated in Chapters 9, 10 and 11 for inclusive cross
sections, pion production and nucleon knockout.
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Figure 7.9: Collisional width of the ∆ resonance as a function of momentum for W =
1.240 GeV (left panel) and as a function of invariant mass for |p| = 0.6 GeV (right
panel), respectively. The solid (dashed) lines stand for a density of ρ = 0.16 fm−3

(ρ = 0.08 fm−3). The filled circles denote the results obtained with the Oset model
while the open circles stand for the one-pion exchange approach.

Table 7.6: Normalization of the spectral functions for the P11(1440), the D13(1520) and
the S11(1535) resonances at various momenta for ρ = 0.16 fm−3.

∫
∞

0 dp02p0A(p0, p)

|p| = 0.2 GeV 0.4 GeV 0.6 GeV 0.8 GeV 1.0 GeV

P11(1440) 0.972 0.975 0.976 0.979 0.981
D13(1520) 0.987 0.989 0.989 0.990 0.992
S11(1535) 0.982 0.985 0.984 0.986 0.988

Other baryonic resonances

The in-medium width of all other non-strange/non-charm baryonic resonances is
implemented in the same way as for the nucleon and the ∆ resonance using the
GiBUU collision term. The normalization is fulfilled at the 1-3% level as seen from
Table 7.6. Overall, we find that the collisional width causes a broadening of the
spectral functions (cf., e.g., Fig. 3.6 in Ref. [Bus08]).
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Table 7.7: Normalization of the vacuum spectral functions for the nucleon, the
P33(1232), the P11(1440), the D13(1520) and the S11(1535) resonances at ρ = 0.

∫
∞

0 dp2AnoColl(p, r)

nucleon 1.000
P33(1232) 1.112
P11(1440) 0.935
D13(1520) 1.097
S11(1535) 1.061

7.7.4 Approximations

Neglecting collisional broadening, we can approximate the in-medium spectral func-
tion, A, defined in Eq. (7.42) by

A(p, r) → AnoColl(p, r) =

√
p2

π

Γ(p)

(p2 − (m + U(p, r))2)2 + p2Γ2(p)
, (7.54)

with the vacuum width Γ given in Section 7.6.1. The vacuum spectral function of the
nucleon is a δ-function; however, for numerical reasons, we replace this δ-function by
a Breit-Wigner distribution of vanishing width

AnoColl
N (p, r) = lim

Γ→0

√
p2

π

Γ

(p2 − (m + U(p, r))2)2 + p2Γ2 . (7.55)

We choose Γ = 1 MeV and have checked that the observables are not sensitive to the
choice of Γ if it is small enough.

These expressions have already been applied to calculate the neutrino-induced res-
onance excitation off the nucleon, i.e., at ρ = 0 (see Eq. (3.9) on page 28). Table 7.7
indicates that the normalization is fulfilled at a 10% level.

7.8 Off-shell transport

We have seen in the previous section, that particles in the medium have a finite life
time due to collisional broadening even if they are stable in the vacuum. We have
also seen that the spectral functions depend on ρ(r) and p, i.e., they change over the
nuclear volume, e.g., when going from high- to low-density regions. Therefore, one
must ensure that particles leaving the nucleus have returned to their vacuum pole
mass (in case they are stable in the vacuum as the nucleon) or to their free spectral
function (for baryonic resonances for example). This immediately raises the question
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7.8 Off-shell transport

of how to propagate broad states. Up to now the propagation of the test particles via
Eqs. (7.14)-(7.16) is only influenced by the mean fields but unaffected by Im Π since
we neglected Aoff-shell in Eq. (7.1).

In this section, we present an ansatz based on an “educated guess” by Mosel and Ef-
fenberger [EM99, Eff99] which restores proper off-shell propagation without the need
of solving the generalized BUU equation — the so-called off-shell potential ansatz
(OSP). The full solution is an highly advanced task and has been addressed for exam-
ple in Refs. [Leu00, EM99, Eff99, CJ00, Leh03].

7.8.1 Off-shell potential method

To introduce the OSP method we start by defining the offshellness (or off-shell poten-
tial), ∆µj, of the jth test particle by

√
p2

j = m + U + ∆µj , (7.56)

where m is the pole mass of the particle species under consideration and U the scalar
potential.9 Thus, m + U corresponds to the in-medium pole mass (m + U)2 = m2 +
Re Π (compare Eq. (7.49) and Eq. (7.51)) and, consequently, ∆µj is a measure of how

far the test particle mass
√

p2
j is off the pole m + U. Rewriting Eq. (7.56) yields for the

energy of the test particle

p0
j =

√
(m + U + ∆µj)2 + p2 . (7.57)

The OSP ansatz now consists in regulating the offshellness ∆µj in a way that the
vacuum behavior is restored when the particles leave the nucleus. Our choice is that
∆µj depends linearly on the full in-medium width Γtot, so that

∆µj(r, p) = χos
j Γtot(r, p), (7.58)

where we define the off-shell parameter as

χos
j =

∆µj(rj(t0), pj(t0))

Γtot(rj(t0), pj(t0))
. (7.59)

The widths have to be calculated in the lab frame since only then the ratio Γtot(r, p)/
Γtot(rj(t0), pj(t0)) is a scalar for all times.10

9Remember that we suppress the particle species index i while we keep the index j which denotes the
jth test particle.

10For the derivation we refer the reader to the footnote on page 18 in Ref. [Bus08].
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7 GiBUU transport model

At production time t0 each test particle j is assigned its specific off-shell parameter
χos

j which stays constant in time. Its value is less than zero for particles below the
pole and larger than zero for the ones above the pole. As each test particle has its
own off-shell parameter, we require a separate Hamilton function Hj for each test
particle and replace

H =
√

(m + U)2 + p2 → Hj =
√

(m + U + ∆µj)2 + p2. (7.60)

Each test particle is thus propagated also under the influence of the off-shell potential
∆µj. Note that within the OSP ansatz the Hamiltonian depends on the test particle,
but, since Hj(t0) = p0

j and ∂tHj = 0, it is constant, i.e., Hj(t) = p0
j (t) for all times.

Thus, by construction of the off-shell potential, the single-particle energy is conserved
and we find ∂p0

j /∂t = 0 [Eq. (7.16)].
The OSP ansatz as applied by Effenberger [Eff99] and later by Lehr [Leh03] has

been even simpler: they have chosen a linear dependence in density instead of the
full in-medium width in Eq. (7.59), which is from the numerical point of view a huge
simplification as we shall see in the next section. In addition, they have introduced a
back-coupling term stemming from the influence of the OSP on the residual nucleus
which restores also the overall energy conservation. Since the nucleus stays approxi-
mately in its ground state in lepton-induced reactions, the back-coupling term leads
only to minor modifications and can be neglected.

Finally, we briefly address the justification of the OSP method which is an effective
way of simulating the full off-shell solution to the generalized BUU equation (7.1). The
full equations of motion have been derived in non-relativistic kinematics by Leupold
[Leu00] and relativistically by Cassing and Juchem [CJ00]. The three approaches were
compared to each other by Lehr (cf. Section 5.2 in Ref. [Leh03]) who has found good
agreement of the OSP ansatz (their realization using the densities) with the full solu-
tion by Leupold within the low-density approximation. Lehr has further compared
numerically the OSP method to the relativistic solution and has found only minor
differences that are negligible for practical purposes (see Figs. 5.1-5.3 in Ref. [Leh03]).

7.8.2 Numerical implementation and discussion

We store the off-shell parameter χos
j , defined in Eq. (7.59), of each test particle j when

it is produced. It can be produced either in the initial lepton-nucleon interaction or
in secondary collisions (cf. Section 7.6).11 These test particles are then propagated in
both the mean-field potential and the off-shell potential following Eqs. (7.14)-(7.16)
according to their Hamilton function given in Eq. (7.60).

11Note that we had to adjust the collision term, in particular the treatment of the kinematics, to account
for broad nucleons.
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7.8 Off-shell transport

Since ∂p0
j /∂t = 0 [Eq. (7.16)], the single-particle energy is conserved in the propaga-

tion. As the off-shell potential depends on r and p, we have to evaluate for Eqs. (7.14)
and (7.15) also the derivatives acting on ∆µj(r, p) leading to

∂∆µj(r, p)

∂p
= χos

j

∂Γtot(r, p)

∂p
, (7.61)

∂∆µj(r, p)

∂r
= χos

j

∂Γtot(r, p)

∂r
. (7.62)

As a test of the off-shell propagation we let nucleons and ∆ resonances of different
kinematics propagate out of and ∆ resonances propagate also through a 12C nucleus.
In detail, consider the following scenarios:

(1) nucleon initialized at r = 0 with M = 1.1 GeV and p = 1 GeV ez

(2) nucleon initialized at r = 0 with M = 1.1 GeV and p = 0.5 GeV ez

(3) nucleon initialized at r = 0 with M = 0.8 GeV and p = 1 GeV ez

(4) nucleon initialized at r = 0 with M = 0.8 GeV and p = 0.5 GeV ez

(5) P33(1232) initialized at r = 0 with M = 1.1 GeV and p = 1 GeV ez

(6) P33(1232) initialized at r = 0 with M = 1.1 GeV and p = 0.5 GeV ez

(7) P33(1232) initialized at r = 0 with M = 1.5 GeV and p = 1 GeV ez

(8) P33(1232) initialized at r = 0 with M = 1.5 GeV and p = 0.5 GeV ez

(9) P33(1232) initialized at r = −4 fm ez with M = 1.1 GeV and p = 1 GeV ez

(10) P33(1232) initialized at r = −4 fm ez with M = 1.1 GeV and p = 0.5 GeV ez

(11) P33(1232) initialized at r = −4 fm ez with M = 1.5 GeV and p = 1 GeV ez

(12) P33(1232) initialized at r = −4 fm ez with M = 1.5 GeV and p = 0.5 GeV ez

Collisions are “switched off” and the Oset prescription is used for the ∆ width. If
not stated otherwise, we include the full hadronic potentials in the propagation. The
simulation stops either after t = 50 fm or if r > 7 fm. In the following plots we always
show the time evolution of the absolute momentum |p| = p, the radial distance from
the center of the nucleus |r| = r, the full in-medium width Γtot, the energy E, the
particle’s bare mass M =

√
p2 − U = m + ∆µj. The value of the off-shell parameter

χos is indicated in the plots.
We start with scenarios (1)-(3) shown in Fig. 7.10. Here the nucleons propagate out

of a 12C nucleus (increase of dashed lines). In (1) and (2) the nucleons are initialized
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7 GiBUU transport model

with a mass larger than MN (positive χos), while the mass is smaller in (3). In all
cases, M → MN when propagating out (double-dashed lines) — at the same time, the
momentum p is adjusted accordingly (solid lines) and the collisional width tends to
zero (dash-dotted lines). The energy stays constant as it should (dotted lines). Very
similar results are found when the mean-field potential is set to zero.

A completely different behavior is observed in Fig. 7.11 for case (4). In the left panel,
we show the results without mean-field potential while the results shown in the right
panel are obtained including the mean-field potential. The dashed lines show that
the nucleon propagates out about 3 fm (after t = 10 fm), but after a while it returns,
passes the origin at t ≈ 32 fm and propagates out again to about 3 fm (dashed lines).
The mass (double-dashed), momentum (solid) and the in-medium width (dash-dotted
lines) oscillate accordingly. Thus, for setup (4), the nucleon is bound in the nucleus
by the off-shell potential which is attractive for very negative off-shell parameters.
The effect of the mean-field potential can be appreciated by comparing both panels:
it does not change the overall picture but slightly affects the propagation.

The left panel of Fig. 7.12 shows scenarios (5)-(7) where a P33(1232) resonance prop-
agates out of a 12C nucleus (increase of dashed lines in time). In (5) and (6) the
P33(1232) resonances are initialized with a mass smaller than the Breit-Wigner mass
(negative χos), while the mass is larger in (7). In the first two scenarios, M increases
with increasing distance from the nuclear center (double-dashed lines); at the same
time, |p| (solid) and the full in-medium width Γtot (dash-dotted lines) decrease. The
opposite is found for scenario (7). The single-particle energy stays constant in all cases
(dotted lines).

The propagation of a P33(1232) resonance through a 12C nucleus is addressed in the
right panel of Fig. 7.12. Here, the radial distance decreases from 4 fm to 0, then the
particle passes the nuclear center and the distance increases again. For particles with
negative off-shell parameter, M decreases (double-dashed lines) while |p| (solid lines)
increases when propagating through the nucleus (the width is very small and thus
not shown in the two upper plots). For particles with positive off-shell parameter, the
picture is reversed.

For specific choices of the kinematics, cf., e.g., Fig. 7.13, the ∆ resonances are bound
in the nucleus by the OSP (dashed line in the left panel, similar effect as seen in
Fig. 7.11) which, however, is very sensitive to minor changes (effect vanishes in the
right panel when the hadronic mean-field potential is included). In the same way,
particles can be reflected from nuclei by the OSP alone.

We conclude, that for both, the nucleon and the ∆ — the most important baryons
in our work —, we find the correct behavior in time which proves the correct imple-
mentation of the OSP method.

Let us finally discuss the main problems of this method. Equations (7.61) and (7.62)
reveal on one hand the simplicity of implementing the OSP method but on the other

108



7.8 Off-shell transport

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

scenario (1) 

χos = 2.36

p [GeV]
r [fm]

Γtot [GeV]
E [GeV]
M [GeV]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5 scenario (2) 

χos = 3.95

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  1  2  3  4  5  6  7

t [fm]

scenario (3) 

χos = -2.36

Figure 7.10: Off-shell propagation of nucleons out of a 12C nucleus with different kine-
matic settings as detailed in the text. The time evolution of various quantities is shown
(see labels).
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Figure 7.11: Off-shell propagation of nucleons out of a 12C nucleus for scenario (4). In
the left panel, the mean-field potential is “switched off”.

hand show its major difficulties: a large sensitivity on the in-medium width. As
outlined in Section 7.7, the widths are calculated using a Monte Carlo method with a
certain precision for the integral in Eq. (7.46) and then stored on a grid. If these widths
are not smooth enough, the numerical evaluation of the gradients can give unrealistic
values, which, since ṙ = ∂H/∂p, leads to particles faster than light (tachyons). Thus,
we have to ensure high precision in the tabulation of the width and in solving the
equations of motion. For example, to avoid rapid changes we have to decrease the
time step size from 0.1 fm to at least half and also ∆p in the numerical evaluation of
the derivatives from 0.01 to 0.002. Similar numerical problems arise at the borders
of the tabulation grid. We circumvent them by extrapolating the width or by doing
forward or backward derivatives instead.

Difficulties are not only caused by numerical problems in the gradients but also by
the properties of the width itself. We eventually observe tachyons if the off-shell po-
tential becomes too stiff, which is the case for large off-shell parameters. The off-shell
parameter directly translates into a maximal (if positive) or minimal mass (if negative)
at production time and, since the cross section is suppressed by the spectral function
away from the pole, particles with a large off-shell parameter do not contribute sig-
nificantly to any observable. Thus, to avoid problems in the gradients we introduce

a cut on the off-shell parameter by requiring
∣∣∣χos

j

∣∣∣ < 5 which corresponds to cutting

particles more than 5Γ away from the pole mass. Furthermore, we do not allow the
production of arbitrarily light particles, i.e., we cut the spectral function such that the
nucleon in-medium mass is at least 0.7 GeV and the resonance masses are larger than
the vacuum limit MN + mπ.
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Figure 7.12: Off-shell propagation of P33(1232) resonances out of (left panels) and
through (right panels) a 12C nucleus with different kinematic settings as detailed in
the text. The time evolution of various quantities is shown (see labels).
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Figure 7.13: Off-shell propagation of P33(1232) resonances out of a 12C nucleus for
scenario (8). In the left panel, the mean-field potential is “switched off”.

As stated above, most numerical problems, i.e., the appearance of tachyons,12 are
caused by our ansatz Eq. (7.59), where we have chosen to use the widths, and by the
momentum dependence of the width. If one instead uses the densities in Eq. (7.59),
i.e., ρ/ρ0 as done by Effenberger and Lehr, or takes a width which is constant in
momentum and mass, all of the aforementioned problems with tachyons disappear
since the off-shell potential does not affect ṙ = ∂H/∂p.

A major disadvantage of the OSP method from the computing point of view is the
huge increase of needed CPU-time. First, the in-medium width needs to be interpo-
lated in four dimensions for calculating the derivatives. Then, as pointed out above,
the number of time steps had to be reduced. Overall, the OSP method slows down
the propagation part by roughly a factor of 10.

Thus, it is of importance to discuss the impact of the off-shell transport on observ-
ables, or, in other words, the conditions under which it can be neglected. For example,
particles with high interaction rates have only a short life time, hence they propagate
only shortly under the influence of the off-shell potential. Thus, its impact is only mi-
nor in such cases. In Chapters 10 and 11, we show that its impact is indeed negligible
for lepton-induced pion production and nucleon knockout.

12We emphasize again that the appearance of tachyons is not physical but caused by unphysical struc-
tures leading to numerical problems — they have no influence on physical observables.
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8
Nuclear electroweak cross sections

In our approach, the lepton-nucleus reaction is treated as a two-step process: in the
initial step the elementary projectile scatters — assuming impulse approximation —
off one single bound nucleon whereby a quasielastic event takes place, a resonance is
excited, or a non-resonant background process is initiated. Afterwards, the resulting
particle yield of this initial-state interaction propagates through the nucleus undergo-
ing final-state interactions.

In this chapter, we give the connection between the lepton-nucleon cross section
derived in the first part of this thesis and the GiBUU transport model introduced in the
preceding chapter. We discuss in particular the medium modifications of the initial
lepton-nucleon scattering cross section and derive the lepton-nucleus cross section
and explain its numerical implementation.

8.1 Lepton-nucleon interaction in the nuclear medium

In the first part of this thesis, we have discussed the scattering of leptons with free
nucleons. Now we proceed to the scattering of leptons with nuclei, i.e., in our assump-
tion of impulse approximation off an ensemble of bound nucleons. Thus, we have to
account for medium effects: the nucleons which build the nucleus acquire a certain,
in our approach density-dependent, Fermi momentum (cf., Section 7.5). In- and out-
going baryons are further affected by mean-field potentials (see Section 7.4) which
modify their dispersion relations. The spectral functions of the outgoing baryons con-
tain, in addition, the collisional broadening caused by the scattering with the residual
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8 Nuclear electroweak cross sections

nucleons (see Section 7.7). These effects require modifications of both, the cross sec-
tion formulas and the matrix elements.

In the medium, the four-vectors of the incoming nucleons are given by [see also
Eq. (7.6) on page 83]

p =

(√
(MN + UN(p, r))2 + p2 , p

)
, (8.1)

which defines their invariant masses (also called effective masses)

M =
√

p2 = MN + UN(p, r). (8.2)

In the following we discuss how the different contributions to dσtot (see Eq. (3.1) on
page 26) are modified when the nucleon is bound in a nucleus, i.e.,

dσtot = dσQE +
∑

R

dσR + dσBG → dσmed
tot = dσmed

QE +
∑

R

dσmed
R + dσmed

BG , (8.3)

where dσmed
tot stands for the medium-modified cross section to be discussed below.

8.1.1 Quasielastic scattering

The in-medium cross section for QE scattering is derived in Appendix B.2.1 and reads
[Eq. (B.11) with Eq. (B.14)]

dσmed
QE

dk′0 dΩk′
=

|k′|
32π2

[
(k · p)2 − m2

ℓ M2
]−1/2

AN(p′, r) |M̄med
QE |2. (8.4)

The in-medium four-momentum p′ of the outgoing nucleon is directly given by en-
ergy and momentum conservation using the in-medium four-vector p defined above;
M is given in Eq. (8.2) and M′ = MN + UN(p′, r). We emphasize that in our model not
only the initial-state nucleon is affected by the mean-field potential but also the final-
state nucleon. Thus, also p′ includes modifications from the potential. This means
that a struck nucleon is not necessarily knocked out, but can also stay bound in the
nucleus. This is different, e.g., from the model of Benhar et al. [BFN+05], where the
outgoing nucleon does not feel any potential and is always assumed to be knocked
out, described in terms of a single parameter, an average removal energy.
AN(p′, r) in Eq. (8.4) stands for the in-medium spectral function of the nucleon

introduced in Section 7.7. Hereby, we account for the fact that the outgoing nucleon
acquires a collisional width in the medium.

Already in the simplest case of QE scattering, the most general in-medium vertex
for γ⋆N → N′ can be expressed in terms of 12 linearly independent Lorentz struc-
tures, leading to 12 different form factors [NPKO90]. While in the vacuum, the form
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8.1 Lepton-nucleon interaction in the nuclear medium

factors are only functions of q2, in the medium they may depend on all the possible
independent Lorentz scalars, i.e., e.g., q2, P2 and P · q where P = p + p′. However, the
present experimental situation does not allow to fix these parameters, therefore, we
follow the common assumption that the vertex structure, given in Eqs. (4.7) and (4.8)
on page 30, and the form factors are not modified by the medium and that the latter
depend only on q2 (We will expand this discussion in Section 9.3.). Consequently, the
matrix element |M̄med

QE | in Eq. (8.4) is the same as the one derived in Chapter 4 for
unbound nucleons, but calculated with the full medium-modified four-vectors, p and
p′, affecting the hadronic tensor.

8.1.2 Resonance excitations

For resonance excitations, the implementation of medium modifications is straight
forward. The cross section is given by [Eq. (B.11) with Eq. (B.14)]

dσmed
R

dk′0 dΩk′
=

|k′|
32π2

[
(k · p)2 − m2

ℓ M2
]−1/2

AR(p′, r) |M̄med
R |2. (8.5)

As for QE scattering, the in-medium four-momentum p′ of the outgoing resonance
is given by p′ = p + q with the in-medium four-vector p of Eq. (8.1); M is given in
Eq. (8.2). The in-medium spectral function for the resonances, AR(p′, r), is given in
Section 7.7.

As in the quasielastic case, we also assume that for resonance production the in-
medium vertex structure and the form factors are not modified by the medium. Thus,
the matrix elements |M̄med

R | in Eq. (8.5) are the same as derived in Chapter 5 for
scattering off free nucleons, but calculated with the full medium-modified four-vectors
p and p′.

8.1.3 Non-resonant single-pion background

We have outlined in Chapter 6 that the cross section for the non-resonant single-
pion background is based on the MAID parametrization of available electron-induced
single-pion production data on the nucleon. The background is defined by the dif-
ference between these vacuum data and the resonance contributions. Thus, we use
vacuum kinematics (only Fermi motion is considered, no potentials) to construct both
parts of dσBG given in Eq. (6.2) on page 70, the total single-pion cross section using the
MAID input and the contribution of the resonances to single-pion production. This
means for the in-medium background cross section that

dσmed
BG (p, q) = dσvac

BG (pvac, q), (8.6)

with pvac =
(√

M2
N + p2, p

)
.
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8.2 Lepton-nucleus interactions

Assuming impulse approximation, we can take the nuclear-current operator as a sum
of one-body currents, and also the nucleus wave function is simply a sum over all
single-particle wave functions, for which we take plane waves. This allows us to
express the cross section for lepton scattering on nuclei as an integral over the nucleus
of the lepton-nucleon cross sections, and we obtain for the inclusive cross section (i.e.,
summed over all hadronic final states)

dσℓA→ℓ′X
tot =

∫

nucleus

d3r

∫
d3p

(2π)3 Θ(pF(r) − p) fcorr dσmed
tot PPB(r, p). (8.7)

The term dσmed
tot stands for the total cross section on nucleons including nuclear

medium corrections as discussed in the previous section. The Pauli-blocking factor,
PPB, and the local Fermi momentum, pF(r), are both given in Section 7.5. The factor
fcorr is a flux correction and reads

fcorr =
|vN − vℓ|
|vA − vℓ|

≈ |vN − vℓ|
1

=
k · p

k0p0 , (8.8)

where vN,A,ℓ denotes the velocity of the corresponding nucleon, the nucleus and the
incoming lepton, all in the frame where the nucleus is at rest.

The semi-inclusive cross section, i.e., the cross section for a specific final state f can
now be written down as

dσ
ℓA→ℓ′ f X
tot =

∫

nucleus

d3r

∫
d3p

(2π)3 Θ(pF(r) − p) fcorr dσmed
tot PPB(r, p) M f (r, p). (8.9)

M f is the multiplicity of the final state f given an initial state i. This mapping i → f

is determined by the GiBUU transport simulation.

8.3 Numerical implementation

The integrals in Eqs. (8.7) and (8.9) are solved numerically using a Monte Carlo sam-
pling method. In terms of test particles the integral reads [Bus08]

∫
d3r

d3p

(2π)3 Θ(pF − p) . . . =

∫
d3r

d3p

(2π)3 f (r, p, t = 0) . . .

=

∫
d3r

d4p

(2π)4 g<(r, p, t = 0) . . .

=

∫
d3r d4p

1
N

N×A∑

j=1

δ4(p − pj) δ3(r − rj) . . . . (8.10)
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Each nucleon test particle gives a distinct contribution to the integrals so that

dσℓA→ℓ′X
tot =

1
N

N×A∑

j=1

fcorr(pj) dσmed
tot (rj, pj) PPB(rj, pj), (8.11)

where dσmed
tot (rj, pj) is the cross section for the jth test particle.

The numerical implementation has been presented in detail in Section 5.5 of Ref.
[Bus08]; for completeness we shall review the major steps. First, we formally rewrite
Eq. (8.3) so that

dσmed
tot (rj, pj) =

∑

f∈{N,πN,P33(1232),P11(1440),...}
dσf (rj, pj). (8.12)

Since the πN background cross section may become negative as pointed out on page
70, we have to apply a modified importance-sampling algorithm as developed in
Ref. [Bus08]. We first evaluate the cross section for each channel f using one random
phase-space point (rj, pj). Then, one specific final state is chosen with a Monte Carlo
method. The probability according to the modified importance sampling algorithm is
[Bus08]

P( f ) =
|dσf (rj, pj)|∑

f∈{N,πN,P33(1232),P11(1440),...} |dσf (rj, pj)|
. (8.13)

The event then gets a Monte-Carlo weight which includes the sign of the partial cross
section

wj =
dσf (rj, pj)

|dσf (rj, pj)|︸ ︷︷ ︸
=sign(dσf )

∑

f∈{N,πN,P33(1232),P11(1440),...}
|dσf (rj, pj)|. (8.14)

It has been shown in Ref. [Bus08] that with this modification the correct cross sections
are sampled.

We assume that the final lepton does not interact any more, thus, we only propagate
the hadrons produced in this initial reaction. After the transport simulation, we eval-
uate their final multiplicities to calculate semi-exclusive cross sections (cf., Eq. (8.9)).
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9
Inclusive cross sections

In this chapter, we present our results for inclusive neutrino scattering off nuclei fo-
cussing on the quasielastic and the resonance region, taking into account various
nuclear effects: the local density approximation for the nuclear ground state, mean-
field potentials and in-medium spectral functions. As a benchmark we also present
results for electron-induced reactions which represent a model validation due to the
available high-precision nuclear data.

9.1 Introduction

At intermediate energies the lepton-nucleon cross section is, as we have seen, domi-
nated by QE scattering and pion production via resonance excitations or non-resonant
processes. Many authors investigated electron or neutrino scattering on nucleons,
but only a few study both within the same model. Quasielastic collisions have been
investigated using a relativistic treatment of the matrix elements in Fermi-gas mod-
els [SM72, DP79, HKMP93], that take into account Fermi motion, Pauli blocking and
binding energies. The influence of nuclear effects on both, electron- and neutrino-
scattering cross sections, has been investigated by Benhar et al. using an impulse-
approximation model with realistic spectral functions obtained from nuclear many-
body theory calculations [BFN+05, NSNB07]. Nuclear effects in the QE region have
also been investigated in detail by Nieves and collaborators for electrons [GNO97]
and neutrinos [NAV04, NVVV06] where they have included, among other nuclear
corrections, long-range nuclear correlations. The importance of these strong renor-
malization effects on the weak transition strengths in the nuclear medium has also
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9 Inclusive cross sections

been emphasized by [SO92, SSAA06b, Mar99]. A relativistic Green’s function ap-
proach has been applied by Meucci et al. [MCGP03, MGP04b] to inclusive electron-
as well as to inclusive neutrino-nucleus QE reactions. Butkevich et al. [BM05, BK07]
address both, neutrino and electron QE scattering, with special emphasis on the im-
pact of different impulse-approximation (IA) schemes: plane-wave IA (PWIA) and
relativistic distorted-wave IA (RDWIA). The Ghent group applies RPWIA and RD-
WIA models to neutrino and electron scattering in the QE region [MLJ+06]; lately
they have extended their framework to the ∆ region [PLJR09] where they employ re-
alistic bound-state wave functions and find a good agreement to relativistic Fermi-gas
calculations at neutrino energies around 1 GeV.

Within our model we are able to address the QE and the resonance region simul-
taneously and, unlike most of the models mentioned above, are not restricted to the
QE region only. In the following, we focus on two issues: first, we present results for
lepton scattering off nuclei focussing on neutrino — both charged (CC) and neutral
current (NC) — reactions. In particular, we investigate the influence of the nuclear
medium on inclusive cross sections. Then, to validate our model for neutrinos, we
calculate inclusive electron spectra with the very same approach and compare them
to electron-scattering data. Finally, we compare our model to others.

The main results of this chapter have been published in Ref. [LBARM09]; first
results, where we have included only QE and ∆ excitations, can be found in Refs.
[LARM06a, LARM06b, BLMAR07] for CC and NC neutrino-induced reactions.

9.2 Results and their model dependence

By inclusive scattering we understand the process where only the outgoing lepton is
detected, i.e., we sum over all hadronic final states. The corresponding cross section
has been derived in Chapter 8 — for the reader’s convenience we repeat here the final
expression [Eq. (8.7)]

dσℓA→ℓ′X
tot =

∫

nucleus

d3r

∫
d3p

(2π)3 Θ(pF(r) − p)
k · p

k0p0 dσmed
tot PPB(r, p), (9.1)

with the medium-modified cross section dσmed
tot discussed in Chapter 8.

9.2.1 Double differential cross sections

In Fig. 9.1 we show a contour plot of the inclusive cross section for νµ CC scattering

on 16O as a function of energy transfer ω = k0 − k′0 and scattering angle θ at a fixed
neutrino energy of Eν = 1 GeV. In this calculation, we take into account Fermi motion,
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Figure 9.1: Total inclusive νµ CC cross section dσ/(dωdΩk′) on 16O as a function of

energy transfer ω = k0 − k′0 and scattering angle θ for a fixed neutrino energy of
Eν = 1 GeV.

Pauli blocking, binding potentials and in-medium spectral functions, i.e., our full
model. At low energy transfer ω and small scattering angles θ (which corresponds
to lower Q2 as can be appreciated by comparing with Fig. B.1 on page 278), two peaks
can be clearly distinguished. The left-upper ridge is due to QE scattering, while the
right-lower ridge is dominated by the excitation of the ∆ resonance. At higher ω and
larger θ (higher Q2), the two peaks overlap and the distinct peak structure vanishes
and the inclusive cross section tends to zero.

To visualize the single contributions according to Eq. (3.1) (see page 26), i.e., QE,
resonance or single-π background, more quantitatively, we show on the left panels of
Fig. 9.2 cuts at various scattering angles for a fixed neutrino energy. In the right panel,
we plot the single contributions for various neutrino energies at a fixed scattering
angle. The left peaks have their origin in QE scattering (compare the total yield given
by the solid lines to the QE yield given by the dashed ones). With increasing energy
transfer, ω, one enters the pion-production region, which is dominated by initial ∆

excitation (solid vs. dash-dotted lines). The non-resonant single pion background also
contributes in this region (dotted lines) while the impact of the higher resonances is
only visible as a minor contribution at high beam energies and at large scattering
angles (double dashed lines in the lowest panels). The same behavior is obtained also
for NC scattering as can be seen in Fig. 9.3.
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Figure 9.2: Left panel: inclusive CC neutrino cross section dσ/(dωdΩk′) on 16O as a
function of the energy transfer ω for a fixed neutrino energy of 1 GeV and five distinct
scattering angles (10, 30, 45, 60 and 90 degrees). Note the different scales. Right panel:
same but for five distinct neutrino energies (0.5, 0.75, 1.0, 1.25 and 1.5 GeV) and a
fixed scattering angle of θk′ = 30◦. In both panels, the solid lines denote our full
result, where we include all in-medium modifications and in particular in-medium
changes of the width. The dashed lines show the quasielastic contribution, the dotted
ones the single-π background and the dash-dotted ones the contribution coming from
an initial ∆ excitation. Higher resonance contributions are indicated by the double-
dashed lines.
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9 Inclusive cross sections

Influence of Fermi motion and Pauli blocking

To understand the influence of the different in-medium effects, we cut again the dou-
ble differential cross section at a fixed value of Eν = 1 GeV and θ = 30◦. Fig. 9.4
shows the inclusive CC cross section dσ/(dωdΩk′) for νµ scattering on 16O. First,
we pay attention to the QE peak (left peak). The line denoted with “elementary” is
the vacuum cross section, which can be obtained from Eq. (3.6) (see page 28). In the
case of QE scattering, the differential cross section is a δ-function in ω, its position is
marked by an arrow. This position is given by (cf. Eq. (B.29) on page 278)

ω =
−m2

ℓ′ + 2k0(k′0 − |k′| cos θ)

2MN
. (9.2)

If we “switch on” Fermi motion and Pauli blocking, denoted as “LTF” in Fig. 9.4
(solid line), we find that QE scattering is now possible for a range of values of ω with
Eν and θ fixed. This can be understood from the on-shell condition

(p + q)2 = M2
N − Q2 + 2p0ω − 2p · q ≡ M2

N, (9.3)

which has multiple solutions for ω due to the Fermi momentum p of the nucleons.
Turning to the right peak which is mainly due to ∆ excitations (see Fig. 9.2), we obtain
the vacuum cross section (dotted lines) by summing Eq. (3.7) (see page 28) over all
resonances and adding a non-resonant contribution as described in Chapter 6. We
also find a broadening of the peak when Fermi motion is included (solid line).

Influence of the mean-field potential

We now focus on the impact of the choice of the mean-field potential on the inclusive
cross section. In the left panel of Fig. 9.5 we present results for the inclusive reaction
16O

(
νµ, µ−)

X at various neutrino energies from 0.5 to 1.5 GeV. The different curves
indicate calculations with different nucleon mean-field potentials, in-medium changes
to the width are not included in this plot. The dash-dotted curves denote the results
without potentials, including only Fermi motion and Pauli blocking. In the dashed
curves we include a density-dependent but momentum-independent potential (EQS
1, see Section 7.4). The presence of such a momentum-independent potential has prac-
tically no impact on the QE peak because both, in- and outgoing nucleons experience
the same potential. The single-pion region is slightly modified, which is caused by the
fact that the ∆ — dominating this region — is less strongly bound than the nucleon
and, consequently, more energy must be transferred to the nucleon to compensate the
binding.

Including a momentum-dependent mean field (EQS 2, solid curves), we find a
broadening and a shift to higher ω. As the momenta of the initial and final nucleons
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Figure 9.5: Inclusive CC cross section dσ/(dωdΩk′) on 16O as a function of the energy
transfer ω for various beam energies and a scattering angle of θk′ = 30◦. Left panel:
the plots show the results for different nucleon potentials: no potential (dash-dotted
lines), momentum-independent potential (dashed lines) and momentum-dependent
potential (solid lines). The calculations do not include in-medium changes of the
widths. Right panel: the dashed lines show the results where we assume that the
outgoing nucleon feels no potential (solid lines are identical in both panels).

125



9 Inclusive cross sections

differ, they now experience a different potential: the faster (on average) final-state
nucleons experience a shallower potential than the initial-state ones. The same holds
for the resonances. Thus, even more energy must be transferred to the initial bound
nucleon which causes both the broadening and shift of the peaks towards a higher en-
ergy transfer ω. As can be seen from the right panel of Fig. 9.5, this effect is enhanced
if we take the outgoing nucleon as free, i.e., if we set the potential of the outgoing
nucleon to zero.

Influence of the spectral function

Finally, we investigate the influence of the in-medium spectral function and the choice
for the ∆ width. In Fig. 9.6, we show the calculations obtained with the vacuum spec-
tral functions (dash-dotted lines). To get to the dashed and solid lines, the vacuum
spectral function is replaced by the in-medium spectral function, i.e., the vacuum
width is replaced by a sum of the vacuum width, modified due to Pauli blocking, and
a collisional width accounting for additional channels in the medium (cf., Section 7.7).
Since the cross section scales with the inverse of the width this replacement lowers
the peak. We compare two different scenarios for the ∆ width: in the first case, the ∆

width is based on the one-pion exchange model, while in the second case it is calcu-
lated using the model of Oset and Salcedo [OS87]. We refer the reader to Section 7.7
for the necessary details. As appreciated from the figure, the observable consequence
of this choice is only minor. Note that is due to the fact that the difference is mostly
absorbed in the background via Eq. (6.2): our background is defined as data minus
resonance contribution, thus, changing the resonance cross section shifts strength to
the background.

We emphasize that we neglect the imaginary part of the hole self energy. Its in-
fluence for QE scattering has been investigated by Kalok [Kal07] and only a minor
effect could be seen (cf., e.g., his Fig. 5.6; compare dotted and solid line) which can
safely be neglected. Neglecting the imaginary part of the hole self energy is also
supported by the work of Gil et al. [GNO97] who achieve impressive agreement with
data for electron-nucleus scattering within this approximation. Non-negligible effects
are caused by the real part of the hole spectral function which we account for by
the mean-field potential and by the particle spectral function, where we use the full
in-medium spectral function including both, real and imaginary part.

Dependence on nuclei

The left panel of Fig. 9.7 shows the inclusive CC cross section 1/N dσ/(dωdΩk′) for
16O while the right panel presents the corresponding results for 56Fe. The cross section
is scaled by the number of neutrons N: CCQE scattering is only possible on neutrons,
thus, N should be the correct scaling variable in the region of the quasielastic peak.
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9.3 Modeling in-medium cross sections

The nuclear corrections discussed before are added subsequently: we start with the
elementary cross section, then include Fermi motion and Pauli blocking (“LTF”, dash-
dotted lines), mean-field potentials (dashed lines) and in-medium modifications of the
spectral functions (solid lines).

The elementary and the full in-medium cross sections for both nuclei are directly
compared in Fig. 9.8. The difference in the resonance region on the elementary level
(dotted vs. dash-dotted lines) is caused by the different proton to neutron ratio in
both nuclei (e.g., the cross section for ∆ excitation on protons is a factor of three larger
than on neutrons, cf. Section 5.2). The QE peak is broader for Fe than for O. Overall,
the difference between both nuclei is only minor.

9.2.2 Integrated cross sections

The integration over leptonic degrees of freedom yields the differential cross section,
dσ/dQ2, and the total cross section, σ; they are shown in Fig. 9.9. In the figure, the
in-medium modifications are included subsequently as indicated in the caption; their
explanation has been given above. In the lower panels, we show the effect of including
the in-medium width for the ∆ using either the Oset (solid) or the one-pion exchange
based prescription (double-dashed lines, only in the lower panels).

The reduction from the free cross section to the one denoted with “LTF” in the
QE case is caused by Pauli blocking; both curves agree for the ∆ excitation where
Pauli blocking plays no role. Overall, the cross sections are reduced in the medium
(solid or double-dashed lines) compared to the ones for scattering on a free nucleon
(σele = Z σp + N σn with the neutron number N and the proton number Z; dash-
dotted lines), so that σ < σele (same for dσ/dQ2). Note that CCQE scattering is only
possible on neutrons, thus, σQE

ele = N σQE
n .

9.3 Modeling in-medium cross sections

In Chapter 8, we have discussed the general form of the cross section for lepton-
induced reactions on nuclei and how the cross sections for scattering off bound nu-
cleons are calculated within our model. Many approaches have been developed to
describe off-shell cross sections (cf., e.g., Refs. [NPKO90, PNK96, DF83, FK97, M+76,
BFN+05, BDS08]). In this section, we present the most common ones and compare
them to our approach.

For simplicity, we restrict ourselves to the simplest case of inclusive electron cross
sections taking into account only QE scattering and neglecting collisional broadening.
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Figure 9.9: Inclusive CC cross sections on 16O: the left panels show the differential
cross sections dσ/dQ2 at Eν = 1 GeV, the right panels the total cross section σ as a
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9.3 Modeling in-medium cross sections

9.3.1 Preliminaries

We shall now discuss how the QE hadronic tensor for scattering off a bound nucleon
within the above simplifications is determined in various models. We start with some
general remarks.

Wave function. The first uncertainty concerns the choice of a wave function for the
initial bound nucleon. A common approximation is to use a free spinor u(p), which
is determined by the three-momentum of the nucleon and its energy p0 = Eon =√

p2 + M2
N (on-shell energy). A different ansatz uses free spinors describing nucleons

of mass
√

p2 = M = MN + UN 6= MN, which means, that the binding potential is
already included in the effective mass M, and the energy is p0 =

√
p2 + M2.

Kinematics. Closely related to the question of wave functions is the kinematics. De-
fined by the lepton kinematics are the energy and momentum transfer ω = k0 − k′0
and q, respectively. The energy transfer at the nucleon vertex is given by

ω = p′0 − p0. (9.4)

However, if the nucleon were free, i.e., on its mass shell, with energy Eon, then the
equivalent energy transfer ω̃ would be given by

ω̃ = p′0 − Eon. (9.5)

Thus,
∆ω = ω − ω̃ = Eon − p0 (9.6)

determines, how far one is from free scattering.

Vertex operator and current conservation. Further assumptions have to be made for
the vertex operator. Here, we shall demonstrate the difficulties for the simplest case of
a QE (e, e′) reaction. The most general form for the EM vertex of an off-shell nucleon
consists of 12 terms and can for example be written as [NPKO90]

Γ
µ
off = Λ+(p′)

[
f ++
1 γµ + f ++

2 Σ
µ + f ++

3 qµ
]

Λ+(p)

+ Λ+(p′)
[

f +−
1 γµ + f +−

2 Σ
µ + f +−

3 qµ
]

Λ−(p)

+ Λ−(p′)
[

f−+
1 γµ + f−+

2 Σ
µ + f−+

3 qµ
]

Λ+(p)

+ Λ−(p′)
[

f−−
1 γµ + f−−

2 Σ
µ + f−−

3 qµ
]

Λ−(p), (9.7)

with

Σ
µ =

iσµνqν

2MN
(9.8)
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9 Inclusive cross sections

and
Λ±(p) = M ± /p, (9.9)

where M =
√

p2. The form factors fi, i = 1, . . . , 3, are functions of three scalar vari-
ables, e.g., fi(p′2, p2, q2), with some constraints from C, P, T and gauge invariance.
Until now, it is not possible to constrain them with electron scattering data. How-
ever, there has been some effort to calculate the off-shell form factors in a simplified
dynamical model [NPKO90] and estimate the size of the off-shell effects.

If we take the outgoing nucleon on-shell, we can write the vertex in a simpler form
of only 4 form factors depending now on only 2 scalar variables.

For the full on-shell case, i.e., both incoming and outgoing nucleon on-shell, we can
further simplify Eq. (9.7) to

Γ
µ
2 = F1γµ + F2Σ

µ, (9.10)

with the Dirac and Pauli form factors F1 and F2,

F1(q2) = f ++
1 (M2

N, M2
N, q2) (9.11)

F2(q2) = f ++
2 (M2

N, M2
N, q2). (9.12)

Γ
µ
2 corresponds to our QE hadronic vector current of Eq. (4.7). Using Gordon identities

for on-shell nucleons, we can rewrite Γ
µ
2 so that

Γ
µ
2 → Γ

µ
1 = (F1 + F2)γµ − (p′ + p)µ F2

2MN
. (9.13)

A common approximation is to use the free nucleon current Γ
µ
1 or Γ

µ
2 with the free

Dirac and Pauli form factors also in the medium. Γ
µ
1 and Γ

µ
2 are equivalent for on-shell

nucleons, but the results differ when one applies them to the off-shell case.
A further problem arises with current conservation: the vector part of the current

has to be conserved. However, using the simpler forms Γ
µ
1 or Γ

µ
2 instead of Γ

µ
off, we

find that
qµ j

µ
i 6= 0, (9.14)

with j
µ
i = ū(p′)Γ

µ
i u(p), i = 1, 2, and therefore, the current is not conserved.

Different recipes to restore current conservation on the nucleon or nucleus level are
discussed in Refs. [NPKO90, DF83, M+76, BFN+05] — in Ref. [PNK96], it is shown,
that the different methods can be understood as a choice of gauge. Some of them are
introduced in the following and compared to our approach. We further show that our
current fulfills qµ jµ = 0.

Before we continue, we briefly repeat how the hadronic tensor Hµν is constructed
out of the currents, namely

Hµν =
1
2

Tr
[
(/p + M)Γ̃

µ
i (/p

′ + M′)Γ
ν
i

]
, (9.15)
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where M (M′) is the mass of the initial (final) nucleon. Alternatively, but fully equiv-
alent, it can also be written in terms of two structure functions, W1 and W2, as

Hµν = W1

(
−gµν +

qµqν

q2

)
+

W2

M2

(
pµ − (pq)

q2 qµ

) (
pν − (pq)

q2 qν

)
, (9.16)

where M is the mass of the initial nucleon. The structure functions depend on the
two scalars, Q2 and (pq). This expression is most general and can be applied to all
inelastic contributions. In the case of quasielastic scattering, the two structure func-
tions, W1 and W2, are simply related to the measured electric and magnetic nucleon
form factors, GE and GM (Sachs form factors), which depend only on q2.

9.3.2 Models

We shall now discuss the recipes for off-shell cross sections used in the literature and
compare them to our approach.

Our approach. For completeness, we briefly review our approach introduced in Sec-
tion 8.1.1: we use free spinors for the wave function of initial and final states describ-
ing nucleons of mass M =

√
p2 and M′ =

√
p′2, i.e., not necessarily on-shell nucleons

of mass MN. p and p′ are the full off-shell in-medium four-vectors; we use full in-
medium momentum conservation with p′ = p + q with q fully determined by the
lepton kinematics. Thus, the binding effects are already taken into account there. Our
QE hadronic tensor then reads [Eq. (4.2) on page 29]

H
µν
QE =

1
2

Tr
[
(/p + M)Γ̃

µ(/p
′ + M′)Γ

ν
]

, (9.17)

with [Eq. (4.7) on page 30]

Γ
µ = F1

(
γµ + /qqµ

Q2

)
+

F2

2MN
iσµαqα . (9.18)

The term /qqµ/Q2 ensures that qµū(p′)Γµu(p) = 0 is fulfilled even when M 6= M′ :

ū(p′)

(
F1

(

/q + /qq2

Q2

)
+

F2

2MN
iσµαqµqα

)
u(p) = ū(p′)F1

(
/q − Q2

Q2 /q
)

u(p) = 0 ,

(9.19)
because the term σµαqµqα, antisymmetric in µ and α, vanishes.
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De Forest. The assumption made by De Forest [DF83] is that the wave functions
of both the plane-wave final nucleon (unbound) and also the initial bound nucleon
are given by the Dirac spinor for an on-shell nucleon. For the initial nucleon it is
assumed that this spinor is determined through its three-momentum, p, the missing
momentum of the initial nucleon, and the corresponding on-shell energy, Eon.

A measure of how far one is from the on-shell kinematics is provided by the energy
transfer. The actual energy transfer to the nucleon, ω, is determined by the lepton
kinematics. If the initial nucleon were on its mass shell, its energy would be Eon =√

p 2 + M2
N, where p is the missing momentum. The energy transfer, ω̃, which one

would have in that case is given by

ω̃ = p′0 − Eon. (9.20)

Assuming that the current operators are not modified by the nuclear environment,
the off-shell extrapolation of the currents Γ1 (leading to De Forest’s σCC

1 ) and Γ2 (lead-
ing to De Forest’s σCC

2 ) is simply done by shifting ω and p0 whenever the latter appear
explicitly, i.e., lepton scattering off a bound nucleon with momentum transfer q can be
described by lepton scattering off a free nucleon with momentum transfer q̃ = (ω̃, q).
Hence, binding effects are taken into account through the replacement

q = (ω, q) → q̃ = (ω̃, q), (9.21)

and,
p0 → Eon. (9.22)

De Forest’s hadronic tensor then reads

H
µν
DF1,2 =

1
2

Tr
[
(/p + MN)Γ̃

µ
1,2(q̃)(/p

′ + MN)Γ
ν
1,2(q̃)

]
. (9.23)

The replacement of ω with ω̃ poses a considerable conceptual problem in that it
leads to a violation of current conservation. A prescription chosen by De Forest to
overcome this difficulty is to replace the longitudinal component Jl, parallel to q, by
the charge density J0 so that

Jl → J′l =
ω J0

|q | , (9.24)

and thus work with a four-current

Jµ =

(
J0, Jt,

ω J0

|q |

)
, (9.25)

with the transverse component Jt = (J1, J2). Pollock et al. [PNK96] state, that this
would be correct and of no consequence if the current indeed was conserved. How-
ever, the above prescription is non-unique. For example, one might have just as well
chosen the opposite way by eliminating the charge density instead: different recipes
are discussed and compared for different experimental scenarios in Ref. [PNK96].
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9.3 Modeling in-medium cross sections

Saclay. The prescription used by the Saclay collaboration [M+76] is very similar to
our approach. They also use free spinors for the wave functions of initial and final
states, describing nucleons of effective mass M =

√
p2, and take the outgoing nucleon

on-shell. Their hadronic tensor then reads

H
µν
Sac =

1
2

Tr
[
(/p + M)Γ̃

µ
Sac(/p

′ + MN)Γ
ν
Sac

]
. (9.26)

For the current they use, based on Γ
µ
1 ,

Γ
µ
Sac = GMγµ +

pµ + p′µ

M + MN

GE − GM

1 − q2

(M+MN)2

− MN − M

q2 qµ
GE − q2

(M+MN)2 GM

1 − q2

(M+MN)2

. (9.27)

GE,M(q2, M) are two a priori unknown form factors; in the limit M = MN they corre-
spond to the free Sachs form factors which are then used in this approach. The last
summand corresponds to our current-conserving factor. The only difference to our
case is, when we put p′ on-shell, the form factor normalization M + MN instead of
2MN.

Benhar. De Forest’s prescription discussed in [DF83] has been widely used, e.g., by
Benhar et al. [BFN+05, BDS08]. They apply De Forest’s replacement q = (ω, q) → q̃ =
(ω̃, q), p0 → Eon not at the current level but at the tensor level (cf. Eq. (9.16)) which is
totally equivalent. H

µν
Ben then reads

H
µν
Ben = W1

(
−gµν +

q̃µq̃ν

q̃2

)
+

W2

M2
N

(
pµ − (pq̃)

q̃2 q̃µ

)(
pν − (pq̃)

q̃2 q̃ν

)
, (9.28)

with W1 and W2 also taken at q̃ and M = MN.

Ferree/Koltun. The approach of Ref. [FK97] is comparable to the previous one by the
Saclay group: the effective mass is used for the bound initial nucleon (and thus also
the energy); the outgoing nucleon is treated on-shell. However, they do not modify
the current, but, as Benhar, the hadronic tensor of Eq. (9.16):

H
µν
Fer = W1

(
−gµν +

qµqν

q2

)
+

W2

M2

(
pµ − (pq)

q2 qµ

)(
pν − (pq)

q2 qν

)
, (9.29)

with

W1 = − q2

4M2 δ

(
ω +

q2

2M

)
G2

MN
, (9.30)

W2 =
1

1 − q2/4M2 δ

(
ω +

q2

2M

)(
G2

EN
− q2

4M2 G2
MN

)
. (9.31)
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M = MN + UN =
√

p2 and p is the full in-medium four-vector — no shift to on-shell
properties has been done here. It is worthwhile to mention that the effective mass
also enters the form factor relations between Wi and Fi.

9.3.3 Results

In the following we compare the above approaches for inclusive QE electron scattering
off 16O only at beam energies ranging from 700 to 1500 MeV and a fixed electron-
scattering angle of θk′ = 32◦. Since some recipes are restricted to the half off-shell case,
i.e., the final nucleon is on-shell, we perform the comparison under this restriction.
The meaning of the different curves is as follows:

(1) our standard approach with the current-conserving term

(2) our standard approach without the current-conserving term

(3) De Forest approach with current Γ2 and q shift, but without current-conserving
term Eq. (9.24)

(4) De Forest approach with current Γ2 and q, p(0) shift with current-conserving
term Eq. (9.24)

(5) De Forest approach with current Γ1 and q, p(0) shift, but without current-con-
serving term Eq. (9.24)

(6) De Forest approach with current Γ1 and q, p(0) shift with current-conserving
term Eq. (9.24)

(7) Saclay approach

(8) Benhar approach

(9) Ferree/Koltun approach

We have checked that all models agree on-shell as they should. In Fig. 9.10 we show
the calculation with the momentum-dependent mean-field potential included. Even
then, the difference between the curves is only minor, except for the Koltun approach,
which is above all others.

We conclude from this discussion that there are in principle two approaches to the
off-shell extrapolation: one is to shift the kinematical variables to their on-shell values
and use them to calculate the hadron tensor derived from on-shell formulae; the other
one replaces the original on-shell quantities in the hadron tensor by the in-medium
variables. Current conservation can be restored in many different ways as discussed.
However, we find almost no influence on the cross section. Here we agree with the
findings of Rosenfelder [Ros80].
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Figure 9.10: Inclusive electron cross section dσEM/dωdΩ on 16O a function of the
energy transfer ω = k0 − k′0 at a scattering angle of θk′ = 32◦ including a momentum-
dependent mean-field potential for the initial nucleons. We show the results for vari-
ous beam energies. The different lines stand for different QE in-medium recipes and
are detailed in the text.
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9.4 Model validation: electron scattering

Until now, a detailed comparison to inclusive neutrino-nucleus scattering data is
not possible. In principle, there are data are taken for Neon, Propane and Freon
targets at Gargamelle (CERN) [P+79b, P+79a] and at the Serpukhov bubble cham-
ber SKAT [B+85, B+90], but these experiments were limited in statistics with large
neutrino-flux uncertainties with the consequence that the large error bars do not al-
low to draw any conclusion about the role of nuclear effects. Future data, in particular
those from the MINERνA experiment [MINERvA04], will become more sensitive to
in-medium processes so that a meaningful comparison will be possible (cf., also the
discussion in Section 12.1).

We have discussed in Part II the relation between electromagnetic and weak tran-
sitions in detail, in particular, we have shown that the vector part of the current is
probed by electrons and neutrinos. The axial part, however, is only probed by neutri-
nos. But inclusive electron scattering does not only provide a test of the vector part
but also of the nuclear effects. The nuclear model applied in this work is independent
of the incoming lepton, and high-statistics electron data can be used for a conclusive
check.

Therefore, at this stage, the successful description of electron-scattering cross sec-
tions is a necessary, but not sufficient, condition for our neutrino model. In the follow-
ing, we present results for inclusive electron spectra and compare them to electron-
nucleus scattering data. The results are obtained using the very same model (and
code!) as for the neutrinos with differences only at the lepton-nucleon vertex, i.e.,
without the axial current.1

In Fig. 9.11 we show the inclusive electron cross section dσ/(dωdΩk′) on 16O (left
panels) and 12C (right panels) as a function of the energy transfer for various beam
energies, but at a fixed scattering angle of θ = 32◦ and θ = 37.5◦, respectively. Good
overall agreement to the experimental electron scattering data is achieved both in the
QE and in the pion-production region by taking into account mean fields and in-
medium spectral functions (Oset prescription for the ∆ in-medium width) in addition
to a local Fermi-gas momentum distribution. As discussed in connection with Fig. 9.5,
we find that the momentum dependence of the mean field broadens and shifts the QE
peak due to the target-momentum dependent energy loss and that the inclusion of
in-medium widths leads to a further broadening (see also Fig. 9.6).

Our results are supported by the work of Rosenfelder [Ros80] who finds within
a local Thomas-Fermi model with a Walecka-type mean-field potential that the mo-
mentum dependence of the potential is required to obtain the shift of the QE peak.
An important quantity in this model is the effective nucleon mass, M⋆, so that the
momentum-dependent potential for small momenta (|p| ≪ M⋆, |p| ≪ M) can be

1For an extensive investigation of electron scattering off complex nuclei, we refer to Ref. [Bus08].
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Figure 9.11: Left panel: inclusive electron cross section dσ/(dωdΩk′) on 16O as a
function of the energy transfer ω at five distinct fixed electron energies (0.7, 0.88,
1.08, 1.2 and 1.5 GeV) and a scattering angle of θ = 32◦. This corresponds to Q2 =
0.134, 0.205, 0.302, 0.366, 0.550 GeV2. No potential has been included in the dash-
dotted lines; the dashed lines denote the result, where we include all in-medium
modifications except collisional broadening. The solid lines are obtained with our full
model. The data are taken from Refs. [A+96, A+95]. Right panel: same on 12C at four
distinct electron energies (0.961, 1.108, 1.299 and 1.501 GeV) and a scattering angle of
θ = 37.5◦ (Q2 = 0.315, 0.408, 0.542, 0.700 GeV2). The data are taken from Ref. [S+89].

139
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written as (for a derivation, see page 129 of Ref. [Bus08])

V(r, p) ≈ p2 M − M⋆(r)

2MM⋆(r)
+ M⋆(r) − M. (9.32)

Then, according to Rosenfelder, it is possible to adjust the value of M⋆ to fit the QE
peak to electron-scattering data. We note, that the mean-field potential applied in our
case has been fixed by nucleon-nucleus scattering as outlined in Section 7.4 and is
not fitted to match the electron data. This possibility, however, has been investigated
in detail in Section 7.2.3 of Ref. [Bus08]. Buss finds, that the correspondence with
the data can only be improved with rather unrealistic potential parameters — within
meaningful parameter ranges the improvement is only minor.

Even though the overall correspondence to the data is satisfactory, some problems
remain: in particular at higher beam energies, the data are underestimated at ω due
to the fact that non-resonant 2π-production channels have not yet been included. We
further systematically underestimate the dip region between the QE and ∆ peaks.
Conventionally, it is attributed to 2N excitations not included in our model, but we
note, that the description of this region is considerably improved by including colli-
sional broadening of the QE peak which shuffles strength into the dip region.

We also find a discrepancy at the QE peak for very low Q2 ≤ 0.15 GeV2 (cf., in
particular, upper left plot corresponding to Q2 = 0.13 GeV2), where our model over-
estimates the data and does not fully resemble the peak shift. In view of this, the
influence of the initial momentum distribution of the nucleons has been studied in
[Bus08, LBARM09]. There, our local Thomas-Fermi approach has been compared to
the widely used global Fermi-gas approximation, where the Fermi momentum does
not depend on the density, and thus, nucleon momentum and position are not cor-
related as in the local Thomas-Fermi ansatz (cf., page 89 and in particular Figs. 7.3
and 7.4). Qualitative and quantitative differences have been found; in particular, the
shift of the QE peak is easily obtained in the global Fermi-gas picture, while the peak
shift is not sufficient in the local Thomas-Fermi picture. Additionally, Kalok found,
that the inclusion of the imaginary part in the hole spectral function cannot cure the
low-Q2 discrepancy (cf., in particular, Figs. 5.2-5.4 in Ref. [Kal07]).

We conclude by comparing to electron-scattering data that our model is able to
describe the QE region for beam energies above ≈ 1 GeV while there is room for
improvement at lower beam energies, where nuclear many-body effects become im-
portant and the impulse approximation breaks down [Ank08]. The good agreement
at higher energies at the QE peak and also in the single-π region shows that our
low-density ansatz for the in-medium width and the inclusion of a proper potential
incorporate the main nuclear corrections.
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9.5 Comparison to other approaches

Finally, we compare our results to the ones obtained in other models, first focusing
on the results obtained for 16O nuclei. The work of Butkevich et al. [BK07, BM05]
addresses the quasielastic peak region in a relativistic distorted-wave impulse ap-
proximation (RDWIA) approach. Their latest model for the ground state spectral
function includes both a 75% shell-model and a 25% high-momentum contribution.
When calculating inclusive cross sections, the final-state wave functions are obtained
using a real optical potential. This procedure neglects the broadening of the outgo-
ing nucleon in the medium but incorporates a shift of the outgoing nucleon energy.
A direct comparison to models based on DWIA with complex optical potentials (RD-

WIA exclusive result in Butkevich et al. [BK07] or, e.g., calculations of Martinez et al.

[MLJ+06] and Maieron et al. [MMCU03]) is not possible since the imaginary part
leads to a flux reduction in a particular channel. Thus, these models rather describe
exclusive quasi-free single-nucleon knockout processes than fully inclusive scattering
considered here.

Meucci et al. [MGP04b, MCGP03] apply a relativistic Green’s function approach to
both inclusive and exclusive processes. They achieve an impressive description of the
data in the QE region. In the Green’s function framework a complex optical poten-
tial can be incorporated when calculating inclusive cross sections without having the
DWIA problem of flux reduction.

The model of Benhar, Nakamura and collaborators [BFN+05, BM06, NSNB07, BM07]
is based on non-relativistic nuclear many-body theory in the impulse approximation.
It includes realistic spectral functions for the hole states obtained from (e, e′p) data
combined with theoretical nuclear-matter calculations using the local-density approx-
imation. For the final-state spectral function, they rely on a correlated Glauber approx-
imation, which leads to an energy shift of the cross section and to a redistribution of
the strength (quenching of the peak and enhancement of the tail). Note that in this
approach the outgoing nucleons are not bound any more — in our model they are
still under the influence of the mean-field potential (see the comparison presented in
Fig. 9.5 where we have shown that this leads to an additional shift of the peaks). In
particular in the quasielastic peak region, they achieve good agreement to inclusive
electron-scattering data. The framework of Benhar et al. provides a state-of-the-art
description for the hole spectral functions including both real and imaginary parts of
the self energy. However, more relevant for the observables discussed here is the real
part while the impact of the imaginary part is minor due to the rather small width of
the initial nucleons (see also Refs. [LLLM02, Kal07]). In our model, the real part of the
hole self energy is taken into account for the initial nucleons through the mean-field
potential while the imaginary part is neglected (we include both, real and imaginary
part, in the spectral function of the final particle).
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The model of Gil, Nieves and others, applicable to both inclusive electron [GNO97]
and neutrino reactions [NAV04], takes into account nuclear corrections beyond Pauli
blocking: they include both long and short range correlations as well as particle and
hole spectral functions. These nuclear correlations are often taken into account as RPA
resummation of particle-hole and ∆-hole states. As in our approach, they neglect the
imaginary part of the self energy in the hole spectral function. Within their model
Gil et al. [GNO97] achieve impressive agreement with data for electron-nucleus scat-
tering. Nuclear correlations are also taken into account by Singh, Oset and collabora-
tors [SSAA06b, SO92] for neutrino scattering. They renormalize the weak-transition
strength, which is found to be very important at low momentum transfers. Singh
et al. [SVVO98] have also pointed out that the in-medium modification of the ∆ width
causes a reduction of the ν A → ∆ X cross section.

Fig. 9.12 shows a comparison of our full result (solid line) for inclusive electron
scattering off 16O with the results of other models. The dotted curves show the latest
results of Nakamura, Benhar et al. [NSNB07]. Their model gives a better description
of the QE-peak than ours at 880 MeV. However, at 1200 MeV both describe the data
in the QE peak equally well. In the pion-production region, Nakamura tends to
overshoot the data, and the ∆-peak position seems somewhat low in ω. This region is
also underestimated by the model of Ref. [BM06] (dash-dotted line). Our model lacks
strength in the dip region but describes properly the magnitude and position of the
∆ peak. The framework of Butkevich et al. [BK07], which only includes QE scattering,
fails in the same kinematical situation as our model (700 MeV, double-dashed line
in upper panel) but leads to very good results at 880 MeV. The Green’s function
approach of Meucci et al. [MGP04b] is able to describe very well all the data in the QE
region.

In Fig. 9.13 we compare our CC calculation to the models introduced above for the
integrated inclusive cross section on 16O as a function of the neutrino energy. The
left panel shows the contribution from QE scattering while the right panel shows the
pure ∆ contribution. Our full result is denoted by the solid line labeled “GiBUU”.
The overall agreement with the other models is satisfactory. Focussing on the QE
contribution, our curve is higher than other calculations at lower neutrino energies.
Also, for the ∆ our calculation is slightly higher. However, note that part of the
differences are already present at the nucleon level and do not only arise from the
different treatment of nuclear corrections.

Impressive agreement between very different approaches is found for νµ CCQE scat-
tering off 12C. In Fig. 9.14 we show the muon kinetic energy cross section for two fixed
values of Eν.2 Our result is compared to results of Ankowski et al. [AS08], which is
very similar to Benhar’s approach, and of the Madrid group (cf., e.g., Ref. [MMCU03]
for details). The shift of the threshold at the right hand side of the spectra is caused by

2This figure shows the outcome of comparing different models as shown at NUINT09 [Sob09].
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Figure 9.12: Inclusive electron cross section dσ/(dωdΩk′) on 16O as a function of the
energy transfer ω at four distinct fixed electron energies (0.7, 0.88, 1.08 and 1.2 GeV)
and a scattering angle of θk′ = 32◦. The solid lines denote our full result, the dashed
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the neutrino energy and integrated over the leptonic variables. The left panel shows
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9.5 Comparison to other approaches

the different treatment of the outgoing nucleons: in our model, the outgoing nucleons
are still under the influence of the mean-field potential (see also Fig. 9.5).
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Pion production on nuclei

10.1 Introduction

Neutrino-induced pion production on nucleons up to energies of about 1.5 GeV is
dominated by the excitation and subsequent decay of the ∆ resonance but, depending
on the channel, non-resonant pion production is not negligible. At higher energies,
more massive resonances become increasingly important as we have seen in Part II
and as also stated in Refs. [FN79, RS81, SUL03, LPP06, HNV07, HNS+08].

A realistic treatment of the FSI is an essential ingredient for modeling pion produc-
tion off nuclei in a realistic manner. FSI may lead, e.g., to pionic final-state particles,
even though the initial event was quasielastic scattering. However, the few available
calculations deal with FSI in an oversimplified way. The study of semi-inclusive pion
production presented by Paschos et al. [PPY00] includes pion absorption and charge
exchange but does not properly take into account the important features of πN∆ dy-
namics, leading to unrealistic pion spectra as we shall see later. Extending the model
of Ref. [SVVO98], Ahmad et al. [ASAS06] include, besides pion absorption, also elastic
and charge-exchange rescattering using empirical vacuum πN cross sections.

In the following, we first present results for CC and NC neutrino scattering off
nuclei. In particular, we focus on the influence of final-state interactions on pion
production under different assumptions. Then, we compare our model to others.

The results of this chapter have been partly published in Refs. [LARM06a, LARM06b,
LBMAR07, LBMAR08].
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10 Pion production on nuclei

10.2 CC pion production

By pion production we understand the process where besides the outgoing lepton
one or more pions are detected. The corresponding cross section has been given in
Chapter 8 [Eq. (8.7)] and reads

dσℓA→ℓ′πX
tot =

∫

nucleus

d3r

∫
d3p

(2π)3 Θ(pF(r) − p)
k · p

k0p0 dσmed
tot PPB(r, p) Mπ(r, p), (10.1)

with the medium modified cross section dσmed
tot discussed in Chapter 8. The pion

multiplicities Mπ are determined with the GiBUU transport model.

10.2.1 Double differential pion cross sections

We start our discussion of pion production with the double differential cross sections
shown in Fig. 10.1 and Fig. 10.2. There we plot the cross section for νµ-induced
CC π+ and π0 production on 12C at Eν = 1 GeV as a function of energy transfer
ω and muon scattering angle θ. In this calculation all medium modifications of the
elementary cross section are included. The left panels show the results without FSI
which are included in the right panels: once produced, the ∆ — which dominates
the pion production — can decay into πN or interact via ∆N → NN, ∆NN → NNN,
∆N → πNN or ∆N → ∆N. The produced pions interact through πN → πN, NNπ →
NN and πN → ∆, i.e., they can scatter elastically, undergo charge exchange or be
absorbed. This results in the creation of additional pions or their absorption.

The cross sections in Fig. 10.1 and Fig. 10.2 peak clearly at the position of the ∆

(compare to the inclusive cross section shown in Fig. 9.1 on page 121). This clearly
indicates that most of the produced pions come from the initially produced ∆ reso-
nances. Pions can also originate in multi-step processes initiated by QE scattering.
There, the final-state nucleon can rescatter in the nucleus and create pions through
NN → N∆ or NN → NNπ. However, this effect, which can occur only at high
momentum transfer Q2, is less important as we will see later.

10.2.2 Total pion cross sections

In Fig. 10.3, we show the total cross section for π+ (top) and π0 production (bottom
panels) on 12C (left) and 56Fe (right panels), i.e.,

νµ A → µ−π+/0X. (10.2)

We compare different “counting schemes”: the solid lines stand for the scenario with
a single pion in the final state, i.e., where X does not contain any other pions. To
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Figure 10.1: Double differential cross section dσ/(dωdΩk′) for νµ CC π+ production

on 12C as a function of energy transfer ω = k0 − k′0 and scattering angle θ at a fixed
neutrino energy of Eν = 1 GeV. All in-medium modifications of the elementary cross
section are included. The right panel additionally includes FSI.

dσ/(dω dΩk’) [10-38 cm2/(GeV sr)]

 contour lines
 
 at 0.1, 1, 10

 no FSI

 0  0.2  0.4  0.6  0.8  1

ω [GeV]

 0

 30

 60

 90

 120

 150

 180

θ 
[d

eg
]

 0.01

 0.1

 1

 10

 100

dσ/(dω dΩk’) [10-38 cm2/(GeV sr)]

 contour lines
 
 at 0.1, 1, 10 
 

 with FSI

 0  0.2  0.4  0.6  0.8  1

ω [GeV]

 0

 30

 60

 90

 120

 150

 180

θ 
[d

eg
]

Figure 10.2: Same as Fig. 10.1 for CC π0 production.
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Figure 10.3: Total cross section for CC π+ (top) and π0 (bottom panels) production on
12C (left) and 56Fe (right panels) for different pion multiplicities versus the neutrino
energy obtained in a full-model calculation including FSI.

obtain the dashed lines, we count all events which, besides the single-π of interest,
may also contain pions of different charge. The dash-dotted lines are most inclusive.
Here, the event may contain more than exactly one pion of the considered charge and,
in addition, pions of different charge are allowed, too. Up to about 1 GeV neutrino
energy, we observe no difference. A minor difference is visible for larger energies
caused mainly by the fact that at these energies, the excitation of higher resonances
is possible, which then may decay into 2π. In the following — justified also by the
experiments (cf. Section 12.1) —, we restrict ourselves to the single-π case denoted by
the solid lines, thus, X does not contain any other pions from now on.1

The influence of FSI on the pion yields and the origin of the emitted pions is shown
in Fig. 10.4. The dashed lines show the result without final-state interactions (only the
decay of the initially produced resonances is included), while the solid lines denote

1We note that the results presented in our previous work [LARM06a] correspond to the calculation
leading to the dash-dotted line; but only ∆ excitation and QE scattering have been considered in
this work.
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10 Pion production on nuclei

the result of the full calculation. Furthermore, we show the contribution from initial
∆ excitation (dash-dotted lines), from initial QE events (dotted), from initial excitation
of the higher resonances (double-dashed) and from initial single-pion background
events (dash-double dotted).

The cross sections for π0 production without FSI is significantly lower than the one
for π+. This difference is a consequence of the primary interaction mechanism which
is dominated by the ∆ resonance excitation,

νℓp → ℓ−∆
++,

νℓn → ℓ−∆
+,

where σ∆++ = 3 σ∆+ (cf., Section D.2). These ∆ resonances decay into pions by (see
also Eqs. (5.21)–(5.23) on page 57)

∆
++ → pπ+,

∆
+ → nπ+, pπ0.

With the corresponding Clebsch-Gordan coefficients 1,
√

1
3 , and

√
2
3 , we obtain a ratio

of

π+ : π0 =


3 Z +

(√
1
3

)2

N







(√
2
3

)2

N



−1

=

{
5 : 1 for 12C

4.4 : 1 for 56Fe
(10.3)

(Z and N are the proton and neutron numbers) for the cross sections without final-
state interactions. FSI, however, change this ratio. Indeed, the comparison of the π+

channel to the π0 channel (top and bottom panels of Fig. 10.4) reveals big differences.
For π+ we find a strong reduction of the cross section due to FSI, while in the π0 chan-
nel this reduction is much smaller (compare solid and dashed lines). The additional
strength in the π0 channel is a consequence of charge exchange scattering, namely
π+n → π0p, which shuffles strength from the dominant π+ channel in the subdomi-
nant π0 channel. Side feeding in the opposite direction is strongly suppressed by the
ratio of π+ to π0 production on the nucleon.

π0 and π+ production through FSI of QE scattering is not very sizable and happens
only if the neutrino energy is high enough (dotted lines in Fig. 10.4). However, the
effect is relatively more important in the π0 channel than in the π+ one. This follows
from the fact that, while the production of both π0 and π+ from initial quasielastic
scattering is basically the same, the π0/π+ ratio from initially produced ∆ resonances
is roughly a factor of 4–5 smaller as just outlined. Thus, this effect also enhances the
π0 channel due to FSI.
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Figure 10.5: Scaling of the CC π0 and π+ cross sections with and without FSI as a
function of the neutrino energy. x is defined in Eq. (10.4).

Comparing 56Fe and 12C clearly shows that the absorption is significantly larger in
the heavier nucleus as expected. To quantify this effect, we show in Fig. 10.5 how the
cross sections scale with the mass number A by plotting x, defined via

σC
π

σFe
π

=

(
AC

AFe

)x

, (10.4)

versus the neutrino energy. In the case without FSI (dashed and dotted lines), x

differs from 1 because π0 and π+ production depend, as discussed above, on the
relative proton to neutron numbers which are different for Fe and C. π+ is favored
on protons causing the dashed line to lie slightly below 1 since the proton to neutron
ratio is larger in C. Opposite behavior is seen for pi0 production (dotted line slightly
above 1) because it can only occur on neutrons and because the neutron to proton
ratio is larger for Fe. With FSI, we find that the x value for the π0 production is larger
than for π+ (dash-dotted vs. solid line). Note that also the difference is larger than in
the case without FSI. This effect is caused by the side feeding from the π+ into the π0

channel which partly compensates for the π0 absorption.

π− cannot be produced directly in the CC neutrino-nucleon reactions, but only via
final-state interactions. Thus, they play only a minor role as can be seen in Fig. 10.6
where we plot the total cross section for CC π+, π0 and π− production including FSI.
Note that this situation is reversed in anti-neutrino reactions where only ∆− and ∆0

can be produced in the initial interaction.
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Figure 10.6: Total cross section for CC π+ (dashed), π0 (solid) and π− (dash-dotted
lines) production on 12C (left) and 56Fe (right panel) versus the neutrino energy. These
results were obtained with a full-model calculation including FSI.

10.2.3 Pion kinetic-energy spectra

Further details on pion production can be brought up by studying the single-pion
kinetic-energy distributions. They are shown in Fig. 10.7 (Fig. 10.8) for νµ CC π+

(π0) production at different values of Eν for both, 12C and 56Fe. The dashed lines
show the result without final-state interactions and the solid lines the result of the
full calculation. The maximum of the solid curves (i.e., the calculation with final-state
interactions) peaks at 0.05 - 0.1 GeV in all cases shown in Fig. 10.7 and in Fig. 10.8.
This is due to the energy dependence of the pion absorption. The absorption is higher
in the resonance region where the pions are mainly absorbed through the reaction
πN → ∆, followed by ∆N → NN. This strong reduction for high-energy pions and
the corresponding shift of the maximum to lower energies can be seen by comparing
the dashed and the solid lines. These absorption processes equally affect π+ and
π0 yields. But pions do not only undergo absorption when propagating through
the nucleus. Of particular importance for pions of all energies is elastic scattering
πN → πN which redistributes the kinetic energy, again shifting the maximum to
lower energies.

The contributions from initial ∆ excitation (dash-dotted line) and from initial QE
events (dotted) are also plotted.2 π0 and π+ production through FSI of QE scattering
contributes mostly to the low energy region of the pion spectra because of the energy
redistribution in the collisions.

2We only show these two contribution separately because they are most interesting: ∆ excitation
dominates the pion production and pion production through initial QE scattering is a pure coupled-
channel effect. The size of the contribution from higher resonances and from the non-resonant
single-pion background can be appreciated from Fig. 10.4.
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Figure 10.8: Same as Fig. 10.7 for CC π0 production.
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10.3 NC pion production

The different scale of CC π+ and π0 (Fig. 10.7 and Fig. 10.8) is a consequence of
their different production rates in the neutrino-nucleon reaction. This leads to the
already discussed side feeding from the dominant π+ channel to the π0 channel.
Pions produced from initial QE events contribute relatively more to the π0 channel.
This together with the side feeding produces the enhancement in the π0 cross section
at low kinetic energies compared to the calculation without final-state interactions for
Eν & 1 GeV.

Again, comparing results on C and on the considerable heavier Fe, we find larger
absorption for the latter.

It is important to stress that similar patterns are obtained within our BUU model
for π0 photo-production in nuclei in a good agreement with data as can be seen in
Fig. 14 of Ref. [K+04].

10.3 NC pion production

10.3.1 Total cross sections

The total NC pion production cross sections for π+, π0 and π− on 12C and 56Fe are
shown in Fig. 10.9. The dashed line denotes the pions stemming from the decay of
the initially produced resonances — no further FSI are taken into account here. The
cross section for π0 production (middle panels) is significantly higher than those of
the charged channels. This is a direct consequence of the isospin dependence of the
resonance decay and the ratio π0 : π+ : π− is obtained analogously to the CC case:
assuming ∆ dominance, pions can be produced by (see also Eqs. (5.24)-(5.27) on page
57)

νp → ν∆
+ → νpπ0, νnπ+,

νn → ν∆
0 → νnπ0, νpπ−,

where σ∆+ = σ∆0 (cf., Eq. (D.32) in Section D.2). With the corresponding Clebsch-

Gordan coefficients
√

2
3 ,

√
1
3 (decay of ∆+), and

√
2
3 ,

√
1
3 (decay of ∆0), we obtain a

ratio of

π0 : π+ : π− =




(√
2
3

)2

Z +

(√
2
3

)2

N


 :




(√
1
3

)2

Z


 :




(√
1
3

)2

N




=

{
4 : 1 : 1 for 12C

3.7 : 0.9 : 1 for 56Fe
(10.5)

(Z and N are the proton and neutron numbers) for the cross sections without final-state
interactions assuming pure ∆ excitation.
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excitation of higher resonances).
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10.4 Model dependencies

“Switching on” FSI allows the resonances to interact in different ways besides a
simple decay, also the produced pions can interact further or undergo absorption.
These FSI lead to a strong reduction of the total yield in the π0 channel (compare solid
and dashed lines in the middle panels of Fig. 10.9). The reduction is much smaller in
the π+ and π− channels because the π0 undergo charge-exchange scattering and thus
contribute to the charged channels (side feeding). The effect in the opposite direction
is less important due to the smaller elementary π+ and π− production cross section.
The very same effect causes the side feeding from the dominant into the less dominant
channel for CC reactions as discussed before.

Pions can also emerge from the initial QE neutrino-nucleon reaction when the pro-
duced nucleon rescatters producing a ∆ or directly a pion. However, as can be seen
from Fig. 10.9, this process is also not very sizable in NC scattering (dotted lines).

10.3.2 Kinetic-energy spectra

In Figs. 10.10, 10.11 and 10.12, we show the kinetic-energy spectra for NC π0, π+

and π− production, respectively. The dashed lines denote again the result without
final-state interactions and the solid lines the result of the full calculation. The contri-
butions from initial ∆ excitation (dash-dotted lines) and from initial QE events (dotted
lines) are also shown. Pion production through FSI of initial QE processes contributes
mostly to the low energy region of the pion spectra due to the energy redistribution in
the collisions. While the overall shape of the dashed lines (without FSI) is dictated by
the predominant p-wave production mechanism through the ∆ resonance, the shape
of the solid lines (full calculation) is influenced by the energy dependence of the pion
absorption and rescattering in the same way as for CC: the main absorption mecha-
nism for pions above Tπ ≈ 0.1 GeV is πN → ∆ followed by ∆N → NN which leads
to a considerable reduction of the cross section. Elastic scattering πN → πN redis-
tributes the kinetic energies and thus also shifts the spectrum to lower energies. The
absorption effects are larger for the heavier nucleus Fe. In the case of the smaller π+

and π− channels the already discussed side feeding enhances the peak in Fig. 10.11
and Fig. 10.12 over the value obtained without FSI. Again, note that these spectra are
very similar in shape to those measured in (γ, π0) reactions on nuclei (cf. Figs. 13 and
14 in Ref. [K+04]).

10.4 Model dependencies

All results with FSI presented so far have been obtained using the full in-medium
spectral function for all baryons with the Oset prescription for the ∆ collisional broad-
ening and the corresponding ∆ reaction cross sections. Furthermore, the particles
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Figure 10.10: Kinetic-energy differential cross section for NC π0 production on 12C
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dotted lines).
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Figure 10.11: Same as Fig. 10.10 for NC π+ production.
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Figure 10.12: Same as Fig. 10.10 for NC π− production.
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10.4 Model dependencies

were propagated applying the OSP method introduced in Section 7.8. In this sec-
tion, we investigate the influence of this particular choice on observables. We choose
as representative example a neutrino energy of 1 GeV and consider both, integrated
cross sections and kinetic-energy distributions, for CC pion production.

As outlined in Section 7.7, we have two ways of including collisional broadening for
the ∆ resonance, either based on a one-pion exchange model or on the work of Oset. If
collisional broadening is included, one needs to make sure that the particles are back
on their mass-shell (or vacuum spectral function) when leaving the nucleus, thus, the
OSP method is applied in the particle propagation. However, we have seen, that pion
production proceeds mainly through the ∆ resonance, so one may ask whether it is
sufficient to include collisional broadening only for the ∆ and whether it is feasible to
neglect the OSP. These simplifications could save a significant amount of computing
time and resources.

We compare the following scenarios:

(1) without FSI, without collisional broadening

(2) with FSI, without collisional broadening

(3) with FSI, with collisional broadening (one-pion exchange based model for ∆

collisional width and cross sections), with OSP

(4) with FSI, with collisional broadening (Oset prescription for ∆ collisional width
and cross sections), with OSP

(5) with FSI, collisional broadening only for the ∆ resonance (Oset prescription),
without OSP

(6) with FSI, Oset based collisional broadening only for the ∆ resonance, without
OSP, here we do not further track the final nucleons after a ∆N → NN, ∆N →
∆N or ∆NN → NNN reaction

Scenarios (1) and (4) have been applied so far. Scenario (6) has been added for compar-
ison: the results published in Refs. [LARM06a, LARM06b] are based on this method.

We summarize the outcome for the total CC pion cross sections, σπ, in Table 10.1 for
both C and Fe. Furthermore, we plot the corresponding kinetic-energy distributions in
Fig. 10.13. From both, we see that all scenarios involving the Oset width and the cor-
responding cross sections for the ∆ rescattering agree impressively [scenarios (4)–(6)].
They differ significantly from the results obtained with the one-pion exchange cross
sections and width [scenario (3)] and also from the ones where collisional broadening
is fully neglected [scenario (2)]. This difference shows the sensitivity of our results to
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10 Pion production on nuclei

Table 10.1: Total CC pion cross sections, σπ, on 12C and 56Fe in units of 10−38 cm2 at
Eν = 1 GeV. The statistical error is negligible. Compared are the different scenarios
as detailed in the text.

12C 56Fe

π0 π+ π0 π+

(1) 0.74 2.94 3.72 12.84 0
(2) 0.71 2.06 2.71 6.54
(3) 0.68 1.80 2.72 6.01
(4) 0.56 1.76 2.13 5.54
(5) 0.57 1.74 2.10 5.48
(6) 0.56 1.75 2.07 5.45

the pion absorption model because the choice of the collisional width directly trans-
lates into the cross sections for ∆N → NN and ∆N → ∆N.3 In addition, the process
∆NN → NNN is only included in the Oset prescription. Thus, this model is more
complete and therefore used as default.

The comparison shows that neglecting the collisional broadening of all particles
except the ∆ is a good approximation. Even the OSP is not needed: the life time of
the ∆ in the medium is too short to be significantly influenced by the rather small
effects of the OSP in the propagation. Finally, also the deletion of the final nucleons
as in scenario (6) has a negligible impact on pion observables. These nucleons are not
likely to produce new pions by rescattering.

We conclude that scenario (5) is a very good approximation to the full model (4),
in addition, it is numerically much simpler and faster. More important and visible in
the observables is the realistic choice of the pion-absorption model rather than any
off-shell effects.

10.5 Model validation

The treatment of pions, and the whole πN∆ dynamics, in the GiBUU model has
undergone numerous previous tests in A A → π X [TCE+97], π A → X [ECM+94,
BARMM06, BARLM06] and γ A → π X [LEM00] reactions. In particular, in Refs.
[K+04, Leh03, Bus08] quantitative comparisons of calculated γ A → π0 X cross sec-
tions to experiment have been given. This reaction directly tests the vector-interaction
part of ν-induced π0 production. These results, which contain the side feeding of

3See Sections 7.6 and 7.7 for details.
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Figure 10.13: Kinetic-energy differential cross section for CC π+ (top) and π0 (bottom
panels) production on 12C (left) and 56Fe (right panels) versus the pion kinetic energy
Tπ at Eν = 1 GeV. The different scenarios (1)–(6) are detailed in the text.

the π0 channel from charged pions produced in the primary reactions, show that the
measured pion-momentum distributions are described very well by our theory as can
be seen from Fig. 10.14. There we show the BUU results for Ca, Nb and Pb nuclei
for various photon energies as a function of the pion momentum. Good agreement
with the TAPS data [K+04] is found, in particular the shape is reproduced (for more
comparisons see Ref. [K+04]). Also the results without FSI (dashed lines) and the
deuterium data (open circles) show very similar shapes.

Because of its semi-classical nature, the method has a lower limit of validity of about
20–30 MeV pion kinetic energy [BARMM06]; this limitation is of no concern for the
results discussed here. The comparison to data obtained with a few hundred MeV
photon beam [K+04, Leh03], roughly corresponding to the energy regime treated in
this work, also shows that the deviations from experiment are typically of the order
of 20%. We thus expect a similar systematic uncertainty in the pion results reported
in this thesis.
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10.6 Comparisons

The literature on neutrino-induced pion production is rather scarce.4 We compare
mainly with two different groups, namely Singh, Athar and collaborators for charged
currents and Paschos et al. for neutral currents.

We emphasize that we are mostly interested in the comparison of nuclear effects,
in particular FSI. However, one should keep in mind, that the various models already
differ at the elementary lepton-nucleon vertex by including different processes, dif-
ferent form factors and so on. We have thus decided to compare observables, i.e.,
pion-production cross sections.

4We shall discuss the various Monte Carlo event generators used by the experimental communities in
Section 12.2.
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10.6.1 Charged currents

Our calculations for charged currents can be compared to the weak pion-production
model of Singh et al. [SVVO98], which has been extended over the last years by Athar,
Singh and collaborators [SAA06, ASAS06]. For our comparison, we use their latest
results presented in Ref. [SACSVV08].

In their model, pions are produced solely through the excitation of the ∆ resonance
for which they apply the same formalism as in our approach but with different form
factors. In the nucleus, which is treated in the local-density approximation, they
modify both the real and the imaginary part of the ∆ spectral function according to
Ref. [OS87] and therefore account for pion-less decays. The pion FSI are treated within
a Monte Carlo approach described in Ref. [VVKM94], which considers besides pion
absorption also elastic and charge-exchange scattering based on empirical vacuum
πN cross sections.

In Fig. 10.15, we compare our full model for CC π+ production on 12C to the results
of Athar et al. [SACSVV08]. Good agreement is found for the integrated cross section
(left panel) but the shapes of the pion kinetic-energy distribution are very different
(right panel). As pointed out before, the specific shape of our spectra is similar to
those measured in (γ, π0) reactions on nuclei (cf. Figs. 13 and 14 in Ref. [K+04]).
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10 Pion production on nuclei

10.6.2 Neutral currents

Finally, we compare our NC pion production results with earlier calculations of
neutrino-induced pion production on nuclei by Paschos et al. [PPY00, PSY07]. There,
pion final-state interactions are taken into account using the pion multiple-scattering
model of Adler, Nussinov and Paschos (ANP model) [ANP74]. Paschos and collabo-
rators treat the neutrino-nucleus reaction as a two-step process. The first step is the
scattering of a neutrino off a bound nucleon, where they only consider Pauli blocking
by including a “Pauli-production factor”, a global suppression factor depending on W

and Q2, but neglect any other medium effects. The second step involves the FSI of the
produced particles in the nucleus. In the ANP model the produced pions undergo
a random walk in the nucleus which is described by a so-called “charge-exchange
matrix”. This matrix, derived in detail in Ref. [ANP74], takes into account elastic
nucleon pion scattering and pion absorption under the assumption of an isoscalar
target. Finally, we want to point out an important difference: Paschos et al. produce
pions (through resonances) which then undergo FSI, while in our case the resonances
themselves undergo FSI. In this way we account not only for their simple decay but
also for many different reactions as pointed out earlier.

Their original publication [PPY00] contains an error in the elementary pion-produc-
tion spectra [Pas] which affects their Figs. 8–14 for the pion-energy distribution.5

Therefore, in the following, we compare only to the corrected results presented in
Ref. [PSY07].

In Fig. 10.16 we show the kinetic-energy differential cross sections for NC pion
production on 16O (left) and 56Fe (right panels) at Eν = 1 GeV. The cross sections
are scaled with the number of nucleons, which allows to compare directly pion pro-
duction on different nuclei. Note that the scaled cross sections without FSI do not
coincide exactly since the relative number of protons and neutrons is different in 56Fe
and 16O, which has an influence on the production yields. Our results are labeled with
“GiBUU” (the dashed (solid) lines denote the result without (with) FSI), the results of
Paschos and collaborators with “Paschos”. The lines labeled with “Paschos i” stand
for their result without any nuclear correction, i.e., pion production on free nucleons,
while “Paschos ig” includes a “Pauli-production factor” meant to account for Pauli
blocking in the initial pion production. Finally, the lines denoted with “Paschos f”
were obtained by Paschos et al. using the model introduced in Ref. [ANP74] in which
the produced pions undergo a random walk through the nucleus where they can
change directions but not energy. Pauli blocking appears only as a global factor com-

5At low Eπ in the pion-energy spectra, the results presented in Ref. [PPY00] reach a maximal value
whereas ours tend to zero. Due to the fact that the phase space approaches zero at threshold and
in view of the dominant p-wave production mechanism of pions from the ∆ resonance the former
behavior is unexpected.
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Figure 10.16: Kinetic-energy differential cross section for NC π production on 16O
(left) and 56Fe (right) versus the pion kinetic energy for Eν = 1 GeV. The cross sections
are scaled with the number of nucleons. The dashed lines denote our result without
FSI (only the decay of resonances is included) and the solid lines the full one with
FSI. The lines indicated with “Paschos” are the results of Paschos et al. [PSY07] where
we rescaled Eπ to Tπ: “i” stands for their result without any nuclear correction, “ig”
includes a “Pauli-production factor” and “f” includes the rescattering of the pions in
the nucleus (see discussion in the text).
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mon to all collisions. Fermi motion is not taken into account in their work because,
as stated in footnote 7 of Ref. [ANP74], its impact is rather small. If we compare our
results without FSI and with FSI to these results (“ig” corresponds to our calculation
without FSI and “f” to the one with FSI), we find considerable quantitative differences
in all channels for both nuclei.

The impact of FSI is even more visible in the ratios obtained by dividing the dif-
ferential cross section with FSI by the one without FSI. These ratios are plotted in
Fig. 10.17 for 16O and 56Fe at Eν = 1 GeV versus the pion kinetic energy. They allow
us to focus on the comparison of both FSI models, the ANP used by Paschos et al.

and our GiBUU model, regardless of any discrepancies in the free cross section which
cancel out in the ratio. In the model of Paschos et al. [PPY00], pions are produced
through resonance excitation, with the ∆, the P11 and the S11 included. Higher res-
onances, non-resonant pion production and secondary pions through QE scattering
are not included in their model.

Let us first focus on our results (solid for π+, dashed for π0 and dash-dotted lines
for π−). As seen before, the absorption is bigger in the heavier nucleus (56Fe) than
in the lighter one (16O). For pions with kinetic energy & 0.1 GeV we find strong
effects of FSI. This is the region, where pion absorption and rescattering are most
prominent due to the excitation of the ∆ resonance around its peak position. At lower
energies (Tπ ≈ 0.07 GeV) we find a peak, because pions of higher energy in average
lose energy via rescattering. At still lower pion energies, the multi-nucleon pion-
absorption mechanism takes over, leading to a small dip. We stress that a similar
pattern has been experimentally observed by Krusche et al. [K+04] in pion photo-
production (cf. Fig. 16 in Ref. [K+04]). This particular dependence of the ratio reflects
well-known features of the πN∆ dynamics in nuclei.

The ratios labeled with “Paschos” have been obtained by dividing their “ig” re-
sult (only including Pauli blocking in the initial pion production) by their “f” result
(with all nuclear corrections) both taken from Ref. [PSY07] and rescaling Eπ to Tπ.
We find that both FSI models are quantitatively and even qualitatively very different
(“GiBUU” vs. “Paschos” curves). The ratios of Paschos et al. for the charged pions
are considerably larger than ours for kinetic energies > 0.1 GeV. In addition, they are
practically flat as a function of the pion energy in contrast to our results. In our cal-
culation the ratio is much larger at low pion energies than at the higher ones because
pions rescatter with the nucleons (with or without charge exchange) in the nuclear
medium loosing energy. After the first collision, due to the energy redistribution, the
probability of a second collision changes. The ANP model, on the contrary, assumes
that the energy of the pion is constant during its random walk through the nucleus.
Also, the ANP model uses vacuum cross sections to estimate the collision probability
ignoring medium modifications. This is especially important for pions in the ∆ region
since this resonance is considerably broadened in the medium.
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Figure 10.17: Ratio of the differential cross section (the cross section with FSI divided
by the one without FSI) for NC pion production on 56Fe (left) and 16O (right) versus
the pion kinetic energy for Eν = 1 GeV. To compare with Paschos et al. [PPY00] we
divided their “ig” result by their “f” result and rescaled Eπ to Tπ (see Fig. 10.16 and
explanations in the text).

At its time, the ANP model represented a remarkable effort towards the descrip-
tion of neutrino-induced pion production, but with the present knowledge based on
extensive studies of pion and photo-nuclear reactions, one has the tools to provide a
more realistic quantitative description of neutrino-induced pion production in nuclei.
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11
Nucleon knockout

11.1 Introduction

Neutrino-induced nucleon knockout has attracted considerable attention, mainly in
connection with the possibility of extracting the axial strange content of the nucleon.
Pure isovector CC processes do not depend on the strange form factors, hence, study-
ing neutral-current neutrino-nucleus interactions promises insights to one of the fun-
damental questions of hadronic structure, namely, the strange-quark contribution to
the nucleon spin. Because a non-zero strange axial form factor changes the NC QE
cross section on protons and neutrons in different ways (see Chapter 4 for more de-
tails), the ratio R(p/n) of these two cross sections is very sensitive to the strange spin,
as pointed out by Garvey et al. [GKKL92]. Due to the technical difficulties of neutron
detection, one can also measure the neutral to charged current ratio R(NC/CC) in-
stead. In any case, the study of these ratios involves both neutrons and protons so it
must be performed using nuclear targets. In Refs. [ABB+98, ABM02, vdVP04], the au-
thors state that nuclear effects approximately cancel for the ratios of cross sections. We
will show that this is not the case for side-feeding effects caused by charge-exchange
scattering, which are not negligible if the elementary cross sections on protons and
neutrons differ.

Understanding strangeness within the nucleon has been the main motivation for
a considerable amount of theoretical work aiming at the description of nuclear ef-
fects in NC (but also CC) nucleon-knockout reactions. The most straightforward
approach to this problem is the plane-wave impulse approximation. It neglects all
interactions between the outgoing nucleons and the nucleus [HKMP93, BDPD+96,
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11 Nucleon knockout

vdVP06, vdVP04]. This situation can be improved by means of a distorted-wave im-
pulse approximations, where the final nucleon-scattering state is computed using op-
tical potentials [ABB+97, ABB+98, MGP04a, MLJ+06, MGP06]. For energies above
1 GeV a multiple-scattering Glauber model, which is based on the eikonal and frozen
spectator approximation, is a better alternative [MLJ+06]. Furthermore, the input
from a scaling analysis of electron-scattering data has been used to predict NC cross
sections [ABCD06]. The shell model [ABB+97, ABB+98] and the continuum random-
phase approximation [KLK94, JRHR99] have also been applied. However, all these
approaches are purely absorptive, i.e., they have in common that the nucleons which
go into unobserved states as a result of an interaction are lost, while, in fact, they may
be ejected with a different energy, angle and maybe charge. Also, multiple-nucleon
emissions cannot be treated within these models. Only Monte Carlo methods permit
to take into account nucleon rescattering leading to energy loss, charge exchange and
multiple nucleon emission [NVVV06]. We emphasize that also our approach falls into
this category.

We emphasize that all of the above mentioned approaches consider only QE scatter-
ing in their knockout calculations, but — as we will see — for neutrinos of ∼ 1 GeV,
the excitation of resonances also contributes significantly to nucleon knockout. This,
however, has major implications since it can lead to misidentified events, e.g., an ini-
tial ∆, whose decay pions are absorbed or which undergoes “pion-less decay”, can
count as QE event. The correct identification of QE events is not only important for
strange axial form factor measurements but also for the reconstruction of the neutrino
energy, which is the crucial quantity in oscillation experiments. We shall come back
to this issue in Chapter 13.

This chapter is organized as follows. First, we present results for CC- and NC-
induced nucleon knockout off nuclei. Our main focus will be on the influence of
final-state interactions. Finally, we compare our model to other approaches.

The results of this chapter have been partly published in Refs. [LARM06a, LARM06b,
LBMAR08].

11.2 CC nucleon knockout

By nucleon knockout we understand the process, where besides the outgoing lepton
also one or more nucleons are detected. The corresponding cross section has been
derived in Chapter 8 [Eq. (8.7)] and is given by

dσℓA→ℓ′NX
tot =

∫

nucleus

d3r

∫
d3p

(2π)3 Θ(pF(r) − p)
k · p

k0p0 dσmed
tot PPB(r, p) MN(r, p). (11.1)
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Figure 11.1: Double differential cross section dσ/(dωdΩk′) for CC νµ-induced proton

knockout on 12C as a function of energy transfer ω = k0 − k′0 and the muon scattering
angle θ at a fixed neutrino energy of Eν = 1 GeV. All in-medium modifications of the
elementary cross section are included, the right panel additionally includes FSI.
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Figure 11.2: Same as shown in Fig. 11.1 for CC neutron knockout.

MN(r, p) is the multiplicity of the final-state nucleons and is determined by the
GiBUU transport simulation. The term dσmed

tot denotes the total cross section on a
bound nucleon, i.e., including nuclear medium corrections as introduced in Chap-
ter 8.

11.2.1 Double differential pion cross sections

We start our investigation with CC νµ-induced nucleon knockout on 12C. In Fig. 11.1
(Fig. 11.2) we show the cross section for proton (neutron) knockout as a function of
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11 Nucleon knockout

energy transfer, ω, and the muon scattering angle, θ, for Eν = 1 GeV. For these results,
we take into account all nucleons which leave the nucleus due to the νA reaction. FSI
are included only in the right panels. Two clearly separated peaks can be seen at
low ω and θ in both figures. The one at lower ω corresponds to initial quasielastic
events, whereas the one at higher ω is caused mainly by resonance-induced nucleon
knockout.1 This clear separation is lost at higher momentum transfer. We have seen
before that the inclusive cross section is smeared out with increasing Q2 due to Fermi
motion; the shape of the inclusive cross sections (cf. Fig. 9.1) is reflected in the proton-
and neutron-knockout cross sections plotted here.

The significant difference in scale for proton and neutron knockout in the left pan-
els, where FSI is not included, is generated by the initial neutrino-nucleon production
process: QE scattering produces only protons via

νℓn → ℓ−p;

neutrons cannot be produced in the initial quasielastic interactions (cf. left panel of
Fig. 11.2). Also the ∆-production mechanism favors protons

νℓp → ℓ−∆
++ → ℓ−p π+,

νℓn → ℓ−∆
+ → ℓ−p π0, ℓ−n π+,

since σ∆++ = 3 σ∆+ (cf., Section D.2; compare Eq. (D.26) and Eq. (D.27) on page 291).

With the corresponding Clebsch-Gordan coefficients 1,
√

2
3 , and

√
1
3 , we obtain a ratio

of

p : n =


3 Z +

(√
2
3

)2

N







(√
1
3

)2

N



−1

=

{
11 : 1 for 12C

9.8 : 1 for 56Fe
(11.2)

(Z and N are the proton and neutron numbers) for ∆ dominance. Therefore, in a cal-
culation without final-state interactions, proton and neutron knockout differ by about
a factor of ten in the ∆ region.

With final-state interactions, this scenario changes. In the right panel of Fig. 11.2
we clearly see that neutrons are knocked out in the quasielastic peak region through
multi-step processes. Protons stemming from the initial neutrino-nucleon QE reaction
undergo elastic and inelastic nucleon-nucleon collisions in the medium via NN →
NN, NN → NNπ or NN → N∆. This leads to charge exchange and thus to neutron
knockout. The situation is similar in the pion region.

11.2.2 Total cross section

The total cross sections for proton and neutron knockout are shown in Fig. 11.3 for
multiple-nucleon emission and in Fig. 11.4 for single-nucleon emission, both for 12C

1We shall see later that the ∆ is the dominant source of nucleon knockout in the pion region.
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11.2 CC nucleon knockout

and 56Fe. Single-nucleon knockout in the reaction

νµ A → µ−NX (11.3)

means, that we count only events where X does not contain any other knocked-out
nucleon, which might be the case in our “multiple-knockout” definition. There, X

may even contain knocked-out nucleons of different charge. In the following, nu-
cleon knockout means multiple-nucleon knockout; we state explicitly when results
for single-nucleon knockout are presented. For numerical simplicity, we only take
nucleons with TN > 0.02 GeV into account throughout this chapter.

In the case of multiple-nucleon knockout shown in Fig. 11.3, we find, that the solid
line, showing the result with all final-state interactions included, lies well above the
one without FSI (dashed line) already for the protons, but even more so for the neu-
trons. This enhancement is entirely caused by secondary interactions and cannot be
obtained in a Glauber treatment or any other quantum-mechanical approach.

Furthermore, it is indicated in Fig. 11.3, whether the knocked out nucleon stems
from initial QE scattering or ∆ excitation (the contributions from higher resonances
and from the non-resonant background are also shown). In contrast to the pion case,
both contribute to the total cross section, even though with different weights depend-
ing on the neutrino energy. The phase space for ∆ excitations opens later than for
QE; this explains the small contribution of the ∆ at Eν = 0.5 GeV which increases with
energy.

Events with multiple nucleons in the final state are disregarded in Fig. 11.4. This
leads to a very different behavior, in particular, the cross section without FSI is in
general above the one with FSI included. Comparing both scenarios shows, that for
single-nucleon knockout the ∆ contribution is smaller than the QE one while it can
be larger for the multiple-nucleon knockout. Through processes like ∆N → NN and
∆ → πN followed by πN → πN, the ∆ contributes in large parts to the multiple-
nucleon knockout.

11.2.3 Nucleon kinetic-energy spectra

In Fig. 11.5 and Fig. 11.6 we present the kinetic-energy differential cross section for
CC proton and neutron knockout versus the kinetic energy for different values of Eν.
The line styles are as in the previous figures. FSI strongly modify the shape of the
distribution. High-energy protons rescatter in the medium. As a consequence the
flux at higher energies is reduced, and a large number of secondary protons at lower
energies appear (cf., in particular, Fig. 11.5). Also low-energy secondary neutrons are
produced through charge-changing FSI as can be seen in Fig. 11.6, where, in the case
without FSI, the cross section is very small and even almost vanishes at lower neutrino
energies. At Eν = 0.5 GeV, nucleon knockout is clearly dominated by QE processes,
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Figure 11.7: Same as Fig. 11.5 for CC single-p knockout.
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however, the plots show a progressive increase of the ∆ contribution with increasing
Eν.

For comparison, we show in Fig. 11.7 the kinetic-energy cross section for CC single-
proton knockout. Obviously, the strong increase due to secondary particles at low
kinetic energies is missing. Here, the ∆ contribution is less important. This can be
understood by the ∆ FSI mechanism: the decay of the ∆ into πN may contribute to the
single-nucleon cross section depending on the FSI of the decay nucleon, but any other
reaction of the ∆, like, e.g., ∆N → NN, contributes mostly to the multiple nucleon
knockout.

In Fig. 11.8 we plot the ratio of CC proton to neutron cross sections as a function
of the kinetic energy. The curves with and without FSI disagree; this shows clearly
that final-state interactions do not cancel in the ratio — thus, measuring ratios instead
of absolute yields still involves FSI. The disagreement is caused by the strong effects
of side feeding through charge-exchange scattering from the dominant proton into
the neutron channel. Since side feeding in the opposite direction is practically not
present, the ratio is not the same with and without FSI.

11.3 NC nucleon knockout

11.3.1 Total cross section

We continue our discussion with NC nucleon knockout. In Fig. 11.9 we show the
integrated cross sections for proton and neutron knockout on 12C and 56Fe. The solid
lines, showing the results with FSI included, lie in both cases clearly above the ones
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Figure 11.10: Same as Fig. 11.9 for NC single-nucleon knockout.

without FSI (dashed lines). As in the CC case, this enhancement is entirely caused
by secondary interactions. Furthermore, the initial process leading to a knocked out
nucleon is indicated. In the νN collision either QE scattering (dash-dotted), ∆ (dotted),
or the excitation of other resonances (double-dashed lines) is possible. Above Eν ≈
1 GeV, the initial ∆ excitation process contributes even more to the total knockout
cross section than QE scattering. Only up to neutrino energies of ≈ 0.5 GeV, one may
neglect the resonance contributions to nucleon knockout.

For comparison, we show the corresponding results for single-nucleon knockout
in Fig. 11.10. Here, as also observed in CC scattering, the cross section after FSI is
significantly smaller than without FSI, because events with more than one knocked-
out nucleon are not counted. Note that also the ∆ contribution is smaller than the
QE one in contrast to the results of Fig. 11.9, since the ∆ contributes in large parts to
the multiple-nucleon knockout, e.g., through ∆N → NN and ∆ → πN followed by
πN → πN.
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Figure 11.11: Kinetic-energy differential cross section for NC multiple-p knockout on
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Figure 11.12: Same as Fig. 11.11 for NC n knockout.
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11.3.2 Nucleon kinetic-energy spectra

In Fig. 11.11 and Fig. 11.12 we show the kinetic-energy differential cross section for NC
multiple-proton and neutron knockout versus the kinetic energy for different values
of Eν. The inclusion of FSI strongly modifies the shape of the distribution (compare
the dashed and the solid lines) in a similar way as in CC scattering: rescattering of
high-energy nucleons in the medium reduces the flux at higher energies while, simul-
taneously, a large number of secondary nucleons at lower energies is emitted. Again,
QE scattering and ∆ excitation contribute in equal measure to nucleon knockout at
Eν ≈ 1 GeV; and the latter becomes increasingly important at higher energies. In con-
trast to the CC reaction, where neutrons are mainly emitted by secondary collisions,
in the NC case, both the neutron and proton kinetic-energy distributions are equally
affected by FSI since their total yields without FSI are comparable.

This can be seen also in Fig. 11.13, where we plot the ratio of the NC proton to
neutron kinetic-energy differential cross section for 12C and 56Fe at Eν = 0.5 GeV.
The calculations with and without FSI (solid and dashed lines) agree approximately
if ∆s = −0.15. This shows that the effect of the final-state interaction cancels out
regardless of the nucleus. This is different in the CC case (cf. Fig. 11.8), where we
have found strong effects of side feeding from the dominant p channel into the sup-
pressed n channel. In fact, side feeding is only important when the initial proton and
neutron yields are different. Otherwise the side feeding from proton to neutron is
comparable with the opposite one from neutron to proton and then they compensate
as just seen by comparing the solid and dashed lines. Indeed, when we set ∆s = 0 in
the strange axial form factor (see Eq. (4.17) on page 35), the elementary proton and
neutron yields are different as shown in Fig. 4.4 (page 37): while the neutron cross
section is enhanced, the proton cross section is reduced. Therefore, we expect side
feeding from the neutron to the proton channel, which changes the p/n ratio as ob-
served in Fig. 11.13 (dash-dotted versus dotted lines). Since nucleons lose energy in
(charge-exchange) scattering, the effect is more pronounced at low kinetic energies.

Not only the side feeding is caused by differences in the elementary neutrino-
nucleon cross section, but also the slight increase with TN of the ratios. For ∆s =
−0.15, the cross section dσ/dQ2 is bigger (smaller) for neutrons than for protons at
low Q2 (high Q2) which directly translates into the kinetic energy of the nucleons.
For ∆s = 0, dσ/dQ2(neutron) ≫ dσ/dQ2(proton) at low Q2 and dσ/dQ2(neutron) &

dσ/dQ2(proton) at high Q2. This explains both the increase with TN and also the
difference in the absolute magnitude between the two choices of ∆s.

We conclude that FSI only cancel in specific cases but not at all in general. This is in
contrast to the findings of Alberico et al. [ABB+98] who claim that this ratio depends
very weakly on the nuclear model (see their Fig. 1). They presented calculations in
plane-wave impulse approximation within two nuclear models: the relativistic Fermi
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gas and a relativistic shell model. Calculations in distorted-wave impulse approxi-
mation were also included for the shell model, with FSI taken into account using a
relativistic optical potential.

11.4 Model dependencies

Following up the discussion in Section 10.4 we now perform the corresponding com-
parison for CC nucleon knockout at Eν = 1 GeV. We compare the very same cases:

(1) without FSI, without collisional broadening

(2) with FSI, without collisional broadening

(3) with FSI, with collisional broadening (one-pion exchange based model for ∆

collisional width and cross sections), with OSP

(4) with FSI, with collisional broadening (Oset prescription for ∆ collisional width
and cross sections), with OSP

(5) with FSI, collisional broadening only for the ∆ resonance (Oset prescription),
without OSP

(6) with FSI, Oset based collisional broadening only for the ∆ resonance, without
OSP, here we do not further track the final nucleons after a ∆N → NN, ∆N →
∆N or ∆NN → NNN reaction
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Table 11.1: Total CC single-nucleon knockout cross sections, σ1N, on 12C and 56Fe in
units of 10−38 cm2 at Eν = 1 GeV. The statistical error is negligible. Compared are the
different scenarios as detailed in the text.

12C 56Fe
1p 1n 1p 1n

(1) 8.04 0.54 38.16 2.65
(2) 5.11 0.62 18.69 3.77
(3) 4.65 0.57 17.13 3.39
(4) 4.71 0.55 17.32 3.31
(5) 4.99 0.58 18.37 3.60
(6) 5.11 0.66 18.97 4.07

Scenarios (1) and (4) have been used so far. Scenario (6) has been added for compari-
son: the results published in Refs. [LARM06a, LARM06b] are based on this method.

The results for the total CC knockout cross sections are summarized in Table 11.1
for single-nucleon knockout and in Table 11.2 for multiple-nucleon knockout, for both
12C and 56Fe. The kinetic-energy distributions are given in Figs. 11.14 and 11.15.
Remarkable agreement of the order of 10% between all approaches is found for the
single-nucleon knockout. Even neglecting the outgoing nucleons in the ∆N reactions
has no visible impact on the single-nucleon knockout [scenario (6)]. In the multiple-
nucleon knockout, however, this scenario slightly underestimates the cross section
because most of the final-state nucleons in the ∆N scattering contribute to multiple
knockout. Comparing scenarios (5) and (6), this difference is found to be between
15% and 25%.

As in the pion case, scenario (5) is a very good approximation to our best result
obtained with the numerically much more complicated case (4). The neglect of the
OSP in the propagation and even of the collisional broadening of every baryon besides
the ∆ has only a small impact.

11.5 Comparisons

One important result of our approach is the finding that already at Eν ≈ 1 GeV a
large part of the ejected nucleons stems from ∆ excitation and/or other processes
different from QE, or, in other words, QE and non-QE processes are “mixed” during
FSI.2 This is an unique feature of a coupled-channel approach, such as the GiBUU

2An extended investigation of this entanglement is presented in Section 13.3.
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Table 11.2: Total CC multiple-nucleon knockout cross sections, σN, on 12C and 56Fe in
units of 10−38 cm2 at Eν = 1 GeV. The statistical error is negligible. Compared are the
different scenarios as detailed in the text.

12C 56Fe
xp xn xp xn

(1) 8.04 0.54 38.16 2.65
(2) 9.58 2.77 43.71 19.90
(3) 8.35 2.45 38.73 17.68
(4) 9.10 2.61 41.99 18.85
(5) 9.44 2.61 42.50 18.66
(6) 7.84 2.03 34.01 13.90
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Figure 11.14: Kinetic-energy differential cross section for CC single-p (top) and single-
n (bottom panels) knockout on 12C (left) and 56Fe (right panels) versus the nucleon
kinetic energy TN at Eν = 1 GeV. The different scenarios (1)–(6) are detailed in the
text.
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Figure 11.15: Same as Fig. 11.14 for CC multiple-nucleon knockout.

model, not present in any of the models mentioned in the introduction of this chap-
ter. Except for the empirical event generators, we do not know of any other model
for neutrino-induced nucleon knockout which accounts for QE and non-QE scatter-
ing simultaneously. Thus, for the following comparison, we restrict ourselves to QE
scattering only.

We distinguish between two different model classes: first, a semi-classical Monte
Carlo simulation which allows to follow the final nucleon hit in the QE process and
also to include a large variety of possible final-state interactions. Besides our ap-
proach,3 only the ansatz of Nieves et al. [NVVV06] falls into this category. Second,
one can calculate nucleon knockout in full quantum mechanical models. Absorptive
FSI can be included in a distorted-wave impulse approximation (DWIA) using optical
potentials or Glauber models (see, e.g., Martinez et al. [MLJ+06] as an example of
both, Glauber and optical potential, and also references therein for more details on
such kind of models).

We start our discussion by comparing to Nieves et al. [NVVV06]. In Figs. 11.16 and
11.17 we show our results for the CC and NC kinetic-energy differential cross section

3and the phenomenological event generators discussed in Section 12.2
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11 Nucleon knockout

together with those of Nieves et al. [NVVV06] (denoted with “NVV”). Since they do
not include any resonances or background, we have “switched off” these processes in
our calculation, so only nucleon knockout induced by initial QE events is considered.
The discrepancy between our result without FSI and the result of Ref. [NVVV06] with-
out NN rescattering (dashed versus dotted lines) can be attributed to — in addition
to differences in the momentum distribution and the potentials — the RPA correla-
tions included in their calculation which lead to a reduction of the cross section and
a spreading of the spectrum. To model the rescattering of the primary nucleons in
the nucleus, Nieves et al. use a Monte Carlo simulation with elastic NN cross sections
similar to ours.4 Therefore, we expect a similar behavior when FSI are included. In-
deed, as one can see, when the rescattering of the outgoing nucleons is “turned on”,
both calculations lead to very similar results, namely a reduction of the flux for higher
energetic nucleons and a large number of secondary low energy nucleons (solid ver-
sus dash-dotted lines). Also for the NC p/n ratios we find reasonable agreement: our
ratios plotted in Fig. 11.13 show a behavior similar to the ones of Nieves et al. (cf. right
panel of Fig. 17 in Ref. [NVVV06]).

Let us take the calculation of Martinez et al. [MLJ+06] as an example for the full
quantum mechanical models. There, nucleon FSI are considered within two frame-
works. In one case, a relativistic optical potential in a distorted-wave impulse approx-
imation (RDWIA) is used, in the other case a relativistic multiple-scattering Glauber
approximation (RMSGA). Both can therefore account only for single-nucleon knock-
out. The flux reduction at higher kinetic energies is also observed in their calculations.
However, by simple absorption of the nucleons they do not account for the rescatter-
ing in the medium which leads to the large number of secondary nucleons. Nucleons
are not just absorbed but — through rescattering — ejected with a different energy,
angle and/or charge. In particular, in a model not accounting for FSI in a realistic
way, there would be no knocked-out neutrons for CCQE scattering.

Comparing directly to such kind of models is rather difficult as they not necessarily
calculate the same observables. Already our calculations without FSI is not necessarily
the same as PWIA. Thus, we abstain from a comparison.

We close this chapter with a word of caution related to this kind of comparisons.
The meaning of “FSI” is interpreted differently in different approaches. We call FSI
only the secondary interactions, everything connected with the initial vertex is not
called FSI in our approach. For example, in GiBUU, both the initial and the final nu-
cleon still experience a mean-field potential. Since the potential is momentum depen-
dent and this momentum is different in the initial and final states, also the potential
is different in both. The same holds for the collisional broadening of the final-state
nucleon which we also do not call FSI for the same reason: it is still connected with
the initial vertex. Therefore, FSI have in our case no influence at all on inclusive cross

4We emphasize that, in addition, we allow for inelastic NN collisions.
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sections, e.g., muon observables, because they are not affected by what happens after
the initial interaction to the final-state hadron.
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12
Experimental status

After neutrino oscillations have first been observed in atmospheric and solar neutri-
nos [Super-K98, SNO01], an extensive experimental program has started aiming at
the precise determination of ν masses and mixing angles, and to search for possible
CP violation. Best suited for such precision experiments are long-baseline (LBL) ex-
periments. This intensive search has renewed the interest in neutrino cross sections as
they are an important ingredient in the analyses of neutrino-oscillation experiments.
The target material of all modern detectors consists of heavy nuclei such as carbon,
oxygen and iron. Thus, to interpret their data, the experiments have to rely on Monte
Carlo event generator predictions for the final-state interactions in the target nucleus.

In this chapter, we first introduce the main LBL experiments and briefly describe
the Monte Carlo event generators used in their analyses.

12.1 Neutrino experiments

We focus in the following on experiments using accelerator neutrino beams. These
beams are all built along the same lines: first, a high energy proton beam is shot on
a nuclear target producing pions and kaons. In a next step, the mesons, focused by
a magnetic horn,1 decay into charged leptons and neutrinos. A large absorber stops
all particles but the weakly-interacting neutrinos. This neutrino beam is directed to
the experiments which are located a few hundred meters from the neutrino source

1By changing its polarization, the horn switches between neutrino (from the decay of positive charge
mesons) or anti-neutrino (from the decay of negative charged mesons) mode.
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or even hundreds of kilometers away. A measure for the number of neutrinos, i.e.,
the statistics collected in an experiment, is the number of protons shot on the target
(“protons on target” or POT).

A good understanding of the neutrino beam is critical for the success of the oscilla-
tion experiments. While the energy spectrum is most important for νµ disappearance
experiments (cf., Chapter 13), a good knowledge of the beam composition is required
in νe appearance searches (cf., Chapter 14). Thus, to limit flux uncertainties, an ideal
setup for oscillation measurements consists of two identical detectors, one close to the
neutrino production place (near detector) and one in the expected oscillation maxi-
mum or minimum (far detector). If such a setup is not possible one has to understand
the neutrino production process to high precision. Also cross section experiments re-
quire a good knowledge of the absolute neutrino flux because it is the crucial quantity
to relate measured count rates into cross sections. Since the uncertainties in the me-
son flux reflect directly to uncertainties in the neutrino flux, dedicated experiments
have been set up to study the hadron production in pA collisions, for instance the
HARP experiment [HARP].2 These results then enter the flux predictions for the LBL
experiments (cf., e.g., MiniBooNE’s flux prediction in Ref. [MiniBooNE09c]).

We now present an brief overview on recent experiments3. The first three, K2K,
MiniBooNE and SciBooNE, operating with beam energies around 1 GeV (see Fig. 12.1),
are our primary interest.

K2K

The K2K experiment [K2K] in Japan was designed to confirm atmospheric neutrino
oscillations using Super-Kamiokande as the far detector. A near detector was set up
300 m downstream to observe the initial, i.e., un-oscillated, spectrum and to measure
neutrino cross sections. The near detector is schematically shown in Fig. 12.2. It
consists of a 1 kt water Cherenkov detector, a scintillating-fiber/water target tracker
(SciFi, oxygen target), a fully active scintillator-bar tracker (SciBar, carbon target) and
a muon-range detector. By shooting 12 GeV protons on an Al target at the KEK
facility, neutrinos with energies from 1 to 1.5 GeV are obtained; the resulting neutrino
flux taken from Ref. [K2K05b] is displayed in Fig. 12.1. K2K collected in total about
1 × 1020 POT, but only 0.2 × 1020 in the SciBar detector because it was installed only
later. This high statistics allows for precision cross section measurements: SciFi has
measured CCQE cross sections [K2K06], CC1π+ events have been measured in SciBar
[K2K08] while NCπ0 events have been observed in the 1 kt detector [K2K05b]. For
detailed information on the event selection and performed cuts, we refer the reader

2The GiBUU model is also able to describe the HARP data [GM09].
3The bubble-chamber experiments performed at ANL and BNL in the 1970s to 1980s are not discussed

any further.
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Figure 12.1: Neutrino energy flux for the K2K (dashed line, taken from
Ref. [K2K05b]) and the MiniBooNE/SciBooNE experiments (solid line, taken from
Ref. [MiniBooNE09c]).

Figure 12.2: Schematic view of the K2K near detector. Taken from Ref. [K2K08].
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to the cited references.

MiniBooNE

Two neutrino experiments make use of the 8 GeV Booster beam at the Fermi National
Accelerator Laboratory (USA): MiniBooNE and SciBooNE. MiniBooNE [MiniBooNE]
is a Cherenkov detector of 12 m diameter filled with around 800 tons of mineral
oil, CH2, and is located about 500 m downstream. Its primary goal was to check
the neutrino-oscillation signal reported by the LSND experiment [LSND95, LSND01].
LSND reported strong evidence for ν̄µ → ν̄e oscillations. This would require ∆m2 ∼
1 eV2 which is much larger than what has been observed in atmospheric and solar
neutrino oscillations (see Chapter 14 for an extended discussion).

However, with 7 × 1020 POT corresponding to about 106 neutrino interactions col-
lected in the neutrino mode,4 MiniBooNE is now also a high-statistics cross section ex-
periment. The neutrino energy peaks at around 0.7 GeV as can be seen from Fig. 12.1.
The primary mechanism at this energy is QE scattering, which thus dominates the
MiniBooNE event sample. MiniBooNE has published results for CCQE scattering
[MiniBooNE08b], CC1π+ [MiniBooNE09a], and NCπ0 production [MiniBooNE08a].
Many more cross section measurements, in particular measurements of absolute cross
sections in many variables, are expected soon — first preliminary results were pre-
sented at NUINT09 [NUINT09], see in particular Refs. [And09a, Wil09]. The parti-
cle reconstruction is based primarily on the detection of Cherenkov radiation by the
photo tubes at the tank surface: muons lead to full rings, electrons to fuzzy rings
and neutral pions (via their decay into 2 photons) to double rings. Charged pions
are also identified through their decay signature (Michel electrons). Again, for de-
tailed information on MiniBooNE’s event topology, we refer the reader to the above
references.

SciBooNE

The second experiment in the Booster beam is SciBooNE [SciBooNE], located between
MiniBooNE and the neutrino source. SciBooNE consists of a scintillator bar detector
(carbon target) formerly used as the SciBar detector in the K2K experiment, a muon
range detector and an electron catcher. SciBooNE is a dedicated experiment to mea-
sure cross sections. During its run time from June 2007 till Aug 2008, it collected
1× 1020 POT in the neutrino mode which corresponds to about 104 CC ν interactions.
First preliminary results for CCQE, NCQE, CCπ+, and NCπ0 cross sections were
presented at the recent NUINT09 workshop [NUINT09].

4Currently, MiniBooNE is running in the anti-neutrino mode.
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MINERνA

The MINERνA experiment [MINERvA04] is designed to study neutrino-nucleus in-
teractions with unprecedented detail, it will measure inclusive and exclusive cross-
sections for a wide variety of neutrino reactions over a 1-20 GeV range of neutrino
energies. The detector is located in the NUMI beam line at Fermilab. It will be
equipped with several different nuclear targets (C, Fe, Pb) such that a precise study of
neutrino nuclear effects will be possible. The detector design, a fully active scintillator
target, allows to track and reconstruct particles with a high precision. The prototype
has already started to take data and full operation is expected to begin in early 2010.

T2K

The T2K experiment [T2K] is a long-baseline high-precision neutrino-oscillation ex-
periment focussing on θ13 but also on improving θ23 and ∆m2

23. For this purpose
JPARC’s high intensity νµ beam with ∼700 MeV peak energy will be directed towards
the Super-Kamiokande detector. The near high-resolution detector, presently under
construction, aims at measuring the energy spectrum, the flavor content of the beam
and also neutrino cross sections.

Others

Several other neutrino oscillation experiments are currently taking cross section data
at higher neutrino energy. MINOS in the NUMI beam line collects data for neu-
trino iron scattering at energies around 5 GeV, NOMAD has recently published the
most precise QE measurement between 3 and 100 GeV neutrino energy on a C target
[NOMAD08].

12.2 Monte Carlo event generators

Neutrino event generators are crucial tools for experimental neutrino physics, and
“in this sense, they serve as the gateway to a quantitative description of the physics
of neutrino scattering” [Gal09]. They are further required to successfully envision,
design and execute experiments. Thus, the neutrino experiments rely heavily on their
Monte Carlo event generators. Their precision immediately limits the precision with
which the oscillation parameters can be measured. For the extraction of electroweak
parameters from such experiments it is, therefore, important to control the expected
accuracy of these Monte Carlo analyses. While most event generators are similar
in their treatment of the initial neutrino-nucleon interaction, they differ substantially
in their treatment of nuclear effects and FSI (cf., e.g., Ref. [And07] and references
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therein). Furthermore, first MiniBooNE and K2K results indicate a disagreement be-
tween the Monte Carlo predictions and the actual measurements [Zel08, NUINT09].

There are important differences between most Monte Carlo generators and the
GiBUU approach that is used in this work. In the following, we address the main
points. The GiBUU framework models the full space-time evolution of the phase space
densities of all relevant particle species during a nuclear reaction within a consistent
treatment of the initial vertex and the final-state processes; and we emphasize that
these should not be treated separately. This is not true for all event generators. There,
initial-state and final-state interactions are considered independently (e.g., a Fermi-
gas model for the initial state but a Cascade model for the final-state interactions). As
detailed in Chapter 7, the space-time evolution is determined by the so-called BUU
equations, which describe the propagation of the particles in their potentials and the
collisions between them — resonances are treated explicitly — however, at the price
of a time-consuming numerical realization. A major strength of the GiBUU model
is that it has been applied to many different reactions from heavy ion collisions to
pion and electron induced processes [TCE+97, GM09, LEM00, BARMM06] (see Refs.
[GiBUU, BGG+] for more applications). The comparison with data for the reactions
mentioned allows to make estimates for the expected accuracy in neutrino-induced
reactions. Unlike most Monte Carlo event generators, we do not tune any specific
input (like for example pion absorption cross sections) to describe a specific reaction
channel (like for example neutrino-induced pion production). On the contrary, we
include as much physics as possible and are thus in a position to explain simultane-
ously a wide range of very different reactions. In our understanding, these are the
main points where our approach differs from common event generators.

We emphasize that in particular the independent tests with photon or electron in-
duced reactions, where accurate data are available, have not been performed by most
of the generators. Mostly, they are tuned to describe pion-nucleus scattering. But this
can only be a partial check since pions — unlike neutrinos — probe only the nuclear
surface. Hence, this check is important and necessary but not sufficient: only reac-
tions with (virtual) photons involved can be used as a meaningful “quality check”,
because, like neutrinos, they probe the full nuclear volume. Many high statistics
electron- and photon-scattering data in a kinematical region relevant for the present
neutrino experiments are available and allow precise tests of the nuclear model.

It has to be noted, that in a real experiment the event generator is only a small —
though important — part in the simulation chain. In a first step, one has to understand
the neutrino beam creation by shooting protons on a nuclear target. Then, after the
neutrino-nucleus interaction, one has to track the outcome through the detector itself,
commonly using the GEANT detector simulation. This involves questions like light
propagation in Cherenkov detectors, pion detection abilities and so on. All these steps
introduce additional uncertainties.
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12.2.1 Generator overview

In the following, we briefly describe the generators used by MiniBooNE and K2K,
namely NUANCE and NEUT. We also give some details about the GENIE project,
which is used by MINOS and has the ability to serve as a coding framework into
which other models can be implemented easily. FLUKA and NuWro, not connected
with any of the experiments of our direct interest, are not discussed. Further details
are given in Refs. [Ladek09, Gal09, GCHS05, And07] and references therein.

NUANCE

The NUANCE event generator [Cas02] was originally developed in the 1980s for the
IMB experiment, a large water detector searching for proton decay but also able to
detect neutrinos,5 and is nowadays the event generator of MiniBooNE [Haw05]. NU-
ANCE is able to handle 16O and 12C targets.

The modeling of the neutrino-nucleon vertex is based on inputs from Llewellyn-
Smith for QE [LS72], Rein and Sehgal for the resonances [RS81], Bodek and Yang
[BPY05] and the Lund hadronization model for DIS, each with some specific mod-
ifications. A model by Rein and Sehgal is also used for coherent pion production
[RS83].

NUANCE uses a Fermi gas model to simulate the scattering off a bound target. Its
implementation, however, is different from process to process. In general, the initial
nucleons have a momentum distribution with a constant Fermi momentum (225 MeV
for 16O and 220 MeV for 12C) with a constant binding energy (-27 MeV and -25 MeV).

For QE scattering, NUANCE applies the model of Smith and Moniz [SM72]. Re-
cently, this has been modified to improve the agreement with MiniBooNE’s QE data:
the MiniBooNE collaboration introduced a parameter, κ, to shrink the phase space
available for the outgoing proton [MiniBooNE08b].6 The original QE implementation
has been tested against inclusive electron scattering data by “switching off” the axial
parts in the QE current (see their results in Refs. [Haw05, Haw04]). In Fig. 12.3 we
show their results together with the ones of our model. Note that the height of their
curves has been normalized to the height of the data points. The NUANCE curves
show the typical shape of a Fermi gas calculation with a constant Fermi momentum
(cf., our discussion in Section 9.4). It is enlightening to study the effects of Pauli block-
ing and the κ parameter in these observables. While Pauli blocking affects only the
left outer part of the curves, the κ parameter cuts away all strength at the left side of

5A possible signature for proton decay is p → e+π0; but the pions may reinteract in the nuclei in
which the proton decays. A major background is caused by atmospheric neutrinos which also
can produce π0. Thus, to understand these processes and to estimate the detection efficiency, first
neutrino event generators were developed.

6We will discuss the MiniBooNE QE result in more detail in Section 15.1.
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Figure 12.3: Inclusive electron cross section dσ/(dωdΩk′) on 12C as a function of the
energy transfer ω at two distinct fixed electron energies (0.56 and 0.68 GeV) and a
scattering angle of θk′ = 36◦. The solid lines denote our full result while the dashed
curves are obtained with NUANCE (taken from Refs. [Haw05, Haw04]). Note that the
height of the NUANCE curves has been normalized to the height of the data points
which are taken from Ref. [B+83].

almost vertical lines of constant ω. Thus, from this observable it is clear, that κ cannot
have any physical meaning.

In NUANCE, the original Rein-Sehgal model has been extended such that reso-
nances may decay into final states other than πN. Decay nucleons are Pauli blocked
when their momentum is below the Fermi momentum. In-medium effects on the
resonance widths are not considered. However, to improve agreement with Super-
Kamiokande and K2K data which favor a suppression of resonant pion production,
NUANCE assumes a 20% (10%) suppression in the isospin 1/2 (3/2) channel and
thus simulates in this way “pion-less” resonance decay.

For the FSI of the produced particles, mainly pions and nucleons (unlike in the
GiBUU model, resonances decay immediately and do not undergo FSI), NUANCE
applies an intranuclear cascade model. The starting position is chosen according to
measured density profiles. Then, the hadrons are tracked through the nucleus in 0.2
fm steps. The interaction probability is calculated for each step using single-nucleon
cross sections and the local density. Measured cross sections and angular distributions
are used for πN and NN cross sections. No interactions are allowed in the first 1 fm.
NUANCE further takes into account nuclear de-excitation by photon emission.

The cascade model has been tested by simulating p, π 16O scattering. Here, the
hadron is set in front of the nucleus and then propagated through. The pion absorp-
tion cross section is tuned to match available data. At intermediate energies, NU-
ANCE describes the reaction 12C(p, p′), rather well. Casper states [Cas02], that their
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results agree also with the analytical approach of Paschos and collaborators which we
discussed in Section 10.6.2.

NEUT

Like NUANCE, the NEUT event generator [Hay02, Mit07, Hay09] was initially de-
veloped for proton decay searches at Kamiokande. At present, it is used by K2K,
SciBooNE and also Super-Kamiokande. It is applicable for neutrino energies from
100 MeV to 1 TeV and for proton and 16O targets (extended to 12C).

After fixing the neutrino energy, vacuum νN cross sections are used to select the
interaction mode. The neutrino-nucleon cross section input is very similar to NU-
ANCE: Llewellyn-Smith for QE [LS72], Rein-Sehgal for coherent and incoherent pion
production [RS81, RS83], and Bodek and Yang [BPY05] parton distribution functions
are used together with the standard DIS formula. Only since recently, NEUT accounts
for lepton mass effects.

For quasielastic scattering, NEUT applies the relativistic Fermi gas model of Smith
and Moniz [SM72] with a Fermi momentum of 225 MeV and a momentum-dependent
nuclear potential. For resonance excitation, the pion-less decay of the ∆ is simulated
by generating final leptons and nucleons in only 80% of the events. This reduction is
independent of energy. Pauli blocking of the resonance decay products is included.
Like NUANCE, they have extended the original Rein-Sehgal model in a way such that
resonances may decay into final states other than πN.

The rescattering of pions, kaons, etas, omegas and nucleons in the nucleus is de-
scribed by a Cascade model. For example, the pions can undergo inelastic or charge-
exchange scattering or be absorbed. Their initial position is chosen according to a
Wood-Saxon density distribution. Then, for pions of momenta less than 500 MeV, the
interaction mode is determined using the mean-free path calculated following Sal-
cedo et al. [SOVVGR88] (includes both two-body and three-body contributions). Pauli
blocking is also considered in the final-state interactions based on a local Fermi gas.
The final nucleons after the pion absorption are not propagated.7 For higher mo-
mentum pions, kaons, etas, omegas and nucleons, the cross sections are taken from
various experiments and/or models. The nucleon, e.g., can scatter elastically, or via
NN → ∆N and NN → ∆∆.

The cascade model has been successfully tested against π12C and π16O (see the
above references) but also against pion photo-production data (unpublished according
to Hayato [Hay]). In Fig. 12.4 we compare NEUT to our approach (dashed vs. solid
lines). From the total cross section, shown in the left panel, we find that NEUT
has more π+ after FSI. The difference is either due to larger elementary yields, less
absorption or a different way of selecting the final states. The right panel, where the

7This is being improved at the moment [Hay].
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Figure 12.4: Left panel: total CC π+ production on 12C versus Eν. Right panel: kinetic-
energy differential cross section for CC π+ production on 12C versus the pion kinetic
energy for Eν = 1 GeV. In both panels, the solid lines denote our calculation while the
dashed (dash-dotted) lines are the result obtained by NEUT (GENIE). Both are taken
from Ref. [Sob09].

kinetic-energy distribution is shown, indicates a significant difference in the ∆ region,
where most of our pions are absorbed. This specific feature is not seen in the NEUT
result.

GENIE

GENIE is a new neutrino event generator which started to be developed after the
NUINT01 workshop; its goal is to become the “canonical” Monte Carlo code whose
validity extends to all nuclear targets and neutrino energies [GENIE, A+09, And09b].
Special emphasis is put on the software design which aims at providing a platform
where others, in particular theorists, can contribute their models. GENIE is currently
at use mainly for the MINOS experiment but also used in T2K, MINERνA, NOVA,
ArgoNEUT and MicroBooNE and plans to extend its efforts also to other experiments.
GENIE’s physics models were synchronized to those in NEUGEN3 [Gal02], a genera-
tor used by Soudan 2 and MINOS. NEUGEN is superseded by GENIE and is therefore
not being continued, while GENIE has been improved significantly in the last years.8

The neutrino-nucleon cross section model is similar to the two previous approaches:
Llewellyn-Smith for QE [LS72], Rein-Sehgal for the coherent and incoherent pion pro-
duction [RS81, RS83], and Bodek-Yang [BPY05] for DIS. The single-pion and two-
pion channels in the transition region are tuned to match bubble chamber data. GE-
NIE uses a home-grown hadronization model, the AGKY-model, which combines

8For example, NEUGEN had no baryon rescattering at all which is now implemented in GENIE.
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PYTHIA/JETSET at higher invariant masses with the KNO-scaling at lower invariant
masses (details are given in Ref. [A+09]).

A Fermi-gas model with a constant Fermi momentum (221 MeV for C, 250 MeV
for Fe) and constant binding energy (30 MeV) is used to describe the initial nucle-
ons; it is modified to account for nucleon-nucleon correlations following the work
of Bodek and Ritchie [BR81]. Currently, C. Andreopoulos is working on the imple-
mentation of Benhar’s spectral function model for the nuclear ground state [And09b].
Pauli blocking is applied only for QE scattering, and no medium-modifications for
the resonances are considered.

The rescattering of pions and nucleons is simulated with INTRANUKE/hA, an
“effective” FSI model, which is anchored to a large body of experimental data, in
particular π56Fe and p56Fe data (default model). In future releases, an alternative
approach called INTRANUKE/hN will be available. INTRANUKE/hN is a cascade
model based on nucleon cross sections.

We briefly introduce GENIE’s default model, the INTRANUKE/hA. Here, the par-
ticles, i.e., pions and nucleons, are stepped through the nucleus in 0.1 fm steps. No
interactions are possible during the first 0.5 fm. For each particle, only one interaction
is allowed. The mean-free path is used to determine the interaction probability at a
particular step. It is calculated from measured hadron-nucleon cross sections (taken
from Ref. [CNS]) and charge densities. However, in GENIE the nuclear density dis-
tribution, through which a particle is tracked, is “stretched” by (half) the deBroglie
wave length for nucleons (pions) to simulate quantum mechanical effects. Once it is
decided that the nucleon/pion interacts, the corresponding reaction is chosen from a
list of available π56Fe or p56Fe channels which include, e.g., proton elastic scattering,
p56Fe → p56Fe, charge exchange, p56Fe → n56Co, pion production, p56Fe → π+n56Fe,
and so on. Details are given in Ref. [Dyt09]. Most cross sections are based on mea-
surements performed on 56Fe. GENIE has been applied also to other nuclei by scaling
the cross sections with A2/3.

The intranuclear rescattering model has been tested and tuned to π56Fe and p56Fe
data running the simulation with hadrons instead of neutrinos. Tests with photons or
electrons have not been done yet.

In Fig. 12.4 we compare GENIE to our approach (dash-dotted vs. solid lines). In
both observables, the GENIE curve is much higher than ours. Part of this might
be explained by the fact that GENIE overestimates the elementary pion-production
bubble-chamber data in the resonance region [Gala] which is in their case not simply
dominated by the ∆ resonance but has a large contribution from their fit of pion
production in the transition region which extends down to lower W.
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12.2.2 Conclusion

We have seen that the common event generators agree in the description of the νN

reaction (details are different: form factors, axial mass value, inclusion of lepton mass,
inclusion of non-resonant background, transition region between resonance and DIS,
...). But there are obvious differences and levels of sophistication in the treatment of
nuclear effects and final-state interactions. However, one should keep in mind that
most neutrino event generators have been developed for a given experiment only —
and different experiments are sensitive to different aspects of physics. For example, an
event generator for a water Cherenkov detector with a proton threshold of more than
1 GeV does not need to model low-energy secondary nucleons with a high precision.

We close this section with a word of caution concerning the model consistency.
Most event generators are now working on implementing recent theoretical models,
e.g., spectral functions for the initial nucleons, RPA correlations, or new resonance
excitation models. In general, those replace only a specific part of the simulation. We
emphasize that consistency demands the same treatment for the initial and the final
state. For example, self energies in the initial-state process (e.g., ∆ spectral function)
should match the FSI rates (e.g., ∆N → NN cross sections). Thus, one has to be careful
when merging various models in order to keep consistency and to avoid double-
counting.
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13
CCQE/CC1π+ entanglement and

neutrino energy reconstruction

13.1 Introduction

A good knowledge of the neutrino energy is required for a precise determination
of oscillation parameters in νµ disappearance measurements. The neutrino beam is
far from being mono-energetic in present experiments (cf., e.g., Fig. 12.1). External
experiments are performed to help predict the beam profile, e.g., the HARP experi-
ment [HARP]. νµ disappearance experiments now search for a distortion in the neu-
trino flux in the detector positioned far away from the source. Comparing both, un-
oscillated and oscillated flux, one gains information about the oscillation probability
and with that about mixing angles and mass squared differences.

However, the neutrino energy is not measurable directly but has to be reconstructed
from the reaction products. Present oscillation experiments use the CCQE reaction as
signal event and reconstruct the energy with two-body kinematics from the outgoing
muon assuming the target nucleon is at rest. Two immediate questions arise from this
procedure: (1) How good is the identification of CCQE events? (2) How exact is the
crucial assumption of two-body kinematics for nucleons bound in a nucleus where
many in-medium modifications are present?

CCQE is defined as the process happening on the single nucleon; in the nucleus,
CCQE is masked by FSI. Thus, the correct identification of CCQE is immediately
related to the question of how FSI influence the event selection. The main background
to CCQE is CC1π+ production. If the pion is absorbed in the nucleus and/or not seen
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13 CCQE/CC1π+ entanglement and neutrino energy reconstruction

in the detector, these events can be misidentified as CCQE. Consequently, a proper
understanding of CCQE and CC1π+ is essential for the reconstruction of the neutrino
energy.

This chapter addresses the questions outlined above. We start with a general in-
troduction into the event classification in typical neutrino detectors and discuss how
possible thresholds influence the measured spectra. We further discuss both CCQE
and CC1π+ cross sections and their entanglement. Finally, we investigate how nuclear
effects influence the reconstruction of the neutrino energy.

13.2 Event selection

The event selection in current neutrino experiments is a highly complicated subject
(see, e.g., review talk given by M. Wascko [Was09]). Rather than presenting a quanti-
tative discussion for each particular setup (if at all possible) we try to give a qualitative
picture on how nuclear effects themselves modify the measured spectra in CC scatter-
ing assuming specific thresholds. Two “toy” detectors with the following properties
are used to this aim:

Cherenkov detector. In a Cherenkov detector, e.g., MiniBooNE and K2K 1kt, CCQE
events are identified by a single ring from the outgoing lepton. Muons can be
tagged by their decay electron. If pions are produced, they lead to additional
rings either from the γ decay of the π0 or from the decay muon of the charged
pions.

We define for our “toy” Cherenkov detector

CCQE: 1µ− 0π+ 0π− 0π0 xp xn

CC1π+: 1µ− 1π+ 0π− 0π0 xp xn

where xp and xn indicates, that any number of protons or neutrons are allowed.

The lower momentum thresholds depend on the index of refraction n via

βthres =
1
n
⇔ |p|thres =

m√
n2 − 1

, (13.1)

where m is the particle mass. Typical values for water (n = 1.33) are |p|thres =120
MeV for muons, 160 MeV for charged pions, 0 MeV for neutral pions (identified
via their γ decay) and 1070 MeV for protons. Lower thresholds (≈ 50 MeV for
muons and charged pions, ≈ 350 MeV for protons) are reached with the Mini-
BooNE detector which is filled with mineral oil of n = 1.47 [MiniBooNE09b],
and, in addition, produces also scintillation light.
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13.3 Topologies

Tracking detector. In a tracking detector, e.g., SciBooNE and K2K SciFi, all charged
particles leave tracks which can be used to identify the particles and to deter-
mine their properties. Thus, highly advanced event selection procedures are
applied. To keep it simple, we define

CCQE: 1µ− 0π+ 0π− 0π0 1p xn

CC1π+: 1µ− 1π+ 0π− 0π0 xp xn

The thresholds depend strongly on the experimental setup, e.g., the SciFi detec-
tor requires both muon and proton momentum to be above ≈600 MeV and the
pion momentum above 200 MeV [K2K06]. Note that this proton threshold cuts
away a significant part of the proton spectra as can be seen, e.g., from Fig. 11.5
(page 180) where |p|thres ≈ 600 MeV corresponds to about 200 MeV kinetic en-
ergy (compare Fig. B.4). The same is true for the pions as can be appreciated,
e.g., from Fig. 10.7 (page 155) where |p|thres ≈ 200 MeV corresponds to about
100 MeV kinetic energy. We further note that the thresholds are much lower in
the SciBar and SciBooNE detectors.

In the following, we assume perfect particle identification above threshold in both
cases and neglect any other experimental restrictions.

13.3 Topologies

13.3.1 CCQE identification

The CCQE reaction, namely νℓn → ℓ−p, is the dominant cross section at low energies
(cf., Fig. 3.2), and commonly used to reconstruct the neutrino energy. In other words,
CCQE is the signal event in present oscillation experiments.

The experimental challenge is to identify true CCQE events in the detector, i.e.,
muons originating from an initial QE process. To be more precise: true CCQE corre-
sponds to the inclusive CCQE cross section including all medium effects, or, in other
words, the CCQE cross section before FSI. The difficulty comes from the fact that the
true CCQE events are masked by FSI in a detector built from nuclei. The FSI lead to
misidentified events, e.g., an initial ∆ whose decay pion is absorbed or which under-
goes “pion-less decay” can count as CCQE event — we call this type of background
events “fake CCQE” events. We denote every event which looks like a CCQE event
by “CCQE-like”.

As outlined above, at Cherenkov detectors CCQE-like events are all those where no
pion is detected while in tracking detectors CCQE-like events are those where a single
proton track is visible and at the same time no pions are detected. The two methods
are compared in Fig. 13.1. The “true CCQE” events are denoted with the solid lines,
the CCQE-like events by the dashed ones. The Cherenkov detector is able to detect
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Figure 13.1: Total QE cross section on 12C (solid lines) compared to different methods
on how to identify CCQE-like events in experiments (dashed lines). The left panel
shows the method commonly applied in Cherenkov detectors, the right panel the
tracking detector method as described in the text. The contributions to the CCQE-
like events are also classified (CCQE-like from initial QE (dash-dotted), from initial ∆

(dotted lines)).

almost all true CCQE (left panel, solid vs. dash-dotted lines agree approximately) but
sees also a considerable amount of “fake CCQE” (or “non-CCQE”) events (left panel,
the dashed line is roughly 20% higher than the solid line). They are caused mainly by
initial ∆ excitation as described in the previous paragraph (absorption of decay pion
or “pion-less decay”); their contribution to the cross section is given by the dotted
lines. On the contrary, less CCQE-like than true CCQE events are detected using the
method applied in tracking detectors which trigger both on pions and protons (right
panel, difference between dashed and solid line). The final-state interactions of the
initial proton lead to secondary protons, or, via charge exchange to neutrons which
are then not detected as CCQE-like any more (single proton track). We find that at
tracking detectors the amount of fake events in the CCQE-like sample is less than at
Cherenkov detectors (dashed and dash-dotted lines almost agree with each other in
the right panel but not in the left panel). We conclude that even if the additional cut
on the proton helps to restrict the background, an error of about 20% remains, since
the measured CCQE cross section underestimates the true one by that amount.

To investigate further the relation between the CCQE-like and true CCQE cross
section, we show their ratio as a function of proton and pion-momentum thresh-
old in Fig. 13.2.1 As the proton is not at all relevant for the CCQE identification
in Cherenkov detectors, the ratio is independent of the proton momentum detection
threshold (dashed line in left panel). This is very different in tracking detectors which

1See Section 13.2 for the thresholds applied in present experiments.
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Figure 13.2: Ratio of the CCQE-like to the true CCQE cross section as a function of
the proton (pion) detection momentum threshold for CC νµ on 12C at Eν = 1 GeV. The
solid lines are obtained using the tracking detector identification, while the dashed
lines are for Cherenkov detectors.

rely on the detected proton — here the efficiency is reduced to ≈10% at a proton
momentum threshold of 0.5 GeV (solid line in left panel). Even at |p|pthres = 0 the
efficiency does not exceed 80% because of charge-exchange processes that lead to
the emission of undetected neutrons and because of secondary proton knockout that
leads to multiple-proton tracks. The same effects cause the difference between the
solid and the dashed lines in the left panel of Fig. 13.1. Focussing on the right panel
of Fig. 13.2 we find that the CCQE-like cross section increases for both detector types
as |p|πthres increases. In this case even more events with pions in the final state appear
as CCQE-like because then these pions are below threshold and thus not detected.

The CCQE-like cross section is splitted into QE and non-QE sources (like ∆ exci-
tation) in Fig. 13.3 and Fig. 13.4. The left panel of Fig. 13.3 shows again the ability
of a Cherenkov-like detector to identify over 98% of the initial CCQE events (dashed
line); the missing strength is mainly lost into pion channels, i.e., the nucleons rescatter
and produce pions such that the event is not classified as CCQE-like any more. This
fraction almost vanishes (the dashed line gets even closer to one in the right panel)
when the pion momentum threshold increases because then the CCQE-induced pions
are not detected any more and the event counts again as CCQE-like.

Let us now turn to the non-QE CCQE-like cross section displayed in Fig. 13.4. Dif-
ferent sources are indicated: initial ∆ excitation and initial single-pion background
reaction (higher resonances are negligible here and thus not shown). The left panel
shows again the dependence on the proton-momentum threshold which is not rele-
vant in the Cherenkov case: there the non-QE CCQE-like contribution adds up con-
stantly to about 18%. However, this threshold is important for the tracking detector for
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the following reason. The non-QE processes lead not only to single-proton knockout
but also to multi-nucleon knockout through pion absorption processes and rescatter-
ing. If the proton threshold is zero, these processes are not counted because there is
more than one proton present. Increasing the threshold increases also the probability
that only one proton is above threshold — then, the event is CCQE-like. From a cer-
tain momentum on (≈ 0.1 GeV), more and more protons are below threshold and the
ratio decreases again. The dependence on the pion momentum threshold is displayed
in the right panel. Here the ratio increases because with increasing threshold for the
outgoing pion more and more non-QE events are misidentified as CCQE.

We note that a realistic muon-momentum threshold in the same ballpark has no
visible influence on the CCQE-like to true CCQE cross section ratio since the muon
momentum is anyway larger in most cases.

13.3.2 CC1π+ identification

The CC1π+ reaction is the second largest cross section at the energies of interest in
this work (see Fig. 3.2 on page 25), and the major background to the CCQE signal
channel as we have seen in the previous section.

As in the case of CCQE, also the detected CC1π+ events can be masked by FSI.
However, as we will show now, the misidentification is minor and independent of the
detector type: both of our “toy detectors” define CC1π+ in the same way. Problematic,
however, is the low efficiency caused by strong pion-absorption effects. The left panel
of Fig. 13.5 shows that already without any threshold cuts only 60% of the pions leave
the nucleus and can be detected.2 Increasing the pion momentum threshold decreases
clearly the CC1π+ event rate in the detector. In the right panel we plot the different
contributions separately and find that the ∆ excitation dominates.

13.4 Neutrino energy reconstruction

In LBL experiments, CCQE events are commonly used to determine the νµ kinemat-
ics. Under the assumption that the nucleon is at rest within the nucleus, the neu-
trino energy has been reconstructed from QE events at the MiniBooNE experiment
[MiniBooNE08b] using

Erec
ν =

2(MN − EB)Eµ − (E2
B − 2MNEB + m2

µ)

2 [(MN − EB) − Eµ + |k′| cos θµ]
, (13.2)

with a binding energy correction of EB = 34 MeV and the measured muon energy,
Eµ and scattering angle, θµ. The K2K experiment uses the same expression but with

2We have normalized the true CC1π+ to the “no FSI” curve at |p|πthres = 0.
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EB = 0 [K2K03].
In Fig. 13.6 we plot the distribution of the reconstructed neutrino energy obtained

using the MiniBooNE prescription in Eq. (13.2) for four fixed Ereal
ν (0.5, 0.7, 1.0 and

1.5 GeV). The dashed lines show the true CCQE events only, the solid lines all CCQE-
like events (using the Cherenkov definition, but without any threshold cuts). Both
curves show a prominent peak around the real energy which is slightly shifted to
higher Erec

ν . This shift is caused by the difference between our potential and the
specific choice of EB.3 The peak has a width of around 100 MeV (FWHM). This broad-
ening is entirely caused by the Fermi motion of the nucleons — Eq. (13.2) assumes
nucleons are rest.

While the distribution of the reconstructed energy for the true CCQE events is
symmetric around the peak, this is not the case for the CCQE-like distribution. The
reconstruction procedure now includes also non-CCQE events. However, Eq. (13.2)
is entirely based on the muon kinematics and, in the case of ∆-induced non-CCQE
events, more transferred energy is needed than for true CCQE, thus, the muon energy
is smaller: taking Fig. 9.2 (see page 122) as an example, we find about Eµ = 0.6 GeV
at the ∆ peak versus 0.9 GeV at the QE peak for Eν = 1 GeV and θ = 30◦. This lower
muon energy leads then to the second smaller bump at lower reconstructed energies.
Thus, the asymmetry is caused by the non-CCQE events identified as CCQE-like.

The reconstructed energy under tracking detector assumptions is plotted in Fig. 13.7.
We have seen in the previous section that the tracking detector allows to extract a

3See Fig. 15.16 on page 250. The dash-dotted and dotted lines there have been obtained with EB = 0.
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Figure 13.6: Distribution of the reconstructed neutrino energy according to Eq. (13.2)
for Ereal

ν = 0.5, 0.7, 1.0 and 1.5 GeV. The reconstructed energy denoted by the dashed
lines includes only true CCQE events, while the solid lines are obtained by recon-
structing the energy with CCQE-like events under Cherenkov assumptions.

much cleaner CCQE-like sample than the Cherenkov detector — almost no fake, i.e.,
non-CCQE events spoil the CCQE-like sample. Consequently, the reconstructed dis-
tribution is again symmetric but at the cost of a lower detection rate.

The asymmetry is very sensitive to detection thresholds, in particular to the momen-
tum threshold for charged pions (see Section 13.2 for the thresholds applied in present
experiments). We have seen in the previous section, that increasing this threshold, in-
creases also the CCQE-like cross section (via the non-CCQE events). Thus, a higher
threshold leads to a more pronounced second bump as seen in Fig. 13.8.

The previous findings, without any threshold cuts, are summarized in Table 13.1
and in Fig. 13.9. The former lists the expected values for the reconstructed en-
ergy and the standard deviation, while the latter shows the relative discrepancy
(Ereal

ν − Erec
ν )/Ereal

ν for 4 different real energies. We note that similar investigations
by Blondel et al. [BCF04] and Butkevich [But08] result in smaller discrepancies. Both
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Figure 13.7: Same as Fig. 13.6 but under tracking detector assumptions for the CCQE-
like events (solid lines).

works consider only CCQE in the initial state, and do not include, e.g., ∆ excitation.
Finally, we show in Fig. 13.10 the reconstructed energy distribution for the Mini-

BooNE flux (left panel) and the K2K flux (right panel). Compared to the true CCQE
we find a enhancement at low reconstructed energies caused by the non-CCQE in-
duced CCQE-like events in a Cherenkov-like detector (dashed vs. solid lines; corre-
sponding to the low-energy bump in Fig. 13.6). In a tracking detector, the event rates
are reduced (dashed vs. dash-dotted lines).

Comparing the dashed lines in Fig. 13.10 with the neutrino energy flux (dashed
lines in Fig. 13.11), one finds that, in particular for the MiniBooNE case, the spectrum
is shifted to higher energies because we weight the events with their corresponding
cross sections. Since the cross section is zero below the muon production threshold
and still small at a few hundred MeV, this suppresses the lower part of the spectrum.
For K2K this is not so important since the spectrum peaks at higher energy.

We close this section with a brief discussion on why the exact knowledge of the
neutrino energy is of major importance. The oscillation probability for the transition
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dashed line. Including CCQE-like events (Cherenkov definition) with various charged
pion detection thresholds one obtains the solid line (no pion threshold), the dash-
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Table 13.1: Expected value, E, and standard deviation, S, for the distributions shown
in Fig. 13.6 and Fig. 13.7.

Ereal
ν E =

∫
∞

0 dErec
ν

Erec
ν
σ

dσ
dEν

S =
(∫

∞

0 dErec
ν

(Erec
ν −E)2

σ
dσ
dEν

)1/2

true CCQE 0.5 GeV 0.55 GeV 0.09 GeV (17%)
0.7 GeV 0.74 GeV 0.12 GeV (16%)
1.0 GeV 1.03 GeV 0.15 GeV (15%)
1.5 GeV 1.52 GeV 0.16 GeV (11%)

CCQE-like 0.5 GeV 0.53 GeV 0.11 GeV (20%)
(Cherenkov) 0.7 GeV 0.70 GeV 0.16 GeV (23%)

1.0 GeV 0.96 GeV 0.22 GeV (23%)
1.5 GeV 1.41 GeV 0.27 GeV (19%)

CCQE-like 0.5 GeV 0.54 GeV 0.10 GeV (18%)
(tracking) 0.7 GeV 0.73 GeV 0.13 GeV (18%)

1.0 GeV 1.02 GeV 0.17 GeV (16%)
1.5 GeV 1.50 GeV 0.19 GeV (13%)
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13 CCQE/CC1π+ entanglement and neutrino energy reconstruction

να → νβ is given by (see, e.g., Chapter 13 in [PDG08] or any text book for details)

Posc(να → νβ) = sin2 2θ sin2
(

∆m2L

4Eν

)
, (13.3)

where θ is the neutrino mixing angle, ∆m2 = m2
2 − m2

1 is the squared mass difference
and L the traveled distance. Consequently,

Pno-osc = 1 − Posc. (13.4)

The probability depends on the neutrino energy Eν. Measuring the oscillation pa-
rameters θ and ∆m2 requires the knowledge of both, L and Eν. In LBL experiments,
L and Eν are typically chosen such that detector is placed in the oscillation maxi-
mum/minimum. To determine the oscillation probability in disappearance exper-
iments, one has to measure the neutrino flux at that point and compare it to the
un-oscillated spectrum at the production point.4

A schematic example is given in Fig. 13.11 for θ ≈ 45◦ and ∆m2 = 2.5 × 10−3 eV2,
i.e., the parameters measured in νµ disappearance [PDG08]. The left panel shows the
MiniBooNE flux with L = 100 km, the right one the K2K flux with L = 250 km. The
un-oscillated spectrum is given by the dashed lines, the survival probability by the
dash-dotted lines and its convolution by the solid lines. A good measurement of the
neutrino energy is thus necessary to resolve the difference between the un-oscillated
and the oscillated flux, in particular the characteristic oscillation dip.

Furthermore, we have seen that the energy reconstruction based on the CCQE-like
events tends to shift the energy spectrum to lower energies and causes an enhance-
ment over the true CCQE distribution at low reconstructed energies (dashed vs. solid
lines in Fig. 13.10). This effect is important for νµ disappearance searches since it fills
in the characteristic oscillation dip shown in Fig. 13.11.

4Neutrino appearance experiments measure directly the appearance of a different neutrino flavor in
the beam (see Chapter 14).
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14
NC neutrino-nucleus reactions:

implications for MiniBooNE’s

νe appearance searches

14.1 Introduction

The LSND experiment has reported the first evidence for appearance neutrino oscil-
lations in the channel ν̄µ → ν̄e which implied that at least one neutrino has a mass
greater than 0.4 eV [LSND01]. This leads to a large mass squared difference of 1 eV2

in addition to the much smaller mass squared differences observed in atmospheric
and solar neutrino oscillations (10−3 and 10−5 eV2). As this cannot be explained in a
“standard” three-neutrino oscillation model the LSND result remains a long-standing
puzzle. The most common solution to the LSND problem is to introduce one or more
sterile neutrinos to explain the large mass squared difference. But also more exotic
proposals such as CPT violation, extra dimensions, neutrino decay, quantum decoher-
ence and others have been discussed (see, e.g., Ref. [Sch08b] for a brief review).

The MiniBooNE experiment was built to provide a definitive test of the LSND find-
ings. MiniBooNE searches for νµ → νe appearance with a very similar L/Eν range as
LSND. However, it found no evidence for νe appearance in a νµ beam in the energy re-
gion relevant for the LSND experiment (Eν > 0.475 GeV) [MiniBooNE07b]. The data,
so the MiniBooNE collaboration, are consistent with no oscillations within a two-
neutrino appearance-only oscillation model which is thus excluded as an explanation
of the LSND anomaly. But MiniBooNE observes a sizable excess of events over their
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a)

 e + p→ + n eν

eν
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e

b)

0π

1
γ

2
γ

c)

∆

γ

N

Figure 14.1: (a) indicates the “νe appearance signal” event in MiniBooNE while (b)
and (c) are possible backgrounds. Taken from Ref. [Dju06].

Monte Carlo prediction below 475 MeV (see Fig. 14.2; see also Ref. [MiniBooNE07b]
and the extended discussion in Refs. [MiniBooNE09e, Pol08]). This excess will be in
the focus of our discussion in this chapter.1

14.2 Search for electron-neutrino appearance

To understand better the excess in the MiniBooNE neutrino signal [MiniBooNE09e,
Pol08], let us introduce some more details. The main task in a νe appearance experi-
ment is to detect electron neutrinos in a (almost) pure νµ beam. The signal event is the
νe CCQE interaction as indicated in Fig. 14.1 (a). But the signal is dominated by back-
ground. Most of the detected νe events have their origin not in neutrino oscillations
but are already present in the initial neutrino beam, e.g., through muon and kaon
decays. As seen from Fig. 14.2 they contribute significantly to the measured νe events
and dominate the spectrum above 475 MeV. A good understanding of the neutrino
beam composition is therefore essential for νe appearance searches.

Even more significant at low reconstructed Eν are misidentified events, mainly be-
cause of the fact, that the MiniBooNE detector cannot distinguish between a photon
and an electron. Thus, νµ induced neutral current π0 production,2 where the π0 de-
cays into two γs, is the major source of background when one of the photons is not
seen or both Cherenkov rings overlap. This process is illustrated in Fig. 14.1 (b). Ad-
ditional background comes from the excitation of a ∆ resonance via neutral current
interaction followed by its radiative decay, ∆ → γN, which also leads to a final state
with a photon (see Fig. 14.1 (c)). Of particular interest for experiments is to quan-
tify how the photon to π0 yield changes in the nuclear medium, depending on the

1We note that MiniBooNE recently released the first anti-neutrino results [MiniBooNE09d]. No sig-
nificant excess of events over background in the full energy region has been observed. However,
the result is inconclusive with respect to the LSND measurements.

2We recall that in NC events only the outgoing hadrons and/or their decay products are seen, but not
the outgoing neutrino.
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∆ momentum and also the nuclear density. Both, misidentified NCπ0 and ∆ → γN,
dominate the total background below 475 MeV, i.e., the excess region (see Fig. 14.2).

We stress that the background prediction and with that the magnitude of the excess
of events is strongly model dependent. For instance, if the NUANCE Monte Carlo
event generator predicted a larger π0 yield, the difference between data and predic-
tion, and with that the excess, would shrink. Models for photon detection efficiency
in CH2 are also crucial. Many sources of systematic errors and analysis updates are
discussed in Ref. [Pol08].3

Let us emphasize one more problem: the major quantity in this measurement is the
neutrino energy (see Fig. 14.2). However, it is not the “true” neutrino energy, but, as
outlined in Section 13.4, the reconstructed energy. We have seen that the difference
between both is significant in particular towards lower Eν.

Finally, we note that the MiniBooNE findings have triggered many other expla-
nations leading to photons at low neutrino energies, e.g., muon bremsstrahlung,4

νN → νγN interaction, but also explanations involving “new physics”, e.g., intro-
duction of a new gauge boson. Within the GiBUU model, however, we focus on the
question, how the background changes when “standard nuclear physics” is applied,
or in other words, on whether extraordinary effects (like Lorentz violation) survive
after accounting for profane effects (like FSI).

In the following we study the in-medium modifications of the radiative ∆ decay;
the influence of nuclear effects and final-state interactions on NCπ0 production is
discussed in Section 15.3.

14.3 Estimate of radiative ∆ decay in the medium

A small contribution to the νe appearance background is caused by the radiative decay
of the ∆ resonance excited in a NC reaction as discussed above. In the vacuum, a
rough estimate for the photon to π0 ratio through the ∆ gives

σ
γ
tot

σπ0
tot

(∆
+/0) =

0.0056
(2/3)

= 0.008, (14.1)

where 0.0056 is the PDG branching fraction for ∆ → Nγ and 2/3 comes from the
appropriate Clebsch-Gordon coefficient for ∆+/0 → π0 + N.

The complication arises when the ∆ is produced in the nuclear medium, e.g., in
12C as in MiniBooNE. Then the decay pion can either be absorbed or additional ∆

3A new experiment called MicroBooNE, a Liquid Argon Time Projection Chamber, has been proposed
to address in particular the low energy excess [MicroBooNE]. Due to its design, MicroBooNE is
capable of separating electrons and photons and can therefore improve the signal to background
ratio significantly.

4Proved negligible in Ref. [MiniBooNE07a].
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Figure 14.2: Measured νe events at MiniBooNE together with their prediction for
the various backgrounds versus the reconstructed neutrino energy. Taken from
Ref. [MiniBooNE09e].

resonances can be excited through FSI. These additional ∆ can also decay into γN.
Therefore, the probability of radiative decay to π0 emission is modified in the nucleus.

The calculation has been performed as follows. First, ∆0 and ∆+ resonances are
set inside the nucleus with momentum and position chosen randomly within a given
range. Then, they are propagated out taking into account all possible decays and
collisions. Afterwards, we calculate the total π0 and the photon cross section as func-
tion of the initial momentum (radius) of the ∆, with which it has been initialized at
the beginning of the simulation. We take into account only those π0 which actually
made it out of the nucleus after the final-state interactions. With that, we obtain in
the medium for the above ratio 0.019, which represents an increase of about a factor
of 2.4 compared to the free case.

Fig. 14.3 shows how the photon/π0 rate changes in medium as a function of ∆

position, momentum and mass (solid: initial ∆0, dashed: initial ∆+). In addition, the
vacuum estimate is shown by the long dashed line. In the momentum dependence
one observes typical final-state interaction effects: slow ∆’s produce slow pions which
are more likely to be absorbed in the medium than high-energy ones which might
pass through undisturbed. As expected, the medium modification is largest for those
∆s which have been put in the middle of the carbon nucleus. However, one might
expect, that the solid/dashed lines approach the vacuum value at a radius larger than
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the carbon radius. This does not happen here, because, as said before, we initialize the
∆s at the beginning with a random momentum, therefore some of them can propagate
into the nucleus and thus still undergo FSI which then again modify the spectrum.

To conclude, the production of photons vs. π0 is enhanced in the nuclear medium
due to complex pion final-state interactions reflecting a strong dependence of density,
momentum and mass. This means also that one can expect an enhancement of single-
γ events over two-γ (from π0 decay) when scattering off nuclei. As the former are
easier misidentified with electrons, one expects an increase of the background com-
pared to the vacuum expectation. However, how this changes the absolute numbers
in Fig. 14.2 cannot be easily obtained as there also detection efficiency and acceptance
cuts are relevant.
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15
Predictions and comparison with data

15.1 CCQE measurements

We outlined in Chapter 13 that CCQE scattering is the oscillation signal channel and
also the channel used for the reconstruction of the neutrino energy. Thus, with the
new generation of oscillation experiments which now aim at measuring the oscillation
parameters with high precision, also the direct measurement of this channel again
became important. In addition, CCQE scattering is also interesting on its own since it
is the best approach to extract the axial mass of the nucleon and gives insight into the
axial form factors.

15.1.1 Q2 distribution and axial mass

If one assumes a dipole ansatz for the axial form factor, FA, the axial mass, MA, is
the only free parameter in the QE nucleon hadronic current (see Eq. (4.3)). MA affects
both, the absolute value of the cross section and the shape of the Q2 distribution (see
Fig. 15.1). Thus, there are two ways of extracting MA (we assume that the vector form
factors are known): (1) Q2-shape only fit which has the advantage that it does not
require the absolute flux normalization, (2) fit to the total cross section. On nuclei,
the extraction of MA is much more complicated. Nuclear effects change the shape of
the Q2 distribution, and consequently, the extracted MA depends on the model used
to relate measured rates on nuclei to nucleonic form factors. Furthermore, we saw in
the previous section, that FSI influence the CCQE identification. Misidentified events
are likely to follow a different Q2 distribution and also affect the total cross section
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15 Predictions and comparison with data

as discussed in connection with Fig. 13.1. Finally, we emphasize that Q2 is not an
observable but has to be reconstructed from the final state particles (see Section 13.4).

Before the era of K2K, all available CCQE data were obtained in bubble-chamber
experiments at ANL and BNL which suffered from small statistics (≈2500 events in
ANL and ≈3700 in BNL (from Table 1 in [NOMAD08])). However, most of the old
experiments used Hydrogen or Deuterium targets instead of heavy nuclei which are
used in all present experiments.

Assuming a dipole form for the vector form factors and FA, the world average
for MA at low Q2 obtained from bubble chamber data is MA = 1.026 ± 0.021 GeV
[BEM02]. A refit by Kuzmin et al. [KLN08] using the BBBA-2007 parametrization for
the vector form factors gives MA = 0.999 ± 0.011 GeV, the value used throughout
this work. At high Q2 the NOMAD collaboration measured CCQE scattering on
12C using ≈14,000 QE events in the energy interval of 3-100 GeV. They extracted
MA = 1.05 ± 0.06 GeV from a fit of the Q2 distribution in their high purity sample of
2-track events (reconstructed muon and proton track). These numbers are consistent
with the value extracted from charged pion electroproduction off protons slightly
above the pion threshold which gives MA = 1.014 GeV (Eq. (10) together with the
correction in Eq. (53) in Ref. [BEM02]).

The K2K collaboration reports a measurement of CCQE using the SciFi detector
with an oxygen target taking their CCQE sample of ≈12,000 events. K2K finds, apply-
ing the NEUT Monte Carlo event generator, an axial mass of 1.20± 0.12 GeV [K2K06].
They performed a Q2-shape fit but require Q2 > 0.2 GeV2 to exclude the region most
affected by nuclear effects. They further state, that they “have measured the effective
MA for oxygen”.

MiniBooNE has collected the largest CCQE-like sample of to date ≈194,000 events.
After subtracting the non-CCQE events based on their event generator, they observed
a disagreement between data and the NUANCE Monte Carlo prediction at Q2 <

0.2 GeV2. To restore the agreement, they introduced a new degree of freedom in their
Fermi-gas model, the Pauli-blocking parameter κ. This parameter scales the lower
integration bound over the initial nucleon energy which leads to a reduction of the
cross section for Q2 < 0.25 GeV2 and thus to a more pronounced dip in this region.
In this way, according to the MiniBooNE collaboration, “it effectively controls the
strength of Pauli blocking”.1 Fitting MA and κ simultaneously to the shape of the
Q2 distribution, they report an effective axial mass of MA = 1.23 ± 0.20 GeV and
κ = 1.019 ± 0.011 [MiniBooNE08b].

Later, they observed that the CC1π data sample neither agrees in shape nor normal-
ization with the NUANCE Monte Carlo prediction. In the former analysis, however,

1We remind the reader that Pauli blocking also causes a dip in the low Q2 region (cf. upper left panel
in Fig. 9.9 on page 130), but not as pronounced as seen in the MiniBooNE data (see the following
discussion).
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this NUANCE prediction has been used to subtract the non-CCQE background which
is dominated by CC1π. In an updated analysis presented at NUINT09 [Kat09], the
Monte Carlo code is tuned to restore the agreement to data in the CC1π sample,
and then, this “new” Monte Carlo generator is used to subtract the non-CCQE back-
ground. Obviously, this procedure yields a different CCQE sample, in particular a
different shape, than the one published in Ref. [MiniBooNE08b]. Performing the MA-
κ shape-only fit with this updated data set, now gives MA = 1.35 ± 0.17 GeV and
κ = 1.007 ± 0.007 [Kat09]. Due to the modified background subtraction, the axial
mass is even larger than in their previous analysis, but the Pauli-blocking parameter
is now consistent with 1.

Before presenting our results, we emphasize that all presented analyses to extract
MA fit the shape of the Q2 distribution. Therefore, any nuclear effect, which modifies
the shape, directly changes the extracted value of MA. MA is also sensitive to the
CC1π background, which cannot be subtracted in a model independent way.2 Conse-
quently, the extracted MA depends on the FSI modeling. Thus, the “measured” axial
mass is not only effective, but a parameter within a very specific model and therefore
not necessarily comparable between different experiments.3

The aim of the following is to study whether the MiniBooNE result can be explained
when nuclear modifications are taken into account. For that reason, we focus on the
Q2 distribution.

Let us first investigate the effect of the axial mass on the inclusive, i.e., true CCQE
Q2 distribution. We show in Fig. 15.1 both the total and the normalized cross section
for 12C averaged over the MiniBooNE flux for various values of MA. The calculation
includes all medium-modifications discussed in Chapter 9 (compare in particular to
the left panel of Fig. 9.9 where the influence of different in-medium effects on the Q2

distribution is shown). We find that the shape becomes steeper with decreasing MA

(right panel) while the absolute cross section increases (left panel). The integrated
values are given in Table 15.1, they also scale with MA.

Let us assume for the moment, that the non-CCQE background subtraction from
the MiniBooNE CCQE-like sample is perfect. Then, their true CCQE data are ac-
curately described by a Smith-Moniz global Fermi-gas model with a binding en-
ergy of Eb = 34 MeV, a constant Fermi momentum of pF = 220 MeV and with
MA = 1.35 ± 0.17 GeV and κ = 1.007 ± 0.007 [Kat09]. Thus, we can compare our cal-

culation to the κ modified Smith-Moniz approach instead of comparing to data.4 This com-
parison is shown in Fig. 15.2 where our curves are given for two values of MA: the

2We have just seen how the MiniBooNE parameters have changed with their modified background
subtraction procedure.

3It has been outlined in Ref. [Zel09] that it is nevertheless very important for neutrino oscillation
experiments.

4The code for the modified Smith-Moniz model has been provided by L. Alvarez-Ruso.
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Figure 15.1: Q2 distributions for inclusive CCQE scattering on 12C averaged over the
MiniBooNE flux. All nuclear corrections are considered. Various choices for the axial
mass are compared. Left panel: absolute cross section, right panel: cross sections
normalized to unit area.

Table 15.1: Integrated cross sections for true CCQE on 12C averaged over the Mini-
BooNE flux divided by the number of nucleons.

σ per nucleon [ 10−38 cm2]

GiBUU, MA = 0.80 GeV 0.278
GiBUU, MA = 1.00 GeV 0.341
GiBUU, MA = 1.20 GeV 0.400
GiBUU, MA = 1.35 GeV 0.439

GiBUU + RPA, MA = 1.00 GeV 0.312

mod. Smith-Moniz 0.413
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Figure 15.2: Q2 distributions for inclusive CCQE scattering on 12C averaged over
the MiniBooNE flux. The solid and dashed lines denote our calculation for MA =
1.00 GeV and MA = 1.35 GeV, respectively, while the dotted lines are obtained with a
modified Smith-Moniz Fermi-gas model (MA = 1.35 GeV and κ = 1.007). Left panel:
absolute cross section where the shaded area denotes the experimental error in MA

and κ in the Smith-Moniz calculation, right panel: cross sections normalized to unit
area.

default MA = 1.00 GeV and the MiniBooNE best fit of MA = 1.35 GeV. The dotted
lines are the Smith-Moniz calculation taken here as “data”. The shaded area denotes
the error: the upper bound is obtained by setting MA = 1.52 GeV and κ = 1.000, the
lower bound by setting MA = 1.18 GeV and κ = 1.014. We observe that our standard
calculation (solid lines) does not agree with the modified Smith-Moniz, but also our
calculation with the higher MA does neither reproduce the dip at low Q2, present
in the MiniBooNE data, nor the integral as can be seen from Table 15.1. The shape,
however, is reproduced quite well with a higher MA.

The next question to be asked — still under the assumption that MiniBooNE’s
non-CCQE background subtraction is perfect — is whether the shape can also be
reproduced without changing MA. To this aim, we account for medium polarization
effects. Polarization effects due to the strong interaction among nucleons modify the
QE hadronic tensor. Already in 1992, Singh and Oset have studied the influence of the
nuclear medium on the axial form factor in CCQE reactions [SO92], and have found
quite large effects of the medium polarization at low Q2. They have taken into account
strong renormalization effects in the spin-isospin channel. Recently, the effects have
been calculated more accurately by Nieves et al. [NAV04]. The following results are
obtained by including the RPA correlations taken from this work. For further details,
we refer the reader to Ref. [ARBLM09].

In Fig. 15.3, the RPA result is compared to our “default” result (solid lines) and
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Figure 15.3: Q2 distributions for inclusive CCQE scattering on 12C averaged over the
MiniBooNE flux. The solid lines denote our standard calculation, the dashed ones
include in addition RPA correlations. The dotted lines are obtained with a modified
Smith-Moniz Fermi-gas model (MA = 1.35 GeV and κ = 1.007). Left panel: absolute
cross section where the shaded area denotes the experimental error in the Smith-
Moniz calculation, right panel: cross sections normalized to unit area.

the modified Fermi-gas model (dotted lines), the integrated values are given in Ta-
ble 15.1. Focussing on the left panel, we find that the RPA correlations lower the cross
section at small Q2 (dash-dotted lines). Turning to the normalized curves presented
in the right panel, we see good agreement in the shape for the Smith-Moniz and the
RPA calculation down to Q2 = 0.15 GeV2. The agreement is worse for our standard
scenario.

We conclude from this exercise that the shape of the “experimental” Q2 distribution
is described well when medium polarizations are taken into account. The absolute
cross section, however, is clearly underestimated and not at all reproduced with the
RPA calculation.

Up to this point, we assumed not only that the non-CCQE background subtraction
is perfect in MiniBooNE but also the reconstruction of Q2. Both questions will be
addressed now.

The flux averaged CCQE-like Q2 distribution is shown in Fig. 15.4 assuming the
Cherenkov identification. No charged pion detection threshold is applied in the left
panel, while we choose it to be 100 MeV in the right panel. We show the CCQE-
like Q2 distribution (solid lines) separated into CCQE-induced CCQE-like (dashed
lines) and fake CCQE (dash-dotted lines) compared to the modified Smith-Moniz
model. The detection threshold directly changes the non-QE background (compare
dash-dotted lines in both panels). Even though it increases in this way the CCQE-like
cross section, our full result (solid line) still underestimates the “background-corrected
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Figure 15.4: Flux averaged dσ/dQ2 distribution of CCQE-like events (solid line) at
MiniBooNE conditions without (left panel) and with (right panel) charged pion mo-
mentum threshold. In addition, we show the composition of the CCQE-like sample:
the QE induced cross section is denoted by the dashed lines, the non-QE induced on
by the dash-dotted lines. The dotted lines are obtained with a modified Smith-Moniz
Fermi-gas model (MA = 1.35 GeV and κ = 1.007) where the shaded area denotes the
experimental error.

data” (dotted lines) at higher Q2. Interestingly, we find the impact of the background,
i.e., the non-QE induced cross section, to be most relevant at low Q2 which is exactly
the region where the MiniBooNE collaboration founds a large discrepancy between
the data and their Monte Carlo prediction.

We have already stated before that Q2 is not an observable — it has to be recon-
structed from the measured muon properties. Using Eq. (13.2), we obtain the recon-
structed Q2 via

Q2 = −m2
µ + 2Eν(Eµ − |k′| cos θµ). (15.1)

The neutrino energy itself is reconstructed according to Eq. (13.2) (page 217). Fig. 15.5
shows the CCQE-like Q2 distribution (solid line) separated into CCQE-induced CCQE-
like (dashed line) and fake CCQE (dash-dotted line) together with the reconstructed
cross section. If the background subtraction is perfect, i.e., when the true CCQE sam-
ple is isolated and only this sample is used to reconstruct Q2, then the reconstructed
spectrum almost reproduces the real spectrum (dashed and double-dashed line al-
most coincide). If background events, namely non-QE induced events, are also taken
into account for the reconstruction, then, for the extreme case that no background
at all is subtracted, we find an increase at lower Q2 but then it falls off faster (solid
vs. dotted line). The difference is caused by the different muon kinematics of the
“fake” events. To conclude, we find that the reconstruction with the simplified for-
mulas above turns out to be almost perfect when only true CCQE events are taken
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Figure 15.5: Flux averaged dσ/dQ2 distribution of CCQE-like events (solid line) at
MiniBooNE conditions. The dashed line shows the CCQE-like events induced by
CCQE, the dash-dotted line the non-QE induced CCQE-like contribution. In addition,
the reconstructed spectra are shown (dotted and double-dashed line).

into account but not if the whole CCQE-like sample is used to reconstruct Q2.

15.1.2 Absolute CCQE cross section

Fixing the flux normalization with HARP’s pion-production data, the MiniBooNE col-
laboration presented their first, preliminary absolutely normalized total, differential
and double differential cross sections for CCQE very recently and finds an excess
of about 35% compared to the total cross sections measured by NOMAD, ANL and
BNL [Kat09].5 Fig. 15.6 summarizes their findings. We strongly emphasize that Mini-
BooNE’s absolute cross sections depend directly on the background subtraction which
again is based on their Monte Carlo prediction (cf., pages 36 and 37 in Ref. [Kat09]).
Furthermore, to obtain a flux-unfolded total cross section, i.e., σ as a function of Eν,
specific model assumptions for the energy reconstruction have to be made (see Sec-
tion 13.4 for details).

As all of this introduces a model dependence in the data, a fully consistent compar-
ison is not possible. Nonetheless, we show in the left panel of Fig. 15.7 our prediction
for the true CCQE and the CCQE-like cross section together with the MiniBooNE
CCQE data. As the MiniBooNE collaboration, in a way we have explained above,
corrects for the non-CCQE events, one has to compare the solid line to the data. The

5It is interesting to note, that the modified Fermi-gas model also describes the total cross section up
to 10% even though the parameters were fixed fully independent in a shape-only fit.
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15.2 CC1π+ measurements

right panel shows our true CCQE result together with the prediction of various other
models (for details on these models, we refer to Section 9.5). It is clear from this
comparison that such a high cross section as measured by MiniBooNE seems hard
to accommodate in our approach (or any of the available models) without increasing
MA. On the other hand, MA should be around 1 GeV at least at low Q2 according to
pion-production data.

In the following we rather give our predictions and do not compare to the back-
ground corrected MiniBooNE data. Our result for dσ/dQ2 has already been given in
the left panel of Fig. 15.4.

In Fig. 15.8, we show our result for the double differential cross section at Mini-
BooNE in muon observables, all calculated with MA = 1.00 GeV. The left plot shows
the full inclusive double differential cross section averaged over the MiniBooNE flux.
Unlike for monochromatic beams, QE and ∆ peaks are not distinguishable any more
(compare, e.g., to Fig. 9.1) but strongly overlap. This fact makes a model-independent
cut on muon variables to subtract the non-CCQE background impossible. The right
panel shows only the CCQE contribution to the full inclusive cross section (true
CCQE).

The CCQE-like cross section is presented in the left panel of Fig. 15.9 — to bet-
ter understand in what kinematic region the CCQE-like non-CCQE induced events
(“fake” CCQE events) contribute and to appreciate their importance, we show the
ratio CCQE-like/true CCQE in the right panel.

15.2 CC1π+ measurements

We have shown in Chapter 13 that CC1π+ is the major background to the CCQE sig-
nal channel in νµ disappearance experiments, its understanding is therefore crucial
in the oscillation analyses. This direct connection has renewed the interest in pion
cross section measurements in the last years [K2K08, MiniBooNE09a]. Until very re-
cently, the ratio CC1π+ to CCQE has only been measured to about 30% precision
[MiniBooNE09a]. However, next generation oscillation experiments such as T2K re-
quire the pion cross section to be known to 5% accuracy [SciBooNE06].

On nuclei, pions can be produced either coherently, leaving the nucleus intact or, as
described in our approach, incoherently. The former one has attracted considerable
attention in the last years, both theoretically [SSAA06a, ARGHVV07, AHNV09, BS09,
PS09] and experimentally [K2K05a, SciBooNE08, MiniBooNE08a]. While there is evi-
dence for NC coherent pion production, no evidence for CC coherent pion production
could be found. However, all these experimental analyses suffer from the fact that the
coherent fraction is not accessible directly but has to be extracted from data assuming
specific models for incoherent pion production. Furthermore, the theoretical models

241



15 Predictions and comparison with data

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0.6  0.8  1  1.2  1.4  1.6  1.8  2

σ 1
π+

/σ
Q

E

Eν [GeV]

 CC νµ on CH2 
 
 MiniBooNE data

like
true
free

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0.6  0.8  1  1.2  1.4  1.6  1.8  2

σ 1
π+

/σ
Q

E

Eν [GeV]

 CC νµ on 12C 
 
 K2K data

like
true
free

Figure 15.10: Single-π+/QE cross section ratio for CC interactions vs. neutrino energy
on mineral oil and on 12C, respectively. The solid lines denote the CC1π+-like/CCQE-
like result (Cherenkov detector in the MiniBooNE case, tracking detector in the K2K
case), the dashed lines stand for the true CC1π+/true CCQE result, and the dash-
dotted lines give the vacuum expectation, i.e., the sum of the nucleon cross sections
(with two additional protons in the MiniBooNE case). The left panel shows recent data
from MiniBooNE [MiniBooNE09a] (triangles: corrected for FSI, bullets: uncorrected
for FSI); the right one K2K data [K2K08].

for coherent scattering used in the experimental analyses overpredict the measured
rates. All mentioned calculations rely on the so-called local approximation for the
pion production amplitude which allows one to factorize out the nuclear form factor.
It has been shown by S. Winkelmann [Win08, LMW09], that the use of the local ap-
proximation leads to cross sections up to 100% higher than those obtained without
this assumption.

In the following, we present our findings for CC incoherent pion production.

15.2.1 Single-π+/QE ratio

In Fig. 15.10, we give our results for the single-π+/QE ratio for CC interactions on
mineral oil, CH2, and on 12C. We present different results for the scenarios discussed
in Section 13.3: the solid lines denote the CC1π+-like/CCQE-like result, the dashed
lines stand for the true CC1π+/true CCQE result, and the dash-dotted lines give the
vacuum expectation. Note that we have applied the Cherenkov detection in the left
panel and the tracking detector identifications in the right panel (cf., Section 13.2).

We emphasize that nuclear corrections cancel out in the ratio, as long as FSI are
not considered (“true” vs. “free”). In general, the complexity of FSI prevent such
cancellations as one can infer from the “like” results which both do not coincide with
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15.2 CC1π+ measurements

the “true” and “free” ones.
We further compare to very recent MiniBooNE data [MiniBooNE09a] (Fig. 15.10

left) and to K2K data [K2K08] (Fig. 15.10 right). Let us first focus on the data by
MiniBooNE shown by the triangles (upper data set). Those and the K2K data are cor-
rected for FSI using specific Monte Carlo generators, i.e., they give the cross sections
for bound nucleons “before FSI”. This procedure introduces a model dependence in
the data and prevents a conclusive comparison. Ignoring this inconsistency, our cal-
culation denoted by “true” should be the one to compare with. In the MiniBooNE
case, the agreement is perfect for energies up to 1.5 GeV, and still within their error
bars for higher Eν (cf. left panel of Fig. 15.10). We also reach a good agreement with
the K2K data (cf. right panel of Fig. 15.10).

Let us now focus on the MiniBooNE data denoted with bullets (Fig. 15.10 left,
lower data set). This, according to the MiniBooNE collaboration, is their result for
the ratio of CC1π+-like to CCQE-like using the very same notation as we do. These
data are not corrected for FSI within a specific Monte Carlo event generator, so this
observable is less model dependent (see Section 15.4 for a detailed discussion on the
data extraction).

We find that our calculation clearly underestimates these data. The underestimate
of the pion/quasielastic ratio in particular at higher energies could be due to either an
underestimate of the pion production cross section (eventually already on the nucleon
level), or an overestimate of the QE cross section.

It is interesting to note that while the agreement in the “like” distributions is not
sufficient, the agreement with their corrected distribution is perfect. That indicates
a significant difference between the pion absorption models. Indeed, a direct com-
parison shows that the FSI effects in our model are about 30% larger than the ones
NUANCE predicts [Zel].

We outlined in Part II, that the ANL and BNL results differ with the BNL result
approximately 30% higher. So far the ANL data have been used as a reference; and
also MiniBooNE states, that their FSI-corrected result is consistent with the ANL re-
sult. Taking the BNL data as input, i.e., using a dipole form [Eq. (5.18)] instead of a
modified dipole [Eq. (5.19)] for the axial form factor of the ∆ (see page 50 for details),
leads to a slight enhancement of the ratio but we still underestimate the data above
1 GeV neutrino energy (left panel of Fig. 15.11). Note that the enhancement is much
more moderate than in the nucleon case (compare to the right panel of Fig. 5.7 shown
on page 52). This is due to the fact, that both, numerator and denominator, i.e., also
the CCQE-like cross section, are increased when the dipole form factor is used (see
right panel of Fig. 15.11) and, as a consequence, the larger CCQE-like cross section
partly compensates the enhancement in the pion cross section. From this comparison
we conclude that an increase of the total pion production cross section on the nucleon
compatible with the BNL data seems to be insufficient to describe this ratio at all
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Figure 15.11: Left panel: same as Fig. 15.10 left but with a dipole form for the axial
form factor of the ∆ (see text). Right panel: single-π+-like and CCQE-like cross
sections obtained using a dipole or a modified dipole form for the ∆ axial form factor.

energies.

We note that a similar result, namely an underestimate of the ratio, has been re-
cently obtained by Athar et al. [ACS09].

15.2.2 Absolute CCπ+ cross section

A first measurement of an absolute CC1π+ cross section, uncorrected for FSI, has
been presented at NUINT09 [Wil09]. Like the absolute CCQE measurement discussed
above, it is based on the neutrino flux prediction which uses the HARP data as input
[MiniBooNE09c]. We plot the MiniBooNE CCπ+ data together with our result in
Fig. 15.12. The solid line corresponds to our full model with our standard modified
dipole axial form factor for the ∆ — again, we clearly underestimate the data. FSI
are “switched off” in the calculation leading to the dashed line: even without FSI,
our calculation lies below the data for energies larger than 1 GeV!6 For comparison,
we also show the full result with a dipole axial form factor for the ∆, but this curve
clearly underestimates the data as well.

6Remember the CCQE data: also there, our model, and the models of everyone else, predict cross
sections about 35% lower than the MiniBooNE data.
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Figure 15.12: CC1π+-like cross section on CH2 as a function of the neutrino energy.
The solid line includes FSI while the dashed line has been obtained without FSI. For
comparison, we also show the full result with a dipole axial form factor for the ∆. The
data are taken from Ref. [Wil09].

15.3 NCπ0 measurements

We have outlined in Chapter 14 that a proper understanding of neutrino-induced pion
production, especially NCπ0, is essential in νe appearance experiments. Next gener-
ation experiments such as T2K require the NCπ0 cross section to be known to 10%
accuracy for the resulting error on the oscillation parameters to be comparable to that
from statistical uncertainties [SciBooNE06]. This has triggered a lot of experimental
activity towards direct NCπ0 cross section measurements in the last years to be used
as direct input for the oscillation analysis [K2K05b, MiniBooNE08a, Kur09, And09a].

As all of the present oscillations experiments use nuclear targets, it is mandatory
for any calculation to consider FSI, in particular pion rescattering, with and without
charge exchange, and absorption in the nuclear medium. In the left panel of Fig. 15.13,
we show our results for NC single-π0 production on CH2 as a function of the pion
momentum. We have averaged over the MiniBooNE energy flux which peaks at about
0.7 GeV neutrino energy [MiniBooNE09c] (see also Fig. 12.1). Comparing the dashed
with the solid line (results without FSI and spectral function vs. full calculation),
one finds also for the energy averaged spectra shown here a considerably change.
The shape is — as we have seen — caused by the energy dependence of the pion
absorption and rescattering cross sections. The vast majority of the pions comes from
initial ∆ excitation (dash-dotted line).

The right panel of Fig. 15.13 shows the results for NC single-π0 production off 16O
averaged over the K2K energy flux which peaks at about 1.2 GeV neutrino energy
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Figure 15.13: Left panel: NC induced single-π0 production on CH2 as a function of
the pion momentum averaged over the MiniBooNE flux. Right panel: same on 16O
averaged over the K2K flux. The curves are scaled with the number of nucleons. The
dashed lines show our calculation without FSI or spectral functions, both included
in the full calculation denoted by the solid lines. The dash-dotted lines indicate the
contribution from the ∆ resonance to the full calculation. The MiniBooNE data are
taken from Ref. [And09a]. In the left panel we show also the coherent contribution
taken from [ARGVV07, AR].

[K2K05b] (see also Fig. 12.1). Compared to the left panel, the spectrum is broader and
extends to larger pπ due to the higher neutrino energy. Also at these energies, the
pion production is dominated by the ∆ resonance. Both cross sections are scaled with
the number of nucleons — the cross section for K2K is larger because of the higher
neutrino energy.

NC single-π0 spectra have been measured by the K2K collaboration [K2K05b].
Based on their Monte Carlo generator, the data are not only corrected for efficiency,
but some background has already been subtracted, i.e., the data include a model de-
pendence. Since K2K has not yet provided cross sections but only count rates, we
cannot yet compare to these measurements directly.

MiniBooNE, however, has presented first results for acceptance corrected absolute
cross sections [And09a]. The absolute normalization of the flux is fixed by the HARP
measurement. For their NC1π0 sample, MiniBooNE counts all events in which only
one π0 and no other mesons leave the target nucleus and they report cross sections
uncorrected for FSI (see Section 15.4 for a detailed discussion on the data extraction).
The MiniBooNE data are shown in the left panel of Fig. 15.13. Comparing to our full
model (solid line) we find that we clearly underestimate the data — even our results
without FSI (dashed line) lies below the data. However, the shape of the distribution is
reproduced perfectly (when multiplying our solid curve by 2 we fully agree with the
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15.4 Possible origins of the discrepancies and conclusion

data).
For the flux-averaged integrated NC1π0 cross section on CH2, MiniBooNE finds

(0.64 ± 0.10) · 10−38 cm2 while we obtain 0.33 · 10−38 cm2.
π0 can be produced in our approach not only through resonances but also through

initial NC elastic scattering, i.e., final-state nucleons can rescatter in the nucleus and
produce pions. But this accounts only for ≈ 1.5%. Missing is in our approach is DIS
and any non-resonant single-π/double-π etc. background. But we do not expect a
significant contribution of those at the rather low MiniBooNE energy. Coherent scat-
tering can also contribute and we show in the left panel of Fig. 15.13 the prediction
for coherent NCπ0 production by Alvarez-Ruso et al. [ARGVV07, AR]. This contri-
bution is even smaller in the model of Amaro et al. [AHNV09] (0.02 · 10−38 cm2 vs.
0.04 · 10−38 cm2 for the integrated cross section). Furthermore, as already mentioned
above, it has been shown by Winkelmann [Win08, LMW09] that all available calcula-
tions for the coherent cross section overestimate the cross section by up to a factor of
2. Thus, we believe that coherent scattering is only a small correction to the NCπ0

cross section, or, in other words, we believe that our model accounts for the relevant
contributions.

Still, a large discrepancy remains. As in the CC1π+ case, a possible underestimate
could come from the choice for the ∆ axial form factor. The results in Fig. 15.13
have been obtained with a modified dipole form factor (see page 50 for details). In
Fig. 15.14 we show the results for both form factors, dipole and modified dipole, for
comparison. The pre-FSI curve with the dipole form factor (dash-dotted line) now
lies slightly above the data. The full result with the dipole form factor, shown by the
dotted line, still underestimates the data but less dramatic than the result obtained
with the modified dipole form factor.

To better understand the source of the discrepancy we show in Fig. 15.15 our result
for the pion angular distribution together with the MiniBooNE data [And09a]. Our
standard modified dipole form factor has been applied in the left panel, and, like in
the momentum distribution discussed before, we underestimate the data significantly
— they rather agree with our calculation without FSI. The agreement is better in the
right panel where the dipole axial form factor has been used for the ∆ resonance. The
obvious disagreement in shape at very small pion scattering angles can be attributed
to coherent scattering which strongly peaks in forward direction.

15.4 Possible origins of the discrepancies and conclusion

Before going into detail, we summarize the previous sections. The comparison to
the MiniBooNE data shows a obvious discrepancy — we clearly underestimate the
measured CCQE, CC1π+ and the NC1π0 cross sections. By including nuclear effects,
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15.4 Possible origins of the discrepancies and conclusion

we have been able to describe the shape of the data, e.g., the CCQE Q2 distribu-
tion (without increasing the axial mass) and the NCπ0 momentum differential cross
section. However, the absolute values of the cross sections are not reproduced. Inter-
estingly, the FSI corrected contributions are well described by our method when we
“switch off” FSI.

In the following, we discuss possible origins of the discrepancies.

Energy reconstruction

The ratio CC1π+/CCQE, the CCQE and the CC1π+ cross section are presented in
terms of the neutrino energy. We have discussed in Section 13.4 that the neutrino
energy is not an observable but has to be reconstructed from the measured final-
state particles, in case of CCQE from the outgoing muon according to Eq. (13.2) (see
page 217).

In the case of the ratio, the MiniBooNE collaboration reconstructs the neutrino en-
ergy for both samples (CCQE and CC1π+) from the observed muon kinematics, treat-
ing the interaction as a 2-body collision and assuming that the target nucleon is at rest
inside the nucleus [MiniBooNE09a]:

Eν =
1
2

2MNEµ + M2
f − M2

N − m2
µ

MN − Eµ + cos θµ

√
E2

µ − m2
µ

. (15.2)

MN is the mass of the nucleon, mµ is the mass of the muon, θµ its scattering angle
and Eµ its energy. M f is the mass of the neutron in CCQE events or the Breit-Wigner
mass of the P33(1232) resonance in CC1π+, respectively. This formula thus assumes
that all pions are produced through the excitation of the ∆ resonance which is taken
to be a state of fixed mass, or, in other words, its spectral function is taken to be a
δ-function. Binding effects are neglected here — for CCQE, this formula agrees with
Eq. (13.2) for EB = 0.

Fig. 15.16 shows the reconstructed energy distribution according to Eq. (15.2) for
the CCQE-like sample and the CC1π+ sample (before and after FSI). The shape of the
dash-dotted and the dotted curves have been discussed already in Section 13.4: Fermi
motion broadens the peak and the fake CCQE events cause the bump at lower recon-
structed energies. Also the reconstructed energy from the pion sample is affected by
Fermi motion (dashed and solid lines). A further broadening comes from the actual
shape of the ∆ resonance which is taken to be of δ-function-like shape in Eq. (15.2).
Overall, the reconstructed energy is centered around the real energy for both samples
even though with a slight tendency to lower reconstructed energies. Table 15.2 lists
the expected values for the reconstructed energy and the standard deviation. This
error, however, should be contained in the horizontal error bar of the data.
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Table 15.2: Expected value, E, and standard deviation, S, for the distributions shown
in Fig. 15.16 for Ereal

ν = 1 GeV.

E =
∫

∞

0 dErec
ν

Erec
ν
σ

dσ
dEν

S =
(∫

∞

0 dErec
ν

(Erec
ν −E)2

σ
dσ
dEν

)1/2

from π, before FSI 0.94 GeV 0.16 GeV (17%)
from π, after FSI 0.95 GeV 0.19 GeV (20%)

QE-like, before FSI 0.97 GeV 0.13 GeV (14%)
QE-like, after FSI 0.90 GeV 0.21 GeV (23%)
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15.4 Possible origins of the discrepancies and conclusion

Underestimate of elementary cross sections

Our results on nuclei depend directly on the νN cross sections. We have demon-
strated how the final pion results change when using the BNL pion data instead of
the ANL ones as a reference. Both data sets suffer from bad statistics. The obvious dif-
ference between these data already indicates a possible problem, maybe even a flux
problem. However, these data serve as a necessary input for our approach. While
our value of the dominant axial coupling, CA

5 (0) for the ∆ resonance, is based on a
PCAC prediction, the axial mass for the N − ∆ transition form factor is fixed by the
ANL or BNL data. Also the background is fitted to match the ANL data. Increasing
MA of the ∆ and maybe also of the other resonances, and increasing the background
would certainly improve the correspondence with the MiniBooNE data, but worsen
the agreement with ANL and BNL.

Our transport model has been tested independently against many different mea-
surements. Thus, we believe, that our pion absorption model gives realistic results.
On this basis, we conclude that the MiniBooNE data are inconsistent with the finding
of ANL and BNL.7

In the case of CCQE, the situation is different. Here, MA is expected to be around
1 (see discussion before) and the freedom to change the elementary cross section is
rather limited.

Data extraction

The MiniBooNE cross section measurements are based on Cherenkov light detection,
therefore, they require a detailed model of light production and propagation in the
tank.

We first focus on the NC1π0 cross section as measured by MiniBooNE. According
to G. Zeller [Zel], the events are selected as follows: any event in which there are (a)
no pions, (b) more than one π0, or (c) one π0 and other mesons that leave the target
nucleus are counted as background and subtracted. All events in which only one
π0 and no other mesons leave the target nucleus including events in which π0’s and
other mesons are created elsewhere in the tank are counted as signal events and are
not subtracted. Thus, the cross section includes only those events that had one and
only one π0 exiting the initial target, and no other mesons. So events where there was
no π0 exiting the target nucleus, but one was created in the tank are excluded. Events
where one and only one π0 exited the target nucleus but other particles were created
in transit in the tank are included. The same event selection holds correspondingly
for the CCπ+ sample.

7Note that MiniBooNE’s event generator has 30% less pion absorption than our approach and a
coherent contribution much larger than current predictions [Zel] — they state that their data are
consistent with the ANL data [MiniBooNE09a].
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15 Predictions and comparison with data

Since the cross section is defined based on what exited the target nucleus — the
pions produced afterwards in the tank have been removed —, it is based on the NU-
ANCE simulation which serves as an input for the detector simulation. The amount
of pions produced in tank (i.e., the background they subtract) depends directly on
the NUANCE ISI and FSI modeling — if this is not correct, then also the background
prediction is not correct because, both, the neutrino event simulation and the detector
simulation are not independent. For example, if NUANCE had less pion absorption
than in reality, more pions would leave the nucleus. In the GEANT detector simula-
tion, these additional pions, e.g., NCπ+, could then undergo charge exchange in the
tank and might be counted as NC1π0 and would cause a wrong prediction of back-
ground events. Note that also knocked out nucleons can give rise to additional pions
through reinteractions in the tank. The amount of pions produced in the tank is even
comparable to that of pions produced inside the nucleus [MiniBooNE09f], so it is not
a small correction.

It is clear, that these effects change the extracted pion cross sections, but without
a detailed simulation of the MiniBooNE detector we cannot provide any numbers
or conclusive statements and have to rely on the systematic error provided by the
MiniBooNE collaboration.

For CCQE measurements, we already addressed the problem of the background
subtraction in Section 15.1.

Neutrino flux

All absolute cross section measurements, CCQE, CC1π+ and NC1π0, are directly
related to the predicted or measured neutrino flux. Changing the flux by a certain
factor would immediately change all these cross sections by the same factor.

Predictions of the neutrino flux are strongly model dependent and very complex.
Even if one only varies the proton-induced pion production cross section and keeps
all other parts of the simulation identical, the largest flux estimate is about a factor
of four higher than the lowest [Sch08a]! An accurate flux prediction is important for
neutrino cross section measurements, thus, several experiments have been set up to
measure the hadron production directly, e.g., the HARP experiment [HARP]. In the
case of MiniBooNE and SciBooNE, the neutrino flux is predicted using the HARP
pion production data [MiniBooNE09c].

However, it has been claimed that measuring the primary hadron production cross
section is by far not enough to determine the neutrino flux [Kop09]. First, most par-
ticle experiments are performed on thin targets, while most neutrino cross section
experiments use a thick target in their proton beam. The reinteractions are estimated
to account for a 20–30% effect. Even the temperature of the target hall, beam degra-
dations over time, downstream interactions, the earth magnetic field and more effects
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15.4 Possible origins of the discrepancies and conclusion

can change the neutrino beam. Most of them are not even included in the flux calcu-
lations.

An in situ measurement of the neutrino flux itself in MiniBooNE based on CCQE
events has shown a disagreement: the observed rate of interactions is a factor of about
1.2 higher than the predicted rate even after increasing MA [MiniBooNE09c]. But, the
MiniBooNE collaboration states that “the observed and predicted rates are compatible
because of the large uncertainty in the predicted rates.”

Conclusion

We have addressed some points which certainly influence either our predictions or
even the data. No definite solution for the observed discrepancies has been found, and
final conclusions cannot yet be drawn. More data, which are as model-independent as
possible, are certainly needed. We emphasize that only with such model-independent
acceptance-corrected data one can perform meaningful comparisons with theoretical
calculations. The approach, started by MiniBooNE, to report “observed” cross sec-
tions instead of FSI corrected quantities is an important step in this direction even
though the data still contain a lot of modeling.8 Hopefully, upcoming data from
MINERνA9 will help to clarify the existing discrepancies and give further hints where
to improve our modeling.

8See also the comments by G. Zeller [Zel09].
9Also SciBooNE will provide high-statistics cross section measurements. However, SciBooNE uses

the same predicted flux as MiniBooNE.
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16
Summary and conclusive remarks

In this thesis, we have investigated neutrino interactions with nucleons and nuclei at
intermediate lepton energies, i.e., beam energies ranging from 0.5 to 2 GeV. To this
aim we have developed a model able to describe neutrino reactions with nucleons
and nuclei on the same basis as in electron-induced scattering.

First, we have presented our model for elementary lepton-nucleon scattering via
EM, CC and NC where we have focused on the quasielastic and resonance region.
The extension to finite nuclei has been done in the framework of a coupled-channel
BUU transport theory which takes into account various in-medium modifications and
final-state interactions. In particular, we have studied the influence of nuclear effects
on inclusive scattering, pion-production mechanisms and nucleon knockout. Finally,
this model has been applied to current and future neutrino long-baseline experiments.
We have emphasized the importance of nuclear effects for neutrino oscillation mea-
surements; furthermore, we have compared our results to recent cross section mea-
surements and have presented various predictions.

16.1 Summary

After the introduction in Part I, we have introduced our model for the elementary ℓN

reaction in Part II of this work. We treat EM, CC and NC within the same formal-
ism which has been detailed in Chapter 2 and Chapter 3. In the energy regime from
0.5 to 2 GeV, the scattering process is dominated by three contributions: quasielastic
scattering, resonance excitation and non-resonant pion production. QE scattering (cf.
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Chapter 4) and resonance excitation — we include 13 N∗ and ∆ resonances with in-
variant masses less than 2 GeV — (cf. Chapter 5) are both described with a relativistic
formalism that incorporates recent form factor parametrizations. EM, CC and NC
form factors are connected via isospin relations. For the nucleon vector form factors
we apply the latest BBBA-2007 analysis accounting for new electron scattering data;
the N − ∆ and N − N∗ vector form factors are based on the recent MAID analysis for
the helicity amplitudes. The axial couplings has been obtained applying the PCAC
theorem. The Q2 dependence of the nucleon and the N − ∆ axial form factors, FA and
CA

5 , is fitted to bubble chamber neutrino-scattering data. For the non-resonant pion
background discussed in Chapter 6, we have used a technique based on invariant
amplitudes taken from MAID, allowing us to incorporate background terms not only
for EM, but also for CC processes, where the additional non-vector parts were fitted
to the ANL data for total pion production cross sections.

All other available models for resonance excitation based on phenomenological
form factors include at most the four lowest lying resonances while we have included
the full set of MAID which includes 13 resonances. A similar set has been included in
the Rein and Sehgal model, a microscopic approach based on a quark model; however,
we have shown in Section 5.5.2 that their model fails for electron scattering.

Part III is devoted to the study of neutrino-nucleus scattering: in our approach, we
treat neutrino-nucleus scattering as a two-step process. In the initial-state step, the
neutrinos interact with nucleons embedded in the nuclear medium. In the final-state
step, the outgoing particles of the initial reaction are propagated through the nucleus
using a hadronic transport approach — the GiBUU coupled-channel transport model
described in Chapter 7.

The neutrino-nucleon cross sections are modified in the nuclear medium (cf. Chap-
ter 8). We use a local Thomas-Fermi approximation for the phase space density of
the bound nucleons based on realistic nuclear densities. The nucleons are exposed
to a mean-field potential which depends on density and momentum. We account for
this by evaluating the νN cross sections with full in-medium kinematics, i.e., hadronic
tensor and phase-space factors are evaluated with in-medium four-vectors. We also
take Pauli blocking and in-medium spectral functions of the outgoing hadrons into
account. The imaginary part of the self energies entering the spectral functions are
calculated in a consistent way employing the low-density approximation, the real part
of the self energies is obtained from dispersion relations.

After the initial neutrino-nucleon interaction, the produced particles propagate out
of the nucleus. During propagation they undergo FSI which are simulated with the
coupled-channel semi-classical GiBUU transport model (cf. Chapter 7). It models the
full space-time evolution of the phase space densities of all relevant particle species
during a nuclear reaction within a consistent treatment of the initial vertex and the
final state processes. This space-time evolution is determined by the BUU equations,
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which describe the propagation of the particles in their mean-field potentials and
also the collisions between them — resonances are treated explicitly. Nucleons and
resonances acquire medium-modified spectral functions and are propagated off-shell.
Hereby we ensure, that vacuum spectral functions are recovered after leaving the
nucleus. The collision term accounts for changes (gain and loss) in the phase-space
density due to elastic and inelastic collisions between the particles, and also due to
particle decays into other hadrons. Baryon-meson two-body interactions (e.g., πN →
πN) are described by resonance contributions and a small non-resonant background
term; baryon-baryon cross sections (e.g., NN → NN, RN → NN, RN → R′N, NN →
πNN) are either fitted to data or calculated, e.g., in pion exchange models. The
three-body channels πNN → NN and ∆NN → NNN are also included. The BUU
equations for all particle species are thus coupled through the collision term and also
through the potentials. Such a coupled-channel treatment is required to account for
side feeding into different channels.

A major strength of the GiBUU model is that it has been applied to many different
reactions from heavy ion collisions to pion and electron induced processes. Unlike
most Monte Carlo event generators presented in Section 12.2, we do not tune any
specific input (like for example pion absorption cross sections) to describe a specific
reaction channel (like for example neutrino induced pion production). To the con-
trary, we include as much physics as possible and are thus in a position to explain
simultaneously a wide range of very different reactions. We conclude from the suc-
cessful comparison of the GiBUU calculations for pion, photon and electron induced
reactions to experimental data, that the treatment of initial and final-state interactions
is under good control and leads to reliable predictions. The comparison with data
for the reactions mentioned allows to make estimates for the expected accuracy in
neutrino-induced reactions.

Inclusive scattering of leptons off nuclei has been investigated in Chapter 9. We
have shown how the inclusion of mean-field potentials and in-medium spectral func-
tions modifies the cross sections. When comparing our results for electron induced
processes to the experimental electron scattering data on Oxygen and Carbon, we
achieve good agreement both in the QE region as well as in the pion production
region. The overall agreement is improved by taking into account mean fields and in-
medium spectral functions in addition to a local Fermi gas momentum distribution.
Taking the in-medium modifications on the electron scattering results as a bench-
mark, we have made predictions for CC and NC inclusive scattering at beam energies
ranging from 0.5 up to 2 GeV relevant for current and future neutrino oscillation
experiments. We further have compared our CC and EM results to other, very differ-
ent approaches and found reasonable agreement. In particular, a comparison to the
results in the QE region obtained within a complex nuclear many-body calculation
shows that our implementation of in-medium modifications provides an effective and
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efficient treatment of nucleon properties in the medium.
Neutrino-induced pion production off nuclei has been the focus of Chapter 10. For

CC neutrino-induced pion production, we have found that the in-medium corrections
and, especially, final-state interactions reduce the pion cross sections and also give
rise to a small fraction of π− which cannot be produced in the initial νN reaction.
Quasielastic scattering followed by π production in NN collisions contributes only
weakly to the pion production cross section. In the kinematical region under investi-
gation, the pions originate mainly from the initial ∆ excitation. Furthermore, we have
found an enhancement of the π0 channel through side-feeding from the dominant π+

channel. Also in the NC case, pion production cross sections are especially influenced
by final-state interactions. In the elementary neutrino-nucleon reaction, more π0 than
charged pions are produced due to the isospin structure of resonance decay. When
final-state interactions are included, those π0 get absorbed or re-interact leading to
side-feeding in the smaller π± channels. Quasielastic scattering followed by π pro-
duction in NN collisions also accounts for a small fraction of the pion production
cross section.

In Chapter 11 we have illustrated the importance of final-state interactions for nu-
cleon knockout. High energy nucleons rescatter in the nucleus, which leads to a de-
crease of the flux at higher energies, but also to a large number of secondary knocked-
out nucleons with low kinetic energies. Side feeding is important also for nucleon
knockout: in the elementary CC quasielastic reaction, one the final state contains only
protons, but no neutrons, however, we have found that, as a consequence of the final-
state interactions, a large fraction of neutrons is knocked out. The same holds for in
the ∆ region where a large enhancement of neutrons due to final-state interactions is
observed. Also for NC nucleon knockout the importance of FSI is evident: we have
illustrated that for neutrino energies & 1 GeV initial resonance excitation (predomi-
nantly ∆) leads to a significant contribution to nucleon knockout.

Nucleon knockout is studied in many different models; only a few study pion pro-
duction. But we do not know of any other theoretical model than the one presented
here that considers both simultaneously. For example, ∆-induced nucleon knockout
or QE-induced pion production are not described with any other model. In this re-
spect, our approach is unique.

In Part IV of this work we have applied the model developed in Parts II and III to
questions relevant for current and future neutrino long-baseline experiments. Chap-
ter 12 serves as an introduction to the following chapters: here, we have summarized
the main LBL experiments — all of them use nuclear targets — and the Monte Carlo
event generators used in their analyses. In particular, we have emphasized the main
points where our approach differs from the phenomenological event generators like
NUANCE, NEUT and others and have stressed again the importance of neutrino inde-
pendent quality checks of the nuclear model, e.g., by comparing to photon or electron
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data.
Chapter 13 addresses the relevance of CC reactions for neutrino disappearance ex-

periments. We have discussed that a correct identification of CCQE events is relevant
for the neutrino energy reconstruction and thus for the oscillation result. A signif-
icant part of CC1π+ events is detected as CCQE-like which is caused by the pion
absorption in the nucleus. We have investigated their influence on the neutrino en-
ergy reconstruction and on the CCQE cross section which is the signal channel in
oscillation experiments stressing the effect of final-state interactions.

The importance of NC reactions for νe appearance searches has been investigated
in Chapter 14. After reviewing MiniBooNE’s oscillation result we have discussed
two examples, NC1π0 production and radiative ∆ decay, and how they can possibly
influence the oscillation signal. Again, we have focused on the influence of final-state
interactions.

Finally, in Chapter 15, we have presented our predictions and, where possible,
compared our results for NC and CC induced reactions to recent data measured at
MiniBooNE and K2K. Until recently, there has been a trend to “correct” the raw data
using specific Monte Carlo event generator with specific assumptions on the initial
neutrino nucleon cross section and the nuclear model. Now MiniBooNE started to
provide more model independent data. However, our calculations underestimate the
MiniBooNE data significantly. We have discussed several possible origins for these
discrepancies. To solve this problem, more data also from other experiments are
needed. These data should be as model-independent as possible to perform mean-
ingful comparisons with theoretical calculations.

16.2 Outlook and future improvements

Finally, we discuss some possible future improvements. On the nucleon level, first pri-
ority has the improvement of the non-resonant single-pion background. As pointed
out in Chapter 6, we use the same functional form for the vector and axial contri-
butions which has no underlying justification except that this procedure succeeded
in describing the data. One option would be to replace our phenomenological ap-
proach by a microscopical calculation, e.g., along the lines of Ref. [HNV07]. However,
the advantage of our approach is that it includes much more contributions and that
the vector part is directly constrained by electron data. A microscopical calculation
beyond the ∆ region is a highly non trivial task and has not yet been performed. Fur-
thermore, our model on the nucleon still does not include a non-resonant two-pion
background.

In view of the neutrino experiments operating at energies of a few GeV up to 20
GeV, a natural expansion of our model is the extension to higher energies, i.e., the
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inclusion of DIS scattering off the nucleon. This is already in progress and we have
shown first implications in Section G.2.

Concerning the transport part of our approach, a modification of the off-shell trans-
port seems to be advisable. We have discussed the off-shell potential in detail in
Section 7.8 and pointed out that this method is both time and computing resource
consuming. In view of its little implication on observables (see Sections 10.4 and
11.4), this effort is not justified.

We have discussed in Chapter 9 that we do not fully resemble the peak shift for the
lowest-energy electron-scattering QE data. Our local Thomas-Fermi ansatz leads to
a r-dependent Fermi energy. Thus, nucleons close to the surface encounter a smaller
Fermi energy than those in the center of the nucleus. Since most nucleons sit in
the surface this could explain our missing peak shift. A possible improvement is to
determine the local Fermi momentum not from measured density profiles via pF ∼
ρ1/3 but by requiring the Fermi energy to be constant and hereby fix Fermi momentum
and densities. However, this method would lead to densities which do not reach far
enough out — they become zero at the classical turning point. Possible implications,
e.g., for the particle propagation, need to be investigated.

16.3 Conclusion

Summarizing, we have presented in this thesis a consistent model for EM, CC and
NC reactions off nucleons and nuclei in the energy regime of interest for current
neutrino experiments. In-medium corrections, in particular the influence of final-
state interactions, are found to be of considerable importance. Their understanding
— within a well-tested transport model — is crucial for the interpretation of present
and future experiments in order to distinguish extraordinary “new physics” from
“profane” nuclear effects. We believe that our model with its unique features is well
suited for this task.
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Appendices





A
Reference formulae

A.1 Units and constants

Units with h̄ = c = 1 are used throughout this work. For all masses, energies and
momenta we take “GeV” as standard unit, and cross sections have the dimension
GeV−2. Neutrino cross sections are commonly given in units of 10−38 cm2. To convert
to an area, one uses

1 GeV−2 = 3.8939 · 1010 · 10−38 cm2 = 0.38939 mb, (A.1)

where 1 mb = 10−31 m2 = 0.1 fm2. Thus, we obtain the following relations:

• 10−38 cm2 = 10−11 mb = 10−5 nb = 10−2 pb

• 10−40 cm2/ MeV = 10 · 10−38 cm2/ GeV

Abbreviations are listed in Table A.1 and the numerical values of the constants used
in this work are given in Table A.2.

A.2 Notation and definitions

The notations used throughout this thesis are summarized in Table A.3. Three-
momenta are given by bold letters, e.g., p; their absolute values by italic letters, e.g.,
|p| = p. Four-momenta are given by italic letters, e.g., pµ = p (the Lorentz index
is not always written explicitly). The free nucleon mass is always denoted by MN,
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Table A.1: Abbreviations used throughout this work.

abbreviations
BG non-resonant single-pion background

CC charged current

CVC conserved vector current
DIS deep inelastic scattering

FSI final-state interaction
ISI initial-state interaction
LBL long-baseline

LTF local Thomas-Fermi
NC neutral current
OSP off-shell potential

PCAC partially conserved axial current

QE quasielastic

R resonance

Table A.2: Set of constants used throughout this work. The values are taken from the
Particle Data Group [PDG08].

quantity symbol value

fine-structure constant α e2

4π = 1
137

Fermi coupling constant GF 1.16637 · 10−5 GeV−2

axial coupling constant gA 1.267

Cabbibo mixing angle cos θC 0.9745

weak-mixing angle sin2 θW 0.2228

nucleon mass MN 0.938 GeV
resonance masses MR values given in Table 5.1

pion mass mπ 0.138 GeV

muon mass mµ 0.105658369 GeV

electron mass me 0.00051099892 GeV
tau mass mτ 1.77699 GeV
neutrino mass mν 0
pion decay constant fπ 0.093 GeV
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Table A.3: Notation used throughout this work.

four-momentum mass

incoming lepton ℓ or νℓ k = (k0, |k|ez) mℓ or mν

incoming nucleon N p = (p0, p) MN

outgoing lepton ℓ′ or νℓ′ k′ = (k′0, k′) mℓ′ or mν

outgoing nucleon N′ p′ = (p′0, p′) MN

outgoing resonance R p′ = (p′0, p′) pole mass MR

invariant mass W =
√

p′2

outgoing pion π kπ = (k0
π, kπ) mπ

boson γ, W or Z q = (ω, q)

the Breit-Wigner mass of a resonance by MR, its invariant mass by W =
√

p′2. The
incoming lepton defines the z-axis; the direction of the outgoing lepton is given by

k′ = (|k′| sin θ cos φ, |k′| sin θ sin φ, |k′| cos θ). (A.2)

The four-vector of the exchanged boson reads

q = k − k′ = p′ − p, (A.3)

with the transferred energy
ω = k0 − k′0. (A.4)

Further, we define Q2 = −q2 and obtain

Q2 = −q2 = −(k − k′)2 = −(p′ − p)2

= −k2 − k′2 + 2kk′

= −m2
ℓ − m2

ℓ′ + 2k0k′0 − 2k · k′

= −m2
ℓ − m2

ℓ′ + 2k0k′0 − 2|k||k′| cos θ. (A.5)

The invariant mass, W, of the final hadronic system is given by

W2 = p′2 = (p + q)2. (A.6)

A.3 Metric and conventions

We generally follow the conventions of Bjorken and Drell [BD67] (except for the spinor
normalization).
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Metric tensor

gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (A.7)

Pauli matrices

The components of the Pauli spin vector σ = (σ1, σ2, σ3) are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.8)

Dirac matrices

γµ = (γ0, γ), {γµ, γν} = 2gµν, (A.9)

(A.10)

γ0 = γ0 =

(
12 0
0 −12

)
, γ =

(
0 σ

−σ 0

)
. (A.11)

Important combinations are

γ5 = γ5 = iγ0γ1γ2γ3 =

(
0 12

12 0

)
, (A.12)

{
γµ, γ5

}
= 0, γ2

5 = 14, (A.13)

σµν =
i
2

[γµ, γnu] . (A.14)

1n stands for the n × n unit matrix.

Gell-Mann matrices

For the SU(3) Gell-Mann matrices we use

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , (A.15)

λ3 =




1 0 0
0 −1 0
0 0 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 , (A.16)
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with
λ± = (λ1 ± iλ2). (A.17)

Normalization of spinors

For both, fermions and bosons, we choose the normalization in which we have 2E

particles per unit volume, so that
〈

p′(s)|p(r)
〉

= 2E (2π)3 δ3 (
p′ − p

)
δrs. (A.18)

The orthogonality relations thus reads

u†(p, s)u(p, r) = 2Eδrs, (A.19)

and we get
ū(p, s)u(p, r) = 2mδrs. (A.20)

Completeness relation

For spin 1/2 particles: ∑

s

u(p, s)ū(p, s) = /p + m. (A.21)

For spin 3/2 particles:
∑

s

ψα(p, s)ψ̄β(p, s) = Λαβ(p) (A.22)

= − (/p + m)

(
gαβ −

2
3

pα pβ

m2 +
pαγβ − pβγα

3m
− 1

3
γαγβ

)
. (A.23)

Dirac equation

The positive-energy four-component spinor u satisfies

(/p − m) u(p, s) = 0, (A.24)

with /p = γµ pµ.

Hermitian conjugate of spinor matrix elements

[
ū(p′, s′)Γu(p, s)

]†
= ū(p, s)Γ̃u(p′, s′), (A.25)

where ū = u†γ0; Γ is any combination of γ matrices and

Γ̃ = γ0
Γ

†γ0. (A.26)

For example, we find γ̃µ = γµ and γ̃µγ5 = γµγ5.
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A.4 Isospin operators

We use the conventions of Ericson and Weise (cf. Appendices 3 and 6 in Ref. [EW88]).

A.4.1 Nucleons and isospin 1/2 resonances

The proton and the neutron (and correspondingly, all isospin 1/2 resonances) build
an isospin doublet

|p〉 =

(
1
0

)
, |n〉 =

(
0
1

)
. (A.27)

The isospin matrices build a vector in isospin space

τ = (τ1, τ2, τ3), (A.28)

where the definition of τi is as for the Pauli matrices given in Eq. (A.8). With the
combination

τ± =
1
2
(τ1 ± iτ2) (A.29)

we obtain
τ−|p〉 = |n〉, τ+|n〉 = |p〉, τ+|p〉 = τ−|n〉 = 0. (A.30)

A.4.2 Pions

The charge components, φ± and φ0, of the pion field form an isovector φ written in
Cartesian isospin coordinates as

φ = (φ1, φ2, φ3). (A.31)

We define

φ± =
1√
2
(φ1 ± i φ2), φ0 = φ3, (A.32)

where φ− creates a π− or annihilates a π+, and φ+ creates a π+ or annihilates a π−.
The scalar product with the isospin 1/2 matrix τ follows to

τ · φ = τ1φ1 + τ2φ2 + τ3φ3 =
√

2(τ+φ− + τ−φ+) + τ3φ0. (A.33)

A.4.3 Isospin 3/2 resonances

The four charge states (R++, R+, R0, R−) form an isospin 3/2 quartet. The isospin
1/2 → 3/2 transition operator T is defined by the matrix elements of its components
Tλ (λ = −1, 0, +1) (cf. Eq. (A4.38) in Ref. [EW88])

〈
3
2

M

∣∣∣∣T
†
∣∣∣∣

1
2

m

〉
=

∑

λ

〈
3
2

M

∣∣∣∣T
†
λ

∣∣∣∣
1
2

m

〉
e∗λ, (A.34)
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with 〈
3
2

M

∣∣∣∣T
†
λ

∣∣∣∣
1
2

m

〉
=

(
1
2

m1λ

∣∣∣∣
3
2

M

)
. (A.35)

and

e+1 = − 1√
2




1
i
0


 , e0 =




0
0
1


 , e−1 = +

1√
2




1
−i
0


 . (A.36)

We further define

T†
±1 = ∓T†

1 ± iT†
2√

2
, T†

0 = T†
3 . (A.37)

A.4.4 Derivation of isospin factors

With the above conventions, we can determine the following isospin factors — de-
tailed compilations of the explicit forms can be found in Appendix A of Ref. [CSTL04],
on pages 70–71 in [Mos99] or in Appendix F.2 in Ref. [Pen02].

For the isospin 1/2 → 1/2 transition, we find

Ψ̄Rτ · φ ΨN = R̄+ π̄0 p − R̄0 π̄0 n +
√

2 R̄+ π̄− n +
√

2 R̄0 π̄+ p. (A.38)

In the same manner, we have for the isospin 1/2 → 3/2 transition

Ψ̄RT†φ ΨN = − R̄++π̄−p +

√
2
3

R̄+ π̄0p −
√

1
3

R̄+ π̄−n

+

√
1
3

R̄0 π̄+p +

√
2
3

R̄0 π̄0n + R̄−π̄+n. (A.39)

Note that π̄±,0 = π±,0.
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Cross sections and kinematics

B.1 General expression for the cross section

The general expression of the differential cross section for the collision of two particles
(i = 1, 2) and N outgoing particles ( f = 1, . . . , N) is given as (see, e.g., Ref. [IZ05]):

dσ =
(2π)4

4[(p1 · p2)2 − m2
1m2

2]
1/2

δ4


∑

f

p f −
∑

i

pi





∏

f

d4p f

(2π)3 δ(p2
f − m2

f )


∣∣M̄

∣∣2 ,

(B.1)
where we adopt the normalization given on page 269. For particles on their mass-
shell, we can further simplify this expression using that

d4p

(2π)3 δ(p2 − m2) =
d3p

(2π)3 2p0 =
1

(2π)3

√
p02 − m2

2
dΩ dp0. (B.2)

B.2 Kinematics of the lepton-nucleon interaction

We shall now evaluate the cross section — suited also for scattering off bound nucle-
ons and into broad states — for the general process

ℓ(k) + N(p) → ℓ′(k′) +
∑

f

X f (p′f ), (B.3)
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where X f can be any final-state particle, e.g., a nucleon ( f = 1), a resonance ( f = 1) or
a πN pair as in a background process ( f = 2). We always assume that the incoming
lepton moves in the z-direction, so that

k = (k0, 0, 0, |k|). (B.4)

Following Eq. (B.1), the cross section is given by the most general expression

dσ = (2π)4 δ4


k′ +

∑

f

p′f − k − p


 1

4

[
(k · p)2 − m2

ℓ M2
]−1/2

× d4k′

(2π)3 δ(k′2 − m2
ℓ′)

∏

f

d4p′f
(2π)3 δ(p′f

2 − M′
f
2
)|M̄|2. (B.5)

With the outgoing lepton on-shell,

k′0 =
√

k′2 + m2
ℓ′ , (B.6)

we can, using Eq. (B.2), further simplify the cross section formula and get

dσ = (2π)4 δ4


k′ +

∑

f

p′f − k − p


 1

4

[
(k · p)2 − m2

ℓ M2
]−1/2

×

√
k′0

2 − m2
ℓ′

2(2π)3 dk′0dΩk′
∏

f

d4p′f
(2π)3 δ(p′f

2 − M′
f
2
) |M̄|2. (B.7)

In case of scattering in the vacuum, M denotes the free mass of the incoming nucleon,
i.e., MN, and M′

f the one of the outgoing hadron f . In the nuclear medium the particles
are affected by the mean-field potential. Thus, all four-vectors appearing in these
equations are in-medium four-vectors. Furthermore, M denotes the effective mass of
the nucleon, i.e., M = MN + UN(r, p) with the scalar potential defined in Eq. (7.6)
(see page 83). The same applies to M′

f which, in the medium, is replaced by M′
f =

M f + U f (r′, p′). In general, the potentials may depend on position r and momentum
p or r′ and p′, respectively.

B.2.1 Cross section for a single-hadron final state

Now let us have a closer look at the final state X. First, we focus on single-hadron
final states as quasi-elastic scattering and resonance excitation, i.e., on processes like

ℓ(k) + N(p) → ℓ′(k′) + X(p′). (B.8)
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Starting from the general expression of Eq. (B.7) with f = 1 we obtain

dσ = (2π)4 δ4 (
k′ + p′ − k − p

) 1
4

[
(k · p)2 − m2

ℓ M2
]−1/2

×

√
k′0

2 − m2
ℓ′

2(2π)3 dk′0dΩk′
d4p′

(2π)3 δ(p′2 − M′2) |M̄|2, (B.9)

and, performing the integral over d4p′,

dσ =
1

32π2

[
(k · p)2 − m2

ℓ M2
]−1/2

√
k′0

2 − m2
ℓ′ dk′0dΩk′ δ((k + p − k′)2 − M′2) |M̄|2,

(B.10)
we arrive at

dσ

dk′0 dΩk′
=

dσ

dk′0 dφ d cos θ
=

|k′|
32π2

[
(k · p)2 − m2

ℓ M2
]−1/2

δ(p′2 − M′2) |M̄|2,

(B.11)
with the limits cos θ ∈ [−1, 1], φ ∈ [0, 2π] and k′0 ∈

[
mℓ′ , k0

]
; k′ and p′ are fully

defined for given k and p. M and M′ are either the bare (free) or the effective masses
of the particles as described on page 274.

Alternatively, one can express the cross section in terms of the Mandelstam variable
t with t = −Q2 = m2

ℓ + m2
ℓ′ − 2k0k′0 + 2|k||k′| cos θ (see Eq. (A.5)) which leads to

dt = 2|k||k′| d cos θ, (B.12)

and we obtain

dσ

dk′0 dφ dt
=

1
64π2

[
(k · p)2 − m2

ℓ M2
]−1/2 1

|k| δ(p′2 − M′2) |M̄|2. (B.13)

The limits in t are determined by setting cos θ to 1 or −1, respectively.
For on-shell nucleons, the δ-function can be integrated out. For broad states (like

resonances) in the final state, it is replaced by the spectral function of the particle,

δ(p′2 − M′2) → A(p′, r′), (B.14)

with M′ depending on position r′ and momentum p′ as defined on page 274. Hereby,
the norm of A is fixed to

∞∫

0

dp′2A(p′, r′) = 1. (B.15)
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B.2.2 Cross section for a two-hadron final state

Now we proceed with the cross section for a two-hadron final state, X, e.g., the Nπ

background,

ℓ(k) + N(p) → ℓ′(k′) + N′(p′) + π(kπ). (B.16)

Starting from the general expression of Eq. (B.7), we set f = 2 (number of final-state
particles) and begin with

dσ = (2π)4 δ4(k′ + p′ + kπ − k − p)
1
4

[
(k · p)2 − m2

ℓ M2
]−1/2

×

√
k′0

2 − m2
ℓ′

2(2π)3 dk′0dΩk′
d4p′

(2π)3 δ(p′2 − M′2)
d4kπ

(2π)3 δ(k2
π − m2

π) |M̄|2. (B.17)

Assuming that the outgoing pion is on the mass-shell, using Eq. (B.2), we can further
simplify the cross section formula to

dσ = (2π)4 δ4(k′ + p′ + kπ − k − p)
1
4

[
(k · p)2 − m2

ℓ M2
]−1/2

×

√
k′0

2 − m2
ℓ′

2(2π)3 dk′0dΩk′
d4p′

(2π)3 δ(p′2 − M′2)

√
k0

π
2 − m2

π

2(2π)3 dk0
πdΩkπ

|M̄|2. (B.18)

Next, we perform the integral over d4p′

dσ =
1

512π5

[
(k · p)2 − m2

ℓ M2
]−1/2

×
√

k′0
2 − m2

ℓ′dk′0dΩk′ δ((k + p − k′ − kπ)2 − M′2)
√

k0
π

2 − m2
π dk0

πdΩkπ
|M̄|2,

(B.19)

and we arrive at

dσ

dk′0dΩk′dk0
πdΩkπ

=
|k′||kπ |
512π5

[
(k · p)2 − m2

ℓ M2
]−1/2

δ(p′2 − M′2) |M̄|2 (B.20)

with p′ = k + p − k′ − kπ, |k′| =

√
k′0

2 − m2
ℓ′ and |kπ | =

√
k0

π
2 − m2

π. The δ-function
δ(p′2 − M′2) is now either replaced by the spectral function of the final nucleon or, in
case of on-shell nucleons, integrated out to eliminate the k0

π dependence. Depending
on whether the scattering process happens in the vacuum or in the medium, M and
M′ are either the bare (free) or the effective masses of the participating nucleons, as
explained on page 274.
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Table B.1: Threshold energies according to Eq. (B.24) for different combinations of the
final-state masses and mℓ = 0.

Mhadr = MN Mhadr = MN + mπ

mℓ′ = 0 0 GeV 0.175 GeV
mℓ′ = me ∼ 0 GeV 0.177 GeV
mℓ′ = mµ 0.111 GeV 0.305 GeV

mℓ′ = mτ 3.450 GeV 3.940 GeV

B.3 Kinematics

B.3.1 Energy thresholds for neutrino scattering

The total energy available for the reaction is given

s = (k + p)2, (B.21)

with the Mandelstam variable s. Energy conservation implies, that

s = (k + p)2 = (k′ + p′)2. (B.22)

The minimal energy in the cm frame required for a given channel to be open is mℓ′ +
Mhadr, thus, we have

(k + p)2 = m2
ℓ + M2

N + 2k0p0 − 2k · p = (mℓ′ + Mhadr)
2. (B.23)

Then, the minimal energy of the incoming lepton in the LAB frame reads

k0 =
(mℓ′ + Mhadr)

2 − M2
N − m2

ℓ

2(p0 − p3)
. (B.24)

For a nucleon at rest, with p = 0, we have p0 − p3 = MN and obtain the threshold
energies given in Table B.1.

B.3.2 Useful relations

Leptonic reactions can be described with different sets of variables, e.g., the incoming
lepton energy, k0, the outgoing lepton energy, k′0, and the scattering angle of the
outgoing lepton, cos θ, or — fully equivalent — k0, the lepton four-momentum transfer
squared, Q2, and the invariant mass, W, of the outgoing hadrons. In this section, we
give the relations that connect them.
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Figure B.1: Q2 distribution for k0 = 1 GeV, mℓ = 0 and mℓ′ = mµ as a function of the
energy transfer ω and scattering angle θ.

We start by relating the leptonic variables k0, k′0, cos θ to Q2 so that (cf., Eq. (A.5))

Q2 = −m2
ℓ − m2

ℓ′ + 2k0(k′0 − |k′| cos θ). (B.25)

As an example, we show in Fig. B.1 the Q2 distribution for k0 = 1 GeV, mℓ = 0 and
mℓ′ = mµ.

For the following illustrations, we make the assumption, that the initial nucleon is
at rest, i.e, p = (MN, 0). Then, the invariant mass W of the final hadronic system is
given by

W2 = −Q2 + M2
N + 2MNω, (B.26)

which is plotted in Fig. B.2 for the same sample as above. The absolute momentum
of the final state reads

|p′| =
√

q2 =
√

Q2 + ω2 , (B.27)

and is shown in Fig. B.3 for the same kinematics as above.
The value of Q2 at the quasielastic peak or vice versa, the position of the peak in ω

— in the nucleon rest frame and neglecting any binding — is then derived by setting
in Eq. (B.26) W = MN. We get

Q2 = 2MNω. (B.28)

Rewriting Q2 in terms of the variables ω and cos θ according to Eq. (B.25) gives

ω =
Q2

2MN
=

−m2
ℓ − m2

ℓ′ + 2k0(k′0 − |k′| cos θ)

2MN
. (B.29)
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Figure B.2: W distribution for k0 = 1 GeV, mℓ = 0 and mℓ′ = mµ as a function of the

energy transfer ω = k0 − k′0 and scattering angle θ under the assumption that the
initial nucleon is at rest.
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Figure B.3: |p′| distribution for k0 = 1 GeV, mℓ = 0 and mℓ′ = mµ as a function of

the energy transfer ω = k0 − k′0 and scattering angle θ under the assumption that the
initial nucleon is at rest.
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Figure B.4: Relation between kinetic energy and momentum for nucleons, pions and
muons.

This can be further simplified for mℓ = mℓ′ = 0, so that

ω =
k0k′0

MN
(1 − cos θ). (B.30)

Finally, we show in Fig. B.4 the relation between kinetic energy and momentum for
nucleons, pions and muons according to

T = E − m =
√
|p|2 + m2 − m. (B.31)

B.3.3 Limits

The limits in k′0, cos θ and φ are given by

mℓ′ ≤ k′0 ≤ k0, (B.32)

−1 ≤ cos θ ≤ 1, (B.33)

0 ≤ φ ≤ 2π. (B.34)

The limits in W and Q2 are nicely derived on page 10 of Ref. [HNV07] (see also
their Figure 3). In the following, we summarize the results. We take as independent
variables k0, W and Q2. For a given incoming lepton energy, W is fixed in the range

Mhadr ≤ W ≤
√

s − mℓ′ , (B.35)
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with s = (k + p)2 = MN(MN + 2k0). Mhadr is the minimal mass of the final hadronic
system, e.g., MN or MN + mπ. Then, q2 = −Q2 lies in the interval

[
m2

ℓ′ − 2Ecm

(
E′

cm +
√

E
′2
cm − m2

ℓ′

)]
≤ q2 ≤

[
m2

ℓ′ − 2Ecm

(
E′

cm −
√

E
′2
cm − m2

ℓ′

)]
,

(B.36)
with Ecm = (s − M2

N)/(2
√

s) and E′
cm = (s − W2 + m2

ℓ′)/(2
√

s).
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C
Feynman rules and electro-weak

transition matrix elements

C.1 Feynman rules

External particle: An external line, representing a lepton or a quark, corresponds to
a spinor u(k, s) (v̄(k, s)) for incoming (anti-)particles, or ū(k′, s′) (v(k′, s′)) for outgoing
(anti-)particles.

Propagators:

• Photon:
i

q2 (−gµν) (C.1)

• Massive vector boson:

i
q2 − M2

V

(
−gµν +

qµqν

M2
V

)
|q2|≪M2

V−−−−−→ i gµν

M2
V

(C.2)

MV is either the W± or of the Z boson mass.

Vertices:

• Electromagnetic vertex:
− ieγµ ≡ −i

√
4παγµ (C.3)
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C Feynman rules and electro-weak transition matrix elements

• Weak vertex (W exchange):

− i
g√
2

c γµ
1 − γ5

2
(C.4)

with c = 1 for leptons, and c = Uqq′ for quarks, where Uqq′ is the appropriate
entry of the Cabbibo-mixing matrix.

• Weak vertex (Z exchange):

−ie
sin θW cos θW

γµ

(
cL

1 − γ5

2
+ cR

1 + γ5

2

)
(C.5)

cL and cR are defined as

cL cR

neutrinos 1
2 0

up quarks +1
2 − 2

3sin2 θW −2
3sin2 θW

down quarks −1
2 + 1

3sin2 θW
1
3sin2 θW

Relations between electromagnetic and weak couplings. In the static limit of |q2| ≪
M2

V , the weak coupling can be expressed in terms of Fermi’s constant as

GF√
2

=
g2

8M2
W

=
e2

8M2
Zsin2 θW cos2 θW

, (C.6)

where

e = g sin θW , cos θW =
MW

MZ
. (C.7)

The values of the constants are given in Table A.2 on page 266.

C.2 Electro-weak transition matrix elements

Applying the Feynman rules summarized above one obtains the following ampli-
tudes.
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C.2 Electro-weak transition matrix elements

C.2.1 Electromagnetic transition (EM): ℓ−N → ℓ−X

The matrix element for EM reactions of charged leptons can be written as

M = 4παū(k′)γµu(k)
−igµν

q2

〈
X(p′f )

∣∣∣Jν(0)
∣∣∣ N(p)

〉

= i
4πα

Q2 ū(k′)γµu(k)
〈

X(p′f )
∣∣∣Jν(0)

∣∣∣ N(p)
〉

, (C.8)

and one obtains

CEM =
4πα

Q2 . (C.9)

C.2.2 Charged-current transition (CC): νN → ℓ−X

The matrix element for charged current reactions of neutrinos is given as

M =

(
g cos θC

2
√

2

)2

ū(k′)γµ(1 − γ5)u(k)
igµν

M2
W

〈
X(p′f )

∣∣∣Jν(0)
∣∣∣ N(p)

〉

= i
GF cos θC√

2
ū(k′)γµ(1 − γ5)u(k)

〈
X(p′f )

∣∣∣Jν(0)
∣∣∣ N(p)

〉
, (C.10)

so that

CCC =
GF cos θC√

2
. (C.11)

C.2.3 Neutral-current transition (NC): νN → νX

For neutral currents the matrix element is modified due to the different coupling and
reads

M =

(
e

2 sin θW cos θW

)2

ū(k′)γµ
1 − γ5

2
u(k)

igµν

M2
Z

〈
X(p′f )

∣∣∣Jν(0)
∣∣∣ N(p)

〉

= i
GF√

2
ū(k′)γµ(1 − γ5)u(k)

〈
X(p′f )

∣∣∣Jν(0)
∣∣∣ N(p)

〉
. (C.12)

Thus, the coupling reads

CNC =
GF√

2
. (C.13)
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D
Isospin relations

D.1 QE scattering and excitation of nucleon resonances:

isospin 1/2 to isospin 1/2 transition

In general, the isovector part of the current is given by

Jµ = (J
µ
1 , J

µ
2 , J

µ
3 ) = Vµ − Aµ, (D.1)

with

Vµ = (V
µ
1 , V

µ
2 , V

µ
3 ) = Vµ τ

2
(D.2)

Aµ = (A
µ
1 , A

µ
2 , A

µ
3 ) = Aµ τ

2
, (D.3)

where τ is the isospin 1/2 transition operator given by the Pauli matrices (cf. Ap-
pendix A.4). Vµ and Aµ are given in Eqs. (4.7) and (4.8) for QE scattering (Eqs. (5.5)
and (5.6) for spin 1/2 resonance excitation) where Fi (i = 1, 2) stands for the CC
form factors, FV

i , and FA for FA. For spin 3/2 resonances, Vµ and Aµ are given in
Eqs. (5.14) and (5.15) where CV,A

i , i = 3, . . . , 6, stands for the CC form factors CV,A
i .

In a transition between isospin 1/2 states, both, isoscalar and isovector parts of
the current contribute as shown in Section 2.3. Therefore, we further define for the
hypercharge part

V
µ
Y = Vµ

Y12, (D.4)
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D Isospin relations

which enters Eq. (2.32) and Eq. (2.34), and

V
µ
S = Vµ

S 12, (D.5)

A
µ
S = Aµ

S12, (D.6)

for the strange component entering Eq. (2.34) and Eq. (2.36), respectively. 12 is the 2×
2 unit matrix. Vµ

Y , Vµ
S and Aµ

S are given in Eqs. (4.7) and (4.8) for QE, in Eqs. (5.5) and
(5.6) for spin 1/2 and in Eqs. (5.14) and (5.15) for spin 3/2, but with the corresponding
form factors: Fi stands for either for FY

i or the strange form factor Fs
i , FA for Fs

A; CV
i

stands either for CY
i or CsV

i , CA
i for CsA

i .
We obtain for the electromagnetic transition matrix element using Eq. (2.32)

〈
N∗+

∣∣∣J
µ
EM

∣∣∣ p
〉

=

〈
N∗+

∣∣∣∣V
µ
3 +

1
2

V
µ
Y

∣∣∣∣ p

〉

=

〈
N∗+

∣∣∣∣Vµ τ3

2
+ Vµ

Y

12

2

∣∣∣∣ p

〉

=
Vµ + Vµ

Y

2
≡ Vµ

p , (D.7)

and, analogously,

〈
N∗0

∣∣∣J
µ
EM

∣∣∣ n
〉

=
−Vµ + Vµ

Y

2
≡ Vµ

n . (D.8)

This yields the relations

Vµ = Vµ
p − Vµ

n , (D.9)

Vµ
Y = Vµ

p + Vµ
n . (D.10)

Vµ
p and Vµ

n are given in Eq. (4.7) for QE (Eq. (5.5) for spin 1/2) but where Fi (i = 1, 2)
stands for the EM form factors, F

p
i and Fn

i . For spin 3/2 resonances, Vµ
p and Vµ

n are
given in Eq. (5.14) with CV

i replaced by C
p
i and Cn

i .
The vector part of the charged current transition matrix element is [Eq. (2.33)]

〈
N∗+

∣∣∣Vµ
CC

∣∣∣ n
〉

=
〈

N∗+
∣∣∣Vµ

1 + iVµ
2

∣∣∣ n
〉

=
〈

N∗+
∣∣∣Vµτ+

∣∣∣ n
〉

= Vµ, (D.11)

which together with Eq. (D.9) relates EM and CC form factors:
〈

N∗+
∣∣Vµ

CC

∣∣ n
〉

can be
written as Vµ

p −Vµ
n and thus, FV

i = F
p
i − Fn

i for nucleons and spin 1/2 resonances and
CV

i = C
p
i − Cn

i for spin 3/2 resonances.
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D.1 QE scattering and excitation of nucleon resonances: isospin 1/2 to isospin 1/2 transition

Applying the same procedure to NC, one gets with Eq. (2.34)
〈

N∗+
∣∣∣Vµ

NC

∣∣∣ p
〉

=

〈
N∗+

∣∣∣∣(1 − 2sin2 θW)V
µ
3 − sin2 θWV

µ
Y − 1

2
V

µ
S

∣∣∣∣ p

〉

=

〈
N∗+

∣∣∣∣(1 − 2sin2 θW)Vµ τ3

2
− sin2 θWVµ

Y12 − Vµ
S

12

2

∣∣∣∣ p

〉

=

(
1
2
− sin2 θW

)
Vµ − sin2 θWVµ

Y − 1
2
Vµ

S , (D.12)

and also
〈

N∗0
∣∣∣Vµ

NC

∣∣∣ n
〉

= −
(

1
2
− sin2 θW

)
Vµ − sin2 θWVµ

Y − Vµ
S

1
2

. (D.13)

The NC transition matrix elements are expressed in terms of Vµ, Vµ
Y and Vµ

S . Hereby,
we relate the NC form factors via Eq. (D.9) and Eq. (D.10) to the EM proton and
neutron form factors — in addition, strange form factors coming from VS have to be
considered. We find for the neutral current form factors

F̃
p
i =

(
1
2
− sin2 θW

) (
F

p
i − Fn

i

)
− sin2 θW

(
F

p
i + Fn

i

)
− 1

2
Fs

i

=

(
1
2
− 2sin2 θW

)
F

p
i − 1

2
Fn

i − 1
2

Fs
i , (D.14)

and

F̃n
i = −

(
1
2
− sin2 θW

) (
F

p
i − Fn

i

)
− sin2 θW

(
F

p
i + Fn

i

)
− 1

2
Fs

i

=

(
1
2
− 2sin2 θW

)
Fn

i − 1
2

F
p
i − 1

2
Fs

i , (D.15)

for spin 1/2 and analogous for spin 3/2 resonances.
One can proceed in the same way for the axial part and get with Eq. (2.35)

〈
N∗+

∣∣∣Aµ
CC

∣∣∣ n
〉

=
〈

N∗+
∣∣∣A

µ
1 + iAµ

2

∣∣∣ n
〉

=
〈

N∗+
∣∣∣Aµτ+

∣∣∣ n
〉

= Aµ, (D.16)

while, for neutral currents, with Eq. (2.36)
〈

N∗+
∣∣∣A

µ
NC

∣∣∣ p
〉

=

〈
N∗+

∣∣∣∣A
µ
3 +

1
2

A
µ
S

∣∣∣∣ p

〉

=

〈
N∗+

∣∣∣∣Aµ τ3

2
+ Aµ

S

12

2

∣∣∣∣ p

〉

=
Aµ + Aµ

S

2
, (D.17)
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and
〈

N∗0
∣∣∣A

µ
NC

∣∣∣ n
〉

=
−Aµ + Aµ

S

2
, (D.18)

which connects the NC axial form factors with the CC and the strange axial form
factors such that F̃

p
A = 1

2 FA + 1
2 Fs

A and F̃n
A = −1

2 FA + 1
2 Fs

A for spin 1/2 (analogous for
spin 3/2).

D.2 Excitation of ∆ resonances: isospin 1/2 to isospin 3/2

transition

The full electroweak current can expressed as

Jµ = Vµ − Aµ, (D.19)

with

Vµ = −
√

3
2
Vµ T+, (D.20)

Aµ = −
√

3
2
Aµ T+, (D.21)

where T+ is the 1/2 → 3/2 transition operator introduced in Appendix A.4. Vµ and
Aµ are given in Eqs. (5.5) and (5.6) for spin 1/2 resonances where Fi (i = 1, 2) stands
for the CC form factors, FV

i , and FA for FA. For spin 3/2 resonances, Vµ and Aµ are
given in Eqs. (5.14) and (5.15) where CV,A

i , i = 3, . . . , 6, stands for the CC form factors
CV,A

i .
The transition current between I = 1/2 and I = 3/2 is purely isovector, so that

Eq. (2.32) reads

J
µ
EM = V

µ
3 = V

µ
0 = −

√
3
2
VµT+

0 . (D.22)

This yields for the electromagnetic transition matrix element

〈
∆

+
∣∣J

µ
EM

∣∣ p
〉

= −
√

3
2
Vµ

(
1
2

1
2

1 0

∣∣∣∣
3
2

1
2

)
= −Vµ, (D.23)

〈
∆

0
∣∣∣J

µ
EM

∣∣∣ n
〉

= −
√

3
2
Vµ

(
1
2

− 1
2

1 0

∣∣∣∣
3
2

− 1
2

)
= −Vµ. (D.24)

The prefactor of
√

3
2 is chosen such that the electromagnetic matrix element carries

no isospin factor. The minus-sign in front is convention — it is consistent with what
is commonly found in the literature [SvH73].

290
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For the vector part of the weak charged current, we obtain with Eq. (2.33)

V
µ
CC = V

µ
1 + iVµ

2 = −
√

2

(
−

√
3
2
Vµ

)
T+

+1 =
√

3VµT+
+1 , (D.25)

and therefore

〈
∆

++
∣∣Vµ

CC

∣∣ p
〉

=
√

3Vµ

(
1
2

1
2

1 1

∣∣∣∣
3
2

3
2

)
=

√
3Vµ, (D.26)

〈
∆

+
∣∣Vµ

CC

∣∣ n
〉

=
√

3Vµ

(
1
2

− 1
2

1 1

∣∣∣∣
3
2

1
2

)
= Vµ. (D.27)

This agrees with the standard expression found in the literature (e.g., pages 144-145
in Ref. [FN79] and page 5 in Ref. [HNV07]). Since both the EM and the CC transition
matrix elements are expressed in terms of Vµ, we can relate the form factors so that
FV

i = −FN
i for spin 1/2 and CV

i = −CN
i for spin 3/2 (identical for N = p, n). In the

case of ∆++ excitation, the form factors need to be multiplied by
√

3 (cf. Eq. (D.26)).
Analogously, we get for the axial part of the charged current with Eq. (2.35)

A
µ
CC = A

µ
1 + iAµ

2 =
√

3AµT+
+1 , (D.28)

leading to
〈
∆

++
∣∣A

µ
CC

∣∣ p
〉

=
√

3Aµ, (D.29)
〈
∆

+
∣∣A

µ
CC

∣∣ n
〉

= Aµ. (D.30)

For neutral currents — again, only the isovector part of Eq. (2.34) and Eq. (2.36) is
present — we have

V
µ
NC = (1 − 2sin2 θW)V

µ
3 = (1 − 2sin2 θW)

(
−

√
3
2
Vµ

)
T+

0 , (D.31)

so that 〈
∆

+
∣∣Vµ

NC

∣∣ p
〉

=
〈

∆
0
∣∣∣Vµ

NC

∣∣∣ n
〉

= −(1 − 2sin2 θW)Vµ, (D.32)

and

A
µ
NC = A

µ
3 = −

√
3
2
AµT+

0 , (D.33)

leading to 〈
∆

+
∣∣A

µ
NC

∣∣ p
〉

=
〈

∆
0
∣∣∣A

µ
NC

∣∣∣ n
〉

= −Aµ. (D.34)

Relating the form factors using Eqs. (D.24) and (D.30) gives F̃N
i = (1 − 2sin2 θW)FN

i
and F̃N

A = −FA for spin 1/2, and NC̃V
i = (1 − 2sin2 θW)CN

i and NC̃A
i = −CA

i for spin
3/2.
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D Isospin relations

D.3 Isospin relations for the non-resonant background

We obtain the following relations between the vector contribution V
µ
CC and the elec-

tromagnetic current J
µ
EM:

〈
pπ+

∣∣Vµ
CC

∣∣ p
〉

=
√

2
〈

nπ0
∣∣∣J

µ
EM

∣∣∣ n
〉

+
〈

pπ− ∣∣J
µ
EM

∣∣ n
〉

, (D.35)
〈
nπ+

∣∣Vµ
CC

∣∣ n
〉

=
√

2
〈

pπ0
∣∣∣J

µ
EM

∣∣∣ p
〉
−

〈
pπ− ∣∣J

µ
EM

∣∣ n
〉

, (D.36)
〈

pπ0
∣∣∣Vµ

CC

∣∣∣ n
〉

=
〈

pπ0
∣∣∣J

µ
EM

∣∣∣ p
〉
−

〈
nπ0

∣∣∣J
µ
EM

∣∣∣ n
〉
−
√

2
〈

pπ− ∣∣J
µ
EM

∣∣ n
〉

. (D.37)
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E
Form factors and helicity amplitudes

Here we give details on the connection between the electromagnetic resonance form
factors and helicity amplitudes, which we apply to obtain the form factors from the
helicity amplitudes provided by MAID [MAID, TK06, DKT07].

The helicity amplitudes describe the nucleon-resonance transition depending on the
polarization of the incoming photon and the spins of the baryons; they can be defined
in various ways [WSPR90, Sto93, ABL08]. We use the following notation

AN
1/2 =

√
2πα

kR

〈
R, Jz = 1/2

∣∣∣ǫ+
µ J

µ
EM

∣∣∣ N, Jz = −1/2
〉

ζ,

AN
3/2 =

√
2πα

kR

〈
R, Jz = 3/2

∣∣∣ǫ+
µ J

µ
EM

∣∣∣ N, Jz = 1/2
〉

ζ, (E.1)

SN
1/2 = −

√
2πα

kR

|q|√
Q2

〈
R, Jz = 1/2

∣∣∣ǫ0
µ J

µ
EM

∣∣∣ N, Jz = 1/2
〉

ζ,

where kR = (W2 − M2
N)/2W and

|q|2 =
(W2 − M2

N − Q2)2

4W2 + Q2. (E.2)

W =
√

p′2 is the resonance mass; J
µ
EM is the electromagnetic transition current. The

phase, ζ, is given by the relative sign between the πNN and πNR couplings [WSPR90,
ABL08], which we have taken to be +1 (see also the discussion in Appendix F.1).
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The photon polarization vectors are given by

ǫ
µ
± = ∓ 1√

2
(0, 1,±i, 0) (transverse), (E.3)

and for a photon of momentum q moving along the z axis

ǫ
µ
0 =

1√
Q2

(|q|, 0, 0, q0) (longitudinal). (E.4)

Thus, A1/2 (A3/2, S1/2) corresponds to photons with positive (negative, zero) helicity.
Our definition of the helicity amplitudes — note in particular the minus sign of the

S1/2 amplitude — is consistent with MAID (cf. Eq. (16) in Ref. [TDK+04] or Eq. (24) in
Ref. [DKT07] where their ρ = q · J/q0 is introduced in Eq. (5) of Ref. [DT92]). While
A1/2 and A3/2 are transverse and Lorentz invariant, S1/2 is frame dependent. To be
consistent with MAID, the resonance rest frame has to be used for the calculation
[TAR]. We use the outcome of the MAID2005 analysis1 which has been provided to
us in form of a Fortran code by L. Tiator [Tia]2.

Note that the helicity amplitudes are taken at the Breit-Wigner mass MR, thus we
set W = MR in the following with the consequence that our resonance form factors
are functions of Q2 only. The uncertainties related with this assumption are discussed
in Appendix G.1.

The explicit relations between the amplitudes and the form factors are summarized
below.

E.1 Spin 1/2 resonances

For spin 1/2 resonances, only the A1/2 and S1/2 amplitudes are present.

E.1.1 Positive parity

In the case of positive parity, the electromagnetic current J
µ
EM is given by the one

defined in Eq. (5.5) with Fi (i = 1, 2) standing for the EM form factors, FN
i , with

N = p, n denoting the initial particle. We obtain

A
p,n
1/2 =

√
2πα

MN

(MR − MN)2 + Q2

M2
R − M2

N

[
Q2

4M2
N

F
p,n
1 +

MR + MN

2MN
F

p,n
2

]
(E.5)

1See Sec. 2 of Ref. [DKT07] for a history of MAID and the difference between different versions.
2see init/lepton/formfactors_ResProd/helicityAmplitudes.f90 in the GiBUU code directory.
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and

S
p,n
1/2 = −

√
πα

MN

(MN + MR)2 + Q2

M2
R − M2

N

(MR − MN)2 + Q2

4MRMN

[
MR + MN

2MN
F

p,n
1 − F

p,n
2

]
. (E.6)

E.1.2 Negative parity

In the case of negative parity, J
µ
EM is defined in Eq. (5.5) with an additional γ5 [Eq. (5.4)]

and Fi (i = 1, 2) standing for the EM form factors, FN
i . We find

A
p,n
1/2 =

√
2πα

MN

(MR + MN)2 + Q2

M2
R − M2

N

[
Q2

4M2
N

F
p,n
1 +

MR − MN

2MN
F

p,n
2

]
(E.7)

and

S
p,n
1/2 =

√
πα

MN

(MN − MR)2 + Q2

M2
R − M2

N

(MR + MN)2 + Q2

4MRMN

[
MR − MN

2MN
F

p,n
1 − F

p,n
2

]
. (E.8)

E.2 Spin 3/2 resonances

E.2.1 Positive parity

In the case of positive parity, the electromagnetic current is defined in Eq. (5.14) with
an additional γ5 [Eq. (5.12)] and CV

i , i = 3, . . . , 6, standing for the EM form factors CN
i

with N = p, n. This yields

A
p,n
1/2 =

√
πα

3MN

(MR − MN)2 + Q2

M2
R − M2

N

×
[

C
p,n
3

MN

M2
N + MN MR + Q2

MR
− C

p,n
4

M2
N

M2
R − M2

N − Q2

2
− C

p,n
5

M2
N

M2
R − M2

N + Q2

2

]
,

(E.9)

A
p,n
3/2 =

√
πα

MN

(MR − MN)2 + Q2

M2
R − M2

N

×
[

C
p,n
3

MN
(MN + MR) +

C
p,n
4

M2
N

M2
R − M2

N − Q2

2
+

C
p,n
5

M2
N

M2
R − M2

N + Q2

2

]
(E.10)
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and

S
p,n
1/2 =

√
πα

6MN

(MR − MN)2 + Q2

M2
R − M2

N

√
[(MR − MN)2 + Q2][(MR + MN)2 + Q2]

M2
R

×
[

C
p,n
3

MN
MR +

C
p,n
4

M2
N

M2
R +

C
p,n
5

M2
N

M2
R + M2

N + Q2

2

]
. (E.11)

E.2.2 Negative parity

In the case of negative parity, the electromagnetic current is defined in Eq. (5.14) with
CV

i , i = 3, . . . , 6, standing for the EM form factors CN
i with N = p, n, and we get

A
p,n
1/2 =

√
πα

3MN

(MR + MN)2 + Q2

M2
R − M2

N

×
[

C
p,n
3

MN

M2
N − MN MR + Q2

MR
− C

p,n
4

M2
N

M2
R − M2

N − Q2

2
− C

p,n
5

M2
N

M2
R − M2

N + Q2

2

]
,

(E.12)
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(E.13)

and

S
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1/2 = −

√
πα

6MN
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. (E.14)
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F
Derivation of axial couplings

In this section, we derive the relations between the axial form factors and determine
the axial couplings applying PCAC, according to which the divergence of the axial
current is proportional to the pion mass squared (see Section 2.3.2). Thus, in the chiral
limit the axial current is conserved if we assume pion-pole dominance, i.e., we assume
that the pseudoscalar part is dominated by the one-pion exchange process, where a
pion is created at the nucleon-resonance vertex and then couples to the lepton pair1.
Its current is given by

A
µ
π = (n → R+π−) ×

(
i

q2 − m2
π

)
×

(
−i

√
2 fπqµ

)
, (F.1)

where fπ = 93 MeV is the pion decay constant. The hadronic vertices are specified in
the following.

F.1 Resonance interaction Lagrangians and widths

Here, we collect the relativistic Lagrangians used to extract the coupling of baryon
resonances to nucleons and pions.

1For QE scattering, we have discussed this issue in detail in Chapter 4 of Ref. [Lei05].
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F.1.1 Resonances with spin 1/2

The R1/2Nπ coupling is described by the pseudovector Lagrangian2

LR1/2Nπ =
f

mπ
Ψ̄R1/2

{
γµγ5

γµ

}
∂µφ · t Ψ, (F.2)

where the upper (lower) operator holds for positive (negative) parity resonances and
t = τ (t = T†) for I = 1/2 (I = 3/2) resonances (cf. Appendix A.4).

From this Lagrangian we deduce the following vertex factor

− i Ciso
f

mπ

{
γµγ5

γµ

}
. (F.3)

The isospin factor is Ciso =
√

2 for I = 1/2 and Ciso = −
√

1/3 for I = 3/2 resonances,
respectively (cf. Appendix A.4).

The coupling f can be obtained from the R1/2 → πN partial decay width according
to

ΓR1/2→πN =
IR

4π

(
f

mπ

)2

(MR ± MN)2 EN ∓ MN

MR
|qcm|, (F.4)

where the upper (lower) sign is for positive (negative) parity. |qcm| is the momentum
of the outgoing pion in the resonance rest frame

|qcm| =

√
(M2

R − m2
π − M2

N)2 − 4m2
π M2

N

2MR
. (F.5)

IR = 1 for isospin 3/2 and IR = 3 for isospin 1/2 resonances, and EN is the energy of
the outgoing nucleon in the resonance rest frame, given by

EN =
M2

R + M2
N − m2

π

2MR
. (F.6)

The couplings f /mπ are determined via Eq. (F.4) using the resonance properties
given in Table 5.1; the results are summarized in Table 5.4 on page 44. To be consistent
with the choice of ζ in Eq. (E.1), f /mπ has to be positive [WSPR90, ABL08].

F.1.2 Resonances with spin 3/2

The R3/2Nπ coupling is described by the Lagrangian

LR3/2Nπ =
f

mπ
Ψ̄µ

{
14

γ5

}
∂µφ · t Ψ, (F.7)

2One might instead use a pseudoscalar Lagrangian for the coupling of negative-parity resonances; we
refer the reader to Chapter 3.4.1 of Ref. [Pen02] and to page 50 of Ref. [BGPR96] for a discussion.
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where Ψµ is a Rarita-Schwinger Jπ = 3/2+ field. The upper (lower) operator holds
for positive (negative) parity resonances and and t = τ (t = T†) for I = 1/2 (I = 3/2)
resonances (cf. Appendix A.4).

From this Lagrangian we obtain the vertex factor

− i Ciso
f

mπ

{
14

γ5

}
, (F.8)

with the isospin factor Ciso =
√

2 for I = 1/2 and Ciso = −
√

1/3 for I = 3/2
resonances (cf. Appendix A.4).

The decay width, needed to extract the coupling f , is — for resonances with JP = 3
2
±

— given by

ΓR3/2→πN =
IR

12π

(
f

mπ

)2 EN ± MN

MR
|qcm|3, (F.9)

with |qcm|, EN and IR as above.
Using the resonance properties given in Table 5.1, we obtain the couplings f /mπ

summarized in Table 5.7 on page 50.

F.2 PCAC relations

F.2.1 Resonances with spin 1/2

The axial current for spin 1/2 resonance excitation reads

A
µ
1/2± =

〈
R(p′)

∣∣∣A
µ
1/2±(0)

∣∣∣ N(p)
〉

= ū(p′)A
µ
1/2

{
14

γ5

}
u(p)

= ū(p′)
(
−

[
FAγµγ5 +

FP

MN
qµγ5

]) {
14

γ5

}
u(p), (F.10)

where we have used in the last line the definition of A
µ
1/2 given in Eq. (5.6) on page 40.

A
µ
1/2 needs to be multiplied by γ5 for negative parity states, thus, the upper (lower)

operator holds for positive (negative) parity.
We then obtain for the divergence of the axial current A

µ
1/2±

∂µ A
µ
1/2± = −iqµ A

µ
1/2± = iū(p′)

[
FAqµγµ +

FP

MN
q2

] {
γ5

14

}
u(p)

= iū(p′)
[

FA(MR ± MN) +
FP

MN
q2

] {
γ5

14

}
u(p). (F.11)
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The PCAC hypothesis introduced in Section 2.3.2 implies that this divergence should
be proportional to the squared pion mass, m2

π, and thus vanishes in the chiral limit
(mπ → 0). This cannot be fulfilled with the first term, FA(MR ± MN), but when the in-
duced pseudoscalar term has a pion pole. So the next step is to calculate the pion pole
contribution to the current and compare that to the axial transition current. Starting
from Eq. (F.1) and using Eq. (F.3) we find

A
µ
π,1/2 = ū(p′)(−i) Ciso

f

mπ

{
γνγ5

γν

}
∂νφ u(p)

√
2 fπqµ

q2 − m2
π

= ū(p′)(−i) Ciso
f

mπ
γν (−iqν)

{
γ5

14

}
u(p)

√
2 fπqµ

q2 − m2
π

= −ū(p′) Ciso
f

mπ
γν (p′ν − pν)

{
γ5

14

}
u(p)

√
2 fπqµ

q2 − m2
π

= −ū(p′) Ciso
f

mπ
(MR ± MN)

{
γ5

14

}
u(p)

√
2 fπqµ

q2 − m2
π

. (F.12)

By comparing Eq. (F.10) with Eq. (F.12) we can identify

FP

MN
qµ = Ciso

f

mπ
(MR ± MN)

√
2 fπqµ

q2 − m2
π

, (F.13)

so that

FP = −Ciso

√
2 fπ

f

mπ

(MR ± MN)MN

Q2 + m2
π

, (F.14)

Then, ∂µ A
µ
1/2± reads

∂µ A
µ
1/2± = iū(p′)

[
FA(MR ± MN) +

FP

MN
q2

] {
γ5

14

}
u(p)

= iū(p′)
[

FA(MR ± MN) − Ciso

√
2 fπ

f

mπ

(MR ± MN)

Q2 + m2
π

q2
] {

γ5

14

}
u(p)

mπ→0−−−→ iū(p′)
[

FA(MR ± MN) + Ciso

√
2 fπ

f

mπ
(MR ± MN)

] {
γ5

14

}
u(p).

(F.15)

It vanishes if

FA(MR ± MN) = −Ciso

√
2 fπ

f

mπ
(MR ± MN), (F.16)

which yields the Goldberger-Treiman relation

FA = −Ciso

√
2 fπ

f

mπ
, (F.17)

which defines our axial coupling, FA(0), for the spin 1/2 resonances (summarized in
Table 5.4 on page 44).
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F.2.2 Resonances with spin 3/2

For the spin 3/2 resonances, we proceed in the same way as for the spin 1/2 reso-
nances. Here, the axial current is given by

A
µ
3/2± =

〈
R(p′)

∣∣∣A
µ
3/2±(0)

∣∣∣ N(p)
〉

=ψ̄α(p′)A
αµ
3/2

{
γ5

14

}
u(p)

=ψ̄α

(
−

[
CA

3

MN
(gαµ

/q − qαγµ) +
CA

4

M2
N

(gαµq · p′ − qα p′µ)

+ CA
5 gαµ +

CA
6

M2
N

qαqµ

]
γ5

{
γ5

14

} )
u(p), (F.18)

where we have used in the last line the definition of A
αµ
3/2 given in Eq. (5.15) on page

46. A
αµ
3/2 needs to be multiplied by γ5 for positive parity states, thus, the upper (lower)

operator holds for positive (negative) parity.

The divergence of the axial current A
µ
3/2± reads

∂µ A
µ
3/2± = − iqµ A

µ
3/2±

=iψ̄α

[
CA

3

MN
qµ(gαµ

/q − qαγµ) +
CA

4

M2
N

qµ(gαµq · p′ − qα p′µ)

+ CA
5 qµgαµ +

CA
6

M2
N

qµqαqµ

] {
14

γ5

}
u(p)

=iψ̄α

[
0 + 0 + CA

5 qα +
CA

6

M2
N

qαq2

] {
14

γ5

}
u(p)

=iψ̄αqα

[
CA

5 +
CA

6

M2
N

q2

] {
14

γ5

}
u(p). (F.19)

The PCAC hypothesis introduced in Section 2.3.2 implies that this divergence should
vanish if mπ → 0. This is not realized for the first term in Eq. (F.19) but when
the induced pseudoscalar term, CA

6 has a pion pole. The pion pole contribution is
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F Derivation of axial couplings

obtained from Eq. (F.1) with Eq. (F.8)

A
µ
π,3/2 = ψ̄α(p′)(−i) Ciso

f

mπ

{
14

γ5

}
∂αφ u(p)

√
2 fπqµ

q2 − m2
π

= ψ̄α(p′)(−i) Ciso
f

mπ

{
14

γ5

}
(−iqα) u(p)

√
2 fπqµ

q2 − m2
π

= −ψ̄α(p′) Ciso
f

mπ

{
14

γ5

}
qα u(p)

√
2 fπqµ

q2 − m2
π

. (F.20)

Comparing Eq. (F.18) with Eq. (F.20) yields

CA
6

M2
N

qαqµ = Ciso
f

mπ
qα

√
2 fπqµ

q2 − m2
π

, (F.21)

and thus

CA
6 = −Ciso

√
2 fπ

f

mπ

M2
N

Q2 + m2
π

. (F.22)

Consequently, we find

∂µ A
µ
3/2± = iψ̄αqα

[
CA

5 +
CA

6

M2
N

q2

] {
14

γ5

}
u(p)

= iψ̄αqα

[
CA

5 − Ciso

√
2 fπ

f

mπ

1
Q2 + m2

π
q2

] {
14

γ5

}
u(p)

mπ→0−−−→ iψ̄αqα

[
CA

5 + Ciso

√
2 fπ

f

mπ

] {
14

γ5

}
u(p) , (F.23)

which is zero when

CA
5 = −Ciso

√
2 fπ

f

mπ
. (F.24)

The final results for the axial couplings CA
5 (0) are collected in Table 5.7 on page 50.
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G
Uncertainties in the neutrino-nucleon

cross section

This chapter addresses two sources of uncertainties which affect the neutrino-nucleon
cross section.

G.1 W dependence of the resonance form factors

As stated in Appendix E, our form factors for resonance excitation depend only on
Q2, and any dependence on the invariant mass W has been neglected so far. However,
as pointed out by Buss [Bus09], this approximation fails for Compton scattering, i.e.,
γN → γN.

Using the very same model as in this thesis, Buss fits the mass dependence of the
∆-resonance form factor to Compton-scattering data assuming a dominant s-channel.
The matrix element for Compton scattering, γ(q)N(p) → γ(q′)N(p′), via ∆ excitation
in the s-channel reads

M = ū(s′, p′)ǫ⋆
α(λ′, q′)Γ̃

βα(p′, q′)Gβν(p∆)Γ
νµ(p, q)ǫµ(λ, q)u(s, p); (G.1)

ǫ denotes the photon-polarization vectors, otherwise the notation is identical to that
used in Section 5.2.1. The γN → ∆ vertex factor Γνµ is parametrized in terms of form
factors (cf. Eq. (5.14)), for which we now introduce an explicit mass dependence by
setting

Ci(W, Q2) = Ci(Q2) f (W), (G.2)
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where Ci(Q2) are the standard ∆ form factors used throughout this work. The W

dependence is encoded in the form factor f (W), which is chosen as [Bus09, Pos04]

f (W) =
Λ4 + 1

4(s0 − M2
∆
)2

Λ4 +
(

W2 − 1
2(s0 + M2

∆
)
)2 , (G.3)

with s0 = (mπ + MN)2.
It is shown in Fig. 2 of Ref. [Bus09], that the Compton-scattering data are clearly

overestimated for f (W) = 1, i.e., no W dependence. By introducing a finite Λ,
Buss has been able to improve the correspondence with data — a best fit yields
Λ = 1.071 GeV.

To investigate the impact on our results, let us first go back to our special treatment
of the single-pion background. It has been defined as the difference between data
and resonance contribution (details were given in Chapter 6). Thus, by construction,
the W dependence has no impact at all on the total cross section, it simply shifts
strength from the resonance contribution to the background. For electron and photon
scattering, this is shown explicitly in Figs. 3 and 4 of Ref. [Bus09].

However, this statement applies only to channels with non-resonant background
and not to the ones where the background has been neglected. This has been the
case in the isospin 3/2 channel, which has been used to fit the ∆ axial form factor
(see Fig. 5.6). The corresponding observable is shown in the left panel of Fig. G.1 and,
thanks also to the invariant-mass cut at 1.4 GeV, no difference between the two options
for the W dependence is observed. Thus, introducing f (W) 6= 1 has no influence on
the extraction of the axial form factor for the ∆. The integrated cross section for the
same channel and without any cut on the invariant mass is plotted in the right panel
of Fig. G.1. Also there, the differences, apparent only at higher Eν, are small and still
within the accuracy limits of the available data. We thus conclude that the neglect of
f (W) in our work has little or no impact on our results.

G.2 Neglect of DIS

In Section 3.1 we discussed the various contributions to the lepton-nucleon cross sec-
tion. Being interested in neutrino reactions up to beam energies of around 2 GeV, we
have neglected deep inelastic scattering as it is of major importance only at higher en-
ergies. Before we quantify this statement, we give a brief introduction to the treatment
of DIS in elementary ℓN reactions in the GiBUU approach.

The final state of the initial lepton-nucleon reaction is modeled by the event gen-
erator PYTHIA (version 6.420) [SMS06]. There, the high-energy interactions lead to
the excitation of one or more hadronic strings which fragment according to the Lund
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Figure G.1: Left panel: differential cross section dσ/dQ2 averaged over the ANL flux
applying an invariant mass cut at W < 1.4 GeV. Data are taken from Ref. [B+77].
Right panel: integrated pπ+ production cross sections without any cut on the in-
variant mass. Data are taken from ANL (Refs. [B+79] (•) and [R+82] (¥)) and BNL
([K+86] (×)). The curves were obtained with and without W dependence of the form
factor as detailed in the text.

fragmentation scheme implemented in PYTHIA. PYTHIA includes also direct interac-
tion processes such as diffraction and vector-meson dominance. We refer the reader to
the recent works of Gallmeister et al. [FCGM04, GF05, GM08] for details on the appli-
cation of PYTHIA in the GiBUU framework, mainly in connection with high-energy
(virtual) photon scattering.

To include DIS in our model, we modify Eq. (3.1) (see page 26) such that

dσtot = dσQE +
∑

R

dσR +

{
dσBG for W < 1.6 GeV

dσDIS for W > 1.6 GeV
. (G.4)

In this way we allow the resonances to spread to arbitrarily large W, while we cut the
phenomenological background at W = 1.6 GeV. This cut in W is required to avoid
double counting of single-pion final states: as our background is fitted to data and
not based on a microscopic model, it contains also contributions from underlying DIS
processes. For invariant masses of the lepton-nucleon system larger than 1.6 GeV, DIS
is “switched on” and gives also rise to single-pion final states. The specific choice of
1.6 GeV is motivated by the fact that the same approach leads to reasonable results in
electron-nucleon scattering where plenty of data are available to compare with [Galb].

First results are presented in Fig. G.2 for muon neutrino scattering off protons (left)
and neutrons (right panel).1 The cross section on the proton is dominated by pion pro-
duction through the excitation of the ∆ resonance (largest contribution to the dashed

1The DIS results were provided by K. Gallmeister.
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Figure G.2: Total CC neutrino cross sections for νµ p → µ−X (left) and νµn → µ−X

(right panel) as a function of the neutrino energy decomposed in the contributions
of quasielastic scattering (QE), single-π production through various ways (resonance
[dashed], non-resonant background [double-dashed] and DIS [dash-dotted]) and the
DIS contribution which leads to final states other than 1π (dotted lines).

line) and by DIS, setting in at around 1.5 GeV neutrino energy. The non-resonant back-
ground is set to zero by definition, and also the fraction of DIS leading to single-π
final states is negligible. A different picture emerges on the neutron. Most domi-
nant is QE scattering at low and DIS at high energies. Single-π production contains
contributions from all three interaction types.

This can be investigated further by enlarging the energy region of interest in the
present work: in Fig. G.3 we show the single-π production cross sections on pro-
tons (top) and neutrons (middle and bottom panels). The solid lines include both
resonances and non-resonant background (agree with the solid lines in Fig. 6.2). The
dashed lines include in addition single-π final states through DIS, following Eq. (G.4).
They become increasingly more important for energies larger than 1.5 GeV but can
safely be neglected below.
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Figure G.3: Total CC pion production cross sections as a function of the neutrino
energy compared to the pion production data of of ANL (Refs. [B+79] (•) and [R+82]
(¥)) and BNL ([K+86] (×)). The solid lines denote the our result including resonance
excitation and non-resonant background according to Eq. (3.1). The dashed lines
include in addition single-π final states through DIS following Eq. (G.4).
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Deutsche Zusammenfassung

Motivation und Stand der Forschung

Die Neutrinophysik nahm ihren Anfang im Jahre 1930, als Wolfgang Pauli ein neues
Teilchen — das Neutrino — postulierte, um so die Erhaltung von Energie und Impuls
im β-Zerfall zu retten. Erst 1953 wurde dessen Existenz experimentell durch Reines
und Cowan nachgewiesen. Heute ist nicht nur der sichere Nachweis dreier Neutri-
noarten erbracht, sondern ihre Wechselwirkungen bieten einzigartige Möglichkeiten,
fundamentale Fragen in vielen Bereichen der Physik zu untersuchen. Neutrinoreak-
tionen werden im Rahmen des Standard-Modells der Teilchenphysik beschrieben. Sie
wechselwirken ausschließlich schwach durch den Austausch geladener W-Bosonen
(charged current, CC) oder neutraler Z-Bosonen (neutral current, NC).

Seit Neutrino-Oszillationen in unterschiedlichsten Experimenten bestätigt wurden
[Super-K98, SNO01, K2K03, KamLAND03] besteht kein Zweifel mehr, dass Neutri-
nos zwar eine kleine und immer noch unbekannte, aber doch von Null verschiedene
Ruhemasse besitzen. Gegenwärtig sind weltweit mehrere Long-Baseline-Experimente
(LBL) mit Neutrinoenergien von einigen hundert MeV bis hin zu mehreren GeV im
Betrieb [MINOS, K2K, MiniBooNE, OPERA] oder im Aufbau [T2K]. Sie untersuchen
einerseits fundamentale Fragen wie CP-Verletzung und die Existenz von sterilen Neu-
trinos, andererseits ist das Ziel eine präzise Vermessung der Oszillationsparameter
wie Massendifferenzquadrate und Mischungswinkel.

Der Erfolg dieser Experimente ist eng an ein gutes Verständnis der Neutrino-Kern-
Wechselwirkung verknüpft: Neutrinos wechselwirken mit sehr kleinen Querschnitten
und sind nur über die durch ihre Wechselwirkung mit Materie erzeugten Teilchen
nachweisbar, im Falle von neutralen Strömen (NC) sogar nur durch die produzier-
ten Hadronen. Um den Wirkungsquerschnitt zu vergrößern, werden oft Targets mit
hoher Massenzahl A verwendet. Im Hinblick auf die LBL-Experimente ergeben sich
daraus Probleme: Teilchen, die durch die Neutrino-Wechselwirkung im Kern erzeugt
werden, unterliegen Endzustandswechselwirkungen (final-state interactions, FSI), be-
vor sie detektiert werden. Insbesondere durch nukleare Effekte wie Absorption und
Rückstreuung können sich die detektierten Raten erheblich ändern, was zu fehlerhaf-
ten Interpretationen führen kann.

Ein quantitatives Verständnis der Wechselwirkung von Neutrinos mit Kernen ist
auch für die Messung der Oszillationsparameter erforderlich, da diese — bei fest-
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er, bekannter Entfernung zwischen Quelle und Detektor — direkt proportional zur
Energie der Neutrinos sind. Die Neutrinos werden im Wesentlichen über die Reak-
tion pA → πX und den darauf folgenden Pionenzerfall erzeugt, was einen einige
100 MeV bis hin zu einigen GeV breiten Neutrinostrahl ergibt. In νµ disappearance-
Experimenten etwa misst man, wie sich das Neutrinoenergie-Spektrum an einem ent-
fernten Ort im Vergleich zur Neutrinoquelle geändert hat, d. h. man vergleicht das
“oszillierte” mit dem “nicht-oszillierten” Spektrum und gewinnt so Informationen
über die Oszillationsparameter. Für die Interpretation dieser Experimente und einer
darauf basierenden Präzisionsmessung der Oszillationsparameter ist es daher wich-
tig, die Energieverteilung der Neutrinos genau zu kennen. Die Energie der Neutrinos
muss dazu aus den gemessenen Energien des auslaufenden Leptons und der Ha-
dronen im Endzustand rekonstruiert werden. Üblicherweise wird dazu die quasielas-
tische Streuung, νℓn → ℓp, verwendet, die bei Neutrinoenergien um 1 GeV dominie-
rend ist. Im nuklearen Medium kann diese Reaktion durch die FSI jedoch nicht immer
klar identifiziert werden.

Inklusive quasielastische Streuung am Kern wurde z. B. im Rahmen relativistischer
Fermigas-Modelle untersucht, welche die Fermibewegung der Nukleonen im Kern,
das Pauliverbot und die nukleare Bindung berücksichtigen [SM72, DP79, HKMP93,
BDPD+96, ABB+97, ABB+98]. Andere Ansätze gehen über die Ebene-Wellen-Nähe-
rung hinaus und verwenden z. B. realistischere Wellenfunktionen [ABB+97, ABB+98,
JRHR99, MGP04a, MLJ+06, vdVP06, MGP06] oder benutzen eine sogenannte “Sca-
ling”-Analyse der Elektron-Streudaten für die Vorhersage der Neutrino-Querschnitte
[ABC+05]. Weiterhin können die Nukleon im nuklearen Medium stoßverbreitert sein;
Benhar et al. [BFN+05] zum Beispiel berechnen deren Spektralfunktionen mithilfe
eines aufwendigen NMBT-Verfahrens.

Semi-inklusive Prozesse wie quasielastischer Nukleonen-Knockout, bei dem das
Nukleon aus dem Kern herausgeschlagen wird, sind von Interesse insbesondere für
NC-Experimente, da das auslaufende Neutrino nicht detektiert werden kann. Hierzu
benötigt man eine gute Beschreibung der Endzustandswechselwirkungen. Dies wird
oft entweder ganz vernachlässigt [HKMP93, BDPD+96, vdVP06] oder nur absorp-
tiv behandelt (optisches Potential oder Glauber-Modell) [ABB+97, ABB+98, MGP04a,
MLJ+06, MGP06, vdVP04]. Dabei wird nicht berücksichtigt, dass es durch Kollisio-
nen der Nukleonen im Kern zu Energieverlusten, Richtungsänderungen, Ladungs-
austausch und auch zu Mehrfach-Nukleon-Knockout kommen kann. Dies kann nur
im Rahmen von Monte-Carlo-Modellen beschrieben werden [NVVV06]. Beiträge zum
Nukleonen-Knockout kommen jedoch nicht nur von quasielastischen Prozessen, son-
dern auch von Ereignissen, bei denen zunächst eine Resonanz angeregt wird, aber
nach den FSI nur ein Nukleon detektiert wird, da das Pion aus dem Resonanzzer-
fall absorbiert wird. Diese ’Fake-QE-Prozesse’ sind von großer Bedeutung für Expe-
rimente, da sie Einfluss auf die Energierekonstruktion haben. Ein Verständnis dieser
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Prozesse ist nur im Rahmen einen ’Coupled-Channel’-Modells möglich, welche viel-
fältige Wechselwirkungen beinhaltet. Keines der oben genannten Modelle kann dies
leisten.

Andere Experimente suchen nach νe appearance, also dem Erscheinen von einem
Elektron-Neutrino in einem Muon-Neutrino-Strahl. Der Flavor des Neutrinos kann
jedoch auch nur über die in der Wechselwirkung erzeugten, nachweisbaren Teilchen
bestimmt werden. Insbesondere neutrale Pionen spielen eine wichtige Rolle bei der
Flavoridentifikation: So kann etwa ein (eventuell sogar durch Endzustandswechsel-
wirkung erzeugtes) durch νµ NC-induziertes π0 im Detektor durch seinen Photon-
Zerfall ein νe-Ereignis simulieren.

Wesentlich für die Interpretation von Neutrino-Oszillationsexperimenten ist also
auch das Verständnis der Pionenerzeugung durch Neutrinos. Bis zu Neutrinoener-
gien von etwa 1.5 GeV verläuft die Pionproduktion hauptsächlich über die Anregung
und den darauf folgenden Zerfall der ∆-Resonanz, mit steigender Neutrinoenergie
tragen höhere Resonanzen und auch nicht-resonanter Untergrund bei. Bislang gab
es nur wenige Untersuchungen zur neutrino-induzierten Pion-Produktion am Kern:
Singh et al. [SVVO98] haben gezeigt, dass neben ’simplen’ Medium-Effekten wie Fer-
mibewegung, Pauli-Verbot und Bindung der Nukleonen im Kernpotential, insbeson-
dere die medium-modifizierte Breite des ∆’s (Stoßbreite) den Absorptionsquerschnitt
beeinflusst. Semi-inklusive Prozesse wurden sonst einzig in Ref. [PPY00] im Rahmen
des ANP-Modells behandelt.

Um die aktuellen Neutrinoexperimente interpretieren zu können, benötigt man al-
so ein Modell, das sowohl die anfängliche Neutrino-Kern-Wechselwirkung als auch
die Endzustandswechselwirkung der produzierten Teilchen gut beschreibt — und
das in allen angesprochenen Energieregionen. Da keine der obigen Arbeiten dies
leistet, wurden Eventgeneratoren speziell für die Simulation der jeweiligen Experi-
mente entwickelt (z. B. NUANCE [Cas02], NEUT [Hay02] und GENIE [A+09]), um
die im Kern ablaufenden Reaktionen quantitativ zu verfolgen. Trotz erheblicher Un-
terschiede ist allen Modellen gemeinsam, dass sie auf Monte-Carlo Simulationen
des Reaktionsprozesses aufbauen. Diese Codes enthalten im Allgemeinen Beiträge
sowohl von quasielastischen wie auch inelastischen Prozessen, insbesondere wird
für die Resonanzanregung meist das Modell von Rein und Sehgal [RS81] verwen-
det. Weiterhin wird bei allen Generatoren ein Fermigas-Modell verwendet, allerdings
meistens mit konstantem, also insbesondere nicht dichteabhängigem, Fermi-Impuls
und konstanter Bindungsenergie. Endzustandswechselwirkungen werden mit einem
Kaskaden-Modell beschrieben, wobei die Wechselwirkungsquerschnitte der intranu-
klearen Streuung und Absorption speziell auf die zu verwendeten Targets angepasst
wurden. Ihr kernphysikalischer Gehalt ist oft zweifelhaft; problematisch ist außerdem,
dass alle diese Eventgeneratoren ausschließlich für bestimmte Neutrinoexperimente
entwickelt wurden und kaum an anderen, vergleichbaren Reaktionen (z. B. an Elek-
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troproduktionsexperimenten) getestet wurden.

Neutrino-Streuung im GiBUU-Modell

Das Ziel der vorliegenden Arbeit war die Entwicklung eines Modells, welches Neutri-
no-Kern-Streuung sowohl in der quasielastischen (QE) als auch in der Resonanzregion
zuverlässig beschreibt, d. h. für Neutrinoenergien bis etwa 2 GeV anwendbar ist. Eine
gute Beschreibung der Neutrino-Nukleon-Reaktion ist dabei ebenso wichtig wie die
korrekte Behandlung der Medium-Modifikationen und der Endzustandswechselwir-
kungen. Auf beides wurde gleichermaßen Wert gelegt.

Wie bei Photon- und Elektron-induzierten Reaktionen üblich, arbeiten wir in der
’impulse approximation’ und betrachten die Neutrino-Kern-Streuung als Zwei-Stu-
fen-Prozess: Das Neutrino wechselwirkt also zunächst mit einem gebundenen Nukle-
on, die erzeugten bzw. angestoßenen Teilchen unterliegen dann bei ihrer Propagation
aus dem Kern Endzustandswechselwirkungen.

Die elementare QE-Reaktion wird mit einem relativistischen Formalismus beschrie-
ben (siehe Kapitel 4), die benötigten Formfaktoren wurden neuesten Analysen von
Bodek et al. [BABB08] und Kuzmin et al. [KLN08] entnommen, die für die Vektor-
Anteile auf den in jüngster Zeit erfolgten Messungen am JLAB beruhen. Auch die
Neutrino-induzierte Resonanzanregung, diskutiert in Kapitel 5, die den Großteil der
Pion-Produktion ausmacht, beschreiben wir mit einem Formfaktorformalismus. Die
Vektorformfaktoren haben wir dabei aus Helizitätsamplituden bestimmt, die aus ei-
ner aktuellen MAID-Analyse der JLAB-Daten extrahiert wurden [MAID], ähnlich dem
zuerst von Fogli et al. [FN79] angewandten Verfahren. Dieses Verfahren wurde in
neuerer Zeit auch von Lalakulich et al. [LP05] benutzt, um die Vektorformfaktoren der
4 niedrigst-liegenden Resonanzen zu bestimmen. Allerdings wurden in Ref. [LP05]
die axialen Formfaktoren nicht neu bestimmt, obwohl dies bei einer Änderung der
Vektoranteile für eine optimale Beschreibung der Daten nötig ist. Wir haben dieses
Modell weitgehend erweitert (von 4 auf 13 Resonanzen bis zu einer invarianten Mas-
se von 2 GeV) und auch die axialen Formfaktoren neu angepasst; die Annahme von
’partial conservation of the axial current’ (PCAC) liefert dabei die Kopplungen der
axialen Formfaktoren. Wir berücksichtigen weiterhin einen phänomenologisch mo-
tivierten Ein-Pion-Untergrund, dessen Vektoranteil ebenfalls auf der MAID-Analyse
basiert (siehe Kapitel 6).

Medium-Modifikationen und Endzustandswechselwirkungen der produzierten Teil-
chen werden mithilfe des GiBUU-Modells beschrieben. Dieses Verfahren beruht auf
der Boltzmann-Uehling-Uhlenbeck (BUU) Gleichung, die sich von den genannten
Neutrino-Eventgeneratoren durch die konsistente Berücksichtigung von Selbstener-
gien aller beteiligten Teilchen (Real- und Imaginärteile) unterscheidet. Die Fermibe-
wegung im Targetkern wird hier mit einer lokalen Thomas-Fermi Näherung dichter
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an die empirischen Verteilungen angepasst als dies in den Eventgeneratoren üblicher-
weise der Fall ist; auch die Besetzung im Ortsraum folgt empirischen Dichtevertei-
lungen.

Mit dem Gießener BUU-Modell, beschrieben in Kapitel 7, ist anfänglich die Erzeu-
gung verschiedenster Teilchen (Photonen, Dileptonen, Pionen, Kaonen, Vektormeso-
nen etc.) in Schwerionen-Reaktionen sehr erfolgreich beschrieben worden [TCE+97,
HCTM99, LM03, LM05, WLM05]. Später wurde das Modell auf elementare Proben
erweitert und Proton-, Pion-, Photon- und Elektron-induzierte Teilchenproduktion
[ECM+94, EBM99, EM00, LEM00, LPM03, MFM04, K+04, BARMM06, BARLM06,
MM06, Bus08, LBARM09, FCGM04, GF05] an Kernen über einen weiten Energiebe-
reich konsistent unter Verwendung derselben theoretischen Verfahren und Codes be-
rechnet. Insbesondere die Untersuchungen Photon-induzierter Reaktionen haben ge-
zeigt, dass eine detaillierte, quantitativ zuverlässige Beschreibung der Messdaten nur
dann möglich ist, wenn die Endzustandswechselwirkungen der erzeugten Hadronen
realistisch beschrieben werden. Insbesondere müssen die Effekte gekoppelter Kanäle
berücksichtigt werden, die zu einem ‘Sidefeeding‘ des beobachteten Kanals beitragen
können. Sehr sensitiv auf Details der Pion-Wechselwirkung ist der Prozess des dop-
pelten Ladungsaustauschs (DCX). Dessen korrekte Behandlung ist damit ein wichti-
ger Test der Zuverlässigkeit unseres FSI-Modells, welche durch die erfolgreiche Be-
schreibung der Daten bestätigt wurde [BARLM06]. Die korrekte Berücksichtigung des
Imaginärteils der Selbstenergien der erzeugten Teilchen, d. h. ihre Absorption durch
Wechselwirkung mit dem Kern, ist bei allen diesen Rechnungen wichtig. Zudem kön-
nen wir, im Gegensatz zu den meisten anderen Transport- und Kaskaden-Verfahren,
die im Allgemeinen stoßverbreiterten Baryonen konsistent propagieren. Damit gehen
wir über andere Ansätze hinaus, in denen insbesondere Resonanzen überhaupt nicht
transportiert werden, sondern sofort zerfallen oder absorbiert werden. Ein wichtiger
Punkt der vorliegenden Arbeit war die Implementierung des sogenannten Off-shell-
Potentials. Damit stellen wir sicher, dass die stoßverbreiterten Baryonen im Vakuum
wieder zu ihrer Vakuumspektralfunktion zurückgekehrt sind.

Das GiBUU-Modell unterscheidet sich deutlich von den oben genannten Eventge-
neratoren nicht nur durch seine theoretische Fundierung; es ist das einzige Verfah-
ren, dessen physikalischer Inhalt an einer breiten Klasse von unterschiedlichen Re-
aktionstypen getestet worden ist. Dabei sind die Tests anhand von Experimenten zu
Elektron-/Photon-induzierten Reaktionen am Kern besonders wichtig, weil in die-
sen der elektrische Sektor der elektroschwachen Wechselwirkung und die da darauf
folgenden Endzustandswechselwirkungen an “gut messbaren” Prozessen überprüft
werden können.

In Kapitel 9 haben haben wir mit unserem Formalismus sowohl Neutrino- als auch
inklusive Elektron-Kernquerschnitte berechnet. Außer der Fermibewegung und dem
Pauli-Blocking sind vor allem zwei Punkte für eine erfolgreiche Beschreibung der
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Elektron-Streudaten entscheidend: Die Impulsabhängigkeit des Mean-Field-Potentials
führte zu einer signifikanten Verbreiterung und Absenkung der QE-Peaks. Diese Ef-
fekte werden noch verstärkt durch die In-Medium-Modifikationen des Nukleons und
der Resonanzen. Deren Spektralfunktionen haben wir konsistent, d. h. mit den in den
BUU-Rechnungen verwendeten Stoßquerschnitten, in einer Niedrig-Dichte-Näherung
bestimmt. Dabei haben wir sowohl Real- als auch Imaginärteile der Selbstenergien
berücksichtigt. Erstere äußern sich in Potentialen der beteiligten Baryonen, letztere
in den Breiten. Die gute Beschreibung der inklusiven Elektronstreuung im gleichen
Modell dient uns daher als Qualitäts-Check der Neutrinorechnungen.

Neutrino-induzierte Teilchenproduktion haben wir in Kapitel 10 und 11 sowohl
für geladene (CC) als auch für neutrale Ströme (NC) untersucht. Erheblicher Ein-
fluss der Endzustandswechselwirkung ist bei der Pionproduktion zu beobachten. Bei
CC-Prozessen werden aufgrund von Isospineffekten zu Beginn deutlich mehr π+ pro-
duziert, bei NC-Prozessen π0. Diese Pionen können nun absorbiert werden oder auch
elastisch, evtl. mit Ladungsaustausch, rückstreuen. Das führt insbesondere bei klei-
nen Pionenergien zu einer überproportionalen Population des π0-Kanals bei CC, und
der π±-Kanäle bei NC (Sidefeeding). Da gerade die π0 Mesonen verantwortlich für
falsche Flavor-Identifikation sind, ist dieser Effekt für die Interpretation der Neutrino-
experimente von hoher Bedeutung. In unseren Rechnungen sehen wir zudem deut-
lich, dass QE-Prozesse über die FSI zur Pionproduktion beitragen. Wesentlich wich-
tiger ist allerdings der umgekehrte Effekt: wird z. B. das Pion aus einem Resonanz-
zerfall durch FSI absorbiert, erscheint das Ereignis im Detektor wie QE-Streuung und
wird mit zur Energierekonstruktion herangezogen, und verfälscht damit möglicher-
weise das sowohl die Messung des QE-Wirkungsquerschnitts als auch das Oszillati-
onsergebnis. Eine korrekte und realistische Beschreibung der durchaus komplizierten
FSI ist also für Oszillationsexperimente wichtig.

Unsere Ergebnisse zum Nukleonen-Knockout zeigen ebenso einen mehr als deut-
lichen Einfluss der FSI. Auch hier konnten wir wieder Sidefeeding vom dominanten
in den unterdrückten Kanal beobachten (bei CC von Protonen zu sekundären Neutro-
nen). Doch nicht nur QE-Streuung führt letztlich zu Nukleon-Knockout, sondern auch
Resonanzproduktion im Anfangszustand. Wird bei letzterem das Pion absorbiert, ist
der Prozess experimentell von der QE-Streuung nicht mehr zu unterscheiden, und
kann — nicht nur bei NC-Experimenten, die sich alleine auf die auslaufenden Ha-
dronen beziehen — zu Fehlinterpretationen führen, denn insbesondere die saubere
Identifikation von QE-Prozessen ist für die Neutrinoenergie-Rekonstruktion von ent-
scheidender Bedeutung. Eine korrekte und realistische Beschreibung der durchaus
komplizierten FSI ist jedoch für Oszillationsexperimente wichtig. Es ist daher ein be-
sonders wichtiges Ergebnis unserer Rechnungen, dass bei Neutrinoenergien oberhalb
von etwa 1 GeV der Beitrag der ∆-Anregung zum Nukleonen Knockout mit dem QE
Knockout vergleichbar ist. Nichtberücksichtigung dieser Tatsache führt zu zu großen
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’quasielastischen’ Querschnitten und verfälscht damit die Extraktion von Formfak-
toren und der axialen Masse des Nukleons.

Schließlich haben wir diverse Anwendungen unseres Modells im Hinblick auf ak-
tuelle und zukünftige LBL-Experimente (kurz vorgestellt in Kapitel 12) aufgezeigt:
Die Verschränkung von quasielastischen Prozessen und Pionproduktion sowie mög-
liche Konsequenzen für aktuelle νµ disappearance-Experimente haben wir in Kapitel
13 anhand einiger konkreter Beispiele diskutiert. Insbesondere haben wir gezeigt, wie
die Neutrinoenergie rekonstruiert werden kann und dass dafür die korrekte Identi-
fikation der quasielastischen Streuereignisse besonders wichtig ist. Den Einfluss der
FSI auf νe appearance-Experimente haben wir in Kapitel 14 untersucht. In Kapitel
15 geben wir Vorhersagen und vergleichen, soweit möglich, mit Neutrino-Streudaten
des MiniBooNE und des K2K-Experiments. Unsere Rechnungen unterschätzen jedoch
die MiniBooNE-Daten deutlich. Wir haben verschiedene mögliche Ursachen studiert
— weitere Daten, auch von anderen Experimenten und so Modell-unabhängig wie
möglich, sind zur Klärung der Diskrepanz nötig.

In der vorliegenden Arbeit wurde erstmals quasielastische Streuung und Resonanz-
produktion in einem verlässlichen FSI-Modell zusammen untersucht und die Impli-
kationen, insbesondere im Hinblick auf ihre Verschränkung, für aktuelle Neutrino-
Oszillationsexperimente diskutiert. Abgesehen von den empirisch-phänomenologi-
schen Eventgeneratoren gibt es bis heute keine gemeinsame Beschreibung von QE
und Pionenproduktion am Kern außer dem hier präsentierten Modell. Unsere Unter-
suchungen zeigen zudem klar, dass die In-Medium-Effekte und vor allem die Endzu-
standswechselwirkungen erheblichen Einfluss auf die gemessenen Ereignisraten ha-
ben und daher korrekt beschrieben werden müssen. Unabhängige Tests der Modelle
sind dabei obligatorisch.
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