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Zusammenfassung

Diese Arbeit befasst sich mit der Untersuchung von Fluktuationseffekten in kalter
und dichter Materie, welche der starken Wechselwirkung unterliegt. In der Natur exi-
stiert solche Materie im Inneren von Neutronensternen und ihre Eigenschaften sind bisher
größtenteils unbekannt. Unter Verwendung einer effektiven Quark-Meson-Trunkierung der
Quantenchromodynamik mit zwei oder drei Quark-Flavors integrieren wir Quantenfluk-
tuationen mit der funktionalen Renormierungsgruppe (FRG) aus und untersuchen ihren
Einfluss auf die Eigenschaften von Neutronensternen.

Die erforderliche thermodynamische Zustandsgleichung wird hier für neutrale Mate-
rie im Beta-Gleichgewicht berechnet. Die Unterschiede zu konventionellen Zustandsglei-
chungen, welche in einfachen Mittelfeldnäherungen erzeugt werden, sind signifikant. Reine
Quarkmateriesterne basierend auf dieser Zustandsgleichung haben größere Radien und
Massen als ihre Pendants aus der Mittelfeldnäherung. Des Weiteren ist mit der FRG-
Zustandsgleichung die Konstruktion von Hybridsternen, also Neutronensternen mit ei-
nem Quarkmateriekern, möglich, solange die nukeonische Zustandsgleichung nicht zu steif
ist. Die zugrundeliegende Maxwell-Konstruktion nimmt eine scharfe Grenzfläche zwischen
Kern- und Quarkmaterie an und führt zu einem einzelnen, durchgehenden Zweig im Masse-
Radius-Diagram. Allerdings kann mit dem Hinzufügen von Strangeness die experimentell
beobachtete Zwei-Sonnenmassen-Grenze nicht mehr erreicht werden.

Mit dem zusätzlichen Hinzufügen von repulsiven Vektormesonen-Wechselwirkungen in
Mittelfeldnäherung beobachten wir einen ausreichenden Anstieg in der Steifigkeit der Zu-
standsgleichung, um Hybridsterne mit Massen über 2M⊙ zuzulassen. Allerdings ist eine
Maxwell-Konstruktion mit nukleonischen Zustandsgleichungen, die zu insgesamt kleineren
Radien und Deformabilitäten führen und in besserer Übereinstimmung mit dem Exper-
ment liegen, weiterhin nicht möglich.

Darüber hinaus untersuchen wir den Ursprung des seltsamen Zurückbiegens der chira-
len Phasenübergangslinie im Quark-Meson-Modell in lokaler Potentialnäherung. Wir stel-
len fest, dass das Zurückbiegen von der Regulatorfunktion, welche in der FRG verwendet
wird, abhängt. Für Callan-Symanzik-artige Regulatoren verschwindet es zusammen mit
der damit assoziierten negativen Entropiedichte. Das ist ein Hinweis auf die Existenz star-
ker regulatorabhängiger Trunkierungsartefakte in lokaler Potentialnäherung bei endlicher
Dichte und kleinen Temperaturen.
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Abstract

This work is aimed at the study of fluctuation effects in cold and dense strong-interaction
matter. In Nature, such matter exists in the cores of neutron stars and its properties are
largely unknown. Utilizing an effective quark-meson truncation to quantum chromody-
namics with two and three quark flavors, we integrate out quantum fluctuations by means
of the functional renormalization group (FRG) method and study their impact on the
properties of compact stars.

The required thermodynamic equation of state (EoS) is hereby calculated for beta-
equilibrated and neutral quark matter. We find significant differences to conventional
EoS obtained from simple mean-field approximations. Pure quark-matter stars based on
the nonperturbative EoS have larger radii and masses than their mean-field counterparts.
Furthermore, the EoS obtained with the FRG allows for the construction of hybrid stars,
i.e., neutron stars with a quark-matter core, as long as the utilized nucleonic equation
of state is not too stiff. The underlying Maxwell construction assumes a sharp interface
between nucleonic and quark matter and leads to a single continuous branch in the mass-
radius diagram. However, with the inclusion of strangeness the popular two-solar-mass
limit for the experimentally observed maximum mass cannot be reached anymore.

With the additional inclusion of repulsive vector-meson interactions on a mean-field
level, we find a sufficient increase in the EoS’s stiffness to permit hybrid stars with masses
over 2M⊙. However, a Maxwell construction with nucleonic equations of state that lead
to smaller overall radii and tidal deformabilities in better agreement with experiment is
still not possible.

Moreover, we investigate the origin of the strange back-bending of the chiral phase
transition line at low temperatures in the quark-meson model in local potential approxi-
mation. We observe that the back-bending depends on the regulator function used by the
FRG. For Callan-Symanzik-type regulators, it vanishes along with the associated negative
entropy densities. This hints at the existence of strong cutoff-scheme-dependent truncation
artifacts in local potential approximation at finite density and low temperatures.
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Chapter 1

Introduction

Two main pillars modern theoretical physics rests on are the concepts of quantum physics
and relativity. Both developed at the beginning of last century, they have opened the doors
to the description of Nature at length scales much smaller and much larger than those us
humans are accustomed to. With the discovery that light exhibits not only wave-like, but
also particle1 properties, quantum mechanics was born and led to successes at the level
of atomic and sub-atomic physics such as the determination of the spectrum of hydrogen
[4]. The incorporation of Einstein’s special relativity [5] eventually culminated in the
reformulation of electromagnetism as quantum electrodynamics (QED)—a quantum field
theory based on the local gauge symmetry group U(1) [6–8]. The advance of quantum field
theory continued: Nuclear decay processes like β decay are now understood as transmitted
by the heavy W and Z exchange bosons via the weak interaction. Moreover, the large
“zoo” of new unstable particles with different quantum numbers found at particle colliders
could be ordered, e.g., via the “eightfold way” [9]. Group-theoretic considerations implied
that the underlying gauge group for the strong interaction must be SU(3). Implicitly,
nucleons and all other such hadrons are made up of combinations of more fundamental
particles, so-called quarks [10], each of them carrying one of three color charges giving
the theory its name: quantum chromodynamics (QCD). The electromagnetic, weak, and
strong nuclear forces and all associated fields plus the Higgs boson are nowadays collected
in the Standard Model of particle physics.2

Despite the triumph of quantum field theory in the last century, there are still many
open questions and unsolved problems even within the boundaries of the Standard Model.
The computation of physical observables is particularly challenging in QCD because per-
turbative methods fail in the low- to intermediate-energy regime due to the theory’s large
coupling strength [16]. Much progress has been achieved with the formulation of QCD on
a discretized lattice of spacetime points, but unfortunately lattice QCD suffers from a sign
problem which strongly inhibits calculations at nonzero density [17]. Other nonperturba-
tive methods like Dyson-Schwinger equations (DSE) and the functional renormalization
group (FRG) have had more success with the search for a possible critical endpoint in
the phase structure of QCD [18–20]. However, especially the description of cold and
dense matter still presents many conceptual and technical difficulties. For example, the

1A corpuscular theory of light was already put forward in the 17th century by Descartes and Newton,
but all known effects at the time were later better described by the physics of electromagnetic waves [3].

2The Higgs field is responsible for the generation of the masses of the elementary quarks, charged
leptons, and the W and Z gauge bosons [11–13] and was experimentally discovered in 2012 [14, 15].
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Chapter 1. Introduction

dynamical formation of baryonic degrees of freedom is not well-understood and reliable
first-principle results in this regime do not exist so far; for a discussion of possible future
avenues see, e.g., Ref. [21].

Intriguingly, some of the properties of cold and dense matter can be assessed from
astrophysical observations: macroscopic properties like masses, radii, and tidal deforma-
bilities of neutron stars correlate with the pressure–density relation determined by the
underlying microscopic interactions. To a certain extent, quantum effects like the Pauli
exclusion principle [22] help prevent the collapse of compact stars to black holes by ac-
cumulating enough outward pressure counteracting the force of gravity. Being the only
fundamental force that is perturbatively nonrenormalizable, gravity is described as a clas-
sical (i.e., non-quantized) theory by Einstein’s general relativity [23]. Theories of quantum
gravity are are still of speculative nature as quantum effects are expected to start playing
a role at distances close to the Planck length lP ≈ 10−35 m and can be ignored in our
context.

At densities close to nuclear-matter density, interaction strengths can be determined
from nuclear theory and calibrated with nuclear experiments. However, the core of neutron
stars can reach up to several times nuclear matter density [24]. Here, the state of matter is
unknown and the occurrence of hybrid stars with quark matter cores is one of the theorized
possibilities. The description of quark matter oftentimes relies on effective models solved
in simple approximations, with only few nonperturbative ansatzes [25–30] so far. Thus,
it is the aim of this thesis to provide some of the first exploratory studies of fluctuation
effects on neutron star properties with the functional renormalization group method.

In recent years, the utilized effective quark-meson truncation of QCD has seen some
interest also in the application towards the low-temperature region for several reasons
such as the study of inhomogeneous phases [31] or as a testbed for improved numerical
methods [32]. A strange back-bending of the FRG-calculated chiral phase transition line
in the model [33] was associated with the occurence of negative entropy densities at low
temperatures [34]. The elucidation of the origin of this unphysical effect is a vital technical
aspect for future studies in this direction and shall also be attempted in this work.

Outline

The thesis is organized as follows:

In Ch. 2 we give a very brief overview of Quantum Chromodynamics and the relevant
aspects of neutron star physics. In Ch. 3 we introduce functional methods and particu-
larly detail the functional renormalization group with technical aspects that will play a
role in the following parts. The application of the functional renormalization group to
the quark-meson model as a low-energy effective model is motivated and exemplified in
Ch. 4. Afterwards, in Ch. 5 a nonperturbative quark-matter EoS is constructed and
fluctuation effects on quark and hybrid stars are investigated. This is extended in Ch.
6 where additional repulsive vector-meson interactions are added in a phenomenological
way. Finally, in Ch. 7 regulator effects on the thermodynamics of the quark-meson model
at low temperatures are studied. A summary and outlook is given in Ch. 8.

For details and general conventions, especially on functional notation, we refer the
reader to App. A. The Tolman-Oppenheimer-Volkoff equations as well as the tidal de-
formability of neutron stars are derived in App. B. For completeness, a derivation of the
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Polchinski equation in a modern framework is given in App. C. Technical details on Mat-
subara sums and the derivation of flow equations can be found in Apps. D and E. The
attainment of fixed points utilized in the parameter fixing procedure in Ch. 7 is described
in App. F and an analysis of the associated regulator-dependent challenges in vacuum
flows is given in App. G. The last to appendices H and I contain information about the
numerical solution techniques used in this work and the general parameter fixing procedure
for Chs. 4–6.

Publications

Parts of this work are already published:

[1] Konstantin Otto, Micaela Oertel, and Bernd-Jochen Schaefer,
Hybrid and quark star matter based on a nonperturbative equation of state,
Phys. Rev. D 101, 103021 (2020).

[2] Konstantin Otto, Micaela Oertel, and Bernd-Jochen Schaefer,
Nonperturbative quark matter equations of state with vector interactions,
Eur. Phys. J. ST 229, 3629 (2020).

While the results have been obtained in collaboration with my colleagues, I have solely
compiled this dissertation. Texts and figures taken from these references are not cited
explicitly. Large parts of the first two articles are contained in Chs. 5 and 6, as well as
some portions in Ch. 4 and Apps. H and I. A third article that contains portions of Chs.
3 and 7 and Apps. F, G, and H is in preparation.
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Chapter 2

Quantum Chromodynamics and
Neutron Stars: A Brief Overview

This chapter is a short introduction into some basic aspects of QCD and current challenges
of neutron star physics as a motivation and for later reference. It is in no way exhaustive
and we refer to basic textbooks [35–37] and reviews on the topics [24, 38–40] for more
information.

2.1 Quantum Chromodynamics

As hinted at in the introduction, quantum chromodynamics describes the strong interac-
tion between elementary particles called quarks. It is a gauge theory of the local SU(3)
group, i.e., there are three color charges and the quarks live in its fundamental represen-
tation. Quarks come in six different flavors of which only the lightest three, up, down and
strange, are relevant to us.1 They interact via a flavor-space diagonal exchange boson, the
gluon. The QCD Lagrangian in Euclidean spacetime reads

LQCD = q̄
(
/D +m

)
q +

1

4
F aµνF

a
µν (2.1)

with the covariant derivative

Dµ := ∂µ − igAaµTa (2.2)

and the field strength tensor

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (2.3)

The Ta are the generators of local SU(3) color transformations and the fabc are the
structure constants, i.e., the components of the adjoint representation of SU(3). They
follow from the commutation relations of the generators. Hence, the nonabelian nature of
the gauge group leads to gluon self-interactions. The Lagrangian is invariant under local
gauge transformations which transform the quarks as

q(x)→ U(x)q(x) , q̄(x)→ q̄(x)U †(x) (2.4)

1The heavier quarks decay rapidly via weak interaction channels and cannot participate in, e.g., stable
quark matter at the energy scales we are interested in.

5



Chapter 2. Quantum Chromodynamics and Neutron Stars: A Brief Overview

and the gluons as

Aµ(x)→ U(x)Aµ(x)U
†(x)− i

g
(∂µU(x))U †(x) (2.5)

where Aµ(x) := TaA
a
µ(x) and the transformation matrices U are generated by exponenti-

ating a spacetime-dependent linear combination of the generators, i.e., an element of the
associated Lie algebra:

U(x) = e−iαa(x)Ta . (2.6)

Gauge Fixing

In a simple scalar-field theory, we could now write down the path integral over all field
configurations. In a gauge theory, quantization requires a few more considerations to ob-
tain the generating functional. Although we will later resign ourselves to calculations in
an effective low-energy theory, these shall be shortly outlined here. Mainly, functional
continuum approaches necessitate the selection of a specific gauge. Otherwise, the path
integral for the gauge field would include infinitely many physically equivalent paths that
can be transformed into each other by gauge transformations that leave the action invari-
ant. In practice, this is done via the Fadeev-Popov trick [41] by inserting the identity
[35]

1 =

∫
Dα δ[G(Aα)] det

(
δG(Aα)

δα

)
(2.7)

into the path integral. Aα denotes the transformed field according to Eq. (2.5) with the
local set of parameters αa(x) and the gauge-fixing condition G(A) = ∂µAµ − ω where
the components ωa(x) specify an arbitrary set of functions. Shifting the field variable in
the path integral from A to Aα (which leaves the action invariant), we further perform a
Gaussian path integral over all ω in order to eliminate the functional delta distribution.
Suppressing the index α, this yields the gauge-fixed Lagrangian

Lgauge−fixed = q̄( /D +m)q +
1

4
F aµνF

a
µν +

1

2ξ
(∂µA

a
µ)

2 (2.8)

with the width of the Gaussian distribution specified by ξ. The value ξ = 1 is commonly
referred to as Feynman gauge while the limit ξ → 0 is Landau gauge. The limit can be
taken in expressions for correlation functions; for example, the free gluon propagator reads〈

Aaµ(p)A
b
ν(−p)

〉
= δab

p2δµν − (1− ξ)pµpν
p4

. (2.9)

In contrast to Abelian gauge theories such as QED, the determinant in Eq. (2.7) is field
dependent. From an infinitesimal version of the gauge-field transformation (2.5) we follow
[35]

δG(Aα)

δα
=

1

g
∂µDµ (2.10)

with the covariant derivative in the adjoint representation

Dab
µ = δab∂µ + gfabcAcµ . (2.11)

6



2.1. Quantum Chromodynamics

The result only depends on α via the field in the covariant derivative and since we shifted
the path integration variable to Aα, we can now rename Aα → A again. The infinite factor
due to the physically equivalent gauge orbits is now expressed by the path integral over α
which can just be discarded since none of the quantities depend on it. Furthermore, the
determinant can be expressed as a Grassmann-valued path integral,

det

(
1

g
∂µDµ

)
=

∫
Dc̄Dc e−

∫
c̄ (∂µDµ) c . (2.12)

Conventionally, the factor 1/g is absorbed into the definition of the ghost fields ca(x),
c̄a(x) [35]. They couple to the gluon have spin zero and thereby violate the spin-statistics
theorem. However, using a residual global symmetry of the gauge-fixed theory called
BRST symmetry [42, 43] one can prove that a projection on asymptotic states that contain
only physical particles, i.e., no (anti)ghosts and only transversally polarized gauge bosons,
retains unitarity of the S matrix [35]. The total partition function reads

ZQCD =

∫
Dq̄DqDc̄DcDA e−

∫
Lgauge−fixed−

∫
c̄ (∂µDµ) c . (2.13)

Unfortunately, there are further complications in such calculations. Firstly, the gauge-
fixing condition G(A) does not uniquely specify a gauge. While it is clear that any in-
finitesimal gauge transformation would break the condition, there are generally multiple
physically equivalent configurations fulfilling the condition which are distinguished by fi-
nite gauge transformations. These are referred to as Gribov copies [44]. While there are
methods of circumventing a certain number of these copies, e.g., with the ideas proposed
by Gribov and Zwanziger [44, 45], there is no complete solution so far. Determining the
number of Gribov copies and thus their overall impact is also a nontrivial problem [46].

Secondly, functional renormalization group approaches additionally need to take care
of symmetry relations that need to be fulfilled in the infrared regime. These are generalized
Ward-Takahashi identities [47, 48] called Slavnov-Taylor identities (STIs) [49, 50] in the
context of nonabelian gauge symmetries. A derivation of such relations in the functional
context can again be achieved using BRST invariance [51]. Similarly to the preservation
of the Silver-Blaze property discussed in the previous chapter, modified scale dependent
versions of these identities (mSTIs) need to be imposed throughout a truncated flow
to guarantee the fulfillment of the STIs in the infrared [51]. To this point, functional
renormalization group results in such setups—with quarks, gluons, and ghosts as the only
degrees of freedom—have been achieved for two-flavor vacuum QCD [52] and Yang-Mills
theory (pure gauge sector) in vacuum [53] and at finite temperature [54].

Asymptotic Freedom and Confinement

In contrast to QED which has a Landau pole at large energies, the effective gauge coupling
g of QCD becomes weaker with increasing energy scale. This has the peculiar feature that
QCD eventually becomes perturbative in the high-energy regime. For example, hard initial
scattering processes in the hadron jet production in collider experiments can be described
perturbatively. Denoting the renormalization scale as µ, the perturbative β function of
QCD reads to one-loop order [35]

β(g) := µ
∂g

∂µ
= − g3

(4π)2

(
11− 2

3
Nf

)
(2.14)

7



Chapter 2. Quantum Chromodynamics and Neutron Stars: A Brief Overview

where Nf is the number of quark flavors. For not too many quark flavors, it is negative as
expected. Note that unlike the Landau pole where the coupling diverges at a finite scale,
the QCD coupling does not completely vanish at finite energies, thus giving the feature
the name asymptotic freedom.

Going to small momentum transfers, g becomes large in QCD and perturbative ex-
pansions fail. Together with its gauge group structure, this leads to a feature called
confinement : There are no open color charges. In QED, single electrons are measurable
and contained in approximate asymptotic noninteracting states as dictated by the cluster-
decomposition property, but in QCD color-charged states are not present in this set. Only
color-neutral composite objects like mesons (one quark and one anti-quark of the same
color), baryons (one quark of each color), or more exotic states like glueballs with pure
gluon content, tetraquarks etc. are observable. For a heavy quark–antiquark pair, con-
finement can be seen in terms of an effective flux-tube potential that can be simulated on
the lattice [55]. For increasing distance the potential increases linearly, giving rise to a
constant string tension. With sufficient separation of the quarks the confining potential
becomes large enough to create a new quark–antiquark pair from the vacuum, resulting
in two color-neutral mesons [56]. Taking pure Yang-Mills theory [57], deconfinement can
be measured by means of the Polyakov loop

L(x) = TrP exp

(
ig

∫ β

0
dτ A0(τ,x)

)
. (2.15)

L(x) is not invariant under transformations of the center symmetry Z(3) of SU(3). While
Z(3) is explicitly broken by dynamical quarks, in pure Yang-Mills theory or for infinitely
heavy quarks it is broken at most spontaneously. The expectation value of the Polyakov
loop can be related to the free energy F of a static test quark via [38]

⟨L⟩ = e−βF . (2.16)

Hence, for an intact center symmetry ⟨L⟩ = 0, placing a single open-color quark in the
system costs an infinite amount of energy, hinting at color confinement, whereas a spon-
taneously broken center symmetry ⟨L⟩ ≠ 0 signals deconfinement.

So far, there is no concise proof of confinement in pure Yang-Mills theory. Multiple
technical confinement scenarios for full QCD are proposed [58, 59] but their discussion is
beyond the scope of this work. At large momentum transfers (i.e., short-distance physics)
confinement is not an issue and individual particles can be probed. Thus, it is expected
that matter at large densities and/or temperatures is essentially deconfined.

Global Symmetries

Next to the gauge symmetry or the residual BRST symmetry, QCD possessed multiple ad-
ditional global symmetries. Most prominently, for massless quarks left- and right-handed
quark fields can be rotated independently in flavor space, giving rise to the vector and
axial symmetries

U(Nf )L × U(Nf )R ≃ U(Nf )V × U(Nf )A . (2.17)

Roughly speaking, the vector transformation rotates left- and right-handed particle species
equally, the axial one oppositely. Up to irrelevant Z(Nf ) factor groups (see App. A), we
can rewrite the symmetry as

U(1)V × SU(Nf )V × U(1)A × SU(Nf )A . (2.18)

8



2.1. Quantum Chromodynamics

The splitting is helpful for the following reason: U(1)V just corresponds to a global phase
factor whose conserved charge can be associated with the baryon number. Outside color-
superconducting phases, this symmetry is always intact. Conversely, U(1)A is always
anomalously broken by quantization [60, 61]. While its classical Noether current is con-
served in the Lagrangian, the quantum version is not. SU(Nf )V is only broken for inequiv-
alent quark masses. As the up and down quarks possess approximately the same (small)
current quark masses, isospin symmetry SU(2)V can be assumed (at least for flavor-blind
chemical potentials) to good precision. SU(Nf )A is referred to as chiral symmetry. It
is explicitly broken by any quark-mass terms present in the Lagrangian as they connect
left- and right-handed spinors. Moreover, chiral symmetry is spontaneously broken in
the vacuum and becomes restored at large temperatures, giving rise to a chiral phase
transition.

As any causal quantum field theory, QCD is invariant under the combined discrete
transformations of charge conjugation, parity, and time reversal, in short CPT. The in-
dividual conservation of CP and T, however, is not guaranteed as the Lagrangian would
allow a term of the form

∼ F aµνF̃ aµν (2.19)

with F̃ aµν := ϵµναβF aαβ. Experimentally, such a CP violation by the strong interaction has
not been observed and the resulting unnaturally small coupling parameter still presents
an unsolved issue [62].

The QCD Phase Diagram

Based on the previous considerations, it is clear that QCD matter must undergo a phase
transition from hadronic matter with spontaneously broken chiral symmetry at low tem-
peratures and densities to deconfined matter where the fundamental degrees of freedom,
quarks and gluons, play a role at large temperatures and/or densities. The nature of the
phase diagram of QCD has been the subject of intensive study both from first-principle
methods as well as effective theories. An exemplary sketch of a conjectured phase diagram
is given in Fig. 2.1.

μB

T

neutron stars
?

hadrons

quarks and gluons

early
universe

color super-
   conductor

RHIC

LHC

NICA FAIR

Figure 2.1: Sketch of the conjectured QCD phase diagram. Critical endpoints are labeled as
black dots. At small temperatures, nucleonic matter undergoes a liquid–gas phase transition. The
entire region around the questionmark at larger densities is essentially unknown.
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Chapter 2. Quantum Chromodynamics and Neutron Stars: A Brief Overview

According to lattice QCD calculations [39] and experimental observations [63], it is
undoubtedly clear that at vanishing density, hadronic matter exhibits a crossover transition
to a quark-gluon plasma. At increasing density, the situation is not yet settled, but effective
theories have always predicted the existence of a critical endpoint somewhere along the
transition line, see e.g. Refs. [33, 64, 65]. This hypothesis is backed by increasingly
sophisticated studies with functional methods [18–20]. Future experiments like NICA [66]
and FAIR [38] are specifically aimed at finding possible signatures of a critical endpoint.

At low temperatures, the situation becomes vastly more complex. Provided the critical
endpoint exists and there is not a second critical endpoint, there must be a first-order
phase transition to a quark-matter phase somewhere beyond the liquid–gas transition
of nuclear matter. However, the phase structure at large baryon chemical potential µB
can become quite involved, with many possible color-superconducting, superfluid, and
spatially inhomogeneous phases [67, 68]. At vanishing temperature and asymptotically
large densities, it is known that the color-flavor locked (CFL) [69] phase is the ground
state [70]. Hence, chiral symmetry might not become fully restored along the µB axis.

2.2 Neutron Stars

Neutron stars are the most compact non-black-hole stars. They have masses ranging from
about 1M⊙ [71] to at least 2M⊙ [72–74] at a radius of only approximately 10 km and are
the remnants of core-collapse supernovae of very massive stars with masses above 8M⊙
[71]. Being electrically neutral objects with densities of nuclear-matter density and above,
they feature a large neutron fraction which gives neutron stars their name.

The mathematical description of compacts stars under the assumption of a static,
nonrotating ideal fluid in hydrostatic equilibrium was achieved by Tolman, Oppenheimer,
and Volkoff (TOV) [75, 76], see App. B for their equation and a derivation. With the
equation of state (EoS) p(ε) determined by the microscopic properties of matter, the
TOV equation yields a one-parameter curve of mass-radius relationships and a maximal
attainable stable mass. Solutions for spinning stars are also available and generally lead to
about 20% larger maximum masses [77]. These properties can be compared to experiment,
e.g., to precise mass determinations of heavy pulsars (i.e., neutron stars spinning with a
very high frequency) [72–74], but also other observables like pulsar glitches hinting at
possible superfluid phases in the center of the star [78] are possible. The complex cooling
process of neutron stars can also be used for predictions for the state of matter at high
densities [79].

At low baryon density a neutron star can be characterized by nonrelativistic nucleons
via nuclear forces. In the denser regimes, there are many possible scenarios that, next
to superfluid phases, feature the possibility of pion and kaon condensation [80] or the
occurrence of quark matter, leading to so-called hybrid stars [81]. The interface between
hadronic and quark matter could be continuous or—as previously speculated—a first-order
transition. Generally, the different phases of matter allow for the existence of a second
or even third branch of stable stars in the mass-radius diagram, implying the existence
of massive neutron and hybrid stars of equal masses, but different radii [82]. Hence,
the observation of two compact stars with almost equal masses, but different radii could
be proof for such a scenario. Precise radius determinations are oftentimes much harder
than that of the star’s mass but there is first data from the NICER experiment at the

10



2.2. Neutron Stars

International Space Station [83, 84] and future experiments could lead to even more precise
insights.

Another avenue for experimental observation was opened not too long ago with the
GW170817 gravitational-wave measurement of a neutron-star merger [85]. Besides the
classical mass determinations, e.g., a range of possible tidal deformabilities (see App. B
for a discussion) for the stars can be extracted from such observations and compared to
theoretical predictions.

Without precise experimental input on the state of matter at large densities, for now
there are basically two roads: First, the description of quark matter by means of effective
theories based on some assumptions about the underlying physics or second, the general
parameterization of the EoS, finding trends and probability regions by comparing the
results to experimental and observation data; see Ref. [86] for a prominent example.
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Chapter 3

Functional Methods

In the modern path integral formalism, the physics content of a quantum field theory
is encoded in its generating functional Z. All correlation functions can be expressed as
derivatives operating on Z or functions thereof. For example, in d Euclidean dimensions
the full two-point correlator of a real scalar fields φ(x) reads

⟨φ(x)φ(y)⟩ = 1

Z[0]
δ

δJ(x)

δ

δJ(y)
Z[J ]

∣∣∣∣
J=0

, (3.1)

where J is a source term and Z is defined via the path integral

Z[J ] :=
∫
Dφ e−S[φ]+

∫
Jφ . (3.2)

The measure Dφ stands for a variation of all possible field configurations and S is the
classical action of the theory.1 Although this formalism is very general, there exist several
known ways to formulate self-consistency or differential equations for functional quantities
derived from Z. They are commonly referred to as functional methods and provide exact
functional equations which are inherently nonperturbative. Thus, such methods are well-
suited to study field theories in a strong-coupling regime. Furthermore, they do not
generally suffer from problems involving rapidly oscillating complex phases like the fermion
sign problems in Lattice QCD [17], which facilitates an extension to nonvanishing chemical
potentials.

However, any one of these functionals contains an infinite amount of information and
can in practice never be known exactly. As Eq. (3.1) illustrates, the generating functional
encodes the information of all n-point correlators ⟨φ(x1) . . . φ(xn)⟩, which for an interact-
ing theory are generally nonvanishing at any order of n. It is therefore necessary to expand
a given functional in some physically reasonable scheme and truncate the expansion at
some order. As we will see in the course of this chapter, functional methods usually lead
to a tower of coupled equations, which implies that any truncation comes with a loss of
information and hence with a truncation error. Since functional approximation schemes
can not be seen as strictly convergent expansions, there is no fixed notion of how to gauge
the size of such errors. Functional methods should therefore be understood as important
tools that can lead to powerful predictions, but not as the single method of choice for
quantitative precision.

1For short-hand notation concerning contractions of fields like
∫
Jφ, we refer to App. A.
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Chapter 3. Functional Methods

In the realm of quantum field theories, they typically encompass Dyson-Schwinger
equations, nPI methods, and the functional renormalization group. In the course of this
chapter, we will briefly introduce the former two and discuss the functional renormalization
group in some detail, with a special emphasis placed on regulator functions in the last two
sections.

3.1 Dyson-Schwinger Equations and nPI Approaches

Before turning to the functional renormalization group, let us get a brief overview of Dyson-
Schwinger equations and nPI methods. The former are founded on Freeman Dyson’s
observation that—based on a diagrammatic expansion—Green’s functions are subject to
an implicit relation. For the propagator G(p) of a particle, this is the Dyson equation [87]

G(p) = G0(p) +G0(p)Σ(p)G(p) , (3.3)

where G0(p) is the free propagator and all amputated 1PI (one-particle irreducible)2 dia-
grams are collected in the self-energy Σ. With the subsequent works of Julian Schwinger
[88], it was possible to express such relations solely in terms of (bare and fully dressed)
n-point functions. Picking up the example of a real scalar field φ(x), we can derive the
Dyson-Schwinger master equation and introduce some helpful quantities for later use on
the way. In the path integral language, Dyson-Schwinger equations follow from the shift
invariance of the integration measure.3 The shift φ(x) → φ′(x) := φ(x) + αχ(x) leaves
Dφ = Dφ′ invariant, so we can write:

0 =
∂

∂α

∫
Dφ e−S[φ+αχ]+

∫
J(φ+αχ)

∣∣∣∣
α=0

=

∫
x
χ(x)

∫
Dφ

(
− δS[φ]
δφ(x)

+ J(x)

)
e−S[φ]+

∫
Jφ .

(3.4)

As χ(x) is an arbitrary real scalar field, we must have∫
Dφ

(
− δS[φ]
δφ(x)

+ J(x)

)
e−S[φ]+

∫
Jφ = 0 . (3.5)

The term in parenthesis can be pulled out of the path integral by replacing all fields φ(x′)
with derivatives δ/δJ(x′)4 acting on Z[J ]:(

− δS[φ]

δφ(x)

∣∣∣∣
φ→ δ

δJ

+ J(x)

)
Z[J ] = 0 . (3.6)

With the following trick, we can pull Z all the way to the left and remove it from the
equation: first, we define the Schwinger functional

W [J ] := lnZ[J ] , (3.7)

2Diagrams are called n-particle irreducible if they cannot be separated into two (nontrivial) parts by
cutting n or less lines.

3Applying the following procedure to other symmetry transformations that leave the integration measure
unchanged leads to quantum versions of Noether current conservation. For gauge symmetries, these are
the Ward-Takahashi [47, 48] or—in the nonabelian case—Slavnov-Taylor [49, 50, 89] identities.

4In momentum space, φ(p) → δ/δJ(−p), see App. A for details.
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3.1. Dyson-Schwinger Equations and nPI Approaches

which is the generating functional for the connected correlators ⟨φ(x1) . . . φ(xn)⟩c. Second,
we make use of the relation

δ

δJ(x)

(
eW [J ]A[J ]

)
= eW [J ]

(
δW [J ]

δJ(x)
+

δ

δJ(x)

)
A[J ] (3.8)

where A[J ] stands for any functional J-dependencies to the right of the derivative operator,
to arrive at

− δS[φ]

δφ(x)

∣∣∣∣
φ→ δW

δJ
+ δ

δJ

+ J(x) = 0 . (3.9)

To get an expression in terms of 1PI correlators, we define their generator, the effective
action, as the functional Legendre transform of W [J ]:

Γ[ϕ] := sup
J

(
−W [J ] +

∫
Jϕ

)
. (3.10)

It immediately follows that

J(x) =
δΓ[ϕ]

δϕ(x)
(3.11)

for a given field ϕ and

ϕ(x) =
δW [J ]

δJ(x)
= ⟨φ(x)⟩J , (3.12)

that is, ϕ is the macroscopic field expectation value in the presence of the source J . Using
the previous definitions and writing

δ

δJ(x)
=

∫
y

δϕ(y)

δJ(x)

δ

δϕ(y)
=

∫
y

δ2W [J ]

δJ(x)δJ(y)

δ

δϕ(y)
(3.13)

as well as introducing

G(x, y) :=
δ2W [J ]

δJ(x)δJ(y)
(3.14)

for the propagator, the master equation becomes

δΓ[ϕ]

δϕ(x)
=

δS[φ]

δφ(x)

∣∣∣∣
φ→ϕ+

∫
G δ

δϕ

. (3.15)

Dyson-Schwinger equations for 1PI n-point functions Γ(n) are obtained by acting on both
sides with the appropriate number of functional derivatives. From the additional functional
derivatives in the replacement terms on the right-hand side, we can follow that in any
nontrivial case, the DSE for a given n-point function will always include higher-order
correlation functions which leads to the previously mentioned infinite tower of coupled
equations.

Example: Quark propagator. One of the central objects in DSE calculations for
QCD is the quark propagator. Let us assume the flavor-degenerate case for simplicity.
Then, the DSE for the full (inverse) quark propagator S(p) is diagonal in flavor space and
reads

S−1(p) = S−1
0 (p) + igγµTa

∫
q
S(q)Dab

µν(p− q)(Γq̄qA)νb (q,−p) (3.16)
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Chapter 3. Functional Methods

−1 −1= +

Figure 3.1: Dyson-Schwinger equation for the quark two-point function (inverse propagator).
Propagators with a large black blob in the middle are dressed, those without are bare. The small
black dot represents the bare quark-gluon vertex, the large gray one the dressed vertex.

with the dressed quark-gluon vertex Γq̄qA, the dressed gluon propagator D and the bare
(inverse) quark propagator

S−1
0 (p) = ipµγ

µ +mq . (3.17)

A diagrammatic version of the equation is shown in Fig. 3.1. Note that for a formulation
in terms of renormalized fields and vertices, multiplicative renormalization constants must
be added; see e.g. Ref. [90] for details. For thermodynamic applications, the dressed
vertex and gluon propagator are oftentimes approximated by means of phenomenologically
motivated models and Lattice data [19, 91, 92], but input from functional renormalization
group calculations has also been used recently [18, 93].

Bethe-Salpeter equations and nPI method. Further applications include the cal-
culation of QCD n-particle bound states [94–97] with the help of Bethe-Salpeter equations
[98] which can be inferred from the Dyson equation for 2n-point Green’s functions. This
has also been achieved for glueball states in pure Yang-Mills theory [99] based on a self-
consistent framework that takes into account nPI equations of motion [100]. In the nPI
framework, source terms are added to the generating functional for vertices up to order
n: Z = Z[J (1), J (2), J (3), . . . ]. The nPI effective action follows as the Legendre transform
with respect to all sources, schematically (omitting the supremum for clarity) [100]

Γ[ϕ,G, V3, . . . ] = −W [J (1), J (2), . . . ] +

∫
J (1)ϕ+

∫∫
J (2)G+

∫∫∫
J (3)V3 + . . . (3.18)

The dressed field, propagator, three-point function, etc. are determined by the equation
of motion for vanishing source

δΓ

δϕ
= 0 ,

δΓ

δG
= 0 ,

δΓ

δV3
= 0 , . . . , (3.19)

and all vertices of order k > n remain bare. Completely self-contained setups can be
attained by expanding Γ up to loop order l = n. For n > l no new information is gained,

i.e., Γ
(l−loop)
nPI = Γ

(l−loop)
(n+1)PI for n ≥ l [101].

3.2 Functional Renormalization Group

For the remainder of this thesis we shall focus on the basic principles of the functional
renormalization group (FRG) as well as results obtained within the FRG framework. The
fundamental idea of the renormalization group (RG) is the study of physical quantities un-
der a change of scale in, e.g., length or momentum. Already in perturbative calculations,
the first groundworks for the renormalization group were laid. The divergence of loop inte-
grals requires a regularization and a subsequent renormalization procedure, which makes
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3.2. Functional Renormalization Group

the running of coupling constants under a change of renormalization scale µ apparent.
An example is the perturbative beta function of QCD, Eq. (2.14). The independence of
physical observables under a change of renormalization scale was later expressed in general
and concise form by Callan and Symanzik [102, 103]. Powerful predictions can be made
especially in the case of scale invariance, as shown by Kadanoff in the picture of block-spin
transformations in a spin model [104]. Kenneth Wilson picked up this idea in his Nobel
prize winning work [105, 106] to relate the renormalization group to critical phenomena
where scale invariance close to a fixed point leads to universal behavior.

The change of RG scale can be implemented in a field theory by so-called momentum-
shell transformations. Given a theory with an initial action SΛ[φ] where the field is cut
off at momenta larger than the UV scale Λ,

φ(x) =

∫
|p|≤Λ

ddp

(2π)d
φ(p) eip·x , (3.20)

Wilson’s approach was to integrate out quantum fluctuations only in the interval Λ′ <
|p| ≤ Λ. This leads to a new effective action Seff

Λ′ defined at the scale Λ′:

Z :=

∫
Λ
Dφ e−SΛ[φ] =

∫
Λ′
Dφ

(∫
(Λ′,Λ]

Dχ e−SΛ[φ+χ]

)
=

∫
Λ′
Dφ e−S

eff
Λ′ [φ] (3.21)

with (Λ′,Λ] indicating that the fourier modes of χ are only nonvanishing in this interval,
similar to Eq. (3.20). Note that the path integral and hence the theory does not change.
Some of the fluctuations have just been absorbed into the redefinition of the action and
do not need to be integrated out anymore. In this picture, even the initial action can be
seen as an effective action at scale Λ generated by, perhaps, a yet unknown theory valid at
much larger energy scales. This allows for the extension of the notion of renormalizability
to a nonperturbative context, for example, the study of an asymptotic safety scenario in
quantum gravity [107].

The term functional renormalization group refers to a functional implementation of
Wilson’s nonperturbative renormalization group, expressing Eq. (3.21) in a mathemati-
cally applicable framework. This is done by adding an RG-scale dependent modification
∆Sk[φ] to the classical action, yielding a scale-dependent generating functional:

Zk[J ] :=
∫
Dφ e−S[φ]−∆Sk[φ]+

∫
Jφ . (3.22)

Conventionally, the RG scale is here denoted as k ∈ [0,Λ]. The additional term serves as
a dynamical mass that suppresses the fluctuation of field modes with momenta smaller
than k. Note that this construction is given in a Euclidean formulation, making use of
the Gaussian suppression of the path integral by the regulator and hence providing a
well-suited method for the study of equilibrium systems. However, spectral functions have
also been retrieved from analytically continued flow equations and a formulation on the
real-time Keldysh contour is also possible [108] and sees some recent progress [109, 110].
As only the high momenta are integrated out, Zk can be roughly identified with the term
in parenthesis in Eq. (3.21) with the renaming Λ′ = k. This identification, however, is not
exact as we keep the definition of ∆Sk as general as possible, only insisting that the term
should be quadratic in the field:

∆Sk[φ] :=

∫
ddp

(2π)d
1

2
φ(−p)Rk(p2)φ(p) . (3.23)
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Chapter 3. Functional Methods

Even more general setups are discussed in Ref. [51]. The regulator function Rk(p
2)

determines how momenta are cut off in relation to the scale k. If we choose the so-called
sharp regulator,

Rsharp
k (p2) =

{
∞ p2 ≤ k2 ,
0 else ,

(3.24)

we exactly recover the inner path integral in Eq. (3.21) for Λ → ∞ since fluctuations
at momenta smaller than k are infinitely suppressed while there is no modification of the
theory at higher scales. Eq. (3.23) also allows for other choices for Rk which includes
smooth cutoffs, as long as the following conditions are fulfilled:

(I) The regulator needs to vanish for momenta p2 ≫ k such that UV modes in the path
integral are not regularized anymore. A special case is k → 0 where the absence of the
regulator at all momenta recovers the original theory, Z0[J ] = Z[J ]. In compact notation,

lim
p2/k2→∞

(p2)
d−1
2 Rk(p

2) = 0 , (3.25)

where the additional momentum factor ensures that Rk vanishes sufficiently fast such that
the loop integral in the Wetterich equation introduced later is properly regularized [51].

(II) Rk is always positive in the infrared, i.e., for momenta smaller than k:

lim
p2/k2→0

Rk(p
2) > 0 (3.26)

which ensures the regularization of massless modes.

(III) For infinitely large RG scale the regulator diverges,

lim
k→∞

Rk(p
2)→∞ , (3.27)

suppressing all quantum fluctuations and yielding a classical theory with action S[φ]. For
all practical purposes, this is already achieved at a sufficiently large UV scale Λ, which is
where we define our theory.

The very general definition of ∆Sk has an important implication: for given k, each
regulator function defines a different theory with different couplings. They only coincide
for k = 0 and k →∞ due to above regulator conditions. If theory space is imagined as an
infinite-dimensional space of all couplings {gi}, the one-parameter flow {gi(k)} through
this space differs for each choice of regulator, with the boundary condition of coinciding
starting and end points. This notion is depicted by the black lines in Fig. 3.2.

3.3 Flow Equations

The abstract thought of a flow through theory space can be made precise in terms of flow
equations which are differential equations including the scale derivative ∂t = k∂k of the
couplings where

t := ln
k

Λ
(3.28)
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Γk=Λ

Γk=0
{gi}

Figure 3.2: Sketch of the effective action’s flow in theory space for two different regulators. The
dashed red lines symbolize deviations due to truncation errors which leads to different infrared
results (red region).

is the dimensionless RG time. Applying this operator on a generating functional, one
ends up with a functional partial differential equation. We first consider the flow of the
modified Schwinger functional

Wk[J ] := lnZk[J ] . (3.29)

The partial scale derivative (keeping the source independent of k) follows from Eq. (3.22):

∂tWk[J ] = −
1

2

∫
p

(
∂tRk(p

2)
) 1

Zk[J ]

∫
Dφφ(−p)φ(p) e−S[φ]−∆Sk[φ]+

∫
Jφ

= −1

2

∫
p

(
∂tRk(p

2)
)( δ2Wk[J ]

δJ(−p)δJ(p) +
δWk[J ]

δJ(−p)
δWk[J ]

δJ(p)

)
.

(3.30)

The connected part is just the propagator

Gk(p) =
δ2Wk[J ]

δJ(−p)δJ(p) , (3.31)

while the disconnected part is given by the field expectation values in presence of a source,

⟨φ(p)⟩Jk =
δWk[J ]

δJ(−p) . (3.32)

As expected, we obtain a functional partial differential equation and functional derivatives
appear up to second order. Similar to the derivation of Dyson-Schwinger equations, we
strive for a reformulation in terms of macroscopic fields. Therefore, we consider the flow
of the effective average action

Γk[ϕ] := sup
J

(
−Wk[J ] +

∫
Jϕ

)
−∆Sk[ϕ] . (3.33)

In contrast to a common Legendre transformation, the RG modification inherited by Zk
is additionally removed. In the limit k → 0, the original definition of the 1PI generating
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Chapter 3. Functional Methods

functional Γ[ϕ] is recovered. Γk is a functional of the macroscopic fields ϕ = ⟨φ⟩Jsupk where
Jsup is the source that gives the supremum in Eq. (3.33). Taking the scale derivative and
keeping ϕ fixed, the only term that does not cancel out is

∂tΓk[ϕ] =
1

2

∫
p

(
∂tRk(p

2)
)
Gk(p) . (3.34)

Gk is the second functional derivative of Wk[J ] at J = Jsup, but we can write it as the

functional inverse of Γ
(2)
k [ϕ] +Rk since∫

q
W

(2)
k (p,−q)

(
Γ
(2)
k +Rk

)
(q, r) =

∫
q

δϕ(p)

δJ(q)

δJ(q)

δϕ(−r) = (2π)4δ(p+ r) . (3.35)

In abstract notation and repeating the procedure for fermions, we obtain the Wetterich
equation [111, 112]

∂tΓk =
1

2
STr

(
∂tRk

Γ
(2)
k +Rk

)
(3.36)

where the supertrace gives an additional minus sign for fermions. A generalization to
composite field notation and more information concerning momentum space conventions
are given in App. A. The equation has a one-loop structure with the insertion of the
regulator derivative providing UV regularization. The regulator term in the denominator
ensures positivity and provides IR regularization even for massless fields. Flow equations

for higher-order n-point functions Γ
(n)
k can be obtained by taking functional derivatives

of Eq. (3.36). In contrast to Dyson-Schwinger equations, all propagators and vertices
are always fully dressed (at scale k) since there are no bare quantities in the Wetterich
equation.

It should be noted that historically, the Wetterich equation was not the first func-
tional renormalization group equation to be formulated. Already in 1984, Polchinski [113]
considered a path integral

Z =

∫
Dφ e−S

eff
k [φ] (3.37)

based on Wilson’s effective action (3.21) with high momenta cut off by a smooth regulator
function applied to the bare propagator

G0,k(p) =
K(p2/k2)

p2 +m2
, (3.38)

where m is the bare mass and the kernel K goes to zero for p2 ≫ k2. The effective action
thus reads

Seff
k [φ] =

1

2

∫
p
φ(−p) p

2 +m2

K(p2/k2)
φ(p) + Sint

k [φ] . (3.39)

All interactions and modifications to the bare propagator are stored in Sint
k . The condition

that the full partition function Z may not change under a variation of the renormalization
scale,

∂tZ =

∫
Dφ

[
−1

2

∫
p
φ(−p)

(
∂tG

−1
0,k(p)

)
φ(p)−

(
∂tS

int
k [φ]

)]
e−S

eff
k [φ] !

= 0 , (3.40)
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is nontrivially fulfilled only if Sint
k satisfies (up to field-independent terms) the flow equation

[113]

∂tS
int
k [φ] = −1

2

∫
p
(∂tG0,k(p))

(
δ2Sint

k [φ]

δφ(−p)δφ(p) −
δSint

k [φ]

δφ(−p)
δSint

k [φ]

δφ(p)

)
. (3.41)

Intriguingly, Polchinski’s equation looks very similar to the flow of the Schwinger functional
(3.30). A connection is not immediately obvious since Sint

k [φ] is defined on the microscopic
fields φ and based on the full partition function Z, whereas Wk[J ] is directly connected to
the modified partition function Zk[J ] and depends on an external source field. However,
since both Sint

k [φ] andWk[J ] contain the high-momentum fluctuations, they can be related
to each other if both cutoff functions Rk(p

2) and K(p2/k2) are chosen in a compatible
fashion. For the interested reader, this rather technical derivation is given in App. C.

3.4 Truncation Schemes

In the previous section it was shown that exact functional renormalization group flows
incorporate field derivatives up to second order. Hence, to calculate the flow of an n-point

function Γ
(n)
k one requires the full knowledge of the flow of Γ

(n+1)
k and Γ

(n+2)
k . Formally,

the effective average action can be expanded in those n-point vertices:

Γk[ϕ] =

∞∑
n=0

∫
x1,...,xn

Γ
(n)
k (x1, . . . , xn)ϕ(x1) . . . ϕ(xn) . (3.42)

For simplicity, the expansion schemes are here given in position space. The vertex expan-

sion can be truncated at some orderm, setting all Γ
(n)
k ≡ 0 for n > m. Of course, due to the

missing derivatives the flow of Γ
(m)
k and Γ

(m−1)
k will be erroneous, which will in turn lead

to errors in the flows of all lower-order couplings. Unfortunately, no convergence criteria
are known that would allow one to gauge the size of such errors. Instead, heuristic crite-
ria like apparent convergence—which is reached when the result only changes marginally
upon increasing the truncation order—or complementary methods must be relied upon.

That also holds for other truncation schemes such as the derivative expansion where
Γk is expanded in powers of local derivative operators acting on the fields,

Γk[ϕ] =

∫
x

[
Uk(ϕ

2) +
1

2
Zk(ϕ

2)(∂µϕ)
2 +O(∂4)

]
. (3.43)

Here, we have assumed the Z2 symmetry ϕ → −ϕ. The effective potential Uk(ϕ
2) incor-

porates the momentum-independent part of all n-point functions to infinite order. For a
spatially invariant infrared vacuum expectation value ϕ0 = ⟨φ(x)⟩ the effective potential—
evaluated at its minimum ϕ0—becomes proportional to a thermodynamic potential:

Γ[ϕ0] =
V

T
U0(ϕ

2
0) = − lnZ = −V p

T
(3.44)

with the three-dimensional spatial volume V , temperature T , and pressure p. The deriva-
tive expansion is therefore well-suited for thermodynamic applications. To lowest non-
trivial order—the so-called local potential approximation (LPA)—only Uk is kept scale
dependent and Zk is set to unity such that the second term becomes the standard kinetic
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term. Since all higher order couplings are fixed to zero, the two-point function in LPA
will always have canonical momentum behavior

Γ
(2)
k (p) = p2 + 2U ′

k(ϕ
2) + 4ϕ2 U ′′

k (ϕ
2) (3.45)

where the primes refer to derivatives with respect to ϕ2. The first step beyond LPA, com-
monly referred to as LPA’, includes a scale- but usually not field-dependent wavefunction
renormalization Zk, allowing for a nonvanishing anomalous dimension η = −∂t lnZk.

3.5 Regulator Optimization

For truncated flows, the notion that each choice of regulator, although it defines a differ-
ent trajectory in theory space, will lead to the same endpoint characterized by the fully
interacting theory at vanishing regulator is clearly not true anymore. Since the flows are
not exact, they will drive each trajectory to a different endpoint, introducing a truncation
error as well as a spurious regulator dependence on physical observables. This notion is
pictorially represented by the dashed red lines and the red region in Fig. 3.2. Furthermore,
it is clear that by truncating, one will never be able to take into account all infinitely many
couplings. Hence, the task is to find an optimum regulator function in the sense that for
a given finite set of observables {Ol} the flow drives all couplings {gm} associated with
those observables as closely as possible to their exact values.

PMS criterion. One possible criterion of choice is the principle of minimum sensitivity
(PMS) [114, 115]. Originally developed in the context of perturbation theory, in the spirit
of a saddle point approximation it seeks those solutions that are least sensitive to variations
in the regularization scheme. If we abstractly parameterize a regularization scheme (RS)
with the set of parameters {an}, the condition reads [116]

dOl
d(RS)

=
∑
gm,an

dOl
dgm

dgm
dan

dan
d(RS)

!
= 0 . (3.46)

Correct solutions are those where the regularization scheme delivers a coinciding extremum
for all observables Ol. Such studies, however, are usually tedious as for each tested regu-
lator function the FRG flow needs to be solved down to k = 0 to obtain the corresponding
observables [51]. Furthermore, such coinciding extrema do not necessarily exist or they
might not be unique [116].

There are two more optimization criteria proposed in the literature which are not tied to
specific observables. In order to discuss those, we first express the regulator function Rk
in terms of a dimensionless shape function:

Rk(p
2) := p2 r(y) , y = p2/k2 . (3.47)

For the dimensionless inverse propagator of a massless field we use the short-hand notation
P 2(y) which in LPA—the truncation we mainly employ in this work—reads

P 2(y) =
p2[1 + r(y)]

k2
= y[1 + r(y)] . (3.48)
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Note that even in LPA’ (i.e., for a field-independent wavefunction renormalization), with
the redefinition

Rk(p
2) := Zk p

2r(y) (3.49)

the only change to P 2 is the well-known global scaling factor Zk which can be absorbed
into the renormalized two-point function. Hence, the following arguments still apply.

Litim criterion. The criterion developed by Litim states that, for a given normalization,
any regulator that maximizes the gap in the inverse propagator is optimal [117]:

Copt := max
R

(
min
y≥0

P 2(y)

)
. (3.50)

It is reasoned that such optimal regulators lead to the greatest stability of the flow [117]
and that an expansion of the flow in inverse powers of P 2, which is always possible due
to its gap, leads to quickest convergence of the series if the gap is maximal [116]. Indeed,
in Ref. [118] it was shown that flows optimized according to this criterion lead to critical
exponents closest to the real physical values in O(N) scalar theories. The need for a
normalization is also clear: without it, the gap could be made arbitrarily large just by
means of multiplying a given shape function with a large factor. In the following, we will
show that the act of normalizing a regulator is closely tied to choosing an effective RG scale
keff . To simplify the discussion, we restrict ourselves to continuous, strictly monotonously
decreasing shape functions r(y). In a Euclidean setup, this is not a hard restriction
as we generally aim at a smooth transfer from regulated IR modes to unregulated UV
modes. Any shape function will diverge for vanishing momenta y → 0 at least like 1/y to
render Rk(p

2)/k2 = y r(y) positive, and vanish for y →∞ in compliance with the general
regulator conditions. Hence, it takes on each positive value exactly once.

A normalization is understood as the requirement that all shape functions considered
in Eq. (3.50) intersect at one common point [51],

r(y0) = c (3.51)

with c > 0 and finite. Both y0 and c are free of choice but we can associate some physical
intuition with it. The typical choice is c = 1 [117] such that

Rk(y0k
2) = y0k

2 . (3.52)

At p2 = y0k
2 the standard kinetic term and the regulator term are equal in size. For larger

momenta, the kinetic term dominates, and for smaller momenta the regulator dominates
(as long as it is a monotonously decreasing function). Hence, y0k

2 might be interpreted as
the effective RG scale k2eff(k) if we define keff as “the momentum scale below which modes
are suppressed to a sufficient degree”. What sufficient means (i.e., the ratio between the
regulator and kinetic terms) is essentially defined by the parameter c.

The connection between the normalization and keff becomes even more tangible if, for
a given shape function r and c = 1, we consider the following family of shape functions:

rλ(y) := r(y/λ2) . (3.53)

rλ can be obtained from r by the simple multiplicative rescaling k → λk with λ > 0. Such
a rescaling just corresponds to a reparameterization of the trajectory in theory space—
it leads to the exact same flow even in the presence of truncations. Formally, this can
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be expressed by the relation Γλk = Γλk where Γλk is the effective action in the presence
of the regulator defined by rλ. The modified shape function obeys the normalization
rλ(λ2y0) = 1, which implies kλeff(k) = λkeff(k). In contrast to the RG scale k which is
just a parameter subject to arbitrary rescalings, keff can thus be associated with a fixed
physical scale. Furthermore, the previously demanded continuity and strict monotonicity
imply uniqueness, i.e., there is always exactly one shape function rλ0 from each family that
satisfies a given normalization condition. Hence, the normalization exactly cancels out
redundant shape functions that are related to each other by simple scale transformations.
Eq. (3.50) only compares regulators yielding the same effective scale keff(k) which implies
that the gap can not be made arbitrarily large.

Indeed, there is a fixed value Copt for each normalization. For c = 1, we have Copt =
P 2(y0) = 2y0 which directly follows from Eq. (3.50) [119]. It should be stressed that the
Litim criterion does not uniquely determine an optimal shape function. Rather, there are
many shape functions that fulfill it. Typically used regulators can be obtained as limits
of generalized compactly supported smooth (CSS) regulators [120], some of which become
optimal for the correct choice of parameters. However, already in Ref. [119] it was pointed
out that the flat (or Litim) regulator defined by the shape function

rflat(y) =

(
1

y
− 1

)
Θ(1− y) (3.54)

is special due to its analytic properties. The inverse propagator becomes P 2(y) = 1 for
0 ≤ y ≤ 1 and P 2(y) = y for y > 1 which means the minimum is attained not at a single
point, but over the entire interval [0, 1]. Indeed, it can be easily shown by insertion into
Eq. (3.50) that the flat regulator is optimal not only for c = 1, but for any arbitrary choice
of c > 0 with the corresponding effective scale given by y0 = 1/(c + 1) and a constant
Copt ≡ 1.

Other optimal regulators generally exhibit an isolated minimum of P 2 at y0 and are
only optimal for one specific choice of c. Hence, the requirement that the regulator shape
function r be optimal for any choice of c might be seen as an extension of the Litim
criterion. In this more restrictive formulation, the unsatisfying freedom of choice in the
normalization condition is eliminated and the flat regulator emerges as the single optimal
regulator choice in LPA.

Pawlowski criterion. Another stability-related criterion was formulated by Pawlowski
[51, 121]. In contrast to the Litim criterion, the effective scale is understood to be the
physical cutoff scale k2phys which is defined as the propagator gap. This turns the previous
optimization criterion into a normalization condition: all regulators under consideration
have the same kphys(k). Optimal regulator functions are those that render any correlation
function insensitive to local variations of the regulator at scale kphys. This condition can
be shown to be satisfied if the kernel of the flow operator

∂t = −
1

2
TrGk[ϕ](∂tRk)Gk[ϕ]

δ2

δϕ2
. (3.55)

is minimized [121]. Eq. (3.55) can be understood as a generalized operator that yields
flow equations for all composite operators such as full n-point correlation functions (not
connected ones) ⟨φ(x1) . . . φ(xn)⟩; see Ref. [121] for details. As an interpretation, this
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3.5. Regulator Optimization

means that the length of the flow trajectory is minimized and physics is approached as
quickly as possible.

This condition can be further recast into multiple applicable functional forms. For a
general truncation, the setup requires the choice of an appropriate operator norm which
allows for a defined notion of length of a trajectory in theory space; again, see Ref. [121]
for examples. In LPA for a single scalar field, the Pawlowski criterion can be shown to
reduce to the condition [51]

ropt(y) ≤ r(y) ∀ r, y . (3.56)

Since only regulators at the same physical cutoff scale are compared,

min
y≥0

P 2(y) = k2phys/k
2 , (3.57)

and P 2(y) = y + y r(y), for the choice kphys(k) := k it follows that r(y) ≥ 1/y − 1 for
0 ≤ y ≤ 1 and r(y) ≥ 0 for y > 1. The optimum is, again, given by the flat regulator.
Hence, at least at the level of the local potential approximation, both the Litim criterion
in its extended formulation and the Pawlowski criterion become equivalent.

So far, we have only considered bosonic fields and corresponding regulators. The discussion
can be extended to fermionic regulators with the choice

RFk (p) = i/p r
F (y) . (3.58)

The formulation proportional to the standard kinetic term in Dirac space preserves possible
symmetries of massless fields. The propagator in LPA and for vanishing mass reads

GFk (p) =
1

i/p[1 + rF (y)]
=
−i/p[1 + rF (y)]

p2[1 + rF (y)]2
. (3.59)

The numerator is contracted with the regulator insertion ∂tRk in the trace of the Wetterich
equation and we are free to define the fermionic analogon of the inverse propagator via
the denominator [119],

P 2
F (y) = y[1 + rF (y)]2 . (3.60)

For given r(y), the choice

rF (y) =
√

1 + r(y)− 1 (3.61)

yields the same inverse propagator as the bosonic analogon. For example, the fermionic
version of the flat regulator has the shape function

rFflat(y) =

(√
1

y
− 1

)
Θ(1− y) . (3.62)

With this choice, up to a sign in the Wetterich equation (see App. A) and multiplicity
factors, the massless bosonic and fermionic flows are equal and all previous discussions
apply.

25



Chapter 3. Functional Methods

3.6 Flows at Nonzero Chemical Potential

Thermodynamic ensembles with a given average particle number are characterized by
a chemical potential µ which can be defined as the derivative of the free energy with
respect to the particle number.5 At vanishing temperature, no particle states of a quantum
mechanical many-body system can be excited as long as µ is smaller than the threshold
given by the energy of the lowest lying state. In thermal field theories, this analogously
leads to the so-called Silver-Blaze property of n-point functions [122]. As we shall see
in this section, for any practical application the preservation of this feature requires a
generally µ-dependent regulator function. This dependency can be removed by the usage of
dimensionally reduced regulators that only depend on the spatial momentum components.

In order to exemplify all points made in this section, it is sufficient to consider a free,
massive Dirac fermion field coupled to a chemical potential:

Z =

∫
Dψ̄Dψ e−

∫
p ψ̄(p)(i/p−µγ0+m)ψ(p) ∼ detG−1

ψ (3.63)

with the propagator

Gψ(p1, p2;µ) =
δ(p1 − p2)

i/p− µγ0 +m
. (3.64)

Note that we used the formal version with two external momenta and deviated from the
definition of momentum routing in App. A such that the delta function has the argument
p1 − p2 instead of p1 + p2. For this choice, the Silver-Blaze property for the propagator
reads

Gψ(p1, p2;µ) = Gψ(p̃1, p̃2; 0) (3.65)

with

p̃i := (p0i + iµ,pi) . (3.66)

Up to a shift in external momenta, the propagator at µ > 0 is equal to the one at µ = 0.
While this case is trivial, the relation generalizes to n-point functions in an interacting
theory:

Γ(n)(p1, . . . , pn;µ) = Γ(n)(p̃1, . . . , p̃n; 0) . (3.67)

One could, for example, take an additional real scalar field φ and allow for a Yukawa
interaction term ∼ ψ̄φψ. Then, only the external momenta that belong to a fermion are
shifted as only those couple to the chemical potential.

A proof of the Silver-Blaze property in the 2PI framework can be found in Ref. [123].
Generally, it only holds for µ < µc, where µc is the lowest lying state of particles coupling
to µ.6 In an interacting theory, µc is equal the pole mass of the corresponding propagator.
Here, it is simply the bare mass µc = m. Although this restriction is not necessary for the
free propagator, it appears whenever loop diagrams contribute. In our simple example,
this can be seen at hand of the fermion pressure which is related to the partition function
via Eq. (3.44). Solving the fermion determinant in Eq. (3.63) in the usual way [125]

5Analogously, there are also associated chemical potentials for other conserved charges.
6This depends on the way the chemical potential couples to the particles. For diquarks, the critical

quark chemical potential is actually half their mass gap, as diquarks are composite particles made up out
of two quarks [124].
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3.6. Flows at Nonzero Chemical Potential

and keeping only the nondivergent thermodynamic parts, we recover the result for a free
relativistic fermi gas

pfermi−gas =
1

24π2

[
−5µp3F + 3µ3pF − 3m4 ln

(
pF + µ

m

)]
Θ(µ−m) (3.68)

with the fermi momentum pF :=
√
µ2 −m2. Only beyond the threshold µ > µc = m the

first particle states are populated and the pressure deviates from zero.
Clearly, it is desirable to retain this property in a functional renormalization group

approach. This can be ensured by lifting the Silver-Blaze property to hold not only in the
infrared, but at all scales k:

Γ
(n)
k (p1, . . . , pn;µ) = Γ

(n)
k (p̃1, . . . , p̃n; 0) . (3.69)

The threshold µc,k is now generally scale dependent and given by the running pole mass.
Eq. (3.69) can be achieved by imposing a similar property on the (fermionic) regulator
function:

RFk (p;µ) = RFk (p̃; 0) . (3.70)

A simple general outline of a proof can be found in Ref. [124]. The idea is that in any
loop diagram, the frequency component of the loop momentum can be shifted by −iµ and
the contour in the complex plane closed at (positive and negative) infinite real frequency.
As long as there are no poles inside the contour and all external momenta are shifted as
well, the vacuum result is recovered.

In our example, writing down the FRG flow of the fermion potential UFk , i.e., the
(negative) contributions to the pressure in our free theory, and using Eq. (3.70) we find
for T = 0

∂tU
F
k = −tr

∫
p

∂tR
F
k (p;µ)

i/̃p+m+RFk (p;µ)

= −tr
∫
p

∂tR
F
k (p̃; 0)

i/̃p+m+RFk (p̃; 0)

(3.71)

where the trace lives in Dirac space. Note that for the Cauchy theorem to work and the
vacuum flow to be recovered, the regulator needs to fulfill certain analyticity requirements
that ensure the expression is complex differentiable in the domain enclosed by the real
axis and the shifted contour p0 → p0 − iµ. Especially, if the Silver-Blaze property ought
to hold for µ < µc, we need to demand µc,k > µc for all k > 0, i.e., the pole mass needs to
approach the physical infrared value from above and the regulator can not introduce any
additional, lower lying poles. This is actually a challenging restriction as the following
example shows.

Example: Exponential regulator. If we explicitly choose the fermionic version (see
Eq. (3.61)) of the well-established exponential regulator defined as

rexp(y) :=
1

ey − 1
(3.72)

and impose the Silver-Blaze condition, we obtain

RF,expk (p;µ) = RF,expk (p̃; 0) = i/̃p

(√
1 +

1

ep̃2/k2 − 1
− 1

)
(3.73)
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Figure 3.3: Propagator poles for the µ-dependent exponential regulator RF,exp
k (p;µ) in the di-

mensionless complex frequency plane for vanishing three-momentum p = 0. The dimensionless
parameters are chosen as µ/k = 2, m/k = 3 and the shaded area is the one enclosed by the con-
tour belonging to the shift p0 → p0 − iµ outlined in the text.

which yields the flow equation

∂tU
F,exp
k = −4

∫
p

p̃4

k2
ep̃

2/k2

(ep̃2/k2 − 1)2
1

p̃2
[
1 +

(
ep̃2/k2 − 1

)−1
]
+m2

. (3.74)

The propagator poles are depicted in Fig. 3.3. Instead of two physical poles at imaginary
frequency like the free bare, unregularized propagator which has (for vanishing spatial
momenta) poles at p0 = i(±m − µ), there are infinitely many complex poles. Note that
with the doubly exponential regulator defined as

rdoubly−exp(y) =
y

ey2 − 1
(3.75)

one again recovers two physical poles at imaginary frequency on top of the infinitely many
poles that radiate outwards in similar fashion [126].

Importantly, even for µ < m poles can perturb the area relevant for the shift in Eq.
(3.71) (the shaded area in Fig. 3.3). As k → 0, the dimensionless parameter µ/k increases
and pushes even more poles from the upper dimensionless frequency half plane into the
contoured area, further breaking the Silver-Blaze condition. In the context of real time
correlation functions, a procedure to shift these poles by introducing an additional artifi-
cial mass term to the regulator function has been outlined in Ref. [126]. Further discussion
can also be found in Ref. [127]. A possible adaption to thermodynamics at finite chemical
potential is beyond the scope of this example; it should be sufficiently clear that the re-
covery of correct physics even for a simple problem like a free fermi gas becomes nontrivial.

At this point, it might be questionable why it is even necessary to ensure that the Silver-
Blaze property holds at k > 0 when it is recovered for vanishing regulator in the limit
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3.6. Flows at Nonzero Chemical Potential

k → 0—where the physics takes place—anyway. First, this is only the case in exact flows,
not in truncated ones. For a truncated effective action, the integrity of this property can
only be ensured if it is imposed along the full flow. Our free fermion loop, however, is
exact. Second, by not keeping the Silver-Blaze property intact, one introduces unphysical
µ-dependencies to the flow. These do not fully decouple at large momenta and thus the
UV potential becomes µ-dependent, leading to issues with RG consistency as outlined in
Ref. [128]. This is illustrated in the following example.

Example: Conventional flat regulator. Let us now choose the (fermionic) flat reg-
ulator defined by the shape function in Eq. (3.62) and refrain from introducing a µ
dependency. Keeping only the real part as the imaginary part is odd in p0 and vanishes
in the integration, the flow becomes

∂tU
F,flat
k = −4k2

∫
p
Θ

(
1− p2

k2

)
p2(k2 +m2 − µ2) + p20µ

2

p2(k2 +m2 − µ2)2 + p20k
2µ2

= − k4

8π2

[
1 + 2

(
1−

√
1 +

k2µ2

(k2 +m2 − µ2)2

)
(m2 − µ2)(k2 +m2 − µ2)

k2µ2

]
.

(3.76)

For k ≫ µ,m an expansion of the flow in µ2/k2 and m2/k2 to first order yields

∂tU
F,flat
k ≈ − k4

8π2

(
1− m2 − µ2

k2

)
. (3.77)

Clearly, the regulator induces terms that scale as k2µ2 similarly to a mass term and do not
vanish towards the ultraviolet. By dimensional analysis, the µ-dependency at the UV scale
Λ can be schematically expressed as (omitting the upper index referring to the regulator
in the following)

UΛ(µ
2) = α0 Λ

4 + α1 Λ
2µ2 + α̃ µ4 ln(Λ) + α2 µ

4 + α3
µ6

Λ2
+ . . .

= Λ4
∞∑
i=0

αi

(
µ2

Λ2

)i
+ α̃µ4 ln(Λ)

(3.78)

The αi are generic coefficients that can also depend on ratios of µ and m. All thermody-
namic contributions to observables must depend only on the inherent scales of the theory,
i.e., mass and chemical potential. They should therefore be of the same order in size as
the term with the coefficient α2 in the UV potential. Possible UV cutoff effects due to the
tail of thermodynamic distributions being cut off are part of α3 and higher and vanish for
Λ → ∞. Hence, nonzero coefficients α1, α2 and α̃ lead to strong µ dependencies of the
UV potential and can be interpreted as regulator artifacts.

In order to extract any physics (and retain the Silver-Blaze property), one would
have to know this spurious µ dependency of the UV potential. The gravity of this issue
becomes clear if one tries to calculate the pressure at nonvanishing µ. Normalizing the
vacuum pressure to zero, the UV potential can be extracted by integrating the vacuum
flow from k = 0 to k = Λ,

UΛ(0) =

∫ Λ

0
dk ∂kUk(0) . (3.79)
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Then, starting at the UV scale we integrate the flow down to k = 0 in the presence of the
chemical potential:

−p = U0(µ
2) = UΛ(0)−

∫ Λ

0
dk ∂kUk(µ

2) . (3.80)

However, since the UV potentials at different chemical potentials do not agree, UΛ(µ
2) ̸=

UΛ(0), we have actually made an error of size ∆UΛ := UΛ(µ
2)−UΛ(0) which carries over to

the final result. For a nonvanishing coefficient α1 this error is of order µ2Λ2. It dominates
all physical contributions and even increases with the cutoff scale.

A possible remedy for the problem could be to consider a sufficient number of deriva-
tives of Uk(µ

2) with respect to µ2 such that all parts diverging with Λ vanish [129]. This
works as long as α1 and α̃ do not possess any additional µ dependency through dimen-
sionless terms such as µ2/m2. Coming back to our example, Eq. (3.76), this condition
is fulfilled. Taking three derivatives with respect to µ2 removes even the logarithmic
divergence and allows us to take the limit Λ → ∞. In the UV, this corresponds to a
mapping onto dα2/dµ

2. Since the flow can be integrated analytically, the result in this
limit takes—up to constant shifts—the explicit form

U ′′′
0 (µ2) = − 27

64π2
2µ2 − 3m2

(4m2 − 3µ2)2
(3.81)

where the primes resemble derivatives with respect to µ2. The correct result, which can
be obtained by taking derivatives of our exact result for the pressure, Eq. (3.68), reads

U ′′′
0 (µ2) = − 1

8π2
Θ(µ2 −m2)

m4

µ5
√
µ2 −m2

. (3.82)

Even in the limit Λ → ∞ and for exact flows, the results do not agree. The error
made at the UV scale is of the same order as the physical result because of a nonvanishing
α2 coefficient. Naively, this looks like a contradiction to the renormalization group idea.
After all, we should recover the same microscopic action independent of the regulator in
the limit k → ∞, especially for an exact flow. The fault in the argument lies in the fact
that we first mapped onto a subleading contribution to the potential by differentiating
and then took the limit of infinite cutoff. If we instead regarded the dimensionless version
of the full UV potential, UΛ(µ

2)/Λ4, and then took the limit Λ → ∞, all terms but the
constant α0 would vanish. Asymptotically, the potentials are equal, but the subleading
terms are not. Similarly to the counterterms to the squared mass and coupling constant in
φ4 perturbation theory, there are quadratically and logarithmically divergent contributions
to the chemical potential term in the UV action and UΛ(µ

2) essentially has to be fine-tuned
for each µ to produce the desired result, taking away all predictive power.

Dimensionally reduced regulators. So far, none of the outlined methods have deliv-
ered satisfying results. In the literature, these problems are commonly circumvented by
the use of dimensionally reduced cutoff functions regularizing only the spatial momentum
modes:

R3d
k (p2) = p2 r(x) , RF,3dk (p) = i/p r

F (x) (3.83)

with x := p2/k2. Since those 3d regulators do not depend on the frequency argument,
they also remain µ-independent and always fulfill the Silver-Blaze condition, Eq. (3.70).
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For such a regulator, the flow equation for the fermion potential becomes

∂tU
F
k = −4

∫ ∞

−∞

dp0
2π

∫
p

p2 [1 + rF (x)] ∂tr
F (x)

(p0 + iµ)2 + p2[1 + rF (x)]2 +m2

= −4
∫
p

p2 [1 + rF (x)] ∂tr
F (x)

2Ek(p)
Θ(Ek(p)− µ)

(3.84)

with

Ek(p) =
√

p2[1 + rF (x)]2 +m2 . (3.85)

The µ-dependence is solely given by the Heaviside step function and since regulator shape
functions may not become negative, Ek(p) > m for all momenta and the Silver-Blaze
property fulfilled as long as µ < m. Note that with 3d regulators, O(4) Euclidean space-
time symmetry is broken, but this is expected to have only small quantitative impact in a
thermodynamic context. In interacting fermionic theories at very large densities, it might
be advantageous to neglect the Silver Blaze property in favor of other regulator charac-
teristics. In Ref. [130] a regulator which does not keep Silver Blaze intact but sums up
fluctuations symmetrically around the Fermi surface is introduced and shown to lead to
better results for BCS-type theories.

Chemical potential and truncations. The implementation of a chemical potential
is not only relevant in the context of the regulator function, but also for the truncation
scheme. In the Lagrangian the chemical potential effectively induces a shift in the zero
component of the derivative operator ∂0 → ∂0−µ when it acts on a fermion field. Pertur-
batively speaking, all of the infinite number of operators arising from the exponentiated
action in the generating functional must therefore be shifted in this way. Thus, it seems
reasonable to perform this shift in the derivative expansion as well. For a schematic ex-
ample, let us assume an interacting theory and let the unspecified effective potential U eff

k

include all momentum-independent interacting and noninteracting parts as well as any
bosonic contributions. Then, the derivative expansion in terms of the fermion field reads

Γk =

∫
x

[
U eff
k + Zψ,kψ̄ /Dψ +O

(
D2
)]

(3.86)

with the shifted derivative Dν := ∂ν−δν0µ. In momentum space, this implies a shift in the
frequency component of the expansion point from zero to −iµ. This conclusion has also
been reached in Ref. [130]. Of course, an expansion in orders of the conventional derivative
∂ν is also possible, in which case the chemical potential terms would be absorbed by lower
order terms in the expansion. However, as we will see in the next chapter, this would
again lead to RG consistency issues and the violation of the Silver-Blaze property.
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Chapter 4

Functional Renormalization Group
Approach to Low-Energy QCD

After introducing the fundamentals for functional methods and particularly the functional
renormalization group, we consider an application towards QCD in the low-energy regime.
First, we lay out some of the arguments and procedures leading towards low-energy effec-
tive theories for QCD. Next, we put particular emphasis on the quark-meson model which
will be the basis for all the works presented in the coming chapters of this thesis. We detail
the phase structure obtained with the functional renormalization group in local potential
approximation and discuss some results and associated challenges that one has to face
when going beyond LPA. At the end of this chapter, we give a general outlook on the
so-called dynamical hadronization procedure which allows the incorporation of a smooth
transition from QCD degrees of freedom to effective low-energy degrees of freedom.

4.1 Constructing a Low-Energy Effective Theory

Suitable descriptions of physical observables at a given length scale oftentimes rely on em-
ploying effective degrees of freedom which do not necessarily carry information about the
underlying microscopic physics anymore. A typical example is classical mechanics which
works at scales where the quantum (statistical) nature of elementary particles becomes
irrelevant and objects can be assumed to be localized at a fixed point in space at any given
time. The emergence of new effective degrees of freedom in a coarse-graining process, i.e.,
going from small length (large momentum) to large length (small momentum) scales, is
closely related to the renormalization group picture. In a quantum field theory, this pro-
cedure is described by the running of couplings, leading to new effective infrared actions
in Wilson’s RG formulation as outlined in the previous chapter. In this process, new
(composite) operators might emerge that take the role of effective degrees of freedom at
lower energies. Due to the semi-group structure of the renormalization group, information
about the microscopic theory at small scales is not necessarily retained, i.e., in case of an
infrared fixed point of the RG flow there are infinitely many microscopic theories that all
lead to the same macroscopic action.

The emergence of effective degrees of freedom becomes especially relevant in the con-
text of QCD where confinement limits the maximum length scale at which quarks and
gluons can be directly measured and asymptotic particle states are color-neutral com-
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Chapter 4. Functional Renormalization Group Approach to Low-Energy QCD

posite objects. Appropriately, effective low-energy theories work with hadronic degrees of
freedom and construct the most general Lagrangians that are compatible with the symme-
tries of QCD. In chiral perturbation theory, one usually takes the dynamics of the lightest
mesons, the pions (but also the addition of heavier ones and light nuclei is possible [131])
and includes all possible terms up to a certain order in momenta and pion mass [132].
Both parameters are small compared to the chiral symmetry breaking scale due to the
low-energy dynamics and the approximate Goldstone nature of the pions.

Another ansatz is motivated by starting from the QCD action and considering only
one-gluon exchange between quarks. From the color-neutral interaction spectrum at low
energies, we expect that the gluon will not play a role as an effective degree of freedom
in this regime. Indeed, gluon dynamics are observed to decouple at scales around 500-700
MeV [133]. Hence, we can neglect the gluon exchange in favor of a point-like current-
current interaction [134]

g2κ

2
jµa j

µ
a =

g2κ

2
(q̄γµT ca1fq) (q̄γ

µT ca1fq) , (4.1)

where the color and flavor structure is written out explicitly and κ is a parameter with
dimension of inverse mass squared representing a heavy gapped gluon. The quarks are
now to be understood as effective constituent quarks.

Using Fierz transformations, this interaction can be recast into a sum of various forms
of mesonic (q̄ Γa q)(q̄ Γa q) and diquark (q̄ Γ̃a qc)(q̄c Γ̃a q) channels where a is a multi-index
for Dirac, flavor, and color space, Γ and Γ̃ represent all of the occurring matrix structures,
and qc is the charge conjugate field. For example, in Dirac space all possible matrix
structures are given by the basis elements of a Clifford algebra,

{1, γµ, iγ5, γµγ5, σµν} , (4.2)

with the antisymmetric tensor

σµν =
i

2
[γµ, γν ] (4.3)

encoding 6 of the total 16 independent degrees of freedom. For further details and flavor
and Dirac, flavor, and color channel Fierz identities see, e.g., Ref. [134].

Keeping only the mesonic (pseudo)scalar interactions, we arrive at the Nambu–Jona-
Lasinio (NJL) model [135, 136]

LNJL = q̄ /∂ q − λ

2

[(
q̄T af q

)2
+
(
q̄T af iγ5q

)2]
(4.4)

where the T af are generators of U(Nf ) flavor space transformations, see Sec. 2.1. The NJL
model and variants of it with additional vector or diquark interactions have been exten-
sively studied both in the context of the chiral phase transition and color superconducting
phases; see, e.g., Refs. [67, 137] for reviews of the topic.

In the low-density regime, the scalar-pseudoscalar channel is the most relevant one
[52, 133, 138–140]. Solving the functional renormalization group flow for the momentum-
independent coupling λ, it grows larger and eventually diverges. The divergence at scale
kχ is to be understood as the onset of spontaneous chiral symmetry breaking where the
emergence of massless Goldstone bosons leads to long-range correlations and the truncation
in terms of a local interaction breaks down [141]. This can be resolved by means of a
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4.2. Quark-Meson Model

Hubbard-Stratonovich transformation [142, 143] which allows for the bosonization of the
interaction. The trick is to insert a Gaussian path integral over scalar fields into the
partition function:

1 = N
∫
DσaDπa e−

1
2
m2

∫
(σ2

a+π
2
a) (4.5)

where the (divergent) path integral is normalized by a factor N . With the shifts

σa → σa +
h

m2

(
q̄T af q

)
, πa → πa +

h

m2

(
q̄ iγ5T

a
f q
)

(4.6)

and the parameter choice h2/m2 := λ the four-fermion vertex is cancelled in favor of
Yukawa-type interactions

Lbosonized = q̄
(
/∂ + hT af (σa + iγ5πa)

)
q +

1

2
m2(σ2a + π2a) . (4.7)

The current interactions are now carried by the auxiliary fields which do not yet have any
dynamics themselves. By additionally introducing standard kinetic terms (∂µσa)

2/2 +
(∂µπa)

2/2 for the bosonic fields, we can now allow for nonlocal interactions between the
quarks. Phenomenologically, the σa and πa can be associated with the scalar and pseu-
doscalar mesons of the theory as evident by the shifts in Eq. (4.6).

4.2 Quark-Meson Model

The Lagrangian (4.7) with additional kinetic and potential terms is commonly referred to
as a quark-meson model. To phenomenologically add additional potential terms beyond
the mass (i.e., direct meson-meson interactions generated by the flow), we need to respect
the global chiral symmetry of QCD. From Eq. (4.6) we see that under U(2)L×U(2)R flavor
transformations as introduced in Sec. 2.1, the shifted parts of the scalar fields transform
as

q̄T af q → q̄L

(
U †
LT

a
f UR

)
qR + q̄R

(
U †
RT

a
f UL

)
qL . (4.8)

The pseudoscalars are transformed into each other in the same manner. Introducing the
matrices

Σ := T af (σa + iπa) , Σ5 := T af (σa + iγ5πa) (4.9)

we further see that, to keep the Yukawa interaction term

h q̄Σ5q → h q̄L

(
U †
LΣ5UR

)
qR + h q̄R

(
U †
RΣ5UL

)
qL (4.10)

chirally invariant, Σ (and thus also Σ5) has to transform like Σ→ ULΣU
†
R or Σ→ URΣU

†
L,

depending on the respective Dirac subspace. Without loss of generality, we can just choose
either transformation behavior within our applications.

Furthermore, we can construct the chiral invariants

ρn := Tr
[(

Σ†Σ
)n]

, n = 1, . . . , Nf . (4.11)

It is easy to see that with the cyclic property of the trace, those expressions must be
invariant under general U(2)L × U(2)R transformations and since any power of Σ†Σ is
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Chapter 4. Functional Renormalization Group Approach to Low-Energy QCD

hermitian, there are Nf independent degrees of freedom signified by the number of real-
valued diagonal entries. We explicitly consider the cases Nf = 2 + 1 with two degenerate
light quark flavors and a strange quark as well as Nf = 2 where only the light spectrum
is retained. In the former case, the Lagrangian reads

L2+1
qm = q̄

(
/∂ + gΣ5

)
q +Tr

(
∂µΣ

†∂µΣ
)
+ UΛ(ρ1, ρ2)− cAξ − clσl − csσs . (4.12)

The generators for flavor space rotations in three dimensions are the Gell-Mann matrices
λ̂a, i.e. T af = λ̂a/2. Conventionally, the Yukawa coupling has been renamed h → g.
Because the third chiral invariant ρ3 is of sixth power in the fields and thus its coupling
has negative mass dimension and is perturbatively irrelevant, we do not include it in the
quartic UV potential. As an approximation, the effective potential is assumed to depend
only on ρ1 and ρ2 throughout the functional renormalization group flow.

The last three terms break chiral symmetry explicitly. Firstly, the anomalous breaking
of axial U(1)A symmetry due to quantization is modeled by the lowest order instanton-
induced term in the form of a ’t Hooft determinant [144]

ξ := detΣ + detΣ† . (4.13)

It gives rise to the splitting of the η and η′ meson mass [65]. Secondly, the explicit
breaking of chiral symmetry due to finite current quark masses is modeled by the linear
terms −clσl − csσs where the fields have been expressed in the nonstrange-strange basis
(σl, σs) which is obtained from the singlet-octet basis (σ0, σ8) via the rotation(

σl
σs

)
=

1√
3

(√
2 1

1 −
√
2

)(
σ0
σ8

)
. (4.14)

Only the scalar fields σl and σs are included in the explicit breaking because all other
fields are taken to have vanishing expectation value1

⟨Σ⟩ = T 0
f σ0 + T 8

f σ8 = diag

(
σl
2
,
σl
2
,
σs√
2

)
. (4.15)

The only additional condensate in agreement with the vacuum quantum numbers could
be a finite σ3 field whose generator is also diagonal in field space but it leads to a mass
splitting between up and down quarks, i.e., the breaking of isospin symmetry which we
assume to be intact. Note that in above equation, we omitted the brackets when writing
down the nonvanishing meson field expectation values.

To prevent cluttering the expressions, the same symbol will be used for microscopic
and macroscopic fields and brackets will only be used when it is necessary to make a
distinction. In this manner, the expectation values of the chiral invariants and the axial
breaking term can be written

⟨ρ1⟩ =
1

2

(
σ2l + σ2s

)
, ⟨ρ2⟩ =

1

8

(
σ4l + 2σ4s

)
, ⟨ξ⟩ = 1

2
√
2
σ2l σs . (4.16)

For Nf = 2, the generators are T af = τa/2, with τ0 = 1 and τi, i ∈ {1, 2, 3}, denoting the
three Pauli matrices which are also conveniently summed up in the vector τ . Then, the
U(1)A breaking term becomes

−cAξ = −
cA
2
(σ20 + π2 − π20 − σ2) (4.17)

1This also holds for the fermion fields: ⟨q̄⟩ = ⟨q⟩ = 0.
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where again the three “spatial” indices are collected in a vector. It leads to a mass splitting
between the two meson multiplets {σ0, π1, π2, π3} ↔ {π0, σ1, σ2, σ3}. We will only keep
the light multiplet collected in the four-vector (dropping the superfluous index of the σ0
field)

ϕ :=

(
σ
π

)
(4.18)

and identify the light modes with the pions and the sigma resonance. This procedure is
referred to as maximal axial symmetry breaking because the other set of mesons is made
infinitely heavy and thus vanishes from the physical spectrum. The Lagrangian simplifies
to

L(2)qm = q̄
(
/∂ +

g

2
(σ + iγ5τ · π)

)
q +

1

2
(∂µϕ)

2 + UΛ(ϕ
2)− cσ . (4.19)

The potential is written as a function of ϕ2 which is trivially related to the only remaining
independent chiral invariant:

ρ =
1

2
(σ2 + π2) =

ϕ2

2
. (4.20)

As we can see, chiral and isospin symmetry look like SO(4) when acting on the vector ϕ.
This should not come as a surprise since SU(2) × SU(2) is the double cover of SO(4).
Since finite meson condensates break chiral symmetry of the vacuum, they are an order
parameter for the chiral phase transition. Hence, this low-energy effective theory allows
the qualitative study of the chiral phase transition.

In the chiral limit, i.e. for Nf = 2 and vanishing current quark masses c = 0, the quark-
meson model is expected to lie in the same universality class as QCD as long as U(1)A stays
broken at all temperatures [145]. An extended version of the model is the Polyakov-quark-
meson (PQM) model [146]. In such PQM models the deconfinement phase transition is
captured statistically by including an effective potential for the gluon background field
in terms of the order parameter for deconfinement, the Polyakov loop. Next to one of
the many variants of the effective Polyakov loop potential [147–150], the Polyakov-loop
variables implictly depend on the quark loop dynamics. At vanishing temperature, these
degenerate to the standard Fermi-Dirac distributions and the quark-meson model becomes
equivalent to its Polyakov-loop extended version. As we are aiming predominantly at the
low-temperature region of the phase diagram, we do not further consider including a
Polyakov loop potential. However, a phenomenological finite density generalization of the
Polyakov loop potential at zero temperature can stiffen the EoS [151]. For a review see
e.g. [152] and for (P)QM phase structure investigations with the FRG see e.g. [153, 154].

4.3 Fluctuations and the Phase Structure

As a first application, we discuss the phase diagram of the quark-meson model in local
potential approximation and compare the results to two different implementations of mean-
field approximation (MFA). The aim is to judge the effect of additional fluctuations on the
phase structure of the chiral transition. Note that similar studies of the phase diagram—
both with the FRG [33, 155] and in MFA [65]—were been conducted in the past. The
specific results of this section have already been attained in a previous work [156], but
they are compiled here nonetheless as they provide a basis for the subsequent chapters.
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Functional Renormalization Group Flows

Starting with the FRG approach, in the notation previously introduced the LPA truncation
reads

Γk =

∫
x
q̄
(
/∂ + gT af (σa + iγ5πa)

)
q +Tr

(
∂µΣ

†∂µΣ
)
+ Ũ

(Nf )
k . (4.21)

Neither the scale and field dependence of the wavefunction renormalization nor that of
the Yukawa coupling are taken into account at the level of the LPA, but the important
back-coupling in the meson sector in included by means of an effective potential that
fully includes all momentum-independent parts of meson interactions. The full potential
includes explicit symmetry breaking terms and is always denoted with a tilde. For Nf =
2 + 1, it reads

Ũ
(2+1)
k = U

(2+1)
k (ρ1, ρ̃2)− cAξ − clσl − csσs (4.22)

with the scale-dependent chirally symmetric potential U
(2+1)
k whose arguments include the

shifted second chiral invariant ρ̃2 := ρ2−ρ21/3 which simplifies the analytical determination
of meson masses [155]. Note that in our approximation, the U(1)A breaking term cA stays
scale independent, albeit feeding into the flow of the chiral potential. Due to their linear
order, the constant chiral breaking terms cl and cs do not contribute to any flow; this is why

the assumption that all quantum fluctuations stored in U
(2+1)
k preserve chiral symmetry

remains valid.

The meson masses required for the Wetterich equation (3.36) are curvature masses
given by the second derivative of the effective potential with respect to the fields. They
follow from a generally nondiagonal matrix in field space,

M2
k,ab :=

∂2Ũk
∂Φa∂Φb

∣∣∣∣∣
⟨Φ⟩

, (4.23)

where Φ is a vector collecting all meson fields (i.e., a generalization of ϕ in Eq. (4.18)
to Nf flavors) and the expression has to be evaluated at the expectation value only after
taking the derivatives.2 The derivatives incorporate contributions both from the axial
breaking term and the chiral potential where they follow from derivatives with respect to
the invariants via the chain rule. Details and the explicit expressions can be found in Refs.
[155, 156].

In order to invert the two-point function for the flow equation, the mass matrix has to
be diagonalized at each step in k. In this specific setup, the only nondiagonal entries are
in the mixed singlet-octet (0− 8) channel of the scalar and pseudoscalar mesons, leading
to a nontrivial mixing between strange and nonstrange mass eigenstates; see Ref. [65] for
details and calculations of mixing angles in MFA. Choosing the 3d flat regulator defined
by the shape functions given in Eqs. (3.54) and (3.62) together with Eq. (3.83), the flow

2The symbol Φ is used in the next section and the appendices for an even more general composite field
that also includes the fermionic fields.
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equation for the chiral potential reads

∂tU
(2+1)
k =

k5

12π2

{∑
b

1

Eb
coth

(
Eb
2T

)

− 2Nc

∑
f

1

Ef

[
tanh

(
Ef − µf

2T

)
+ tanh

(
Ef + µf

2T

)]}
.

(4.24)

The energies are E2
i := k2 + m2

i with the bosonic masses m2
b given by the eigenvalues

of the mass matrix (4.23) and the fermion masses following from the Yukawa term as
mu = md = gσl/2 and ms = gσs/

√
2. The bosonic sum covers all 2N2

f = 18 mesons
and the fermion sum is over the u, d, and s flavors. Additionally, we include chemical
potentials in the typical manner (see Chapter 3) and allow a different chemical potential
for each quark flavor for later convenience. For now, µf ≡ µ is set equal for all quarks.

In the two-flavor case, the effective potential has the form

Ũ
(2)
k = U

(2)
k (ϕ2)− cσ . (4.25)

The flow reduces to

∂tU
(2)
k =

k5

12π2

{
1

Eσ
coth

(
Eσ
2T

)
+

3

Eπ
coth

(
Eπ
2T

)

− 2Nc

Eq

∑
f

[
tanh

(
Eq − µf

2T

)
+ tanh

(
Eq + µf

2T

)]} (4.26)

with the flavor sum iterating over u and d quarks, the flavor blind quark mass mq = gσ/2,
and the explicit sigma and pion masses m2

σ = 2U ′
k + 4σ2U ′′

k and m2
π = 2U ′

k. The primes
denote derivatives with respect to ϕ2, evaluated at the expectation value

〈
ϕ2
〉
= σ2. All

parameter choices concerning the explicit breaking terms and the starting potentials for
two and three quark flavors can be found in App. I.

For T = 0 and Nf generic quark flavors the flow reduces to

∂tUk|T=0 =
k5

12π2

[∑
b

1

Eb
− 4Nc

∑
f

1

Ef
Θ(Ef − µf )

]
. (4.27)

In this limit the Fermi-Dirac distributions of the fermionic threshold functions become
a sharp Heaviside function. This is a special case of the 3d regulator flow introduced
in Eq. (3.84) for the flat regulator where the Θ-function survives the trivial momentum
integral. For µ2f > m2

f , only scales above the Fermi sea k2 > k2f,sea with k2f,sea ≡ µ2f −m2
f

contribute to the corresponding quark loop and are integrated out, yielding a finite quark
density. Hence, an increase in the chemical potential suppresses more and more the quark
dynamics of the model. As discussed in the previous chapter, the µf independence of the
flow below the onset chemical potential implies that the Silver-Blaze property is satisfied.
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Mean-Field Approximation

In mean-field approximation all meson fluctuations are neglected. Hence, the mesonic part
of the effective potential becomes scale independent, i.e., with the definition

Ũ
(Nf )
mean−field := Ũ

(Nf )
mes + U

(Nf )
q (4.28)

the meson potential for Nf = 2 + 1 is given by

Ũ (2+1)
mes = U (2+1)

mes (ρ1, ρ2)− cAξ − clσl − csσs (4.29)

whereas for Nf = 2 it reads

Ũ (2)
mes = U (2)

mes(ϕ
2)− cσ (4.30)

in complete analogy to the FRG setup, with the exception of choosing ρ2 instead of ρ̃2 as
the second argument of the chiral potential. The chiral potentials are just parameterized
functions with up to quartic terms in the fields and are defined in App. I. Similarly to the
exemplary pressure calculation in Sec. 3.6, an explicit calculation neglecting all divergent
vacuum loops yields the thermodynamic contribution

U
(Nf )
q,sMFA =

Nc

π2
T
∑
f

∫ ∞

0
dp p2 [ln(1− nf (Ef , µf , T )) + ln(1− nf (Ef ,−µf , T ))] (4.31)

with the Fermi-Dirac distribution

nf (Ef , µf , T ) =
1

e(Ef−µf )/T + 1
(4.32)

and the quark energies E2
f = p2 +m2

f . The quark masses are the same as in the previous
FRG approach whereas the meson masses, which are again determined via the mass matrix
(4.23), obtain contributions from both the static meson potential and the quark loop. The
latter comes from a hidden field dependency of the quark masses mf prior to taking
the expectation values. Details on the calculation of the masses can be found in Refs.
[65, 156]. This calculation neglects all vacuum fluctuations and we label it standard mean-
field approximation (sMFA). Intuitively, this is no problem since we are not interested in
constant shifts of the potential and any additional field-dependent contributions can be
compensated by appropriate modifications of the meson potential.

However, as the vacuum expectation value σ changes with temperature and chemical
potential, this also dynamically modifies the field dependent fermionic vacuum loops. It
is therefore necessary to include these divergent expressions by regularizing them first and
then renormalizing the potential, e.g. for a large momentum cutoff Λ. Other schemes
like Pauli-Villars or dimensional regularization might be more appropriate and have been
applied in the literature [157]. Another possibility which we here pursue is to let the
functional renormalization group regulator take care of regularization, i.e., to take the
flow equation and drop all back-coupled mesonic terms. After integration of the flow,

U
(Nf )
q,rMFA =

Nc

6π2

∑
f

∫ Λ

0
dk

k4

Ef

[
tanh

(
Ef − µf

2T

)
+ tanh

(
Ef + µf

2T

)]
, (4.33)

the renormalization procedure simply consists of, for a given UV scale Λ, finding the
appropriate modified coefficients for the meson potential. They are also given in App. I.
We call this approach renormalized mean-field approximation (rMFA).
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Phase Structure

The thermodynamics of a system is extracted by relating the infrared effective potential—
evaluated at its global minimum—to the thermodynamic grand potential. As the effective
potential has to be bounded from below, the global minimum must also be a local mini-
mum, i.e., for a differentiable potential the gap equation

∂Ũ

∂Φ

∣∣∣∣∣
⟨Φ⟩

= 0 (4.34)

is fulfilled. Ũ refers to any of the previous full potentials including all explicit symmetry
breaking terms and in the FRG case is evaluated at the infrared scale k = kIR. The small
infrared cutoff kIR > 0 is introduced for technical reasons since the effective potential
becomes nonanalytic and flat for field values smaller than the infrared minimum when
convexity is recovered in the limit k → 0 [33]. This impedes a numerical solution, but
stopping the flow at a finite scale well below the pion mass (which is the lightest particle
in the spontaneously broken vacuum) usually yields sufficient accuracy since the position
of the minimum freezes out at these scales [158]. Even though this argument refers to
the vacuum flow, we will use the same infrared cutoff also at finite temperature and
chemical potential. Chiral symmetry restoration generally leads to larger meson masses
and although the quarks become light, they decouple at increasing temperature due to
dimensional reduction and at finite chemical potential due to the fermi sea discussed
earlier; hence, the error of this approximation is expected to be small. Some quantities
like the position of the critical endpoint, however, will depend on the infrared cutoff. This
is further discussed in Ch. 7. The infrared cutoff choices are given in App. I. Using Eq.
(3.44), we find for the grand potential density

Ω(T, µ) = −T
V

lnZ = Ũ |⟨Φ⟩,T,µ . (4.35)

As the effective potential is determined only up to constant shifts, the pressure is further
normalized in the vacuum:

p = −[Ω(T, µ)− Ω(0, 0)] . (4.36)

Since the grand potential is related to the internal energy by a Legendre transform, which
in terms of densities (intrinsic quantities) reads

Ω(T, µ) = ε− Ts− µn (4.37)

with the (internal) energy density ε and the entropy and particle densities

s = −∂Ω(T, µ)
∂T

, n = −∂Ω(T, µ)
∂µ

, (4.38)

the inverted equation of state (EoS) ε(p) can be computed from

ε(p) = −p+ Ts+ µn . (4.39)

We will come back to the EoS in Ch. 5. For now, we are mainly interested in the effective
potentials and the resulting vacuum expectation values for the fields. By varying the
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Figure 4.1: Phase diagrams of the Nf = 2 quark-meson model in three different approximations
(sMFA, rMFA, and FRG). The dots are critical endpoints. Dotted lines are smooth crossovers and
solid lines first-order phase transitions. In addition, the corresponding Nf = 2+1 phase structure
obtained with the FRG is also shown (dashed line).

external parameters and determining the chiral condensate, the phase structure of the
chiral transition can be analyzed.

Our numerical findings are collected in Fig. 4.1 where the phase diagrams for two
quark flavors (dotted/solid lines) and for three flavors (dashed line) are shown. Details on
the numerical implementation can be found in App. H. Typical for the phase structure
obtained with the FRG is the back-bending behavior of the chiral phase transition line
(blue lines) for small temperatures characterized by a positive slope of the critical chemical
potential as a function of temperature. The critical endpoints (CEPs) are denoted as dots
in the figure and the crossover regions/first-order transitions as dotted and solid lines,
respectively. The origin of this back-bending phenomenon has so far been unclear but
several possible scenarios are discussed in the literature [34]. We further investigate the
issue in Ch. 7 where we associate it with regulator dependent truncation artifacts.

For the chosen vacuum input parameters and in the LPA truncation of the FRG
equation, the CEP is located at very small temperatures, around T ∼ 10 MeV for two and
three quark flavors. In mean-field approximation the thermodynamical behavior at small
temperatures is different and the first-order transition line hits the chemical potential
axis perpendicularly [34]. Furthermore, since the inclusion of fluctuations generically
smoothens the chiral phase transition, the crossover transition line is shifted to higher
temperatures if more fluctuations in the thermodynamic potential are taken into account
[154], except at very low temperatures where the back-bending phenomenon takes over.
This is nicely demonstrated in Fig. 4.2a where both the light (solid lines) and the strange
(dashed lines) chiral condensates are shown as a function of temperature for vanishing
quark chemical potential.

In sMFA where only the thermal quark loop contribution is considered, the pseudo-
critical crossover temperature Tc ≈ 140 MeV at µ = 0 is smallest. Already the inclusion of
the vacuum quantum fluctuations of the quarks, labeled as rMFA in the figures, lifts the
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Figure 4.2: Chiral condensates in the Nf = 2 + 1 flavor quark-meson model in three different
approximations (FRG, rMFA and sMFA). The light condensates σl (solid) are the lower lines and
the strange condensates σs (dashed) the upper lines.

pseudocritical temperature by about 30 MeV. Interestingly, the whole chiral phase tran-
sition is shifted constantly towards higher temperatures by roughly this amount for all
chemical potentials, cf. Fig. 4.1. As a consequence, the first-order transition at T = 0 is
also pushed to higher chemical potentials as visible in Fig. 4.2b. This trend is continued at
least for moderate chemical potentials when additionally meson fluctuations with the FRG
are taken into account. However, for smaller temperatures and due to the back-bending
of the transition line, see. Fig. 4.1, the critical chemical potential is pushed to smaller
values in contrast to the previous argument. This will be of relevance for the equation of
state discussed in Ch. 5.

All condensates exhibit for T = 0 a first-order phase transition close to µ ≈ 300 MeV
corresponding to the light quark mass in the vacuum. In sMFA, the first-order transition
is strongest, in FRG weakest. Hence, the gap in the FRG light condensate is quite small
and melts only moderately after the transition, still signaling a chirally broken phase in
this density regime of the phase diagram [33]. In rMFA the light condensate is constant
until µ = 300 MeV and melts down before the first-order jump which is consistent with
the Silver-Blaze property. It is likely that for a sigma mass below 560 MeV the rMFA
condensates immediately jump when µ hits the light quark masses as well. Just below
a quark chemical potential of about 430 MeV, the value that coincides with the strange
quark mass in the vacuum, a further decrease is seen in all three strange condensates
and a smooth chiral phase transition takes place. When strange quarks are added to
the system, for vanishing and moderate chemical potentials three-flavor crossover line is
pushed down again, see the dashed line in Fig. 4.1. The difference to the two-flavor phase
structure shrinks for decreasing temperatures. Below T < 50 MeV almost no influence of
the strange quark on the transition line is observed where the dashed line merges with the
solid two-quark flavor line.
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Chapter 4. Functional Renormalization Group Approach to Low-Energy QCD

4.4 Beyond Local Potential Approximation

In this section, we incorporate some effects beyond local potential approximation to see the
impact of a further improvement of the truncation. Even though we will focus on the cold
and dense region of the phase diagram in the later course of this work, we limit ourselves
here to the crossover region at low densities. This has the advantage of numerically more
well-behaved flow equations and serves to outline some of the challenges posed by such
improvements of the framework.

Going beyond local potential approximation essentially means extending the deriva-
tive expansion to include fluctuations beyond lowest order. As already stated in Ch. 3,
the first step, oftentimes denoted as LPA’, is to allow for running wavefunction renormal-
izations and a running Yukawa coupling but keeping both couplings field independent.
The momentum structure stays essentially the same as in LPA, i.e., on a canonical level.
Restricting ourselves to the two-flavor quark-meson model, the ansatz for the modified
effective action is3

Γk[Φ] =

∫
x

[
Uk(ϕ

2) +
Zϕ,k
2

(∂µϕ)
2 + q̄

(
Zq,k /∂ +

gk
2
(σ + iγ5τ · π)

)
q − cσ

]
. (4.40)

We collect all bosonic and fermionic fields in the composite vector Φ. A schematic defini-
tion of how the fermions are added is given in App. A, Eq. (A.26). Its expectation value,
subject to a possible chiral condensate in the σ direction, is

⟨Φ⟩ =


σ
0
0
0

 . (4.41)

Note that this truncation does not include all terms of order O(∂2). A complete set that
still respects chiral symmetry must also incorporate the additional term [159]∫

x

Yk
8
(∂µϕ

2)2 . (4.42)

Effectively, this term would lead to a splitting of the wavefunction renormalizations of the
σ and π fields in the propagator already for field-independent Zk and Yk, an effect that
has been mostly neglected also in the literature [20, 154]. Moreover, at finite temperature
broken O(4) symmetry generally leads to a splitting of each wavefunction renormalization
Z into two couplings Z∥ and Z⊥, the former including fluctuations parallel and the latter
the ones perpendicular to the heat bath; see Ref. [160] for an investigation of this matter.
For simplicity, one usually projects out the spatial couplings Z⊥ and applies them even to
the temporal direction. As a last remark, neglecting the field dependence of the wavefunc-
tion renormalizations as well as the Yukawa coupling necessarily leads to inconsistencies
especially for global, i.e. grid type, numerical solutions as the respective flows resulting
from the evaluation at a single field value σeval feed into the partial differential equation
for the effective potential which is a fully field dependent function.

3Henceforth, we omit the upper index indicating the number of flavors.
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4.4. Beyond Local Potential Approximation

Flow Equations

In the following, we discuss the projections and resulting flow equations for the different
couplings for the previously made assumptions and the flat regulator choice. General
expressions for 3d regulators and details on the derivation of the flows can be found in
App. E.

Effective potential. The flow of the effective potential is found with the standard pro-
jection already employed in LPA, i.e. the Wetterich equation evaluated at the expectation
value and normalized with the spacetime volume:

∂tUk|⟨Φ⟩ =
1

βV
∂tΓk|⟨Φ⟩ =

1

βV

1

2
STr

 ∂tRk

(Γ
(1,1)
k +Rk)

∣∣∣∣∣
⟨Φ⟩

 . (4.43)

To absorb the wavefunction renormalization, we further define the renormalized fields

ϕ̄ := Z
1/2
ϕ,k ϕ , (4.44)

and similarly for the fermions. The chiral potential must stay invariant under a change of
variable:

Ūk(ϕ̄
2) = Uk(ϕ

2) . (4.45)

However, since the renormalized fields are scale dependent, the flow of the effective poten-
tial at fixed σ̄2 is amended by an additional term due to the chain rule:

∂tŪk(σ̄
2) = ∂tUk(σ

2) + ηϕ,k σ̄
2 Ū ′

k(σ̄
2) (4.46)

where a constant field expectation value
〈
ϕ̄2
〉
= σ̄2 has been inserted and the flow is

determined as

∂tUk(σ
2) =

k5

12π2

{
1− ηϕ,k/5

Eσ
coth

(
Eσ
2T

)
+ 3

1− ηϕ,k/5
Eπ

coth

(
Eπ
2T

)

− 2NcNf
1− ηq,k/4

Eq

[
tanh

(
Eq − µ
2T

)
+ tanh

(
Eq + µ

2T

)]}
.

(4.47)

Note the employed 3d flat regulator also incorporates the wavefunction renormalization
factor, see Eq. (3.49). The energies are now defined as E2

i := k2+m̄2
i with the renormalized

masses

m̄2
σ := 2Ū ′

k(σ̄
2) + 4σ̄2Ū ′′

k (σ̄
2) , m̄2

π := 2Ū ′
k(σ̄

2) , m̄2
q :=

ḡ2k
4
σ̄2 . (4.48)

The renormalized Yukawa coupling reads

ḡk =
gk

Zq,kZ
1/2
ϕ,k

(4.49)

and the anomalous dimensions are given by the logarithmic derivative

ηϕ,k := −∂t lnZϕ,k , ηq,k := −∂t lnZq,k . (4.50)
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Chapter 4. Functional Renormalization Group Approach to Low-Energy QCD

Importantly, the chemical potential term in the truncation to the effective action also
receives a modification by means of the wavefunction renormalization,

Γµk := −Zq,kµ
∫
x
q̄γ0q , (4.51)

which retains the symmetry ∂0 → ∂0 − µ from the Lagrangian as discussed in Sec. 3.6
and naturally preserves a scale-independent chemical potential in the particle distribution
functions.

Anomalous dimensions. In order to determine the anomalous dimensions, we next
consider the flow of the bosonic wavefunction renormalization. We project out the spatial
coupling by taking two functional derivatives with respect to an arbitrary pion field and
then taking the derivative with respect to the spatial momentum squared. Afterwards,
the expression is evaluated at vanishing external momentum and ⟨Φ⟩,

∂tZϕ,k =
1

βV
lim
p→0

∂

∂p2

δ2

δπ3(p)δπ3(−p)
∂tΓk

∣∣∣∣
⟨Φ⟩

. (4.52)

Taking derivatives with respect to the σ field would result in a different flow equation,
even though in our simplified truncation it also projects out Zϕ,k in the same manner. The
reason for this apparent contradiction is that, including field dependencies (which is in-
herently assumed by the exact Wetterich equation) and taking the σ derivatives instead of
the pion ones, one additionally projects out a term proportional to the derivative Z ′

ϕ,k(σ
2)

that survives at the expectation value. Hence, in order to avoid such projection errors, the
correct projection should always be determined formally in the presence of higher order
corrections. With above projection, the anomalous dimension reads

ηϕ,k =
k5

12π2

{
4V̄ 2

πσπM(2,2)
σπ + 4NcNf

ḡ2k
4

[
M(3)

q 4(2− ηq,k)−
1

k2
M(2)

q (3− 2ηq,k)

]}
(4.53)

with V̄πσπ := 4σ̄Ū ′′
k . The Matsubara sums M are given in App. D and more detailed

information on the derivation of the flows can be found in App. E.
In similar fashion, the flow for the fermionic wavefunction renormalization is obtained

via

∂tZq,k =
1

βV

1

4NcNf
lim

p→pext

∂

∂p2
tr

−i/p −→δ
δq̄(p)

∂tΓk

←−
δ

δq(p)

∣∣∣∣∣
⟨Φ⟩

 (4.54)

where the trace includes Dirac, color, and flavor space. At finite temperature, the fre-
quency component of the external fermionic momentum νext has to be nonvanishing as
it is a Matsubara frequency. The typical choice is the lowest (positive) frequency, i.e.,
pext = (πT,0). Note that this also leads to a projection error because contributions from
higher-order momentum corrections in the local potential approximation do not vanish
for nonzero external momentum. As evident from the mixed Matsubara sums including
both bosonic and fermionic propagators (D.13), for nonvanishing external frequencies and
in the presence of a chemical potential the flows for Zq,k and gk become complex. This
could very well be a consequence of the projection error. We adapt the current resolution
in the literature [20, 161] by taking the real part of the expression which equals averaging
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4.4. Beyond Local Potential Approximation

the flows for νext = πT and νext = −πT . Note that an extension to frequency dependent
wavefunction renormalizations where the imaginary parts of the anomalous dimensions
cancel naturally in the flow of the effective potential has also been explored [162].

Further, for a nonzero chemical potential the external frequency needs to be shifted
by −iµ, i.e. νext = ±πT − iµ. Without this shift, there would be µ dependencies in the
threshold functions outside of the particle number distributions, spoiling the Silver-Blaze
property. Similar to Eq. (4.51), this is in agreement with our assertion made in Sec. 3.6
that a shifted derivative expansion in terms of the operator Dν := ∂ν − δν0µ yields the
correct physics. The shifted expansion point exactly requires the insertion of the shifted
external fermionic momentum pext in the projection (4.54) to make all higher order terms
vanish. Evaluating the flow leads to

ηq,k =
k5

12π2
ḡ2k
4
(4− ηϕ,k)

(
M(1,2)

qσ + 3M(1,2)
qπ

)
. (4.55)

Note that the anomalous dimensions depend on each other. Eqs. (4.53) and (4.55) form
a simple linear system of equations that can be resolved for ηϕ,k and ηq,k.

Yukawa coupling. Last, for the flow of the Yukawa coupling we use the projection

∂tgk =
1

βV

1

4NcNf

2

σ
lim

p→pext
tr

 −→
δ

δq̄(p)
∂tΓk

←−
δ

δq(p)

∣∣∣∣∣
⟨Φ⟩

 . (4.56)

The fermionic external momentum pext chosen as before and the same discussion applies.
Note that there are two more possibilities for a projection, one featuring a functional
derivative with respect to the sigma field instead of a division, and the other one a deriva-
tive with respect to a pion field and an appropriate Pauli matrix in flavor space. Clearly,
only the last two options could resolve the full momentum dependence of the Yukawa cou-
pling, as the insertion of a constant expectation value σ kills one of the two independent
momenta. Hence, Eq. (4.56) only works in the point-like limit, i.e. when projecting onto
the lowest order of the derivative expansion. Furthermore, including field dependencies
the version with the sigma derivative again leads to an additional term proportional to
g′k(σ

2), and should therefore be excluded.

Using above projection and taking into account the anomalous dimensions, we find for
the renormalized Yukawa coupling

∂tḡk = ḡk

{
ηq,k +

1

2
ηϕ,k +

k5

12π2
ḡ2k

[ (
M(1,2)

qσ − 3M(1,2)
qπ

)(
1− ηϕ,k

5

)
+
(
M(2,1)

qσ − 3M(2,1)
qπ

)(
1− ηq,k

4

) ]}
.

(4.57)

As already mentioned, the approximation of field-independent Yukawa coupling and wave-
function renormalizations necessitates the choice of a specific evaluation point σeval in field
space. The flow will differ based on that choice. Here, we consider two different methods
to deal with the issue:
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Chapter 4. Functional Renormalization Group Approach to Low-Energy QCD

Static: The vacuum infrared minimum σeval = σmin = 92.4MeV is chosen as the static
evaluation point for the Yukawa coupling and wavefunction renormalizations throughout
the flow. This is expected to become increasingly unprecise upon chiral symmetry restora-
tion when the vacuum condensate melts down. A possible remedy is to approximate the
new static infrared minimum σmin(T, µ) for each individual T and µ (e.g., by a recursive
procedure).

Co-moving: At each point in k, the local minimum of the potential Ũk (including the ex-
plicit symmetry breaking term) is determined numerically and used as the evaluation point
σeval,k = σmin,k. Advantageously, the minimum always dynamically adapts to changes in
the flow due to changes in temperature or chemical potential. However, the running evalu-
ation point introduces a modification to the flow much like the additional term in the flow
equation for the renormalized potential (4.46). This modification term does not enter in
our approximation as it is proportional to the first field derivative of the coupling, which
could lead to inconsistencies and strong artifacts.

Masses and Phase Structure

To compare the static and co-moving approximations, the meson masses and phase struc-
ture are examined. As previously stated, we limit the investigation to the crossover regime
for now. Some exploratory tests in the high-density region of the phase diagram have led
to numerical issues especially in the co-moving approximation. Inconsistencies induced by
the discontinuity of the minimum at the first-order phase transition may be responsible for
or contribute to this problem. Other novel works in this direction suggest that—at least
in simple approximations such as the static one—no significant qualitative changes occur
at high densities and the observed peculiarities like the back-bending of the transition line
persist [163]. As already hinted, we will elucidate the origin of this phenomenon in Ch. 7
and conclude that it must still be present at the level of LPA’.

First, we consider the renormalized meson masses on the temperature axis of the phase
diagram (i.e., for µ = 0). They are depicted in Fig. 4.3. For T = 0, the pion and sigma
masses are fixed to their physical vacuum masses, cf. App. I for the parameters. With the
smooth restoration of chiral symmetry at increasing temperature, the mesons degenerate.
While both the static and co-moving approximations agree up to a temperature of about
150MeV, a large discrepancy can be observed for higher temperatures, with the co-moving
approximation leading to much larger renormalized masses. A noticeable decoupling effect
of the renormalized masses due to the wavefunction renormalization is expected. According
to observations made in Ref. [133], for RG scales k ≳ 800MeV the bare meson masses
freeze out and the decoupling of the mesons from the physical spectrum happens mainly
due to the running of the wavefunction renormalization.

Conceptually, this behavior should be transferable to the decoupling at large tem-
peratures. Indeed, even in the static approximation the renormalized masses are found
to be larger than their bare counterparts in LPA. One might argue that, since for large
temperatures the evaluation point in the static approach is much larger than the physical
minimum of the potential, the running of the wavefunction renormalization is underesti-
mated and therefore meson masses are still too small at large temperatures. A modified
ansatz in which the constant evaluation point is chosen close to the actual infrared min-
imum σmin(T, µ), however, yields only minor modifications to the static result depicted
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Figure 4.3: Renormalized meson masses as a function of temperature at vanishing chemical
potential in the static and co-moving approximations.

in Fig. 4.3 and the same asymptotics.4 In other words, the result is not as sensitive to
the choice of evaluation point as the difference between the static and co-moving versions
suggests. The extreme decoupling behavior in the co-moving approximation might there-
fore be an approximation error. It is possibly explained by the fact that the flow of the
wavefunction approximations is always evaluated at the k-dependent minimum where the
pion mass is smallest, leading to its overestimation.

The phase diagram for µB/T < 3 with the baryonic chemical potential µB = 3µ (as
there are three constituent quarks to a baryon) is shown in Fig. 4.4. While the critical
temperature of the crossover transition successively increases going from sMFA to rMFA
to LPA (cf. Fig. 4.1), we now observe a decrease in LPA’ compared to LPA. As with the
masses, the co-moving approximation exhibits this tendency in a more extreme fashion,
with the pseudocritical temperatures T co−mov

c ≈ 151MeV and T stat
c ≈ 161MeV for µ = 0,

respectively. These effects do not only constitute a shift of the crossover line. Fitting the
lines to the polynomial

Tc(µB)

Tc
= 1− κ

(
µB
Tc

)2

+ λ

(
µB
Tc

)4

(4.58)

where Tc ≡ Tc(µB = 0), we obtain the curvatures of the crossover line

κstat = 0.01499(1) , κco−mov = 0.01675(2) . (4.59)

These curvatures are of particular relevance for comparisons to results obtained from
Taylor expansions about vanishing or at imaginary chemical potential in Lattice QCD
calculations [164, 165]. Of course, a quantitative comparison to lattice results would
require a matching definition of the pseudocritical temperature, expansion method, and
expansion region. Details can be found, e.g., in Ref. [20] which includes a similar, more

4We will only state this result here and delay more detailed investigations to future works.
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Figure 4.4: Phase diagram for µ/T < 1 (denoted by the dotted diagonal) for the static and
co-moving approximations. Both lines show a crossover transition.

elaborate calculation based on the FRG framework. Nevertheless, we follow from the
difference of the two curvature values and critical temperatures that at the level of the
LPA’ truncation, even at small densities a more in-depth study of the field dependence
of couplings is necessary to achieve sufficient understanding of the quantitative size of
approximation errors.

4.5 Dynamical Hadronization

In the beginning of this chapter, we outlined how the quark-meson model follows from a
bosonized four-quark interaction. Full meson dynamics are switched on at a fixed compos-
iteness scale kϕ which can be understood as the UV scale of the model [38]. Instead of this
well-motivated but crude procedure the dynamical emergence of those effective degrees of
freedom from the QCD flow can be incorporated within the FRG. For that purpose, the
inclusion of a running wavefunction renormalization Zϕ,k for the mesons as introduced in
the previous section is necessary. We retain Nf = 2 and only consider the four lightest
mesons encoded by the vector ϕ defined in Eq. (4.18).

Since the flow equations—when formulated for renormalized fields—do not depend on
the actual value of Zϕ,k but only on the anomalous dimension, we are free to normalize it
at an arbitrary scale. Commonly, the wavefunction renormalization is taken to be unity at
the UV cutoff scale such that the bare fields of the microscopic theory have the standard
kinetic terms, but of course a field redefinition modifying all couplings and thus also Zϕ,k is
always possible. In Ref. [133], Zϕ,k is normalized to unity at low scales where the mesons
dynamics are relevant.

Based on an ansatz including ghosts and gluons and their respective couplings, it
was shown that with the onset of the quark-gluon regime of QCD, i.e. for scales above
approximately 800MeV [133], the hadronic wavefunction renormalization falls off and
continuously decreases towards the ultraviolet. Hence, at large scales in the quark-gluon
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∂k ~ +

Figure 4.5: Schematic depiction of gluon and meson box diagrams contributing to the re-
generation of the four-quark interaction. Figure adapted from Ref. [133].

regime the scalar fields lose their dynamics and become pure auxiliary fields in a bosonized
formulation of the local four-quark interaction, while in the hadronic regime where the
gluon is gapped they become dynamical and take over as the new effective degrees of
freedom. Necessarily, this approach requires the scalar fields to be included already at the
UV scale of the QCD calculation which is much larger than kϕ; however, as just explained
they do not contribute to the dynamics.

The bosonization procedure laid out in Sec. 4.1 only cancels the four-quark interaction
at a fixed scale and it will be continuously re-generated during the flow by the quark-meson
and quark-gluon box diagrams shown in Fig. 4.5 [133, 141]. Therefore, a dynamical
hadronization (or re-bosonization) procedure requires the continuous redefinition of the
meson fields at each point in k to shift all contributions to the flow of the four-fermion
coupling into the Yukawa interaction. The field in terms of which we formulate the effective
action becomes a scale-dependent functional of the bare fields. Following Ref. [166], we
choose for its scale derivative

∂tϕk,a = Ȧk q̄Γ̃aq + Ḃk ϕk,a (4.60)

where Γ̃a is a placeholder for the respective matrix structure of the (pseudo)scalar channel,
i.e. Γ̃0 := 1/2 and Γ̃i := iγ5τi/2 for i ∈ {1, 2, 3}. The coefficient Ȧk encodes the flow of
the field shift that cancels the four-fermion interaction while Ḃk is just a rescaling of the
field itself. Note that due to chiral symmetry, the four-fermion coupling λ is the same for
all (pseudo)scalar subchannels; therefore we can choose Ȧk (and, in any case, Ḃk) to be
independent of the field index a.

Next, as we want the effective action to be a functional of the scale-dependent scalar
fields,

Γk = Γk[ϕk, q, q̄, A, c, c̄] (4.61)

where A is the gluon and c, c̄ are the ghost fields, a modification of the FRG framework
is required. It is possible to formulate a modified Wetterich equation for general scale
dependent (composite) field vectors Φk which are functionals of the non-scale dependent
versions Φ. Note that for clarity, we reintroduce a distinction between fluctuating mi-
croscopic fields and macroscopic expectation values. As in Ref. [166], the former are
expressed as Φ̃:

Zk[J ] =
∫
DΦ̃ e−S[Φ̃]−∆Sk[Φ̃k]+

∫
JΦ̃k . (4.62)

The source term in the generating functional as well as the FRG modification ∆Sk now
couple to the scale-dependent fields. The scale dependence of the fluctuating fields is
related to the one of the expectation values via the assumption〈

∂tΦ̃k

〉
= ∂t

〈
Φ̃k

〉
= ∂tΦk . (4.63)
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Deriving the flow along the lines of Sec. 3.2, the modified Wetterich equation reads [20]

∂t|Φk
Γk =

1

2
STr(Gk ∂tRk) +

1

2
STr

(
Gk,ab

δ(∂tΦk,c)

δΦk,b
Rk,ca

)
−
∫
(∂tΦk,a)

δΓk
δΦk,a

. (4.64)

The remaining indices explicitly denote the individual components of Φk and corresponding
momentum integrations in the supertraces are implicit. To obtain the second term, the
relation [166]〈

Φ̃k,b ∂tΦ̃k,c

〉
=

(
δ

δJb
+Φk,b

)〈
∂tΦ̃k,c

〉
=

(∫
Gk,ab

δ

δΦk,b
+Φk,b

)〈
∂tΦ̃k,c

〉
(4.65)

was used. With the ansatz (4.60) for the scale dependence of the scalar fields, the only
nonvanishing contribution to the second term in Eq. (4.64) stems from the rescaling of
the field itself. The Wetterich equation simplifies to

∂t|Φk
Γk =

1

2
STr(Gk ∂tRk) +

1

2
Tr
(
Gk,aḂkRk,a

)
−
∫ (

Ȧk q̄Γ̃aq + Ḃkϕk,a

) δΓk
δϕk,a

(4.66)

The index a now only sums over the mesons contained in ϕk. Noteworthy, a nonvanishing Ḃ
leads to the exact same structural contributions as the anomalous dimension. This makes
sense since it is just a generalization of such a field rescaling. Hence, the modifications
it brings to the previously determined flow equations can be incorporated by the simple
shift

ηϕ,k → ηϕ,k − 2Ḃk . (4.67)

To make matters even more simple, we choose Ḃ ≡ 0 as we do not wish any rescalings
besides the one due to the wavefunction renormalization. Further, as the expectation
values of the macroscopic quark fields vanish, the flow of the effective potential does not
receive any modifications due to the Ȧk term in Eq. (4.66). However, we still need to
keep this term as the projections for the flow of higher-order couplings are obtained by
functional derivatives acting on it.

This leads to a nonvanishing contribution to the flow of the renormalized four-fermi
and Yukawa couplings:

∂t|Φk
λ̄k = ∂tλ̄k + ḡk

˙̄Ak (4.68)

and
∂t|Φk

ḡk = ∂tḡk −
(
p2 + Ū ′

k

) ˙̄Ak . (4.69)

The renormalized coefficient ˙̄Ak can be inferred from Eq. (4.60) as

˙̄Ak =
Z

1/2
ϕ,k

Zq,k
Ȧk (4.70)

and ∂tλ̄k as well as ∂tḡk are the flows without dynamical hadronization. For the pure
quark-meson truncation, the latter is given in Eq. (4.57). The former can not be ex-
tracted unambiguously since the box diagrams generate not only scalar, but also vector
channel interactions and we are not working in a Fierz complete basis. Different ansätze
can be found in Refs. [20, 133, 141]. Furthermore, terms proportional to ḡ′k which are
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taken into account in Ref. [133] are dropped in accordance with our approximation of
a field-independent Yukawa coupling. With the starting value λ̄Λ = 0, implying that all
interactions are bosonized already at the UV scale, and for the choice

˙̄Ak = −
∂tλ̄k
ḡk

(4.71)

we find λ̄k ≡ 0. All contributions to the running of the four-fermi interaction are contin-
uously shifted into the running of the Yukawa coupling. A re-bosonization procedure is
also possible in a pure low-energy effective theory without gauge degrees of freedom. The
re-generation of the four-quark interaction is then limited to the quark-meson box diagram
in Fig. 4.5. However, it has been shown that in vacuum these contributions have negligible
impact [133]. It can be argued that at large densities, effects from dynamical hadronization
might possibly be larger, but studies in NJL-type models with Fierz complete interactions
indicate that in the low-temperature and large-density regime, other interaction channels
than the (pseudo)scalar one become more relevant altogether [138, 139]. Thus, in the
following quark-meson model study of the equation of state we do not employ dynamical
hadronization techniques and postpone further investigations in this direction to future
works.
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Chapter 5

Nonperturbative Quark-Matter
Equation of State

In this chapter we aim to derive a quark-matter equation of state within the quark-meson
model and analyze the consequences of such an EoS for the structure of a nonrotating
star. In contrast to many previous works using the mean-field approximation, we employ
the FRG and thus inherently include additional nonperturbative effects due to quark and
meson fluctuations. As shown in Sec. 4.3 those quantum and density fluctuations have
significant impact in the vicinity of the phase transition and should not be neglected. In
recent years, the application of the FRG method to neutron star matter has therefore
experienced increasing interest [27, 167–170]. Moreover, we model a phase transition from
hadronic to quark matter in order to investigate the possibility of hybrid stars. The
separate consideration of two- and three-flavor versions of the model, see Sec. 4.2, allows
to additionally study the impact of strangeness in compact objects. In the quark-matter
core of a hybrid star, strange quarks might be suppressed due to their relatively large
effective mass [171–174]. In addition, large effective strange-quark masses often destabilize
hybrid stars with a strange-quark-matter core, leading to gravitational collapse [172, 173].
Calculating the EoS with the FRG, it becomes feasible to investigate the influence of
quantum as well as density fluctuations on macroscopic observables for neutron stars such
as the mass-radius relation in a systematic manner.

5.1 Beta Equilibrium and Charge Neutrality

In a neutron star, the assumption of isospin-symmetric matter, be it nuclear or quark
matter, does not hold up anymore. To see this, let us consider quark matter and only two
flavors at first. The assumption of local electric charge neutrality—such that the global
charge of the star is ensured to vanish—demands a sufficient electron density to counter
the net positive charge of matter with roughly the same number of up and down quarks.
However, the weak interaction allows for β-processes trading electrons and up quarks for
down quarks and vice versa. In all of these decays, (anti)neutrinos are produced, but
their mean free path in cold neutron-star matter is large enough for them to leave the star
[24]. Hence, in a stable star with densities reaching well above nuclear-matter density,
we can assume beta equilibrium and neglect neutrinos. Including strangeness as well, the
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equilibrium conditions lead to the flavor-dependent chemical potentials

µu = µ− 2

3
µe , µd = µs = µ+

1

3
µe (5.1)

with the quark chemical potential µ = µB/3 which is related to the conserved baryon
number, and the electron chemical potential µe which should rather be understood as
coupling to (the negative of) the electric charge. The condition of charge neutrality,

2

3
nu −

1

3
nd −

1

3
ns − ne = 0 (5.2)

with the particle densities ni, eliminates the freedom of choice for µe so that one ends up
with one independent chemical potential. It is common in the literature to describe the
electrons as a free fermi gas which we will do here as well. The contribution of a free fermi
gas to the total pressure is given in Eq. (3.68) and the density follows as

ne =
(µ2e −m2

e)
3/2

3π2
Θ(µe −me) . (5.3)

Note that symmetric strange matter, i.e., matter with the same number of up, down, and
strange quarks, is already electrically neutral. According to the strange matter hypothesis,
such so-called strangelets could exist and be more stable than actual two-flavor nuclear
matter if its density becomes large enough [175, 176]. However, the hypothesis is based on
a simple bag model calculation for a free gas and thus the picture in the fully interacting
theory is not clear [78]. Furthermore, as strange quarks are significantly heavier than up
and down quarks, producing sufficient amounts of such matter against their constant weak
decay presents a challenge. Casting aside this scenario, in conservative calculations for
nuclear or quark matter there are less strange quarks than light quarks or even none of
them, depending on the density range of the star. The beta equilibrium condition however
favors a decrease of up-quark and electron density in favor of down (and possibly strange)
quarks; as expected, nuclear matter in the star becomes more neutron rich.

We generally use the setup outlined in Sec. 4.3 and employ the two- and three-
flavor quark-meson model in local potential approximation. The incorporation of different
chemical potentials for each quark flavor has already been realized in the flow equations
(4.24) and (4.26). Although isospin symmetry is broken in beta-equilibrated matter where
µu ̸= µd, we retain the approximation of only one light chiral condensate σl, i.e., we plug
in σ3 ≡ 0 for the expectation value of the splitting field. As both the ⟨ūu⟩ and

〈
d̄d
〉

condensates are equal in the vacuum and become small upon chiral symmetry restoration,
the error of this approximation is expected to be only noticeable close to the chiral phase
transition. Note the pair of chemical potentials {µ, µe} can be rewritten in terms of an
isospin chemical potential µI that couples antisymmetrically to up- and down-quarks, i.e.

µu = µ′ + µI , µd = µs = µ′ − µI , (5.4)

with µ′ = µ − µe/6 and µI = −µe/2. Furthermore, the conserved electric charge should
also couple to the charged mesons, e.g., for Nf = 2 these are the two off-diagonal pions in
flavor space. This would play a role in the case of pion condensation. Due to the Silver-
Blaze property, however, for vanishing temperature pion condensation only appears for
µI > mπ/2 [177]. With the electron chemical potentials we found in our calculations, we
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do not expect any significant amount of pion condensation and postpone a more in-depth
analysis to future works. In the following, we present results for both symmetric and
β-stable quark matter. Note that with this model, we consider nonmagnetized matter,
but magnetic effects on the EoS are expected to play only a minor role for pulsars [178].

5.2 EoS for Quark and Hybrid Stars

In order to determine the equation of state p(ε), or rather its inverse ε(p), we again solve the
flow equations for the Nf = 2 and Nf = 2+ 1 quark-meson model, Eq. (4.24) and (4.26).
The EoS then follows thermodynamically as outlined in Eq. (4.39). A similar computation
is made in the standard and renormalized mean-field approximations introduced in Ch.
4. The equations of state (EoS) for symmetric quark matter, i.e., for equal chemical
potentials, obtained in MFAs and with the FRG, are compared to each other in Fig. 5.1a.
Solid lines are the two-quark flavor findings and the dashed lines the corresponding three-
flavor calculations. The numerical results are almost insensitive to the strange quark before
the onset of the strange chiral phase transition around energy densities ε ≈ 550 MeV/fm3

but start to deviate thereafter, see Fig. 5.1a. In MFAs the transition is more gradually
realized and the deviation is less pronounced than within the FRG. This can already be
seen in Fig. 4.2b where the strange condensate in MFA decreases moderately for chemical
potentials smaller than the strange-quark mass ms ≈ 430MeV. In the FRG curve there
is a more rapid onset with a steeper slope around the strange-quark mass. Note that this
behavior could also be related to a second phase transition in the light-quark sector that
has been found in [33]. Furthermore, it is obvious that vacuum fluctuations reduce the
slope of the EoS, i.e. the sound speed, and over most of the shown density range the EoS
obtained in FRG has still a smaller slope, see Sec. 5.3.

With the inclusion of a free relativistic electron gas and the conditions for weak equilib-
rium and charge neutrality, cf. Eqs. (5.1) and (5.2), we obtain slightly modified EoS. The
results for β-stable and neutral matter are presented in Fig. 5.1b. Differences to the result
for symmetric quark matter are visible almost exclusively for Nf = 2+1 where the weak-
equilibrium and charge-neutrality conditions render the population of strange quarks more
favorable. Hence, the onset of strangeness is pushed to smaller energy densities, leading
to a pressure reduction for a given energy density beyond the onset.

Note that our approximation with only one chiral light condensate σl for both up-
and down-quark flavors yields in all cases degenerated up- and down-quark masses. As
discussed in the previous section, for large µ the restoration of chiral symmetry in the
light-quark sector suppresses both quark masses such that only small mass differences
are expected there in contrast to the behavior in the vicinity of the chiral transition. The
impact on the EoS might be more pronounced, and the small difference between symmetric
and charge neutral matter in the two-flavor case might be an artifact of this approximation.
A more detailed analysis of isospin breaking including a third chiral condensate is beyond
the scope of this work and subject to future investigation.

In order to allow for a description of hybrid stars with a phase transition from hadronic
to quark matter in the interior of the star, we combine the quark matter EoS with a nuclear
one. The transition is achieved with a standard Maxwell construction1 that maximizes the

1This assumes a high surface tension at the hadron-quark interface, see e.g. Ref. [179] for a discussion
of this point in the context of a potential hadron-quark transition within hybrid stars.
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(b) β-stable and neutral matter

Figure 5.1: Three different EoS of the Nf = 2 (solid) and Nf = 2 + 1 (dashed) quark-meson
model at T = 0 for ml ≈ 300 MeV, ms ≈ 430 MeV and mσ = 560 MeV.

pressure for a given chemical potential. For the nuclear EoS we consider some representa-
tive models compatible with several nuclear physics constraints as well as the maximum
neutron-star mass and the GW170817 tidal deformability. Three of them are energy-
density functional models, one is based on a nonrelativistic Skyrme parameterization,
RG(SLy4) [180–182], and two are relativistic mean-field models, HS(DD2) [183, 184] and
SFHo [185]. The BL EoS [186] is formulated in the framework of the Brueckner-Bethe-
Goldstone many-body theory with chiral nuclear forces. In Fig. 5.2 a comparison of
different nuclear EoS (dash-dotted lines) with the Nf = 2 (solid) and Nf = 2+1 (dashed)
EoSs evaluated with the FRG respecting β-equilibrium and charge neutrality is given. We
do not consider the FRG results as very realistic at low densities below µB/mn ≲ 1.2,
where a hadronic phase is expected. In addition, the attractive meson interactions in
the QM model lead to a very high pressure for a given chemical potential in this range.
We only present it for completeness. Disregarding the unphysical part of the QM EoS
obviously all nuclear EoS except the HS(DD2) EoS produce higher pressure than the QM
one at a given baryon chemical potential µB for the entire range of interest for compact
stars. Hence, no hybrid stars could exist with these model combinations. The pressure
of the HS(DD2) EoS intersects the two-flavor FRG pressure curve around µB/mn ≈ 1.38
corresponding to the appropriate physical transition from nuclear to quark matter. By
construction, the combination of the two-flavor QM EoS from the FRG with the HS(DD2)
EoS leads to a first-order phase transition between the confined nuclear matter and the
deconfined quark matter which is characterized by a discontinuity in the energy density.

This is observed in Fig. 5.3 which depicts the constructed hybrid Nf = 2 (DD2+QM2)
and Nf = 2+ 1 (DD2+QM2+1) EoSs in comparison to the hybrid EoS QHC19 [187] and
a parameterized EoS [82].2 The QHC19 EoS features a smooth crossover quark-hadron
transition. For the parameterized EoS the HS(DD2) EoS is used for the hadronic regime

2Note that all employed nuclear EoSs, the QHC19 EoS as well as our hybrid star EoSs with the FRG
are available online in the CompStar Online Supernovae Equations of State (CompOSE) database [188],
see https://compose.obspm.fr/.
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Figure 5.2: Pressure as a function of the baryon chemical potential in units of the neutron mass
for various hadronic RMF models (dash-dotted) compared to the Nf = 2 (solid) and Nf = 2 + 1
(dashed) QM EoS in FRG (β-equilibrated and neutral quark matter). Intersections (black dots) of
the quark-matter pressure with the HS(DD2) model at higher pressure are found while (unphysical)
intersections at lower pressure are ignored, see text for details.

and the quark matter side is parameterized as

p(ε) =

{
pc, εc < ε < εc +∆ε

pc + s [ε− (εc +∆ε)], ε > εc +∆ε ,
(5.5)

which describes a first-order transition at {εc, pc} with energy gap ∆ε and a constant
slope s = ∂p/∂ε, i.e., a constant quark matter sound speed squared, thereafter. Following
the idea of Ref. [82], we choose pc = 1.89 × 1035 dyn cm−2 and εc = 9.02 × 1014 g cm−3

which corresponds to nc ≈ 3n0 and ∆ε/εc = 0.6. For the slope, we consider two extreme
parameterizations, one with s = 1/3 corresponding to the asymptotical QCD value, and
one with s = 1 corresponding to the maximally allowed sound speed by causality. This
ensures the onset of the phase transition at similar densities to those found in our hybrid
construction with the two-flavor QM model. The size of the discontinuity of the energy
density ∆ε determines the stability of the hybrid star against gravitational collapse: a large
discontinuity destabilizes the star immediately at the transition point p = pc whereas for
a small discontinuity a small quark core forms and the star remains stable. This scenario
can be summarized in terms of the Seidov limit [189]

∆εthresh
εc

=
1

2
+

3

2

pc
εc

. (5.6)

∆εthresh denotes here the threshold value below which a stable hybrid star branch is
connected to a hadronic star branch. Thus, above the Seidov limit the sequence of stars
become unstable immediately.

Even if ∆ε > ∆εthresh and no continuous nuclear-hybrid branch exists, a so-called
“third family” [190] stable sequence of hybrid stars, i.e., an additional branch of hybrid
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Figure 5.3: Composite EoS for the QM and DD2 nuclear model, cf. Fig. 5.2, compared with
the hadron quark EoS QHC19 [187] and a combination of the HS(DD2) EoS with a parameterized
quark matter EoS [82] for c2s ≡ s = 1 or 1/3, respectively. While the QHC19 model features a
continuous quark-hadron transition, the others employ a Maxwell-constructed first-order transition
and a discontinuity in the energy density ε.

stars with the same mass but different radius than their nuclear counterpart [191], may
exist at higher central densities for certain conditions. Such twin-star configurations are
found, for example, in studies with NJL quark matter including additional repulsive eight-
quark interactions [192]. The conditions for the existence of such twin (or even triplet)
configurations has been discussed in detail in Ref. [82], characterising the transition by
the two parameters εc and ∆ε together with a constant-speed-of-sound parameterisation
of the quark phase. Note that the large energy gap ∆ε/εc = 0.6 is close to the Seidov
limit and has been chosen to allow for a disconnected hybrid branch if the quark-matter
EoS is stiff enough. A comparison of that parameterization to the FRG calculation in
Fig. 5.3 reveals that the energy gaps in our construction are much too small to produce a
disconnected second branch but favor a single connected hybrid-nuclear branch. In fact,
our two-flavor hybrid model is well reproduced by values of ∆ε/εc = 0.18 and pc/εc = 0.23
and a constant c2s = 1/3 on the quark-matter side. These values lie well within the region
identified in [191] as that giving rise to a connected branch and are also well below the
Seidov limit. Similar arguments show that the hybrid model with 2+1 flavors on the quark
side again leads to a connected branch.

5.3 Speed of Sound

More information on dense matter can be gained through a detailed investigation of the
speed of sound [193]. It measures the stiffness of the EoS for a one-fluid flow by the
thermodynamic derivative of the pressure with respect to the energy density at constant
entropy and particle numbers

c2s ≡
∂p(ε)

∂ε

∣∣∣∣
S,Ni

(5.7)
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and can be identified as the speed of propagation of sound waves. Causality implies an
upper bound c2s ≤ 1 and thermodynamic stability a lower bound c2s > 0. For an ideal gas
composed of point-like ultrarelativistic (massless) components the squared speed of sound
is equal to one third, c2s = 1/3. This is common to all systems with conformal symmetry
of which an ideal massless gas is just an example. Even for any strongly interacting
system the vanishing of the trace of the energy-momentum tensor, a feature of conformal
theories, implies that the energy density is connected to the pressure by ε = 3p, hence
yielding c2s = 1/3 independently of density, temperature, or interactions. The speed of
sound is decreased such that c2s < 1/3 when a mass for the components is included or
when (perturbative) interactions among the components take place. In the case of QCD
at asymptotically high densities or temperatures, far exceeding the densities in the core
of compact stars, a weak-coupling expansion is valid (pQCD) such that c2s is expected
to reach the conformal limit with increasing density from below [194]. This behavior is
confirmed in QCD lattice calculations at finite temperature as well as at zero and small
baryon chemical potentials [195].

The speed of sound has also been investigated in alternative theories for which, e.g., the
AdS/CFT correspondence holds and where calculations in the strong-coupling limit are
feasible, see Ref. [196]. It has been conjectured that c2s is always bounded from above in
such classes of strongly coupled field theories by the conformal value of 1/3 [197] although
recently counterexamples have been presented [198]. For more details of this conjecture
see Ref. [194].

The speed of sound of the QM model in both mean-field approximations and the FRG
calculation is found generally to be always smaller than c2s = 1/3. An alternative scenario
could be the presence of a bump in c2s at intermediate densities before approaching the
upper bound from below asymptotically and thus implying the existence of a maximum
and a local minimum of c2s as a function of the chemical potential. This scenario is
supported by another recent FRG analysis including diquark condensation [27] where a
maximum in c2s above 1/3 is found. The additional inclusion of vector interactions in the
quark-meson model [199] is also expected to stiffen the EoS; this is further investigated in
the next chapter.

Our result for the speed of sound of quark matter with a flavor-symmetric chemical
potential is shown in Fig. 5.4a. In the Nf = 2 mean-field approximation (solid lines) the
speed of sound converges to the limit c2s = 1/3 while the addition of strange quarks (dashed
lines) leads to a reduction of c2s around scales of the strange chiral phase transition. This
behavior has already been observed in Fig. 5.1a and is expected due to the additionally
populated strange-quark states softening the EoS. In the FRG solution, the speed of sound
is generally smaller than the asymptotic mean-field values beyond the transition which can
be attributed to the quantum fluctuations captured within the FRG approach.

Furthermore, the strength of the first-order chiral phase transition (i.e., the gap in the
order parameter) is found to correlate with the size of the jump in the speed of sound.
Hence, the strong first-order transition in sMFA leads to a jump of c2s close to its asymptotic
Stefan-Boltzmann value c2s = 1/3 which leads to the almost linear behavior of the EoS
even at low pressure, see Fig. 5.1a. The more washed-out transition in rMFA induces an
initially smaller slope of the EoS. This becomes more significant in the FRG calculation:
due to an even smoother transition a comparably small gap ∆ε is found in Fig. 5.1a.
In agreement with Fig. 5.4a the slope is consistently smaller than that of the mean-field
calculations. For Nf = 2 + 1, c2s is found to be sensitive to the numerical error caused by
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Figure 5.4: Sound speed squared c2s at zero temperature as a function of µ for three different
quark matter EoS and the hadronic DD2 EoS (solid Nf = 2, dashed Nf = 2 + 1; left panel:
flavor symmetric matter, right panel: β-equilibrated neutral matter). The thin horizontal lines
indicate the Stefan-Boltzmann limit c2s = 1/3. The vertical black-dotted line in the right panel
illustrates the first-order transition from the hadronic HS(DD2) to the QM2 EoS, cf. Fig. 5.3.
The metastable phases are extrapolated in gray color. For the blue error in the left panel band see
App. H.

the employed solution method of the flow equation which leads to visible fluctuations at
high µ. Therefore, Fig. 5.4a depicts for µ > 350MeV averaged values in conjunction with
error intervals displayed as blue band. For more technical details see App. H.

The speed of sound for β-stable and charge-neutral quark matter is displayed in Fig.
5.4b. Note that due to the usage of only one light condensate, the first-order transition
cannot be resolved exactly in this approximation and hence the drop of the speed of
sound to zero at low chemical potential is not shown. Due to the numerical uncertainties
mentioned above, we postpone a carefulNf = 2+1 analysis to a future work. Qualitatively,
we observe the same behavior as for a flavor-symmetric chemical potential. However, in
mean-field approximation we find that the reduction of the speed of sound due to the
onset of strangeness takes place at lower chemical potentials and more gradually than in
symmetric quark matter. This is in agreement with the onset of strangeness already at
small energy density, see Fig. 5.1b and the discussion in the previous section. In Fig. 5.4b
we also show the speed of sound for the HS(DD2) nuclear EoS and indicate the transition
point to quark matter in the DD2+QM2 EoS by a vertical line. As suggested in Ref.
[200], this discontinuity in the speed of sound can be related to a δ-function singularity in
the fundamental derivative, leading to possibly nonconvex thermodynamics.

5.4 Quark- and Hybrid-Star Solutions

In order to determine the influence of fluctuations on the mass-radius relation of a neutron
star, we employ hydrostatic equilibrium solutions for a relativistic, spherically symmetric
compact star composed of a perfect fluid, which have been derived from Einstein’s equa-
tions by Tolman, Oppenheimer and Volkoff (TOV) [75, 76]. For a given EoS in terms of
p(ε), they yield a one-parameter curve of mass-radius relations, with the free parameter
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Figure 5.5: Neutron star mass-radius relations for β-equilibrated and neutral matter. Left: pure
quark stars for Nf = 2 (solid) and Nf = 2 + 1 (dashed). Right: purely hadronic stars (dash-
dotted) obtained from various nuclear model EoS, cf. Figs. 5.2 and 5.3. Hybrid stars from the
combined HS(DD2) model with the FRG solutions for QM (solid, dashed). Horizontal bands:
PSR J1614-2230 (yellow) and PSR J0348+0432 (green) mass measurements [72, 73]. See text for
details.

given by the central pressure p0. For more details and a derivation of the TOV equation
see App. B.

The mass-radius relations for the pure β-stable and charge-neutral quark matter EoS
are shown in Fig. 5.5a for three different approximations. Please keep in mind that quark
matter is not absolutely stable within our setup and that thus such pure quark stars could
not exist. Nevertheless, we show the mass-radius relations since they are instructive to
understand the impact of the fluctuations. Solid lines are the solutions for a two-flavor EoS
and dashed lines the three-flavor results. In general, all three-flavor calculations yield a
smaller maximummass than the corresponding two-flavor results, which can be understood
by the softening of the EoS due to the additional strange degrees of freedom. Only the two-
flavor sMFA and both the two- and three-flavor FRG results yield a maximum mass above
2M⊙. Furthermore, the inclusion of the renormalized vacuum fluctuations in the rMFA
in contrast to the sMFA leads to smaller masses and radii. The additional consideration
of mesonic fluctuations via the full FRG computation increases the maximum mass even
slightly beyond the sMFA result but also leads to significantly larger radii. The reason is
that within the present FRG setup, the density jump at the surface is much smaller than
in the MFA calculations, see Fig. 5.1b, such that the star becomes much less compact
and can accumulate more mass. For the sake of completeness the causality constraint
R ≤ 2.87M [24] is also displayed in the figure.

The mass-radius relations from the combined EoSs for a hybrid star with the Nf = 2
or Nf = 2+ 1 quark-meson matter side employing the FRG, respectively, and a hadronic
phase parameterized by the HS(DD2) EoS are presented in Fig. 5.5b, labeled again as
DD2+QM2 and DD2+QM2+1. For Nf = 2, the onset of quark matter leads to the visible
separation of the DD2 and DD2+QM2 curves slightly below M = 2M⊙ corresponding
to a central baryon number density of approximately 0.47 fm−3. Below this value, the
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hybrid star mass-radius relation coincides with the nuclear HS(DD2) one as it should. For
Nf = 2 + 1, the DD2+QM2+1 curve exhibits a similar behavior, but the onset of quark
matter occurs at a smaller baryon number density of approximately 0.43 fm−3. Thus,
since the transition occurs well above nuclear saturation density, both hybrid EoSs satisfy
constraints from nuclear physics as implemented in the HS(DD2) EoS. The maximum
hybrid star mass of about 2.1M⊙ for Nf = 2 complies well with current observations,
whereas the Nf = 2 + 1 curve does not satisfy the 2M⊙ limit. Since the quark-matter
onset occurs only for masses slightly below 1.8M⊙ and higher, the value of the GW170817
tidal deformability obtained from both hybrid EoS does not change significantly with
respect to the HS(DD2) value Λ̃ ≈ 795 for a mass ratio of 0.8 of the two coalescing stars.3

It is in slight tension with recent LIGO/Virgo data [85, 201] but in agreement with the
observation that the HS(DD2) EoS leads to a relatively large radius for intermediate mass
stars. The QHC19 model leads to a radius smaller by almost 2 km. For comparison, the
M -R relations for four different pure phenomenological nuclear models (dash-dotted lines)
are also shown in Fig. 5.5b. As mentioned above, due to the small stiffness of the FRG
quark matter EoS at high densities, a hybrid star construction with these nuclear EoS is
not possible within the present setup.

As expected from Fig. 5.3, the parameterized EoS leads to a kink in the mass-radius
relation at a mass slightly above the DD2+QM2 curve. Contrary to the connected hadronic
and hybrid branches in the latter, the large energy gap of the s = 1 parameterized EoS
leads to a disconnected hybrid branch and therefore twin stars at masses of about 2M⊙.
For s = 1/3, the pressure in the quark-matter phase is not sufficient to counteract the
strong gravitational pull due to the large energy density of the quark core [82] and thus
does not support a stable hybrid star branch. Hence, we can rule out the occurrence of
twin stars in our model due to the small energy gap at the phase transition from nuclear
matter to quark-matter and due to the small stiffness of the quark matter EoS. In case of
a Maxwell construction with parameters that feature a larger energy gap, there might not
even be any stable hybrid stars with a QM model quark-matter description.

5.5 Conclusions

In this part of the work we have studied a nonperturbative quark-matter EoS based on
the two- and three-flavor quark-meson model. Calculations have been done in two dif-
ferent versions of mean-field approximation and with the FRG. The aim of this setup
was especially to estimate the impact of quantum and density fluctuations on the EoS
for vanishing temperature. Since the different approximations of the grand potential were
fixed to the same input parameters, our numerical findings are solely attributed to the
impact of these fluctuations, with the exception of possible unphysical truncation effects
in the FRG, see Ch. 7. As anticipated from studies of the phase diagram and confirmed
by our investigations (see Ref. [155] and Ch. 4), fluctuations tend to smoothen the chiral
phase transition. Within the EoS, the softening due to the appearance of strange quarks
is therefore pushed to higher densities. Quark stars obtained from the FRG, including
fluctuations in the quark matter EoS, have higher maximum masses and radii compared
to their mean-field counterparts. Furthermore, we found that it is feasible to construct a
hybrid nuclear-quark EoS, combining our FRG quark-matter EoS with a nuclear one via

3See Ch. 6 for a computation of the dimensionless tidal deformability and App. B for its derivation.
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a Maxwell construction. The results for hybrid stars with a two-flavor quark matter core
are in reasonable agreement with existing constraints. In contrast to many studies within
the mean-field NJL model, see, for example, Ref. [173], our FRG EoS allows for gravita-
tionally stable hybrid stars with a three-flavor core, which however leads to a maximum
mass below the highest observed pulsar masses. Along with Refs. [27, 169, 170], this
work constitutes one of the first constructions of a nonperturbative EoS for high densities
within the FRG. However, several assumptions and approximations have been made, in
particular:

(I) We have employed the quark-meson model, taking into account the (pseudo)scalar
interaction channels. As discussed in Ch. 4, they are the dominant channels for chi-
ral symmetry breaking at low densities, but they are expected to be insufficient at high
densities [138, 139] and the addition of further four-quark generated channels might be nec-
essary. The inclusion of a repulsive vector interaction is expected to additionally stiffen
the quark-matter EoS and allow for the construction of hybrid stars with nuclear EoS
leading to smaller radii and tidal deformabilities. Moreover, the wealth of possible dif-
ferent color-superconducting phases [70, 202] suggests the consideration of diquark-quark
channels.

(II) We have modelled a first-order phase transition from baryonic matter to quark mat-
ter. In the latter, dynamical three-quark correlations are not included anymore. Especially
at small temperatures, such correlations probably remain important. While the FRG has
the general capability to include such interactions, it should be stressed that much work
is still necessary to technically cope with this issue.

(III) Furthermore, the effect and origin of the back-bending of the chiral transition line
should be settled. The resolution of this phenomenon might have a strong influence on
the thermodynamics and thus the EoS at high densities.
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Chapter 6

Vector-Meson Effects in Hybrid
Stars

In the last chapter, we have studied the impact of fluctuations in the (pseudo)scalar
interaction channel on the compact star EoS within the FRG framework. It was found
that the fluctuations decrease the sound speed of the quark matter even below the mean-
field value of c2s = 1/3, leading to a rather soft EoS at high densities. This rather soft
EoS does not allow for the construction of hybrid stars with a three-flavor quark core in
agreement with present neutron-star mass measurements [72–74]. Therefore, here we will
extend this work and investigate the impact of additional vector-meson interactions. While
the (pseudo)scalar fields are integrated out within the functional renormalization group
framework, the vector mesons are treated on a constant background level. This idea has
already been employed to studies of the phase diagram at finite temperature, see e.g. Refs.
[169, 203–205]. Vector interactions are expected to add repulsion [206]. This can be seen
from classical models of the nucleon-nucleon interaction, from phenomenological models
allowing for hyperons in the neutron-star core [207, 208], or from many phenomenological
quark-matter studies [199, 209, 210]. The inclusion of a repulsive vector interaction in the
quark-meson model should thus stiffen the quark-matter EoS, leading to a higher speed
of sound and giving rise to hybrid stars compatible with observations. We continue to
neglect the possibility of diquark pairing and do not enter the discussion of the extremely
rich phase structure of color-superconducting matter in the density range of neutron stars.

6.1 Vector Mesons in Mean-Field Approximation

On top of the scalar and pseudoscalar fields in our chirally symmetric effective theory, we
consider another N2

f vector and axial vector mesons each. With the usual U(Nf ) flavor

transformation generators T af with a = 0, . . . , N2
f − 1 the (pseudo)scalar meson matrix is

augmented by the (axial) vector one,

Σ := T af (σa + iπa) for the (pseudo)scalar mesons and

Vµ := T af (ρa,µ + ia1a,µ) for the (axial) vector mesons.
(6.1)

Accordingly, the field strength tensor field is given by Fµν = i
gv

[Dµ, Dν ] = ∂µVν − ∂νVµ−
igv[Vµ, Vν ] with the canonical covariant derivative Dµ = ∂µ− igvVµ. For two quark flavors
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we have the identifications ρa,µ = (ωµ, ρρρµ) and a1a,µ = (f1,µ, aaa1,µ) and for three flavors
ρa,µ = (ωµ, ρρρµ,KKKµ, ϕµ) and a1a,µ = (f1,µ, aaa1,µ,KKK1A,µ, f1,µ).

1 The mesons interact via a
scalar Yukawa coupling gs and a vector coupling gv with the quarks which is encoded in
the quark-meson Lagrangian in Euclidean space

L = q̄
[
/∂ + gsT

a
f (σa + iγ5πa)− igvT

a
f γµ(ρa,µ + γ5a1a,µ)

]
q

+Tr(∂µΣ
†∂µΣ) +

1

2
Tr(FµνFµν) + UΛ(ρ1, . . . , ρNf

)

− cAξ − Tr
[
H(Σ† +Σ)

]
.

(6.2)

Again, UΛ denotes the chiral potential at the UV scale, ρi are the chiral invariants, and ξ
is the U(1)A breaking term, cf. Sec. 4.2. Here, the explicit symmetry breaking has been
encoded in the matrix H, i.e. H = caT

a
f with c0 the only nonzero entry for Nf = 2, and

nonvanishing choices for c0 and c8 for Nf = 2 + 1 which lead to terms proportional to σl
and σs in the rotated basis (4.14). Recent NJL-model studies treating the flavor-singlet
and octet channels with individual couplings see a general stiffening of the equation of
state by the former, but a softening at high densities due to the latter in a three-flavor
setup [211, 212]; we will not be able to resolve this effect as we do not distinguish between
the channels.

As a simplification, the vector mesons are now treated on a mean-field level in the
Lagrangian (6.2), i.e., as static background fields such that their kinetic terms are not
relevant anymore. Due to rotational symmetry all components of the vector-meson con-
densates except the temporal ones are assumed to vanish [25]. For three quark flavors
the only nonvanishing vector fields are in principle the diagonal scalar fields, the isoscalar-
vector fields ω and ϕ and the third isovector-vector field ρ30. As in the previous chapter, we
choose to neglect the isospin-breaking condensate σ3 as an approximation. Hence, to be
consistent within our approximation scheme we also omit the isovector-vector condensate
ρ30. For three quark flavors this yields finally a diagonal matrix in flavor space for the ω
and ϕ vacuum expectation values

⟨Vµ⟩ = δµ0
i

2
diagf (ω, ω,

√
2ϕ) . (6.3)

This also assumes an ideal quark mixing such that the quark content of the ω meson
consists purely of up and down quarks while the ϕ meson is purely strange. Note that
the additional factor of i stems from the Wick rotation, i.e., a real zero component of the
vector field in Minkowski space becomes an imaginary one in Euclidean space. This in
turn simplifies the Yukawa term in the quark sector of the Lagrangian

Lvec =
gv
2
q̄γ0diagf (ω, ω,

√
2ϕ)q , (6.4)

which can now be interpreted as a shift in the corresponding chemical potentials, giving
rise to modified effective chemical potentials

µ̃u = µu −
gv
2
ω

µ̃d = µd −
gv
2
ω

µ̃s = µs −
gϕ
2
ϕ

(6.5)

1The two possible isoscalar-axial-vector states are f1,µ(1285) and f1,µ(1420).
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with gϕ :=
√
2gv. The constant vector-meson vacuum expectation values also contribute

to the mean-field potential we choose as

U (2+1)
vec (ω, ϕ) = −1

2

(
m2
ωω

2 +m2
ϕϕ

2
)
, (6.6)

wherein the negative sign expresses the repulsive nature of the vector interactions. The
mass-like parametersm2

ω andm2
ϕ are basically unconstrained and not necessarily equal the

physical ω- and ϕ-meson pole masses. They can be interpreted as the main contributions
to the curvature masses, with the negative sign in the potential again originating from
the imaginary condensate in Euclidean metric.2 Nevertheless, we fix the parameters to
the measured vector-meson masses mω = 782 MeV and mϕ = 1020 MeV such that the
vector-meson coupling gv is the only remaining free parameter of the system and of the
order of one. For two quark flavors, only the ω meson is considered. For simplicity, in the
following we will establish the Nf = 2 + 1 equations and suppress the flavor index. The
two-flavor results arise in an obvious way.

The mean-field approximation can now be augmented with the FRG by adding the
vector-meson potential Uvec to the scale-dependent chiral effective potential. For an arbi-
trary renormalization scale k, the total effective potential Ũk reads

Ũk = Uk(ρ1, ρ̃2, ω, ϕ) + Uvec(ω, ϕ)− cAξ − clσl − csσs . (6.7)

The respective condensates are determined in the infrared by solving the gap equations

∂ŨIR

∂ω
= 0 =

∂ŨIR

∂ϕ
(6.8)

where ŨIR denotes the fully-evolved effective IR potential including all dynamic quark and
(pseudo)scalar-meson fluctuations. The condensates (i.e., the fields at the minimum of the
potential) depend on the temperature and chemical potentials. The gap equations for the
ω and ϕ condensates (6.8) can be rewritten

ω +
gv

2m2
ω

(
∂UIR

∂µu
+
∂UIR

∂µd

)∣∣∣∣
gap

= 0 = ϕ+
gϕ
2m2

ϕ

∂UIR

∂µs

∣∣∣∣
gap

. (6.9)

The subscript “gap” in Eq. (6.9) labels the gap equation solution meaning that the
potential is evaluated at the field configurations solving the corresponding gap equations.
Thus, both gap equations for the vector condensates (6.9) are self-consistent and can be
solved numerically by root finding. The thermodynamics are extracted from the infrared
potential ŨIR in accordance with Eqs. (4.35)-(4.39). A specific role is played by the
quark-number densities

nf ≡ −
∂Ω(T, {µf})

∂µf
= − dŨIR

dµf

∣∣∣∣∣
gap

for f = {u, d, s} . (6.10)

Since the implicit dependence of the infrared potential ŨIR on the chemical potentials
through the condensates vanishes by virtue of the gap equation, i.e.

dŨIR

dµf

∣∣∣∣∣
gap

=

(
∂ŨIR

∂µf
+
∂ŨIR

∂ω

dω

dµf
+ . . .

)∣∣∣∣∣
gap

=
∂ŨIR

∂µf

∣∣∣∣∣
gap

=
∂UIR

∂µf

∣∣∣∣
gap

(6.11)

2The actual curvature masses receive additional contributions from the scalar chiral potential as it
depends on the vector condensates through the fermion loops in the FRG flow.
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where the ellipses represent similar derivative terms for all other condensates, we can
identify the derivative terms in Eq. (6.9) with the quark-number densities:

ω − gv
2m2

ω

(nu + nd) = 0 = ϕ− gϕ
2m2

ϕ

ns . (6.12)

Note that the gap equation (6.12) is solved including the full underlying nonperturbative
contributions from the FRG in the (pseudo)scalar channel. This is in contrast to a similar
two-flavor FRG study [204] where the gap parameter for the ω condensate is evaluated
from a mean-field flow which ignores the back-coupling of the FRG flow. Furthermore,
the inclusion of the vector mesons into the (pseudo)scalar sector appears solely by the
replacement of the chemical potentials in the flow equation with the effective chemical
potentials given in Eq. (6.5).

6.2 Quark Matter with Repulsive Vector Interactions

In the following we will present our findings obtained with the FRG quark-meson trun-
cation including isoscalar-vector mesons for two and three quark flavors. All results are
obtained for β-equilibrated and electrically charge-neutral matter. Since we are primarily
interested in the physics of older neutron stars for which temperature effects can be ne-
glected, all flow equations are strictly solved for vanishing temperature. We have employed
two different and complementary numerical solution strategies for the flow equations as
explained in App. H. The two-quark-flavor results are obtained with an upwind finite dif-
ference scheme while for the three-flavor calculations a two-dimensional grid of the two
scalar field variables has been used. In principle, this enables us to estimate possible nu-
merical artifacts. We found excellent agreement in particular at low chemical potentials
with no strange quarks populated, showing the robustness of the numerical scheme.
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Figure 6.1: Vacuum condensates of the isoscalar ω meson (solid line: Nf = 2, dashed: Nf = 2+1)
and ϕ meson (dash-dotted) as a function of the quark chemical potential. The condensates are
evaluated for neutral matter in weak equilibrium with vector coupling gv.
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Figure 6.2: Equation of state of the FRG quark-meson model with vector mesons and coupling
gv. Weak-equilibrium and charge-neutrality conditions have been imposed. Solid lines correspond
to Nf = 2 quark matter and dashed lines to Nf = 2 + 1.

This can be seen in Fig. 6.1 where the isoscalar ω- (dashed and solid lines) and ϕ-
meson (dash-dotted lines) condensates for three different vector couplings as a function
of the quark chemical potential are shown. The difference in the ω condensate with and
without strangeness is negligible. From the gap equations (6.9) it is clear that the vector
condensates are proportional to the (respective) number densities. Hence, for T = 0 the ω
condensate vanishes in the chirally broken phase where all occupation numbers are zero,
and the ϕ condensate (dash-dotted lines) is zero until µ ≈ 400 MeV when the strange-
quark states get populated. Since an increase in a vector condensate means a decrease
in the respective effective chemical potential(s), cf. Eq. (6.5), which in turn decreases
the number density from its initial value, there is always a unique solution to the vector
meson gap equations (6.9). Note that since the assumption of one light chiral condensate
for both the up and down flavors breaks down close to the chiral phase transition under
the assumptions of β-equilibrium and charge neutrality, see Ch. 5 and App. H, only data
points above the chiral phase transition in the light scalar sector with µ > 310 MeV are
considered.

The effect of the background isoscalar-vector mesons on the equation of state is dis-
played in Fig. 6.2. In this figure the (normalized) pressure obtained with the FRG
quark-meson truncation including the vector-meson condensates is displayed for different
vector couplings gv as a function of the corresponding energy density. As already men-
tioned, β equilibrium and charge neutrality have been implemented. The two-flavor EoS
(solid lines) is stiffer than the corresponding EoS with strangeness (dashed lines) for en-
ergy densities beyond the onset of strangeness. This is not astonishing since an additional
degree of freedom generally reduces pressure and thus softens the EoS.

Vector mesons contribute to the EoS with two effects. Firstly, since the vector-meson
potential (6.6) gives a negative contribution to the grand potential, it follows from Eq.
(4.36) that an increasing vector meson condensate leads to an increasing overall pressure.
Secondly, at the same time the effective chemical potentials are lowered which reduces the
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Figure 6.3: Mass-radius relations for pure quark-matter stars with various vector couplings gv
based on the EoS in Fig. 6.2. Horizontal bands: PSR J1614-2230 (blue), PSR J0348+0432 (green),
and MSP J0740+6620 (gray) mass measurements [72–74].

contributions to the pressure and also the energy density via the particle densities from
the (pseudo)scalar and quark sectors. Altogether, a larger vector coupling leads to an
increase of the EoS’s stiffness both for Nf = 2 and Nf = 2 + 1 quark flavors as expected.

As in Ch. 5, quark matter is not absolutely stable within our setup, but it is nev-
ertheless instructive to investigate the mass-radius relation of quark stars with different
strengths of the vector coupling. The results are summarized in Fig. 6.3, in the left panel
for two-flavor quark matter and in the right panel for the three-flavor analogue. The col-
ored horizontal bands indicate the measured two-solar-mass pulsars [72–74]. Increasing
the vector coupling shifts the masses to larger values and increases the radii. Maximum
masses are all compatible with observed pulsar masses, and radii are generally larger than
current neutron star observations suggest [83, 84, 201, 213], even more so for nonvanishing
vector couplings.

6.3 Quark- and Hybrid-Star Solutions

For a more realistic description, we will now turn to the construction of a hybrid-matter
EoS. Note that while generally an increasing vector coupling increases the EoS’s stiffness,
the pressure decreases with increasing vector coupling for a given quark chemical potential.
This can be explained by the aforementioned reduction of the effective chemical potential
in the quark loop, leading to an overall pressure reduction for a given chemical potential.
This has significant consequences for the possible occurrence of hybrid stars. We adapt the
hybrid EoS construction method outlined in Ch. 5, also employing the HS(DD2) hadronic
equation of state [183, 184] for the nucleonic phase and describing the quark-matter phase
by the present FRG quark-meson EoS with additional vector-meson interactions.

The results are shown in Fig. 6.4 where the pressure as a function of the energy density
is displayed (left panel for Nf = 2 and right panel for Nf = 2 + 1). Both phases are
separated by a clear boundary and individually fulfill the weak-equilibrium and charge-
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Figure 6.4: Equation of state for hybrid matter. The nucleonic phase is described by the HS(DD2)
EoS (gray color) and the quark-matter phase by the FRG quark-meson EoS with vector mesons
(see Fig. 6.2). Both phases separately meet weak-equilibrium and charge-neutrality conditions
and are connected via a Maxwell construction. For Nf = 2 + 1, energy densities larger than

ε ∼ 1200MeV/fm
3
corresponding to µ > 500MeV are dropped.

neutrality conditions. A first-order transition is obtained via a Maxwell construction
(horizontal dotted lines in the figure). It can be characterized by an onset energy density
εtrans in the hadronic phase and a gap ∆ε given by the difference between the energy
density in the quark phase at the end of the transition and the onset εtrans. The onset
energy density also defines the transition pressure pHS(DD2),trans ≡ pHS(DD2)(εtrans).

Due to the decreasing quark-matter pressure at increasing vector-interaction strength,
the phase transition gradually moves to higher quark chemical potentials, i.e., to a higher
intersection pressure and a higher εtrans. A glance back at Fig. 5.2 reveals that, against our
previous speculation, the inclusion of vector interactions thus complicates the construction
of a hybrid EoS with other nucleonic EoS besides the DD2 one. ∆ε also increases for
increasing gv. For Nf = 2 + 1, the transition generally occurs at lower pressures and
with larger ∆ε than for Nf = 2 due to the additional strange degree of freedom in the
quark-matter EoS. Note that all EoS displayed in Fig. 6.4 remain well below the Seidov
limit (5.6). Since even with the inclusion of vector interactions ∆ε does not exceed the this
limit and the sound speed is only insufficiently increased in the quark phase, the findings
discussed for the case gv = 0 remain valid for nonzero vector coupling. We thus confirm
the conclusion made in the previous chapter that the occurrence of twin stars in our model
is ruled out due to the small energy gap at the phase transition from nuclear matter to
quark matter and due to the small stiffness of the quark-matter EoS.

The shift of the phase transition in a hybrid star to higher densities with increasing
vector coupling can also be seen in the mass-radius relations, shown in Fig. 6.5 from
the combined HS(DD2) and the present FRG quark-matter EoSs. An increase of the
vector coupling leads to a continuously smaller quark-matter core in the hybrid star, but
an increasing maximum mass. Especially for Nf = 2 + 1 (right panel), where without
vector interactions the two-solar-mass limit cannot be satisfied, the maximum mass is in
agreement with current observations for gv ≳ 1. However, a quark-matter core is only
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Figure 6.5: Mass-radius relations for hybrid stars from the combined HS(DD2) and quark-matter
EoSs (see Fig. 6.4) for various vector couplings gv. Purely nucleonic stars governed only by the
HS(DD2) EoS are depicted in gray color. The horizontal bands are similar to Fig. 6.3. Additionally,
the posterior probability distributions for the mass-radius correlations from the two independent
recent NICER analyses are depicted (left panel: Riley et al. [83], right panel: Miller et al. [84]).

found as a small, continuous branch. For example, for gv = 1 the Nf = 2 + 1 hybrid-star
model yields for the heaviest stable star a quark-matter core with a radius of about 3.2
km, constituting approximately 4% of the star’s total gravitational mass. For gv = 2, the
heaviest star’s quark-core radius is 1.6 km and makes up only 0.6% of its total mass.

Below the onset of quark matter, the mass-radius relation coincides with the nuclear
HS(DD2) one as it should. This means that the properties of stars with masses below
1.8 M⊙ are given entirely by the HS(DD2) EoS. Among others, the HS(DD2) EoS leads
to a relatively large radius for intermediate-mass stars which seems, although being in
agreement with recent NICER results, to be disfavored by some radius determinations,
see e.g. Ref. [213]. A hybrid construction with other nucleonic EoS leading to smaller
radii could thus be appropriate. However, in Ch. 5 we found no intersection of the quark
matter EoS with other such nucleonic EoS (see Fig. 5.2) since the nucleonic pressure over
the entire relevant range exceeded the quark matter one for given chemical potentials.
Since with increasing vector coupling, the pressure is reduced for given chemical potential,
we confirm that we do not find hybrid stars that meet these criteria within the present
FRG approach to the quark matter EoS.

6.4 Tidal Deformability

Another interesting quantity that is experimentally accessible is the tidal deformability of
neutron stars. In the previous chapter we argued that the tidal deformability of hybrid
stars will not differ much from the HS(DD2) one in the relevant mass region. Here, we will
confirm this by an explicit calculation and additionally extract the tidal deformabilities of
pure quark stars.

For a static, spherically symmetric star placed in a static external quadrupolar tidal
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Figure 6.6: Dimensionless tidal deformabilities of pure quark (dashed lines) and hybrid stars
(solid lines) with different vector couplings gv as a function of gravitational mass. Similar to
Fig. 6.5, the deformabilities of purely nucleonic stars are shown in gray.

field Eij , the tidal deformability λ can be defined to linear order as

Qij = −λEij , (6.13)

where Qij represents the star’s induced quadrupole moment. The tidal parameter λ can
then be computed from a perturbation of the spherical TOV solution. An explicit deriva-
tion of the necessary modifications is given in App. B. The results for the dimensionless
tidal deformability Λ = λ/M5 as a function of the star’s gravitational mass are shown in
Fig. 6.6 for hybrid and quark stars with two and three quark flavors, respectively, and
different values of the vector coupling. Note that first-order phase transitions lead to an
additional term in the derivative of the metric perturbation right at the critical pressure
as they feature a discontinuity in energy density [214], see App. B. This has an impact on
the tidal deformabilities, but not the mass-radius relations. For quark stars such a hard
surface exists right at the star’s boundary r = R whereas hybrid stars exhibit a first-order
transition at the quark-hadron interface. In contrast to the published figure [2], these
modifications are now included in Fig. 6.6. The additional term is found to increase the
tidal deformability for pure quark stars, but has only negligible impact for hybrid stars.

Pure quark stars generally exhibit tidal deformabilities which are significantly too large
compared with the GW170817 observations [85, 201].3 This is also in line with findings
from parameterized EoS’s in Ref. [215]. As discussed before, we do not expect pure quark
stars to exist within our setup. The hybrid-star tidal deformabilities only differ from the
HS(DD2) ones close to their respective maximum masses, i.e., the quark cores are too small
to have an impact on the tidal deformabilities for all stars of masses below about 1.8M⊙ or
even higher, depending on gv. As discussed before, the HS(DD2) tidal deformability is in
slight tension with the GW170817 observations. A smaller tidal deformability thus requires
a hybrid construction based on a different nucleonic EoS. However, such EoS typically also

3This holds even without the modification described just prior.
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feature smaller radii and as we have already determined, this inhibits quark-matter cores
altogether in the present setup.

6.5 Conclusions

We extended the previous study of the quark-matter equation of state based on the two-
and three-flavor quark-meson model to include vector mesons. Quantum and density
fluctuations of the quarks and the (pseudo)scalar meson channels are treated with the
FRG and are dynamically coupled to the mean-field description of the (isoscalar) vector
mesons. The impact of different vector-meson coupling strengths on pure quark stars
as well as hybrid stars in β-equilibrated and neutral matter is analyzed. As before, the
hybrid-star EoS is obtained from a combination of the FRG quark-matter EoS with a
nuclear EoS via a Maxwell construction.

In general, an increase of the vector interaction increases the EoS’s stiffness while the
pressure decreases for a given chemical potential due to a reduction of the effective chemical
potential in the quark loop. As a consequence, we observe higher maximum masses for
both pure quark-matter as well as hybrid stars. For sufficiently large vector interactions,
even three-flavor matter supports maximum masses consistent with experimental pulsar
mass determinations. However, for increasing vector couplings quark-matter cores become
smaller because the phase transition to quark matter is shifted to higher quark chemical
potentials. The possibility of a second twin-star branch can be excluded even for the stiffest
considered vector couplings with negligible quark core sizes in the continuous nuclear–
hybrid branch. Furthermore, the tidal deformability is mainly determined by the nucleonic
EoS and differs from it only in the vicinity of its maximum mass where a quark matter
core forms. A hybrid construction with a different nucleonic EoS leading to smaller tidal
deformabilities than the one of the HS(DD2) EoS is not possible within the present setup.

In total, regarding repulsive vector interactions the occurrence of hybrid stars with
extensive quark cores seems to be disfavored, in particular in view of experimental restric-
tions on the masses, radii, and tidal deformabilities. Furthermore, many open issues still
remain, one of which concerns the robustness of the FRG truncation.
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Chapter 7

Regulator Effects at Nonzero
Chemical Potential

In Ch. 4 we studied the phase diagram of the quark-meson model as a low-energy effec-
tive theory for QCD, with applications to neutron star physics in Chs. 5 and 6. While
advances with the FRG towards astrophysics are relatively recent [25, 27, 167, 169], the
spontaneous breaking of chiral symmetry and its restoration at finite density has been
studied extensively within the quark-meson model in the past [33, 150, 155, 216]. A still
open question, however, is posed by the strange back-bending behavior of the chiral tran-
sition line [33], see also Fig. 4.1, and the occurrence of negative entropy densities beyond
the chiral transition first discussed in Ref. [34]. It is speculated that besides a truncation-
or scheme-dependent artifact, this phenomenon could also be a hint of the FRG method
towards an incorrect vacuum state, i.e., the existence of inhomogeneous phases or the
formation of diquark condensates. In the following, we will attempt to solve this riddle by
analyzing the regulator-scheme dependence of the high-density chiral phase transition.

7.1 Fermion Decoupling

First of all, we make some considerations concerning the decoupling behavior of fermions
in LPA flows at nonzero chemical potential. In the typical picture of many-body physics,
at vanishing temperature fermion states are fully occupied up to the fermi level defined
by the chemical potential µ. Since quantum fluctuations can only occur at energies above
the fermi level, a chemical potential acts as an effective infrared cutoff to the spatial-
momentum integration in loop diagrams. In the context of FRG flows, this implies that
at k > µ where the infrared regularization from the regulator is dominant and leads to
fermion energies Ek(p) > µ for all momenta, the vacuum flow is attained in accordance
with the Silver-Blaze property. In contrast, at small scales k < µ—given that the chemical
potential is larger than the pole mass—the fermions eventually decouple from the flow as
an increasingly large portion of momentum space is occupied by the fermi sphere. This
can be seen explicitly in the simple flow structure obtained from a 3d regulator in LPA for
a single (massive) fermion field, cf. Eq. (3.84). The step function Θ(Ek(p) − µ) cuts off
all energies below the fermi level. However, the definition of the energy (3.85), and hence
the decoupling behavior of the flow, is strongly dependent on the choice of the regulator
shape function.

77
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One simple case to be considered is the mass-like regulator RCS,3d
k (p2) = k2 (or rather,

its fermionic analogon, cf. Eq. 3.61). It leads to a divergent Callan-Symanzik type flow
since the regulator does not vanish for large momenta and thus does not provide proper
UV regularization. We will ignore this issue for now and deal with it later. Due the
regulator’s momentum independence, the dispersion relation is that of a free particle with
additional squared mass k2:

ECS
k (p) =

√
p2 + k2 +m2 . (7.1)

With the following definition of the fermi momentum,

pF :=

{√
µ2 − k2 −m2 if µ2 > k2 +m2 ,

0 else ,
(7.2)

the loop integral in Eq. (3.84) can be written∫
p
Θ
(
ECS
k (p)− µ

) p2
[
1 + rFCS(x)

]
∂tr

F
CS(x)

2ECS
k (p)

=
k2

4π2

∫ ∞

pF

d|p| p2

ECS
k (p)

(7.3)

where the infrared-cutoff property of the chemical potential becomes clearly apparent. The
decoupling happens gradually as k is integrated downwards and pF increases. Compared
to the vacuum flow, the fermionic flow is therefore suppressed at scales k2 < µ2 − m2

(given µ > m). A completely different result is obtained for the flat regulator (3.62). We
find

Eflat
k =

√
k2 +m2 (7.4)

for all relevant momenta smaller than the integral’s UV cutoff at p2 = k2. The energy
becomes effectively momentum independent and momenta are always fully integrated out
in an empty sphere of radius k:∫

p
Θ
(
Eflat
k − µ

) p2
[
1 + rFflat(x)

]
∂tr

F
flat(x)

2Eflat
k

=
k2

4π2Eflat
k

Θ
(
Eflat
k − µ

)∫ k

0
d|p|p2

=
k5

12π2Eflat
k

Θ
(
Eflat
k − µ

)
.

(7.5)

As soon as Eflat
k falls below µ, the flow discontinuously jumps to zero. Given µ > m,

the corresponding scale is k(disc) =
√
µ2 −m2 and the flow, again, remains unaltered for

k > k(disc). Since in LPA the momentum dependence of the propagator is always fixed
by the canonical p2 term plus the regulator function, in this truncation the flow has no
way of compensating for the individual choice of regulator shape function. This almost
arbitrary choice of decoupling behavior feeding into a complex back-coupled flow (which is
the case when adding, e.g., bosons in the quark-meson model) can then lead to spurious,
unphysical results that should be understood as regulator dependent truncation artifacts.

7.2 Setup and Regulator Choices

As outlined in the last section, possible regulator artifacts might be expected at small
temperatures and nonvanishing chemical potentials. Therefore, we will test different regu-
lator functions in the context of the two-flavor quark-meson model in LPA with the focus
put especially on the back-bending property in the low-temperature phase diagram.

78



7.2. Setup and Regulator Choices

Regulator Choices

The three regulator functions considered cover both 3d and 4d versions of mass-like reg-
ulators that yield regularized Callan-Symanzik flows as well as the previously applied 3d
flat regulator:

(I) Rmass,4d
k (p) = k2Θ(k2ϕ − p2) (7.6)

(II) Rmass,3d
k (p) = k2Θ(k2ϕ − p2) (7.7)

(III) Rflat,3d
k (p) = (k2 − p2)Θ(k2 − p2) (7.8)

The same regulator is always employed for both the bosons and the fermions, using the
respective fermionic analogon, cf. Eq. (3.61), in the latter case.

(I) The first regulator is of Callan-Symanzik type and does not exhibit any momentum
structure besides the regularizing Θ-function. We therefore refer to it as a mass-term
regulator. The constant mass-like term k2 added to all momentum modes implies that
high momenta are never fully integrated out and don’t decouple at small scales in Callan-
Symanzik type flows. This has been shown to lead to a comparably bad performance in
the computation of critical exponents in vacuum [118]. However, since the momentum

dependence of the effective loop propagator (Γ
(2)
k +Rk)

−1 is not modified by such a term,
this regulator presents a good testing ground for our study and makes it a convenient choice
for a 4d regulator as many issues of 4d regulators discussed in Sec. 3.6 can be circumvented.
The problem of missing UV regularization is solved by introducing a step function that
suppresses the regulator for four-momenta larger than the compositeness scale kϕ which
serves as a UV scale for the theory; see Ref. [217] for an early application of this regulator
function. It is comparable to a simple cutoff regularization in perturbation theory. At finite
chemical potential, this momentum argument in the step function becomes a problem as an
analytic continuation to complex frequencies is not possible. This continuation, however,
is necessary for the Silver-Blaze property to hold, cf. the discussion in Sec. 3.6. We
follow the arguments outlined in Ref. [217] and temporarily replace the Θ-function by a
smeared-out version Θϵ, assuming such a continuation now exists. The Matsubara sums
can then be solved analytically and vacuum and thermodynamic contributions split up:

∂tUk(σ
2, T, µ) = ∂tU

vac
k (σ2) + ∂tU

th
k (σ2, T, µ) . (7.9)

The arguments are omitted when not explicitly needed and, as usual, derivatives with
respect to σ2 are denoted by a prime: U ′

k ≡ dUk/dσ
2 etc. The vacuum contribution is

given by

∂tU
vac
k = k2

∫
p
Θ(k2ϕ − p2)

(
1

p2 + k2 +m2
σ

+
3

p2 + k2 +m2
π

− ν

p2 + k2 +m2
q

) (7.10)

with m2
σ = 2U ′

k + 4σ2U ′′
k , m

2
π = 2U ′

k, m
2
q = (gσ/2)2, and ν = 4NcNf . An analytical

integration of the expression is possible and straightforward and not explicitly shown
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here. The thermal part reads

∂tU
th
k = k2

∫
p

(
nB(Eσ, T )

Eσ
+

3nB(Eπ, T )

Eπ

+
ν [nF (Eq, T, µ) + nF (Eq, T,−µ)]

2Eψ

) (7.11)

where the momentum arguments of the energies Ei(p) =
√
p2 + k2 +m2

i , i ∈ {σ, π, q},
are omitted for convenience. nB and nF denote the standard Bose and Fermi distributions

nB(E, T ) =
1

eE/T − 1
,

nF (E, T, µ) =
1

e(E−µ)/T + 1
.

(7.12)

As an approximation, kϕ →∞ in the thermodynamic contributions, formally sending the
discontinuity of the step function to infinity. This works since thermodynamic fluctuations
are naturally suppressed at high momentum modes and only the divergent vacuum flow
must be regularized. Thus, any contributions from additional poles introduced by the
smeared-out step function Θϵ can be conveniently ignored.

(II) We next consider the three-dimensional version (7.7) of the mass-term regulator.
As only the three-momentum is regularized, the vacuum part of the flow does not exhibit
an SO(4) symmetry anymore,

∂tU
vac
k =

k2

2

∫
p
Θ(k2ϕ − p2)

(
1

Eσ
+

3

Eπ
− ν

Eψ

)
. (7.13)

The thermal contribution is equal to the 4d version, Eq. (7.11), with the exception of the
Θ-function cutoff which can now be included in an exact fashion as it only depends on
spatial momenta.

(III) The flat regulator has already been examined in detail in Ch. 3 and all previous
computations relied on it. It removes the spatial momentum dependence from the loop
propagator, i.e., the energies become E2

i = k2 +m2
i . The step function Θ(k2 − p2) cuts

off all momenta above the scale k. Hence, in contrast to the Callan-Symanzik type flow,
at any scale k fluctuations with (spatial) momenta larger than k have been completely
integrated out. The momentum integrals can now be solved trivially:

∂tU
vac
k =

k5

12π2

(
1

Eσ
+

3

Eπ
− ν

Eq

)
, (7.14)

∂tU
th
k =

k5

6π2

(
nB(Eσ, T )

Eσ
+

3nB(Eπ, T )

Eπ

+
ν (nF (Eq, T, µ) + nF (Eq, T,−µ))

2Eq

)
.

(7.15)

Note that the combination of these two equations obviously recovers the flow used for
the two-flavor quark-meson model throughout the thesis. The splitting is simply obtained
from Eq. (4.26) by employing the relations coth(E/2T ) = 1 + 2nB(E, T ) and tanh((E −
µ)/2T ) = 1− 2nF (E, T, µ).
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Parameter Fixing

We have seen in Ch. 3 that only the flat (Litim) regulator is optimal in LPA according to
the Pawlowski criterion (3.56). However, the first two (Callan-Symanzik type) regulators
are not even optimized according to the less restrictive Litim criterion (3.50). Their flow
equations in vacuum are numerically significantly harder to solve than the flow obtained
from the flat regulator due to the close proximity of the pion energies to a pole. This issue
is laid out in detail in App. G. It has therefore not been possible to find a quartic starting
potential UΛ(ϕ

2) = aϕ2 + bϕ4 that leads to a numerically converging flow with sufficiently
strong chiral symmetry breaking. Fortunately, a procedure has been outlined in Ref. [158]
and [217] that allows the approximate calculation of coeffiecients in a power expansion of
the effective potential in the chirally symmetric regime. The expansion can be used as a
starting potential for the LPA flow at the chiral symmetry breaking scale kχ. We briefly
outline the procedure here and refer to App. F for the technical details.

Initially starting at some high UV compositeness scale kϕ, we consider flow equations in
LPA’, i.e., with a running meson wavefunction renormalization Zϕ,k and a running Yukawa
coupling ḡk evaluated at the minimum ϕ = 0 of the UV potential. In the chirally symmetric
regime, the mesons are heavy compared to the quarks. Thus, as an approximation we only
consider the purely fermionic contributions to the flows. The Yukawa coupling becomes
essentially self-driven and feeds into the flow of the meson wavefunction renormalization,
cf. App. F. The corresponding solution for the dimensionless effective potential

uk(ρ̃) :=
Uk(ϕ

2)

k4
(7.16)

exhibits a partial infrared fixed point. To avoid confusion with the notation and numerical
fixed point values in Refs. [158, 217], we have formulated the dimensionless potential as a
function of the dimensionless renormalized chiral invariant

ρ̃ := Zϕ,k
ϕ2

2k2
. (7.17)

Assuming the potential admits a power expansion around the origin,

uk(ρ̃) =

∞∑
n=0

1

n!
u
(n)
k (0) ρ̃n , (7.18)

infrared-attractive solutions can be found for the combinations [158]

u
(2)
k (0)

ḡ2k
and

u
(n)
k (0)

ḡ2nk
for n > 2 . (7.19)

The approximate flow solution holds for large RG scales k down to the vicinity of kχ

where u
(1)
k (0) vanishes [158]. The coefficients u

(2)
k=kχ

(0), u
(3)
k=kχ

(0), u
(4)
k=kχ

(0) are set to their
infrared fixed-point values and orders n > 4 are neglected. The order-zero coefficient is
just a constant and can be ignored.

From kχ downwards, the Yukawa coupling starts to freeze out. Hence, from there on
the full flow is solved in LPA, i.e., for a fixed Yukawa coupling g = ḡk=kχ = 6.5 and no
further field renormalization. For convenience, the bars indicating the renormalized terms
can now be omitted. In principle, the only free parameter left is the symmetry breaking
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kχ [MeV] kϕ [MeV] (u
(2)
k /ḡ2k)∗ (u

(3)
k /ḡ6k)∗ (u

(4)
k /ḡ8k)∗

mass, 4d 480 690 1 -0.00950 0.00475
mass, 3d 390 610 1 -0.00950 0.00475
flat, 3d 580 − 1 -0.02375 0.02078

Table 7.1: Chiral symmetry breaking and compositeness scales as well as the approximate
infrared-attractive values in the chirally symmetric regime (marked by a star) for the three differ-

ent regulators. Evaluation of the u
(n)
k at ρ̃ = 0 is implied. Note that the infrared solutions for the

three- and four-dimensional mass-term regulators degenerate and the n = 2 fixed point is regulator
independent; for details see App. F.

scale kχ. It can be fixed to yield the correct amount of spontaneous symmetry breaking
in the infrared by means of the pion decay constant, σmin ≈ fπ = 92.4MeV. For the
mass-term regulator, kϕ is an additional free parameter because the regulator explicitly
depends on it via the step-function regularization. The correct combination of the two
parameters is not so clear since, for example, the sigma mass seems to only weakly depend
on it. We have chosen parameter sets that seem to lie in a physically acceptable region.
All parameters are tabulated in Tab. 7.1. Note that the direct computation of the flow
in vacuum was not possible for the mass-like regulators due to the previously mentioned
issue with pion pole proximity (see App. G). Numerical treatment, however, was possible
at small temperatures and chemical potentials shortly below the (pseudo)critical value µc
and above. Thus, we were able to infer approximate vacuum solutions by extrapolating
into the Silver-Blaze region. We could not determine the precise vacuum sigma mass for
the mass-term regulators in this manner because it still strongly depends on µ close to
µc, but in both cases we expect it to lie roughly at the value found for the flat regulator,
mσ = 510 MeV, within an error of about 40 MeV.

Furthermore, the starting potential at the scale kχ is only independent of T and µ for
sufficiently low temperatures; hence, this setup is only suited for applications at T ≪ kχ
and intermediate chemical potentials µ < kχ. As a final remark, we would like to emphasize
that the assumption of sufficient memory loss of the initial values (i.e., close proximity to
the fixed point) is not necessarily yet satisfied at the scale kχ. Rather, the solutions given
in Ref. [158] and the generalizations for mass-like regulators found in App. F indicate
that the t→ −∞ fixed point value is not nearly established for a ratio kχ/kϕ ≈ 1/2 which
corresponds to an RG time of just t ≈ − ln 2. This is in clear opposition to the statements
made in Ref. [158]. Nevertheless, we regard this procedure as a good choice for a testing
ground, allowing for the comparison of different regulator schemes within a common setup
and with only few free parameters.

7.3 Thermodynamics at Low Temperatures

With the setup described in the previous section, we focus the attention of this work on
the phase boundary of the chiral phase transition at high densities. The requirement of
low temperatures for the UV potential to stay largely invariant under changes in T or µ
is thus fulfilled.
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Figure 7.1: Infrared cutoff dependence of the chiral phase transition with the 3d flat regulator.
Critical endpoints are marked by dots, solid and dash-dotted lines denote first-order and dashed
lines crossover transitions.

Infrared Scale Dependence

One of the first questions concerns the impact of the finite infrared cutoff kIR > 0 intro-
duced for technical reasons. In Fig. 7.1 the phase diagram for the 3d flat regulator is
shown for a series of cutoff scales. Towards smaller cutoffs, i.e., the inclusion of more and
more infrared fluctuations, the phase boundary moves to lower chemical potentials. This
is easily explained by the fact that the infrared flow is dominated by the pions which tend
to restore chiral symmetry. For kIR ≲ 100MeV, below the pion mass, the phase boundary
becomes fixed. The critical endpoint, however, still moves towards lower temperatures.
This is also not surprising, as it is already known that the location of the critical endpoint
is sensitive to the mass of the sigma meson [65] which does not completely freeze out at
low RG scales due to the running of the second derivative U ′′

k . Importantly, the familiar
back-bending behaviour can be observed in this setup. Hence, as our setup differs signif-
icantly from previous works concerning the UV potential and starting point for the flow,
the back-bending seems to be a general feature of the theory, truncation, and/or regulator
in use. Furthermore, it occurs already at RG scales as large as 250 MeV and does not
seem to be sensitive to the location of the critical endpoint: The back-bending extends
even into the crossover region at small kIR. Thus, it is also not a feature of missing IR
physics. In the following, we will work with the fixed IR cutoff kIR = 50MeV.

Regulator Effects

A comparison of the phase boundary of the 3d flat regulator to the ones obtained from the
3d and 4d mass-term regulators in Fig. 7.2 reveals that in the latter case, the phase bound-
ary hits the µ-axis in a perpendicular angle. This is clear evidence that the back-bending
behavior in LPA is related to the momentum structure of the employed regulator function.
We furthermore find that in both the 3d and 4d versions of the mass-term regulator the
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Figure 7.2: Regulator scheme dependence of the chiral transition for a fixed infrared cutoff
kIR = 50MeV. Critical endpoints are marked by dots, solid lines denote first-order and dashed
lines crossover transitions.

transition is purely crossover even at T = 0 where it is located at the pseudocritial chem-
ical potentials µ(cross,3d) ≈ 339MeV and µ(cross,4d) ≈ 342MeV, respectively. In the chiral
limit, a first-order transition at a much lower chemical potential only slightly above the
vacuum quark mass was reported [217]; however, a different (exponential) regulator was
employed in the bosonic sector in that work. We would like to stress that FRG studies us-
ing more elaborate truncations aided by QCD input [20] suggest the existence of a critical
endpoint at a much lower chemical potential and higher temperature. The nonexistence of
a critical endpoint here should therefore not be attached with too much physical interpre-
tation. The crossover lines between the 3d and 4d versions of the regulator are separated
by about 3 MeV. This difference is of purely quantitative nature and since no particular
care was taken in exactly matching the chiral condensates from the starting parameters
to better than ∼ 1 MeV accuracy, some differences are to be expected and the use of 3d
regulators seems to be an appropriate choice for the study of thermodynamics at finite µ.
Therefore, we drop the 4d mass-term regulator in the following analysis and concentrate
on the difference between the 3d mass-term and flat regulators.

The next question concerns the occurrence of a negative entropy density at small
temperatures and chemical potentials beyond the phase transition. As evident from Fig.
7.3, this is confirmed in the back-bending case where an extensive region with negative
entropy density is found. Negative entropy densities in this region are in agreement with
the Clausius-Clapeyron relation

dTc
dµc

= −∆n

∆s
(7.20)

which predicts that either ∆n or ∆s must be negative if the slope of a first-order transition
is positive, see also Ref. [34]. As expected, the mass-term regulator does not lead to any
negative entropy density in that region since there is no back-bending curvature of the
transition line.

Naturally, it is desirable to understand the reason behind this phenomenon. It is clear
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Figure 7.3: Entropy density for the 3d flat (left panel) and 3d mass-term (right panel) regulators
close to the chiral phase boundary. Blue colors denote negative values.

that when back-bending occurs, the transition line is highly sensitive to small changes in
temperature. Therefore, in Fig. 7.4 we compare the effective infrared potentials ŨIR :=
UIR − cσ for both 3d regulators at the infrared scale kIR = 50MeV for T = 0 and
T = 10MeV. We have chosen the respective (pseudo)critical chemical potentials for T = 0,
cf. the figure caption. For the mass-term regulator, one recovers the expected behavior:
with increasing temperature, the potential at small field values is slightly pushed to lower
values, favoring the restoration of chiral symmetry, i.e., the transition line slightly shifts
to smaller µ. For the flat regulator, the opposite behavior is observed. Increasing the
temperature pushes the potential to larger values and supports the spontaneous breaking
of chiral symmetry. Hence, the transition moves to larger µ, leading to the back-bending
behavior.

These different effects on the potential, in turn, can be traced back to the momentum
dependence of the fermion decoupling outlined in Sec. 7.1. Therefore, we again consider
the fermionic part of the flow which is the only explicitly µ-dependent term. At vanish-
ing temperature, the thermodynamic contribution partly (or completely) cancels out the
vacuum flow. Let us recall the result for the Callan-Symanzik flow, Eq. (7.3), which is
reproduced by the mass-term regulator up to the additional UV cutoff kϕ and multiplicity
factors due color and flavor subspaces. It reads

∂tU
F,mass
k = −νk

2

4π2

∫ kϕ

pF

d|p| p
2

Eq
(7.21)

with E2
q = p2 + k2 +m2

q and the fermi momentum pF defined in Eq. (7.2). As already
discussed, the chemical potential serves as an effective infrared cutoff and the gradual
occupation of quark states below the fermi surface drives the fermion decoupling. At
finite temperatures, the sharp cutoff at pF induced by the fermi distributions is smeared
out, but since the UV cutoff of the integral kϕ is sufficiently large, the fermi distributions
are completely integrated out in each loop. For the flat regulator, this decoupling is not
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Figure 7.4: Evolved effective potential ŨIR at kIR = 50MeV for T = 0 (solid) and T = 10MeV
(dotted) as a function of the radial field mode σ for the 3d flat and 3d mass-term regulators. The
chemical potential is fixed to the corresponding (pseudo)critical value at T = 0: µ(1st−order) =
276MeV for the flat regulator and µ(cross) = 339MeV for the mass-term regulator. For better
comparability the potential obtained with the mass-term regulator has been shifted by a constant.

gradual but occurs at an instant in RG time:

∂tU
F,flat
k = − ν k

5

12π2
Θ(Eq − µ) (7.22)

with E2
q = k2 +m2

q . The fermi distribution is not integrated out in the momentum loop
anymore, but instead present in the fermionic flow.

A visualization of this is given in Fig. 7.5. The flow ∂tUk as well as its bosonic
and fermionic components are shown for σ = 0 and the same temperatures and chemical
potentials as in Fig. 7.4. While for the mass-term regulator (right panel) the fermion
decoupling happens smoothly and the sensitivity to a temperature variation is small,
the step-function discontinuity in the fermionic flow for the flat regulator (left panel) is
very prominent. At finite temperature, the step function smears out and leads to strong
variations of the fermionic flux. Since the flow equation is a partial differential equation,
this variation couples back into the bosonic flow: the stronger the fermionic fluctuations
are, i.e., the more negative U ′

k becomes, the stronger the bosonic fluctuations become as the
propagator pole at U ′

k = −k2/2 (cf. App. G) comes closer. However, the bosons cannot
completely mimic the fermion behavior and become weaker at T = 10MeV compared to
T = 0. Hence, with increasing temperature the total net flow becomes more fermionic, i.e.,
features a tendency for larger chiral symmetry breaking. This only holds at low overall
temperatures but leads to the unphysical back-bending in that region.

A similar reasoning can also be applied to the occurrence of negative entropy densities,
effectively connecting those two phenomena. Explicitly writing down the flow equation for
the partial derivative of the potential with respect to the temperature which, evaluated at

86



7.3. Thermodynamics at Low Temperatures

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

150 200 250 300 350 400

T = 0
T = 10MeV

d
U
k
/d
k

[1
07

M
eV

3
]

k [MeV]

bosons
fermions
total

µ = 276MeV

(a) 3d flat regulator.

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

50 100 150 200 250 300 350

T = 0
T = 10MeV

d
U
k
/d
k

[1
07

M
eV

3
]

k [MeV]

bosons
fermions
total

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

50 100 150 200 250 300 350

µ = 339MeV

(b) 3d mass term regulator.

Figure 7.5: Total FRG flow and its bosonic and fermionic components for T = 0 (solid and dash-
dotted) and T = 10MeV (dotted) at σ = 0 as a function of the RG scale k. Chemical potentials
are chosen as in Fig. 7.4. Note the different scalings on the figure axes.

the minimum, yields the entropy density, we find1

∂t
∂Uflat

k

∂T
=

k5

12π2

{
ν

4EqT 2

 Eq − µ
cosh2

(
Eq−µ
2T

) +
Eq + µ

cosh2
(
Eq+µ
2T

)


+
∑
b

[
1

2T 2

1

sinh2
(
Eb
2T

) −
 1

2T

1

sinh2
(
Eb
2T

) +
1

Eb
coth

(
Eb
2T

) 1

2E2
b

∂m2
b

∂T

]}
.

(7.23)

The sum takes into account all bosons, i.e., one sigma meson and three pions. In the
limit of small temperatures all terms smoothly vanish, with two exceptions: Firstly, the
back-coupling term ∂m2

b/∂T which incorporates derivatives of ∂Uflat
k /∂T with respect to

the fields survives as coth(Eb/2T ) → 1 for T → 0. Secondly, close to the fermi surface
where Eq ≈ µ the first term will give nonvanishing contributions because for any positive
temperature there is a small region of energies where the argument (Eq − µ)/(2T ) of the
cosh-function is suppressed. The latter can be seen as a source term to the back-coupled
flow, i.e., the negative entropy density is also created around a sharp fermi surface in the
flow. In the case of a mass-term regulator, such contributions close to the fermi surface
are washed out by the momentum integration when positive contributions from Eq ≳ µ
cancel with negative contributions from Eq ≲ µ.

These are clear indications that the arbitrary choice of momentum structure in the
regulator leads to issues in local potential approximation at low temperatures and finite
chemical potential. Since the decoupling behavior of the fermions at increasing chemical
potential, and thus the fermionic flow, strongly depends on the regulator choice, such reg-
ulator dependencies are expected to be present in the result of truncated flows. In an exact
flow such issues cannot occur as the Wetterich equation guarantees the freedom of choice of

1Note that in this work, the entropy density was determined in practice by numerical differentiation of
the grand potential, not solving the associated flow equation.
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regulator functions that fulfill the criteria listed in Ch. 3. As an example, in renormalized
mean-field approximation (see Ch. 4) where only the fermion loop is solved and bosonic
back-couplings are neglected, the results become (up to cutoff effects) regulator indepen-
dent. This might be counter-intuitive at first since the fermion loop is the one inducing
the back-bending behavior in the truncated case. However, the important observation is
that the differences between the integrated fermionic flows at different temperatures, i.e.,
the total areas between the fermionic T = 0 and T = 10MeV curves in Fig. 7.5, are
actually regulator independent. Those are the results obtained in mean-field approxima-
tion where—due to the missing back-coupling—the differential equation degenerates to
an integral. As soon as potential derivatives are introduced and the truncated flow is de-
scribed by a partial differential equation, this argument fails. The back-bending therefore
originates in the bosonic response to the strongly temperature-dependent fermionic flux.
Further, because the LPA truncation keeps the momentum structure of the two-point func-

tion fixed, generically Γ
(2)
k (p) = p2 +m2

k, the Wetterich equation cannot compensate for
the particular choice of momentum dependence for Rk(p

2). It might therefore be plausible
that such regulator effects do not occur in a truncation allowing—at least to some degree
of approximation—for momentum-dependent wavefunction renormalizations Zk(p). An
investigation of this matter is adjourned to future works.

7.4 Conclusions

In this chapter, the regulator scheme dependence of functional renormalization group
equations was investigated. The phase diagram of the quark-meson model at high densities
was therefore explored with three different regulators. The focus is put on the issue of the
back-bending of the chiral transition line at small temperatures and a negative entropy
density in the chirally restored region which has been observed in recent years. In light of
a large interest in the solution of effective theories at high densities, the understanding of
such phenomena in the FRG ansatz is crucial.

We found that the back-bending is most probably not related to cutoff artifacts such
as the finite infrared cutoff as it remains a feature throughout large variations of kIR for
the popular optimized flat (Litim) regulator. Furthermore, the choice of a 3d regulator
also does not seem to be an issue beyond small quantitative errors, which follows from a
comparison of the 3d and 4d versions of simple mass-term regulators. It should be stressed
that the back-bending issue has also been observed for the flat regulator in related theories
such as a parity doublet model [218], i.e., it is not limited to the particular choice of quark-
meson model. However, the simple mass-term regulators which lead to Callan-Symanzik
type flows do not exhibit any negative entropy density or back-bending behavior in the
phase diagram.

This is clear evidence that those two connected phenomena are scheme-dependent
truncation artifacts at the level of LPA, induced by a sharp fermi-sea cutoff in the fermionic
flow. The decoupling of the fermions at small temperatures depends strongly on the
momentum structure of the loop integrals. In LPA, this structure is fully determined by
the choice of regulator shape function. Therefore, different shape functions lead to vastly
different decoupling behaviors that feed back into the truncated bosonic flow. For the flat
regulator, a strong temperature dependence of the fermion flow due to the smearing of the
fermi surface is found at low temperatures which is in agreement with the large curvature
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7.4. Conclusions

of the back-bending transition line. In contrast, the fermi distributions are fully integrated
out with the mass-term regulators, leaving only minor changes of the threshold functions
with temperature in alignment with thermodynamic expectations.

Another possible scenario is that the back-bending could be an actual effect due to
missing vacuum states such as inhomogeneous phases, but the mass-term regulator—which
is not optimized and expected to lead to poorer overall convergence of couplings compared
to the flat regulator—just cannot capture this phenomenon. However, since our analysis
clearly connects it with the bosonic response to scheme-dependent changes in the fermion
flows at the fermi surface, we consider this scenario to be extremely unlikely.
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Chapter 8

Summary and Outlook

The theory of the strong interaction still poses many open questions concerning the state
of matter especially at intermediate to high densities. Due to its inaccessibility by first-
principle methods so far, for the description of physics in the cold and dense region of
the QCD phase diagram effective theories and models have to be relied upon. Among
others, such model studies suggest the possible existence of a wealth of different spatially
inhomogeneous and color-superconducting phases [67]. The only observable objects in our
universe that contain stable matter of comparable density are compact stars, reaching up to
several times nuclear-matter density. Observations of macroscopic neutron-star properties
such as high-mass determinations [72, 73, 219] or the GW170817 tidal deformability [85,
201] can help us put constraints on the underlying equation of state. However, many
approaches in the literature use simple approximations neglecting quantum and density
fluctuations which could have a significant impact on the EoS and the corresponding
neutron-star properties.

Therefore, the main goal of this thesis was the examination of fluctuation effects at
high densities in a nonperturbative setup. Based on an effective quark-meson trunca-
tion in two and three quark flavors, the equation of state for β-equilibrated and neutral
quark matter was determined in three different approximations, namely two mean-field
approaches—one of which includes vacuum fluctuations—and a functional renormalization
group study in local potential approximation. With the FRG method, important fluctua-
tions in the (pseudo)scalar meson channel are added in a systematic manner. The impact
of the different approximations on the macroscopic properties of quark-matter stars was
found to quite large in general. Vacuum fluctuations induced by the quark loop already
at the level of mean-field approximation decrease both the masses and radii of quark stars
such that the two-solar-mass limit cannot be reached anymore, even if only the two light-
est quark flavors are considered. The additional inclusion of fluctuations in the attractive
(pseudo)scalar meson channel via the FRG increases the maximum mass again but leads
to significantly larger radii excluded by recent NICER measurements [83, 84] . As ex-
pected, the consideration of strange quarks always leads to a softer equation of state and
smaller maximum masses. We find that the combination of our quark-matter EoS with
the HS(DD2) nuclear EoS [184] via a Maxwell construction, simulating a sharp first-order
boundary between the nucleonic and quark phase, allows for the existence of hybrid stars
with a continuous nuclear–quark-matter branch in the mass-radius diagram. However,
with the inclusion of strangeness the maximum hybrid-star mass drops below 2M⊙.

Consequently, the model was extended to incorporate repulsive vector-meson inter-
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actions. While the effective vector-meson potential is treated on a mean-field level, the
vector mesons still dynamically couple to the full flow of the (pseudo)scalar interactions
via an effective chemical potential in the quark threshold function. A large vector cou-
pling is found to increase the stiffness of the EoS and allow for the existence of hybrid
stars with masses above 2M⊙ even for Nf = 2 + 1, albeit with very small quark-matter
cores. An analysis of the dimensionless tidal deformability reveals that it is too large for
quark stars to comply with the GW170817 measurement, which is also in accordance with
their large calculated radii. Furthermore, the measured value tends to favor a nucleonic
EoS that leads to smaller radii than the HS(DD2) one, but a hybrid construction with a
different nucleonic EoS that lead to smaller tidal deformabilities was not possible since the
quark-matter equation of state generally is not stiff enough. Against expectations, this
could not be remedied by the inclusion of vector mesons. Thus, based on our analysis the
existence of extensive quark-matter cores in compact stars is unlikely.

It should be stressed, however, that one needs to be careful about drawing conclusions
based on such quantitative statements as there are still many issues to be resolved: The role
of many-body quark correlations relevant for a more realistic description of dense matter—
such as residual six-quark correlations in the quark phase—is still basically unknown. In
terms of bosonized four-quark interactions, the picture looks somewhat more promising:
First FRG studies that take diquark channels expected to be relevant at high densities
[138, 139] into consideration have come up recently [27, 167, 220] and can be built upon.
Nevertheless, without clear experimental input finding an appropriate effective theory able
to make quantitative predictions remains a daunting task. Importantly, the robustness
of the employed FRG truncation must also be verified, especially in light of the observed
unphysical thermodynamic effects, namely the back-bending of the chiral transition line
[33] and the occurrence of negative entropy densities [34].

To this end, a second part of this thesis concerns truncation effects at and beyond
the level of LPA. Current state-of-the-art approaches taking into consideration field-
independent wavefunction renormalizations and a running Yukawa coupling were presented
and some of their issues like the occurrence of complex threshold functions at nonzero tem-
perature and chemical potential discussed. Generally, a better understanding of the field
dependence of higher-order couplings seems necessary to allow for serious estimates on the
quality of the truncation. Finally, the back-bending phenomenon in LPA was related to
the employed regulator scheme. While the back-bending is present for the widespread flat
(or Litim) regulator, it vanishes along with the negative entropy densities for the choice
of simple Callan-Symanzik type regulators. Oddly, the critical endpoint also vanishes in a
setup with explicitly broken chiral symmetry and the transition becomes purely crossover.
Further analyses revealed that the unphysical behavior is induced by a regulator-dependent
decoupling behavior of the fermions at finite chemical potential. While all modifications
cancel out in the integrated fermion flow and thus do not lead to issues in mean-field ap-
proximation, the back-coupling into the truncated bosonic flow in the partial differential
equation leads to spurious contributions to the result. Thus, the most likely explanation
for the back-bending phenomenon seems to be that of a scheme-dependent truncation
artifact at the level of LPA.

Of course, one of the pressing questions is in which way these artifacts influence the
properties of the quark-matter equation of state and other results obtained at low tem-
peratures and finite density. A large impact can be expected, especially since the chiral
transition is now crossover. Unfortunately, the simple application of Callan-Symanzik type
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regulators towards the determination of the equation of state faces technical difficulties,
with flows running too closely to the pion pole in the chirally broken regime. Moreover, the
parameter fixing procedure employed in this work uses a very low effective UV scale which
inhibits calculations at large chemical potential. There are two possible roads to remedy
these issues in the future: First, an improvement of the truncation to allow for a bet-
ter resolution of momentum structure in the propagator, e.g., via momentum-dependent
wavefunction renormalizations, could possibly reduce such truncation errors and allow for
the continued use of the flat regulator. Second, the possibility of other regulator options
that also do not lead to back-bending artifacts must be explored. Specifically, even hybrid
regulator setups using, for example, the flat regulator for the bosonic fields and Callan-
Symanzik type regulators for the fermions are thinkable. With these issues resolved, the
functional renormalization group can become an important tool leading to powerful pre-
dictions even for cold and dense matter.
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Appendix A

Basics, Notation, and Conventions

Necessary basic definitions, conventions, and particularities in the notation are summa-
rized in this appendix.

Units

In all parts of this work related to quantum field theory we use the natural units

c = ℏ = kB = 1 (A.1)

where c denotes the speed of light, ℏ the reduced Planck constant, and kB the Boltzmann
constant. In this framework, all relevant quantities can be expressed in terms of (positive,
zero or negative) dimensions of energy. Typically, results are given in (powers of) mega-
electronvolts (MeV). In the general relativity parts, specifically Sec. 2.2 and App. B, we
employ geometric units

c = G = 1 (A.2)

where G is Newton’s gravitational constant. Here, all quantities can be expressed in
dimensions of length. In Chs. 5 and 6, neutron star radii are given in kilometers. As
a notable exception, numerical results for pressure and energy density are expressed in
MeV/fm3.

Metric and Dirac Fields

Throughout the quantum field theory parts of the thesis, we use Euclidean metric gµν =
δµν . Starting with physical quantum fields that are assumed to live in Minkowski space
gµν = ηµν and the signature choice (+,−,−,−) prevalent in hadron physics, we formally
obtain the Euclidean action S from the Minkowski one SM via a Wick rotation to imagi-
nary time τ = it, e.g.

iSM [φ] = i

∫ ∞

−∞
dt

∫
x

1

2

[(
∂φ

∂t

)2

− (∇φ)2 −m2φ2

]

= −
∫ ∞

−∞
dτ

∫
x

1

2

[(
∂φ

∂τ

)2

+ (∇φ)2 +m2φ2

]
=: −S[φ]

(A.3)

for a real scalar field φ. Spacetime indices always go from 0 to 3 regardless of the choice
of metric. The effective metric signature obtained from this rotation is purely negative;
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to compensate this, a minus sign was pulled out of the definition of the Euclidean La-
grangian. Dirac fermions are described in Minkowski space by four-component bispinors.
Mathematically, they consist of two Weyl spinors

ψ =

(
ψL
ψR

)
(A.4)

and transform under the (12 , 0) ⊕ (0, 12) representation of the Lorenz group SO(1, 3), or
rather its double cover Spin(1, 3) ≃ SL(2,C) [221]. The Weyl spinors can be identified with
left-handed and right-handed helicity of a particle, respectively. They can be extracted
from the bispinor ψ by means of the projection operators

PL :=
1− γ5

2
, PR :=

1+ γ5
2

(A.5)

with γ5 := iγ0Mγ
1
Mγ

2
Mγ

3
M . The γµM are 4 × 4 traceless complex matrices which obey the

anticommutation relations
{γµM , γνM} = 2ηµν14×4 . (A.6)

From these, a Lorentz-invariant Lagrangian can be constructed, e.g., for a massless Dirac
fermion:

LM = ψ̄(i∂µγ
µ
M −m)ψ (A.7)

where ψ̄ := ψ†γ0 is the Dirac adjoint. We follow the same procedure as above to obtain
the Euclidean Lagrangian

L = ψ̄(∂µγ
µ +m)ψ (A.8)

with the zero derivative now defined as ∂0 := ∂τ and the modified gamma matrices given
by γ0 = γ0M , γi = −iγiM for i = 1 . . . 3 such that they obey

{γµ, γν} = 2δµν14×4 . (A.9)

γ5 remains unaltered, i.e., in the Euclidean setup it reads γ5 = γ0γ1γ2γ3. We do not need
to specify any representation for the gamma matrices because all necessary calculations can
be performed abstractly by means of trace identities. The fermion fields are Grassmann
valued, i.e., they anticommute: ψi(x)ψj(y) = −ψj(y)ψi(x), where i and j denote individual
field components. In general relativity calculations, cf. App. B, the metric generally
describes curved spacetime, and asymptotic flat spacetime is represented by the Minkowski
metric ηµν with signature (−,+,+,+).

Unitary Groups

The group elements of SU(N) (i.e., the unitary N ×N matrices with determinant 1) are
generated by the exponential map

U = e−iθaTa (A.10)

with the N2 − 1 Hermitian traceless basis elements Ta in the fundamental representation
satisfying

tr(TaTb) =
1

2
δab (A.11)

and θa ∈ R. They generate the su(N) Lie algebra with the commutation relations

[Ta, Tb] = ifabcTc . (A.12)
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In the adjoint representation, the matrix elements of the generators are given by the
structure constants fabc:

(Ta)bc = −ifabc . (A.13)

The larger group U(N) ≃ [U(1)× SU(N)]/ZN is obtained by adding an additional basis
element T0 with nonvanishing trace in the fundamental representation. T0 is fully deter-
mined by demanding it to be proportional to the unity matrix and to integrate into Eq.
(A.11). For U(2), the generators are given by Ta = τa/2 with τ0 = 12×2 and the Pauli
matrices

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (A.14)

For U(3), the generators are λa/2 with the normalized zero element and the Gell-Mann
matrices

λ0 =

√
2

3

1 0 0
0 1 0
0 0 1

 , λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 ,

λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 ,

λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .

(A.15)

The respective structure constants can be found, for example, in Ref. [222].

Fourier Transforms

Any bosonic field φ(x) is a function of a vector in (Euclidean) position space and can also
be expressed by means of its momentum-space modes via

φ(x) =

∫
d4p

(2π)4
eip·x φ(p) . (A.16)

For notational simplicity, we use the same symbol for the momentum-space modes that
we use for the position-space field. It should be clear from the context which version the
symbol refers to, provided that a distinction is necessary at all. The continuous Fourier
transform also works backwards,

φ(p) =

∫
d4x e−ip·x φ(x) . (A.17)

Fermionic Dirac fields transform similarly,

ψ(x) =

∫
d4p

(2π)4
eip·x ψ(p) , (A.18)

but the adjoint field ψ̄(x) transforms with a different sign in the momentum as it is
obtained by conjugate transposing Eq. (A.18):

ψ̄(x) =

∫
d4p

(2π)4
e−ip·x ψ̄(p) =

∫
d4p

(2π)4
eip·x ψ̄(−p) . (A.19)
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While field contractions take the same argument in position space, one of the arguments
changes sign in momentum space, e.g:∫

d4xJ(x)φ(x) =

∫
d4p

(2π)4
J(−p)φ(p) . (A.20)

This follows directly from inserting the momentum-space expressions for J(x) and φ(x).

Matsubara Formalism

At finite temperature we employ the Matsubara formalism: The path integral for an en-
semble in thermodynamic equilibrium varies fields on a compact imaginary time dimension
and the three noncompact spatial dimensions,∫

d4x →
∫ β

0
dτ

∫
d3x (A.21)

with β = 1/T . Bosonic and fermionic fields become periodic and antiperiodic, respectively,
in the imaginary-time direction, and hence frequency modes become discrete:∫

d4p

(2π)4
→ T

∞∑
n=−∞

∫
d3p

(2π)3
(A.22)

with the Matsubara frequencies p0 → ωn := 2nπT for bosons and p0 → νn := (2n+ 1)πT
for fermions.

Short-hand Notation

We use Feynman slash notation

/p := pµγµ = pµγ
µ . (A.23)

Momentum- or position-space integrals are oftentimes abbreviated:∫
x
:=

∫
d4x ,

∫
x
:=

∫
d3x ,

∫
p
:=

∫
d4p

(2π)4
,

∫
p
:=

∫
d3p

(2π)3
. (A.24)

When different functions or functionals (or their derivatives) are contracted, we will some-
times indicate this by a simple integral sign and not further specify any arguments. This
allows for a formulation in both position or momentum space:∫

Jφ :=

∫
x
J(x)φ(x) =

∫
p
J(−p)φ(p) . (A.25)

Composite Fields and Functional Derivatives

We collect all bosonic and fermionic quantum fields in the composite field vector

Φ(x) =

 ϕ(x)
q(x)
q̄T (x)

 . (A.26)
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ϕ(x) is a vector of all (mesonic) scalar fields. q(x) is a four-component Dirac spinor quark
field with additional flavor and color subspaces and q̄T (x) is the column vector transpose
of the Dirac adjoint. In momentum space, the latter receives an additional minus sign in
the argument as shown in Eq. (A.18):

Φ(p) =

 ϕ(p)
q(p)

q̄T (−p)

 . (A.27)

In direct QCD applications, (anti)ghost and gauge fields (gluons) are oftentimes collected
in Φ, too. These, however, are not present in our truncations. In our convention, functional
derivatives in position and momentum space have the following properties:

δΦi(x)

δΦj(y)
= δij δ(x− y) ,

δΦi(p)

δΦj(q)
= δij (2π)

4δ(p− q) , δΦi(x)

δΦj(p)
= δij e

ip·x , (A.28)

where the indices refer to the individual field components of Φ and the last equation follows
from the definition of the Fourier transform. Furthermore, the number of derivatives of
a functional (e.g., the effective action) is denoted in parenthesis is the upper index, with
the left and right numbers indicating the number of derivatives acting from the left and
right, respectively:

Γ
(1,1)
ij (x, y) :=

−→
δ

δΦi(x)
Γ[Φ]

←−
δ

δΦj(y)

Γ
(1,1)
ij (p, p′) :=

−→
δ

δΦi(−p)
Γ[Φ]

←−
δ

δΦj(−p′)
.

(A.29)

The sign change in the momentum-space derivatives is conventional and reflects the sign
change in one of the contracted fields:

δ

δJ(−p)

∫
p′
J(−p′)φ(p′) = φ(p) . (A.30)

If we are dealing with only non-Grassmann fields and thus the direction from which the
derivative acts is irrelevant, only the total number of derivatives is given in the upper index,
i.e. Γ(1,1)(p, p′) → Γ(2)(p, p′). Moreover, using locality we can define related functionals
with one less argument. In momentum space and for two-point functionals, examples
relevant for FRG flows include (cf. Sec. 3.2)

Rk(p, p
′) := Rk(p) (2π)

4δ(p+ p′) , Gk(p, p
′) := Gk(p) (2π)

4δ(p+ p′) ,

Γ
(1,1)
k (p, p′) := Γ

(1,1)
k (p) (2π)4δ(p+ p′) ,

(A.31)

with obvious generalizations for, e.g., higher-order vertex functions. This convention cor-
responds to all momenta at vertices being treated as incoming momenta.

Composite Regulator and Wetterich Equation

The FRG regulator function generalizes to the composite field space defined above as

Rk(p) =

RBk (p2) 0 0
0 0 −(RFk )T (−p)
0 RFk (p) 0

 (A.32)
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with the bosonic and fermionic regulators introduced in Ch. 3. In case of multiple bosonic
fields, these encompass a diagonal subspace in the (0, 0) component. Similarly, defining

⟨Φ⟩ =

⟨ϕ⟩0
0

 , (A.33)

the FRG modified two-point function evaluated at the expectation value reads

Γ
(1,1)
k (p)

∣∣∣
⟨Φ⟩

=

Γϕϕk (p) 0 0

0 0 −(Γq̄qk )T (−p)
0 Γq̄qk (p) 0

∣∣∣∣∣∣
⟨Φ⟩

(A.34)

with the respective derivatives indicated in the upper indices. All mixed bosonic–fermionic
off-diagonal entries vanish at the expectation value because they still include single q or
q̄ fields and the diagonal fermionic ones vanish as the quark field and its adjoint appear
at most once in each term of our truncation. If there are multiple bosonic fields with
more than one nonvanishing expectation value, the situation in the bosonic sector is not
so clear. This occurs, for example, in three-flavor calculations where a diagonalization of
the two-point function at each scale k is necessary in order to trivially invert it (cf. Ref.
[155]). In this general formulation the Wetterich equation reads

∂tΓk[Φ] =
1

2
STr

[
∂tRk

Γ
(1,1)
k +Rk

]
. (A.35)

The supertrace gives an additional minus sign in the fermi sector and includes momentum
integrals contracting the two terms; the inversion of the denominator term needs to be
performed in field space as well.
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Appendix B

Compact Stars from General
Relativity

In the following, we give a brief overview of the derivation of the Tolman-Oppenheimer-
Volkoff equation for a nonrotating star and discuss some general restrictions for equations
of state. Afterwards, the tidal deformability is inferred from a perturbation due to an
external tidal field. For a broad introduction into general relativity, we refer to textbooks
such as Ref. [36]. We mostly follow standard notation from Ref. [36] and use the metric
signature (−,+,+,+) for flat Minkowski space. First, let us introduce the most important
quantities in general relativity. The covariant derivative of a vector is denoted in the
following manner:

∇µV ν = ∂µV
ν + ΓνµλV

λ (B.1)

with the Christoffel symbols (i.e., the torsion-free, metric-compatible connection)

Γσµν :=
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) . (B.2)

The Riemann curvature tensor

Rρσµν := ∂µΓ
ρ
νσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ (B.3)

gives rise to the Ricci tensor

Rµν := Rλµλν (B.4)

and the Ricci scalar

R := gµνRµν , (B.5)

which in turn combine to the Einstein tensor

Gµν := Rµν −
1

2
Rgµν . (B.6)

The starting point of the following discussion is then the Einstein equation (without cos-
mological constant) [23]

Gµν = 8πTµν . (B.7)

It relates the curvature of spacetime on the left-hand side to the presence of matter via
the energy-momentum tensor on the right-hand side. Under the assumption of spherical
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Appendix B. Compact Stars from General Relativity

symmetry, the metric in vacuum (here defined as the local absence of matter, Tµν = 0) must
be static and asymptotically flat [223, 224]. Its nontrivial solution is the Schwarzschild
metric [225, 226]

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (B.8)

with the angular part
dΩ2 = dθ2 + sin2 θ dϕ2 . (B.9)

Tolman-Oppenheimer-Volkoff Equation

For the metric inside the star (i.e., in the presence of matter) we make the more general
spherically symmetric ansatz

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2 . (B.10)

Matter inside such a compact object in hydrostatic equilibrium is described as a perfect
fluid, i.e., shear stresses and viscosity are neglected. The energy-momentum tensor is then
fully defined only by the energy density ε and the isotropic pressure p and takes on the
simple form

Tµν = (ε+ p)UµUν + p gµν (B.11)

with the four-velocity

Uµ :=
dxµ

dτ
(B.12)

and the proper time τ . In the rest frame of the fluid, only the time component of the
four-velocities is nonzero and the normalization

gµνU
µUν = −1 (B.13)

yields (U t)2 = e−ν(r). Using the inverse metric gµν determined from Eq. (B.10), we obtain
the energy-momentum tensor

Tµν = diag

(
e−νε, e−λp,

1

r2
p,

1

r2 sin2 θ
p

)
, (B.14)

and placing the indices downstairs yields

Tµν = diag
(
eνε, eλp, r2p, r2 sin2 θ p

)
. (B.15)

On the left-hand side of the Einstein equation (B.7), only the diagonal entries

Gtt =
1

r2
eν−λ

(
r∂rλ− 1 + eλ

)
Grr =

1

r2

(
r∂rν + 1− eλ

)
Gθθ = r2e−λ

[
1

2
∂2rν +

1

4
(∂rν)

2 − 1

4
∂rν∂rλ+

1

2r
(∂rν − ∂rλ)

]
Gϕϕ = sin2 θ Gθθ

(B.16)
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survive. The third and fourth conditions degenerate; hence, we are left with three equa-
tions for the four parameters p, ε, ν, and λ. A fourth piece of information must be acquired
from the underlying state of matter, by means of the equation of state p(ε). From here,
it is reasonable to redefine

eλ(r) :=

(
1− 2m(r)

r

)−1

(B.17)

to bring it in a form similar to the Schwarzschild metric. The tt sector of the Einstein
equation becomes

∂rm(r) = 4πr2ε(r) . (B.18)

m(r) incorporates the total mass inside the (flat space) sphere of radius r. The rr sector
can now be formulated as

∂rν(r) = 2
4πr3p(r) +m(r)

r(r − 2m(r))
. (B.19)

The last condition is easiest obtained from energy-momentum conservation ∇µTµν = 0
which naturally provides a pressure derivative

∂rp(r) = −
1

2
[ε(r) + p(r)] ∂rν(r) . (B.20)

In combination, we obtain the Tolman-Oppenheimer-Volkoff equations

dp

dr
= −(ε+ p)(m+ 4πr3p)

r(r − 2m)
,

dm

dr
= 4πr2ε .

(B.21)

They form a system of two coupled first order ordinary differential equations. The inverted
equation of state ε(p) serves as external input and—starting at r = 0—one of the initial
values m(0) = 0 is trivially fixed. The other starting parameter, the central pressure
p0 := p(0), is unknown and leads to a one-parameter curve of possible stars with radius R
and massM . The radius is defined as the point where the pressure goes to zero, p(R) = 0.
In practice, many equations of state do not lead to a sharp surface and a small pressure
value p(R) = pmin is chosen instead. The star’s mass is then given by M = m(R) which is
equal to the mass parameter for the Schwarzschild metric outside the star. For increasing
central pressure p0, M will usually increase up a maximum mass Mmax, after which it
decreases again. Only the increasing branch signified by

dM

dp0
> 0 (B.22)

is considered to lead to stable stars [227]. Furthermore, the restrictions

∂nB
∂µB

=
∂2p

∂µ2B
> 0 and c2s =

∂p

∂ε
≤ 1 (B.23)

are commonly placed on the equation of state [40]. The first one is dictated by thermo-
dynamics and prevents an inflection point in the pressure as a function of the chemical
potential and the second restriction is motivated by causality. There are, however, also
works arguing that c2s > 1 might not violate causality after all, see e.g. Ref. [228]. As-
suming the causality constraint to be valid and using a maximally stiff equation of state
that still fulfills the properties of nuclear matter in the low density regime, the region
R < 2.87M in the M -R-plane has been excluded as unphysical [24].
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Tidal Deformability

Let us consider the response of a star’s perturbed metric to an external gravitational
source. In a multipole expansion, the lowest contributing order (suitable for, e.g., the
description of the early inspiral phase of two stars) is the quadrupole term. At large
distances from the star in asymptotically Cartesian coordinates, this leads to the following
approximation to the gravitational potential [229, 230]:

−1 + gtt
2

= −M
r
− 3

2r3
Qijn

inj + · · ·+ r2

2
Eijninj + · · · (B.24)

with ni := xi/r. The metric perturbation Qij is related to the external tidal field Eij to
linear order by the (dimensionful) tidal deformability λ:

Qij = −λEij . (B.25)

Alternatively, we can do the expansion in spherical harmonics, which relates the quadrupo-
lar tensor elements to the l = 2 functions via

Qijn
inj =

2∑
m=−2

QmY
m
2 (θ, ϕ) , Eijninj =

2∑
m=−2

EmY m
2 (θ, ϕ) . (B.26)

We can safely specialize to the case of an axisymmetric perturbation and choose coor-
dinates such that only the m = 0 terms Q ≡ Q0 = −λE0 ≡ −λE are nonzero [229].
Next, the metric perturbation inside and outside the star must be calculated from the
Einstein equations. To this end, we add a perturbation hµν to the spherically symmetric
background metric ḡµν given by Eq. (B.10):

gµν = ḡµν + hµν . (B.27)

To linear order in the perturbation, the inverse metric reads

gµν = ḡµν − hµν . (B.28)

We also consider linear corrections in the Ricci tensor Rµν = R̄µν + δRµν and the Ricci
scalar R = R̄+ δR. It can be easily verified that

δRµν = ∇̄σδΓσµν − ∇̄νδΓσµσ (B.29)

with the tensor

δΓσµν :=
1

2
ḡσρ

(
∇̄µhνρ + ∇̄νhρµ − ∇̄ρhµν

)
, (B.30)

as well as

δR = −R̄µνhµν + ∇̄µ∇̄νhµν − ∇̄µ∇̄µhνν (B.31)

where the bars on the covariant derivatives indicate that the background Christoffel sym-
bols are to be used and indices of the perturbation tensor hµν are raised and lowered by
means of the background metric. We can now write down the linearized Einstein equation:

δGµν := ḡµλδRλν − hµλR̄λν −
1

2
δRδµν = 8πTµν . (B.32)
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From

Tµν = (ε+ p)UµUν + pδµν (B.33)

we follow that, in the local rest frame, δTµν = diag(−δε, δp, δp, δp) and δε = (∂ε/∂p)δp.

To solve this complex set of equations, one proceeds with a product ansatz, separating
the radial part and expanding the time dependence in terms of frequency modes e−iωt and
the angular parts in spherical harmonics. This was pioneered by Regge and Wheeler in
1957 [231]. They argued that, under spatial rotations, the elements of the perturbation
matrix transform as either scalars (h00, h01, h11), vectors [(h02, h03), (h12, h13)], or as a
tensor hij with i, j ∈ {2, 3} which leads to specific functional forms for the different terms.
Further, vectors and tensors can have even and odd parity contributions, while the scalars
always have even parity. Since the background metric is spherically symmetric and the
perturbation only appears to linear order in the equation of motion, terms of different
angular momentum, parity, or frequency do not mix and can be considered separately
[231]. It has been shown that odd-parity perturbations do not contribute to changes in
the (perfect fluid) energy-momentum tensor [232]. Therefore, we only need to consider the
l = 2, m = 0, even-parity, and static (ω = 0) solution. Moreover, the linearized equations
are ambiguous under an infinitesimal coordinate transformation, i.e., they admit a gauge
choice. Regge and Wheeler used this to simplify the expressions they obtained, cf. Ref.
[231]. For our choice of perturbation, this leads to

hµν = diag

((
1− 2m

r

)
H0,

(
1− 2m

r

)−1

H2, r
2K, r2K sin2 θ

)
Y 0
2 (θ, ϕ) . (B.34)

Another nondiagonal element H1 arises for nonstatic solutions [231].

The tedious solution of the linearized Einstein equations in the presence of matter has
been acquired and checked multiple times in the past [214, 233, 234] and is not done here.
It leads to H2 = H0 ≡ H and the differential equation

H ′′ +H ′
[
2

r
+ eλ

(
2m

r2
+ 4πr(p− ε)

)]
+H

[
−6eλ

r2
+ 4πeλ

(
5ε+ 9p+ (ε+ p)

dε

dp

)
− ν ′2

]
= 0

(B.35)

where the primes denote differentiation w.r.t. the radial coordinate. Since we are in-
terested in the perturbation of the time component of the metric to connect with the
previously imposed boundary conditions (i.e., the external tidal field), we can neglect the
second function K. We follow Ref. [234] and consider the simplified version of Eq. (B.35)
outside the star (with the coordinate-independent Schwarzschild mass term M):

H ′′ +H ′
[
2

r
+

2M

r2
1

1− 2M
r

]
+H

[
− 6

r2
1

1− 2M
r

−
(
2M

r2

)2 1(
1− 2M

r

)2
]
= 0 . (B.36)

This differential equation can be solved analytically. Under a change of variables x :=
r/M − 1, it turns into the Legendre equation for l = 2, m = 2:

(1− x2)H ′′ − 2xH ′ +
(
6− 4

1− x2
)
H = 0 (B.37)
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where the primes indicate derivatives w.r.t. x. Its solution is a linear combination of
Legendre functions of the first and second kind:

H = aP 2
2 (x) + bQ2

2(x) (B.38)

with [235]

P 2
2 (x) = 3(1− x2) ,

Q2
2(x) = 6x+

x(3x2 − 1)

1− x2 +
3

2
(1− x2) ln x+ 1

x− 1
for |x| > 1 .

(B.39)

At large distances from the star r/M ≫ 1, the metric perturbation has the dominant
contributions

H ≈ −3a
( r
M

)2
− 8

5
b

(
M

r

)3

. (B.40)

Note that all higher-order terms in Q2
2 cancel exactly with the first few expansion coeffi-

cients of the logarithm. This asymptotic behavior is now inserted into the full expression
for the metric perturbation (B.34) and matched with the corresponding orders of the
asymptotic expansion of the gravitation potential (B.24), yielding

a =
EM2

3
, b =

15

8

λE
M3

. (B.41)

Now that the connection with the external tidal field is made, we only need to extract λ.
As this value should be independent from E , we consider the dimensionless quantity

y :=
RH ′(R)
H(R)

(B.42)

in which E trivially cancels. It is evaluated at the surface of the star where a connection
between the inside and outside solutions can be made. Based on the solution outside the
star (B.38), Eq. (B.42) can be resolved for λ [234]:

λ =
16M5

15
(1− 2C)2 (2 + 2C(y − 1)− y)

{
2C(6− 3y + 3C(5y − 8))

+ 4C3 [13− 11y + C(3y − 2) + 2C2(1 + y)]

+ 3(1− 2C)2 [2− y + 2C(y − 1)] ln(1− 2C)
}−1

.

(B.43)

The dimensionless value C := M/R denotes the compactness of the star. It is obtained
from the solution of the TOV equations.

To find y, the TOV equations are amended by the full differential equation for H in
the presence of matter, Eq. (B.35), i.e., y is now evaluated from the inside out. To this
end, the second order differential equation is split into a set of two coupled first-order
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equations [230]:

dH

dr
= β

dβ

dr
= −β

[
2

r
+

(
1− 2m

r

)−1(2m

r2
+ 4πr(p− ε)

)]

−H
(
1− 2m

r

)−1
[
− 6

r2
+ 4π

(
5ε+ 9p+ (ε+ p)

dε

dp

)

− 4

(
1− 2m

r

)−1 (m
r2

+ 4πrp
)2 ]

.

(B.44)

The required value for ν ′ (cf. Eq. (B.35)) has been taken from Eq. (B.19). There is,
however, one remaining free parameter related to the initial value for the perturbation at
the center of the star. An expansion of Eq. (B.35) in powers of r reveals [234]

H(r) = a0r
2 +O(r4) (B.45)

and thus H(0) = 0, β(0) ≡ H ′(0) = 0, β′(0) ≡ H ′′(0) = 2a0. The linear dependence of
H and β on a0 near the origin coupled with their linear occurrence in Eq. (B.44) implies
that they will remain proportional to a0 throughout the integration, i.e., the ratio y is
independent of the choice of a0. The calculated value of y at the star’s surface can now
be inserted into Eq. (B.43), effectively matching it to the outside solution.

There is, however, one last caveat: So far, it was assumed that both H(r) and H ′(r)
are continuous functions of r. While this has to be true for the metric component H(r),
as argued in Ref. [214] its derivative H ′(r) will exhibit a discontinuity if matter undergoes
a first-order phase transition. Such a transition is always related to a discontinuity in
the energy density (cf., for example, Fig. 5.3). This in turn leads to a delta peak in the
derivative dε/dp = (dp/dr)−1dε/dr in above differential equation for β. Inserting dp/dr
from the TOV equation, the singular part reads

dβ(sing)

dr
=

4πr2H

m+ 4πr3p

dε

dr
. (B.46)

Let us make the reasonable assumption that, going radially outwards, the transition occurs
at a specific radius rc and leads into a phase of smaller density, i.e., dε/dr = −∆ε δ(r−rc)
in the proximity of rc. Integrating this term in the infinitesimal interval rc−δr < r < rc+δr
then gives

β+ − β− = − 4πr2cHc∆ε

mc + 4πr3cpc
(B.47)

where the index c indicates that these quantities are evaluated at r = rc. In a numerical
calculation, one would integrate the system of ordinary differential equations until the
critical pressure is reached, add this term to β, and then continue the evaluation. A
special case is constituted by stars with a nonzero density at the surface. This typically
happens for pure quark matter stars (such as the ones presented in this work) as they
exhibit a first-order transition to the vacuum phase at pc ≈ 0 [230]. The modification
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term can then be simply added to y after the calculation to correctly determine the metric
just outside the star (which is the one that was needed for the matching procedure):

y =
Rβ+(R)

H(R)
=
Rβ−(R)
H(R)

− 4πR3∆ε

M
. (B.48)

Once λ is determined, it can be made dimensionless by dividing either by M5 or R5:

Λ := λM−5

k2 :=
3

2
λR−5 =

3

2
ΛC5

(B.49)

Λ is called the dimensionless tidal deformability and k2 is the tidal Love number.
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Appendix C

Derivation of the Polchinski
Equation

This appendix continues the discussion on Polchinski’s equation started in Sec. 3.2. We
derive the Polchinski equation (3.41) within our modern path integral formalism and make
a connection of Polchinski’s effective action Seff

k to the modified Schwinger functional Wk.
For this, we need to find a setup with two complementary path integrals as in Wilson’s
original idea, Eq. (3.21), but generalized to arbitrary cutoff functions (as long as they fulfill
elementary conditions, such as the three regulator conditions provided in the previous
section). Some helpful notes on the derivation were found in Ref. [236]. We start with
the full partition function for the bare action S[φ] and add a source term for convenience:

Z[J ] =
∫
Dφ e−S[φ]+

∫
Jφ = e−S

int[ δ
δJ

]

∫
Dφ e−

1
2

∫
φG−1

0 φ+
∫
Jφ . (C.1)

For simplicity, we will furthermore stick to abstract notation for the (position or momen-
tum space) integrals. The Gaussian path integral can be performed which gives, up to
determinants,

Z[J ] = e−S
int[ δ

δJ
] e

1
2

∫
JG0J . (C.2)

At this point, we can separate the propagator into a low- and a high-momentum part,∫
JG0J =

∫
JG0KJ +

∫
JG0(1−K)J , (C.3)

and insert a Gaussian path integral for each individual term, both coupling to the same
source J :

Z[J ] = e−S
int[ δ

δJ
]

∫
Dφ e−

1
2

∫
φG−1

0 K−1φ

∫
Dχ e−

1
2

∫
χG−1

0 (1−K)−1 χ+
∫
J(χ+φ)

=

∫
Dφ e−

1
2

∫
φG−1

0 K−1φ

∫
Dχ e−

1
2

∫
χG−1

0 (1−K)−1 χ−Sint[χ+φ]+
∫
J(χ+φ) .

(C.4)

We can now set J to zero again and identify the scale-dependent effective interaction (cf.
Eq. (3.39)) with the inner path integral

e−S
int
k [φ] =

∫
Dχ e−

1
2

∫
χG−1

0 (1−K)−1 χ−Sint[χ+φ]

=

∫
Dχ e−

1
2

∫
χG−1

0 (1−K)−1 χ−Sint[χ]+
∫
φG−1

0 (1−K)−1 χ− 1
2

∫
φG−1

0 (1−K)−1 φ .

(C.5)
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In the second line, we have shifted χ→ χ−φ in order to remove the φ-argument from Sint.
With the identification Rk = G−1

0 [(1 −K)−1 − 1] = K/[G0(1 −K)] the bare propagator
term for χ can be combined with Sint[χ] to yield the full bare action and a standard
regulator term as defined in Eq. (3.23). The mixed term in the fields takes the role of a
source J = G−1

0 (1−K)−1φ for Wk[J ]. In total, we obtain

Sint
k [φ] = −Wk[G

−1
0 (1−K)−1φ] +

1

2

∫
φG−1

0 (1−K)−1 φ . (C.6)

Since Wk[J ] is the generator for connected diagrams, but each functional derivative of
Sint
k [φ] is effectively a derivative of Wk multiplied with an inverse (RG-modified) bare

propagator, Sint
k can be understood as the generating functional for n-point vertices with

external legs amputated. The free propagator is removed via the second term. The scale
derivative, keeping φ fixed, reads

∂t|φ Sint
k [φ] = −

(
∂t|J +

∫
G−1

0 [∂t(1−K)−1]φ
δ

δJ

)
Wk[J ]

∣∣∣∣
J=G−1

0 (1−K)−1φ

+
1

2

∫
φG−1

0 [∂t(1−K)−1]φ .

(C.7)

Inserting Eq. (3.30) and replacing the functional derivatives of Wk with those of Sint
k

according to Eq. (C.6),

δWk[J ]

δJ

∣∣∣∣
J=G−1

0 (1−K)−1φ

= −(1−K)G0
δSint

k [φ]

δφ
+ φ ,

δ2Wk[J ]

δJδJ

∣∣∣∣
J=G−1

0 (1−K)−1φ

= −(1−K)2G2
0

δ2Sint
k [φ]

δφδφ
+ (1−K)G0 ,

(C.8)

Polchinski’s equation (3.41) is indeed recovered up to field-independent terms. Notably,
the field φ here has the role of an external source term and should not be confused with
the argument of Γk[ϕ] which is the expectation value of the high-momentum field in the
presence of a source J . If we take k = 0 and determine the vacuum expectation value of
the quantum field such that it satisfies the quantum equation of motion

δΓ[ϕ]

δϕ
− J = 0 (C.9)

for vanishing source J = 0, we can alternatively extract ϕ from Polchinski’s ansatz via

ϕ = − G0
δSint

0 [φ]

δφ

∣∣∣∣
φ=0

. (C.10)
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Appendix D

Matsubara Sums

The derivation of flow equation requires the solution of Matsubara sums which arise at
finite temperature instead of an integral in the (imaginary) frequency component of mo-
mentum loops, see App. A. We consider here the case of the two-flavor quark-meson
model. Employing 3d regulators (or the 4d mass-term regulator within the approxima-
tion made in Ch. 7), the frequency only occurs in the standard quadratic term in the
propagator. Hence, we only need to consider Matsubara sums over different powers of
propagators. To this end, we define the renormalized propagators

Ḡϕk(ωn,p
2) :=

1

ω2
n + E2

ϕ

,

Ḡqk(νn,p
2) :=

1

(νn + iµ)2 + E2
q

,

(D.1)

with ϕ denoting either a σ or π field and the renormalized energies

E2
σ := p2(1 + rBk ) + 2Ū ′ + 4σ̄2Ū ′′

k ,

E2
π := p2(1 + rBk ) + 2Ū ′

k ,

E2
q := p2(1 + rFk )

2 +
( ḡk
2

)2
σ̄2 .

(D.2)

Any Matsubara sum occurring in this work has at most two different propagator ingredi-
ents. Thus, we define

M(j)
a := T

∑
n

(
Ḡak
)j

, M(i,j)
ab := T

∑
n

(
Ḡak
)i (

Ḡbk
)j
. (D.3)

Note that we have omitted any momentum arguments for brevity. Generally, all prop-
agators depend on the single loop momentum. Additionally, any nonvanishing external
fermionic frequency νext is routed through the quark propagators. In a precise formula-
tion, the momentum-space propagators are discrete coefficients in the Fourier expansion
of the imaginary-time component, i.e., they depend on the discrete frequency index n and
not on the frequency value ωn, νn itself. The external frequency νext = πT corresponds to
the value next = 0, hence we have

Ḡqk(n+ next,p
2) = Ḡqk(n,p

2) (D.4)
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Appendix D. Matsubara Sums

and do not need to additionally consider the external frequency. Alternatively, we can—in
a sloppy notation—keep up the notion of a continuous argument like in Eq. (D.1) where
the argument is the frequency value itself. In that case, the bosonic loop frequency ωn
directly enters the quark propagator and the external momentum νext = πT switches it
to a fermionic frequency which is already taken into account in Eq. (D.1):

Ḡqk(ωn + νext,p
2) = Ḡqk(νn,p

2) . (D.5)

In both cases, we end up with the same result and do not have to further worry about
the external frequency. An exception arises when continuing it to complex values, which
is discussed at hand of the mixed fermion–boson sum below.

Evaluating the sums. Generally, Matsubara sums can be calculated by taking advan-
tage of the residue theorem. Writing ωn, νn → −iz, the sum can be replaced by an integral
over the summand multiplied by a factor of 1/(2πi) and

uβ(z) :=

{
1
2T coth

(
z
2T

)
(bosons)

1
2T tanh

(
z
2T

)
(fermions)

(D.6)

on a closed contour around the imaginary axis. The function uβ has poles with residue
one at the imaginary Matsubara frequencies iωn or iνn, respectively. This contour is then
deformed to include the propagator poles instead of the ones of uβ. Further details can
be found in Refs. [125, 237]. Note that only the respective lowest-order sums of each type
need to be calculated this way. All higher orders can be obtained by taking derivatives
w.r.t the corresponding squared energy,

M(j)
a =

(−1)j−1

(j − 1)!

(
d

dE2
a

)j−1

M(1)
a ,

M(i,j)
ab =

(−1)i+j−2

(j − 1)!(i− 1)!

(
d

dE2
a

)i−1( d

dE2
b

)j−1

M(1,1)
ab ,

(D.7)

with a ̸= b and i, j > 1.

Lowest order results. For the single-propagator Matsubara frequencies, we obtain the
standard results

M(1)
ϕ =

1

2Eϕ
coth

(
Eϕ
2T

)
, M(1)

q =
1

4Eq

[
tanh

(
Eq − µ
2T

)
+ tanh

(
Eq + µ

2T

)]
. (D.8)

These results enter the flow for the effective potential. The zero-temperature limit for the
distribution functions1 relevant for the computation of the equation of state is

lim
T→0

coth

(
E

2T

)
= 1 , lim

T→0
tanh

(
E − µ
2T

)
= 1− 2Θ(µ− E) . (D.9)

The mixed bosonic sums evaluate to

M(1,1)
σπ =

1

E2
π − E2

σ

M(1)
σ +

1

E2
σ − E2

π

M(1)
π . (D.10)

1We will oftentimes refer to the following functions as distribution functions because they are linearly
related to the bose and fermi distributions.
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At the field origin where the pion and sigma masses degenerate, the pole singularity can be

lifted and the sum correspondingly degenerates with the second order sumsM(2)
σ ,M(2)

π .
The mixed fermionic–bosonic sum reads

M(1,1)
qϕ =

1

4Eϕ

[
1

E2
q − (Eϕ − µ+ iνext)2

+
1

E2
q − (Eϕ + µ− iνext)2

]
coth

(
Eϕ
2T

)
+

1

4Eq

[
− 1

E2
ϕ − (Eq − µ+ iνext)2

coth

(
Eq − µ+ iνext

2T

)
+

1

E2
ϕ − (Eq + µ− iνext)2

coth

(
Eq + µ− iνext

2T

)]
.

(D.11)

Here, we explicitly keep the external fermionic frequency argument in the expression and
stick to the notation in terms of the frequency value instead of the index. As discussed
before, the sum is then performed over the bosonic loop frequencies ωn, leading to number
densities described by the coth-function. Note that the choice νext = πT again correctly
reproduces the fermi distributions in the second and third line by means of the identity
coth(x − iπ/2) = − coth(x + iπ/2) = tanh(x). Furthermore, we see that the additional
imaginary shift νext → νext−iµ discussed in Chs. 3.6 and 4.4 is necessary in order to cancel
the µ-dependencies in the fraction terms and recover the Silver-Blaze property. However,
this would also lead to a cancellation of the chemical potential in the fermi distribution
functions. Another way to see this is to make the shift immediately in the fermionic
propagator in Eq. (D.1)—it would completely eliminate all µ-dependence. The root of
the problem lies in the fact that we continue a function that is defined only on discrete
set of integral numbers, the Matsubara frequencies, to continuous complex numbers. As
discussed in Ref. [238], such a continuation is not unique, and one needs to take into
account additional analytic properties to find the correct continuation. In the example
at hand, this becomes obvious when we insert νext = (2next + 1)πT . The distribution
functions become independent of next as long as it is integer-valued:

coth

(
Eq − µ+ iνext

2T

)
= − tanh

(
Eq − µ
2T

+ iπnext

)
= − tanh

(
Eq − µ
2T

)
. (D.12)

Clearly, there are multiple functions which degenerate for next integer, but will yield
different results when next is continued to complex values. Our ansatz to find the correct
version is simple [239]: based on Eq. (D.12) we first remove any dependence of the
distribution functions on next before making the continuation. This yields the expected
thermodynamic behavior, in total:

M(1,1)
qϕ =

1

4Eϕ

[
1

E2
q − (Eϕ + iπT )2

+
1

E2
q − (Eϕ − iπT )2

]
coth

(
Eϕ
2T

)
+

1

4Eq

[
1

E2
ϕ − (Eq + iπT )2

tanh

(
Eq − µ
2T

)
+

1

E2
ϕ − (Eq − iπT )2

tanh

(
Eq + µ

2T

)]
.

(D.13)

Nevertheless, we still find that for µ ̸= 0 the Matsubara sum becomes complex. This might
be interpreted as an artifact of the derivative expansion in conjunction with the nonzero
external frequency. A discussion of this issue can be found in Sec. 4.4.
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Appendix E

Notes on the Derivation of Flow
Equations

In this appendix, general comments on the derivation of the flow equations, especially
beyond local potential approximation (see Sec. 4.4), as well as explicit, regulator indepen-
dent expressions are given. Note that we refer to the two-flavor quark-meson model, i.e.,
the field content consists of a sigma meson with possibly nonvanishing vacuum expectation
value, three pions, and NcNf = 6 Dirac quarks.

Effective Potential

The flow of the effective potential can be derived straightforwardly from the Wetterich
equation evaluated at the expectation value as expressed by the projection (4.43). The
scale derivative of a general 3d regulator with wavefunction renormalizations included can
be expressed as

∂tR
B
k (p

2) = p2
[
Zϕ,k∂tr

B(x) + (∂tZϕ,k)r
B(x)

]
= Zϕ,kp

2
[
∂tr

B(x)− ηϕ,krB(x)
]
=: Zϕ,kp

2 ∂̃tr
B(x)

(E.1)

in the bosonic sector and similarly

∂tR
F
k (p) = Zq,ki/p

[
∂tr

F (x)− ηq,krF (x)
]
=: Zq,ki/p ∂̃tr

F (x) (E.2)

for the fermions. The operator ∂̃t will be of further use later on. It is defined to act
exclusively on the shape functions of the regulators in the general fashion

∂̃tr(x) :=
1

Zk
∂t (Zkr(x)) = −2xr′(x)− ηkr(x) (E.3)

and ignores all other scale dependencies. The prime denotes a derivative w.r.t. the argu-
ment x := p2/k2. The bosonic parts of the flow then generally evaluate to

1

2

∫
p
T
∑
n

∂tR
B
k,ϕ

Γσσk +RBk,ϕ

∣∣∣∣∣
⟨Φ⟩

=
1

4π2

∫ ∞

0
d|p|p4 T

∑
n

∂tr
B − ηϕ,krB

ω2
n + p2(1 + rB) + 2Ū ′

k + 4σ̄2Ū ′′
k

=
1

4π2

∫ ∞

0
d|p|p4

(
∂tr

B − ηϕ,krB
)
M(1)

σ

(E.4)
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Appendix E. Notes on the Derivation of Flow Equations

and

3

2

∫
p
T
∑
n

∂tR
B
k,ϕ

Γππk +RBk,ϕ

∣∣∣∣∣
⟨Φ⟩

=
3

4π2

∫ ∞

0
d|p|p4 T

∑
n

∂tr
B − ηϕ,krB

ω2
n + p2(1 + rB) + 2Ū ′

k

=
3

4π2

∫ ∞

0
d|p|p4

(
∂tr

B − ηϕ,krB
)
M(1)

π .

(E.5)

The factor of 3 in the pion sector comes from the trace in field space, as there are three
identical pions. The two equal contributions in fermion field space, see Eq. (A.34), add
up to

−
∫
p
T
∑
n

tr

[
∂tR

F
k

Γq̄qk +RFk

]∣∣∣∣∣
⟨Φ⟩

= −NcNf

2π2

∫ ∞

0
d|p|p4 T

∑
n

(1 + rF )(∂tr
F − ηq,krF )

(νn + iµ)2 + p2(1 + rF )2 +
ḡ2k
4 σ̄

2

= −NcNf

2π2

∫ ∞

0
d|p|p4 (1 + rF )

(
∂tr

F − ηq,krF
)
M(1)

q .

(E.6)

Higher Order Couplings

To extract the flow of couplings beyond the effective potential, we need to project these
sub-terms out of the effective action by means of the projections defined in Sec. 4.4.
Further, it is wise to reformulate the Wetterich equation to facilitate extracting the non-
vanishing diagrams contributing to the flow. This can be achieved by using the operator
∂̃t defined above:

STr

[
∂tRk

Γ
(1,1)
k +Rk

]
= ∂̃t STr

[
ln(Γ

(1,1)
k +Rk)

]
. (E.7)

Note that ∂̃t ignores the scale dependence of the two-point function by definition. Fur-
thermore, we define the fluctuating part of the two-point function

∆Γ
(1,1)
k := Γ

(1,1)
k −

〈
Γ
(1,1)
k

〉
(E.8)

where the second term on the rhs has the expectation values of the fields inserted. This
allows us to write

ln(Γ
(1,1)
k +Rk) = ln

(〈
Γ
(1,1)
k

〉
+Rk

)
+ ln

1+ ∆Γ
(1,1)
k〈

Γ
(1,1)
k

〉
+Rk

 . (E.9)

Note that all functional derivatives act on the fluctuating fields. Thus, the first term

vanishes in any truncation that includes field derivatives and those only act on ∆Γ
(1,1)
k .

Moreover, ∆Γ
(1,1)
k vanishes when evaluated at the expectation value by definition. Conse-

quently, a Taylor expansion of the logarithm in the second term of Eq. (E.9) yields only
a small number of terms that survive the projection. Explicit example calculations of this
can be found in Ref. [141]. A Taylor expansion is also a viable tool to determine the
external momentum derivative needed for the wavefunction renormalization flows. One
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generically encounters propagators of the form Gk(p+ pext) where p is a loop momentum.
Using an expansion around the loop three-momentum (omitting the frequency argument
for clarity),

Gk(p+ pext) = epext·∇Gk(p) , (E.10)

and the additional information that Gk depends only on the length of the momentum
vector squared, i.e. ∂pjGk = 2pj∂p2Gk, together with the generic identity that for a
rotationally invariant integrand I(p2) one has∫

p
pipjI(p

2) =
1

3
δij

∫
p
p2I(p2) , (E.11)

allows for the extraction of the few nonvanishing terms in the projection. More details
can be found in Ref. [240]. Using the tools laid out here we obtain the following flows for
a general 3d regulator:

Meson anomalous dimension. The meson anomalous dimension is calculated from
the projection (4.52) and reads

ηϕ,k =−
2

3
V̄ 2
πσπ

∫
p
p2(1 + rB + xrB′)

{
M(2,2)

σπ 2(∂̃tr
B + ∂̃txr

B′)

−
[
M(3,2)

σπ +M(2,3)
σπ

]
p2(1 + rB + xrB′)∂̃trB

}
− 2

3
4NcNf

ḡ2k
4

∫
p

{
M(2)

q 2xrF ′∂̃txrF ′

+M(3)
q p2

[
2(1 + rF )3∂̃txr

F ′

+
(
4(1 + rF )3 + 6(1 + rF )2xrF ′ − 4(1 + rF )x2(rF ′)2

)
∂̃tr

F
]

−M(4)
q 6p4

(
(1 + rF )5 + 2(1 + rF )4xrF ′

)
∂̃tr

F

}
(E.12)

with the renormalized meson three-vertex V̄πσπ := 4σ̄Ū ′′
k . Similar to Eq. (E.3), the

modified RG time derivatives here also act on the terms xr′, for example:

∂̃txr
B′ = (−2x∂x − ηϕ,k)xrB′ = −2x2rB′′ − (2 + ηϕ,k)xr

B′ . (E.13)

Quark anomalous dimension. In the same fashion, the anomalous dimension of the
quarks follows from the projection (4.54):

ηq,k = −
2

3

ḡ2k
4

∑
j

∫
p
p2
{
M(1,2)

qj

[
(1 + rB + xrB′)∂̃trF + (1 + rF )(∂̃tr

B + ∂̃txr
B′)
]

−M(2,2)
qj 2p2(1 + rF )2(1 + rB + xrB′)∂̃trF

−M(1,3)
qj 2p2(1 + rF )(1 + rB + xrB′)∂̃trB

}
.

(E.14)

The sum goes over the meson fields, i.e. j ∈ {σ, π, π, π}.
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Yukawa coupling. The Yukawa coupling is obtained from projection (4.56). A discus-
sion of different projections is given in the main text. The flow of the bare coupling is
given by

∂tgk = gk
ḡ2k
4

∫
p
p2

{[
M(1,2)

qσ −M(1,2)
qπ

]
∂̃tr

B +
[
M(2,1)

qσ +M(2,1)
qπ

]
2(1 + rF )∂̃tr

F

}
. (E.15)

Flat regulator flows. A further general note concerns the insertion of the flat regula-
tor. Due to the use of a Heaviside step function in the shape function and the appearance
of higher orders and powers of its derivative in above flows, there are nonvanishing contri-
butions due to integrals over terms such as Θ(x)δ(x). These expressions can be resolved
by reverting to smeared-out versions of the distributions, leading to the formula [241]

lim
ϵ→0

f(x,Θϵ(x)) δϵ(x) = δ(x)

∫ 1

0
du f(0, u) . (E.16)

In general, many of above terms vanish with the flat regulator and the remaining expres-
sions are given in Sec. 4.4.
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Appendix F

Approximate Flows in the Chirally
Symmetric Regime

In Ch. 7 it was argued that approximate flows in the two-flavor quark-meson model exhibit
a partial IR fixed point behavior in the chirally symmetric regime. This has been taken
advantage of to constrain the effective potential at the chiral symmetry breaking scale kχ.
We detail here the technical derivation of the fixed-point values in a general, regulator-
independent way. This follows closely the arguments made in Ref. [158] but generalizes
them to regulators that incorporate an additional scale, such as the mass-term regulators
(7.6) and (7.7) which depend on kϕ. The chain of argument relies on the consideration
of vacuum flows in LPA’. At large RG scales k > kχ, they are dominated by the purely
fermionic contributions. Picking up the definitions for ρ̃ and uk(ρ̃), Eqs. (7.17) and (7.16),
the approximate flow of the dimensionless potential at fixed ρ̃ becomes

∂tut(ρ̃) = −4ut + (2 + ηϕ,t) ρ̃ u
′
t(ρ̃)−

NcNf

4π2
lF0,t(m̃

2
q,t) . (F.1)

To simplify the notation in the upcoming discussion, an explicit scale dependence is now
expressed by the RG time t = ln(k/kϕ) instead of the corresponding dimensionful scale k
in the lower index. The first term in Eq. (F.1) is just the dimensional running, the second
term subtracts the flow of ρ̃ and the last term is just the dimensionless fermion loop, now
written in terms of the threshold function which reads for 4d regulators

lF,4d0,t (m̃2
q,t) =

∫ ∞

0
dy y2

1 + rFt (y)

y
[
1 + rFt (y)

]2
+ m̃2

q,t

∂tr
F
t (y) (F.2)

and for 3d regulators

lF,3d0,t (m̃2
q,t) = 2

∫ ∞

0
dxx3/2

1 + rFt (x)√
x
[
1 + rFt (x)

]2
+ m̃2

q,t

∂tr
F
t (x) . (F.3)

The dimensionless quark mass is given by

m̃2
q,t =

ḡ2t
2
ρ̃ . (F.4)

Note the factors in the definitions of the threshold functions have been chosen in agree-
ment with Ref. [158] for better comparability. We allow for an explicit scale dependence
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of rFt beyond that of its argument y = p2/k2 or x = p2/k2, as denoted by the index t.
Such a dependence exists, for example, for the mass-term regulators via the dimensionless
UV scale k̃ϕ := kϕ/k = e−t. If the shape function does not possess an explicit scale depen-
dence, the RG-time derivative can be written ∂tr

F (y) = −2y rF ′(y) and the corresponding
threshold functions lFn (m̃

2
q,t) also only depend on t implicitly via the quark-mass argument.

By definition, the threshold functions with a larger number of propagators lFn,t are related

to lF0,t via [158]

lFn,t(m̃
2
q,t) :=

(−1)n
(n− 1)!

(
d

dm̃2
q,t

)n
lF0,t(m̃

2
q,t) . (F.5)

From Eq. (E.14) we follow that the quark anomalous dimension vanishes in our approxi-
mation and from Eq. (E.12) we infer the meson anomalous dimension1

ηϕ,t =
NcNf

16π2
ḡ2k κ

F
t . (F.6)

κFt denotes the corresponding purely fermionic threshold function evaluated at ρ̃ = 0. The
flow of the Yukawa coupling is solely fed by its renormalization,

∂tḡ
2
t = ηϕ,t ḡ

2
t . (F.7)

This can be seen in Eqs. (E.15) and (4.57). It is an ordinary differential equation with
the solution

ḡ2t =
ḡ20

1− NcNf

16π2 ḡ
2
0

∫ t
0 ds κ

F
s

(F.8)

where g0 is the initial value at t = 0. Instead of finding a full solution2 for ut(ρ̃) we
immediately assume that a power expansion of the potential around the origin, see Eq.

(7.18), is possible. Flow equations for the coefficients u
(n)
t (0) can be inferred from Eq.

(F.1) and admit simple exact solutions. For n = 2, one finds

u
(2)
t (0)

ḡ2t
=

u
(2)
0 (0)

ḡ20
− NcNf

16π2 ḡ
2
0

∫ t
0 ds l

F
2,s(0)

1− NcNf

16π2 ḡ
2
0

∫ t
0 ds κ

F
s

. (F.9)

Note that κF = lF2 (0) ≡ 1 is attained for any regulator shape function rF that does not
explicitly depend on t. In this case, the solution simplifies to [158]

u
(2)
t (0)

ḡ2t
= 1−

1− u
(2)
0 (0)

ḡ20

1− NcNf

16π2 ḡ
2
0 t

(F.10)

and for t→ −∞ approaches the infrared fixed point

u
(2)
t (0)

ḡ2t

∣∣∣∣∣
∗
= 1 . (F.11)

1Eqs. (E.12) and (E.14) specifically assume 3d regulators, but the statements made here hold in general.
2Such a solution is given in Ref. [158] for the case of regulators without explicit scale dependence.
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For the two mass-term regulators, the same infrared value is approached even though they
require the more complex solution (F.9): At large negative RG times t, the UV cutoff
parameter k̃ϕ = e−t diverges quickly and both κFt and lF2,t(0) become effectively scale-
independent, tending to unity. Thus, the leading contributions to the integrals in Eq.
(F.9) behave like t and all subleading terms vanish for t→ −∞. A similar analysis works
at all orders n ≥ 3 where the solution for the expansion coefficients reads

u
(n)
t (0)

ḡ2nt
= e2(n−2)t u

(n)
0 (0)

ḡ2n0
− NcNf

4π2
(−1)n(n− 1)!

2n
e2(n−2)t

∫ t

0
ds lFn,s(0) e

−2(n−2)s . (F.12)

In the case of scale-independent threshold functions lFn (0), the integral can be solved
trivially and the infrared fixed point is given by

u
(n)
t (0)

ḡ2nt

∣∣∣∣∣
∗
=
NcNf

8π2
(−1)n(n− 1)!

2n(n− 2)
lFn (0) . (F.13)

At these orders of the expansion, the threshold functions depend on the explicit choice
of shape function, i.e., they yield different fixed points for different regulators. From
similar arguments as above, it follows that the infrared-attractive points for the mass-term
regulators are determined by inserting the asymptotic threshold functions lFn,t→−∞(0) for

lFn (0) in Eq. (F.13).
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Appendix G

Pole Proximity of Vacuum Flows

In general, nonperturbative flow equations are composed of threshold functions that ac-
commodate prospective singularities governed by the sign of the potential derivatives.
A typical phenomenon occurs for vacuum flows in LPA of quark-meson model trunca-
tions or related theories on a discretized grid in the σ-field: for small σ-values the pion
threshold function is the dominant one towards the IR evolution and the pion mass term
m2
π = 2U ′

k(σ
2) becomes increasingly negative until it almost enters the pole in the (Eu-

clidean) propagator. For the remaining flow it then runs closely along this regulator-
dependent pole [33]. This poses a significant challenge to the numerical implementation
as small numerical errors can easily hit this pole. In the following we argue that the prox-
imity of the pion pole can be estimated by analytical means. We rely on the regulator
choices introduced in Ch. 7. With the effective inverse pion propagator in LPA given for
a general (4-dimensional) regulator function by

Γ
(ππ)
k (p2) +Rk(p

2) = k2P 2(p2/k2) +m2
π , (G.1)

see Eq. (3.48) for the definition of P 2, and using positivity of the first term, we conclude
that a pole is encountered in the momentum loop as soon as m2

π falls below a threshold
given by the negative of the massless propagator gap,

m2
π,thresh = −k2min

y≥0
P 2(y) . (G.2)

This argument can easily be generalized to dimensionally reduced regulators, i.e., to a 3d
regulator where the modified two-point function is given by

Γ
(ππ)
k (p0,p

2) +Rk(p
2) = p20 + k2P 2(p2/k2) +m2

π . (G.3)

It is easy to see that the condition (G.2) still holds. Furthermore, in the following discus-
sion we always assume the potential and its derivatives to be evaluated at vanishing field,
i.e., Uk := Uk(σ = 0) etc., in which case the sigma field degenerates with the three pions.

3d Flat Regulator

Due to the simple structure of its flow equation, we first regard the 3d flat regulator.
Since P 2

flat(y) = 1 for 0 ≤ y ≤ 1, the pole is located at U ′
k = −k2/2, which can also easily

be read off from Eq. (7.14). Utilizing the modified dimensionless potential derivative,
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Appendix G. Pole Proximity of Vacuum Flows
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Figure G.1: Flow of the modified dimensionless first derivative of the effective potential at
σ = 0, ũ′k, for the two 3d regulators, cf. Eqs. (G.4) and (G.6). U ′′

k and—in case of the mass term

regulator—k̃ϕ are set to unity.

ũ′k := 2U ′
k/k

2, the pion propagator pole is located at ũ′k = −1 and the corresponding flow
equation is given by

∂tũ
′
k = 2(∂tU

′
k)/k

2 − 2ũ′k

=
1

π2

[
− U ′′

k

(1 + ũ′k)
3/2

+
ν

12

(g
2

)2]
− 2ũ′k .

(G.4)

Setting ∂tũ
′
k = 0 yields an equation for the stationary points of the flow. Clearly, several

cases need to be distinguished:

U ′′
k ≤ 0.1 There is always exactly one solution ũ

′(1)
k to this equation which is located

at ũ′k > 0, with the flow becoming negative for ũ′k > ũ
′(1)
k and positive for ũ′k < ũ

′(1)
k .

Since the flow is integrated in negative t-direction, ũ
′(1)
k takes the role of a repulsive point.

Hence, in the former case ũ′k becomes increasingly positive (no chiral symmetry breaking),
while in the latter case it runs into the pole. Note that these stationary points are not
actually fixed points in the sense that they still depend on k via U ′′

k . Thus, the position
of ũ′k in relation to those points can change in the course of the flow.

U ′′
k > 0 and sufficiently large. ∂tũ

′
k becomes negative for all values of ũ′k, which

pushes ũ′k to positive values and again inhibits chiral symmetry breaking.

U ′′
k > 0 but small enough to allow for two stationary points. This is the physi-

cally most interesting case, see the solid line in Fig. G.1 where ∂tũ
′
k is plotted for U ′′

k = 1
and the parameters ν = 24 and g = 6.5 used in this work. Let us denote the two stationary

points as ũ
′(0)
k and ũ

′(1)
k . While ũ

′(1)
k still has the same features of a repulsive point as for

1Since U ′′
k itself is dimensionless, we have kept the notation in terms of the dimensionful potential Uk.
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U ′′
k ≤ 0, ũ

′(0)
k is an attractive point for the flow. As long as ũ′k < ũ

′(1)
k , it is always pushed

towards ũ
′(0)
k and thus never runs into the pole. However, ũ

′(0)
k is usually located close to

the pole at value −1: for U ′′
k = 1 the stationary points have been numerically determined

to be ũ
′(0)
k ≈ −0.9133 and ũ

′(1)
k ≈ 1.053. This explains the numerical observation of the

flow running in the vicinity of the pole.

With the potential becoming convex in the infrared [33], the second derivative U ′′
k

tends to zero. From Eq. (G.4) it is clear that this moves the stationary point even closer
to the pole. A good estimate can be obtained by defining ũ′k = −1 + δu and multiplying

both sides in Eq. (G.4) with δ
3/2
u . Again setting ∂tũ

′
k = 0 and expanding to lowest order

in δu, we find

δu ≈
[

U ′′
k

2π2 + ν
12

(g
2

)2
]2/3

. (G.5)

For U ′′
k = 1 this yields δu ≈ 0.0843 which is in agreement with the previous numerical

determination of ũ
′(0)
k to an error of less than 1%.

3d and 4d Mass-term Regulators

This analysis becomes much more relevant in case of the mass-term regulator. Since the
pole is also reached for U ′

k = −k2/2, we can essentially reuse all definitions from above.
The vacuum flow of ũ′k in the 3d version then reads

∂tũ
′
k =−

3U ′′
k

π2

− k̃ϕ√
k̃2ϕ + 1 + ũ′k

+ arcsinh

(
k̃ϕ√
1 + ũ′k

)
+

ν

4π2

(g
2

)2 − k̃ϕ√
k̃2ϕ + 1

+ arcsinh(k̃ϕ)

− 2ũ′k

(G.6)

with the dimensionless UV regularization parameter k̃ϕ := kϕ/k ≥ 1 which increases
towards the infrared. Despite its more complex analytic structure, the flow exhibits the
same qualitative features as the dotted line in Fig. G.1 shows. However, for U ′′

k = 1 and

k̃ϕ = 1, ũ
′(0)
k already moves significantly closer to the pole than for the flat regulator.

Setting ∂tũ
′
k = 0, an expansion in δu to lowest order is possible after exponentiating both

sides in Eq. (G.6) which yields

δu ≈ k̃2ϕ exp

−2[1− ln(2)]− 4π2

3U ′′
k

− ν

6U ′′
k

(g
2

)2 arcsinh(k̃ϕ)− k̃ϕ√
k̃2ϕ + 1

 . (G.7)

Already for U ′′
k = 1 (and k̃ϕ = 1) one finds δu ≈ 6.619 × 10−10, with a further

exponential suppression with decreasing U ′′
k as compared to the power law behavior of the
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Appendix G. Pole Proximity of Vacuum Flows

flat regulator. This does not improve much in the 4d case either, where

∂tũ
′
k =−

3U ′′
k

2π2

− 1

1 +
1+ũ′k
k̃2ϕ

+ ln

(
1 +

k̃2ϕ
1 + ũ′k

)
+

ν

8π2

(g
2

)2 [
− 1

1 + k̃−2
ϕ

+ ln(1 + k̃2ϕ)

]
− 2ũ′k

(G.8)

and

δu ≈
k̃2ϕ

exp

{
1

3U ′′
k

[
4π2 + ν

4

(g
2

)2(− 1
1+k̃−2

ϕ

+ ln(1 + k̃2ϕ)

)]
+ 1

}
− 1

(G.9)

yields δu ≈ 1.198× 10−8 for the same parameters.
Already in Ref. [117] it was shown that an optimized regulator according to criterion

(3.50) pushes the propagator poles as far down on the negative U ′
k axis as possible and

speculated that such regulators, in particular the flat regulator, thus lead to the smoothest
and numerically most stable flow. For the mass-term regulator, the issue of a very close
pion pole proximity seems to be particularly grave. As shown above, for k → 0 the first

derivative moves arbitrarily close to the pole. In the future, the analytic estimates for ũ
′(0)
k

obtained here could also be used to stabilize the numerical setup.
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Appendix H

Numerical Solution Techniques

Numerical calculations for this thesis have generally been implemented in C++, making
use of costum implementations of, e.g., vector and matrix classes as well as adaptions of
widespread numerical algorithms found in publications such as Ref. [242]. The numerical
methods employed for the solution of the FRG flow equations and for the TOV equations
are outlined in this appendix. FRG flow equations are partial differential equations (PDEs)
including a partial derivative w.r.t. the RG scale k and field derivatives encoded in the
mass terms. For Nf = 2, these field derivatives are confined to one dimension, the light
sigma field. Most research in the field so far has also been done for flows in one field
dimension. Hence, we start discussing this case and follow up with additional points and
extensions:

One-dimensional grid. Traditionally, these flows have been solved on equidistant grids
in the field variable σ or σ2, with field derivatives obtained from finite differences, coupled
Taylor approximations [243, 244], or cubic splines [155, 245]. Global approaches with
pseudo-spectral methods have also been employed [246]. Recently, it has been shown that
such PDEs which result from Wetterich flows in LPA can be recast into another shape: by
a reformulation in terms of a flow for the first potential derivative ∂tU

′
k a conservative form

with distinct convective and diffusive fluxes can be obtained [247]. This admits a modern
treatment within a hydrodynamic framework, utilizing finite volume methods [248–251]
or more advanced setups like discontinuous Galerkin methods [32, 247]. Especially, shocks
that occur in the flow with a flat regulator due to the discontinuity at the Fermi surface can
be resolved in great detail within such a novel framework. However, in a first detailed study
of the phase diagram of the quark-meson model based on discontinuous Galerkin methods
[32] a similar phase structure to traditional approaches is found and the back-bending
behavior of the chiral transition line at finite densities is confirmed. We therefore retain a
more well-tried, computationally less expensive setup with a simpler implementation based
on a cubic spline over a grid of points equidistantly distributed in σ-field space. The two
missing boundary conditions for the spline are obtained by fixing the first derivative at
the left- and rightmost points of the interval via a three-point finite difference stencil.
The chosen interval is σ ∈ [0, 170MeV], and n = 40 grid points are used in most cases,
with up to 80 points for the computation of the crossover lines. Furthermore, the Nf = 2
results in Ch. 6 have been obtained with an upwind finite difference scheme [247]. All
results in Ch. 7 have been cross-checked with the Taylor–grid method as outlined in Ref.
[243]. In all cases, reasonable agreement within the methods has been observed. The
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Appendix H. Numerical Solution Techniques

solution of the remaining coupled set of ordinary differential equations (ODEs) resulting
from these procedures is then performed with an explicit higher-order Runge-Kutta type
ODE stepper with adaptive stepsize [252].

Two-dimensional grid. For Nf = 2 + 1, a two-dimensional setup is required. We
employ a grid for the chiral potential in the variables

x = σ2l and y = 2σ2s − σ2l , (H.1)

and again interpolate the derivatives with (clamped) cubic splines as outlined in Ref.
[155]. We also use three- and five-point stencils to fix the first derivative at the edges
of the grid and generally obtain the mixed derivative ∂x∂y by an appropriate three-point
formula applied on the x-derivatives in y-direction or vice versa.

Treatment of numerical errors at small pressures. In the context of this work,
especially the T = 0 limit of the flow equations is oftentimes utilized wherein the fermionic
threshold functions reduce to Heaviside functions. This also encodes the Silver-Blaze
property of the theory because

El ≥ ml = gσl/2 (H.2)

implies that Θ(Ef − µ) = 1 for all µ < mf and hence the flow at the IR minimum σl
does not change with respect to the vacuum flow. Here we have assumed for simplicity
a flavor-independent chemical potential. Of course, this property only holds for µ < µc
where µc signifies the chiral first-order transition. In both the sMFA and FRG solutions,
we observe µc < ml, cf. Fig. 4.2b. Unfortunately, due to the utilized grid method the
Silver-Blaze property is subject to a numerical error. For any chemical potential, all grid
points located at σl < 2µ/g display a different running than in vacuum. Since the bosonic
energies incorporate field derivatives that are approximated from an interpolation of all
grid points, the flow experiences small modifications at the IR minimum even if µ < ml.
This effect aggravates when µ approaches ml from below, µ ≲ ml. It leads to fluctuations
of the chiral condensate around the vacuum IR value. Those fluctuations are small and
hardly visible in Fig. 4.2b. However, they lead to an unphysical phase of very small but
nonzero pressure. Furthermore, for a flavor-dependent chemical potential the first-order
transition is additionally distorted by the error of our approximation, see Ch. 5. Thus, in
the numerical treatment of the FRG EoS in Chs. 5 and 6, data points close to the phase
transition are omitted and the EoS from the physical phase with restored chiral symmetry
is polynomially extrapolated down to p = 0. This procedure only affects the low-pressure
outer region of the calculated pure quark stars. The dependence of the star radius on the
extrapolation error has been checked and found to be negligible.

Numerical fluctuations in the speed of sound. For Nf = 2 + 1, similar numerical
fluctuations as discussed above are also found when µs approaches the order of the strange
quark mass ms at the current IR minimum. They are most prevalent in the determination
of the speed of sound. A strong dependence of these fluctuations on the exact grid point
configuration is observed and gives strong evidence for the claim as a numerical artifact.
Therefore, in Fig. 5.4a for µ > 350 MeV only the average derivative c̄2s := ∆p/∆ε is shown
as dots, uniformly spaced at a distance of 15MeV. For each dot, c̄2s has been calculated
from the (p, ε) tupels at the dot to its left, itself, and the dot to its right. Furthermore,
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the highest deviation of the microscopically calculated, fluctuating speed of sound c2s from
c̄2s in the respective interval is indicated by the border points of the shaded region such
that all c2s data points lie within this region.

Combined mean-field and FRG approach with vector mesons. Adding vector
mesons (see Ch. 6) presents the additional challenge of solving for multiple gap equa-
tions (6.9) simultaneously, whereas for each trial point a full FRG flow equation in the
(pseudo)scalar sector has to be solved. In order to retain reasonable computation times, we
solve the vector meson gap equations by computing data points on a discrete set of vector
meson condensates and interpolating key quantities like the number densities (6.10). This
allows us to use the same basic set of points for all coupling strengths. The same process is
used for the electron chemical potential to satisfy charge neutrality, see Eq. (5.2). Instead
of keeping the interpolated values for the equation of state, we then calculate new data
points with the appropriate shifts in the chemical potentials inserted. This way, we have
a method to check to what extent the gap equations and charge neutrality condition are
actually fulfilled and to thereby gauge the quality of the interpolation.

Solving the TOV equation. In the neutron star calculations, the TOV equation, just
like the discretized flow equation, is solved with an explicit Runge-Kutta algorithm. The
evolution is stopped when the radial pressure p(r) reaches a value of 10−5 (Ch. 5), 10−8

(pure quark matter in Ch. 6), or 10−10 (hybrid construction in Ch. 6) relative to the
central pressure. The EoS data points are interpolated with cubic splines (quark stars) or
linearly (hybrid stars), utilizing two separate interpolations in case of a discontinuity due
to a first-order transition.

General minimization and integration. Both the potentials in mean-field approxi-
mation and the infrared potentials in the FRG framework must be minimized. Note that
the explicit symmetry-breaking terms guarantee that the global minimum will never be
at exactly vanishing fields, i.e., the global minimum is also always a local minimum even
in a parameterization in terms of the field squared. For numerical precision, we generally
determine all extrema by applying standard root-finding algorithms [242] to the derivative
of the potential and then determining the global minimum among the candidates. In two
dimensions, we additionally apply a minimization algorithm on the potential and start
from multiple points in field space to ensure that the global minimum is found. Integrals
are mostly solved with a Romberg integration routine [242].
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Appendix I

Parameter Fixing

In this appendix the input parameters for the FRG and mean-field evaluations in Chs. 4,
5, and 6 are summarized. For further information see also Ref. [65, 155]. Note that the
parameter setup for Ch. 7 is discussed explicitly in Sec. 7.2 of the main text. In the rest
of the work, the following setup has been used:

Parameterized chiral potential. The chiral potentials are parameterized as follows:
in MFA, for Nf = 2 + 1 the chiral potential reads

U (2+1)
mes (ρ1, ρ2) = m2ρ1 + λ1ρ

2
1 + λ2ρ2 (I.1)

and for Nf = 2 it follows analogously as

U (2)
mes(ϕ

2) =
m2

2
ϕ2 +

λ

4
ϕ4 . (I.2)

In the FRG setup, we use the same definitions but for Nf = 2+1 we instead multiply the
factor λ2 with the modified invariant ρ̃2 := ρ2 − ρ21/3:

U
(2+1)
Λ (ρ1, ρ̃2) = m2ρ1 + λ1ρ

2
1 + λ2ρ̃2 . (I.3)

Fixing the chiral parameters. In the following, we only discuss the case Nf = 2+ 1,
withNf = 2 following trivially by leaving out quantities and particles with strange content.
The three free parameters in the ultraviolet chiral potential are fixed by the (broad) sigma
meson resonance mass which is chosen as mσ = 560 MeV and the two vacuum condensates
σl = fπ = 92.4 MeV and σs = (2fK − fπ)/

√
2 = 94.5 MeV. The latter relations include

the pion and kaon decay constants fπ and fK = 113 MeV and are derived from partially
conserved axial vector current (PCAC) relations. The constituent light and strange quark
masses follow from the single Yukawa coupling g = 6.5, i.e., ml = gσl/2 ≈ 300 MeV and
ms = gσs/

√
2 ≈ 434 MeV. For Nf = 2, we proceed in an analogous fashion.

Numerical optimization. The parameter sets for the FRG and rMFA flow equations
have been optimized numerically by a global differential evolution algorithm [253] with an
initial UV cutoff of Λ = 1 GeV. In the full FRG case we stop the evolution at kIR = 80 MeV
where the condensates are already frozen and in the rMFA case we stop at kIR = 1 MeV.
Note that all obtained numerical results are insensitive to IR values when chosen in this
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region while a UV cutoff dependence for the rMFA results can still be seen. However, when
choosing a UV cutoff larger than Λ > 2 GeV for the rMFA results any cutoff dependence
disappears [31]. The used input parameters for the mean-field potentials can be found in
Tab. I.1. The UV coefficients aij for the chiral potentials in the FRG calculations are
listed in Tab. I.2.

Nf approx. m2 [MeV2] λ1 λ2

2 sMFA −(358.1)2 17.25

2 rMFA 901.092 −5.38
2 LPA 706.312 10.58

2+1 sMFA 384.712 −0.36 46.48

2+1 rMFA 1040.942 −2.65 11.73

2+1 LPA 515.702 18.73 47.68

Table I.1: Input parameters for the chiral potential in the Nf = 2 and Nf = 2 + 1 quark-meson
model for the sMFA and rMFA as well as the FRG solution in LPA. In the latter case, the λ2
coefficient is multiplied with the modified chiral invariant ρ̃2 as defined in the main text. For
Nf = 2, we have λ1 ≡ λ and no second invariant.

Fixed explicit symmetry breaking parameters. The finite pseudoscalar masses of
the pions, mπ = 138 MeV, and kaons, mK = 496 MeV, are fixed via the explicit chiral
symmetry breaking terms cl = (120.73MeV)3 and cs = (336.41MeV)3. These numerical
values arise from the gap equations, i.e., the vanishing derivative of the total effective
infrared potential

∂ŨIR

∂σl

∣∣∣∣∣
⟨Φ⟩

= 0 =
∂ŨIR

∂σs

∣∣∣∣∣
⟨Φ⟩

(I.4)

which yields

cl = fπm
2
π , cs =

√
2fKm

2
K −

1√
2
fπm

2
π (I.5)

where the expressions for the masses (cf. Ref. [155]) and numerical fixes for the field
expectation values from above have been inserted. Without an explicit symmetry breaking
all pseudoscalar masses would vanish in a chirally invariant or spontaneously broken theory
due to the Goldstone theorem [254]. Note that in our procedure the curvature masses are
fixed, and not the pole masses. In LPA, the pole masses are equal to the curvature masses;
however, by solving the flow for the two-point function more momentum resolution can be
gained and the parameters can be fixed to a differing pole mass [127]. The summed squares
of the η and η′ masses m2

η +m2
η′ = (1103.2MeV)2 are reproduced with the axial U(1)A

symmetry breaking parameter cA = 4807.84 MeV which can be determined analytically
in sMFA and has been taken over for the other calculations as well.

Beyond local potential approximation. In LPA’, the renormalized running Yukawa
coupling needs to be fixed additionally such that it reaches the value ḡIR = 6.5 in the
infrared and yields the same vacuum quark masses as the other truncations. Since the
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approx. m2 [MeV2] λ g c [MeV3]

static 665.852 50.28 8.01 133.223

co-moving 1116.12 271.4 11.92 154.263

Table I.2: Bare UV parameters for the Nf = 2 quark-meson model solution in LPA’ in the static
and co-moving approximations. The potential is parameterized similarly to its LPA counterpart.
The bare Yukawa coupling and explicit symmetry-breaking term c are additionally required.

absolute values of the wavefunction renormalizations do not occur in the flows, they do
not have to be fixed, but it is customary to set them to unity in the UV, such that all
quantities at this scale can be identified as bare quantities. Note that the bare explicit
breaking term now has to be fixed as well such that the correct renormalized one is obtained
in the infrared; its running is trivially determined by the anomalous dimension. Further
note that the UV scale for the LPA’ calculations has been chosen as Λ = 900MeV which
slightly differs from the choice in the LPA calculations. All relevant starting values are
given in Tab I.2.
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[151] O. Ivanytskyi, M. A. Pérez-Garćıa, V. Sagun, and C. Albertus, Second look to the
Polyakov loop Nambu–Jona-Lasinio model at finite baryonic density, Phys. Rev. D
100, 103020 (2019), arXiv:1909.07421.

[152] K. Fukushima and V. Skokov, Polyakov loop modeling for hot QCD, Prog. Part.
Nucl. Phys., 96, 154 (2017), arXiv:1705.00718.

[153] W.-j. Fu, J. M. Pawlowski, and F. Rennecke, Strangeness Neutrality and QCD
Thermodynamics, SciPost Phys. Core, 2, 002 (2020), arXiv:1808.00410.

[154] F. Rennecke and B.-J. Schaefer, Fluctuation-induced modifications of the phase struc-
ture in (2+1)-flavor QCD, Phys. Rev. D96, 016009 (2017), arXiv:1610.08748.

[155] M. Mitter and B.-J. Schaefer, Fluctuations and the axial anomaly with three quark
flavors, Phys. Rev. D89, 054027 (2014), arXiv:1308.3176.

[156] K. Otto, High Density Fluctuations in Neutron Stars, Master’s thesis, Justus-Liebig
University Giessen (2017).

[157] A. Zacchi and J. Schaffner-Bielich, Implications of the fermion vacuum term in the
extended SU(3) quark meson model on compact star properties, Phys. Rev. D100,
123024 (2019), arXiv:1909.12071.

[158] J. Berges, D. U. Jungnickel, and C. Wetterich, Two flavor chiral phase transition
from nonperturbative flow equations, Phys. Rev. D, 59, 034010 (1999), arXiv:hep-
ph/9705474.

[159] N. Tetradis and C. Wetterich, Critical exponents from effective average action, Nucl.
Phys., B422, 541 (1994), arXiv:hep-ph/9308214.

[160] J. Braun, Thermodynamics of QCD low-energy models and the derivative expansion
of the effective action, Phys. Rev. D, 81, 016008 (2010), arXiv:0908.1543.

[161] J. M. Pawlowski and F. Rennecke, Higher order quark-mesonic scattering processes
and the phase structure of QCD, Phys. Rev. D90, 076002 (2014), arXiv:1403.1179.

[162] W.-j. Fu, J. M. Pawlowski, F. Rennecke, and B.-J. Schaefer, Baryon number
fluctuations at finite temperature and density, Phys. Rev. D94, 116020 (2016),
arXiv:1608.04302.

[163] C. Busch, Chiral Symmetry Breaking and Thermodynamics Beyond Local Potential
Approximation, Master’s thesis, Justus-Liebig University Giessen (2019).

[164] A. Bazavov et al. [HotQCD], Chiral crossover in QCD at zero and non-zero chemical
potentials, Phys. Lett., B795, 15 (2019), arXiv:1812.08235.

144

http://dx.doi.org/10.1016/j.physletb.2010.12.003
http://arxiv.org/abs/1008.0081
http://dx.doi.org/10.1016/j.physletb.2014.02.045
http://arxiv.org/abs/1308.3621
http://dx.doi.org/10.1103/PhysRevD.100.103020
http://dx.doi.org/10.1103/PhysRevD.100.103020
http://arxiv.org/abs/1909.07421
http://dx.doi.org/10.1016/j.ppnp.2017.05.002
http://dx.doi.org/10.1016/j.ppnp.2017.05.002
http://arxiv.org/abs/1705.00718
http://dx.doi.org/10.21468/SciPostPhysCore.2.1.002
http://arxiv.org/abs/1808.00410
http://dx.doi.org/10.1103/PhysRevD.96.016009
http://arxiv.org/abs/1610.08748
http://dx.doi.org/ 10.1103/PhysRevD.89.054027
http://arxiv.org/abs/1308.3176
http://dx.doi.org/ 10.1103/PhysRevD.100.123024
http://dx.doi.org/ 10.1103/PhysRevD.100.123024
http://arxiv.org/abs/1909.12071
http://dx.doi.org/10.1103/PhysRevD.59.034010
http://arxiv.org/abs/hep-ph/9705474
http://arxiv.org/abs/hep-ph/9705474
http://dx.doi.org/ 10.1016/0550-3213(94)90446-4
http://dx.doi.org/ 10.1016/0550-3213(94)90446-4
http://arxiv.org/abs/hep-ph/9308214
http://dx.doi.org/10.1103/PhysRevD.81.016008
http://arxiv.org/abs/0908.1543
http://dx.doi.org/10.1103/PhysRevD.90.076002
http://arxiv.org/abs/1403.1179
http://dx.doi.org/ 10.1103/PhysRevD.94.116020
http://arxiv.org/abs/1608.04302
http://dx.doi.org/10.1016/j.physletb.2019.05.013
http://arxiv.org/abs/1812.08235


Bibliography

[165] R. Bellwied, S. Borsanyi, Z. Fodor, J. Günther, S. D. Katz, C. Ratti, and K. K.
Szabo, The QCD phase diagram from analytic continuation, Phys. Lett., B751, 559
(2015), arXiv:1507.07510.

[166] F. Rennecke, The Chiral Phase Transition of QCD, Ph.D. thesis, University of Hei-
delberg (2015).

[167] J. Braun and B. Schallmo, Zero-temperature thermodynamics of dense asymmetric
strong-interaction matter, arXiv:2204.00358.

[168] B. Friman and W. Weise, Neutron Star Matter as a Relativistic Fermi Liquid, Phys.
Rev. C, 100, 065807 (2019), arXiv:1908.09722.

[169] M. Drews and W. Weise, Functional renormalization group studies of nuclear and
neutron matter, Prog. Part. Nucl. Phys., 93, 69 (2017), arXiv:1610.07568.
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[223] J. Jebsen, Über die allgemeinen kugelsymmetrischen Lösungen der Einsteinschen
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Ich habe die vorgelegte Dissertation selbstständig und ohne unerlaubte fremde Hilfe und
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