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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Untersuchung chiraler Symmetriewiederherstellung
in Schwerionenkollisionen. Das Dileptonenspektrum gilt bis heute als mögliches Signal für
die Wiederherstellung der chiralen Symmetrie, da in der chiral restaurierten Phase der Vektor-
und Axialvektorstrom übereinstimmen müssen. Allerdings konnten bis heute keine klaren
Hinweise für dieses Verhalten gefunden werden. Gitter Quanten-Chromo-Dynamik (QCD)
Rechnungen für verschwindendes chemisches Potential weisen darauf hin, dass der chirale
Phasenübergang ein Crossover ist mit annähernd derselben kritischen Temperatur wie der des
Deconfinement-Phasenübergangs. Die Natur des Phasenübergangs bei endlichem chemischen
Potential ist nicht geklärt und wird derzeit theoretisch und experimentell untersucht. Auf-
grund des Vorzeichenproblems der Gitter QCD muss von theoretischer Seite her auf effektive
Modelle zurückgegriffen werden. Die effektiven Modelle weisen darauf hin, dass der chirale
Phasenübergang noch vor dem Deconfinement-Übergang bei niedrigeren Temperaturen liegt.
Von experimenteller Seite werden Systeme hoher Dichte in "Niederenergie" Schwerionenkol-
lisionen an Beschleunigeranlagen untersucht: der Relativistic Heavy-Ion Collider (RHIC), die
zukünftige Facility for Antiproton and Ion Research (FAIR) sowie die zukünftige Nuclotron-
based Ion Collider fAcility (NICA). Die Aufgabe der Schwerionenphysik ist es, Spuren der
chiralen Symmetriewiederherstellung aus den gemessenen Spektren zu identifizieren und the-
oretisch zu verstehen.
In dieser Arbeit analysieren wir die Effekte der chiralen Symmetriewiederherstellung in Schw-
erionenkollisionen mithilfe des Parton-Hadron-String Dynamics (PHSD) Transportansatzes,
welcher zur Beschreibung von Schwerionenkollisionen partonische, hadronische sowie String-
freiheitsgrade beinhaltet. Diese Arbeit gliedert sich folgendermaßen:
Im Kapitel 1 stellen wir die grundlegenden Eigenschaften von Schwerionenkollisionen mit
besonderem Schwerpunkt auf dem Phasendiagramm von QCD Materie vor. Außerdem geben
wir einen kurzen Überblick der theoretischen Modelle, die zur Untersuchung von Schwerio-
nenkollisionen verwendet werden.
Im Kapitel 2 wird eine Einführung zu PHSD gegeben. Zunächst stellen wir die theoretischen
Grundlagen der relativistischen Vielteilchentheorie vor sowie das Dynamical Quasi-Particle
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Modell (DQPM), auf welchem PHSD basiert. Anschließend beschreiben wir die verschiede-
nen Stufen einer Schwerionenkollisionen im mittleren Energiebereich (

√
sNN = 3 − 20 GeV)

und die Ergebnisse von PHSD Rechnungen. Zuletzt präsentieren wir die Implementierung
der chiraler Symmetriewiederherstellung in die hadronische Teilchenproduktion innerhalb des
PHSD Ansatzes.
Kapitel 3 beschäftigt sich mit der Untersuchung von Hyperonproduktion bei niedrigen En-
ergien (

√
sNN = 2−3 GeV). Die Berücksichtigung der Hyperon-Hyperon-Wechselwirkung ist

eine Verbesserung des PHSD Ansatzes für die Mehrfach-Strange-Teilchen-Produktion nahe
der Produktionsschwelle. Ein Vergleich zu aktuellen Messdaten der HADES und FOPI Kol-
laborationen wird mit besonderem Augenmerk auf die (überraschend) großen Multiplizitäten
der Ξ Teilchen präsentiert. Die Einbeziehung der Hyperon-Hyperon Wechselwirkung in-
duziert eine Erhöhung der Ξ Multiplizität bei niedrigen Energien, liefert jedoch keine schlüs-
sige Interpretation der HADES Messungen.
Die Rolle der chiralen Symmetriewiederherstellung im Energiebereich

√
sNN = 2 − 20 GeV

wird in Kapitel 4 untersucht. Die Strangenesserhöhung bei diesen Energien wird als Sig-
natur der chiralen Symmetriewiederherstellung identifiziert. Es stellt sich heraus, dass die
Teilchenmultiplizitäten, Rapiditätsspektren sowie Teilchenverhältnisse -im Gegensatz zu dem
geringen Einfluss auf transverse Massenspektren- geeignete Observablen der chiralen Sym-
metriewiederherstellung sind. Die Abhängigkeit von der nuklearen Zustandsgleichung wird
ebenfalls untersucht. Das Hauptresultat besteht aus der Feststellung, dass eine mikroskopis-
che Interpretation des K+/π− Verhältnisses durch das Zusammenspiel der chiralen Symme-
triewiederherstellung und der Bildung eines Quark Gluon Plasmas (QGP) gelingt.
In Kapitel 5 wird sodann das kollektive Verhalten von Teilchen in Form des direkten Flusses
erforscht. Wir berechnen die differentiellen Hadronenspektren der von p+p sowie A+A Kolli-
sionen produzierten Teilchen im Energiebreich ELab = 6−158 AGeV. Weitern untersuchen wir
die Zeitentwicklung der transversalen Impulsspektren von Teilchen und charakterisieren die
wichtigsten Kanäle, die für eine Änderung des Impulses während der Dynamik des Systems
verantwortlich sind. Zusätzlich adressieren wir die Sensitivität der PHSD Berechnungen vom
direkten Fluss von hadronischen Potentialen, experimentellen Cuts und Zentralitätsauswahl.
Der direkte Fluss wird für den Energiebereich

√
sNN = 3 − 100 GeV im Vergleich zu den

verfügbaren experimentellen Messdaten von STAR, E895 und NA49 präsentiert. Wir stellen
fest, dass die PHSD Rechnungen unter Berücksichtigung der chiralen Symmetriewiederher-
stellung und dem hadronischen Potential eine gute Übereinstimmung mit den experimentellen
Messdaten des Proton- und Pionflusses ergeben.
In Kapitel 6 liefern wir Voraussagen für Observablen in ultrarelativistischen Kollisionen im
Energiebereich der zukünftigen FAIR und NICA Einrichtungen und untersuchen ihre Ab-
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hängigkeit von der chiralen Symmetriewiederherstellung. Hierzu betrachten wir zusätzlich
zu den Rapiditätsspektren die Strange-zu-nicht-Strange Teilchenverhältnisse und erforschen
diese als Funktionen der Systemgröße und der Zentralität des kollidierenden Systems.
Im letzten Kapitel fassen wir noch offene Fragen innerhalb des PHSD Ansatzes und die Ergeb-
nisse dieser Arbeit zusammen.
Diese Dissertation beinhaltet zwei Anhänge: Der erste liefert eine Einleitung zur chiralen
Symmetriewiederherstellung und der zweite widmet sich der Herleitung von Wirkungsquer-
schnitten für die Hyperon-Hyperon Wechselwirkung innerhalb eines Eich-Flavour-SU(3) hadro-
nischen Models.
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Summary

This dissertation is devoted to the study of Chiral Symmetry Restoration (CSR) in Heavy-
Ion Collisions (HIC). The dilepton spectroscopy has always been identified as a source of sig-
natures for CSR, since in a chirally restored phase the vector and axial-vector currents should
become equal. However, no clear evidence for this phenomenon has been achieved so far.
Lattice QCD (lQCD) calculations show that at vanishing baryon chemical potential the CSR
takes place as a crossover transition at roughly the same critical temperature as the deconfine-
ment phase transition. The question of CSR and of deconfinement at finite baryon chemical
potential has been investigated theoretically and experimentally in the past. In the first context,
effective or functional models have to be employed, due to the fermion sign problem of lQCD.
These models suggest that CSR occurs prior to deconfinement at a lower temperature. In the
second context, many facilities address the dense matter in “low-energy” HIC: the Relativistic
Heavy-Ion Collider (RHIC), the future Facility for Antiproton and Ion Research (FAIR) and
the future Nuclotron-based Ion Collider fAcility (NICA). The identification of signatures in
the final particle distributions and the theoretical understanding of those observables represent
the actual tasks of heavy-ion physics.
In this work, we analyze the role of CSR in HIC adopting the Parton-Hadron-String Dynam-
ics (PHSD), a transport approach describing heavy-ion reactions using partonic, hadronic and
string degrees-of-freedom. This dissertation is organized as follows:
In Chapter 1 an introduction to the HIC is given with a focus on the main goal of this field,
which is the study of the Quantum-Chromo-Dynamics (QCD) phase diagram. We also briefly
present the available theoretical approaches that are used to study HIC.
In Chapter 2 we recall PHSD, the theoretical approach adopted in this study. We introduce the
relativistic transport theory -upon which PHSD is based- and the Dynamical-Quasi-Particle
Model (DQPM) adopted for the partonic phase. We describe the different stages of a HIC and
analyze the main features of PHSD when applied to HIC in the intermediate energy regime
(
√

sNN = 3 − 20 GeV). Furthermore, we present the implementation of CSR in the hadronic
particle production within PHSD on the basis of the Schwinger mechanism.
Chapter 3 is devoted to the investigation of the hyperon production at low energies (

√
sNN =

v
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2−3 GeV). The extension of PHSD to include hyperon-hyperon scatterings is an improvement
of the model concerning the multi-strange particle production close to threshold. A compar-
ison to recent measurements from the HADES and FOPI collaborations is presented, with a
special focus on the (surprisingly) large multiplicity of the Ξ particles. The inclusion of the
hyperon-hyperon interaction produces an enhancement of the Ξ multiplicity at low energies
but does not provide a conclusive interpretation of the HADES measurements.
The role played by CSR in the particle production within the energy range

√
sNN = 2−20 GeV

is investigated in Chapter 4. The strangeness enhancement at AGS energies is identified as a
signature of the CSR. Particle abundances, rapidity spectra and ratios are suitable observables
for CSR, contrary to the transverse mass spectra where the CSR contribution is rather small.
The dependence on the nuclear equation of state is also investigated. The main finding is a
microscopical interpretation of the excitation function of the K+/π+ ratio related both to CSR
and to the formation of a Quark Gluon Plasma (QGP).
Chapter 5 is dedicated to a study of the collective behavior of the particles produced in HIC
in terms of the directed flow. We investigate the differential hadron spectra produced in p+p
and A+A collisions in the energy range ELab = 6 − 158 AGeV. We analyze the time evolution
of the transverse momentum of particles and we distinguish the most important channels as
sources of changes in momentum during the dynamics. In addition, we address the sensitiv-
ity of PHSD calculations of the directed flow on hadronic potentials, experimental cuts and
centrality selection. The directed flow of protons and pions is presented in the energy range
√

sNN = 3−100 GeV in comparison with avaliable data from the STAR, E895 and NA49 exper-
iments. We find that the PHSD calculations including CSR and hadronic potential -according
to the NL1 parametrization- give a good description of the experimental observations of the
proton and pion flows.
In Chapter 6, we provide predictions for observables in relativistic collisions in the energy
range of the future FAIR and NICA facilities. The main purpose is to shed further light on the
CSR. Thus, in addition to particle rapidity spectra, the strange to non-strange particle ratios
are explored as a function of the system size and of the centrality of the colliding system.
In this investigation it emerges that the “horn” feature in the excitation function K+/π+ ratio
disappears in small systems (e.g. C + C), while the analogous peak-structure in the excitation
function (Λ + Σ0)/π ratio is independent of the size of the system.
In the final Chapter we summarize the issues addressed in this work within the PHSD frame-
work and the results achieved.
This dissertation includes two appendices: the first provides an introduction to chiral sym-
metry and the second is dedicated to the derivation of scattering cross-sections for hyperon-
hyperon interactions within a gauged flavor SU(3) hadronic model.
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Chapter 1

Heavy-ion collisions

Heavy-ion collisions (HIC) represent the unique experimental way to probe strongly in-
teracting matter under extreme conditions, i.e. high temperature and/or density. Often they
are labeled “little bangs” in parallelism with the Big Bang of the universe. In fact, during a
heavy-ion reaction the temperature and density might reach values comparable to those at-
tained ≈ 10 µs after the Big Bang. Moreover, the hot and dense system created in the central
volume of the collision, called “fireball”, expands and cools down analogously to the evolu-
tion of the universe. Therefore, the study of HIC allows to explore and extract information
about the state and properties of the matter at the early stages of the universe. In this respect,
high energy heavy-ion reactions seem to produce a Quark Gluon Plasma (QGP), a phase of
the strongly interacting matter where quarks and gluons are not confined into hadrons. The in-
vestigation of the QGP is the main goal of the heavy-ion physics, along with the more general
study of the Quantum-Chromo-Dynamics (QCD) phase diagram. In this Chapter, an introduc-
tion to HIC is provided with a focus on the past, current and future experiments in this field.
Moreover, we present the ideas of the QCD phase diagram and briefly describe the available
theoretical approaches to study these reactions, with a comparison between these models.

1.1 Introduction

The study of heavy-ion physics relates to about five decades of research. We can trace back
its beginning to the ’70s with experiments at the Bevatron/Bevalac at the Lawrence Berkeley
National Laboratory (LBNL) and at the Synchro-Phasotron at the Joint Institute for Nuclear
Research (JINR). The maximum bombarding energy reached by the Bevatron/Bevalac has
been ELab ≈ 2 AGeV, while the heavy-ion program at the Synchro-Phasotron studied colli-
sion energies of the order of 100 AMeV. The subsequent experiments have been pushed to
larger and larger energies with the aim of discovering the QGP. The Alternating Gradient Syn-
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2 Heavy-ion collisions

chrotron (AGS) [1] at the Brookhaven National Laboratory (BNL) have studied the energies
ELab = 2 − 11 AGeV, while the Super Proton Synchrotron (SPS) [2] at Centre Europeen de
la Recherche Nuclaire (CERN) has addressed the energy interval of ELab = 20 − 160 AGeV.
In order to achieve higher center-of-mass energies

√
sNN , the collider configuration has been

preferred relative to the fixed target experiments. The Relativistic-Heavy-Ion-Collider (RHIC)
[3, 4] at BNL has been the first collider experiment for HIC and it is currently able to span
a wide range of center-of-mass energy, i.e.

√
sNN = 5 − 200 GeV. It has provided first

measurements at
√

sNN = 200 GeV, which indicate that a QGP has been created during
the collisions and that it behaves as an almost perfect fluid [5]. However, there are indi-
cations that a QGP can be produced also at lower energy, in particular in the SPS regime
[6, 7]. The upper limit set by RHIC has been overtaken by the Large Hadron Collider (LHC)
[8], which is currently performing collisions at the TeV scale (the maximum energy which
has recently been achieved is

√
sNN =5.02 TeV). Complementary to these high-energy col-

lision programs, some experiments (FOPI [9], KAOS [10] and HADES [11]) have stud-
ied low energy reactions (ELab . 2 AGeV) at the SchwerIonen Synchrotron (SIS) at the
Gesellschaft für Schwerionenforschung (GSI Helmholtzzentrum für Schwerionenforschung).
Recently, the interest has shifted from high energies to the investigation of intermediate en-
ergy regimes (

√
sNN = 4 − 11 GeV) with the aim of exploring systems with large baryon

density/chemical potential. In this respect, new heavy-ion facilities are under construction:
the Facility for Antiprotons and Ion Research (FAIR) at GSI [12], the Nuclotron-based Ion
Collider fAcility (NICA) [13] at the JINR and the Japan Proton Accelerator Research Com-
plex (J-PARC) [14]. At FAIR, fixed target experiments will be performed within the energy
range

√
sNN = 4 − 9 GeV, such as the Compressed Baryonic Matter (CBM) experiment [15].

NICA is a collider facility and will carry out experiments at
√

sNN = 4−11 GeV. In addition to
the new facilities, the beam energy scan (BES) performed at RHIC [16] is currently studying
intermediate energies:

√
sNN = 5.5, 7.7, 11.5, 19.6, 27, 39, 62.4 GeV.

The time evolution of a HIC can be represented schematically in Fig. 1.1, from the initial
stage, in which two heavy-ions are boosted with bombarding energy ELab against each other,
to the final stage, in which the produced particles hit the detectors. Unfortunately, we cannot
have direct access to the collision process via experimental techniques. It is only possible
to detect the distributions and spectra of the produced particles, which correspond to the last
stage displayed in Fig. 1.1. We can extract information about the previous stages of the colli-
sions identifying some suitable observables and explaining their features and behaviors using
theoretical models.
The identification and interpretation of observables represent the major challenges in HIC
physics. From the experimental point of view, many technical difficulties have to be addressed,
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Figure 1.1: Sketch of the time evolution of a heavy-ion collision. Courtesy by Steffen Bass.

mostly related to the intent of reaching high luminosity and to the problem of resolving the
high number of detected particles (separation of the background, recognition of many chan-
nels etc..). Instead, on the theoretical point of view, the description of these reactions is not
easy, since HIC is a strongly interacting many-body system in a non-perturbation regime. We
will discuss in detail the available theoretical approaches in Section 1.3.

1.2 The QCD phase diagram

HIC represent a suitable framework to study the in-medium properties of hadrons at high
baryon density and the QCD Equation of State (EoS). This consists in the investigation of the
QCD phase diagram, where different states of the strong matter and the associated phase tran-
sitions are displayed as a function of the net baryon density n (or chemical potential µB) and
temperature T . In Fig. 1.2 an illustrative plot of the QCD phase diagram is shown. This only
represents a qualitative picture, since our knowledge is limited to one point of the diagram at
vanishing temperature and at net baryon density n = n0, i.e. the state of the nuclei. Fig. 1.2 is
based on experimental and theoretical considerations, which are not conclusive and still need
to be confirmed with quantitative results. Here, we draw the main features of the QCD phase
diagram, which has become more sophisticated during the years compared to the initial ver-
sion of the diagram proposed by Cabibbo and Parisi in Ref. [17].
The strong matter is characterized by two phases: a hadronic phase at low temperature and
density and a QGP phase at large temperature and/or large density. The associated phase tran-
sition is considered to be a crossover at low chemical potential and a first order transition at
large chemical potential, with a critical point in between matching the two types of transi-
tion. Lattice QCD (lQCD), which consists in numerically solving the QCD theory of quarks
and gluons on a space-time grid [19, 20], provides robust information about an area of the
phase diagram close to the temperature axis. It gives a crossover transition and currently no
indications of a critical point have been found with this method. Unfortunately, lQCD calcula-
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Figure 1.2: Illustrative plot of the QCD phase diagram. The figure is taken from Ref. [18].

tions cannot be performed at finite baryon chemical potential due to the fermion sign problem.
There are few methods that allow lQCD to probe µB , 0 [21], like the Taylor expansion
of the thermodynamic quantities in terms of µB/T and/or the use of an imaginary chemical
potential, but the calculations remain impossible for µB >> 0. On the other hand, effective
and functional models can be used to describe a larger area of the diagram [22, 23, 24, 25].
In particular, the functional approaches, like Dyson-Schwinger Equations (DSE) [23, 26, 27]
and Functional Renormalization Group (FRG) [25], can provide information at finite µB, since
they are not affected by the fermion sign problem. The downside is that a truncation scheme
has to be applied to solve the system of coupled equations. Another possibility is to consider
effective Lagrangians which approximate QCD. This is done in the approaches based on the
Nambu Jona-Lasinio (NJL) model [28], where the strong interactions are considered as effec-
tive point-like interactions between quarks, excluding gluons from the description. This model
does not include confinement, which can be incorporated via the coupling of the NJL quarks
to a Polyakov loop. This improvement of the model is called Polyakov Nambu Jona-Lasinio
model (PNJL) [29].
Apart from deconfinement, the QCD phase diagram is characterized by an additional transi-
tion, which is the chiral symmetry restoration. Chiral symmetry is the invariance of a La-
grangian under a transformation of the group U(N f )R × U(N f )L (with N f as the number of
flavors), which is approximate for the QCD Lagrangian (see Appendix A). As in case of the
deconfinement phase transition, the boundaries of the CSR phase transition line are not well
known. Lattice QCD calculations show that at vanishing µB the CSR takes place at roughly the
same critical temperature and energy density as the deconfinement crossover. At finite baryon
chemical potential different effective models support the idea that at finite chemical potential
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a partially restored phase is achieved before the deconfinement occurs [28, 30, 31]. In this
context, a quarkyonic phase has been proposed as a phase in which the degrees of freedom
(partons) are confined in chirally symmetric baryons.
Additionally to the common density/temperature axes, in Fig. 1.2 a third axis is shown as
a function of the difference between the neutron and proton densities nn − np. In this way,
isospin-asymmetric matter is also considered. This condition of the matter is relevant for neu-
tron stars.
As mentioned before, the goal of heavy-ion physics is to map the QCD phase diagram. In
particular, high-energy collisions (investigated at LHC and RHIC) probe the low-µB area, as
highlighted by the red arrow, whereas the intermediate and low energy reactions (investigated
at FAIR and NICA) probe the large-µB area, as highlighted by the blue and green arrows in
the figure. These arrows represent ideal paths in the T − n (or T − µB) plane, that the sys-
tems created in HIC should follow during the time evolution. The understanding of how the
system created in HIC evolves in the T − n (or T − µB) plane is not straightforward. Sta-
tistical models [32, 33, 34, 35, 36] extract from the final hadronic multiplicities values of
temperature and baryon chemical potential that characterize the system at the freeze-out, i.e.
the stage at which all particle abundances are fixed (see Section 1.3 for details). Each col-
liding system corresponds to one point in the phase diagram and the line connecting them
is called freeze-out line. Hydrodynamical models, that incorporate the equation of state as
input, are able to obtain trajectories [37] in the T − n (or T − µB) plane, each one associated
to one colliding system. However, these models assume that the system is in local equi-
librium, a strong assumption which limits the applicability of this type of approach. The
comparison between results obtained by hydrodynamical models and experimental observa-
tions supports the fact that hydrodynamics provides a good description of the evolution of the
fireball created in high-energy collisions (e.g. at RHIC), while it cannot be used in the low
energy regime (e.g. at SPS). On the other hand, local equilibrium is not required by transport
approaches [7, 38, 39, 40, 41, 42], which describe HIC on a microscopical level in terms of
non-equilibrium dynamics. In this framework though, it is problematic to derive macroscopic
equilibrium properties and the exact QCD-equation of state is needed to relate the energy
and the conserved charges to temperature and to chemical potentials of the system in equi-
librium. Moreover, in order to extract information about the QCD phase diagram, one needs
to check if the system has reached kinetic equilibration. One possible method to verify this
condition is to locally compute the longitudinal and transverse pressures; if they are equal,
kinetic equilibrium is established. This has been done using the Ultrarelativistic Quantum
Molecular Dynamics (UrQMD) transport model [39] in Ref. [43] and it has been found that
at AGS energies kinetic equilibrium is achieved for times larger than ≈ 10 fm/c. Thus, it is in
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principle possible to study the phase diagram of the strong matter also adopting transport ap-
proaches. In Ref. [44], within the PHSD model, the strangeness production has been analyzed
and characterized as a function of T and µB adopting an EoS for a non-interacting hadron
gas. In this study, the following results emerged. At AGS energies only a few percent of the
total strangeness production happens in approximate local thermodynamical equilibrium. The
cells, where strange particles are produced in equilibrium, are characterized by values of T
which decrease with decreasing bombarding energy ELab, while the values of µB increase with
decreasing ELab. For each colliding system the extracted points in the T − µB plane are spread
over a wide area. From these findings, locating a critical point in the phase diagram appears
to be difficult to accomplish experimentally.

1.3 Theoretical models

The theoretical study of HIC is not easy since one needs to describe a strongly interact-
ing many-body system in a non-perturbative regime in an initially non-equilibrium state. It
is also not conclusively established whether kinetic and chemical equilibria are achieved at
some level. Moreover, the theory of the strong interaction (QCD) can be solved using lQCD
techniques only in few cases: for static systems and for small values of µB. Consequently,
we need to rely on effective models to investigate theoretically HIC. The available models are
statistical, hydrodynamical and transport approaches. In the following Sections 1.3.1 - 1.3.3
we report the main features of these models, highlighting the advantages and disadvantages.

1.3.1 Statistical models

The statistical or thermal models aim to describe the particle production in HIC as a sta-
tistical process in equilibrium. This represents the main assumption of this type of approach.
Statistical models do not provide a dynamical description of the collision process but they
are limited to the characterization of the final particle multiplicities, that are detected experi-
mentally. Consequently, they are not able to extract physical information about the processes
occurring during the collision. The particle production, as considered in this approach, fulfills
the conservation laws of the quantum numbers that characterize the analyzed degrees of free-
dom, i.e. baryon number Bi, electric charge Qi and strangeness S i. The choice of statistical
prescriptions -to follow in HIC- mostly depends on the energy regime. The grand canonical
ensemble is used for high collision energies, like those addressed at RHIC and LHC, while
the canonical ensemble is suited for low collision energies, like those investigated at SIS and
AGS (this prescription is also appropriate to study small systems). In fact, when the produc-
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tion of strangeness is suppressed, as at low energies or in p+p collisions, the produced strange
particles are strongly correlated and an exact strangeness conservation is required (not only an
average conservation). In the following, we only show the statistical formulation of the grand
canonical ensemble, but these considerations can be easily extended to the canonical case.
A statistical system is described in terms of its partition function Z, which in case of the grand
canonical ensemble is given by:

Z(T,V, µQ) = Tr[e−β (H−
∑

i µQi Qi)], (1.1)

where H is the Hamiltonian of the system, T and V are the temperature and volume of the
system, respectively, β is β = 1/T , Qi are the conserved charges and µQi are the associated
chemical potentials.
The Hamiltonian usually adopted for HIC is the one describing a non-interacting hadron gas.
Thus, the statistical models, which use this EoS, are referred to as Hadron Resonance Gas
(HRG) models. In this picture, the partition function can be factorized in terms of single
contributions Zi associated to each hadron species. Each contribution is given by:

ln Zi(T,V,µ) =
V gi

2π2

∫ ∞

0
±p2dp ln[1 ± λie−βεi], (1.2)

where the label i refers to the hadronic particle, the +(-) sign is associated to fermions (bosons),

gi is the spin-isospin degeneracy factor, εi =

√
p2 + m2

i is the energy, µ = (µB, µS , µQ) is the
total chemical potential and λi is the fugacity given by:

λi(T,µ) = exp
(

BiµB + S iµS + QiµQ

T

)
. (1.3)

From the partition function Z, one can derive all thermodynamic properties of the system. For
example, the density of the particle i reads:

ni(T,µ) =
〈Ni〉

V
=

T gi

2π2

∞∑
k=1

(±1)k+1

k
λk

i m
2
i K2

(kmi

T

)
, (1.4)

where K2 is the modified Bessel function, the +(-) sign is associated to bosons (fermions). The
thermal densities of the particles can be additionally corrected taking into account modifica-
tions related to the resonance decays with appropriate branching ratios.
In HIC, the net strangeness is zero and the electric charge is fixed by the colliding nuclei,
thus, the partition function (Eq. 1.2) and the associated particle densities (Eq. 1.4) depend on
three parameters: V , T , µB. The set of free parameters reduce only to T , µB if particle ratios
are considered instead of absolute particle yields. Several statistical models succeed in de-
scribing simultaneously several particle ratios, including pions, kaons and baryons up to Ω,



8 Heavy-ion collisions

with a unique set of parameters (T, µB) [32, 34, 45, 46, 47]. The extracted values of T and µB

characterize the system at the freeze out, that is the stage at which all particle multiplicities
are frozen. The (T, µB) points obtained from the fit of the particle ratios for different collid-
ing systems can be represented in the QCD phase diagram and constitute the freeze-out line.
The level of proximity between this line and the line of the deconfinement phase transition is
still an open issue. Different statistical models find a common trend of the parameters T and
µB as a function of the center-of-mass energy

√
sNN [32, 34, 46]: the temperature increases

with increasing
√

sNN (up to a saturation temperature), while the baryon chemical potential
decreases. Despite this, relevant differences in the results emerge among the available models.
These are mostly related to the introduction of new fitting parameters, introduced to better
describe the particle multiplicities, such as the factor for strangeness suppression γS [33], the
non-equilibrium fugacities [35] and the separation of freeze-out in multiple freeze-out stages
associated to different particle species [36].
The question of the different dynamics of the strange degrees of freedom compared to the
particles containing light quarks is a source of uncertainty of the model, which is not able
to provide a dynamical description of the collision process. There are other sources of un-
certainty in this approach. It is not clear which resonances must be included in the HRG
model. The inclusion of the scalar-isoscalar resonance f0(500), also identified as the σ meson,
is still under debate [48]. Moreover, as stated before, HRG models are commonly employed
for this approach, but they neglect interactions between particles and mean-field properties of
the medium. However, interactions and mean-field effects become relevant in systems with
large density [49]. To cope with this, some models implement interactions between particles
via excluded volume corrections [50] or through the use of an EoS based on Van der Waals
interactions [51].

1.3.2 Hydrodynamical models

The hydrodynamical models describe the hot and dense system created in HIC from a
macroscopical point of view, where the relevant variables are thermodynamical quantities like
temperature, pressure, densities and currents. They provide a dynamical description of the
collision processes under the restrictive assumption of local thermal and chemical equilibria.
These assumptions strongly limit the applicability of this approach to the intermediate stage
of the collision. In fact, the system does not achieve a local equilibrium instantaneously after
the collision contact and at the late stages the system cannot be described as a fluid, since it
develops as a dilute gas.
In this approach, the dynamics of the system is ruled by the conservation equations of the
energy-momentum tensor Tµν and of currents associated to the relevant charges, such as the
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current Nµ associated to the net baryon density:

∂µT µν = 0, (1.5)

∂µNµ = 0. (1.6)

This system of equations is closed with the inclusion of an EoS that provides information
about the chemical potential and temperature of the system. The differential equations are
solved locally on a space-time grid, where the macroscopic variables are propagated.
The simplest case is represented by an ideal fluid, whose T µν and Nµ read:

T µν(x) = [ε(x) + p(x)] uµ(x)uν(x) − gµνp(x), (1.7)

Nµ = ρB(x) uµ(x), (1.8)

where ε(x) is the energy density, p is the pressure, uµ = γ(1, v) is the 4-velocity, gµν is the
metric tensor and ρB(x) is the net baryon density.
The advantage of this approach is that the EoS is incorporated in the model as input, so it is in
principle possible to connect the experimental observations to the properties of the QCD phase
diagram. On the other hand, from the hydrodynamical evolution it is not possible to extract
particle multiplicities and spectra in a direct way, due to the break-down of the hydrodynamical
description at the so-called freeze-out1. A prescription for this final stage has to be introduced
in the model for example via a Cooper-Frey formula [52], which gives the phase-space den-
sity of hadronic particles in correspondence of a suitable hypersurface (defined on the basis of
constant time, constant temperature or constant energy density). The implementation of the
Cooper-Frey formula suffers from the problem of negative contributions, i.e. particles which
move inwards the fireball [53]. In addition, current models are not able to include interactions
between the freeze-out particles and the fluid. Thus, a self-consistent realization of the freeze-
out and the description of the final stage of the system evolution are still missing within this
approach. The definition of the freeze-out boundary and the necessary recipe for the initial
stage are the main sources of uncertainty in the hydrodynamical approach, which is conse-
quently unable to describe consistently the entire collision process. Possible prescriptions for
the pre-equilibrium stage (before the hydrodynamical evolution) are the Glauber models [54],
the Taub-adiabate scheme [55] and initial conditions according to a color glass condensate
ansatz [56]. Despite the issue of the boundary conditions, hydrodynamical models provide
satisfying results for HIC in the high energy regime [57, 58]. The main achievement of the
hydrodynamical approach is the successful description of the elliptic flow measured at RHIC
[59, 60], supporting the idea that the system behaves almost like a perfect fluid during the

1In the context of hydrodynamical models, the freeze-out corresponds to the stage in which hydrodynamical
equilibrium ceases.
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fireball expansion [5].
The hydrodynamical description is realized in different models, which differ in the number
of dimensions considered (1+1, 2+1 and 3+1 dimensional models [61, 62, 63]) and in the
number of fluids implemented in the propagation (one-fluid [64] or multi-fluid models [37],
the latter describing separately target, projectile and fireball). A recent development of hydro-
dynamical models is the inclusion of small deviations from equilibrium, that resolves in the
use of viscous hydrodynamics [65, 66]. This extension implies the calculation of transport
coefficients, bulk and shear viscosity and heat conductivity.
Further progress in this field has been achieved with the creation of hybrid models, which
combine hydrodynamical and transport codes [67, 68]. This is accomplished by integrating a
transport description for the particles produced after the hydrodynamical evolution of the sys-
tem. The final hadron cascade is called “after-burner” stage. The development of hybrid mod-
els is motivated by the aim of realizing two separate freeze-out stages: a chemical freeze-out
and a kinetic freeze-out. New models have implemented transport codes also to describe the
pre-equilibrium stage. Unfortunately, although the hybrid models merge hydrodynamical and
transport approaches, these ingredients remain independent and not consistently combined.
Thus, the final results strongly depend on the prescriptions adopted to match the different in-
gredients.
We specify that the question of applicability of hydrodynamical models is not limited to the
temporal evolution of the collision process, but it also concerns energy considerations [57].
In fact, the time interval in which the condition of local equilibrium is fulfilled progressively
decreases as the beam energy decreases. This can be seen via the computation of the Knudsen
number, i.e. the ratio between the mean free path and the fluid length scale [69]. Thus, the
hydrodynamical picture is suitable predominantly at high energies, like top RHIC energies,
while it fails at low energies, e.g. in the FAIR and NICA regimes.

1.3.3 Transport models

The transport models are unique as they have the capability to consistently describe the
whole time evolution of a HIC. They provide a microscopic description of the particle dynam-
ics occurring in the collision process. In spite of the direct access to the microscopic features
of the system, information about macroscopic properties, such as temperature or chemical po-
tential, is not straightforward to derive in transport approaches, especially in relation to the
out-of equilibrium dynamics (for a detailed discussion on this issue see Refs. [43, 44]).
This kind of models does not require any assumption about the equilibration of the system.
However, to study a system as HIC one needs to solve a system composed of a large number
of coupled differential and integral equations of motion. Thus, in order to be able to solve the
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transport equations describing many-body interactions, one needs to require at some level a
simplification (e.g. type of collisions considered, mean-field approximation etc.).
To illustrate the main features of this approach, we consider the Vlasov Ühling Uhlenbeck
(VUU) equation, as a simple starting point. This is a semiclassical extension of the Boltz-
mann transport equation which includes a mean-field potential and binary collisions of the
type 1 + 2 ↔ 3 + 4. The VUU equation gives the time evolution of the single-particle phase-
space distribution function f (r,p, t) and reads in the non-relativistic limit:(
∂

∂t
+

p
m
∇r − ∇rU(r)∇p

)
f (r,p, t) =g

∫
d3 p2

(2π)3

d3 p3

(2π)3

d3 p4

(2π)3 W(1+2→3+4) (1.9)

× (2π)4δ3(p1 + p2 − p3 − p4) δ
(

p2
1

2m1
+

p2
2

2m2
−

p2
3

2m3
−

p2
4

2m4

)
× [ f3 f4(1 ± f1)(1 ± f2) − f1 f2(1 ± f3)(1 ± f4)],

where p is the particle momentum, U(r) is the self-generated mean-field potential (of single-
particle type), g is the spin-isospin particle degeneracy factor, W(1+2→3+4) is the transition ma-
trix element (squared) for the reaction 1 + 2→ 3 + 4, fi = fi(r,pi, t) is the short-hand notation
for the phase-space distribution function of the particle of type i, the (+) and (-) signs are as-
sociated to bosons and fermions and correspond to the Bose enhancement and Pauli blocking
factors, respectively. On the right-hand side, the term f3 f4(1 ± f1)(1 ± f2) represents the gain
term arising from the backward collisions 3 + 4 → 1 + 2, while the term f1 f2(1 ± f3)(1 ± f4)
represents the loss term associated to the forward collisions 1 + 2 → 3 + 4. The left-hand
side of Eq. 1.9 corresponds to the Vlasov transport equation for particles propagating in the
self-generated mean-field potential (in the Hartree-Fock approximation), while the right-hand
side represents the collision contribution.
If the system is composed of i particle species, we need to solve a set of i coupled transport
equations. A solution of the coupled transport equations can be calculated numerically either
assuming a Gaussian particle density distribution or applying a test-particle ansatz. The latter
replaces the phase-space density with n test-particles according to:

f (r,p, t) = lim
n→∞

1
n

n·A∑
i

δ(r − ri(t)) δ(p − pi(t)), (1.10)

where A is the total particle number given by:

A =

∫
d3r

∫
d3 p f (r,p, t). (1.11)

For a proper treatment of the HIC, quantum relativistic equations have to be considered;
consequently models based on classical Boltzmann-type equations are usually not suited for
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strongly-interacting systems. In the latter case one needs to employ the Kadanoff-Baym equa-
tions [70] (see Section 2.1 for more details), i.e. generalized off-shell transport equations for
the Green functions. This is done in the Parton-Hadron-String Dynamics (PHSD) transport
approach [7] presented in Chapter 2.
A numerical realization of transport models for HIC starts with an initialization stage, where
two colliding nuclei are described on a space-time grid according to a density profile (given
for example by Woods-Saxon distributions) with a phase-space distribution. The system is
then divided into cells, where particles propagate and interact (according to the implemented
transport theory) in line with experimental or phenomenological cross-sections, that are in-
cluded as input. Usually, transport models are integrated by high-energy event generators like
PYTHIA [71], FRITIOF [72, 73] and JETSET [74] to describe hard collisions on the basis of
the Lund string model [75]. At low energies, medium effects and hadronic potentials are found
to be significant, thus it is important to include also these aspects in the description [49]. The
majority of transport codes includes interactions of the type: 2 ↔ 2, 2 → 3, 1 ↔ 2, whereas
three body interactions are neglected. In this respect, we mention that the PHSD transport
approach incorporates three-body channels for the production of three mesons from the inter-
action of a baryon and antibaryon pair both in the strange and non-strange sectors [44, 76].
The actual solution of the transport equation is performed numerically via Monte Carlo simu-
lations. Many transport codes [7, 40] resort to use the parallel ensemble method, that consists
in the simulation of N collision events performed in parallel. This allows to compute with
good accuracy collective quantities (scalar density, hadron potentials and in-medium proper-
ties of particles in general), since the statistical fluctuations are reduced by averaging over the
N events. However, this numerical method is computationally demanding. The description
of rare processes is also hard to accomplish in transport models. Attempts to overcome this
issue involve perturbative treatments, as performed e.g. by the HSD model for the strangeness
production at low SIS energies [49].
The most difficult aspects to introduce in transport models is the phase transition between
a hadronic and a partonic phase and a suitable description of the partonic phase in a non-
perturbative regime in line with lQCD data. Some transport codes model the QCD phase
as a parton cascade according to perturbative QCD (pQCD), but RHIC observations of the
large elliptic flow support the idea that the hot and dense phase behaves as a strongly coupled
QGP, in contrast to pQCD calculations. On the other hand, lQCD, which is a non-perturbative
approach, is currently not able to provide dynamical properties of the degrees of freedom.
Regarding this issue, the PHSD transport approach describes the partonic phase according to
the Dynamical Quasi-Particle Model (DQPM), which reproduces the lQCD equation of state
and gives the dynamical properties of quarks and gluons as a function of the scalar or en-
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ergy density (an introduction to the DQPM model is given in Section 2.2). The hadronization
procedure is also hard to model. One possible method is the quark coalescence [77], which
consists of an instantaneous recombination of quark states into hadron states that, however,
does not conserve energy. The conservation of energy and momentum is instead a natural out-
come of an off-shell model, where particles are described in terms of broad spectral functions.
This is the case of PHSD, in which the hadronization scheme follows local covariant transition
rates for (qqq), (q̄q̄q̄) and (qq̄) fusion (see Section 2.3 for more details).
In this work, we make use of the PHSD transport approach, which is capable of consistently
describing the whole collision process including both hadronic and partonic phases and en-
suring the conservation of energy, momentum and quantum numbers at each stage of the time
evolution.





Chapter 2

Parton-Hadron-String Dynamics

Among the different theoretical models that are used to study Heavy-Ion Collisions (HIC),
only the transport approaches provide a microscopic and consistent description of the whole
dynamics of the collision. The research work presented in this dissertation is based on a
transport approach, the Parton-Hadron-String Dynamics (PHSD), which has been developed
for the study of strongly interacting systems in- and out-of equilibrium [7, 78]. It contains both
hadronic and partonic degrees of freedom, the latter included according to the Dynamical
Quasi-Particle Model (DQPM) [79, 80]. The PHSD approach has been tested for different
colliding systems (p+p, p+A, A+A) in a wide range of bombarding energy, from SIS to LHC
energies, and has been able to describe a large number of experimental observables [81]. In
this Chapter, we firstly present the transport theory on which PHSD is based, i.e. the Kadanoff-
Baym equations for the Green functions [70, 79, 80]. Secondly, we introduce both the PHSD
and DQPM approaches and analyze the main features of PHSD in case of heavy-ion collision
at intermediate energies (

√
sNN = 3 − 20 GeV). Finally, the recent extension of PHSD to

incorporate Chiral Symmetry Restoration (CSR) [44, 82] is presented in detail.

2.1 Transport theory: Kadanoff-Baym equations

The PHSD transport approach is based on the Kadanoff-Baym equations, which are off-
shell transport equations in phase-space representation describing the time evolution of the
degrees of freedom. In this quantum and relativistic theory, the transport equations are applied
not to single-particle phase-space distribution functions, as in Section 1.3.3 for the Vlasov
Ühling Uhlenbeck (VUU) equation, but to field quanta characterized in terms of the propa-
gators, i.e. Green functions G that depend on two time arguments. The single-particle Green
functions, defined on the Keldysh-contour (which is shown in Fig. 2.1), can have different
arguments depending on how the path is drawn using the branches of the contour. We obtain

15
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Figure 2.1: The Keldysh-contour for the time integration on a closed path, where the time t1 is
located on the chronological branch (+), while the time t2 is located on the anti-chronological
branch (-). The figure is taken from Ref. [79].

four possibilities for G, which in case of scalar fields φ(x) are:

iGc(x, y) = iG++(x, y) = 〈 T̂ c(φ(x)φ(y)) 〉, (2.1)

iG<(x, y) = iG+−(x, y) = 〈φ(y)φ(x)〉, (2.2)

iG>(x, y) = iG−+(x, y) = 〈φ(x)φ(y)〉, (2.3)

iGa(x, y) = iG−−(x, y) = 〈 T̂ a(φ(x)φ(y)) 〉, (2.4)

where x = (x0, x) and y = (y0, y) are spatial 4-vectors, the apices + and − refer to the
chronological branch and to the anti-chronological branch, respectively, T̂ c is the causal time-
ordering operator placing fields at later times to the left and T̂ a is the anti-causal time-ordering
operator placing fields at later times to the right. The G<(x, y) and G>(x, y) are called Wight-
man functions. The Green functions (Eqs. 2.1-2.4) can also be written in terms of a 2 × 2
matrix as follows:

G(x, y) =


+ −

+ Gc(x, y) G<(x, y)
− G>(x, y) Ga(x, y)

. (2.5)

In addition, we introduce the retarded GR and advanced GA Green functions as follows:

GR(x, y) = Gc(x, y) −G<(x, y) = G>(x, y) −Ga(x, y), (2.6)

GA(x, y) = Gc(x, y) −G>(x, y) = G<(x, y) −Ga(x, y). (2.7)

The Kadanoff-Baym equations provide the exact time evolution of the single-particle Green
functions and they are expressed by:

−(∂x
µ∂

µ
x + m2)GR,A(x, y) = δ(x − y) + ΣR,A(x, x′) �GR,A(x′, y), (2.8)

−(∂x
µ∂

µ
x + m2)G<,>(x, y) = ΣR(x, x′) �G<,>(x′, y) + Σ<,>(x, x′) �GA(x′, y), (2.9)

where the symbol � refers to an integration over the intermediate space-time points x′ and
y′ on a closed-time path (according to the Keldysh-contour) and Σ is the self-energy. The
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self-energy includes interactions of the Green functions of higher orders and in this sense
generates an infinite tower of coupled equations with non-perturbative expansion. From the
Dyson-Schwinger equation we can connect the self-energy and the Green function according
to:

G−1(x, y) = G−1
0 − Σ(x, y) (2.10)

where G0 is the free Green function.
Once we determine Σ (at least in a suitable order), Eqs. 2.8 and 2.9 define the dynamics of the
degrees of freedom. The self-energy can be extracted from the variation of the effective action
Γ[G] of the considered interaction theory:

Σ = 2i
δΦ

δG
, (2.11)

where Φ is the functional that includes all irreducible diagrams up to infinite order. However,
we consider here only the contributions up to the second order in the coupling. This ap-
proximation is known as effective 2-particle irreducible (2PI) limit and considers two-particle
interactions as irreducible diagrams. In this framework, both mean-field effects and scatterings
(at the leading order) are included. We defer the complete derivation of the generalized trans-
port equations from the Kadanoff-Baym equations to Ref. [79] and here report the final result
obtained after a first-order gradient expansion of the Wigner transformed1 Kadanoff-Baym
equations. The Wigner transformed Green functions G and self-energies Σ can be written as:

G
R,A

= <G
R
∓ iA/2, (2.13)

Σ
R,A

= <Σ
R
∓ iΓ/2, (2.14)

where A is the spectral function and Γ is the width of the particle. In first-order gradient
expansion, the spectral function is of relativistic Breit-Wigner form:

A =
Γ

[p2
0 − p2 − m2 − Σ

δ
(x) −<Σ

R
(p, x)]2 + Γ

2
/4

=
Γ

M
2

+ Γ
2
/4
. (2.15)

1The Wigner transformation consists basically in a relativistic Fourier transform. By applying a Wigner
transformation to a space-dependent function F(x1, x2), we obtain a function F(p, x) which depends on the 4-
momentum p and on the mean space-time coordinates x according to :

F(p, x) =

∫ +∞

−∞

dD∆x ei∆xµpµF(x1 = x + ∆x/2, x2 = x − ∆x/2), (2.12)

where p = (p0,p), x = (x1 + x2)/2, ∆x = x1 − x2 and the index D refers to the space dimensions. We notice that,
compared to the classical phase space distribution f (r,p.t), the Wigner transform F(p, x) contains the energy p0

as additional degree of freedom.
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The generalized transport equations are given by:

2pµ∂x
µiG

<,>
− {Σ

δ
+<Σ

R
, iG

<,>
} − {iΣ

<,>
,<G

R
} = iΣ

<
iG

>
− iΣ

>
iG

<
, (2.16)

with {F(p, x),G(p, x)} := ∂
p
µF(p, x) ·∂µpG(p, x)−∂p

µG(p, x) ·∂µpF(p, x), as the relativistic gener-
alization of the Poisson brackets and where G and Σ are purely imaginary quantities after the
Wigner transformation and thus hereafter indicated as iG iΣ.
In addition, the generalized mass-shell equation is:

[p2 − m2 − Σ
δ
−<Σ

R
]iG

<,>
= iΣ<G

R
+

1
4
{iΣ

>
, iG

<
} −

1
4
{iΣ

<
, iG

>
}. (2.17)

In Eq. 2.16 we identify a structure similar to the VUU equation (Eq. 1.9). On the l.h.s.
pµ∂x

µiG
<,>

represents the drift term and the Poisson bracket {Σ
δ

+ <Σ
R
, iG

<,>
} corresponds

to the Vlasov term with local potentials. On the r.h.s., we find the collision terms with the gain
contribution represented by iΣ

<
iG

>
and the loss contribution represented by iΣ

>
iG

<
. On the

other hand, the Poisson bracket {iΣ
<,>
,<G

R
}, labeled as back-flow term, does not have any

correspondence in the VUU equation. It is associated to the off-shell behavior of the particle
propagation in systems out-of equilibrium (it disappears in the limit of on-shell particles) and
vanishes in the quasi-particle approximation.
Introducing the distribution function N(p, x) by:

iG
<
(p, x) = N(p, x)A(p, x), (2.18)

iG
>
(p, x) = (1 + N(p, x))A(p, x), (2.19)

we can separate the occupation density from the spectral properties. Thus, the generalized
transport equations given in Eqs. 2.16 and 2.17 describe the evolution of the Green functions
providing information both on the occupation number of particles in terms of N(p, x) and on
the properties and interactions of the particles in terms of A(p, x).
We note that Eqs. 2.16 and 2.17 are not equivalent, even though they are both derived from
the first-order gradient expansion of the Kadanoff-Baym equations. In fact, they present a dis-
crepancy due to a second order contribution contained in the term {iΣ

<,>
,<G

R
}. This discrep-

ancy can be solved by replacing the self-energy Σ
<

with (G
<
Γ/A) in the generalized transport

equation (Eq. 2.16), which can then be rewritten in the following short-hand way, known as
Botermans-Malfliet form [83]:

1
2

A Γ

[
{M, iG

<
} −

1

Γ
{Γ,M · iG

<
}

]
= iΣ

<
iG

>
− iΣ

>
iG

<
, (2.20)

where the mass function is defined as M = p2 − m2 − Σ
δ
−<Σ

R
.

Equation 2.20 reproduces the full Kadanoff-Baym dynamics and can be solved numerically
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using techniques developed for the classical or semi-classical transport theories. A numerical
solution can be obtained within the test-particle ansatz, which has been already introduced in
Eq. 1.10 of Section 1.3.3. We recall that in this case we consider relativistic off-shell particles;
thus the test-particle ansatz is extended as follows:

F(x, p) = iG
<
(x, p) =

1
N

N·A∑
j=1

δ(3)(x − X j(t)) δ(3)(p − P j(t)) δ(p0 − ε j(t)), (2.21)

where j is the label referring to each test-particle and the sum over the test-particles is properly
normalized to the total number of particles A.
The equations of motion for the test-particle j are given by:

d~X j

dt
=

1
1 −C( j)

1
2ε j

[
2~P j + ~∇P jReΣ

R
( j) +

ε2
j −

~P2
j − M2

0 − ReΣ
R
( j)

Γ( j)

~∇P jΓ( j)

]
(2.22)

d~P j

dt
= −

1
1 −C( j)

1
2ε j

[
~∇X jReΣ

R
( j) +

ε2
j −

~P2
j − M2

0 − ReΣ
R
( j)

Γ( j)

~∇X jΓ( j)

]
(2.23)

dε j

dt
=

1
1 −C( j)

1
2ε j

[
∂ReΣ

R
( j)

∂t
+
ε2

j −
~P2

j − M2
0 − ReΣ

R
( j)

Γ( j)

∂Γ( j)

∂t

]
(2.24)

where the subscript ( j) means that the function is evaluated at the test-particle coordinates
x = (t,X(t)) and p = (ε(t),P(t)) and where C( j) is given by:

C( j) =
1

2ε j

[
∂ReΣ

R
( j)

∂ε j
+
ε2

j −
~P2

j − M2
0 − ReΣ

R
( j)

Γ( j)

∂Γ( j)

∂ε j

]
. (2.25)

The normalization factor 1/(1−C( j)) in Eqs. 2.22-2.24 represents a Lorentz gamma factor that
transforms the time t into the eigentime τ of the particle j: τ j = t/(1 − C( j)). If we change the
variable from t to τ j the gamma factor disappears from the equations of motion.
The theory derived in this Section, which describes relativistic strongly-interacting systems
in- and out-of equilibrium, has been successfully employed in PHSD to study HIC including
both hadronic and partonic phases.

2.2 Dynamical quasi-particle model

The theoretical description of the partonic degrees of freedom (massive quarks q anti-
quarks q and gluons g) is realized following the Dynamical-Quasi-Particle Model (DQPM)
[79, 80] which reproduces lQCD results in thermodynamical equilibrium and provides the
properties of the partons, i.e. masses and widths in their spectral functions. The basic idea is
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to characterize the interacting quasi-particles with Lorentzian spectral functions A and propa-
gators G:

A(ω,p) =
2γω

(ω2 − p2 − M2)2 + 4γ2ω2 , (2.26)

G(ω,p) =
−1

ω2 − p2 − M2 + 2iγω
=

−1
ω2 − p2 − Σ

, (2.27)

with ω = p0. The dynamical properties, masses M and widths γ of the partons are given by
the following expressions (in line with the hard thermal loop relations in the high momentum
regime):

M2
q(q)(T ) =

N2
c − 1
8Nc

g2
(
T 2 +

µ2
q

π2

)
, (2.28)

M2
g(T ) =

g2

6

(
(Nc +

1
2

N f )T 2 +
Nc

2

∑
q

µ2
q

π2

)
, (2.29)

γq(q)(T ) =
1
3

N2
c − 1
2Nc

g2T
8π

ln
(2c

g2 + 1
)
, (2.30)

γg(T ) =
1
3

Nc
g2T
8π

ln
(2c

g2 + 1
)
, (2.31)

where Nc = 3 refers to the number of colors, N f = 3 refers to the number of flavors, µq is the
quark chemical potential, T is the temperature, Tc ≈ 158 MeV is the critical temperature and
g2 is the coupling squared which is approximated by:

g2(T/Tc) =
48π2

(11Nc − 2N f )ln[λ2(T/Tc − Ts/Tc)2]
. (2.32)

We specify that the above expressions of the widths (Eqs. 2.30 and 2.31) are valid for µq = 0.
In the calculations of the parton widths we take into account the following physical reactions
between gluons g and (anti)quarks p:

g + g↔ g + g, g↔ g + g + g, g + p↔ g + p, p + p↔ p + p,

g↔ g + g, g↔ g + g + g + g, g↔ p + p, p + p↔ p + p + g.

In Eqs. 2.28-2.32 we identify three independent parameters: λ, Ts and c, that have to be fixed.
For this purpose, we compute from DQPM -within the grand canonical ensemble- thermody-
namical quantities, such as energy density ε or entropy density s, and then we fit either ε or s
in order to reproduce the same quantities calculated in lQCD. This fitting procedure must be
applied to a system in thermal equilibrium and it is realized numerically simulating a system
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Figure 2.2: (l.h.s.) The effective masses Mq,g and widths γq,g as function of the temperature T
normalized to Tc. The blue and red lines refer to the quarks and gluons, respectively. (r.h.s.)
The normalized entropy density s(T )/T 3 in blue and the normalized energy density ε(T )/T 4

in red from the DQPM in comparison with the lQCD calculations from the BMW group [84]
in full dots and triangles. The figure is taken from Ref. [78].

of quasi-particles in a box with periodic boundary conditions. The extracted values for the
parameters are: λ ≈ 2.42, Ts ≈ 0.56Tc and c ≈ 14.4. On the r.h.s. of Fig. 2.2 we show the
results of the DQPM fit to the energy density and entropy density of the lQCD data from the
Budapest-Marseille-Wuppertal (BMW) collaboration and on the l.h.s. the extracted masses
and widths of (anti)quarks and gluons. We notice that the dynamical quark masses are larger
than the bare quark masses (m0

q ≈ 7 MeV, m0
s ≈ 100 MeV). The strange quark mass is larger

than the light quark mass according to Ms(T ) = Mu,d(T ) + 35 MeV. This has been fixed empir-
ically by a comparison with experimental data on the K+/π+ ratio in central Au+Au collisions
at
√

sNN = 17.3 GeV. This fit to the lQCD calculations allows to determine the self-energies of
the degrees of freedom, needed to describe the time evolution of the system using the off-shell
transport equations, as given in Section 2.1.
The DQPM can also be extended to finite chemical potential µq applying a scaling of the
temperature T → T ∗ according to the following relation (as provided by Eqs. 2.28 and 2.29):

T ∗(T, µq) =

√
T 2 + µ2

q/π
2, (2.33)

and defining a critical temperature dependent on µq:

Tc(µq)
Tc(µq = 0)

=

√
1 − αµ2

q, (2.34)

with α ≈ 8.79 GeV−2, which is consistent with (or defined by) the lattice curvature at small µq.
In addition to the dynamical masses and widths, the DQPM also provides the mean-field
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potential in which the degrees of freedom propagate. The scalar mean-field potential US for
quark and antiquarks is given by:

US (ρS ) =
dVp(ρS )

dρS
, (2.35)

where ρS is the scalar density and Vp is the potential energy density (derived from the energy
momentum tensor). Thus, the propagation of a particle j in the system is ruled by the force
F j = (M j/E j)∇US (x).
Recently, the DQPM has been extended to include a dependence of the self-energy on the
3-momentum. This extension of the model, denoted as DQPM∗ [85, 86], has improved the
description of the susceptibilities in line with the lQCD results.

2.3 Description of heavy-ion collisions in PHSD

The Parton-Hadron-String Dynamics is a microscopic covariant dynamical approach de-
veloped on the basis of the Kadanoff-Baym equations for the Green functions (see Section 2.1)
in phase-space representation in first-order gradient expansion [70, 79, 80]. PHSD has been
conceived to describe strongly interacting systems both in- and out-of equilibrium [7, 78].
Therefore, it represents a powerful framework for the description of heavy-ion collisions. In
particular, PHSD is capable of describing the full time evolution of these processes, since it
includes both hadronic and partonic phases as well as a transition between the associated de-
grees of freedom. The DQPM (see Section 2.2) is adopted as theoretical model for the partonic
degrees of freedom (quarks and gluons) [79, 80]. Here, we focus on how a heavy-ion collision
is described within PHSD, analyzing the different stages of the collision process.
The transport calculation is performed on a discretized space-time grid (∆t,∆x,∆y,∆z), where
z correspond to the beam axis and x and y correspond to the transverse directions. The grid
sizes ∆x and ∆y are fixed to 1 fm during the whole simulation. Instead both ∆z and ∆t = ∆z/2
change dynamically in order to optimize the simulation. Initially, they are small (∆z = 1/γ
where γ is the Lorentz factor of the collision), then they increase during the late expansion
phase. The numerical realization is also done according to the parallel ensemble method: one
single simulation develops as N independent nuclear reactions calculated in parallel. This is
extremely important to achieve a reliable evaluation of the spectral properties of the degrees
of freedom. The hadrons included in PHSD are the baryonic spin 1/2 and 3/2 particles with
the corresponding antiparticles and the pseudoscalar 0− and vector 1− S U(4) meson states and
additionally the axialvector 1+ a1 meson.
A nucleus-nucleus collision in PHSD develops as initial hard scattering, followed (depending
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on the energy density) by a partonic phase with subsequent hadronization and finally by a
hadronic re-scattering phase. These steps are explained in the following.

1. The system is initialized to reproduce two nuclei boosted with bombarding energy ELab

towards each other along the z axis. The test particles of the simulation correspond to
the nucleons contained in the colliding nuclei and their distribution in space follows a
Woods-Saxon profile:

ρ(r) =
ρ0

1 + exp( r−R
a )

, (2.36)

where r is the radial distance from the center of the nucleus, R = 1.124 A1/3 fm is the
nuclear radius (A is the mass number of the nucleus), a = 0.13 fm is the surface thick-
ness of the nucleus and ρ0 = 0.166 fm−3 is the saturation density of the nuclear matter.
The initial configuration in momentum space is fixed according to the Thomas-Fermi
approximation, where the phase space density is given by:

N(~r, ~p) ∼ Θ(pF(~r) − |~p|), (2.37)

where pF is the local Fermi momentum. The two nuclei travel against each other with
velocity β, fixed by ELab. The test particles interact in the time step ∆t if the impact
parameter b satisfies the following relation according to the collision criteria provided
in Ref. [87]:

b ≤ bmax =

√
σgeom

π
(2.38)

withσgeom referring to the maximal cross-section, estimated as geometrical cross-section.
If particles reach a minimal distance needed to interact, the reaction channel i is chosen
via the Monte-Carlo method with a probability Pi = σi/σgeom.

2. Primary hard scatterings between nucleons take place and produce excited color-singlet
states, denoted by “strings”, as described within the FRITIOF Lund model [72, 73]
(PYTHIA 6.4 [71] and JETSET 7.3 [74] are incorporated for the production and frag-
mentation of jets).
A string is composed of two string ends corresponding to the leading constituent quarks
of the colliding hadrons and a color flux tube in between. As the string ends recede,
virtual qq̄ or qqq̄q̄ pairs are produced in the uniform color field, causing the breaking of
the string. These strings decay into “leading hadrons” and “prehadrons”, the latter with
a formation time2 τ f ∼ 0.8 fm/c in the rest-frame of the string. The leading hadrons can
re-interact with hadrons almost instantly with reduced cross-sections (according to the

2The formation time τ f is interpreted as the time needed for a hadron to tunnel out of the vacuum and form
its own wavefunction.
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constituent quark number).
In the string decay, the flavor of the produced quarks is determined via the Schwinger
formula [71, 88], which defines the production probability of massive ss̄ pairs with re-
spect to light flavor uū, dd̄ pairs:

P(ss̄)
P(uū)

=
P(ss̄)
P(dd̄)

= γs = exp
(
−π

m2
s − m2

u,d

2κ

)
, (2.39)

with κ ≈ 0.176 GeV2 representing the string tension and mu,d,s denoting the constituent
quark masses for light and strange quarks. If in Eq. 2.39 we employ the constituent
quark masses in the vacuum (mu ≈ 0.35 GeV and ms ≈ 0.5 GeV), the production of
strange quarks is suppressed by a factor of γs ≈ 0.3 with respect to the light quarks. The
value γs = 0.3 is the default setting in the FRITIOF routines. The relative production
factors in PHSD/HSD have been re-adjusted in 1998 as follows [89]:

u : d : s : uu =

 1 : 1 : 0.3 : 0.07 at SPS to RHIC energies;
1 : 1 : 0.4 : 0.07 at AGS energies.

(2.40)

The fraction of energy and momentum that the newly produced hadrons acquire at the
string decay is defined by the fragmentation function f (x,mT ), which is the probabil-
ity distribution for a hadron with transverse mass mT to be produced with an energy-
momentum fraction x from the fragmenting string:

f (x,mT ) ≈
1
x

(1 − xa) exp(−b m2
T/x) , (2.41)

where a = 0.23 and b = 0.34 GeV−2 are reliable settings for p+p and p+A collisions
[89].

3. In case the local energy density is above the critical value of εc ∼ 0.5 GeV/fm3, the
deconfinement is implemented by dissolving the newly produced hadrons into the mas-
sive colored quarks/antiquarks and mean-field energy. The partons are described as
off-shell quasi-particles and the DQPM provides their spectral properties, i.e. masses
and widths as a function of ε. Within the QGP phase, the partons strongly interact (only
at high scalar density partons are expected to weakly interact [7]) and propagate in a
self-generated mean-field potential. The parton-parton interactions are modeled using
the cross-section computed in DQPM (with detailed balance) and they can be distin-
guished in (quasi-)elastic and inelastic interactions.
The (quasi-)elastic reactions included in PHSD are:

q + q→ q + q, q + q→ q + q, q + q→ q + q, (2.42)

g + g→ g + g, g + q→ g + q, g + q→ g + q,
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where q, q, g denote quark, antiquark and gluon, respectively.
The inelastic reactions included in PHSD are:

q + q↔ g, g↔ q + q, (2.43)

q + q↔ g + g, g↔ g + g,

where the channels with two gluons in the final state are suppressed due to the large mass
of the gluons. Because of this reason, the partonic reactions g→ g+g and q+q→ g+g
are neglected in this work. We specify that the channel q+q→ g is described by a Breit-
Wigner cross-section [7] and the corresponding backward reaction, i.e. the gluon decay,
g→ q + q, is characterized by a small suppression of the production of s + s compared
to the light quark production due to the larger mass of the s quark (see Section 2.2).

4. The expansion of the system is associated to a decrease of the local energy density
and, once the local energy density drops below εc, the massive colored off-shell quarks
and antiquarks hadronize to colorless off-shell mesons and baryons. The hadronization
process is defined by covariant transition rates for the fusion of quark-antiquark pairs
to mesonic states and three (anti)quarks to (anti)baryonic states. For example, the rate
for the quark-antiquark fusion to a meson m with four-momentum p = (ω,p) at the
space-time point x = (t, x) is expressed by:

dNm(x, p)
d4xd4 p

=TrqTrq δ
4(p − pq − pq) δ4

(
xq + xq

2
− x

)
ωq ρq(pq)ωq ρq(pq) |vqq|

2 (2.44)

×Wm

(
xq − xq,

pq − pq

2

)
Nq(xq, pq) Nq(xq, pq) δ(flavor, color),

where Nq,q(x, p) is the phase-space density of the (anti)quark at the position x and mo-
mentum p, vqq(ρp) is the effective q−q interaction obtained within the DQPM as a func-
tion of the local parton (including quarks, antiquarks and gluons) density ρp (or energy
density) and Wm(x, p) is the dimensionless phase-space distribution of the formed pre-
hadron. In Eq. 2.44, Tr j is a short-hand operator notation which includes a summation
over the discrete quantum numbers (spin, flavor, color) and the spatial and momentum
integrations:

Tr j =
∑

j

∫
d4x j

∫
d4 p j

(2π)4 . (2.45)

Moreover, the distribution Wm(x, p) is given by:

Wm(ξ, pξ) = exp
(
ξ2

2b2

)
exp

[
2b2

(
p2
ξ −

(Mq − Mq)2

4

)]
, (2.46)
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where ξ and pξ are the relative quark and antiquark position and momentum, respec-
tively, ξ = xq − xq and pξ = (pq − pq)/2 and b is the width parameter corresponding to
the average radius of the meson defined as b =

√
〈r2〉 = 0.66 fm (in the rest frame of the

meson).
The transition rate given in Eq. 2.44 and the phase space distribution in Eq. 2.46 can be
easily extended to describe the fusion of three (anti)quarks to a color neutral (anti)baryonic
state [7].
We stress that in Eq. 2.44 the presence of the δ(flavor, color) ensures the conservation
of the flavor and color quantum numbers. In particular, regarding the color quantum
number, the produced hadron is color neutral, but it can be seen as a color dipole as
created from a colored q − q pair. Moreover, the four-momentum is conserved in each
event, thanks to the off-shell nature of both partonic and hadronic degrees of freedom,
and the total entropy increases. Once the hadronization occurs, the inverse reaction,
i.e. the dissolution of hadrons into partons, is suppressed at low energy density by the
large masses of the partons according to the DQPM. Furthermore, at low energy density
(ε < εc) the hadronization rates are large, due to large values of the associated transition
matrix elements. These features drive the system to a pure hadronic phase during the
expansion.

5. In the hadronic corona as well as in the late hadronic phase, the particles propagate and
interact both elastically and inelastically. The cross-sections for the collisions between
baryons, mesons and resonances implemented in PHSD are taken from experimental
measurements [90] or based on effective theories when experimental observations are
not available (for example in Appendix B we introduce an effective hadronic model to
derive the cross-sections for the hyperon-hyperon scattering). The backward reactions
are included through detailed balance for all channels. The type of interactions present
currently in PHSD are: 2-particle interaction (2 ↔ 2), resonance formation and decay
(1 ↔ 2) and 3-to-2 particle interaction between mesons and baryon-antibaryon pair
(3M ↔ BB). The last type of interaction has been recently extended to the strange
sector [44], but no crucial impact has been found in heavy-ion observables at AGS and
SPS energies.

PHSD gives the possibility to track the dynamics of the particles and to identify the contri-
bution of the different production mechanisms to the final observables. For example, we are
able to disentangle the role played by the QGP phase through the comparison of the PHSD
calculations with and without the partonic phase in the system evolution. In fact, in PHSD it
is possible to exclude the creation of a QGP from the simulation and, in particular, the pure
hadronic phase in PHSD is equivalent to the Hadron-String Dynamics (HSD) model [91].
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The PHSD approach can be used to study different colliding systems (p+p, p+A, A+A) in a
wide range of bombarding energy (from SIS up to LHC energies) and has provided a good
description of a large number of experimental observables, such as charged particle spectra,
collective flow coefficients and electromagnetic probes [81]. In the next Section we apply
PHSD in the intermediate energy regime and study how the particle dynamics develops.

2.4 PHSD at intermediate energies

In this Section, we provide some plots which illustrate the types of interactions and mech-
anisms occurring within PHSD in HIC at intermediate energies (

√
sNN = 3 − 20 GeV corre-

sponding to the AGS and SPS regimes). This allows us to better interpret the results which
will be reported in the following Chapters 3-6.
Firstly, we quantify the contribution from the QGP phase to the evolution of the system in a
heavy-ion collision. This is investigated in terms of the fraction of the partonic energy density
εp with respect to the total energy density εt. The partonic energy density εp includes both
the energy associated to the partonic degrees of freedom (quarks, antiquarks and gluons) and
the mean-field energy. We display on the l.h.s. of Fig. 2.3 the ratio εp/εt as a function of
the time rescaled according to the collision time tcoll in Pb+Pb collisions at 30 AGeV with
different impact parameters ranging from b =1 fm to b =13 fm. The partonic energy fraction
sharply increases as a function of time from t − tcoll = 0 fm/c up to t − tcoll ≈ 3.5 fm/c, then
it smoothly drops and vanishes at t − tcoll ≈ 10 fm/c. This behavior (as a function of time)
is basically independent on the impact parameter, apart from the very peripheral b =13 fm.
The ratio εp/εt for the most peripheral collision (b = 13 fm) is almost zero in the whole time
interval. The more central collisions are characterized by larger contributions of the partonic
phase. In fact, for smaller b the peak of the ratio εp/εt is larger and the time interval in which
εp is finite is wider. Moreover, the εp/εt curves for b < 5 fm follow for t − tcoll < 2 fm/c the
same steep rise and the associated peaks are at the same time. From this analysis, it is clear
that partonic degrees of freedom appear in the system at ELab = 30 AGeV in a wide range
of centrality (1 fm ≤ b ≤ 10 fm) and they provide a finite contribution to the energy density
of the system. The maximum contribution is associated to the most central collision and it is
≈ 22% of the total energy density.
On the r.h.s. of Fig. 2.3, we study the time evolution of the partonic energy fraction εp/εt

in central Pb+Pb collisions (b = 1 fm) at different collision energies in the AGS and SPS
regimes: ELab = 6, 10.7, 30, 60, 100, 158 AGeV. We observe that a QGP phase is created in the
system in all cases investigated here and the time dependence is analogous to that described
above for the l.h.s. of Fig. 2.3. At 6 AGeV the energy density carried by the partonic degrees
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Figure 2.3: The ratio of the partonic energy density εp to the total energy density εt as a func-
tion of the time re-scaled according to the collision time tcoll in Pb+Pb collisions at 30 AGeV
with different impact parameters on the l.h.s. and in Pb+Pb collisions with impact parameter
b = 1 fm for different collision energies on the r.h.s..

of freedom is small (the maximum value for the ratio is εp/εt ≈2%), but not negligible. At
this small collision energy the deconfinement phase transition occurs within small droplets in
the central cells of the system, where the energy density is large. We identify some features of
the ratio εp/εt in correlation with the increase of ELab:

• the maximum value of εp/εt becomes higher, as a larger volume of the system is reached
by the deconfinement phase transition;

• the peak of εp/εt shifts to smaller times and the rise of εp/εt as a function of t − tcoll

becomes steeper;

• the final hadronization and disappearance of the partonic phase occurs at later times.

We conclude that, within PHSD, the QGP is created at intermediate energies, with a maxi-
mum value for the ratio εp/εt of about 42% at the top SPS energies (ELab = 158 AGeV). If we
increase even more the collision energy, the partonic contribution to the total energy density
becomes larger than the hadronic one. For example, at top RHIC energies the QGP phase at
midrapidity contains ≈ 90% of the energy density.
Secondly, we study the behavior of the yields of the most abundant particles as a function
of time. We display the number of hadrons in panels (a) and (c) and the number of partons
in panel (b) of Fig. 2.4, produced in Pb+Pb collisions at 30 AGeV with impact parameter
b = 1 fm. Initially, the system is only composed of nucleons, protons and neutrons, from
the two colliding nuclei. At about t ≈ 1.5 fm/c, the two nuclei collide and mesons, strange
baryons and partons are created. The number of pions, kaons, (Λ + Σ0)’s and partons rise



2.4. PHSD at intermediate energies 29

0

100

200

300

400

 0  5  10  15  20  25  30  35  40

N

t [fm/c]

Pb+Pb @ 30AGeV, b=1fm
a)

p    

(Λ+Σ
0
)

π
+
  

π
-
   

K
+
  

K
-
   

0

25

50

75

100

 0  5  10  15  20

N

t [fm/c]

Pb+Pb @ 30AGeV, b=1fm
b)

u
–
u
d
–
d
s
–
s

gluons

10
-2

10
-1

10
0

10
1

10
2

10
3

 0  5  10  15  20  25  30  35  40

N

t [fm/c]

Pb+Pb @ 30AGeV, b=1fm
c)

p    
–
p    

(Λ+Σ
0
)

(
–
Λ+

–
Σ

0
)

Ξ
-
   

–
Ξ

-
   

π
+
  

π
-
   

K
+
  

K
-
   

Figure 2.4: The number of the most abundant particles (hadrons in panels (a), (c) and partons
in panel (b)) as a function of time in Pb+Pb collisions at 30 AGeV with impact parameter
b = 1 fm.

steeply within 3 fm/c after the collision. The number of all hadronic particles, apart from the
nucleons, increases with increasing time. On the other hand, the number of partons increases
up to t ≈ 4 fm/c for quarks and t ≈ 6 fm/c for gluons. Then, the abundances of partonic de-
grees of freedom drop, as the hadronization occurs. The hadronization lasts up to t ≈ 10 fm/c.
We observe that the number of strange quarks, which are not initially present in the system, is
smaller than the number of light quarks, both u and d. The panel (c) of Fig. 2.4 shows in ad-
dition to baryons also antibaryons (p, (Λ + Σ

0
) and Ξ

−
), which appear in the system later than

the other particles at t ≥ 5 fm/c. In fact, differently from mesons, which are produced at the
early stages from the string decays, the antibaryons are mainly produced in the hadronization
of partons. This emerges also by the fact that the number of p, (Λ + Σ

0
) and Ξ

−
increases up to

t ≈ 10 fm/c, when the hadronization ceases, and then it remains constant. We observe that the
(Λ + Σ0) particles are produced almost entirely within the time interval 1.5 fm/c ≤ t ≤ 4 fm/c,
while the production of mesons lasts longer. In fact, even if the majority of mesons is produced
at the early stages (t < 5 fm/c), the number of pions and kaons increases also at later times due
to the hadronization process, to the hadronic re-scattering and to the resonance decays. The
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Figure 2.5: The distribution dN/(dxdz) of baryons as a function of x and z (for y = 0) at
different times t for a central (b = 1 fm) Pb+Pb collision at 30 AGeV.

most abundant particles produced in central Pb+Pb collisions at 30 AGeV are pions. There is
a small difference between the number of charged pions: the abundance of π− is larger than the
abundance of π+ by a factor of ≈ 1.1. On the other hand, the difference between the charged
kaons is larger: the K+ are more abundant than the K− by a factor of ≈ 2. The yield of an-
tibaryons and multi-strange baryons is extremely small. Their final abundances are NΞ− ≈ 2.6,
Np ≈ 0.24, N

(Λ+Σ
0
)
≈ 0.49 and N

Ξ
− ≈ 0.17, which are one and two orders of magnitude lower

than the K− yield (NK− ≈ 17).
Thirdly, we explore the space distribution of the particle species during the collision process.
In Figs. 2.5, 2.6 and 2.7 we show the distribution dN/(dxdz) of baryons, mesons and partons,
respectively, in a central (b = 1 fm) Pb+Pb collision at 30 AGeV for y = 0. The panels (a)-(f)
refer to different times ranging from 2 fm/c to 10 fm/c, which are later than the collision time
tcoll = 1.55 fm/c. The reference frame is fixed as follows: the z−axis corresponds to the beam
axis, the x−axis corresponds to the transverse direction in the reaction plane (along which
the impact parameter is established), the y−axis corresponds to the direction perpendicular to
the reaction plane. In panel (a) of Fig. 2.5 it is possible to identify the two colliding nuclei
at the early stage of the collisions. In fact, they overlap in a small area at |z| ≈ 0.5 fm. In
panel (b), we observe the system during the stage of maximum compression, when the highest
energy densities are achieved. As |z| and |x| decrease, the distribution of baryons increases.
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Figure 2.6: The distribution dN/(dxdz) of mesons as a function of x and z (for y = 0) at
different times t for a central (b = 1 fm) Pb+Pb collision at 30 AGeV.
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Figure 2.7: The distribution dN/(dxdz) of partons as a function of x and z (for y = 0) at
different times t for a central (b = 1 fm) Pb+Pb collision at 30 AGeV.
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This is even more pronounced at t = 5 fm/c (panel (c)) where the central cells of the system
achieve the largest the baryon densities. During the expansion of the system (panels (d)-(f)),
the baryon distribution in the central cells drops. This is not due to a decrease of the number
of baryons, but to their spread in a larger volume: at t = 3 fm/c the baryons are located in
an area with |z| < 3 fm and |x| <8 fm, while at t = 7 fm/c they are located in an area with
|z| < 5 fm and |x| <8 fm. It is also possible to track the fragments of the two colliding nuclei
that survive the collision. These are represented by the dark blue areas in panels (e) and (f) of
Fig. 2.5. Instead, the light blue area in the central part of the x − z plane corresponds to the
newly produced baryons.
In Fig. 2.6 we follow the time evolution of the mesons, which appear in the system immedi-
ately after the first hard scatterings. In fact, already at t = 2 fm/c (panel (a)) the most central
cells of the system contain a small number of mesons. While the two colliding nuclei pass
through each other (panels (b) and (c)), the distribution dN/(dxdz) of mesons become ap-
preciable, reaching larger values in the most central cells (where the production of mesons is
enhanced), and rapidly spreads in a larger volume of the system. In particular at t = 5 fm/c, the
meson distribution occupies an area comparable to the one of the baryons. After the passage
time3, we observe that dN/(dxdz) of mesons is lager in the area of the system corresponding to
the nuclear fragments. This is due to the fact that the baryon density is high and the heavy res-
onances present in these cells predominantly decay producing mesons. As the system expands
(t ≥ 7 fm/c), the meson density in the most central cells decreases and the mesonic particles
occupy a larger and larger volume of the system. Moreover, for the most central part of the
system (|z| <5 fm and |x| <5 fm) the distribution of mesons appears to be homogeneous along
the transverse direction x and achieve larger values with respect to the distribution of baryons.
In Fig. 2.7 the parton distribution is displayed and it exhibits a time evolution different with re-
spect to both baryons and mesons. The partonic particles are not created immediately after the
first nucleon interactions, as it is evident in panel (a), where dN/(dxdz) is zero in all cells. Be-
tween t = 3 fm/c and t = 5 fm/c (panels (b) and (c)), the whole production of partonic degrees
of freedom occurs (as discussed above for Fig. 2.4) and the associated dN/(dxdz) increases
in the central cells of the system. We observe that dN/(dxdz) achieves the largest values of
3 fm−2 in an area of the system with |z| ≈0.5 fm and |x| ≤4 fm, which is more extended than
that for the baryon and meson cases, where the area occupied by the peaks of the distribution is
smaller. On the other hand, the total area occupied by partons is smaller compared to baryons
and mesons. In particular, it is narrower by about 1fm along the z direction. At the later stages

3The nuclear passage time can be estimated in the center-of-mass frame of the collision as t = d/(βγ), where
d is the diameter of the nucleus at rest (we assume a symmetric collision) (panels (d)-(f)), β is the velocity of the
nucleus in the center-of-mass frame of the collision and γ is the Lorentz factor of the center-of-mass frame with
respect to the system in which one nucleus is at rest (e.g. in the laboratory frame for a fixed target experiment).
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(panels (d)-(f)), the expansion of the system has the following effects on the distribution of
partons:

• partons propagate in the system occupying more external cells;

• the energy density drops and consequently the hadronization occurs decreasing the av-
erage value of dN/(dxdz);

• the region occupied by partons decreases rapidly along the transverse direction x.

At t = 10 fm/c (panel (f)) only few cells contain partons, which completely hadronize shortly
after.
Finally, we investigate the collision rate dN/dt of Baryon-Baryon (B-B), meson-Baryon (m-B)
and meson-meson (m-m) scatterings as a function of time and we study the energy distribu-
tion dN/d

√
sb as a function of the center-of-mass energy of the colliding particles

√
sb. This

analysis is done to understand which type of reactions dominates in a HIC and to figure out
the features of the interactions. On the l.h.s. of Fig. 2.8, we show the rate dN/dt as a function
of the time re-scaled according to the collision time tcoll in central Pb+Pb collisions (b = 1 fm)
at ELab = 8, 30, 158 AGeV in panels (a), (b), (c), respectively. A common trend is identified
among the energies investigated. At the early stage, the dominant type of collision is the B-B
scattering (solid green lines). In particular, each line referring to the B-B interaction shows a
pronounced peak, which becomes larger and shifts to smaller times with increasing ELab. This
is explained by the fact that the passage time shortens as the collision energy increases. We
specify that the B-B scatterings at the early stage are essentially string interactions. After the
passage time, the B-B collision rate rapidly drops: the number of string interactions vanishes,
while the number of low-energy reactions remains finite for later times (see Fig. 3.2 and the
related discussion for additional details).
The rate of the m-B reactions (dashed red lines) shares some similarities with the one as-
sociated to the B-B reactions. At small values of t − tcoll, dN/dt increases with increas-
ing time reaching a peak (associated to the string interactions) that for ELab = 8 AGeV and
ELab = 30 AGeV is at the same time as for the B-B rate. At later times, it decreases during
the nuclear passage time and after it rises again exhibiting a second peak, during the hadronic
re-scattering. Similarly to the first peak, the second peak shifts to smaller time as the collision
energy increases, due to the fact that all the collision processes become faster for larger ELab.
Finally, at late times, the m-B rate drops. At the early stage, dN/dt associated to m-B scatter-
ings is lower than the rate of B-B, while after the passage time it is larger. For example, in case
of 158AGeV the m-B rate is larger by about one order of magnitude with respect to the B-B
rate for t > 5 fm/c. In fact, during the hadronic re-scattering, the system created in heavy-ion
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Figure 2.8: (l.h.s.) The collision rate dN/dt as a function of the time re-scaled according
to the collision time tcoll in Pb+Pb collisions with impact parameter b = 1 fm at different
collision energies ELab = 8, 30, 158 AGeV in panels (a), (b), (c), respectively. (r.h.s.) The
energy distribution dN/d

√
sb of the binary scatterings as a function of the center-of-mass

energy of the colliding particles
√

sb. The solid green lines refer to baryon-baryon scatterings,
the dashed red lines refer to meson-baryon scatterings and the dotted blue lines refer to the
meson-meson scattering.

collisions is characterized by a large multiplicity of mesons and the number of m-B and m-m
interactions overshoots the number of B-B interactions. This is more evident at the large col-
lision energy (ELab = 158 AGeV), since the production of mesonic particles is enhanced. For
this reason, the rate associated to the m-m reactions (dotted blue lines) increases with ELab.
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Concerning the time evolution of the m-m rate, we observe for ELab = 8, 30 AGeV that dN/dt
shows only one peak in the stage of the hadronic re-scattering (essentially in correspondence
to the second peak of the m-B rate), while for ELab = 158 AGeV it shows two peaks. In the
latter case, the first peak is at the same time of the peak of the B-B rate and the second peak
is shortly after the m-B second peak. In general, the rate of m-m collisions rises with time for
t < 10 fm/c and it smoothly decreases with t for larger times.
On the r.h.s. of Fig. 2.8, we show the distribution dN/d

√
sb as a function of

√
sb in central

Pb+Pb collisions (b = 1 fm) at ELab = 8 AGeV and ELab = 30 AGeV in panels (d), (e), (f),
respectively. This analysis is performed to understand in which ranges of energy the different
interactions are dominant. The three types of interactions acquire a non-vanishing value for
dN/d

√
sb in the following order: first the m-m reactions at

√
sb ≈ 0.8 GeV, second the m-B

reactions at
√

sb ≈ 1.2 GeV and third the B-B reactions at
√

sb ≈ 2.2 GeV. Moreover, we
observe the following features:

• the m-m reactions are dominant at low values of
√

sb;

• the m-B reactions are dominant at intermediate values of
√

sb;

• the B-B reactions are dominant at larger values of
√

sb.

These hierarchies are common to all collision energies investigated. Increasing ELab, the
ranges of energy in which the B-B, m-B and m-m scattering are effective become wider. In
panel (f), we notice that, due to the high meson multiplicity, the energy distribution associated
to the B-B interactions at ELab = 158 AGeV gets larger than the m-B distribution only at large
values of

√
sb (
√

sb > 8 GeV).

2.5 Chiral symmetry restoration

The main goal of HIC is the study of the QCD phase diagram, as discussed in Chapter 1,
where the properties of the deconfinement phase transition and of chiral symmetry restoration
(CSR) are not well known. In this work, our focus is the investigation of CSR, that at van-
ishing baryon chemical potential is predicted from lQCD to occur as a crossover at about the
same critical temperature and energy density of the deconfinement. At finite baryon chemical
potential one must rely on effective or functional models, since lQCD calculations cannot be
performed due to the fermion sign problem. Different models support the idea that at finite
chemical potential a partially chirally restored phase is achieved before the deconfinement
occurs [28, 30, 31]. In order to distinguish the two phases of this transition, effective mod-
els use the scalar quark condensate 〈q̄q〉 as an order parameter. As the baryon density and
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temperature increase, the scalar quark condensate 〈q̄q〉 is expected, according to the Hellman-
Feynman theorem [92], to decrease from a non-vanishing value in the vacuum to 〈q̄q〉 ≈ 0
which corresponds to CSR [93, 94]. This decrease of the scalar quark condensate is expected
also to lead to a change of the hadron properties with density and temperature. This means
that, for example, in a chirally restored phase the vector and axial vector currents should be-
come equal [95, 96, 97, 98, 99, 100] and, consequently, the ρ and a1 spectral functions should
become identical. On this issue, a final evidence is, however, lacking [101].
Our aim is to include in our transport approach the CSR, as a mechanism that generates a
modification of the masses of the quarks according to their coupling with the 〈q̄q〉 condensate
(see Appendix A for details). In the following Sections, we describe how essential aspects of
CSR have been incorporated in PHSD and what are the uncertainties in our approach.

2.5.1 Modeling of the chiral symmetry restoration

Here we describe how PHSD has been extended to include CSR in the string decay in a
hadronic environment of finite baryon and meson density. The material in this Section has
been published in Refs. [44, 82].
In leading order the scalar quark condensate 〈q̄q〉 can be evaluated in a dynamical calculation
as follows [102]:

〈q̄q〉
〈q̄q〉V

= 1 −
Σπ

f 2
π m2

π

ρS −
∑

h

σhρ
h
S

f 2
π m2

π

, (2.47)

where σh stands for the σ-commutator of the relevant mesons h, 〈q̄q〉V represents the vacuum
condensate, Σπ ≈ 45 MeV is the pion-nucleon Σ-term and fπ and mπ are the pion decay con-
stant and pion mass, respectively. Note, however, that the value of Σπ is not accurately known.
A recent analysis points to a larger value of Σπ ≈ 59 MeV [103, 104], while lQCD results
suggest a substantially lower value [105]. We have investigated the dependence of our results
on the value of Σπ ranging between Σπ ≈ 30 MeV and Σπ ≈ 60 MeV [106] and we have not
found any remarkable sensitivity. Thus, Σπ = 45 MeV has been chosen as default value in
PHSD, since it represents a “world average” among the available calculations (cf. Fig. 3 in
Ref. [106]). According to the light quark content, the Σ-term for hyperons is decreased by
a factor of 2/3 for Λ and Σ hyperons and by a factor of 1/3 for Ξ baryons. Furthermore, for
mesons composed of light quarks and antiquarks, we use σh = mπ/2, whereas for mesons with
a strange (antistrange) quark we consider σh = mπ/4.
In Eq. A.1, the quantities ρS and ρh

S denote the nucleon scalar density and the scalar den-
sity for a meson of type h, respectively. The scalar density of mesons h is evaluated in the
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independent-particle approximation as:

ρh
S (x) =

(2s + 1)(2τ + 1)
(2π)3

∫
d3 p

mh√
p2 + m2

h

fh(x,p) , (2.48)

where fh(x,p) denotes the meson phase-space distribution (x = (r, t)) and s, τ refer to the
discrete spin and isospin quantum numbers, respectively.
The vacuum scalar condensate 〈q̄q〉V = 〈ūu〉V + 〈d̄d〉V ≈ 2〈ūu〉V can be computed according
to the Gell-Mann-Oakes-Renner (GMOR) relation [107, 108, 109],

f 2
π m2

π = −
1
2

(m0
u + m0

d)〈q̄q〉V , (2.49)

providing 〈q̄q〉V ≈ −3.2 fm−3 for the bare quark masses m0
u = m0

d ≈ 7 MeV.
Finally, in Eq. A.1 the nucleon scalar density ρS has to be determined in a suitable model with
interacting degrees of freedom. A proper (and widely used) approach is the non-linear σ − ω
model for nuclear matter where ρS is defined as:

ρS (x) =
d

(2π)3

∫
d3 p

m∗N√
p∗2N + m∗2N

fN(x,p) , (2.50)

where m∗N and p∗N denote the effective mass and momentum, respectively, fN(x,p) is the phase-
space occupation of the nucleon and the degeneracy factor is d=4.
In fact, in the non-linear σ − ω model the nucleon mass is modified by the scalar interaction
with the medium:

m∗N(x) = mV
N − gsσ(x) , (2.51)

where mV
N denotes the nucleon mass in vacuum and σ(x) is the scalar field which mediates the

interaction between the nucleons and the medium with the coupling gs.
In order to calculate ρS , we need to determine the value of the scalar field σ(x) at each space-
time point x. This is done via the non-linear gap equation [109, 110]:

m2
σσ(x) + Bσ2(x) + Cσ3(x) = gsρS (x) (2.52)

= gsd
∫

d3 p
(2π)3

m∗N(x)√
p2 + m∗2N

fN(x,p) ,

since for matter at rest in Eq. 2.50 we have p∗ = p.
In Eq. 2.52 the self-interaction of the σ-field is included up to the forth order. The parameters
gs,mσ, B,C are fixed in order to reproduce the values of the nuclear matter quantities at satu-
ration, i.e. the saturation density, the binding energy per nucleon, the compression modulus,
and the effective nucleon mass. Actually, there are different sets for these quantities that lead
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to slightly different saturation properties. We defer a discussion on the related uncertainties of
our results to the following Section 2.5.2.
The inclusion of the CSR mechanism in the particle production within PHSD consists essen-
tially in the following: we consider effective masses (see Eq. 2.51) for the dressed quarks in
the Schwinger formula (Eq. 2.39) for the string decay in a hot and dense medium. The effec-
tive quark masses can be expressed in terms of a scalar coupling to the quark condensate 〈q̄q〉
in first-order as follows:

m∗q = m0
q + (mV

q − m0
q)
〈q̄q〉
〈q̄q〉V

, (2.53)

m∗s = m0
s + (mV

s − m0
s)
〈q̄q〉
〈q̄q〉V

, (2.54)

with m0
q ≈ 7 MeV and m0

s ≈ 100 MeV for the bare quark masses.
In Eqs. 2.54 and 2.53 the effective masses decrease from the vacuum values with decreasing
scalar condensate 〈q̄q〉 to the bare masses. This adaptation of the Schwinger formula in case
of a hot and dense medium implies a modification of the flavor production factors in Eq. 2.40.
In an simulated nucleus-nucleus collision, PHSD incorporates a dynamical calculation of all
these quantities for each cell in space-time:

• the scalar density ρS is determined by solving the gap equation (Eq. 2.52) for theσ-field;

• the scalar condensate 〈q̄q〉 is then computed via Eq. A.1;

• the effective masses m∗q,m
∗
s are calculated according to Eqs. 2.54 and 2.53 and plugged

in the Schwinger formula (Eq. 2.39) in order to compute the flavor production ratios for
the string decay.

We stress that, once the nucleon scalar density ρS and Σπ are fixed, there is no need for further
parameters in PHSD.

2.5.2 Dependence on the nuclear equation of state

In this Section we analyze in more detail the flavor production ratios from the Schwinger
formula in the presence of a hot and dense nuclear medium including CSR within PHSD. As
mentioned in the previous Section 2.5.1, there are different sets for the parameters gs,mσ, B,C
in the gap equation (Eq. 2.52). These parameters are fixed within the non-linear σ − ω model
in order to reproduce empirical values of nuclear matter quantities at saturation (i.e. saturation
density, binding energy per nucleon, compression modulus, effective nucleon mass etc.), but
non-negligible uncertainties remain. In Table 2.1 we display the values of gs,mσ, B,C together
with the vector coupling gv, the vector meson mass mv, the compression modulus K and the
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NL1 NL2 NL3
gs 6.91 8.50 9.50
gv 7.54 7.54 10.95

B (1/fm) -40.6 50.57 1.589
C 384.4 -6.26 34.23

mσ (1/fm) 2.79 2.79 2.79
mv (1/fm) 3.97 3.97 3.97
K (MeV) 380 210 380
m∗N/mN 0.83 0.83 0.70

Table 2.1: Parameter sets NL1, NL2 and NL3 for the non-linear σ−ω model employed in the
transport calculations from Ref. [110].

ratio between the effective and the bare nucleon mass m∗N/mN at saturation density for three
sets commonly indicated as NL1, NL2 and NL3 [110]. The sets NL1 and NL3 have the same
compression modulus K, but differ in the effective mass m∗N/mN at saturation density whereas
NL1 and NL2 have the same effective mass, but differ in the compression modulus K. By
comparing the results from NL1, NL2 and NL3 we are able to explore separately the effects of
the effective mass and the compression modulus. In the context of the string decay, the most
important parameter to focus on is the scalar coupling gs, which is lower for the NL1 and NL2
sets with respect to the corresponding value in the NL3 set.
In Fig. 2.9 we plot the nucleon scalar density ρS (in panel (a)), the ratio between the scalar
quark condensate and its value in the vacuum 〈q̄q〉/〈q̄q〉V (in panel (b)), the light and strange
quark effective masses m∗q,m

∗
s (in panel (c)) and the production probability γs (in panel (d)) as a

function of the energy density ε. An analogous dependence of these quantities is observed as a
function of the baryon density ρB, since the energy density ε in leading order is just ε ≈ mNρB.
We find that all quantities plotted in Fig. 2.9 show indistinguishable results for NL1 (green
dashed lines) and NL2 (thin orange lines) since the scalar density ρS essentially depends on
the effective nucleon mass which is very similar for NL1 and NL2 when plotted as a function
of ε. The results shown in Fig. 2.9 are obtained at vanishing temperature T = 0, but all the
following considerations can be extended to a more realistic picture at finite temperature (finite
meson density). Moreover, the plots shown in Fig. 2.9 represent a helpful illustration of the
consequences of CSR in the PHSD results for heavy-ion collisions.
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Figure 2.9: The nucleon scalar density ρS in panel (a), the ratio between the scalar quark
condensate and its value in the vacuum 〈q̄q〉/〈q̄q〉V in panel (b), the light and strange quark
effective masses m∗q,m

∗
s in panel (c), and the production probability of massive ss̄ pairs relative

to light flavor production γs in panel (d) as a function of the energy density ε for the parameter
sets NL1 (dashed green lines), NL2 (thin orange lines) and NL3 (red solid lines) at temperature
T = 0 and with Σπ=45 MeV.

The energy density ε here is calculated within the non-linear σ − ω model by:

ε = U(σ) +
g2

v

2m2
v
ρ2

N + d
∫

d3 p
(2π)3 E∗(p)

(
N f (p) + N f̄ (p)

)
, (2.55)

with

E∗(p) =

√
p2 + m∗2f , (2.56)

U(σ) =
m2
σ

2
σ2 +

B
3
σ3 +

C
4
σ4 , (2.57)

where ρN represents the nucleon density and N f (p) and N f̄ (p) are the particle/antiparticle
occupation numbers at fixed momentum p, respectively, with effective mass m∗f and associated
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degeneracy factor d.
The scalar density ρS increases with increasing energy density ε as displayed in panel (a) of
Fig. 2.9. We find a moderate sensitivity to the nuclear equation of state for ε . 0.5 GeV/fm3

(energy range corresponding to the hadronic phase in PHSD). In fact, the lines referring to
the parameter sets NL1/NL2 and NL3 show a very similar behavior as a function of ε, but the
NL3 (solid line) set is always characterized by lower values of the scalar density ρS relative
to the NL1 or NL2 parametrizations (dashed lines). This is due to the larger value of the
effective nucleon mass m∗N in case of the NL1 and NL2 parameter sets. In panel (b) of Fig. 2.9
we study the energy dependence of the ratio 〈q̄q〉/〈q̄q〉V . At ε = 0 the scalar condensate
corresponds to the vacuum value 〈q̄q〉V and for fixed Σπ=45 MeV it decreases almost linearly
with increasing energy density and for the NL1 and NL2 parameter sets nearly vanishes for
the critical energy density εc ≈ 0.5 GeV/fm3. In this case, the order between NL1/NL2 and
NL3 results is reversed: the NL3 parametrization for the nuclear EoS shows higher values of
the scalar quark condensate with respect to the NL1 or NL2 sets. This feature can be easily
explained looking at the definition of the ratio 〈q̄q〉/〈q̄q〉V in Eq. A.1. At T = 0, there are no
thermal mesons, thus the last term of Equation A.1 vanishes and the ratio is entirely fixed by
the scalar density ρS . Hence, higher values of ρS correspond to lower values of 〈q̄q〉/〈q̄q〉V .
Therefore, the NL1 and NL2 parametrizations are characterized by lower values of the scalar
quark condensate with respect to the NL3 parameter set. It follows that the light and strange
quark effective masses m∗q,m

∗
s in panel (c) of Fig. 2.9 show a very similar dependence on

the energy density. At vanishing energy density ε, the quark effective masses are equal to
their vacuum values, mq ≈ 0.33 GeV and ms ≈ 0.5 GeV; with increasing ε the quark masses
decrease in line with the scalar quark condensate up to their bare values m0

s ≈ 100 MeV and
m0

q ≈ 7 MeV for vanishing 〈q̄q〉/〈q̄q〉V . The decrease of both mq and ms is approximately
linear in energy density where the slope associated to the light quark is flatter in comparison
to the strange quark mass. Concerning the comparison between the different choices for the
nuclear equation of state, we find also for these masses a non-negligible sensitivity and the
same hierarchy as for the scalar quark condensate (the results associated to NL1/NL2 are
always below the corresponding results for NL3).
In panel (d) of Fig. 2.9 the strangeness ratio γs (referring to the hadronic particle production
via the string decay, described by the Schwinger formula in Eq. 2.39) is shown as a function
of energy density for the three parameter sets. The factor γs increases from the vacuum case
(γs ≈ 0.3) with increasing energy density up to values of γs ≈ 0.8 − 0.9 for ε ≈ εc. Thus, the
production of a ss̄ pair relative to a light quark pair is no longer suppressed close to the phase
boundary for CSR as it is in vacuum. The reason of this increase is the steeper decrease of the
effective strange quark mass (with energy density) in comparison to the effective light quark
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mass as mentioned above. Furthermore, the NL1 and NL2 parametrizations give larger values
of γs than the NL3 parametrization due to a faster change of the masses with ε (see panel (c)
of Fig. 2.9).
This scheme for CSR in the string decay mechanism is applied not only to the light and strange
quarks, but also to diquark combinations that are produced in the fragmentation of the string
and lead finally to baryon-antibaryon pairs. For example, the default JETSET4 ratios fix the
diquark mass in the vacuum, e.g. a light diquark mass in vacuum of mV

uu= 0.65 GeV leads to a
suppression of a light diquark pair relative to a light quark-antiquark pair by a factor of:

P(uuūū)
P(uū)

≈ 0.07 . (2.58)

Instead, for the creation of a diquark su one employs mV
su ≈ 0.725 GeV which leads to the ratio

for a su-diquark pair relative to a light uu-diquark pair of:

P(sus̄ū)
P(uuūū)

≈ 0.4 . (2.59)

The Schwinger mechanism of string decay in vacuum thus requires the following dressed
vacuum masses (included in the default JETSET): mV

u ≈ 0.35 GeV, mV
s ≈ 0.5 GeV, mV

uu ≈

0.65 GeV, mV
su ≈ 0.725 GeV and mV

ss ≈ 0.87 GeV to comply with experimental observation
in nucleon-nucleon collisions. The production probability of diquark combinations does not
change very much in the dense medium and since m0

su − m0
uu ≈ m0

s − m0
u, the bare diquark

masses m0
uu can be fixed and give m0

uu ≈ 0.5 GeV, m0
su ≈ 0.593 GeV and m0

ss ≈ 0.763 GeV.
The explicit variations of the quark and diquark flavor ratios with the energy density are dis-
played for T = 0 in a hadronic environment on the l.h.s. of Fig. 2.10 and show that the diquark
ratios change only very moderately with the energy density whereas the s/u ratio steeply rises
with ε.
This increase of the s/u ratio is, however, limited to the hadronic phase, as it is visible on the
r.h.s. of Fig. 2.10, where both the hadronic phase and the QGP phase are considered. We recall
that in PHSD above εc ≈ 0.5 GeV/fm3 hadrons dissolve in partonic degrees of freedom and
mean-field energy and we remark that in the QGP phase strings cannot be formed anymore
due to a vanishing string tension. As displayed on the r.h.s. of Fig. 2.10, the s/u factor shows
an increase for ε < εc and for ε ≥ εc it drops to the value ∼ 1/3 (fixed by comparison with the
strangeness production at RHIC and LHC energies observed experimentally). In the partonic
phase the s/u ratio remains constant as a function of the energy density. Consequently, we
can identify a “horn” structure in the s/u ratio as a function of ε, where the initial increase

4JETSET [74, 111] is a program simulating string fragmentations based on the Lund string model for the
QCD deconfinement.



2.5. Chiral symmetry restoration 43

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

r
a

ti
o

s

ε[GeV/fm
3
]

su/uu

No QGP

s/u

uu/u
su/s

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

s/
u

ε[GeV/fm
3
]

NL3
NL1

hadrons QGP

Figure 2.10: (l.h.s.) The quark and diquark ratios in the string decay (hadronic environment)
as a function of the energy density ε as evaluated within the non-linear σ − ω model for the
parameter set NL3 for T = 0. (r.h.s.) The strangeness ratio s/u in the string decay as a function
of the energy density ε as evaluated within the non-linear σ − ω model for the parameter sets
NL3 and NL1 at T = 0. For ε < 0.5 GeV/fm3 the system is composed of hadronic degrees of
freedom, while for ε > 0.5 GeV/fm3 the system is composed of partonic degrees of freedom

is related to CSR in the hadronic phase and the subsequent sharp drop is associated to the
formation of the QGP.
We have found that the major consequence of the restoration of chiral symmetry emerges as
an energy-dependent increase of the strange to non-strange particle production in the hadronic
phase. We, thus, expect that CSR modifies the particle abundances and spectra from heavy-ion
collisions, where an increasing energy density ε in the overlap region can be achieved with
increasing bombarding energy. Our investigation of these effects on experimental observables
is deferred to Chapter 4.





Chapter 3

Strange particle production at low
energies

The production of hyperons has always been of great interest in Heavy-Ion Collisions
(HIC), especially since their abundance can be a sensitive observable for the formation of
the Quark Gluon Plasma (QGP). Recent measurements from the HADES [112, 113] and
FOPI[114, 115] collaborations have drawn the attention on the strange particle yields at low
energies, in particular on the hyperon production close to threshold. In the low energy regime,
√

sNN = 2 − 3 GeV, the production of hyperons is not seen as a signature for the creation of a
QGP, because the system cannot achieve large energy densities. Most likely it is a probe for the
equation of state and an indicator of in-medium properties of hadrons in matter. The transport
models, as PHSD and UrQMD, were so far unable to describe the surprisingly large multiplic-
ities of the Ξ and φ particles measured by the HADES collaboration. This open issue pushed
the transport approaches to improve the multi-strange particle production at low energies and
this Chapter is devoted to the progress accomplished in this context within PHSD.

3.1 Flavor exchange reactions

The strange particle production in HIC fulfills the conservation laws, for example strangeness
must always be produced in s − s̄ pairs. Consequently, in nucleon-nucleon (N + N) collisions
there are strict energy thresholds

√
sth associated to the hyperon production, which correspond

basically to the sum of the masses of the particles involved in the interaction:

for Λ:
√

sth
Λ = mN + mK + mΛ = 2548 MeV, (3.1)

for Ξ:
√

sth
Ξ = mN + 2 ∗ mK + mΞ = 3240 MeV, (3.2)

45
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where mN is the nucleon mass, mK is the antikaon mass, mΛ is the Λ mass and mΞ is the Ξ

mass.
In nucleus-nucleus (A + A) collisions there are few mechanisms that allow hyperons to be
produced below threshold:

• In the medium the hadrons undergo modifications of their properties, e.g. the mass. The
change of the mass of kaons shifts the production thresholds.

• The nucleons, seen as bound states in the nuclei, have an associated Fermi momentum,
which can increase the center-of-mass energy of two colliding nucleons with respect
to the center-of-mass energy of the two nuclei (when the nucleon momentum is anti-
parallel to the projectile momentum).

• The nucleon might interact not only with a single nucleon of the other nucleus, but also
with a composite object, like an α particle.

• The necessary energy to overcome
√

sth can be achieved via multiple scatterings involv-
ing nucleons, produced hadrons and resonances.

The multi-strange baryon production is found in Ref. [116] to be only marginally affected by
the in medium effects on the kaon properties, while on the other hand it is more sensitive to
the magnitude of the cross-sections of flavor exchange reactions, which happen as secondary
interactions in A+ A collisions. This multi-step production process for the hyperon production
proceeds with the following stages:

Λ and Σ production =⇒ Ξ production =⇒ Ω production
N + N → N + K + Y Y + K ↔ Ξ + π Ξ + K ↔ Ω + π

π + N ↔ K + Y Y + Y ↔ Ξ + N Ξ + Ξ↔ Ω + Y
N + K ↔ Y + π.

The single-strange baryons, Λ and Σ, are produced in the first step either via primary nucleon-
nucleon collisions or via secondary flavor exchange meson-baryon reactions. The Ξ and the
Ω can be produced through the flavor exchange reactions both by meson-baryon and baryon-
baryon scatterings in the second and third step, respectively. Recently, the HADES collabo-
ration measured surprisingly high Ξ− yields [112, 113] below

√
sth

Ξ at odds with theoretical
predictions. The main reason for the low multiplicity of Ξ− in the available transport ap-
proaches was proposed to be the absence of Baryon-Baryon (B-B) flavor exchange reactions
of the type Y + Y ↔ Ξ + N in the hadronic re-scattering [117], while the contribution of
the meson-Baryon (m-B) interactions of the type Y + K ↔ Ξ + π is negligible at low energy
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[117, 118] (the m-B flavor exchange reactions play an important role at AGS and SPS ener-
gies where the abundance of mesons is much larger). Moreover, these m-B flavor exchange
reactions are included in the PHSD model and they do not provide Ξ− yields comparable with
the measured data. Thus, the inclusion of the Y + Y interaction represents an important exten-
sion of the PHSD model where so far the hyperons have been taken into account in the B-B
dynamics only in the string fragmentation and in 3-body strangeness production channels, i.e.
NN → NYK, NN → ∆YK, N∆→ NYK, ∆∆→ NYK.
To incorporate these reaction channels in PHSD, the associated scattering cross-sections are
required. In fact, within a transport model the scattering cross-sections are employed as in-
put. In case of elementary binary collisions, available experimental cross-section are used
in PHSD [90]. Unfortunately, direct experimental observations are not accessible for all re-
action channels. Thus, the transport approaches need to rely on effective theories for the
missing cross-sections, for example for the Hyperon-Hyperon (Y + Y) interactions. In PHSD,
we choose to employ for these reactions the cross-sections calculated in Ref. [117], where a
gauged flavor SU(3)-invariant hadronic Lagrangian in the Born approximation is used. This is
consistent with the cross-sections for the scatterings Y +K ↔ Ξ+π already included in PHSD.
The reader can find more details on this model [117] in the Appendix B. The parametrizations
for the cross-sections of the forward reactions YY → NΞ are:

σΛΛ→NΞ = 37.15
pN

pΛ

(
√

s −
√

s0)−0.16mb, (3.3)

σΛΣ→NΞ = 25.12(
√

s −
√

s0)−0.42mb, (3.4)

σΣΣ→NΞ = 8.51(
√

s −
√

s0)−0.395mb, (3.5)

with pN as the initial nucleon momentum and pΛ as the final momentum of the Λ, both ex-
pressed in the center-of-mass frame of the collision;

√
s0 is the minimum energy needed for

the reaction to occur:
√

s0 = Max[(mΛ,Σ + mΛ,Σ), (mN + mΞ)]. (3.6)

The cross-sections for the backward reactions YY ← NΞ are computed applying the detailed
balance, and are expressed by the following relations (taken at the same

√
s):

σNΞ→ΛΛ =
1
4

( pΛ

pN

)2

σΛΛ→NΞ, (3.7)

σNΞ→ΛΣ =
3
4

( pΛ

pN

)2

σΛΣ→NΞ, (3.8)

σNΞ→ΣΣ =
9
4

( pΣ

pN

)2

σΣΣ→NΞ, (3.9)
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Figure 3.1: The cross-sections as a function of the center-of-mass energy
√

sNN of the flavor
exchange reactions ΛΛ → NΞ, ΛΣ → NΞ, ΣΣ → NΞ in panels (a), (b), (c), respectively, and
of the corresponding backward channels ΛΛ ← NΞ, ΛΣ ← NΞ, ΣΣ ← NΞ in panels (d), (e),
(f), respectively. These cross-sections are parametrized according to 3.3-3.9 and have been
provided by Ref. [117]. A cut at 75 mb has been applied. The solid red lines represent the
inelastic cross-sections, while the dashed blue lines refer to the total cross-sections.

where pΣ is the momentum of the Σ particle in the center-of-mass frame and the numerical
factors on the right hand side are given by isospin combinations.
We mention that the UrQMD transport model uses different parametrizations for the same
reaction channels [119], in particular the cross-sections considered in PHSD are isospin-
averaged, while in UrQMD they are isospin-dependent.

3.2 Implementation in PHSD

In this section, we explain in detail how we extend the Baryon-Baryon (B-B) hadronic
cascade in PHSD to include the hyperon-hyperon (Y + Y) scattering of the Λ and Σ particles.
For the flavor exchange reactions we adopt the parametrizations given in Eqs. 3.3-3.9, pro-
vided by Ref. [117], that are shown as a function of the invariant energy in Fig. 3.1. The
cross-sections for the forward flavor exchange reactions Y +Y → N +Ξ are plotted using solid
red lines in panels (a), (b), (c), while the cross-sections for the associated backward channels
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Figure 3.2: (l.h.s.) The collision rate dN/dt as a function of the time rescaled according to
the collision time tcoll in central Au + Au collisions at

√
sNN = 3.6, 7.7 GeV in panels (a) and

(b), respectively. The collision rates for different channels are shown (see legend on the plot).
(r.h.s.) The collision rate dN/d

√
sb as a function of the center-of-mass energy of the colliding

particles
√

sb in central Au + Au collisions at
√

sNN = 3.6, 7.7 GeV in panels (c) and (d),
respectively (see legend on the plot).

Y + Y ← N + Ξ are plotted with the same coding of the lines in panels (d), (e), (f). We
apply a cut at 75 mb on the cross-sections ΛΣ → NΞ, ΣΣ → NΞ in order to prevent them
to exceed a total cross-section of σre f = 102 mb in the inclusive Y + Y → X + X scatter-
ing. The considered σre f corresponds to a maximum interaction radius of ≈ 1.8 fm, which
takes into account screening effects due to the high densities reached in heavy-ion collisions.
These flavor exchange reactions are activated at different center-of-mass energy in correspon-
dence to the associated energy threshold

√
s0 (see Eq. 3.6). All the cross-sections shown in

Fig. 3.1 present a maximum close to the threshold and then a smooth decrease as a function
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of
√

sNN . Differently from ΛΛ → NΞ, both ΛΣ → NΞ and ΣΣ → NΞ reaction channels
are exothermal, since the sum of the initial masses is larger than the sum of the final masses:∑initial

m = mΛ,Σ + mΣ = 2.378, 2.304 GeV and
∑ f inal

m = mN + mΞ = 2.252 GeV. In addition
to the inelastic cross-section of the flavor exchange reactions σin, we assign to the hyperon-
hyperon interactions an elastic cross-section equal to the elastic cross-section σel associated to
the nucleon-nucleon scattering. In Fig. 3.1 the dashed blue lines show this additional elastic
contribution, which contribute with σin to the total Y + Y scattering cross-section σYY

tot . Fur-
thermore, we extend the string dynamics to include also the Λ and Σ particles. In particular,
for the nucleon-hyperon (NY) string the employed cross-section is decreased with respect to
the non-strange (NN) string by a factor depending on the number of valence light quarks of
the colliding particles, i.e. σNY

string = σNN
string · (2/3), while for the Y + Y string we use the above

mentioned σYY
tot .

It is interesting to study the features of the Y + Y interactions included in the hadronic re-
scattering as implemented in PHSD. On the l.h.s. of Fig. 3.2 we analyze the reaction rate
dN/dt of the hyperon-hyperon scattering as a function of the time in central (b = 2 fm) Au+Au
collisions at

√
sNN = 3.6 GeV and

√
sNN = 7.7 GeV (panel (a) and (b), respectively). We dis-

tinguish the following different channels: the flavor exchange reactions Y + Y → N + Ξ are
represented by the solid green lines, while the dashed green lines stand for the elastic Y + Y
scatterings; the backward channels Λ + Λ ← N + Ξ are represented by the solid red lines,
while the dashed red lines stand for the elastic N + Ξ scatterings; the solid blue lines refer
to the N + Y string interactions, the solid orange lines refer to the Y + Y string interactions,
the solid magenta lines refer to the string interactions between non-strange particles and the
dashed magenta lines refer to the low-energy collisions between non-strange particles. The
common trend is that dN/dt first increases (reaching a maximum) and then decreases with
increasing time and that it increases with increasing collision energy (the maxima of the rates
are higher and the slopes are harder for

√
sNN = 7.7 GeV than for

√
sNN = 3.6 GeV). The

string dynamics is dominant at small times independently of the reaction type (N + N or N + Y
or Y + Y). In fact, the string interactions mainly occur during the passage time (defined in
Section 2.4), as indicated by the peaks of the rate at t − tcoll ≈ 5 fm/c and t − tcoll ≈ 2 fm/c
for
√

sNN = 3.6 GeV and
√

sNN = 7.7 GeV, respectively. Furthermore, it is straightforward
that the Y + Y interactions present a short time delay with respect to the non-strange particle
collisions, since they are secondary collisions in the hadronic cascade. This is more visible
at
√

sNN = 3.6 GeV. The rate of the flavor exchange reactions and elastic scatterings, which
do not proceed as string excitation, first increases with increasing time up to a maximum at
t ≈ 14 fm/c for

√
sNN = 3.6 GeV and at t ≈ 9 fm/c for

√
sNN = 7.7 GeV and then it decreases

as the system expands and the energy and baryon densities drop. For the largest collision
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energy considered here, the nuclear passage time is shorter and the system evolution is faster
than for

√
sNN = 3.6 GeV. This explains the fact that the maxima of the collision rates shift to

lower times when the collision energy is larger. Since σin > σel, the rates of the Y + Y and
N + Ξ scatterings are characterized by the same hierarchy and in the whole time interval the
rates of the forward Y + Y → N + Ξ channels are larger than the rates for the correspond-
ing backward channels, apart from a small deviation at small times for

√
sNN = 7.7 GeV. In

general, the dN/dt rates associated to the interactions involving strange particles are signifi-
cantly lower than the interactions involving non-strange particles, but they are not negligible.
Consequently, we expect that the new included reaction channels in PHSD provide a relevant
contribution to the final observables in HIC.
Finally, on the r.h.s. of Fig. 3.2 we investigate the energy distribution of the number of col-
lisions dN/d

√
sb as a function of the invariant energy of the colliding particles for the same

colliding energies considered above. We display the contributions associated to: the elastic
and flavor exchange Y +Y interactions (solid green line), the elastic and flavor exchange N +Ξ

interactions (solid red line), the N + Y string interactions (solid blue lines) and the Y + Y string
interactions (solid orange lines). The new included Y + Y interactions occur in the system at
low energies in the range

√
sb = 2 − 3 GeV, while at larger values of

√
sb the collisions pro-

ceed as string excitations. In fact, we recall that within PHSD the string excitations can occur
above the two−π production threshold. We notice that the N + Ξ scatterings take place at large
energies differently from the hyperon-hyperon case. This is due to the fact that the Ξ particles
are still not included as initial particles in the string mechanism. Thus, the Ξ can interact with
the non-strange baryon either elastically or inelastically, producing a hyperon pair. Comparing
the results for

√
sNN = 3.6 GeV and

√
sNN = 7.7 GeV, the features of dN/d

√
sb for the Y + Y

reactions remain basically unchanged, while the dN/d
√

sb for the other types of collisions do
not vanish at larger energies, e.g. N + Y strings occur also at

√
sb ≈ 10 GeV.

3.3 Results from heavy-ion collisions

We study the effects of the new Y + Y interactions in the PHSD model on observables
in heavy-ion collisions. As seen in Section 3.2, we expect a small but finite contribution
from the new channels in the hadronic cascade which develops in HIC. We explore possible
modifications in the rapidity spectra at intermediate energies (ELab = 6, 30 AGeV) and at the
low-energies (ELab = 1.25, 1.76, 1.93 AGeV), in comparison with FOPI, KAOS and HADES
data [112, 113, 115, 121, 122, 123, 124]. Finally, we focus on the Ξ abundances, which have
been the main motivation for this implementation. We list the explored scenarios and the
corresponding color code for the results shown in Figs. 3.3 - 3.9:
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Figure 3.3: The rapidity distribution of protons, Λ’s, Σ+’s, Σ0’s, Ξ−’s and Ξ0’s for 5% central
Au+Au collisions at 6 AGeV. The solid red and the dashed blue lines show the results includ-
ing the new Y + Y channels with and without CSR, respectively, while the dash-dot green and
the dotted magenta lines show the results excluding the new Y + Y channels with and without
CSR.
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experimental data are taken from Ref. [120].
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• PHSD including the new Y + Y channels with Chiral Symmetry Restoration (CSR) dis-
played by the solid red line;

• PHSD including the new Y +Y channels without CSR displayed by the dashed blue line;

• PHSD excluding the new Y +Y channels with CSR displayed by the dash-dot green line;

• PHSD excluding the new Y + Y channels without CSR displayed by the dotted magenta
line.

Although in the following analysis we make some comments on the effects and possible sig-
nature of CSR, we defer a detailed discussion of these aspects to the Chapter 4.

3.3.1 Rapidity spectra at ELab = 6 and 30 AGeV

In Fig. 3.3 we present the rapidity spectra of protons, Λ’s, Σ+’s, Σ0’s, Ξ−’s, Ξ0’s for 5% cen-
tral Au+Au collisions at 6 AGeV. We do not display meson spectra, since they are marginally
affected by the inclusion of the Y + Y scatterings. The investigated scenarios do not show
remarkable differences on the proton spectra, since the new reaction channels are rare events
compared to the non-strange collisions, which determine the proton distributions. On the other
hand, there are sizeable modifications in the strange baryon spectra. The inclusion of the Y +Y
scatterings decreases the multiplicity of the Λ particles, while it increases the multiplicity of
the Σ and Ξ particles. The modification is more pronounced for the Σ0 and Ξ particles, whose
yields increase by about 15% and 30%, respectively. When we also introduce CSR in the
calculations, we obtain even larger multiplicities for all the considered hyperons. We notice
that the modifications associated to CSR are larger with respect to those related to the Y + Y
interactions in the spectra of the single-strange baryons, i.e. Λ and Σ. In fact, the lines refer-
ring to PHSD excluding the new Y + Y channels with CSR (dash-dot green line) are above the
lines referring to PHSD including the new Y + Y channels without CSR (dashed blue line).
We find the opposite hierarchy in the Ξ spectra, where the contribution of the flavor exchange
interactions is larger than the modifications due to CSR.
At higher collision energies the role played by the new channels is not as significant as we
have seen at ELab =6 AGeV. This is shown in Fig. 3.4, where we plot the rapidity spectra for
7% central Au+Au collisions at 30 AGeV of the same particle species displayed in Fig. 3.3.
We recover similar features as described above for ELab =6 AGeV, but the modifications due
to the inclusion of the Y + Y scatterings are significantly smaller, e.g. for the Ξ the differ-
ence between the calculations with and without Y + Y channels is ≈ 10%. Moreover, only
when we consider CSR in our calculations we achieve a good reproduction of the experimen-
tal observations for the Ξ. A comparison with experimental data for the other particles will
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be shown in Chapter 4 for a different centrality class. The fact that the particle spectra are
less affected by the inclusion of the Y + Y interactions is not surprising, since as seen in the
Section 3.2 the flavor exchange channels are low energy interactions. At top SPS energies, the
calculations of all 4 different scenarios merge, since the dynamics of the system is ruled by the
partonic phase and the hadronic re-scattering in the late stages of the expansion is dominated
by meson-baryon and meson-meson interactions because of the large meson density compared
to the baryon density.

3.3.2 Particle spectra and ratios at ELab = 1.25, 1.76 and 1.93 AGeV

In this subsection we investigate the particle production at low energies, ELab =1.25, 1.76
and 1.93 AGeV, to compare our calculations to measurements from the FOPI, KAOS and
HADES collaborations [112, 113, 115, 121, 122, 123, 124]. Unfortunately, in this energy
regime it is really hard to measure multi-strange particle spectra because of the low production
rate, thus we show particle spectra only for the most abundant particles, i.e. protons, (Λ+Σ0)’s,
charged pions and kaons. In Fig. 3.5 we present the predictions for the HADES Au+Au run
at 1.25 AGeV. The centrality is fixed according to the preliminary analysis of the HADES
collaboration (private communication), i.e. the calculations are performed for 10% central
collisions for all particles, apart of the K−, which are computed for the 20% centrality class.
We show calculations from only two scenarios, PHSD including the new Y + Y channels with
and without CSR (solid red and dotted blue lines, respectively), since the inclusion of the Y +Y
scattering affects marginally the particle spectra considered here. We notice that also CSR does
not sizably modify the particle spectra; we only see a small enhancement of the K+ and of the
(Λ + Σ0)’s. The same considerations hold for the analogous particle spectra in Fig. 3.6 for
central Ni+Ni collisions at 1.93 AGeV. In this case, there are data available from the FOPI
and KAOS collaborations [115, 121, 122]; thus we calibrate our analysis according to the
experimental analysis and acceptance (b < 3.5 fm for baryons and pions and b < 4.5 fm for
kaons). Our results are in a good agreement with the data for the (Λ+Σ0) and K− distributions,
while they do not describe well the proton, pion and K+ rapidity spectra. In particular, our
calculations for the pions and K+ overshoot the experimental observations by ≈ 30 − 40%.
In fact, in this energy regime the particle production is expected to be sensitive to hadronic
potentials. The repulsive kaon potential for example gives an increase of the effective kaon
mass and consequently a decrease of the associated multiplicities. This was found in the
analysis reported in Ref. [49] based on a previous version of HSD, where hadronic potentials
have been incorporated in the particle production and propagation. There it was shown that
HSD could reproduce the experimental data at ELab = 1.93 AGeV when the hadronic potentials
are included. Thus, it is not surprising that the current version of PHSD, which includes
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Figure 3.7: Different particle ratios in Ca+Ca collisions at 1.76 AGeV (for b < 5 fm and in
full acceptance) on the l.h.s. and in Au+Au collisions at 1.23 AGeV (for b < 10 fm at mid-
rapidity) on the r.h.s.. The Ca+Ca calculations are compared with the HADES observations
for Ar+KCl collisions. The experimental data are taken from published and from preliminary
results from the HADES collaboration [112, 113, 123, 124]. The magenta points refer to the
PHSD calculations excluding the Y + Y scatterings and without CSR, while the blue and red
points refer to the PHSD results including the new Y + Y channels with and without CSR,
respectively.

the hadronic potentials only in the particle propagation and not in the particle production, is
not able to describe the experimental rapidity spectra of the kaons in this energy regime. A
consistent implementation of the hadronic potentials is currently under construction in PHSD.
In Fig. 3.7 we show results on different particle ratios in Ca+Ca collisions at 1.76 AGeV
(l.h.s.) and in Au+Au collisions at 1.23 AGeV (r.h.s.) in comparison with available published
and preliminary data from the HADES collaboration [115, 121, 122]. The PHSD results from
the explored scenarios (see legend of Fig. 3.7) do not present large differences between each
other, apart from the Ξ−/Λ and Ξ−/π ratios. In Ca+Ca collisions at 1.76 AGeV the production
of Ξ is basically negligible in PHSD if Y + Y interactions are not included. The production
of Ξ is investigated in more detail in the next subsection 3.3.3. Overall, our results are in a
good agreement with the available data, with some discrepancies for the ratios Ξ−/Λ, Ξ−/π

and φ/K−. In fact, the PHSD calculations on these particle ratios are almost one order of
magnitude lower than the experimental observations. It emerges that although the Y + Y
interactions are necessary in PHSD at intermediate energies (e.g. at ELab = 6 AGeV as it
is shown in detail in the following Section 3.3.3), at these low energies there are probably
some additional contributions for the close-to-threshold production mechanisms that are still
missing in our approach. We mention that the UrQMD model proposes new decay channels
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for high mass baryon resonances [125], whose inclusion seems to provide a good description
of the high yields of φ and Ξ. In contrast to these suggestions, we report that, in a study
of near-threshold incoherent φ photo-production [126], no remarkable contribution has been
found to be associated with the high-mass resonance decays.

3.3.3 Ξ-abundances

In this Section we present a detailed study of the Ξ production. In Fig. 3.8 we show the
centrality dependence of the full-acceptance Ξ− and (Λ + Σ0) yields and of the corresponding
Ξ−/(Λ+Σ0) ratio in Au+Au collisions at 6 AGeV. Similarly to what we observed for the rapid-
ity spectra in Fig. 3.3, the inclusion of Y +Y interactions provides a strong enhancement of the
Ξ− multiplicity, which otherwise would be underestimated with respect to the experimental
measurements (panel (a)). On the other hand, the (Λ + Σ0) yield is slightly decreased by the
Y + Y inelastic reactions (panel (b)). The inclusion of CSR in the string fragmentation (red
lines) leads to a stronger enhancement of both considered hyperons which results in an over-
shoot of the data in the whole range of centrality. All four scenarios follow the experimental
trend of the data as a function of centrality, i.e. the yields of the strange particles decrease with
increasing impact parameter. Although none of the explored scenarios provides a satisfying
description of both yields, the calculations of PHSD including the new Y +Y channels without
CSR seem to be in reasonable agreement with the data. The ratio Ξ−/(Λ + Σ0) does not show
a strong dependence on the centrality, as it is almost constant in the range b = 2 − 4 fm with a
minor softening for b > 4 fm. Comparing the results of the Ξ−/(Λ + Σ0) ratio with and without
Y + Y interaction, it is evident that the implementation of the new strange reaction channels
plays an important role at ELab =6 AGeV. The PHSD calculations with the new Y +Y channels
and without CSR reproduce the experimental data quite well, while the calculations, which
exclude the Y + Y scatterings, are significantly lower than the data. If we include in the calcu-
lations only CSR and not the hyperon reactions, we obtain a small increase of the ratio (about
10%), since CSR provides an enhancement of both Ξ and (Λ + Σ0). Instead, the difference be-
tween the PHSD results including the new Y +Y channels with and without CSR is about 40%,
thus much larger than in the previous case. This is due to the fact that we have extended also
the string dynamics to include the Λ and Σ particles, which in combination to the strangeness
enhancement related to CSR, gives a larger abundance of the Ξ− particles. As it emerges from
the Ξ− and (Λ+Σ0) yields, the scenario with Y +Y scatterings and with CSR are above all other
calculations and for the large centralities it overshoots the data. However, we stress that there
is a non-negligible uncertainty related to the results from PHSD with CSR, due to the different
parametrizations of the nuclear equation of state adopted in the calculations. This sensitivity
to the nuclear equation of state will be discussed in more detail in Chapter 4. In the investiga-
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The experimental data are taken from Ref. [127].

tions addressed in this Chapter we have considered the NL1 parametrization, which provides
the largest strangeness enhancement with respect to the other explored parametrizations. In
this way, the maximum effect from the CSR mechanism is shown. Different parametrizations
give lower values of the Ξ−/(Λ+Σ0) ratio, for example the results obtained with the parameter
set NL3 are ≈ 10% lower than the corresponding calculations with the NL1 parametrization.
Finally, we present in Fig. 3.9 the excitation function of the Ξ−/(Λ + Σ0) ratio for central
Au+Au collisions in comparison with available data from Refs. [112, 120, 127, 128, 129,
130]. In this case, the NL3 parametrization is adopted for the PHSD calculations including



3.3. Results from heavy-ion collisions 59

10
-3

10
-2

10
-1

0 5 10 15 20

Ξ
- /(

 Λ
+

Σ
0
 )

√sNN [GeV]

A+A 0-5% central, 4π

w/o CSR w/o Y+Y channels

w/   CSR w/o Y+Y channels

w/o CSR w/   Y+Y channels

w/   CSR w/   Y+Y channels

SIS18

AGS

SPS

Figure 3.9: The full-acceptance ratio Ξ−/(Λ + Σ0) as a function of the center-of-mass energy
√

sNN in central Au+Au collisions. The coding of the lines is the same as in Fig. 3.8. The
filled symbols represent data for symmetric A+A collisions measured at SIS18 [112] (circle)
at AGS [127] (square) and at SPS [120, 128] (triangles), while the open symbols are taken
from Refs. [129, 130] and correspond to data measured in p+A collisions.

CSR, differently from the setting of the above analysis. The scenario of PHSD with Y+Y chan-
nels and including CSR reproduces the experimental observation with a small discrepancy at
low energies

√
sNN < 3 GeV. On the other hand, the alternative scenarios fail in describing

the data apart from the top SPS point (
√

sNN = 17.2 GeV), where all calculations essentially
merge. In fact, at

√
sNN = 17.2 GeV the dominant production mechanism for hyperons is the

hadronization of hadronic degrees of freedom and the contributions from flavor exchange re-
actions and CSR are negligible. Comparing the PHSD results with and without Y +Y channels,
we can infer that the Y + Y channels give a significant contribution to the Ξ−/(Λ + Σ0) ratio
within the energy range

√
sNN = 2 − 6 GeV. The CSR mechanism is instead more effective in

the dynamics for
√

sNN = 3− 12 GeV, as the PHSD calculations with and without CSR do not
overlap. Although the inclusion of the Y +Y interaction does not provide a conclusive explana-
tion of the extremely high Ξ− yields measured by the HADES collaboration [112, 129] (SIS18
data points), it represents (within PHSD) a striking improvement of the hyperon production
close to the threshold.





Chapter 4

Chiral symmetry restoration in heavy-ion
collisions at intermediate energies

Heavy-ion collisions (HIC) are the unique experimental tool to probe nuclear matter at
high temperatures and/or high densities. Experimentally, there is no direct insight to the colli-
sion process. One can detect only the final particle abundances and momentum distributions.
Thus, it is not straightforward to relate the final observables to physical phenomena and to the
production mechanisms happening during the different stages of the collision process. In this
context, it is difficult to extract information about the restoration of chiral symmetry (CSR),
that is expected to occur at high temperatures and/or high densities.
The crucial challenge is to identify signatures in the final particle distributions, which allow to
understand if the system passed through a phase in which chiral symmetry is at least partially
restored. In this Chapter we examine the role played by the restoration of chiral symmetry
in the particle production as implemented in the PHSD approach. Then, we analyze particle
abundances, spectra and ratios in A+A collisions in the energy range

√
sNN = 3 − 20 GeV.

This Chapter is based on the work published in Ref. [44, 82].

4.1 Scalar quark condensate

In this Section, we first investigate if in HIC the system undergoes a transition between a
phase in which the chiral symmetry is broken to a phase in which the chiral symmetry holds.
We recall that the scalar quark condensate 〈q̄q〉 is an order parameter for this kind of transi-
tion. The scalar quark condensate 〈q̄q〉 is expected to decrease from a non-vanishing value
in the vacuum (〈q̄q〉V ≈ −3.2 fm−3) to 〈q̄q〉 ≈ 0 corresponding to CSR at high density or
temperature. In Fig. 4.1 we present the ratio 〈q̄q〉/〈q̄q〉V expressed in Eq. A.1 as a function of
x and z (for y = 0) at different times t for a central Au+Au collision at 30 AGeV. Before the

61
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Figure 4.1: The ratio ratio 〈q̄q〉/〈q̄q〉V expressed in Eq. A.1 as a function of x and z (for y = 0)
at different times t for a central Au+Au collision at 30 A GeV employing the parameter set
NL3 for the nuclear equation of state. The white borderline separates the space-time regions
of deconfined matter to hadronic matter.

collision, the two impinging nuclei are characterized by a high value for the ratio 〈q̄q〉/〈q̄q〉V
(≈ 70%). During the passage time (defined in Section 2.4) from about 2.6 fm/c to 6 fm/c,
the overlap region reaches the highest values of baryon density and the scalar quark conden-
sate practically vanishes. In the following expansion, the system dilutes and cools down, so
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〈q̄q〉 recovers to the vacuum value. The white border-lines highlighted in Fig. 4.1 in the time
interval between 2.61 fm/c to 4.56 fm/c separate the space-time regions of deconfined matter
from those of hadronic matter. We find that in HIC a transition to CSR occurs and, in case of
central collisions, a large volume is affected by CSR for a relatively long time interval last-
ing ≈ 4 fm/c. Similar considerations can be made for HIC at different energies, however, with
some distinctions. At lower colliding energies, e.g. at 10.7 AGeV, the densities achieved in the
overlap region are smaller. However, the passage time is larger compared to 30 AGeV. Over-
all, the system produced in low-energy collisions is considerably affected by CSR. At larger
colliding energies, e.g. at 158 AGeV, the passage time is shorter, while the systems reaches
larger densities. Thus, the scalar quark condensate vanishes, however, a larger region of the
system is occupied by deconfined partons in the PHSD. Despite the high densities, the effect
of CSR at 158 AGeV is expected to be negligible, since the CSR mechanism within PHSD is
incorporated in the string decay and no strings can be formed in the QGP phase because of the
vanishing string tension.
The results for 〈q̄q〉 at 30 AGeV show that CSR takes place in HIC at the early stages of the
collisions, but it is not possible to directly measure the scalar quark condensate in experi-
ments. The CSR mechanism (as implemented in PHSD) affects the particle production via the
string dynamics. Thus, we need to find indirect effects of CSR on experimentally measurable
quantities.

4.2 Time evolution of the strange particle multiplicities

In this Section, we analyze the effect of CSR on the particle production in HIC focusing
on the strange multiplicities. We provide in Fig. 4.2 an illustration of the time evolution of the
strangeness content in central heavy-ion collisions. In panels (a), (c), (e) we show the num-
ber of particles Ns containing s-quarks (green lines) as a function of time (rescaled according
to the collision time tcoll) in central Au+Au collisions at bombarding energies of 8, 30, 158
AGeV, respectively, while in panels (b), (d), (f) we plot the associated rates dNs/dt of strange
particles. The solid lines refer to the results of PHSD including CSR with NL1 parameters
and the dashed lines refer to the results of PHSD without CSR. We see that at AGS and SPS
energies the strange particle production takes place at the early stages of the collision process.
More than ≈ 90% of the strange content of the system is created in the time interval between
0 fm/c and 4 fm/c after the collision and already at about 10 fm/c the production of strange par-
ticles essentially ceases. Comparing the results at the different energies, we can see that the
strangeness production is slower at lower energies. In fact, the peak of the total dNs/dt shifts
to smaller times with increasing energies, and for ELab = 158 AGeV the whole strangeness
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Figure 4.2: (l.h.s.) The strange particle number Ns as a function of time (rescaled according
to the collision time tcoll) in 5% central Au+Au collisions at 8, 30, 158 AGeV in panels (a),
(c), (e), respectively. (r.h.s.) The strangeness rate dNs/dt as a function of t − tcoll in 5% central
Au+Au collisions at 8, 30, 158 AGeV in panels (b), (d), (f), respectively. The solid lines show
the results from PHSD including CSR with NL1 parameters, while the dashed lines show the
results from PHSD without CSR. The green lines refer to the total number of strange particles,
while the blue and red lines refer to the hadronic and partonic contributions of the strangeness
content, respectively.
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production occurs within 2 fm/c. In Fig. 4.2 the total number of strange particles has also been
separated in the corresponding hadronic and partonic contributions, represented by the blue
and red lines, respectively. At the energies of 8 AGeV and 30 AGeV, the hadronic strangeness
content is dominant relative to the partonic one. At 30 AGeV of collision energy, the partonic
contribution reaches ≈ 28% of the total strangeness content in correspondence of the maxi-
mum value of the partonic fraction. The production rate associated to the partonic degrees of
freedom supersedes the hadronic one only for ELab = 158 AGeV. The strange quarks in the
partonic phase do not appear immediately after the collision, as for the case ELab = 30 AGeV
when they appear after about 1 fm/c. In fact, the primary interactions within the PHSD are re-
alized via string excitation and after that, in the cells with energy density ε > 0.5 GeV/fm3, the
hadrons are dissolved into partons and mean-field energy. The partonic Ns distribution initially
increases as a function of time, reaching a maximum at about 6 fm/c for ELab = 8 AGeV and
at smaller times for larger bombarding energies. Then, at larger times, the energy density of
the system decreases; as a result the partons hadronize by dynamical coalescence. We notice
though that during the hadronization the total strange particle number is basically fixed, since
there is no new creation of strangeness but a relocation of strangeness content from partonic
to hadronic degrees of freedom. Moreover, further hadronic scattering processes do not create
additional strangeness in the system, but they are only responsible for strange flavor exchange.
We stress that the rates dNs/dt include production as well as losses either due to dissolution
of hadrons in the QGP or due to hadronization of strange partons. Accordingly, these rates
become negative when dissolution or hadronization dominates. The total strange particle rate
remains positive during the entire time evolution in panels (b) and (d) and shows a small neg-
ative rate only for ELab = 158 AGeV due to the dissolution of strange hadrons in the QGP.
On the other hand, the partonic rate becomes negative at larger times since the hadronization
(’loss’) supersedes the strange quark production. The negative rate on the partonic content is
balanced by the positive rate on the hadronic content due to strangeness conservation. The
duration of the hadronization process becomes longer at higher bombarding energies, where
a larger volume of the systems turns into the QGP phase, e.g. the hadronization lasts about
5 fm/c for ELab = 30 AGeV and about 8 fm/c for ELab = 158 AGeV.
Finally, we compare the strange particle amount computed in PHSD including (solid lines)
and excluding (dashed lines) CSR in the string dynamics. The restoration of chiral symmetry
causes a sizable increase (≈ 30%) of the total strangeness content. We notice that CSR does
not modify the time evolution of both Ns(t) and dNs/dt, but it only affects the hadronic con-
tribution to the strange particle production. There is a small difference between the partonic
results with and without CSR since the strange particle number in the partonic phase is slightly
higher when including CSR. However, this is not due to a higher strangeness production in
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the QGP, but stems from particles which are produced by string decay in the hadronic corona
and travel to cells with energy density above εc during their propagation. Thus, such strange
particles, although produced by the string decay, dissolve into partonic degrees-of-freedom.
In this respect, the enhancement of the strange particle number in the hadronic phase drives
a small increase also in the partonic contribution. The strangeness enhancement associated to
CSR is most clearly visible at lower energies while at 158 AGeV it is very moderate. We find
similar features in the results of the final particle rapidity spectra (see Section 4.3).
We infer that at 8 AGeV and 30 AGeV the steep increase of the number of strange particles
as a function of time has to be attributed predominantly to the hadronic production, which
occurs in PHSD via string formation and decay. Thus, CSR is found to play a crucial role
in the strange particle production in HIC at AGS and low SPS energies. At higher energies,
such as ELab = 158 AGeV, the dynamics and evolution of the system is ruled by partonic scat-
tering process and mean-field energies. In general, the strangeness production occurs at the
early stages and after ≈ 12 fm/c the strangeness content is entirely fixed and within PHSD the
creation of strange particles ceases.

4.3 Rapidity spectra at AGS and SPS energies

In this Section we present results obtained within the PHSD for the rapidity distribution of
the most abundant particles at AGS and SPS energies. We explore the following scenarios in
order to disentangle the role of the CSR as well as the role of the partonic degrees of freedom:

• Scenario 1: PHSD calculations without CSR in dotted blue lines;

• Scenario 2: PHSD calculations including CSR with NL3 as parameter set for the nuclear
EoS in solid red lines;

• Scenario 3: PHSD calculations including CSR with NL1 as parameter set for the nuclear
EoS in dashed green lines;

• Scenario 4: HSD calculations without CSR in dash-dot orange lines;

• Scenario 5: HSD calculations including CSR with NL3 as parameter set for the nuclear
EoS in solid orange lines.

We present in Figs. 4.3 − 4.5 the results of PHSD for the rapidity distribution of protons,
(Λ + Σ0)’s, pions and kaons for central nucleus-nucleus collisions at different energies (from
AGS to top SPS energies) in comparison to the experimental data from Refs. [120, 131, 132,
133, 134, 135, 136, 137].
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Figure 4.3: The rapidity distribution of protons, (Λ + Σ0)’s, pions and kaons for 5% central
Au+Au collisions at 10.7 AGeV in comparison to the experimental data from Refs. [131, 132].
The solid red lines show the results from PHSD including CSR with NL3 parameters, the
dashed green lines show the results from PHSD including CSR with NL1 parameters, the
dotted blue lines show the result from PHSD without CSR and the solid and dash-dot orange
lines show the results from HSD with and without CSR, respectively.

In Figs. 4.3 and 4.4 the HSD results without CSR (Scenario 4) severely underestimate the K+

and Λ production at the lower energies while overproducing pions. The inclusion of partonic
degrees of freedom (Scenario 1) does not significantly change the rapidity distributions of the
baryons compared to HSD at these energies. Actually this rough equivalence also holds for
PHSD and HSD when including CSR (Scenarios 2 and 5, respectively) at 10.7 A GeV. The
PHSD results from Scenarios 2,3 correctly reproduce the experimental observations of the K±

and (Λ + Σ0) distributions. The restoration of chiral symmetry gives an enhancement of the
strange particle yields both for mesons and baryons at 10.7 and 30 AGeV. On the other hand,
it produces a slight decrease in the number of pions at midrapidity due to the suppression
of pions in the string decays in favor of strange hadrons. The proton rapidity spectra do not
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Figure 4.4: The rapidity distribution of protons, (Λ + Σ0)’s, pions and kaons for 5% central
Au+Au collisions at 30 AGeV in comparison to the experimental data from Ref. [120, 133,
134]. The coding of the lines is the same as in Fig. 4.3.

present any sensible variation. In fact, the CSR as implemented in PHSD modifies essentially
the chemistry of the newly produced particles in the string decay and has a minor impact on
the dynamics of the nucleons, which in the string picture are associated to the string ends of
the primary interactions in the system. Furthermore, our calculations for the proton rapidity
spectra are in good agreement with experimental observation at ELab = 10.7 AGeV, while at
ELab = 30 AGeV both protons and pions are minimally overestimated at midrapidity in all
explored scenarios which suggests that there is a small overestimation of the nuclear stopping.
The hadronic equation of state also plays an important role. The effect of the different parame-
trizations NL1 and NL3 is investigated in PHSD in Scenarios 2 and 3, respectively. The results
in Figs. 4.3 and 4.4 show a similar enhancement in the strangeness sector for both parametriza-
tions. In particular, the NL1 set provides larger values for all strange particle rapidity spectra
at midrapidity consistently with the discussion of Fig. 2.10 (r.h.s.). The difference between
the two parametrizations represents the uncertainty of our results related to CSR as imple-



4.3. Rapidity spectra at AGS and SPS energies 69

0

15

30

45

60

     

d
N

/d
y

SPS - Pb+Pb @ 158AGeV
5% centralp

 

 

 

 

 

     
0

5

10

15

20

Λ+Σ
0 w/o CSR

NL3
NL1

NA49

0

50

100

150

     

d
N

/d
y

π
+ HSD w/   CSR

HSD w/o CSR

     
0

50

100

150
π

-

0

10

20

30

-5 -4 -3 -2 -1 0 1 2 3 4

d
N

/d
y

y

K
+

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

6

12

18

y

K
-

Figure 4.5: The rapidity distribution of protons, (Λ + Σ0)’s, pions and kaons for 5% central
Au+Au collisions at 158A GeV in comparison to the experimental data from Ref. [135, 136,
137]. The coding of the lines is the same as in Fig. 4.3.

mented in PHSD. We stress that this is not an attempt to tune the parameters of the equation
of state in order to fit the data, but we employ different nuclear EoS to compute the scalar den-
sity (as explained in Section 2.5.2) in order to explore the uncertainties of our approach. At
ELab = 30 AGeV (Fig. 4.4) the difference between the Scenarios 2 and 3 are slightly smaller
compared to the corresponding results for ELab = 10.7 AGeV (Fig. 4.3). At the top SPS energy
ELab = 158 AGeV (Fig. 4.5) the CSR does not play a significant role, since the dynamics is
dominated by the QGP phase. This is clear when comparing the results from HSD (Scenarios
4, 5) with PHSD (Scenarios 1, 2, 3). Moreover, there is no appreciable difference between
the results with and without CSR for the two different EoS. Our results for K+ are lower with
respect to the experimental data, however, the (Λ + Σ0) and K− as well as the protons and the
π− are correctly reproduced. It is presently unclear where these final differences stem from,
since strangeness conservation is exactly fulfilled in the PHSD calculations.
As additional investigation for the hadronic EoS, we consider NL2 as further parameter set.
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NL1 NL2 NL3
p 47.6 48.2 48.5
π+ 91.1 91.7 92.5
π− 102.7 103.3 104.2
K+ 18.6 18.1 17.6
K− 7.58 7.45 7.34

Λ + Σ0 15.6 15.1 14.7
K+/π+ 0.204 0.197 0.190
K−/π− 0.0738 0.0721 0.0704

(Λ + Σ0)/π 0.0537 0.0516 0.0498

Table 4.1: Particle abundances and strange to non-strange particle ratios at midrapidity (|y| ≤
0.5) from 5% central Pb+Pb collisions at 30 AGeV for different parametrizations of the nuclear
equation of state.

As we have seen in Fig. 2.9 in Chapter 2 the results for the strangeness ratio γs(ε) are very
similar for the parameter sets NL1 and NL2 for nuclear matter at T = 0. However, in HIC the
different compression modulus leads to a slightly different baryon dynamics which also has an
impact on the meson abundances and spectra. We provide in Table 4.1 the midrapidity yields
for protons, pions, K+,K− and (Λ + Σ0) and associated ratios for the parameter sets NL1, NL2
and NL3 in case of central Pb+Pb collision at 30 AGeV. This is done to quantify the difference
on the particle abundances between NL2 and the other two parametrizations, where the effect
from CSR is most pronounced. There is a correlation between the proton and pion multiplic-
ities. A higher stopping entails a higher proton and pion density with the order NL3 > NL2
> NL1. On the other hand, the strangeness abundances at midrapidity are anti-correlated with
the proton density: the corresponding hierarchy is NL1 > NL2 > NL3. Although the hadron
multiplicities do not dramatically depend on the parameter set, there is an enhanced effect in
the ratios K+/π+, K−/π− and (Λ + Σ0)/π in the order NL1 > NL2 > NL3. We find that the
calculations with the NL2 parametrization is always in between NL1 and NL3, hence we show
on the final observables only the results corresponding to NL1 and NL3. Since any realistic
nuclear EoS is expected to provide results within the limits of the parameter sets NL1 and
NL3, we expect to obtain reliable limits on the uncertainties with respect to the nuclear EoS.
We have shown that the inclusions of the CSR and of the partonic degrees of freedom are
essential ingredients in order to correctly reproduce the experimental data on the particle ra-
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Figure 4.6: (l.h.s.) The transverse mass spectra of protons for 5% central Au+Au collisions at
4, 6, 8 AGeV in comparison to the experimental data from Ref. [138]. (r.h.s.) The transverse
mass spectra of protons for 7% and 5% central Pb+Pb collisions at 20, 30, 158 AGeV in com-
parison to the experimental data from Ref. [139]. We show the results from PHSD including
CSR with NL3 parameters by solid red lines, the results from PHSD without CSR by dotted
blue lines and the results from HSD without CSR by dash-dot orange lines.

pidity spectra at ELab = 10.7, 30, 158 AGeV, as we can see especially for (Λ + Σ0) hyperons
and K+ mesons.

4.4 Transverse mass spectra at AGS and SPS energies

In this Section, we show the PHSD results for the transverse mass spectra of protons, pions
and kaons for different energies in central Au+Au and Pb+Pb collisions in Figs. 4.6 and 4.7 in
comparison with AGS and SPS data, respectively. We present here results from the Scenarios
1, 2, 4. The results on this observable are insensitive to the parameter set used for the EoS, so
that Scenarios 2 and 3 are equivalent and we just present those from Scenario 2.
At AGS (l.h.s. of Fig. 4.6) and SPS (r.h.s. of Fig. 4.6) energies our calculations for the proton
spectra (Fig. 4.6) show the same trend as the experimental data. However, we observe that
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Figure 4.7: (l.h.s.) The transverse mass spectra of pions and kaons (K− multiplied by 0.1)
for 5% central Au+Au collisions at 2, 4, 6, 8, 10.7 AGeV in comparison to the experimental
data from Refs. [140, 141, 142, 143]. (r.h.s.) The transverse mass spectra of pions and kaons
(K− multiplied by 0.1) for 7% and 5% central Pb+Pb collisions at 20, 30, 40, 80, 158 AGeV in
comparison to the experimental data from Ref. [133, 135, 144]. The coding of the lines is the
same as in Fig. 4.6.

the computed spectra are softer than the experimental data in this energy range. In fact, our
results overestimate the data at low transverse mass mT and underestimate the data at larger
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mT . We mention, however, that in our present calculations hadronic potentials have not been
included and their inclusion can modify our results at AGS energies. Instead at SPS energies,
the final particle spectra are insensitive to hadronic potentials, since the baryon densities in
the final hadronic phase (after the hadronization of the partonic degrees of freedom) are rather
low. We notice that CSR produces no change in the transverse mass spectra of protons, both
at AGS energies and at SPS energies. The HSD calculations underestimate the data of the
Pb+Pb collisions at SPS energies, while at AGS energies the difference between the HSD and
PHSD results is smaller.
In Fig. 4.7 (l.h.s. and r.h.s.) we display the transverse mass spectra for pions and kaons in cen-
tral Au+Au collisions at AGS energies and in Pb+Pb collisions at SPS energies, respectively.
We focus on the role played by the CSR on the mesons transverse mass spectra. At the lower
energies, ELab = 2 AGeV, there is no appreciable difference between the calculation with and
without CSR, since the energy density reached by the system is not high enough to produce a
vanishing scalar quark condensate. Instead, in the energy range ELab = 4−40 AGeV, we notice
a small difference between Scenarios 1 and 2. As already mentioned, the CSR acts directly on
the chemistry and not so much on the dynamics of the Schwinger mechanism, thus the effect
of the partial restoration of chiral symmetry is rather small on the transverse mass spectra.
The kaon spectra are harder when CSR is included, while the pion spectra remain essentially
unchanged. At the higher SPS energies ELab = 80, 158 AGeV the dynamics of the system is
ruled predominantly by the QGP phase and our calculations do not show any sensitivity to the
inclusion of CSR. The agreement of our PHSD calculations with the data in Fig. 4.7 is good
in all cases studied.

4.4.1 Strange particle abundances and ratios

The strangeness enhancement in A+A collisions with respect to elementary p+p collisions
is considered as a signature of the creation of a QGP during the early stages of HIC [147, 148].
Gazdzicki and Gorenstein [6] identified the excitation function of the K+/π+ ratio as a clear
observable to spot out the production of deconfined matter. In fact, they suggest that the horn
feature in the behavior of the K+/π+ ratio as a function of the center-of-mass energy is due to
the appearance of a QGP phase at

√
sNN ≈ 7 GeV.

In Fig. 4.8 we show the excitation function of the particle ratios K+/π+, K−/π− and (Λ + Σ0)/π
at midrapidity from 5% central Au+Au collisions. We present calculations from all scenar-
ios introduced in Section 4.3. The shaded area displays the uncertainties of our calculations
emerging from the difference between Scenarios 2 and 3. The results from PHSD and HSD
merge for

√
sNN < 4 GeV and fail to describe the data in the conventional scenario without

incorporating the CSR (Scenarios 1 and 4, respectively). Especially the rise of the computed
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Figure 4.8: The ratios K+/π+, K−/π− and (Λ + Σ0)/π at midrapidity from 5% central Au+Au
collisions as a function of the invariant energy

√
sNN up to the top SPS energy in comparison

to the experimental data from [120, 143, 145, 146]. The coding of the lines is the same as in
Fig. 4.5. The gray shaded area represents the results from PHSD including CSR taking into
account the uncertainty from the parameters of the σ − ω model for the EoS.

K+/π+ ratio at low bombarding energies follows closely the experimental excitation function
when incorporating CSR (Scenarios 2, 3 and 5). However, the drop in this ratio at ≈ 7 GeV
is due to deconfinement since at higher bombarding energies the string decays in a hadronic
medium cease. This is clearly seen in the case of HSD with CSR (Scenario 5) which over-
shoots the data substantially at high bombarding energy. The experimental observations of
the ratio (Λ + Σ0)/π show a “horn”structure similar to the K+/π+ excitation function, which
is reproduced by the PHSD calculations with CSR (Scenarios 2 and 3). At AGS energies,
the energy dependencies of the ratios K+/π+ and (Λ + Σ0)/π are closely connected, since K+
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Figure 4.9: The yields of (Λ + Σ0) and Ξ− at midrapidity from 5% central Au+Au collisions
as a function of the invariant energy

√
sNN up to the top SPS energy in comparison to the

experimental data from Refs. [120, 132]. The coding of the lines is the same as in Fig. 4.5 and
for the shaded area see caption of Fig. 4.8.

and Λ (or Σ0) are mostly produced in pairs due to strangeness conservation. As anticipated
by the considerations in Sec. 2.5.2, the NL1 parameter set produces a sharper peak both in
the K+/π+ and in the (Λ + Σ0)/π excitation functions with a ≈ 10% maximum increase with
respect to the results with NL3. We point out that even adopting different parametrizations for
the σ − ω model, we recover the same “horn”feature. This supports the reliability of the CSR
mechanism as implemented in the PHSD model. Finally, the excitation function of the K−/π−

ratio does not show any peak, but it smoothly increases as a function of
√

sNN . In fact, espe-
cially at AGS energies, the antikaon production differs substantially from the production of K+

and Λ, which occurs predominantly via string formation. In fact, the antikaons are produced
mainly via secondary meson-baryon interactions by flavor exchange and their production is
suppressed with respect to the Λ hyperons that carry most of the strange quarks. This is the
reason why the inclusion of chiral symmetry restoration provides a substantial enhancement
of the K+/π+ and (Λ+Σ0)/π excitation functions and a smaller change for the K−/π− ratio. We
also notice that there is no sizeable difference between the NL1 and NL3 results for the K−/π−

ratio. At top SPS energies the strangeness is produced predominantly by the hadronization
of partonic degrees-of-freedom, thus our results for all the ratios do not show an appreciable
sensitivity to the nuclear EoS and the calculations with and without CSR tend to merge at
√

sNN ≈ 20 GeV.
In Fig. 4.9 we present additionally the yields of (Λ+Σ0) and Ξ− at midrapidity from 5% central
Au+Au collisions as a function of the invariant energy

√
sNN in comparison to the available
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data from Refs. [120, 132]. We recover a “horn”structure, similar to that shown in Fig. 4.8
for the energy dependence of the strange to non-strange particle ratios. A sensitivity on the
nuclear model parametrizations persists at low energy, while in the top SPS energy regime the
results corresponding to the Scenarios 1-3 merge. The comparison with the available data for
√

sNN < 8 GeV supports the validity of the CSR picture, while at larger energies we under-
estimate the experimental observations. Nevertheless, this discrepancy is not due to the CSR
mechanism, since it does not play an essential role in the high-energy regime as pointed out
above.
In conclusion, we attribute the strangeness enhancement, seen in the observables at AGS and
low SPS energies, to the approximate restoration of chiral symmetry at high baryon density.
Within the PHSD approach, the horn feature emerges in the energy-dependence of the K+/π+

and (Λ + Σ0)/π ratios. This is due both to CSR, which is responsible for the steep rise at low
energies, and to the appearance of a deconfined partonic medium at higher energies, which is
responsible for the drop at top SPS energies. This interpretation is in contrast to the early ex-
pectation in Refs. [6, 147] that the enhancement of strangeness should be attributed uniquely
to the formation of deconfined matter.



Chapter 5

Directed flow

In Chapter 4 we have investigated particle abundances and spectra for A+A collisions.
In this Chapter, we explore a different aspect of heavy-ion collision (HIC) observables, i.e.
collectivity. A nucleus–nucleus collision should not be considered simply as a superposition
of independent nucleon–nucleon collisions, but a collective behavior of the produced particles
emerges due to the multiple collision processes. This Chapter is mainly devoted to the study of
the directed flow, which is the first type of collective motion identified in heavy-ion collisions
[149]. Moreover, we show the recent improvements achieved in the description of the differ-
ential hadron spectra produced in p+p collisions in the energy range between ELab = 6 GeV
and 158 GeV. This is needed also as a crucial ingredient for heavy-ion reactions.

5.1 Collectivity in HIC

The appropriate observable to study the collective phenomena is the azimuthal angular
distribution dN/dφ of particles produced at a given transverse momentum pT . If the nu-
cleus–nucleus collision develops as a superposition of independent nucleon–nucleon colli-
sions, the produced particles would be uniformly distributed in momentum space. On the
contrary, experimental observations show asymmetries in the final momentum distribution of
the particles, suggesting the existence of a collective behavior of the expanding system. In
Fig. 5.1 we show a sketch of a heavy-ion collision to illustrate the anisotropies of the sys-
tem, both in space (l.h.s.) and in momentum (r.h.s.) reference frame. Assuming z to be
the beam axis, the reaction plane is defined by the z direction and the impact parameter b
of the two colliding nuclei. During the passage time (defined in Section 2.4), the interaction
between the participant nucleons generates a strong pressure gradient, which drives the sys-
tem into an asymmetric configuration. This is more evident when the colliding nuclei have a
non-vanishing impact parameter. While the system expands, the asymmetries in configuration

77
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Figure 5.1: A sketch of a heavy-ion collision to illustrate that the asymmetries in configura-
tion space (l.h.s.) are translated during the time evolution of the system into asymmetries in
momentum space (r.h.s.). Courtesy by Hiroshi Masui (2008).

space (l.h.s. of Fig. 5.1) are translated into asymmetries in momentum space (r.h.s. of Fig. 5.1),
which can be measured experimentally. These anisotropies in the momentum distribution of
the produced particles can be conveniently described in terms of a Fourier expansion:

E
d3N
d3 p

=
1

2π
d2N

pT dpT dy

(
1 + 2

+∞∑
n=1

νncos[n(ϕ − ψRP)]
)
, (5.1)

where E is the energy of the particle, p the momentum, ϕ the azimuthal angle, y the rapidity,
and ψRP is the true reaction plane angle defined by the impact parameter and the beam axis in
each single event and with νn = 〈cos[n(ϕ−ψRP)]〉 for n = 1, 2, 3 . . . . In this Fourier decompo-
sition, the sine terms vanish due to the reflection symmetry with respect to the reaction plane.
The first two coefficients v1 and v2 are called directed and elliptic flow, respectively:

v1 =

〈
px

pT

〉
, (5.2)

v2 =

〈 p2
x − p2

y

pT

〉
, (5.3)

where pT =
√

p2
x + p2

y is the transverse momentum.
The directed flow v1 represents the deflection of the produced particles in the reaction plane
with respect to the beam axis and it can be seen as a result of the bounce off of the particles in
the heavy-ion collision. The directed flow as a function of the rapidity y can be approximated
at midrapidity by a linear function, whose slope F is defined as:

F =
dv1

dy

∣∣∣∣
y=0
. (5.4)
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The magnitude of the absolute value of F is considered as an estimate of the intensity of the
directed flow: the larger is |F|, the stronger is the flow. In addition, it is possible to distinguish
the “normal flow”behavior, when the slope is positive, and the "antiflow" behavior, when
the slope is negative. On the other hand, the elliptic flow v2 measures the “squeeze-out”of
the system: v2 > 0 corresponds to a preferential emission of particles in the reaction plane,
while v2 < 0 refers to an out-of-plane emission, i.e. perpendicular to the reaction plane.
Both the directed and the elliptic flows can provide valuable information about the Equation
of State (EoS), the matter properties like hadronic potentials and Quark Gluon Plasma (QGP)
viscosity. In particular, the beam energy dependence of v1 has been suggested as a signature of
the phase transition from nuclear matter to the QGP [150, 151, 152]. In fact, a first order phase
transition gives a softening of the EoS, leading to a time-delayed expansion of the system. This
feature would appear evident as a minimum in the excitation function of the directed flow, as
suggested by hydrodynamical models [150, 151, 152]. In addition, the directed flow should
also be sensitive to the pre-equilibrium stages of heavy-ion collisions since its onset occurs
during the nuclear passage time [153]. The importance of these issues, already investigated in
Refs. [154, 155], has been reconsidered in recent measurements from the STAR collaboration
[156]. The inability of present theoretical models [150, 157, 158] to describe the observed
behavior of the directed flow is called “directed flow puzzle”. In the following Sections, a
study of the directed flow is addressed within the PHSD framework in comparison with data
whenever possible.

5.2 The pT-kick and the string rotation

A reliable description of the collective behavior of heavy-ion reactions requires a correct
characterization of p+p collisions. In particular, a good reproduction of the transverse mo-
mentum spectra of hadrons produced in p+p collisions is needed for a robust determination
of v1 in A+A collisions, since the transverse momentum pT is an essential ingredient for the
calculation of the anisotropy coefficients like v1 (see Eq. 5.2). In this respect, we introduce a
pT -kick to the constituent quarks and diquarks in the string interaction (see Chapter 2), which
is the dominant particle production mechanism in nucleus-nucleus collisions at AGS and SPS
energies. Throughout the fragmentation of the string, a transverse momentum is assigned to
the string ends according to a probability distribution function, which by default is a Gaus-
sian distribution in FRITIOF [159]. The inclusion of the pT -kick corresponds to the use of the
parametrization fkick(pT ) for the probability distribution function of the transverse momentum.
This parametrization, which has been introduced in the transport approaches by Refs. [41, 42],
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Figure 5.2: (l.h.s.) The maximum value of the transverse momentum p0 of the parametrization
fkick(pT ) (Eq. 5.5) as a function of the center-of-mass energy

√
sNN .(r.h.s.) The probability

distribution of the ratio of the square of transverse momentum transfer p2
T and the square to

total momentum p2 in the string interaction in p+p collisions at ELab = 8 GeV. The solid
red line refers to the pT -kick recipe and the dashed blue line refers to the default Gaussian
prescription of FRITIOF [159].

is expressed as:

fkick(pT ) = (p2
T + c2

1)(p2
T + p2

0)(1 + e(pT−p0)/c2)
−1
, (5.5)

where p0 is the maximum value that can be assigned to the transverse momentum pT and the
two parameters are fixed to c1 = 0.1 GeV, c2 = 0.4 GeV in agreement with Refs. [41, 42].
The value of p0 is usually set to a constant value p0 = 1.4 GeV [42] in order to describe
the particle transverse mass spectra at large momentum in p+p collisions in the energy range
ELab = 10 − 20 GeV. In order to apply our approach in a broader range of energies, we extend
the probability distribution function fkick(pT ) using an energy-dependent function for the max-
imum value of the transverse momentum p0(

√
sNN), that is displayed in the l.h.s. of Fig. 5.2.

The parametrization p0(
√

sNN) is derived attaining mT -scaling [161] of the hadron transverse
mass spectra in p+p collisions in the energy range ELab = 2 − 160 GeV. The value of p0

smoothly increases as a function of
√

sNN , reaching a saturation value of about 2 GeV at
√

sNN ≈ 20 GeV. On the r.h.s. of Fig. 5.2, we show the probability distribution of the ratio
of the square of transverse momentum transfer p2

T to the square of total momentum p2 in the
string interaction in p+p collisions at ELab = 8 GeV, adopting both the fkick(pT ) parametriza-
tion (solid red line) and the default Gaussian prescription of FRITIOF [159] (dotted blue line).
Compared to the Gaussian prescription, the fkick(pT ) parametrization provides a smaller value
of the probability at low momenta and increases the probability at large momenta. As a con-
sequence, the pT -kick recipe gives a hardening of the transverse momentum spectra of the
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Figure 5.3: The transverse momentum spectra of protons (scaled by a factor of 104) and
of the positive and negative (scaled by a factor of 102) pions for p+p collisions at ELab =

12, 24, 158 GeV (in panel (a), (b), (c) respectively) in comparison to the experimental data
from Ref. [160]. The coding of the lines is the same as in Fig. 5.2.

produced hadrons in p+p collisions. This feature is essential to correctly describe the exper-
imental data, which the default prescription of FRITIOF fails to reproduce. This is shown
in Fig. 5.3, where we plot the transverse momentum spectra of protons and pions for p+p
collisions at ELab = 12, 24, 158 GeV (in panel (a), (b), (c) respectively) in comparison to the
experimental data from Ref. [160]. The hardening of the proton pT -spectra is stronger at low
energies (e.g. ELab = 12 GeV), while the pions are marginally affected by the pT -kick. This
is due to the fact that in the baryon-baryon string interaction the transverse momentum of the
produced mesons, i.e. mostly pions, is given at the fragmentation of the string (via JETSET)
while the pT -kick acts on the soft momentum transfer of the string ends, that become the
constituents of the final baryons, i.e. dominantly protons and neutrons. The hardening of the
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Figure 5.4: An illustration of one baryon-baryon string interaction in momentum space. The
beam axis is fixed as the z-axis and we consider py = 0 for simplicity. The excited string
is displayed by the dashed line connecting the diquark of the first nucleon with the quark of
the second nucleon. The arrows starting from the middle of the string represent the particles
emerging from the fragmentation of the string. The momentum rest frame of the string is
rotated with respect to the center-of-mass frame of the two colliding nucleons by the angle φ.

transverse momentum spectra due to the pT -kick in the nucleon-nucleon collisions is naturally
translated in an analogous effect in heavy-ion reactions.
In addition to the pT -kick, we distinguish a further source of hardening of the pT -spectra
in nucleus-nucleus collisions. Once a string interaction occurs in the PHSD simulation of
nucleus-nucleus collisions, it is important to consider consistently the configuration of the
excited string in momentum space. In fact, the momentum rest frame of the string is most
likely rotated with respect to the center-of-mass frame of the two colliding nucleons, as it is
illustrated in Fig. 5.4. Here the excited string is displayed by the dashed line connecting the
diquark of the first nucleon with the quark of the second nucleon. The momentum rest frame
of the string is rotated with respect to the center-of-mass frame of the two colliding nucleons
by the angle φ. Within PHSD, the string dynamics and fragmentation are described within
FRITIOF in the rest frame of the string. Consequently, it is necessary to calculate the mo-
mentum of the produced particles in the center-of-mass frame of the two colliding nucleons
applying in each event the associated Lorentz transformation. This transformation is essen-
tially a rotation in momentum space by the angle φ, as depicted in Fig. 5.4, and we refer to
this procedure as "string rotation".
In Fig. 5.5 we analyze the role of both the pT -kick and of the string rotation in the final trans-
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Figure 5.5: The transverse momentum spectra of protons (scaled by a factor of 102) and of the
positive pions and kaons for central Au+Au collisions at 4, 6, 8 AGeV (in panel (a), (b), (c),
respectively) and for central Pb+Pb collisions at ELab = 20, 30, 158 AGeV (in panel (d), (e),
(f), respectively). The dashed blue lines refer to the calculations excluding both the pT -kick
and the string rotation, the dotted green lines refer to the calculations including the string rota-
tion but excluding the pT -kick, the orange dash-dot lines refer to the calculations including the
pT -kick but excluding the string rotation, the solid red lines refer to the calculations including
both the pT -kick and the string rotation. We compare our results with experimental data from
Refs. [138, 140, 141, 142, 143] for Au+Au collisions and from Refs. [133, 135, 139, 144] for
Pb+Pb collisions.

verse mass spectra in central Au+Au collisions at ELab = 4, 6, 8 AGeV and in central Pb+Pb
collisions at ELab = 20, 30, 158 AGeV. Both the pT -kick and the string rotation produce a
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hardening of the mT -spectra at all investigated energies. Their effect is visible especially in
the proton spectra. We notice that, differently from the p+p collisions shown in Fig. 5.3, the
meson spectra are sizably modified by the inclusion of the pT -kick. In fact, in A+A collisions
not only baryon-baryon string interactions occur, but also meson-baryon and meson-meson
string interactions take place and these are affected by the pT -kick, too. Our calculations
for pions and kaons show a good agreement with the data. On the other hand, the proton
mT -spectra are still softer than the experimental observations, but the inclusion of both the pT -
kick and the string rotation remarkably improve our calculations. Finally, we conclude that
the pT -kick and the string rotation are fundamental ingredients in the string dynamics within
PHSD for the description of the momentum of particles produced in p+p and A+A collisions.

5.3 Time evolution of the particle momentum

It has already been mentioned that the directed flow develops at the early stages of heavy-
ion collisions, basically during the nuclear passage time [153, 158]. Nevertheless, it is inter-
esting to study in detail how the directed flow evolves in time and what is the behavior of v1

among the particle species. In this respect, we calculate the average value of the x-component
of the momentum 〈px〉 in semi-central (impact parameter b = 6 fm) Au+Au collisions at
center-of-mass energies

√
sNN = 3.6, 7.7, 17.3, 62.4 GeV. We recall that the directed flow dif-

fers from 〈px〉 only by the transverse momentum in the denominator (see Eq. 5.2), thus 〈px〉

and v1 are characterized by the same time evolution. In Fig. 5.6 we show 〈px〉 at rapidity
|y| = 0.75 for protons, pions and kaons. For

√
sNN = 3.6 GeV (panel (a)) the protons (solid

green line) acquire non-vanishing px during the nuclear passage time (defined in Section 2.4)
of about 8 fm/c and the final value of 〈px〉 is reached essentially at t − tcoll ≈ 10 fm/c. The fol-
lowing re-scattering marginally distorts the proton flow, which is then fixed almost entirely by
the primary nucleon-nucleon collisions (so within PHSD by the string interactions). Increas-
ing the energy, the nuclear passage time decreases, for example at

√
sNN = 7.7 GeV (panel

(b)) it is about 4 fm/c. In this case the proton 〈px〉 shows similar features to the corresponding
results for

√
sNN = 3.6 GeV. We notice though that the proton 〈px〉marginally fluctuates up to

t − tcoll ≈ 20 fm/c. This is related to an increase of the meson-baryon interaction rate in addi-
tion to a non-vanishing contribution from the decay of heavy baryon resonances. At the larger
energies

√
sNN = 17.3, 62.4 GeV (panels (c) and (d)) the proton flow is established at later

times t− tcoll ≈ 20 fm/c, while the nuclear passage time is really short, t− tcoll < 2 fm/c. In fact,
at large collision energies a large volume of the system undergoes firstly a phase transition to
partonic degrees of freedom and secondly the hadronization, which lasts up to t−tcoll ≈ 10 fm/c
in case of

√
sNN = 17.3 GeV (see Fig. 4.2 of Chapter 4). Next to this stage, the proton 〈px〉



5.3. Time evolution of the particle momentum 85

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

0 5 10 15 20 25 30 35 40

<
p

x
>

 [
G

eV
]

t-tcoll [fm/c]

Au+Au, √sNN=3.6GeV, b=6fm, |y|=0.75

a)

p
π

+

π
-

K
+

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

0 5 10 15 20 25 30 35 40

<
p

x
>

 [
G

eV
]

t-tcoll [fm/c]

Au+Au, √sNN=7.7GeV, b=6fm, |y|=0.75

b)

p
π

+

π
-

K
+

K
-

-0.15

-0.1

-0.05

 0

 0.05

0 5 10 15 20 25 30 35 40

<
p

x
>

 [
G

eV
]

t-tcoll [fm/c]

Au+Au, √sNN=17.3GeV, b=6fm, |y|=0.75

c)

p
π

+

π
-

K
+

K
-

-0.15

-0.1

-0.05

 0

 0.05

0 5 10 15 20 25 30 35 40

<
p

x
>

 [
G

eV
]

t-tcoll [fm/c]

Au+Au, √sNN=62.4GeV, b=6fm, |y|=0.75

d)

p
π

+

π
-

K
+

K
-

Figure 5.6: The time evolution of the average value of the x-component of the momentum 〈px〉

at rapidity |y| = 0.75 in Au+Au collisions with impact parameter b = 6 fm at center-of-mass
energies

√
sNN = 3.6, 7.7, 17.3, 62.4 GeV in panels (a), (b), (c), (d), respectively. The solid

green line refers to the proton, the thin solid red line refers to the π+, the dashed blue line
refers to the π−, the dash-dot orange line refers to the K+, the dotted magenta line refers to the
K− meson. The time t is rescaled according to the collision time tcoll.

is still modified by the re-scattering especially by the meson-baryon interactions. Moreover,
the final value of the proton 〈px〉 is positive at low energies, e.g. at

√
sNN = 3.6 GeV, it almost

vanishes at
√

sNN = 7.7 GeV and it is negative at high energies
√

sNN = 17.3, 62.4 GeV. Dif-
ferently from protons, the mesons, both pions and kaons, are characterized by a negative final
value of the flow for the all energies investigated. At the lower energy (

√
sNN = 3.6 GeV, panel

(a)) the 〈px〉 of the mesons initially highly fluctuates because of the low multiplicities of these
particles which start appearing in the system. After this first stage, the flow of pions and kaons
is positive and rises during the nuclear passage time, then it drops and turns to negative values
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Figure 5.7: The time evolution of the variation of the square of the average x-component of the
momentum ∆〈px〉

2 at rapidity |y| = 0.75 in Au+Au collisions with impact parameter b = 6 fm
at the center-of-mass energy

√
sNN = 7.7 GeV. We show the variation ∆〈px〉

2 due to baryon-
baryon collisions in panel (a), to resonance decays in panel (b), to meson-baryon collisions in
panel (c) and to the hadronization process in panel (d). Each panel is divided into two parts:
on the left hand side ∆〈px〉

2 is shown at short times in a wide scale, on the right hand side
∆〈px〉

2 is shown at longer times in a small scale (the arrows indicate the change of the vertical
range). The coding of the lines is the same as in Fig. 5.6.

as a result of the hadronic re-scattering. As a results, the 〈px〉 of kaons and pions achieves the
final value at later times, t − tcoll ≈ 20 fm/c and 30 fm/c, respectively, compared to the 〈px〉

of the protons. We mention that we did not include calculations for K− at
√

sNN = 3.6 GeV,
since reliable results would need a considerable large amount of statistics due to the low mul-
tiplicities. We notice that the final values of 〈px〉 of the positive and negative pions differ of
about ≈ 40%, while at

√
sNN = 7.7 GeV they become almost equal. This is explained by the

fact that at high energies a large fraction of the pions originates from the hadronization, where
the momentum of the produced particles does not depend on the electric charge. On the other
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hand, at low energies, the system proceeds as a chain of hadronic scatterings and particles with
opposite electric charge can develop differently. At

√
sNN = 7.7 GeV the mesons flow devel-

ops similarly to what we have found for
√

sNN = 3.6 GeV, while at
√

sNN = 17.3, 62.4 GeV
the meson flow is negative all along the time evolution of the system, apart from some low-
multiplicities deviations. At high energies no excited strings can be formed and the behavior
of the mesons 〈px〉 is determined by the hadronization of the partonic degrees of freedom,
which generate a negative flow. Finally, the positive ad negative kaons share similar time evo-
lutions but they exhibit different values of 〈px〉 in all cases investigated. This is due to the
fact that they have different production mechanisms. In particular, at low energies most of K−

are produced in the hadronic re-scattering by flavor exchange reaction channels, while K+ are
produced dominantly by string fragmentation.
To understand the origin of 〈px〉, we address in Fig. 5.7 how the different reaction channels
contribute in the change of the square of the average x-component of the momentum ∆〈px〉

2

as the system evolves in time. We show calculations for protons, pions and kaons in Au+Au
collisions at

√
sNN = 7.7 GeV with impact parameter b = 6 fm at rapidity |y| = 0.75 associated

to baryon-baryon (B+B) collisions, to resonance decays, to meson-baryon (m+B) collisions
and to the hadronization process in panel (a), (b), (c), (d), respectively. The B+B collisions
(panel (a)) take place in the first time steps of the collision process and they produce modifi-
cations of 〈px〉 for all the particles studied. The B+B collisions are the main source of finite
transverse momentum for the protons, which are moderately affected by the other reaction
channels. The resonance decays (panel (b)) include the decays of the heavy resonances, i.e.
∆, N(1440), N(1535), Σ∗ and Ξ∗, into lighter baryons and pions. Thus, kaons are not produced
via these reactions and their corresponding ∆〈px〉

2 vanishes. Instead the 〈px〉 of both protons
and pions is strongly modified by the resonance decays. For t − tcoll < 4 fm/c the variation
in momentum of both protons and pions is large, with a maximum of about 10−3, and at later
times the ∆〈px〉

2 gets smaller, with a maximum of about 10−4 in case of pions. We notice
that the resonance decays do not occur for times t − tcoll < 2 fm/c, since the heavy resonances
have to be created and they are mostly produced via string interaction with a formation time
of τ f ≈ 0.8 fm/c. Moreover, we point out that the ∆〈px〉

2 associated to resonance decays is
smaller than the one associated to the B+B collisions, but it does not vanish at later times as
the ∆〈px〉

2 of B+B collisions. The m+B collisions (panel (c)) produce larger modifications
for the 〈px〉 of mesons than for the 〈px〉 of protons. The ∆〈px〉

2 of both pions and kaons
is finite and not vanishing almost in the whole time range investigated. Consequently, the
m+B collisions are responsible for the fluctuations of the meson 〈px〉 (the final value of 〈px〉

is achieved at later times with respect to the proton case), as already mentioned above refer-
ring to Fig. 5.6. Finally, the hadronization process (panel (d)) does not change considerably
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the transverse momentum of protons and pions, while kaons undergo larger modifications,
although still much smaller compared to the other processes discussed above. Because of the
low production rate of K−, the results concerning this particle are affected by large statistical
fluctuations. This might be diminished running long and computationally expensive simula-
tions. However, studies on K− at

√
sNN = 7.7, 17.3 GeV indicate that the analysis presented

here correctly describes the main features of the time evolution of ∆〈px〉
2. The major contribu-

tion to the transverse momentum of the particles coming from the hadronization arise within
the time interval 2 fm/c < t − tcoll < 12 fm/c.

5.4 Hadronic potentials

We have seen in Section 5.3 how the transverse momentum of particles originates from
the different scattering processes. There is an additional source that can modify the particle
momenta during the time evolution of the system. In fact, the produced particles propagate
in a medium and they are sensitive to mean-field potentials. The impact of the hadronic
potentials on the directed flow have been already studied in the past by transport models
[155, 162, 163, 164, 165]. Here, it has been found that at SIS and AGS energies the directed
flow (and even more the elliptic flow) shows a sensitivity to potentials and to the parametriza-
tions of the equation of state adopted for the mean-field description. In addition, it has been
suggested that these potentials show a dependence on the momentum of the particle for kinetic
energies Ekin > 200 MeV (energies that can be achieved by the particles produced in HIC). In
this Section, we introduce the potentials that we have incorporated in the particle propagation
within PHSD and we address the main effects of this implementation on HIC observables.
In PHSD, the adopted mean-field model is the non-linear σ − ω model, that we have pre-
sented in Chapter 2, with different parametrizations for the nuclear equation of state, i.e. NL1,
NL2 and NL3. Within this model, we can compute the scalar and vector contributions of
the potential at fixed baryon density. The nucleon potential is then defined in terms of the
Schrödinger-equivalent potential Usep and expressed as:

Usep(Ekin) = US + U0 +
1

2M
(U2

S − U2
0) +

U0

M
Ekin, (5.6)

where US is the scalar potential, U0 is the time component of the vector potential, M is the
nucleon mass and Ekin is the nucleon kinetic energy with respect to the local rest frame of the
medium.
As mentioned above, an explicit-momentum dependence is established and we employ the
following parametrizations fS and fV for the scalar and vector contributions, respectively:



5.4. Hadronic potentials 89

fS =
1

1 + prel/a
, (5.7)

fV =
1

1 + p2
rel/b

, (5.8)

where prel is the nucleon relative momentum with respect to the local rest frame of the medium,
the parameter a is fixed as a =1 GeV and 2 GeV for the NL1 and NL3 equation of state,
respectively, while the parameter b = 1.7 GeV2 is the same for both NL1 and NL3.
These parametrizations describe the nucleon optical potential for Ekin < 1 GeV [166] and they
are in fair agreement with previous studies in Refs. [155, 164] and with Dirac-Brueckner
calculations [167, 168]. On the l.h.s. of Fig. 5.8 we plot the proton mean-field Usep as a
function of the momentum prel, as computed in PHSD with NL1 and NL3 parametrizations
for the nuclear equation of state, for different baryon densities and at temperature T = 0 (the
following considerations hold also in case of finite temperature). On the r.h.s. of Fig. 5.8 the
effective potential extracted from Ref. [169] is shown. This parametrization for the potential
follows the same momentum dependence of the NL3 equation of state given by Eqs. 5.7 and
5.8. We emphasize that experimental data on the nucleon optical potential are avaliable only
for Ekin ≤ 1 GeV. Consequently, extrapolations to larger momenta have to be considered with
care. The explored scenarios for Usep share similar features. With decreasing baryon density
the potential decreases at fixed momentum (apart from a deviation in case of the effective
potential at ρ = ρ0/2 for low momenta)1. The proton potential increases with increasing
momentum up to prel = 1 GeV and then it smoothly decreases with increasing prel. The results
obtained with the three different settings are comparable at ρ = ρ0. Despite these similarities,
we detect some significant differences. For densities larger than the nuclear matter density,
the lines associated to NL1 are below the corresponding results for NL3. Thus, the NL3
parametrization produces a much stronger repulsive potential than NL1. Moreover, the NL1
and NL3 paremetrizations (l.h.s. of Fig. 5.8) exhibit in the whole range of momenta only a
repulsive behavior of the potential for ρ ≥ 2ρ0, while the effective potential (r.h.s. of Fig. 5.8)
is characterized by an attractive behavior at low momenta even for large densities. Only for the
largest density investigated here the effective potential results to be repulsive at low momenta.
Our aim is now to probe the effect on HIC observables when including these parametrizations
for the potentials in the particle propagation in PHSD. The potentials introduced above are
incorporated in the baryonic sector and weighted according to the light quark content of the
baryon.
First, we analyze the effects of the potential on the directed flow of proton and pions. In

1The normal nuclear density is ρ0 = 0.166 fm−3.
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Figure 5.8: The mean-field proton Usep as a function of the momentum prel. On the l.h.s. the
potentials are computed within the non-linear σ − ω model adopting the NL1 (green lines)
and NL3 (red lines) parametrizations. On the r.h.s. the effective potential extracted from Ref.
[169] is shown. Each line refers to a fixed baryon density, increasing from ρ0/2 (lowest line)
to 3ρ0 (highest line) with steps of ρ0/2. The solid lines refer to the calculations at ρ0.

Fig. 5.9 we show v1 as a function of y for protons and π+ at
√

sNN = 3.6 and 11.5 GeV.
The potentials induce clear modifications of the directed flow only at the lowest energy. The
PHSD calculations without potentials give a stronger proton flow than with potentials (the
value of |F| is larger in the former case than in the latter). Thus, we recognize altogether an
attractive effect of both NL1 and the effective potential on v1, but more pronounced in the
second case. Instead, in the case of π+ there are only fluctuations on the results and we are not
able to isolate a specific modification caused by the inclusion of the baryon potentials. The
small fluctuations observed in the directed flow of the π+ arise since, even though pions are
not directly affected by the potentials (included only in the baryon sector), they interact with
protons, whose propagation is modified by the potentials as seen above. At larger collision
energies (e.g. at

√
sNN = 11.5 GeV) we do not detect any sensitivity on the hadronic potential

since the system dynamics is dominated by the propagation of partonic degrees of freedom.
In the partonic phase the mean-field properties of the system are given by the Dynamical
Quasi-particle Model (DQPM) described in Chapter 2, and the potentials considered here do
not apply. After the hadronization, the action played by the baryonic potential in the particle
propagation is negligible due to the low baryon densities in the expanding system.
Second, we look at the possible contributions of the potential in the particle spectra. We restrict
our analysis to the rapidity spectra of proton, (Λ + Σ0), π+ and K+ at

√
sNN = 3.6 GeV, where

we have found more remarkable effects of the potentials on v1. The inclusion of the potentials
(both for the NL1 and for the effective potentials) does not produce any sizable modifications
of the particle spectra, as seen from Fig. 5.10. We only identify small fluctuations in the
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Figure 5.9: The directed flow v1 of protons and positive pions as a function of the rapidity y for
mid-central (10 - 40% centrality) Au+Au collisions at

√
sNN = 3.6 GeV (l.h.s.) and

√
sNN =

11.5 GeV (r.h.s.). The solid red lines refer to the calculations without hadronic potentials,
while the dashed blue lines refer to the calculations including the hadronic potential with NL1
parametrizations and the dotted green lines refer to the calculations including the effective
hadronic potential according to Ref. [169].
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Figure 5.10: The rapidity distribution of protons, (Λ + Σ0)’s, π+ and K+ for 10 - 40% central
Au+Au collisions at

√
sNN = 3.6 GeV. The coding of the lines is the same as in Fig. 5.9.

proton spectra. We find that these considerations also hold for larger energies, e.g. at
√

sNN =

11.5 GeV.
We conclude that the proton directed flow is mildly sensitive to the baryonic potential at low
energies, while the particle rapidity spectra are insensitive to a large extent. Further results on
v1 with and without potentials will be given in Section 5.6.
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5.5 Experimental cuts and centrality dependence

In this section we study the sensitivity of the directed flow v1 on analysis parameters and
experimental settings. More specifically, we investigate the dependence of v1 on experimen-
tal cuts and centrality. The aim is to understand if the experimental cuts (required to have
a consistent comparison with experimental data) change the PHSD results on the directed
flow. The following calculations from PHSD including Chiral Symmetry Restoration (CSR)
are performed using hadronic potentials in the baryonic propagation according to the NL1
parametrization for the nuclear equation of state. All considerations below can be general-
ized to the other scenarios explored within PHSD, e.g. PHSD without CSR, PHSD without
hadronic potentials etc..
The first aspect investigated here is how the PHSD results on v1 are modified if we apply the
cuts associated to the analysis of experimental measurements. The experimental cuts are fi-
nite ranges on the transverse momentum pT due to the experimental acceptance [154]. For
example, the STAR reconstruction analysis enforces the following cuts (see Ref. [156] for
details):

• protons with 0.4 GeV < pT < 2.0 GeV;

• pions and kaons with pT > 0.2 GeV and total momentum p < 1.6 GeV.

We refer to these analysis settings as pT -cuts.
In Fig. 5.11 we examine the sensitivity on the pT -cuts for v1 of the protons and positive pions as
a function of the rapidity y for mid-central (10 - 40% centrality) Au+Au collisions at

√
sNN =

3.6 GeV and
√

sNN = 11.5 GeV (on the l.h.s. and r.h.s. respectively). We do not change the
evolution dynamics within the PHSD simulation, but we solely modify the analysis procedure
to compute v1 at the end of the PHSD simulation, applying (or not) vetoes on the pT of the
examined particles. The results for v1 are marginally modified when we include the pT -cuts in
the analysis, as seen from Fig. 5.11. Concerning the proton case, the pT -cuts tilt the tails of the
directed flow at large rapidities for the collision at

√
sNN = 3.6 GeV, while at 11.5 GeV there

is no difference between the results with and without pT -cuts. The results on the pion flow
are modified by the inclusion of the pT -cuts at both collision energies. At

√
sNN = 3.6 GeV

there is even a small change of the order of ≈ 10% in the slope at midrapidity. At 11.5 GeV
the inclusion of the pT -cuts affects only the tails of the pion flow. In the results for the π+,
we notice that the order between the two calculations is reversed for

√
sNN = 11.5 GeV with

respect to
√

sNN = 3.6 GeV. In particular at the lower energy, the inclusion of the pT -cuts
decreases the value of |F| of the pion flow. The small changes of the directed flow dictated
by the different analysis techniques allow us to assert that the PHSD results are robust with
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Figure 5.11: The directed flow v1 of the protons and positive pions as a function of the rapidity
y for mid-central (10 - 40% centrality) Au+Au collisions at

√
sNN = 3.6 GeV (l.h.s.) and at

√
sNN = 11.5 GeV (r.h.s.). The solid red lines refer to the results with pT -cuts applied in the

analysis, while the dashed blue lines refer to the results without pT -cuts in the analysis.
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Figure 5.12: The directed flow v1 of protons and positive pions as a function of the rapidity
y in Au+Au collisions at

√
sNN = 3.6 GeV (l.h.s.) and at

√
sNN = 11.5 GeV (r.h.s.). The

solid red lines are associated to impact parameter b = 6 − 7 fm, while the dashed blue lines to
b = 8 − 9 fm.

respect to the analysis procedure. Thus, the results on v1 presented below entirely emerge
from the evolution of the system created at the collision and there is no alteration due to the
analysis procedure. We specify that in the study of the beam energy scan of the directed flow
(see Section 5.6), possible deviations arising from the pT cuts (for example deviations of the
order of ≈ 10% found for the pion flow at

√
sNN = 3.6 GeV) are not neglected, but they are

contained in the uncertainty range associated to the fitting procedure to extract the slope.
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The second aspect studied here is the dependence of the directed flow on the centrality of
the collision. As explained in Section 5.1, the directed flow is a manifestation in momentum
space of the anisotropies of the system due to asymmetric configurations of the colliding
system. A finite value of the impact parameter b between the two colliding nuclei is required
to generate a non-vanishing v1. Moreover, for larger b the flow increases and |F| becomes
larger at midrapidity. These considerations are evident in the measurements from the STAR
collaborations for the proton and pion flow in Au+Au collisions [156]. Three centrality classes
have been analyzed2: most central collisions (0 – 10%), collisions at intermediate centrality
(10 – 40%), and peripheral collisions (40 – 80%). The experimental observation of the directed
flow follows this order: the lower values of |F| are associated to the most central collisions
and the larger values of |F| to the peripheral ones. We study the variation of the directed flow,
as computed in PHSD, within one experimental centrality class to understand the uncertainty
associated to our results. In this respect, we show in Fig. 5.12 the directed flow v1 of proton and
π+ as a function of the rapidity in Au+Au collisions at

√
sNN = 3.6 GeV and

√
sNN = 11.5 GeV

for b = 6 − 7 fm and b = 8 − 9 fm. These ranges of b represent two subclasses which
compose the 10 – 40% intermediate centrality class. We notice a sizable difference between
the calculations at b = 6 − 7 fm and at b = 8 − 9 fm, which is most significant at midrapidity
for π+ at

√
sNN = 3.6 GeV. At the lowest energy (3.6 GeV), the results on the proton v1 for

b = 6 − 7 fm and for b = 8 − 9 fm basically overlap for |y| < 0.5 and differ for |y| ≥ 0.5.
In particular, the calculation associated to b = 6 − 7 fm presents smaller values for v1 at
positive rapidities compared to the corresponding result for b = 8 − 9 fm. This shows that
increasing the value of the impact parameter we obtain a stronger flow, as mentioned above.
However, these considerations hold for the v1 of protons, while the v1 of pions shows the
opposite behavior. One possible explanation is that the pion flow develops in close connection
to the proton flow, since the dominant production mechanisms for the pions are string decays
and low energy pion-nucleon scatterings. Thus, the change of the proton flow directly affects
the pion flow, tilting the pion line in the same direction of the proton flow. As a results,
the pion slope at midrapidity becomes smaller in modulus for larger impact parameter. At
√

sNN = 11.5 GeV, the calculations for b = 8 − 9 fm are characterized by a stronger flow than
those for b = 6 − 7 fm both in the proton and in the pion case. In fact, at this energy the
pions are predominantly produced from the hadronization of the partonic degrees of freedom
and in the particle re-scattering; consequently there is no strong correlation with the proton
dynamics. The conclusion drawn here for π+ can be extended to other mesons, e.g. π− and
kaons. In order to achieve a reliable comparison with the STAR data, we need to simulate the
collision for one collision energy over different b ranging inside the desired centrality class.

2We refer to Ref. [156] for the centrality selection criteria.
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Figure 5.13: The directed flow v1 of the protons as a function of the rapidity y for mid-
central (10 - 40% centrality) Au+Au collisions at the center-of-mass energies

√
sNN =

3.6, 4.7, 7.7, 11.5, 19.6, 27, 39, 64.2 GeV (in panels (a), (b), (c), (d), (e), (f), (g), (h), respec-
tively). The solid red and dashed red lines represent the results from PHSD without and with
the baryonic potentials in the particle propagation, respectively. The experimental data are
taken from Ref. [156].

The final PHSD result for the specific centrality class is then obtained as the average of these
calculations (weighted by b).

5.6 Beam energy scan of the directed flow

In this Section, we study the directed flow of protons and pions in the energy range
√

sNN = 3 − 100 GeV and we investigate the effects of the baryonic potentials introduced in
Section 5.4. The following results for the directed flow from PHSD are computed at interme-
diate centrality (10 – 40%) according to the STAR experimental measurements [156] adopting
the pT -cuts introduced in Section 5.5. In Figs. 5.13 and 5.14 the directed flow v1 of protons and
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Figure 5.14: The directed flow v1 of π+ (red lines) and of the π− (blue lines) as a function
of the rapidity y for mid-central (10 - 40% centrality) Au+Au collisions at the center-of-mass
energies

√
sNN = 3.6, 4.7, 7.7, 11.5, 19.6, 27, 39, 64.2 GeV (in panels (a), (b), (c), (d), (e), (f),

(g), (h), respectively). The solid and dashed lines represent the results from PHSD without
and with the baryonic potentials in the particle propagation, respectively. The experimental
data are taken from Ref. [156].

charged pions, respectively, is plotted as a function of the rapidity y for mid-central Au+Au
collisions at different energies, in comparison with STAR data [156] whenever possible. The
proton flow is characterized by a peculiar “S-shape”, which is more visible at low energies
(panels (a), (b), (c) of Fig. 5.13). There is a moderate sensitivity to the hadronic potentials in
the particle propagation at low energies

√
sNN < 11.5 GeV, while at large energies the results

with and without potentials merge. For this investigation, we have adopted the potential ac-
cording to the NL1 parametrization for the nuclear equation of state. The potential gives an
attractive contribution to the proton v1 for

√
sNN = 3.6, 4.7 GeV, while it produces a repulsive

effect at
√

sNN = 7.7 GeV. At midrapidity (|y| ≤ 0.5), the v1 of protons is approximately linear
in rapidity and it has a normal flow behavior at small energies (

√
sNN = 3.6, 4.7 GeV) and an
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antiflow behavior at high energies (
√

sNN ≥ 11.5 GeV). At
√

sNN = 7.7 GeV, the inclusion of
the potential induces a change in the proton flow: the result of PHSD without potential shows
a normal flow behavior, while the result of PHSD including the potential shows an antiflow
behavior. The experimental data seem to support the latter scenario. The inclusion of the
potential at the lowest collision energies studied here (

√
sNN = 3.6, 4.7 GeV) does not cause a

change of the behavior of v1 at mid-rapidity, which is of the normal flow type. In particular,
the difference between the two PHSD scenarios emerges only as a small decrease of the slope
F at midrapidity. Overall, the PHSD results show the same trend as the STAR data. Whereas
the agreement is quite well in the AGS and SPS energy range (

√
sNN < 20 GeV), the devia-

tions become larger for the higher RHIC energies.
Differently from the case of protons, pions (π+ in red lines and π− in blue lines) are character-
ized by an antiflow in the whole energy range, apart from the π− at

√
sNN = 3.6 GeV (panel

(a) of Fig. 5.14) which presents a vanishing flow when potentials are not included. As found
above for the proton flow, the inclusion of the potential modifies our results only at small en-
ergies (

√
sNN < 11.5 GeV). Moreover, we observe a repulsive contribution from the potential

and this is more pronounced for the π− at
√

sNN = 3.6 GeV. We notice that the results for
positive and negative pions differ substantially only at low energies (

√
sNN = 3.6, 4.7 GeV in

panels (a), (b) of Fig. 5.14). In particular, the π+ has a stronger antiflow with respect to the π−

case. Increasing the energy the flows of the pions tend to merge, as an effect of the dominant
role played by the QGP phase in the dynamics of the system. Our results on the pion v1 are in
good agreement with the data at high energies, while at small energies (

√
sNN = 7.7, 11.5 GeV

in panels (c), (d) of Fig. 5.14) the PHSD antiflow is too large.
In order to estimate the intensity of the directed flow, we extract in all cases the associated
slope F defined in Eq. (5.4). We perform two fits of our results to take into account the
uncertainty on the value of the slope F:

• a fit using the linear function v1(y) = Fy for |y| < 0.5;

• a fit using the cubic function v1(y) = Fy + Cy3 for |y| < 1.

In Fig. 5.15 we present the excitation function of the slope F for protons (panel (a)) and pions
(π+ in panel (b) and π+ in panel (c)) for mid-central Au+Au collisions. We investigate different
scenarios:

• Scenario 1: PHSD including CSR with the NL1 parametrization for the equation of state
in red,

• Scenario 2: PHSD including both CSR and hadronic potential with the NL1 parametriza-
tion for the equation of state in green,
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• Scenario 3: PHSD without CSR in blue,

• Scenario 4: HSD with CSR with the NL1 parametrization for the equation of state in
orange.

As already described above, the proton slope (panel (a) of Fig. 5.15) is positive at small en-
ergies and then turns negative at

√
sNN ≈ 6 − 9 GeV. The proton F becomes negative when

more protons are produced in the direction opposite to the spectators of the collisions3 rather
than aligned with them. The energy range of the potential influence can be clearly distin-
guished in two regions, one of repulsive and one of attractive nature. The former corresponds
to
√

sNN = 3 − 5 GeV, where the green band referring to PHSD calculations with potentials is
below the red band referring to PHSD calculations without potentials. The latter corresponds
to
√

sNN = 5 − 10 GeV, since the green band (Scenario 2) is above the red band (Scenario
1). Moreover, the PHSD calculations without potential give a negative value of the proton
slope at energies lower than the case in which the potential is considered. The experimental
data support a softening of the slope F of the proton in line with the PHSD calculations in-
cluding both CSR and the hadronic potential. The only inclusion of the CSR mechanism does
not modify the energy dependence of the proton flow (the red and blue band almost overlap).
All scenarios investigated merge at large energies

√
sNN > 10 GeV, apart from the HSD result,

which exhibits lower values for the slope with respect to the results of PHSD. The calculations
seem to overlap again at large energies

√
sNN ≈ 60 GeV, but this behavior must be considered

carefully. In fact, we have shown in Chapter 4 that at energies
√

sNN ≈ 60 GeV PHSD and
HSD simulations do not produce comparable results on many observables (e.g. excitation
function of particle ratios) and the HSD scenario is ruled out by the comparison with experi-
mental data. Overall, our calculation of the proton slope from Scenario 2 is in good agreement
with the data, apart from a deviation at large energies. Comparing our results to those from the
UrQMD model, PHSD describes better the experimental trend up to

√
sNN ≈ 20 GeV, while

UrQMD shows a good agreement with the data at the higher energies. This is quite surprising
since the UrQMD model, as a pure hadronic transport approach, should describe the exper-
imental trend better at low energies, where a QGP is not created during the collisions, and
drift apart from the data at large energies, where a QGP is observed to appear in the system.
Differently from protons, the slopes associated to the flow of both charged pions (panels (b)
and (c) of Fig. 5.15) remains negative in all the energy range. First, F decreases with increas-
ing energy, reaching a minimum at

√
sNN ≈ 8 GeV, then it increases with increasing

√
sNN .

3The spectators are the nucleons located outside the overlap region of the two colliding nuclei and they are not
involved in the interactions, consequently, during the expansion of the system, they travel basically unaffected
along the beam axis.
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Figure 5.15: The excitation function of the directed flow slopes F of protons (panel (a)) and
charged pions (π+ in panel (b) and π− in panel (c)) as a function of the center-of-mass energy
√

sNN . The experimental data points and the UrQMD calculations (gray band) are taken from
Refs. [154, 156, 170, 171]. The red band refers to the PHSD calculations including CSR with
the NL1 parameter set, the green band refers to the PHSD calculations including CSR and
potential with the NL1 parameter set, the blue band refers to the PHSD calculations without
CSR and the orange band refers to the HSD calculations with CSR.

The PHSD scenarios provide similar results, so that it is hard to disentangle contributions com-
ing from the inclusion of CSR and baryonic potential. We can only comment that the inclusion
of the potential produces slightly smaller slopes for π− at low energies. The HSD and PHSD
results are comparable for

√
sNN < 10 GeV and they differ at larger energies. Among these

results, the PHSD calculations achieve a better agreement with the data. Consequently, in our
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model partonic degrees of freedom are necessary in the evolution of the colliding system at
the energies

√
sNN > 10 GeV to correctly describe the pion v1. Although we obtain a good

agreement with data at large energies, we notice that PHSD fails to describe the pion flow at
√

sNN = 7.7 GeV, since our results from the different scenarios are lower than the experimental
points by a factor of ≈ 2.5. Currently, the reason of this finding is not clear, especially in rela-
tion to the fact that the PHSD result of the proton v1 (including potential) is in good agreement
with the data in the same energy range. We expect that the inclusion of momentum-dependent
potentials in the propagation of mesons can modify the pion F, but additional experimental in-
formation at this and lower energies are necessary to better understand the excitation function
of the pion slope. We notice that, although the UrQMD results are in fair agreement with the
STAR data for

√
sNN > 20 GeV (similarly to PHSD), this model severely underestimates the

experimental observations at lower energies, while the inconsistency of PHSD calculations is
only of a factor of ≈ 2.5.
We propose the existence of a correlation between the minimum in the excitation function of
the pion slope and change of sign of the proton flow as a function of

√
sNN . In fact, these fea-

tures of v1 emerge in the same energy interval
√

sNN = 7 − 9 GeV. We suggest that this is due
to a smooth transition from a hadronic- to a partonic-dominated system. This consideration
can be reasonably related to the drop in the excitation function of the ratio K+/π+, analyzed
in Chapter 4. However, we are not able to draw a robust interpretation, since we detect no
significant differences between HSD and PHSD calculations on the proton and pion slope F
in the energy range

√
sNN = 7 − 9 GeV. Further studies are needed to solve this issue.



Chapter 6

Predictions for FAIR and NICA

In the recent past the heavy-ion facilities pushed to higher and higher collision ener-
gies. First, RHIC reached a center-of-mass energy of

√
sNN = 200 GeV in Au+Au colli-

sions. In 2010, the Large Hadron Collider (LHC) at CERN started the heavy-ion program
and managed to strike the TeV limit, running Pb–Pb collisions up to

√
sNN =5.02 TeV. In

this energy range, it is possible to extract important information about the quark matter in
the high temperature regime. Nevertheless, the interest of the heavy-ion physics commu-
nity moved to the exploration of less hot and more dense systems. The characterization of
the deconfinement phase transition at large baryon chemical potential and the search for a
possible critical point in the QCD phase diagram are the goals of the new experimental pro-
grams. In this context, it is crucial to access a wider region of the T − µB plane by varying
the beam energy. Thus, the investigation of lower energies, compared to the LHC and top
RHIC energies, has become the new challenge for Heavy-Ion Collision (HIC) research. For
example, the beam energy scan (BES) performed at RHIC is currently studying the ener-
gies of

√
sNN = 5.5, 7.7, 11.5, 19.6, 27, 39, 62.4 GeV. Moreover, new heavy-ion facilities, the

Nuclotron-based Ion Collider fAcility (NICA) at the Joint Institute for Nuclear Research, the
Facility for Antiprotons and Ion Research (FAIR) at GSI Helmholtzzentrum für Schwerionen-
forschung and the Japan Proton Accelerator Research Complex (J-PARC), are under construc-
tion to explore even lower energies. The planned energy ranges are

√
sNN = 4 − 11 GeV for

NICA and
√

sNN = 4 − 9 GeV for FAIR.
In this section, our aim is to provide detailed predictions for observables in ultra-relativistic
collisions that the FAIR and NICA facilities can measure experimentally in the near future.
As a fundamental reference, we provide particle rapidity spectra in the FAIR-NICA energy
range. In addition, we explore new aspects of CSR. Firstly, the dependence of the strange to
non-strange particle ratios on the size of the colliding system. Secondly, the effects of CSR on
the strange particle yields for different centralities in Au+Au collisions.

101



102 Predictions for FAIR and NICA

0

40

80

120

       

d
N

/d
y

AGS - Au+Au @ 6AGeV
5% centralp

 

 

 

 

       
 0

 4

 8

 12

Λ+Σ
0 HSD w/o CSR

w/o CSR
NL3
NL1

0

20

40

60

       

d
N

/d
y

π
+

 

 

 

 

       
 0

 20

 40

 60
π

-

0

3

6

-3 -2 -1 0 1 2

d
N

/d
y

y

K
+

-3 -2 -1 0 1 2 3
 0

 0.1

 0.2

y

Ξ
-

Figure 6.1: The rapidity distribution of protons, (Λ + Σ0)’s, pions and K+’s and Ξ−’s for 5%
central Au+Au collisions at ELab = 6 AGeV. The solid red lines show the results from PHSD
including CSR with NL3 parameters, the dashed green lines show the results from PHSD
including CSR with NL1 parameters, the dotted blue lines show the result from PHSD without
CSR, the dash-dot orange lines show the result from HSD without CSR.

6.1 Particle spectra
The energy range which will be scanned by the FAIR and NICA facilities is altogether

ELab = 2 − 63.5 AGeV. We expect that the system created in collisions at these energies
achieves energy and baryon densities that enable the restoration of chiral symmetry as al-
ready discussed in Chapter 4. Among the experimental observables studied in Chapter 4, we
have found that particle rapidity spectra are suitable probes to study CSR. Moreover, the ra-
pidity spectrum represents one of the most investigated observables in HIC. Thus, we provide
particle rapidity spectra in the FAIR-NICA energy range, as fundamental reference for the
future experiments.
In Figs. 6.1 and 6.2 we show rapidity distribution of protons, (Λ + Σ0)’s, pions and K+’s and
Ξ−’s for 5% central Au+Au collisions at 6 AGeV and 8 AGeV, respectively. These correspond
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Figure 6.2: The rapidity distribution of protons, (Λ + Σ0)’s, pions and K+’s and Ξ−’s for 5%
central Au+Au collisions at ELab = 8 AGeV. The coding of the lines is the same as in Fig. 6.1.

to the lower collisions energies planned for FAIR and NICA experiments. We investigate
the following scenarios: PHSD including CSR with NL3 parameters (solid red lines), PHSD
including CSR with NL1 parameters (dashed green lines), PHSD without CSR (dotted blue
lines), HSD without CSR (dash-dot orange lines). As already discussed in Chapter 4, the in-
clusion of CSR produces an increase of the strange particle yields. The enhancement in the
(Λ + Σ0) and K+ spectra is of the order of ≈ 25% and ≈ 40% for ELab = 6 AGeV and 8 AGeV,
respectively. At the same energies the increase in the Ξ− distributions is of the order of 45%.
We highlight that at these low energies (Figs. 6.1 and 6.2) there is basically no contribution to
the spectra coming from the QGP. In fact, we see that the calculations from PHSD and HSD
without CSR (dotted blue and dashed dotted orange lines, respectively) show a small differ-
ence only for the K+ spectra at ELab = 8 AGeV and in the Ξ− spectra at 6 and 8 AGeV. In fact,
QGP ’droplets’ can be created in the system because of the high baryon and energy densities,
but they disappear in short time. Consequently, they do not give a sizeable contribution to the
final particle multiplicities. The comparison with experimental observation at these energies
will then allow the identification of the features of the CSR in the hadronic dense medium
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Figure 6.3: The rapidity distribution of protons, (Λ + Σ0)’s, pions and K+’s and Ξ−’s for 5%
central Au+Au collisions at ELab = 60 AGeV. The coding of the lines is the same as in Fig. 6.1.

produced in heavy-ion collisions more clearly than at higher energies. In fact, at AGS and
SPS energies the final particle production is the result of many contributions (string produc-
tion, hadronization of partonic degrees of freedom, hadronic re-scattering), so it is not trivial
to isolate the role of CSR. Hence, we support the idea that the low-energy collisions in the
FAIR and NICA regime are suited to isolate the role of CSR and to establish if CSR occurs in
HIC before the onset of the QGP phase.
Finally, we display in Fig. 6.3 analogous calculations at 60 AGeV, which represents the top
beam energy of the NICA program. At this collision energy, the final particle multiplicities
originate predominantly from the hadronization of partonic degrees of freedom, however, the
contribution from the string decay is non-negligible. In fact, in Fig. 6.3 the inclusion of CSR
produces sizeable modifications of the rapidity spectra. We addressed in Chapter 4 the study
of intermediate colliding energies in the FAIR-NICA regime, e.g. we have shown the rapidity
spectra for ELab = 10.7, 30 AGeV in Figs. 4.3 and 4.4. In conclusion, the FAIR and NICA
experiments will perform a beam energy scan which is optimal to study CSR in the hadronic
sector and its “interplay”with the QGP phase.
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6.2 System size dependence of strangeness production in HIC

The aim of this section is to explore how the variation of the size of the system modifies
the excitation functions of the particle ratios K+/π+, K−/π− and (Λ + Σ0)/π shown in section
4.4.1 of Chapter 4 (cf. also Ref. [172]). In Fig. 6.4 we display the calculations for 197Au +
197Au in blue, for 40Ca + 40Ca in green and for 12C + 12C in red. The scenarios considered
here are the default PHSD without CSR (dashed lines) and PHSD including CSR with NL1 as
parameter set for the nuclear equation of state from the non-linear σ − ω model (solid lines).
The inclusion of CSR gives a strangeness enhancement also in case of smaller system size
with respect to Au+Au collisions and this holds for all three particle ratios. In fact, when con-
sidering central collisions, a sizeable volume of the system is affected by the partial restoration
of chiral symmetry even in case of light ions. We notice that, for the K+/π+, K−/π− ratios, the
discrepancy between the calculations with and without CSR remains significant even at high
SPS energies for Ca+Ca and C+C collisions. In particular, the spread between the scenarios
with and without CSR is larger when the size of the system is smaller. This can be explained by
the fact that in Ca+Ca and C+C collisions the fraction of the system which performs a phase
transition to the QGP is smaller with respect to Au+Au collisions, and the string excitations
and decays still have a large strangeness production rate even at large energies. These char-
acteristics are evident also in the observation that at large energies the ratio K+/π+ is smaller
for the Au+Au collisions and larger in C+C collisions. In fact, we recall that the drop of the
K+/π+ ratio in Fig. 4.8 is due to the appearance of the QGP, since the strangeness production
in the QGP phase is suppressed with respect to the hadronic production at fixed energy density.
Concerning the “horn”structure in the K+/π+ ratio, we notice that the peak of the excitation
function becomes less pronounced in case of Ca+Ca and it disappears completely in case of
C+C collisions. With decreasing system size the low energy rise of the excitation functions
becomes less steep. We can see also that the peak for Ca+Ca is shifted to larger energies with
respect to the Au+Au case.
Differently from the K+/π+, the (Λ + Σ0)/π ratio preserves the same structure for all three
colliding systems. In order to produce Λ‘s the threshold energy of

√
sth = 2.55 GeV (for

Σ0 √sth = 2.62 GeV) must be reached, so the (Λ + Σ0)/π ratio increases when the system
easily exceeds this value. The peak of the Λ production is not exactly in correspondence of
the threshold energy, since we are considering A+A collisions where the available collision
energy is distributed among the participants and where secondary and even higher order inter-
actions take place. However, it is interesting to notice that the peak position in this excitation
function does not move for different systems, different from the K+/π+ ratios. At large ener-
gies the (Λ + Σ0)/π ratio decreases as a function of the energy, since the pion production is
enhanced in the hadronic re-scattering.
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Figure 6.4: The ratios K+/π+, K−/π− and (Λ+Σ0)/π at midrapidity from 5% central symmetric
A+A collisions as a function of the invariant energy

√
sNN . The solid lines show the results

from PHSD including CSR with NL1 parameters, the dashed lines show the result from PHSD
without CSR. The blue lines refer to Au+Au collisions, the green lines to Ca+Ca collisions
and the red lines to C+C collisions.

Finally, we observe no peak structure in the energy dependence of the K−/π− ratio in any of
the scenarios studied. We notice that the results for the different sizes of the system present an
opposite hierarchy with respect to the K+/π+ and the (Λ + Σ0)/π ratios. In fact, for C+C and
Ca+Ca collisions the pion production is suppressed, since in the small systems the hadronic
re-scattering cannot develop as in Au+Au collisions.
In Fig. 6.5, we consider even smaller colliding systems than the one considered in Fig. 6.4.
The blue line refers to Au+Au, the green line to p+p collisions, the orange line to p+C colli-
sions, the purple lines to p+Ca and the red lines to p+Au collisions. Apart from the Au+Au
system, whose results are computed at mid-rapidity, the calculations in all other cases corre-
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Figure 6.5: The ratios K+/π+, K−/π− and (Λ + Σ0)/π at midrapidity from 5% central symmet-
ric Au+Au and the 4π calculations for p+p and p+A collisions as a function of the invariant
energy

√
sNN . The solid lines show the results from PHSD including CSR with NL1 parame-

ters. The blue line refers to Au+Au, the green line to p+p collisions, the orange line to p+C
collisions, the purple lines to p+Ca and the red lines to p+Au collisions. The experimental
data are extracted from Refs. [120, 143, 145, 146] for Au+Au collisions and from Ref. [173]
for p+p collisions (open symbols).

spond to full acceptance. We do not differentiate between the results with and without CSR,
since the small colliding systems do not reach the high densities needed for the CSR mech-
anism to develop. In case of the Au+Au system, we show the result from PHSD including
CSR with NL1 parametrization. In the K+/π+ excitation function, the newly studied colliding
systems show a smooth increase of the particle ratio, without the peculiar peak emerging in
the Au+Au collisions. There is no sizeable difference among the different results of the p+A
collisions, while the p+p calculation is slightly below and is in good agreement with the avail-
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able experimental data (open symbols).
In case of the excitation function of K−/π−, one can better distinguish among the results of
the different colliding configurations. Apart from the case for Au+Au collisions, for smaller
colliding systems the value of the K−/π− ratio increases. We notice that the PHSD calculation
for p+p collisions shows the same trend as the data but is slightly above. On the other hand,
the p+Au line exhibits an almost perfect match with the p+p experimental observations. It is
unclear why the PHSD result for p+p collisions agrees with the data for the K+/π+ ratio, while
it does not reproduce the K−/π− ratio. In relation to this issue, we stress that PHSD strictly
fulfills the conservation laws of the quantum numbers (the baryon and strange numbers and
the electric charge) and there is no inconsistency between the kaon and pion production. This
means that the PHSD calculations should in principle reproduce the K−/π− ratio as it does for
the K+/π+ ratio. Besides, the available data from Ref. [173] are dated measurements, that
should be verified by new experiments with modern detectors and more precise reconstruction
techniques, before we can extract a conclusive interpretation of these results.
Similarly to the K+/π+ and K−/π− ratios, the excitation functions of the (Λ + Σ0)/π for all
explored systems are not characterized by a sharp peak. The (Λ + Σ0)/π ratio increases up
to
√

sNN ∼ 4 GeV, then it smoothly decreases nearly merging at
√

sNN ∼ 12 GeV with the
Au+Au calculations. Although there is no big difference between the p+p and p+A lines, we
notice a hierarchy at

√
sNN ∼ 20 GeV: for larger system size, the value of (Λ + Σ0)/π increases

(apart from the line associated to Au+Au collisions, which is below all the other ones due to
the larger pion production).
In conclusion, the appearance/disappearance of the “horn”-structure in the strange to non-
strange particle ratios as a function of the system size is found to be a signature of CSR. This
features have to investigated in more detail and addressed by future experimental programs.

6.3 Centrality dependence of strangeness production in HIC

In this section, we investigate the centrality dependence of strangeness production in HIC,
with a special focus on the CSR contribution. We vary the impact parameter in Au+Au col-
lisions within an interval, where the most central configuration corresponds to the 0 − 10%
centrality class and the most peripheral configuration to the 45 − 50% centrality class. The
centrality of the collision can be expressed in terms of the number of participants Npart

1: large
values of Npart correspond to central collisions, while low values of Npart correspond to periph-

1The nucleons of the colliding nuclei can be distinguished according to the Glauber model [174] in partici-
pants and spectators. The former are located in the overlap region of the nuclei and interact, while the latter are
not affected by interactions.
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Figure 6.6: (l.h.s.) The particle yields of π+, K+, K−, (Λ + Σ0) and Ξ− at midrapidity from
Au+Au collisions at

√
sNN = 4.3 GeV as a function of the number of participants. (r.h.s.)

The particle ratios K+/π+, K−/π−, (Λ + Σ0)/π− and Ξ−/π− (the latter increased by 10 for
comparison) at midrapidity in Au+Au collisions at

√
sNN = 4.3 GeV as a function of 〈Npart〉.

The solid red lines show the results from PHSD including CSR with NL3 parameters, the
dotted blue lines show the results from PHSD without CSR.

eral collisions. We adopt the correlation between the centrality class and the average number
of participants 〈Npart〉 as given by the STAR collaboration for

√
sNN = 7.7 GeV in Ref. [175].

In Fig. 6.6 we plot on the l.h.s. the abundances of pions, kaons and the most abundant hyper-
ons and on the r.h.s. the ratios K+/π+, K−/π−, (Λ + Σ0)/π− and Ξ−/π− as a function of 〈Npart〉

at midrapidity from Au+Au collisions at
√

sNN = 4.3 GeV (the ratio Ξ−/π− is multiplied by
10 to be visualized on the same scale of (Λ + Σ0)/π−). The same observables are shown in
Fig. 6.7 for

√
sNN = 7.7 GeV. We display the calculations from PHSD including CSR with

NL3 as parameter set with solid red lines and the calculations from PHSD without CSR with
dotted blue lines.
For both

√
sNN = 4.3 GeV and

√
sNN = 7.7 GeV, all particle yields and the (Λ + Σ0)/π− and
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Figure 6.7: The particle yields of π+, K+, K−, (Λ + Σ0) and Ξ− and the associated strange
to non-strange particle ratios at midrapidity from Au+Au collisions at

√
sNN = 7.7 GeV as a

function of the number of participants on the l.h.s. and r.h.s., respectively. The coding of the
lines is the same as in Fig. 6.6.

Ξ−/π− ratios increase with increasing number of participants. On the other hand, the ratios
K+/π+, K−/π− at

√
sNN = 7.7 GeV and the ratio K−/π− at

√
sNN = 4.3 GeV are almost con-

stant as a function of the centrality for 〈Npart〉 > 50. Moreover, the yields increase with a
larger rate as a function of 〈Npart〉 than the ratios (notice the logarithmic scale on the l.h.s.
with respect to the linear scale on the r.h.s. on the y axis). The inclusion of CSR produces a
strangeness enhancement in the whole range of centralities. Note, however, that very periph-
eral reactions (〈Npart〉 < 50) are not considered, since we have selected the centrality classes
according to Ref. [175]. Both at

√
sNN = 4.3 and at

√
sNN = 7.7 GeV the interaction volume

of the two colliding nuclei reaches high energy densities such that practically all central cells
are influenced by the CSR mechanism independently of the centrality of the collision. The
centrality dependence of our results including CSR shows similar trends and features at low
(
√

sNN = 4.3 GeV) and intermediate (
√

sNN = 7.7 GeV) energies.
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We study the strangeness enhancement also in relation to the strange particle production in
p+p collisions, especially for the hyperon production. The comparison between the particle
production in A+A and in p+p collisions is usually expressed as a ratio of the particle yields
in A+A collisions normalized to 〈Npart〉 to the corresponding quantities in p+p reactions at the
same energy [130]: (

yield
〈Npart〉

)
A+A

/

(
yield
〈Npart〉

)
p+p

, (6.1)

where 〈Npart〉 is equal to 2 in p+p collisions.
On the l.h.s. of Fig. 6.8 we compare the yield of Λ + Σ0 and Ξ− as produced in Au+Au and
p+p collisions at

√
sNN = 4.3 GeV and

√
sNN = 7.7 GeV (in panels (a) and (c), respectively)

as a function of the centrality. We mention that a p+p collision develops as an interaction in
vacuum and the CSR does not occur (we do not distinguish the cases with and without CSR
for the PHSD results for p+p collisions in Fig. 6.8). The hyperon production is larger in the
nucleus-nucleus system with respect to the nucleon-nucleon system which is represented by
the black diamond point. The difference is larger for the multi-strange particle Ξ− than for the
single-strange (Λ + Σ0). For example, in case of the most central collision (〈Npart〉 ≈ 330), this
enhancement in the PHSD calculation with CSR is of a factor ≈ 10 for Ξ− and a factor of ≈ 2
for (Λ+Σ0) for

√
sNN = 7.7 GeV. The production of Ξ− normalized to the one of p+p increases

with 〈Npart〉, while the production of (Λ + Σ0) shows a much less pronounced increase.
In addition, we analyze the hyperon production in Au+Au and p+p collisions in terms of
the particle ratios Λ/π ≡ (Λ + Σ0 + Λ + Σ

0
)/(π+ + π−) and Ξ/π ≡ (Ξ + Ξ)/(π+ + π−). This

is shown as a function of the centrality on the r.h.s. of Fig. 6.8 at
√

sNN = 4.3 GeV and
√

sNN = 7.7 GeV in panels (b) and (d), respectively. As described above for the hyperon yields,
the Ξ/π ratio relative to p+p smoothly rises with centrality, while the Λ/π is almost constant
with 〈Npart〉. However, the enhancement with respect to the nucleon-nucleon scattering is
smaller than what we find for the normalized yields. In particular, the Ξ/π ratio presents a
maximum enhancement for the largest value of 〈Npart〉 of ≈ 75 at

√
sNN = 4.3 GeV and of ≈ 8

at
√

sNN = 7.7 GeV.
Finally, we compare our results displayed in Fig. 6.8 at

√
sNN = 4.3 GeV (panels (a) and (b))

and
√

sNN = 7.7 GeV (panels (c) and (d)). The normalized strangeness enhancement appears
larger in case of the lower collision energy. In fact, both the Ξ− yield and the Ξ/π ratio at
√

sNN = 4.3 GeV are approximately one order of magnitude larger than the corresponding
quantities at

√
sNN = 7.7 GeV over the entire range of centralities. This is explained by the

fact that the flavor exchange channels Y + Y ↔ N + Ξ have sizable production rates at low
energy, while they are less effective at large energies (see Chapter 3 for details). Differently
from Ξ−, the calculations concerning Λ particles at

√
sNN = 4.3 GeV and

√
sNN = 7.7 GeV do

not show significant differences, apart from the case of the Λ/π ratio. Specifically, the result
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Figure 6.8: (l.h.s.) The full acceptance ratio of the yields of (Λ + Σ0) and Ξ− normalized
to 〈Npart〉 to the corresponding quantities in p+p collisions as a function of the number of
participants in Au+Au collisions at

√
sNN = 4.3 GeV and

√
sNN = 7.7 GeV in panels (a)

and (c), respectively. (r.h.s.) The full acceptance particle ratios Λ/π and Ξ/π from Au+Au
collisions relative to p+p collisions as a function of 〈Npart〉 at

√
sNN = 4.3 GeV and

√
sNN =

7.7 GeV in panels (b) and (d), respectively. The black diamonds refer to the results from p+p
collisions. The coding of the lines is the same as in Fig. 6.6.

of PHSD without CSR for the Λ/π ratio at
√

sNN = 4.3 GeV is below unity which corresponds
to the p+p result. This traces back to the flavor exchange channel Y + Y ↔ N + Ξ, whose
associated rates are larger for the forward reactions (Y + Y → N + Ξ) than for the backward
reactions (Y + Y ← N + Ξ). As a result, the Λ/π ratio obtained in A+A collisions is smaller
than in p+p collisions, where the hadronic re-scattering does not develop. On the other hand,
the PHSD result with CSR for the Λ/π ratio at

√
sNN = 4.3 GeV is above unity, because CSR

increases the production of strange particles over the non-strange ones.
In the observables investigated in this section, the difference between the results from PHSD
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with and without CSR is evident and it is more clearly seen in the particle ratios than in
the single particle yields. This provides a way to disentangle the effects of CSR in small
systems through the comparison between our calculations and experimental data for this kind
of observables. In this respect, future heavy-ion collision experiments are expected to shed
light on the centrality dependence of the CSR, too.





Conclusions

In this work we have presented a study of the Chiral Symmetry Restoration (CSR) in
Heavy-Ion Collisions (HIC) adopting the Parton-Hadron-String Dynamics (PHSD) transport
approach. PHSD represents a solid framework to describe HIC, that has been tested in a wide
range of energies, from SIS (SchwerIonen Synchrotron) up to LHC (Large Hadron Collider)
energies, providing good results . This model includes both a hadronic and a partonic phase,
as well as a transition between the effective degrees of freedom. The partonic phase is mod-
eled according to the Dynamical-Quasi-Particle Model (DQPM), which defines the properties
of the degrees of freedom (masses and widths) in the partonic phase and which is conceived to
reproduce lQCD results in thermodynamical equilibrium. We have extended PHSD to include
essential aspects of CSR, that are incorporated in the Schwinger mechanism for the string de-
cay. This implementation only affects the hadronic particle production and it does not imply
modifications in the Quark-Gluon Plasma (QGP) phase.
In Chapter 2 we have shown that CSR induces an enhancement of the strange quark fraction
γs = s/u defined by the Schwinger formula for the string decay, while we predict no sensi-
ble changes in the diquark production. Different parametrizations (NL1, NL2, NL3) for the
nuclear Equation of State (EoS) have been employed in order to estimate the uncertainty of
our results. The role of the EoS is crucial in the calculation of the scalar density (and conse-
quently in the calculation of the scalar quark condensate), which is performed according to a
non-linear σ − ω model. Although the s/u ratio shows a moderate dependence on the EoS,
its behavior as a function of the energy density is the same for all investigated parametriza-
tions for the EoS: the s/u ratio increases with increasing energy density due to CSR. This
strangeness enhancement entails an enhancement of the strange particle abundances with re-
spect to the non-strange ones, that are detected at the end of the collision process. This effect
is the signature that allows us to recognize that CSR occurs in HIC, even though we cannot
directly measure the scalar quark condensate, which is the order parameter for the chiral phase
transition.
In Chapter 3 we have analyzed the strange particle production in the low energy regime, espe-
cially close to the threshold of the multi-strange hyperons (

√
sNN = 2−3 GeV). This investiga-

115



116 Predictions for FAIR and NICA

tion has mostly been driven by the open question concerning the large multiplicities of Ξ and
φ measured by the HADES collaboration. We have addressed this issue extending PHSD to
include hyperon-hyperon (Y + Y) interactions, as flavor exchange reactions, elastic scatterings
and string excitations. The employed cross-sections have been taken from an effective model
based on a gauged flavor SU(3)-invariant hadronic Lagrangian solved in the Born approxi-
mation (described in Appendix B). Results on rapidity spectra and particle abundances show
that the Y + Y channels produce a significant enhancement of the Ξ yield within the energy
range

√
sNN = 2 − 6 GeV and that the CSR mechanism is more effective in the dynamics for

√
sNN = 3− 12 GeV. The inclusion of the Y + Y interactions and of CSR do not provide a con-

clusive explanation of the extremely high Ξ− and φ yields for collisions at
√

sNN < 3 AGeV,
but a striking improvement of the PHSD description of the hyperon production close to the
threshold has been achieved. Further studies are required on mean-field effects and on addi-
tional contributions from the close-to-threshold production mechanisms.
Chapter 4 contains a detailed study of the contribution of CSR in HIC observables at AGS
and SPS energies. As mentioned above, the role of CSR in the collision dynamics emerges
as a strangeness enhancement, which is visible and sizable in the particle spectra at AGS and
lower SPS energies (e.g. at ELab = 10.7 − 30 AGeV). Increasing further the collision energy,
the contribution of CSR vanishes (e.g. at ELab = 158 AGeV), since the dynamics of the system
is dominated by the QGP phase where strings cannot be formed due to the vanishing string
tension. The final results on the particle yields depend moderately on the parametrization
for the Equation of State (EoS) adopted in the calculation (NL1, NL2, NL3). For example
the maximum variation due to the different parametrization of the EoS is only ≈ 6% for the
K+ yield in central Pb+Pb collisions at 30 AGeV. The strangeness enhancement observed in
the particle abundances due to CSR develops in the order NL1 > NL2 > NL3 (the density
of protons and pions shows the opposite hierarchy). The NL1 and NL3 fix reliable limits on
the uncertainties associated to the CSR effects as implemented in PHSD and these uncertain-
ties are only . 10% in the maximum case. Moreover, we have found that transverse mass
spectra are relatively insensitive to the CSR mechanism. The results of PHSD including CSR
are in a good agreement with the experimental observations of rapidity and transverse mass
spectra and particle ratios. In particular, the PHSD calculations with CSR provide the first
microscopic interpretation of the “horn”structure in the excitation functions of the K+/π+ and
(Λ+Σ0)/π ratios in central Au+Au (or Pb+Pb) collisions. The steep rise of these ratios at AGS
energies are associated to CSR, while the drop at higher SPS energies is due to the appearance
of the QGP phase in an increasing volume of the interaction region.
The influence of the CSR on the collective dynamics is investigated in Chapter 5. The PHSD
description of the differential hadron spectra in p+p and A+A collisions has been remarkably
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improved by the implementation of the pT -kick distribution function in the string dynamics
and by the inclusion of the string rotation. Our analysis on the time evolution of the directed
flow v1 has shown that v1 is established at the early stages of the collisions. In particular,
protons acquire transverse momentum during the string interactions. This opens the possi-
bility to detect an effect of CSR also in the directed flow of particles like protons and pions.
However, the final result of v1 extracted from PHSD simulations can be influenced by many
factors (hadronic potentials, pT -cuts), whose contributions have been analyzed in detail. We
have incorporated baryon potentials in the particle propagation and have found that this in-
clusion modifies the proton v1 only at low energies. The study of the influence of the pT -cuts
on our calculations has shown no severe alteration of our results (only small modifications
with respect to the case in which no cuts are applied). Furthermore, we have performed a
beam energy scan of the proton and pion flow and our results are in good agreement with the
data with some deviations for

√
sNN > 20 GeV for the protons and for

√
sNN ≤ 11.5 GeV

for pions. The role of CSR on v1 is negligible, while the inclusion of the partonic phase is
essential for the proton and pion flow at RHIC energies. The dependence of v1 on the baryon
potentials manifests at low collision energy, where we find that the potential associated to the
NL1 parametrization gives a repulsive effect within

√
sNN = 3−5 GeV and an attractive effect

within
√

sNN = 5 − 10 GeV. For
√

sNN = 7 − 9 GeV, the excitation function of the pion slope
exhibits a minimum and the proton slope turns from positive to negative values. We suggest
that this is due to a smooth transition from a hadronic- to a partonic-dominated system, but
further studies are needed to draw a conclusive interpretation.
In Chapter 6 we have focused our attention on the energy range of the future FAIR and NICA
facilities (

√
sNN = 4−11 GeV), with the aim of providing valuable predictions for observables

sensitive to the CSR mechanism. The analysis of the rapidity spectra shows that the FAIR and
NICA experiments will explore an energy regime where the QGP contribution is small and
consequently the identification of the contribution associated to CSR is easier. From the in-
vestigation of the excitation functions of the K+/π+ and (Λ + Σ0)/π ratios we have found
that the “horn”structure disappears in the K+/π+ ratio as the system size decreases, while it
remains at the same energy in the ratio (Λ + Σ0)/π. Furthermore, we have analyzed the par-
ticle multiplicities as a function of the number of participants in the collision, to investigate
the centrality dependence of CSR. Our results on the strange particle yields and strange to
non-strange particle ratios support the fact that CSR occurs in central collisions as well as in
moderately peripheral collisions. We have also studied the strangeness enhancement in re-
lation to the strange particle production in p+p collisions and have found an increase of the
hyperon production in A+A collisions with respect to p+p collisions. This is more pronounced
when CSR is included in the calculations and it is larger for the multi-strange particle Ξ− than
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for the single-strange (Λ + Σ0).
In conclusion, our microscopic studies support the idea that CSR occurs in hadronic systems
with high temperature and density before the deconfinement phase transition takes over. We
have shown that many observables are suitable probes to study the properties of CSR in HIC.
In this respect, the FAIR and NICA experiments will play an important role, since they will
scan the energy regime which is optimal to study CSR and its interplay with the QGP phase.



Acknowledgments

In the first place, I would like to thank my thesis advisor Prof. Wolfgang Cassing for giving
me the opportunity to join his research group and to work on this fascinating and stimulating
topic. He gave me important advice, constant support and the opportunity to widen my pro-
fessional horizons in many conferences during my PhD.
Next, I would like to thank Prof. Claudia Höhne for being the second examiner of this disser-
tation and for her interest in its content.
I am grateful to Prof. Elena Bratkovskaya for the helpful suggestions and discussions, that
make me grow on a professional level.
I deeply thank Olena Linnyk, who has been my mentor and my first friend in Giessen.
Many thanks go to the current and former members of the PHSD group and collaborators V.
Konchakovski, T. Steinert, E. Seifert, P. Moreau, D. Cabrera, T. Song, A. Ilner, R. Marty, V.
Toneev and V. Voronyuk.
I would like to thank all my colleagues and the secretaries of the institute of theoretical physics
at the University of Giessen and my friends M. Dhar, C. Hornung, C. Welzbacher and R.
Williams.
I want to express my gratitude to R. Ehmann, P. Tebaartz, A. Wieck, Prof. Dr. Adriana del
Rey and the SciMento team for their support.
Finally, I am grateful to my husband and my family, who have encouraged and helped me
despite the distance.

This work was possible thanks to the computational resources of Loewe-CSC and the sup-
port of the Helmholtz International Center for FAIR (HIC for FAIR), the Helmholtz Graduate
School for Hadron and Ion Research (HGS-HIRe), the Helmholtz Research School for Quark
Matter Studies in Heavy-Ion Collisions (H-QM).

119





Appendix A

Chiral symmetry

A phase transition of the strong matter associated to the restoration of Chiral Symmetry
(CS) is expected to occur at high temperature and/or density. The CS is defined as the in-
variance of the Quantum-Chromo-Dynamics (QCD) Lagrangian in the massless limit under a
transformation of the group U(N f )L × U(N f )R, where N f denotes the number of flavors. This
symmetry group is isomorphic to S U(N f )L × S U(N f )R × U(1)V × U(1)A, where the U(1)V is
associated to the baryon number conservation and the U(1)A is anomalously broken. In the
following, we provide a brief introduction of CS and its features, focusing on the relevant part
of CS for two flavors, i.e. the S U(2)L × S U(2)R symmetry.
The QCD Lagrangian can be written (flavor indices suppressed) as:

L = −
1
4

Ga
µνG

µν
a + iψRγ

µDµψR + iψLγ
µDµψL − m(ψRψL + ψLψR), (A.1)

where Dµ = ∂µ − igsAµ is the covariant derivative (gs is the strong coupling constant and Aµ

refers to the gluon fields), Ga
µν = Fa

µν + gs f abcAbµAcν = ∂µAa
ν − ∂νA

a
µ + gs f abcAbµAcν is the gluon

field tensor with color index a ( f abc denotes the structure constants of SU(3)) and ψR,L refer to
the right- ψR and left-handed ψL components of the quark field, respectively:

ψ =

ψR

ψL

 . (A.2)

The distinction of the quark field in ψR and ψL components is based on the chiral properties of
the quarks, that, as massive fermions, can be right-handed when the sign of the projection of
the spin vector onto the momentum vector is positive or left-handed in the opposite case. We
can extract the right- and left-handed states by applying the following projectors on the quark
field:

PL,R =
1
2

(1 ∓ γ5) (A.3)
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where γ5 is the Dirac matrix:

γ5 =

 12 02

02 −12

 (A.4)

with 12 as 2 × 2 identity matrix.
In Eq. A.1 the components ψR and ψL mix only in the last term, i.e. in the mass term mψψ =

m(ψRψL + ψLψR). Consequently in case of massless quarks, the QCD Lagrangian fulfills CS,
namely it is invariant under a generic transformation of the symmetry group S U(2)L×S U(2)R:

ψ→ ψ′ = e−i ~τa
2
~ΘaPLe−i ~τb

2
~ΘbPRψ. (A.5)

This transformation can also be re-written in terms of the transformation ΥV ×ΥA of the group
S U(2)V × S U(2)A:

e−i ~τa
2
~ΘaPLe−i ~τb

2
~ΘbPRψ→ e−i ~τ2 ~ΘV e−iγ5

~τ
2
~ΘAψ. (A.6)

Consequently, if the CS holds, the vector and axial vector currents are equal.
In case of massive quarks, the CS is explicitly broken. For example, under a generic transfor-
mation ΥA the change of the mass term reads:

ΥA : m(ψψ)→ m(ψψ) − 2im~Θ ·
(
ψ
~τ

2
γ5ψ

)
. (A.7)

However, CS is considered as an approximate symmetry of the QCD Lagrangian for energies
larger than the quark masses, i.e. for energies (or high temperature and/or high density) at
which the quark masses approximately vanish mq ≈ 0. The chiral condensate 〈ψψ〉 represents
the order parameter of the transition from a phase in which CS is broken to a phase in which
CS is restored:

〈ψψ〉 =

 , 0 chiral symmetry is broken,
= 0 chiral symmetry is restored.

(A.8)

As mentioned above, the restoration of Chiral Symmetry (CS) is expected to occur at high
temperature and/or density [93, 94, 176], as the chiral condensate is expected to decrease from
the vacuum value 〈ψψ〉V to 〈ψψ〉 ≈ 0. This behavior of the chiral condensate as a function of
the temperature is shown in Fig. A.1 from a lattice QCD calculation [176] for three flavors
(l = u, d and s) in terms of the subtracted chiral condensate ∆l,s:

∆l,s =
〈ψψ〉l − ml/ms〈ψψ〉s

〈ψψ〉l,V − ml/ms〈ψψ〉s,V
. (A.9)

Moreover, the breaking of the CS can be treated as a spontaneous symmetry breaking, that
generates pseudo-Goldstone bosons, which are massive due to the fact that CS is not exact but
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Figure A.1: Subtracted chiral condensate ∆l,s as a function of the temperature (Nt denotes the
temporal extent of the lattice). Figure taken from Ref. [176].

approximate. The pseudo-Goldstone bosons of CS are the pions and their mass mπ is found
to be dependent on the quark condensate (considering the u and d flavors) via the Gell Mann
Oakes Renner relation [107, 108, 109]:

m2
π f 2
π = −(m0

u + m0
d) 〈ψψ〉 = −

1
2

(m0
u + m0

d) · (〈ψuψu〉 + 〈ψdψd〉) , (A.10)

where fπ is the pion decay constant, m0
u and m0

d are the bare masses of the u and d quarks,
respectively.





Appendix B

Hyperon-hyperon interactions in a
gauged flavor SU(3) hadronic model

Within the Parton-Hadron-String Dynamics (PHSD) transport approach, the cross-sections
for the hyperon scattering of the types Y + Y ↔ N + Ξ and Y + K̄ ↔ Ξ + π are employed
according to the hadronic model described in Refs. [116, 117, 177]. This model is introduced
here with a particular focus on the derivation of the cross-sections for the Y + Y ↔ N + Ξ

scatterings, which have been recently implemented in PHSD as reported in Chapter 3.
The hadronic model [177] is based on a gauged flavor SU(3)-invariant hadronic Lagrangian
L for pseudoscalar mesons and baryons:

L = iTr(B/∂B) + Tr[(∂µP†∂µP)] + g′{Tr[(2α − 1)Bγ5γµB∂µP + Bγ5γµ(∂µP)B]}, (B.1)

where g′ represents the pseudoscalar coupling constant, α is a parameter and B and P refer to
the baryon and pseudoscalar meson octets, respectively:

B =


Σ0
√

2
+ Λ
√

6
Σ+ p

Σ− − Σ0
√

2
+ Λ
√

6
n

−Ξ− Ξ0 −

√
2
3Λ

 , (B.2)

P =
1
√

2


π0
√

2
+

η8
√

6
+

η1
√

3
π+ K+

π− − π0
√

2
+

η8
√

6
+

η1
√

3
K0

−K− K
0

−

√
2
3η8 +

η1
√

3

 . (B.3)

In Eq. B.3, η0 and η8 are the singlet and octet η mesons, respectively. They correspond to
combinations of the physical η and η′ particles in terms of the mixing angle θ: η1 = −sinθ η +

cosθ η′, η8 = cosθ η + sinθ η′.
The interactions between the pseudoscalar mesons and baryons with the vector meson octet Vµ
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are included in the model via replacing in Eq. B.1 the partial derivative ∂µ with the covariant
derivative Dµ:

∂µ → Dµ = ∂µ −
i
2

g[Vµ, ], (B.4)

where g is a coupling constant. The 3 × 3 matrix representation of the vector meson octet is:

V =
1
√

2


ρ0
√

2
+ ω
√

2
ρ+ K∗+

ρ− −
ρ0
√

2
+ ω
√

2
K∗0

−K∗− K∗0 φ

 . (B.5)

Additionally, tensor interactions between baryons and vector mesons are incorporated accord-
ing to the following interaction Lagrangian L t:

L t =
gt

2m
Tr[(2a − 1)Bσ µνB∂µVν + Bσ µν(∂µVν)B], (B.6)

where gt is the associated coupling constant and m is the SU(3) degenerate baryon mass.
The unknown couplings g, g′ and gt and the parameter α can be related to known couplings
(e.g., to the pion-nucleon coupling fπNN) using SU(3) relations and their values are extracted
from empirical information (see Refs. [117, 177] for details). The values of the couplings and
of the parameter α (estimated in Ref. [117]) are: g = 13.0, g′ = 14.4 GeV−1, gt/2m = 19.8/mN

(with mN as nucleon mass), and α = 0.64 .
The cross-sections for the reactions Y + Y ↔ N + Ξ are computed in the Born approximation
and they are given by the tree-level t-channel and u-channel diagrams, which are displayed in
Fig. B.1 on the l.h.s. and r.h.s., respectively.

Figure B.1: The tree-level t-channel and u-channel diagrams for the reactions Y + Y ↔ N + Ξ

in the Born approximation on the l.h.s. and r.h.s., respectively. Figure taken from Ref. [117].

At the interaction vertices, form factors F have to be included due to the finite size of the
hadrons. In the hadronic model considered here, the expression adopted for the form factors
for all the interacting hadrons is:

F(q, λ) =
λ2

λ2 + q2 , (B.7)
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where q is the 3-momentum transfer and λ is a parameter, which is taken to be λ = 0.7 GeV
for consistency with the cross-section of the Y + K̄ ↔ Ξ + π reactions computed in Ref. [116]
(the dependence on the parameter λ is investigated in Refs. [116, 117, 177]).
The cross-sections for the forward channels are given by:

σYY→NΞ(s) =
1

64πsp2
i

∫
dt |M|2, (B.8)

where s and t are the Mandelstam variables, pi is the momentum of the initial hyperons in
their center-of-mass frame and |M|2 is the spin-isospin averaged scattering amplitude squared.
Finally, these cross-sections can be parametrized as follows:

σΛΛ→NΞ = 37.15
pN

pΛ

(
√

s −
√

s0)−0.16mb, (B.9)

σΛΣ→NΞ = 25.12(
√

s −
√

s0)−0.42mb, (B.10)

σΣΣ→NΞ = 8.51(
√

s −
√

s0)−0.395mb, (B.11)

with pN as the initial nucleon momentum and pΛ as final momentum of the Λ, both expressed
in the center-of-mass frame of the collision. The energy threshold

√
s0 is the minimum energy

needed for the reaction to occur:
√

s0 = Max[(mΛ,Σ + mΛ,Σ), (mN + mΞ)].
The cross-sections for the backward reactions are computed applying the detailed balance and
they are expressed by the following relations:

σNΞ→ΛΛ =
1
4

( pΛ

pN

)2

σΛΛ→NΞ, (B.12)

σNΞ→ΛΣ =
3
4

( pΛ

pN

)2

σΛΣ→NΞ, (B.13)

σNΞ→ΣΣ =
9
4

( pΣ

pN

)2

σΣΣ→NΞ, (B.14)

where pΣ is the momentum of the Σ particle in the center-of-mass frame and the numerical
factors on the right-hand side are given by isospin combinations.
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