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Chapter 1

Introduction

Hadron physics studies strongly interacting matter in terms of its building

blocks, quarks and gluons. An important step towards this goal is a description

of the internal structure for the proton and neutron. The proton is a stable

(life time > 2.1 · 1029 years [1]) particle occurring in all atomic nuclei. It is

the positively charged core of the hydrogen atom, which is the most abundant

element in the universe. Indeed, hydrogen and helium (the nucleus of which

consists of two protons and two neutrons) make up about 80% and 20% of all

the matter in the universe respectively [2, 3]. Consequently, protons account

for most of the mass in matter. The proton is a composite system consisting of

quarks and gluons. Our research aims to improve the current understanding

of the proton structure.

Quantum chromodynamics (QCD) is the theory of strong interaction with

quarks and gluons as elementary degrees of freedom. Protons and neutrons

are held together in nuclei by the residual effects of the strong force, just as

molecular Van-der-Waals forces are residual effects of Coulomb’s law. QCD is

a quantum field theory based on the local interaction and local gauge SU(3)

symmetry principles [4]. The proton is interpreted as a solution of QCD with

given quantum numbers. However, a mathematical description of proton struc-

ture by directly solving QCD could not be achieved so far. The reason is that

the infinite number of degrees of freedom (usual for quantum field theories)

and the non-linear interaction of gluons (specific to non-Abelian QCD) lead to

enormous complications.

In the quest of gaining better insight into the structure of the proton, we

apply methods, that have proven useful in the investigation of nuclear struc-

ture, namely, the electron scattering analysis, assumptions of factorization,

1



Chapter 1: Introduction 2

and the spectral function method widely used in many-body calculations. At

the same time, we take into account the specific properties of the quark inter-

action dictated by QCD. Fortunately, due to the asymptotic freedom property

of QCD, the strong coupling becomes small at very high energy exchange. In

this limit, one can apply perturbation theory to describe high energy quark

(gluon) scattering. On the other hand, the experimental evidence shows that it

is more favorable to create a cloud of quark-antiquark pairs, thus creating ad-

ditional hadrons, than to extract a single quark from the parent hadron. This

prevents one from using quarks and gluons as asymptotic scattering states,

as stated by the confinement hypothesis. Philosophically, this makes appli-

cation of perturbation theory to hadron scattering impossible [5]. In practice

though, one relates the perturbative quark (gluon) scattering sub-processes to

the observables by the factorization method, explained below.

The factorization assumption states that in high energy hadronic processes

like deep inelastic scattering (DIS), Drell-Yan high mass lepton pair produc-

tion, jet production, etc. the soft and hard sub-processes can be disentan-

gled. The hard part can be calculated using the well established methods of

perturbative QCD (pQCD). The perturbative expansion is applicable for this

quantity, because due to asymptotic freedom, the coupling constant αS is small

at the large characteristic momenta of the hard scattering sub-diagram. The

hard part of the cross section is process-dependent and contains information

on the kinematics rather than on the structure of the participating hadron.

The soft part is process independent and describes the quark and gluon prop-

erties in the bound state. However, calculating this part of the cross section

from the QCD lagrangian is extremely complicated due to the infinite number

of strongly interacting degrees of freedom. One extracts the soft part from

a measurement of some high energy process and verifies it by predicting a

different process.

The described factorization of soft and hard parts of the cross section is

analogous to plane wave impulse approximation (PWIA) for the quasi-elastic

(e, e′p) scattering in nuclear physics. There, the approximation of quasi-free

constituent nucleons is valid, if the binding energy is small as compared to the

energy transfer. In the theory of nuclei, initial (ISI) and final state interaction

(FSI) effects are known to be essential for understanding of semi-exclusive

observables. Measurements, in which the energy and momentum of the nucleon

can be determined from the final state kinematics, offer an opportunity to
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study these effects beyond the PWIA and thus to probe the nucleon interaction

in nuclei [6, 7]. This is usually done by employing the concept of the spectral

function [8]. Bound nucleons or those that interact in the initial or final state

can no more be described by asymptotic, free, on-the-mass-shell states. In

other words, the energy-momentum relation for the probed nucleon is not

given by a simple formula ε2 − �p2
N = M2

N . Such particles are termed off-

shell and their wave functions are written as a combination of all possible free

states with weighing factors, which appear in the cross section as a spectral

function. The physical meaning of the nucleon spectral function Sp(ε, �pN) is

the probability to probe a nucleon with a given energy-momentum relation.

The initial and final state quark interaction effects on hard scattering cross

sections in hadron physics have recently attracted a lot of attention. The es-

sential role of final state interactions in the interpretation of the measured

DIS structure functions has been stressed in [9–11]. In several other calcu-

lations [12–15], non-collinear kinematics, i.e., non-vanishing primordial trans-

verse momenta of the quarks in the nucleon, were considered. The authors

of [16,17] pointed out that a single gluon exchange in the initial state can pro-

duce a large effect in πp scattering in the framework of a quark-diquark model.

On the other hand, as we will show in chapter 4, the quark off-shellness effects

in DIS and the Drell-Yan process have the same order of magnitude as those

of the intrinsic transverse momentum [18,19]. A consistent treatment of both

is necessary in order to go beyond the PWIA in hard reactions.

In Chapter 3, the formalism is developed to study these effects and apply it

to calculate the cross sections of deep inelastic ep scattering and the Drell-Yan

pair production in pp → l+l−X, pA → l+l−X, p̄p → l+l−X. Our aim is to

investigate observables and kinematical regions, for which collinear factoriza-

tion and low-order perturbative QCD no longer work and where we thus need

to model nonperturbative effects, i.e. go beyond the PWIA.

The analogy to nuclear physics suggests that the triple differential Drell-

Yan cross section, which is a more exclusive observable than the DIS cross

section, is more sensitive to the ISI. The results of our calculations confirm

this expectation. By taking into account both the finite width and the non-

collinearity of quarks, both being generated by ISI, we reproduce the experi-

mentally measured fully inclusive DIS cross section and the triple-differential

cross section of the Drell-Yan process very well.

Our success in describing the transverse momentum distribution of the
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Drell-Yan lepton pairs dσ/dM2dxFdpT is particularly interesting, since the

collinear pQCD result for this triple differential cross section disagrees with

the experiment by a large factor. In leading order of pQCD, a delta function

at zero transverse momentum is predicted. Among the next-to-leading order

(NLO) contributions to the dilepton (l+l−) cross section, the gluon Compton

scattering can generate large transverse momentum pT . However, this only

exists in the region of very high pT : pT ≥ √
M , where M is the mass of Drell-

Yan pair. In contrast, the major part of the measured pairs lies in the interval

0 < pT <
√
M , which, at NLO of pQCD, can be attributed only to gluon

Bremsstrahlung. But the average pT generated by q̄q → γ∗g is too low to

explain experimental data. Another problem of pQCD calculations is that the

pT spectrum of the Drell-Yan pairs has a singularity at pT = 0 in every order.

Phenomenologically regularized Sudakov resummation of the whole series [20]

can be done on the level of the double differential cross section. However,

accounting for the non-collinearity of quarks in the intrinsic-kT approach [21]

is necessary to bring calculations to qualitative agreement with data on triple

differential cross section. Still, none of the aforesaid models is able to reproduce

simultaneously the magnitude and shape of the experimentally observed pT -

distribution. In contrast, as we will demonstrate below in Section 4.3, the data

can be successfully described by a model, which allows for off-shell quarks.

Chapter 2 of the thesis is dedicated to the basic definitions and known

results concerning electron scattering in general, DIS in particular, and the

Drell-Yan process.

The parton model, intrinsic-kT approach, parton distributions in QCD (in-

cluding the unintegrated and polarized ones) are explained. In the end of the

chapter, we enlist some of the open problems of the standard approaches.

We propose a new model using phenomenological quark virtuality distribu-

tion in Chapter 3. The chapter starts with a discussion of factorization in hard

scattering processes. Reviewing the Wigner function and its relation to the

parton distributions in Section 3.2, we introduce an unintegrated kT -dependent

parton distribution (with a single parameter D) and a fully unintegrated ones,

incorporating a quark off-shellness distribution (with a single parameter Γ). In

Section 3.4 and 3.5, we formulate the cross sections of DIS and the Drell-Yan

process in the intrinsic-kT approach and in our model, which take into account

the fact that the quarks inside the nucleon are off-shell.

Chapter 4 covers the results of our studies aimed at understanding the role
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of quark off-shellness in hard scattering processes. Using formulas derived in

Chapter 3 we calculate the DIS cross section at different values of the model

parameters (intrinsic kT dispersion and quark width) and compare it to the

leading order result of pQCD (the parton model) in Section 4.1. The Drell-Yan

process calculated in the framework of the same two models is presented in

Section 4.2.

We fit experimental data on the Drell-Yan process with pp and pA initial

state in Sections 4.3.1 and 4.3.2. As the result of the fits, we show the im-

portance of the initial state interaction in Drell-Yan process, extract the value

of the quark width in the proton, confirm the values of the quark transverse

momentum dispersion stated in [22], and study Γ variation with M .

We find the exact evolution of the perturbatively generated part of the

transverse momentum of the Drell-Yan pair (pT )pert with the centre of mass

energy
√
s and M in the NLO of pQCD in Section 4.4.

Section 4.5 is dedicated to the explanation of the phenomenological K-

factor in our model by accounting for the quark primordial transverse momen-

tum and off-shellness.

Looking at the Drell-Yan cross section in our model in the limit of s→ ∞
as a series in 1/s in Section 4.6 gives an insight into the twist structure of the

phenomenological corrections due to the intrinsic kT and of those due to the

off-shellness of quarks.

The Drell-Yan process at
√
s = 5.5 GeV and M ≤ 4 GeV will be measured

in the scope of the experiment PANDA [23] at FAIR, the future GSI facility.

Our successful description of the data at different M and the study of pT -

variation with
√
s enables us to extrapolating our parameters to the values of√

s and M relevant for PANDA. We present a prediction of the Drell-Yan cross

section differential in M , xF and pT in PANDA kinematics and compare our

prediction to the predictions in the intrinsic-kT approach and in the generator

PYTHIA [24] in Section 4.7. We discuss the results and conclude in Chapter 5.



Chapter 2

Background

2.1 Electron scattering

One of the most powerful tools for studying the structure of sub-atomic ob-

jects is high energy electron scattering. Since the electron-photon interaction

is perfectly described by quantum electrodynamics (QED) [25], electron scat-

tering is a well understood tool to probe the structure of a target. Moreover,

the electron final state interaction is negligible due to the relative weakness of

the electromagnetic coupling and the point-like nature of the electron. This

allows a clean separation of the scattering mechanism and the structure of the

object under investigation.

The magnetic moment and charge density distribution of the target can be

extracted from a fully inclusive measurement, in which only the scattered elec-

tron is detected. However, in order to resolve the complete four-dimensional

space-time structure of the target, an inclusive measurement does not suffice,

and one has to detect the final state of the target in this case (for example,

knock-out reactions, meson production, virtual Compton scattering) [26, 27].

Additionally, one can study photon, neutrino or hadron induced processes [28],

providing complimentary information to that obtained from electron scatter-

ing, since they access correlations, which do not couple to the (virtual) photon.

Nevertheless, electron scattering remains the process of choice in the investiga-

tion of nuclear and hadron structure, because it is well understood and easier

to deal with experimentally. In this thesis, we concentrate on the question of

hadron structure as probed by an unpolarized virtual photon, i.e., in electron

scattering and in lepton pair production.

The electron’s stability and availability lead to its use in the historical

6



7 2.1 Electron scattering

Figure 2.1: Historical proof of a non-vanishing nuclear radius by the Hofstadter
group [29].

experiment by R. Hofstadter and collaborators. In this experiment, the nuclear

radius has been measured for the first time in 1953. Fig. 2.1 is taken from the

original paper by R. Hofstadter et al. [29] and presents the cross section of the

inclusive process eBe → e′X as a function of the electron scattering angle. The

experimental data are compared to calculations assuming a point-like nature

of the nuclei (solid curve) and to calculations corrected to take into account

the finite nuclear size (dashed curve). The data favor the assumption that the

nuclear radius r ≥2.2 ∗ 10−13 cm

This evidence of non-vanishing nuclear radius was based on QED calcula-

tions of the angular distribution of the scattered electrons in case of a struc-

tureless target. At leading order in the electromagnetic coupling, the scattering

is modelled by the exchange of a single virtual photon (having 4-momentum

q) between the incident electron and the target (nucleon or nucleus) [30], as

seen in Fig. 2.2. For a spin 1
2

target, the angular distribution of the scattered
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e e’
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Figure 2.2: Electron scattering in the Born approximation.

electrons is given by the Rutherford cross section [30]

(
d2σ

dΩ

)
M

=
4Zα2E ′2 cos2(θ/2)

Q4
, (2.1)

where α ≡ e2/4π is the fine structure constant, E ′ is the energy of the scattered

electron, Q2 ≡ −q2 the momentum transfer, Z the charge of the target in the

units of electron charge. Additionally taking into account the target recoil,

one arrives at the Mott cross section [31, 32]

(
d2σ

dΩ

)
R

=
4Zα2E ′2

Q4

(
cos2(

θ

2
) +

q2

2m2
p

sin2(
θ

2
)

)
(2.2)

of elastic electron scattering off another point-like charged particle with spin
1
2

and mass mp.

The dependence of the lepton scattering cross section on Q2 ≡ −qµqµ also

provides evidence of the target structure. As one can see in Fig. 2.3(a), the

probability of elastic eC scattering falls rapidly with the momentum transfer.

In contrast, fro a point-like target, the elastic scattering cross section does not

change with Q2 (cf. the scaling in DIS, Sect. 2.3.1). Thus, the elastic eC

scattering data implies finite radius of the target charge distribution. This

reflects a decreasing probability for the target to remain intact (in the ground

state) after the interaction [33]. On the other hand, the probability of inelastic

scattering remains roughly constant with energy. The same behaviour is found,
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Figure 2.3: Electron scattering off carbon nuclei and off the proton [34].

at much higher energy, in ep scattering, see Fig. 2.3(b).

In the fully inclusive case, the event kinematics in such a process are de-

termined by Q2 and the Bjorken variable xBj ≡ Q2/2MNν [26], where ν is

the energy transfer in the target rest frame, and MN is the nucleon’s mass.

Selecting different kinematics, we can examine different scattering processes

off a nuclei with the mass number A:

• at xBj ∼ A, the electron interacts with the entire nucleus, elastic scat-

tering occurs,

• as xBj decreases from A and energy loss increases, the nucleus is being

excited,

• near xBj ∼ 1, the quasi-elastic scattering is dominant, the electron

knocks out a single nucleon from a nucleus,

• at xBj < 1, the struck nucleon is excited into a resonance state or broken

up completely, depending on Q2.

The study of the proton structure in electron scattering has led to the

experimental proof of the existence of quarks and gluons of QCD [35].The

discovery of the anomalous magnetic moment of the proton in the experiment

of Otto Stern et al [36,37] revealed for the first time the compositeness of the

nucleon [25], while the ep scattering measurement at SLAC [38] showed that

the proton constituents have quantum numbers of quarks [5].
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2.2 Hadron tensor. Structure functions. Form

factors

In this section, we briefly review, how one can obtain quantitative information

on the target structure from electron scattering experiments. We derive un-

polarized and polarized scattering cross sections and define electron scattering

form factors and structure functions. The line of derivation in this section is

based mainly on [26], but the metric has been changed from pseudo-Euclidean

to Minkowski for the sake of consistency throughout the thesis.

The first non-vanishing term of the QED perturbative expansion for the

scattering matrix Ŝ gives the following expression called the Born ampli-

tude [26, 39]

Ŝ = 1 + e

∫
d4xAµ(x)Ĵµ(x), (2.3)

where Aµ is the 4-vector potential of the electromagnetic field generated by

the electron and satisfies the Maxwell equation [35, 39]

(	− ∂

∂t2
)Aµ = −4πjµ, (2.4)

where jµ is the electron current. Plugging the free lepton current

jµ = −ie(ūσ′(�k′)γµuσ(�k)) exp{iqνxν} (2.5)

in (2.4), we obtain the Möller potential [40]

Aµ(x) = −4πie

q2
(ūσ′(�k′)γµuσ(�k)) exp{iqνxν}, (2.6)

where q ≡ k′ − k, q2 ≡ qµq
µ, u represents the asymptotic (plane wave) state

of the electron, which is indexed by the electron momentum k and spin σ [39].

The incoming electron momentum and spin are (k, σ) and the outgoing values

are (k′, σ′). The bar denotes Dirac conjugation. Then, the scattering matrix

is

Ŝ = 1 − i
4πe2

q2
(ūσ′γµuσ)

∫
d4xĴµ(x) exp{iqνxν}. (2.7)

The matrix element Sfi, which is defined as Sfi ≡ 〈 �P ′, f |Ŝ|�P , i〉 and gives

the probability amplitude of the scattering between an initial state i with the
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target momentum �P and a final state f with target momentum �P ′, is

Sfi =
4πe2

q2
(ūσ′γµuσ) 2πδ(ω + Ei − Ef)〈 �P ′, f |

∫
d�rei�q�rĴµ(�r)|�P , i〉. (2.8)

After the integration over the center of mass motion [26],

Sfi =
4πe2

q2
(ūσ′γµuσ) (2π)4δ(ω + Ei − Ef)δ(�P + �q − �P ′)

×〈f |
∫

d�rei�q�rĴµ(�r)|i〉, (2.9)

where ω ≡ k′0 − k0.

Since the scattering amplitude Mfi is defined through [25, 30]

Sfi ≡ (2π)4δ(ω + Ei − Ef)δ(�P + �q − �P ′)Mfi, (2.10)

then

Mfj =
4πe2

q2
(ūσ′γµuσ)Jµfi(�q). (2.11)

Finally, the differential cross section for electron scattering is

dσfi = (2π)4|Mfi|2δ(ω + Ei −Ef )δ(�P + �q − �P ′)
d�k′

(2π)3

N∏
j=1

d�pj

(2π)3
, (2.12)

whereN is the number of particles in the final hadron state. N = 1 corresponds

to elastic scattering. The DIS cross section is given by the same formula,

integrated over all possible final states. This corresponds to an energy transfer,

which is big enough to “break” the nucleon.

In case of unpolarized scattering, the cross section (2.12) can be decom-

posed into a product of the lepton tensor Lµν and the hadron tensor W µν

dσ

dΩdE ′ =
α2

q4

E ′

E
LµνW

µν , (2.13)

where

Wµν =
1

8πP 2

∑
N,s

∫ N∏
n=1

d�p ′
n

2E ′
n(2π)3

(2π)4δ4(P + q −
∑

n

p′n)

×
∑
X

〈p, s|J†
µ|X〉〈X|Jν|p, s〉, (2.14)
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with P the initial momentum of the target, s its spin, and

Lµν = 4
(
kµk

′
ν + kνk

′
µ − gµν(kαk

′
α +m2

e)
)
, (2.15)

where me is electron mass. The decomposition (2.13) exists, because for every

matrix Ôµ the following is true [25]

1

2

∑
σ,σ′

|(ūσ′(�k′)γµuσ(�k))Ôµ|2 =
1

4EE ′η
µνÔµÔ

†
ν , (2.16)

where

ηµν =
1

2
Sp{γµ(m+ γαkα)γν(m+ γβk′β)}. (2.17)

Rewriting the hadron current in terms of its components

〈X|J |Ps〉 ≡ Jfi = (ρ, �J) (2.18)

and introducing structure functions W1 and W2 as

W1 = 〈 �J∗
if · �Jfi〉, W2 = 〈ρ∗if · ρfi〉, (2.19)

we can write the cross section for the unpolarized scattering of a massless

lepton on a hadron in the target rest frame in terms of W1, W2 [26]

d2σ

dΩdE ′ =
4α2E ′2

Q4

[
2W1(Q

2, xBj) sin2(θ/2) +W2(Q
2, xBj) cos2(θ/2)

]
. (2.20)

The structure functions W1, W2 are scalar functions of two independent vari-

ables: the energy transferred Q2 ≡ −q2 and the Bjorken variable

xBj ≡ Q2/(2P · q). (2.21)

If one takes the relativistic limit, in which the lepton can be considered

massless, the lepton’s helicity conservation allows to easily calculate the polar-

ized scattering by using again (2.13), but implying the following for the lepton

tensor [26]

Lµν = 2kµk′ν + 2k′µkν + gµνq2 ∓ 2iεµνλρkλk
′
ρ, (2.22)

(choose ∓ for the helicity ±1/2). In this case, two more components of Wµν

contribute to the cross section
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Wµν = (
qµqν
q2

− gµν)W1 + (Pµ − P · q
q2

qµ)(Pν − P · q
q2

qν)W2

+iεµνλρ
qλ

√
P 2

(sρM2G1 + (P · qsρ − s · qP ρ)G2) (2.23)

The spin dependent structure functions G1(Q
2, xBj), G2(Q

2, xBj) can be

measured through the difference of polarized cross sections

d2σ(↑↑)
dΩdE ′ − d2σ(↑↓)

dΩdE ′ =
4α2

Q4

E ′

E
[(E + E ′ cos θ)MTG1(Q

2, xBj)

−Q2G2(Q
2, xBj)], (2.24)

where dσ(↑↑)/dσ(↑↓) denotes the cross section of polarized scattering, in which

the electron and target spins are parallel/antiparallel; MT is the target mass.

Dimensionless structure functions F1, F2, g1, g2 are sometimes used instead

of Wi, Gi [5]

F1 = MTW1, F2 = νW2, (2.25)

g1 = M2
TνG1, g2 = MTν

2G2, (2.26)

where ν is the energy transfer in the target rest frame. In case of elastic

scattering (xBj = A), the structure functions are directly related to Sachs

electric and magnetic form factors GE and GM as [5]

F1(elastic) = MT τG
2
M(Q2)δ

(
ν − Q2

2MT

)
, (2.27)

F2(elastic) =
2τMT

1 + τ
(G2

E(Q2) + τG2
M (Q2))δ

(
ν − Q2

2MT

)
, (2.28)

where τ ≡ Q2/(2MT ). Let us recall the definition of Dirac and Pauli form

factors FD and FP [26, 39]

〈P ′|Jµ|P 〉 = ū(P ′)
(
γµFD(Q2) +

iσµνq
ν

2MT

FP (Q2)

)
u(P ), (2.29)

and their relation to the Sachs form factors [26]

GE(Q2) = FD(Q2) − (Q2/4M2
T )FP (Q2),

GM(Q2) = FD(Q2) + FP (Q2). (2.30)
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Figure 2.4: The ep → eX cross section as a function of the missing mass W.
W 2 = (p + q)2 = M2 + 2Mν − Q2. The elastic peak has been reduced by a
factor of 8.5. The illustration is taken from [42].

Concluding this section, let us note the importance of exclusive measure-

ments in the study of composite targets. Point particles are fully defined by

their quantum numbers, such as electrical charge and magnetic moment. On

the other hand, one needs more information in order to describe composite

systems. The Q2-dependent form factors (for example, GE(Q2) and GE(Q2))

carry information on the charge and magnetic moment distribution of the tar-

get, which can be related to its density profile and fully describe a spherically

symmetrical system [26]. The structure functions, accessible in electron scat-

tering cross sections differential in Q2 and xBj , provide more information on

the structure of the target, which is, in general, not spherical. For instance,

one can reconstruct the 3-dimensional density distribution of quarks in the

proton [41] from high energy ep scattering, in which the proton is probed as a

bound state of quarks and gluons. Studying an even more exclusive observable,

e.g. the triple differential cross section of the Drell-Yan process (Sect. 2.4), we

are able to access the double unintegrated, 4-dimentional parton distributions,

which carry information on the interaction of quarks in the proton [19].

2.3 Deep inelastic scattering (DIS)

2.3.1 Definitions

Electron-hadron scattering is qualitatively different in the following three en-

ergy regions [27] (see Fig. 2.4):
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Figure 2.5: Deep inelastic scattering in the parton model picture is a single
quark knock-out.

• elastic peak (W ≈MN ),

• resonance region (MN ≤W ≤ 2 GeV),

• deep inelastic region (W ≥ 2 GeV).

In the high energy regime of electron nucleon scattering, called Deep Inelas-

tic Scattering (DIS), the quarks and gluons are the relevant degrees of freedom.

In the regime of Q2 � 1GeV 2 and 0 < xBj < 1 the electron primarily inter-

acts with a single quark as illustrated in Fig. 2.5. Indeed, at these energies,

the virtual photon has a wave length < 1 fm due to Heisenberg’s uncertainty

principle [43]. This suggests that the electron probes only the correlations of

sizes smaller than the nucleon radius. At least, this qualitative argument is

true in the Breit frame, in which the virtual photon is space-like

q = (E, qx, qy, qz) = (0, 0, 0,−2xBjPBr), (2.31)

where PBr is the nucleon’s momentum in this frame. However, in the target

rest frame DIS in the limit of Q2 → ∞ probes not the small spatial distances

(or times), but the correlations confined to the light cone. We return to this

point in 2.3.3.
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Note that 0 ≤ xBj ≤ 1 is always satisfied in inelastic eN scattering. Indeed,

in the target rest frame,

xBj = − q2

2(P · q) = − q2

2(�0,MN)(�q, ν)
= − q2

2MNν
, (2.32)

where MN is the nucleon mass. The energy transfer ν is defined as ν ≡ Ee − E ′
e

with Ee, E
′
e being the electron energy before and after the interaction. The

positivity of ν can be shown from the energy conservation as following

Ee +MN = E ′
e + E ′

N = E ′
e +

√
M2

N + �P ′ 2; (2.33)

ν =

√
M2

N + �P ′ 2 −M2
N ≥ 0. (2.34)

Also, −q2 ≥ 0, since

−q2 = −(k′ − k)2 = (k′ · k) −m2
e ≈ (k′ · k) ≥ 0. (2.35)

Therefore, xBj ≥ 0. On the other hand, due to the structureless nature of the

lepton, the invariant mass of final hadron state (P + q)2 cannot be less than

the squared mass of the initial hadron M2
N

(P + q)2 ≥M2
N . (2.36)

Consequently,

M2
N + 2(P · q) + q2 ≥ M2

N , (2.37)

2(P · q) ≥ −q2, 1 ≥ − q2

2(P · q) (2.38)

xBj ≤ 1. (2.39)

Bjorken, using current algebra, found [44] that W1 and W2 defined in (2.20)

should satisfy the scaling laws in the limit, when Q2 → ∞ and ν → ∞
simultaneously, leaving xBj finite. The proton structure function W2(Q

2, ν)

was first measured in the deep inelastic regime at SLAC in 1968. The data [38],

indeed, exhibited scaling: W2 was a function of only one scalar variable –

the Bjorken variable xBj = Q2

2P ·q – independently of the momentum transfer

Q2. W1 was not measured in this experiment, because of a relative tan2(θ/2)

suppression (θ = 6o − 10o, tan2(10o

2
) = 7.6 × 10−3), cf. (2.20).
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The measurable structure functions are the Lorentz-invariant coefficients

of the hadron tensor [5]

W µν =

(
qµqν

q2
− gµν

)
W1(ν, q

2)

+

(
P µ − P · q

q2
qµ

)(
P ν − P · q

q2
qν

)
W2(ν, q

2)

M2
N

, (2.40)

defined for DIS as a fully inclusive process as (cf. (2.14))

Wµν ≡ 1

4π

∑
X

(2π)4δ4(P + q − pX)〈P |Jµ(0)|X〉〈X|Jν(0)|P 〉. (2.41)

2.3.2 Relation to virtual Compton scattering

By using (2π)4δ4(P + q − pX) =
∫
d4yei(P+q−px)y, one can transform (2.41)

as [42]

Wµν =
1

4π

∑
X

∫
d4yei(q+P−pX)·y〈P |Jµ(0)|X〉〈X|Jν(0)|P 〉 (2.42)

=
1

4π

∑
X

∫
d4yeiq·y〈P |eiP ·yJµ(0)e−ipX ·y|X〉〈X|Jν(0)|P 〉 (2.43)

=
1

4π

∑
X

∫
d4yeiq·y〈P |Jµ(y)|X〉〈X|Jν(0)|P 〉 (2.44)

=
1

4π

∫
d4yeiq·y〈P |Jµ(y)Jν(0)|P 〉c, (2.45)

where the subscript ‘c’ denotes ‘connected’ and means that the vacuum tran-

sitions 〈0|Jµ(y)Jν(0)|0〉〈P |P 〉 are excluded.

We can rewrite (2.41) as

Wµν =
1

4π

∑
X

(2π)4 [ δ4(P + q − pX)〈P |Jµ(0)|X〉〈X|Jν(0)|P 〉 (2.46)

+δ4(P − q − pX)〈P |Jν(0)|X〉〈X|Jµ(0)|P 〉] , (2.47)

since the both delta functions cannot be satisfied simultaneously [45]. Further

rewriting the second term in (2.47) analogously to (2.42)-(2.45), we obtain that
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Figure 2.6: Virtual Compton scattering.

the hadron tensor can be written as a commutator of currents

Wµν =
1

4π

∫
d4yeiq·y〈P |[Jµ(y)Jν(0)]|P 〉c. (2.48)

Formula (2.48) illustrates that the virtual photon probes a correlation of quark

currents in the target with the space-time separation y.

On the other hand, the amplitude of forward virtual Compton scattering

represented by diagram 2.6 is [46]

Tµν = i

∫
d4yeiq·y〈P |T(Jµ(y)Jν(0))|P 〉. (2.49)

The hadron tensor (2.48) is connected with the Compton amplitude by [42]

Wµν =
1

2π
Im Tµν . (2.50)

The imaginary part of Tµν is related to its discontinuity and is depicted in

Fig. 2.7 by means of a unitarity cut [39]. In the limit of high Q2, factorization

theorem [47] dictates that the interaction of the active quark, on which the

photon is scattered, with the rest of the target hadron can be neglected. In

this case, the active quark is considered free, and the diagram presented in

Fig. 2.7 is called the ‘hand-bag’ diagram.
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Figure 2.7: Imaginary part of the virtual Compton scattering amplitude pro-
portional to the DIS cross section in leading order of Q2.

2.3.3 Time-space region probed in the Bjorken limit

In the Bjorken limit (Q2 → ∞ at fixed xBj), the correlation probed in the

target becomes light-like, but may extend to very large spatial distances (and

times) [42]. To see this, let us consider the hadron tensor measured in DIS,

which is given by formula (2.45). The separation y between the points, at

which the currents Jµ and Jν act, represents the space-time resolution of the

probe in the deep inelastic scattering process.

Let us consider deep inelastic electron - nucleon scattering in the nucleon

rest frame (MN is the nucleon mass). The light cone components of the photon

momentum are

(q+, q−, �qT ) = (−MNxBj ,
Q2

MNxBj
,�0), (2.51)

see App. A for the definition of light cone coordinates. As Q2 → ∞ with

xBj ≡ Q2/P · q finite and fixed, q− → ∞. As a consequence, the integral in

(2.45) should vanish due to the fast oscillating exponent, unless

y+ → 0. (2.52)

At the same time, y− is finite and even large y− can contribute to Wµν in some
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cases. To be precise, the restriction on y− is [42] :

|y−| <
∣∣∣∣ 1

q+

∣∣∣∣ =
1

MNxBj
. (2.53)

In case of a fully inclusive process, one has the following condition due to

causality:

y2 = y−y+ − �y2
T ≥ 0 ⇒ �yT → �0. (2.54)

Thus, DIS in the Bjorken limit is a light-cone (y2 → 0) dominated process.

2.3.4 Parton model

The first model that was able to describe DIS data [38], was the Feynman

parton model [28]. In this model, the ep cross section is factorized as follows

dσ =
∑

i

e2i fi(xBj) ⊗ dσ̂(xBj), (2.55)

where the sum runs over all relevant parton flavors, ei is the charge of the ith

type of parton in units of the proton charge e. dσ̂ is the elementary cross section

for a parton-electron scattering, fi(xBj) are parton distribution functions, x

is the earlier introduced Bjorken variable. The parton distributions have in

this model a probabilistic interpretation: they represent the probability to

find a parton of a given flavor with the momentum fraction xBj of the hadron

momentum inside a hadron. The experimental evidence that the partons have

spin 1/2 and no structure led to their identification with the quark degrees of

freedom of QCD [5].

After the introduction of QCD, the factorization assumption (2.55) has

been proven [47] and an operator representation for parton distributions has

been found (see Sect. 2.5). Moreover, a logarithmic evolution of structure

functions with Q2 has been explained [48–50]. This success, together with

the prediction of the Drell-Yan process cross section [51], was crucial for the

establishment of QCD as the theory of strong interaction.

2.4 Drell-Yan process

The parton model of Feynman (Sect. 2.3.4) was used by S. D. Drell and

T. M. Yan to predict the cross section of the process pp → γ∗ + X →
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Figure 2.8: Parton model mechanism for heavy lepton pair production in high
energy hadron-hadron collision.

µ+µ− + X [51]. The partonic interpretation of this process is the following.

A quark from one proton annihilates with an antiquark from the Dirac sea of

the other proton and forms a highly virtual photon (see Fig. 2.8). The other

quarks and gluons inside the target and the projectile are spectators. In the

parton model, it is assumed that the active quark and antiquark behave as

free particles. This assumption is justified by the fact that, viewed on the

light cone, the process takes place on a very short time scale and the partons

do not have time to interact.

The factorization formula in this case includes the annihilation cross section

σ̂, and two parton distribution functions – one for each of the interacting

partons –

(
d2σq

dM2dx̄F

)
parton

=
∑

i

e2i [fi(x1)f̄i(x2) + f̄i(x1)fi(x2)] ⊗
(
d2σ̂q(x1, x2)

dM2dx̄F

)
LO

(2.56)

where the subprocess eq → eq cross section at leading order pQCD (and ne-

glecting the quark and electron masses) is given by a simple expression [28]

(
d2σ̂q(x1, x2)

dM2dx̄F

)
LO

=
4πα2e2q
9M4

x1x2

x1 + x2
, (2.57)
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Figure 2.9: Parton model prediction for a double differential Drell-Yan cross
section (dashed line) at

√
s = 20 and xF = 0.1 as compared to experiment

E439 [52]. Solid line is the result scaled up with a factor K = 1.6.

with x1 and x2 are defined by the relations

x1x2s = M2, (2.58)

x1 − x2 = x̄F . (2.59)

Above, x̄F ≡ 2pz/
√
s ≈ xF , where xF ≡ pz/(pz)max is the Feynman variable

of the produced virtual photon with momentum p and invariant mass M (see

the discussion of (3.53) for details on xF definition).

We plot the result of the parton model using parton distribution functions

fitted to DIS data in [53], for the Drell-Yan process cross section as compared

to data of experiment E439 [52] in Fig. 2.9. The dependence of the Drell-Yan

process cross section on the invariant mass of the produced pair is predicted

with a very good accuracy over two orders of magnitude. However, the mag-

nitude of the cross section is underestimated and an additional parameter - an

overall scaling factor (the so-called K-factor) is necessary in order to describe

the data. Nevertheless, this is a definite success, given the simplicity of the

parton model.

Note that Drell-Yan dileptons have vanishing transverse momentum in this
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model:(
d3σ

dM2dxFdp2
T

)
LO

=
∑

q

Φq(x1, x2)

(
d2σ̂q

dM2dxF

)
LO

δ
(
p2

T

)
. (2.60)

Indeed, in the parton model mechanism for the Drell-Yan pair production

(Fig. 2.8), the initial state has no transverse momentum, while the virtual

photon in the final state does not interact with the remnants; therefore, the

lepton pair gains no transverse momentum. This prediction disagrees with

data (see Chapter 4).

2.5 Parton distributions in QCD

2.5.1 Collinear parton distributions

Factorization, analogous to the one of parton model, has been proven for DIS

and the Drell-Yan process in the reference frame, in which the hadrons move

infinitely fast [47]. In this hypothetical frame, the quarks are collinear with the

hadron they form. The twist expansion has been used to show that the collinear

factorization in DIS case holds also in the realistic frames up to corrections

proportional to the inverse powers of the hard scale of the process [54].

At leading twist (leading power of the hard scale), the quark structure of

hadrons is described by three distribution functions:

1. The unpolarized quark distribution function f(x), representing the prob-

ability of finding a quark with a fraction x of the hadron light cone

momentum, regardless of its spin orientation. The formula for this dis-

tribution in terms of quark field operator ψ is [55]

f(x) =

∫
dξ−

4π
eixp+ξ−〈P |ψ̄(0)γ+ψ(0, ξ−,�0T )|P 〉; (2.61)

2. The longitudinal polarization distribution ∆q(x) that measures the net

helicity of a quark in a longitudinally polarized hadron [55]

∆q(x) =

∫
dξ−

4π
eixp+ξ−〈Ps|ψ̄(0)γ+γ5ψ(0, ξ−,�0T )|Ps〉; (2.62)

3. The transversity δq(x) (first introduced in [56]), which is the distribution
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of transversely polarized quarks in a transversely polarized hadron [55]

δq(x) =

∫
dξ−

4π
eixp+ξ−〈Ps|ψ̄(0)γ+γ1γ5ψ(0, ξ−,�0T )|Ps〉, (2.63)

where {γ} are Dirac gamma matrixes [28], γ+ = γ0 + γ3, the direction of the

hadron momentum defines ‘3’ axis. We used light cone gauge, in which the

gluon field satisfies A+
g = 0 and the formulas look simpler. Note that the

transverse spin (i.e. the quark spin density along ‘1’ axis) and transversity

have, by convention, different Lorentz structure [57]. Indeed, the former is

ψ†σ23ψ ≡ ψ̄γ1γ5ψ, while the latter is defined by ψ̄σ23ψ ≡ ψ̄γ0γ1γ5ψ, where

σµν are Dirac-Pauli matrices, ψ̄ ≡ ψγ0, γ5 ≡ γ0γ1γ2γ3. They coincide for

a free spinor (for which ψ̄ = ψ†), but not for a bound, off-shell particle like

quark (see [57] for details). That is why Jaffe and Ji [58] advocated the name

‘transversity’ in stead of ‘transverse polarization of quarks’. The definition of

transversity is chosen so that it changes with the same factor as helicity, when

the system is Lorentz-boosted along the z-axis [57].

The evolution of the aforesaid distributions with the factorization scale

Q2 is governed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

equations [48–50] that follow from perturbative QCD (pQCD). However, it is

impossible to calculate matrix elements (2.61)-(2.63) at fixed (Q2, x) in pQCD.

The parton distributions are modelled at some low factorization scale using

low energy effective theories with parameters, fitted to data after a DGLAP

evolution to experimentally relevant values of Q2.

Several parametrizations of parton distributions exist today, for example,

GRV [53], MRST [59], CTEQ [60]. All of them were fitted to high statistics

DIS data, but differ slightly in describing other processes, such as charmonium

production [61]. An advantage of GRV94 parametrization is that the DGLAP

evolution is approximated by a function of Q2 with very good accuracy for

xBj > 10−8. This makes a solution of the DGLAP integral equation set at

each Q2 unnecessary and saves computer power. This parametrization is used

in our analysis presented in the following Chapters.

2.5.2 Unintegrated parton distributions

The conventional pQCD approach to the calculation of hard scattering cross

sections assumes that the partons are collinear and on-shell, i.e. both the
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virtuality and transverse momenta of the quarks and gluons inside hadrons

are neglected and the partonic four-momentum is replaced with its light cone

projection (k+, 0,�0). This approximation does not affect the cross section of

fully inclusive processes like DIS, but it leads to unrealistic results for the cross

sections of more exclusive processes. Intrinsic transverse momentum of quarks

has been proven to be important for the interpretation of various cross sections

and asymmetries [62].

To explore the effects of partonic transverse momenta, one needs to know

the distribution of a parton’s transverse momentum kT , as well as x, i.e. the

probability to find a parton with transverse momentum kT and longitudinal

momentum k+ at given factorization scale µ. These distributions fi(x, k
2
T , µ),

first introduced in [63], are called ”unintegrated parton distributions” and

satisfy evolution equations, which depend on two hard scales: kT and µ of the

probe [64].

One possible way to obtain such a distribution [65] is to consider the

DGLAP evolution, generated by a Bremsstrahlung type emission of strongly

kT -ordered partons, combined to the Balitsky-Fadin-Kuraev-Lipatov (BFKL)

evolution equation [66–69], valid for very small x. In the DGLAP approach,

the parton kT is assumed to be entirely perturbatively generated and its effect

is reduced to the change of hard scales at which the partons are probed (due to

the enforcement of the strong ordering) towards small x. In the region of small

x, the BFKL equations are applied and predict a Gaussian distribution of kT .

Approximately, the kT distributions is δ(0) at x above some limiting value

and a Gaussian in the region of small x. The limiting value is extracted from

experiment. The parameters of the Gaussian quark distribution are related to

the unintegrated gluon distribution. However, the unintegrated distribution

of gluons cannot be obtained in this approach. It has to be modelled, thus

introducing additional parameters to be fitted to data.

An alternative opinion is that the nonperturbative component of the par-

tonic kT , i.e. the one that can not be generated by an evolution ladder, is also

important [64] and should be modelled phenomenologically. The argumenta-

tion is as following. The DGLAP equations are valid only in the collinear

factorization approximations, in which the intrinsic kT is neglected. On the

other hand, BFKL equations are applicable only at x → 0; therefore, it is

questionable that they can predict partonic kT at final x. In the phenomeno-

logical approach, quark kT is a result of both perturbative and nonperturbative
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processes; its distribution is parametrized and fitted to experiment. For ex-

ample, one uses a Gaussian in analogy to the small-x case, and extracts the

dispersion from data.

The representation of the corresponding correlation functions in terms of

quark and gluon fields is not as simple as in the case of usual parton distrib-

utions (formula (2.61)). One such representation is given in [70] and will be

presented in Sect. 3.1. On the other hand, an unintegrated quark distribution

can be defined as an integral of a matrix element of the quark Wigner function

as it will be explained in Sect. 3.2. For example, in [64], the operator form

of an unintegrated parton distribution is found as an integral of the parton

correlation function, which is ultimately related to the quark Wigner function.

2.5.3 Parton correlation functions

The virtuality of quarks and gluons in the proton has attracted considerable at-

tention recently. The importance of accounting for the virtuality (off-shellness)

of partons in high energy processes was stressed, for instance, by O. Benhar [71]

and, recently, by J. Collins and H. Jung [72]. As it will be shown in Sect. 4.2,

by taking into account the virtuality distribution of partons, we can explain

simultaneously DIS data, the K-factor type corrections to the magnitude of

the transverse momentum distribution of Drell-Yan pairs as well as the shape

of the double differential cross section of the Drell-Yan process dσ/dMdxF .

The generalization of the usual parton distribution function, which depends

on the virtuality and kT of the quark in addition to its longitudinal momentum

k+, is sometimes called ”fully unintegrated parton density” [72] or ”parton

correlation function” [64]. But the terminology is still not fixed, one of the

reasons being that the gauge invariant definition of these distributions in terms

of parton field operators is not known yet.

2.6 Open questions

The current understanding of high energy scattering experiments has led to a

proof of QCD as the underlying fundamental theory of hadron structure. QCD

agrees with the observation of the DIS cross section scaling in the Bjorken limit

and describes the logarithmic scaling violations. Secondly, within the scope of

QCD it was possible to predict the dependence of the Drell-Yan process cross

section on the invariant mass of the produced pair and the Feynman variable.
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Admittedly, the calculation of parton probabilities and quark wave functions

inside the proton from first principles of QCD is still very much problematic

and complex. However, the analysis of DIS, the Drell-Yan process and other

observable cross sections allows to extract the quark properties from the data.

In this way, the unpolarized quark distribution f(x) defined in (2.61) was

obtained with a good accuracy in a wide region of x [1]. The distribution ∆q(x)

is known, too, although with larger error-bars. There are several experiments

planned to access the transversity δq(x).

If the quarks were perfectly collinear and on-shell, the distributions f(x),

∆q(x) and δq(x) would contain all the information on the internal dynamics

of the nucleon. However, the quark transverse momentum is not always neg-

ligible. In particular, it is essential in understanding the semi-inclusive DIS,

the transverse momentum distribution of Drell-Yan lepton pairs, low Q2 and

low xBj physics. A number of additional distribution functions arise, if the

quark transverse momentum is not put to zero (see Section 3). As mentioned

in Section 2.5, the definition of double unintegrated parton distributions (i.e.

parton correlation functions, or off-shell parton distributions) in terms of par-

ton field operators is not known. The evolution of these parton distributions

has not been determined so far either. We propose a parametrization of the

fully unintegrated parton distributions and obtain it’s parameters from data.

Evolution of the parameters with the hard scale is also studied.

Another open question is the understanding of less inclusive observables,

such as the triple differential cross section of the Drell-Yan process

d3σ

dMdpTdxF
, (2.64)

azimuthal distribution of the Drell-Yan pairs, and large single spin asym-

metries of a number of processes. Perturbative QCD fails to reproduce

the pT -distribution of Drell-Yan pairs in any fixed order of perturbative

QCD [73]. Leading logarithm approximation is not applicable to the cross

section d2σ/dM2dpT , because of the presence of two scales (M , pT ). Summing

an infinite number of O(αn
S) diagrams by, for example, a regularized Sudakov

method [74,75], allows to calculate this quantity. However, the result does not

agree with the experiment quantitatively, because the higher twist (power M2

suppressed) effects are not taken into account in the perturbative resummation.

One needs to build models to calculate the higher twist corrections.
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We tackle these problems by proposing a phenomenological model that

yields a quantitative description of the triple differential Drell-Yan cross sec-

tion (2.64) at moderate M2, which could not be archived in any previously

available approach [76]. From the fits to the triple differential cross section

data, we reconstruct quark off-shellness and transverse momentum distribu-

tions in the proton and study their evolution with the hard scale. In the same

time, the model agrees with DIS data and describes the inclusive, double-

differential Drell-Yan process cross section without a need of a K-factor. As

we show below, this success is caused by our accounting for higher twist effects.

It is also an open question, whether factorization still holds in the gen-

eralized case, in which the soft part of the cross section depends on the full

quark momentum (k+, k−, kT ). Until such a factorization theorem is proven,

we calculate measurable cross sections using a model that assumes generalized

factorization. The predictive power of such a model has to be tested. For this

purpose, we predict the triple differential cross section of the Drell-Yan process

in the kinematical region relevant for PANDA [23] experiment at the future

GSI facility [77].
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The model

3.1 Factorization in non-collinear off-shell case

The basic tool in the calculation of hard processes is the factorization into

hard and soft physics. In the non-collinear case, the factorization formula for

DIS is

dσ =
∑

i

e2i fi(ξ, �p⊥) ⊗ dσ̂(ξ, �p⊥), (3.1)

where the sum runs over all relevant parton flavors, ei is the charge of the

ith type of parton in units of the proton charge e. dσ̂ is the elementary

cross section for a given process, f(ξ, �p⊥) are unintegrated parton distributions

defined as [70]:

f(ξ, �p⊥) =
1

4π

∫
d4y〈N |ψ̄(y)γ+[y, 0]ψ(0)|N〉δ(y+)ei(ξP+y++p−y−−2p⊥y⊥)/2,

(3.2)

where ξ ≡ p+/P+ is the Nachtmann variable and p and P are momenta of the

active parton and hadron, respectively;

[y, 0] ≡ P exp

[
ig

2

∫ y

0

dτA+(τ)

]
(3.3)

is the gauge link operator introduced in order to preserve gauge invariance.

In [78], the factorization in the form (3.1) was proven in the leading power of

the hard scale (photon virtuality in DIS and Drell-Yan process).

Note that the unintegrated distributions do not depend on p− due to δ(y+).

In other words, the parton distributions measure the correlation of partons

with equal light cone times (y+ = 0). This reflects the fact that the struc-

29
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ture functions, measured in the fully inclusive DIS, depend only on p+ in

the Bjorken limit. Indeed, because of the conditions (2.52) and (2.54), the

hadronic part of the DIS cross section (2.45) is a function of a single variable

p+ ≡ xBjP
+.

However, the factorization formula (3.1) is valid only in the scaling limit,

i.e., at the leading power as Q2 → ∞. At moderate Q2 considerable

p−-dependent corrections might be necessary to make predictions for semi-

exclusive observables, e.g. Drell-Yan lepton pair production cross section and

asymmetries. In this case, we propose the following factorization ansatz:

dσ =
∑

i

e2i qi(ξ, �p⊥, p
−) ⊗ dσ̂(ξ, �p⊥, p−). (3.4)

The difference between (3.1) and (3.4) is precisely due to off-shellness effects

that we aim to study. Indeed, for a free quark the minus component of its

momentum is fixed by the on-shell condition:

p2 = p+p − − �p2
⊥ = ξP+p− − �p2

⊥ = 0 (3.5)

(we put the current quark mass to zero). Note that in the intrinsic-kT approach

p⊥ �= 0 and, therefore, p− �= 0. However, p− in this case is not an independence

variable; it is fixed by p− = p2
⊥/p

+ as a consequence of (3.5).

In contrast, since the partons are bound in the nucleon, they are off-shell.

Condition (3.5) no longer holds. For instance, p− �= 0 even when p⊥ = 0.

Moreover, p− can vary at fixed (p+, p⊥): all the four components of the parton

momentum are independent. Therefore, the cross section must be calculated

using a quark off-shellness distribution. Such a distribution is an integral of

the quark Wigner function, which will be introduced in Section 3.2. Unfor-

tunately, calculating this distribution from QCD presents great difficulties.

Therefore, we use a phenomenological model parametrization (Section 3.3)

with two parameters, which we extract from experimentally measured cross

sections (Section 4.3.1).

The partonic cross section is calculated using the rules of pQCD. We calcu-

lated the pQCD differential cross section for an electron scattering off a virtual

quark and that for the annihilation of an off-shell quark-antiquark pair into

a pair of dileptons. Also, by performing the calculations in different gauges,

we checked that both these off-shell partonic cross sections are gauge invariant
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(due to the on-shell leptons) making the modification of the vertex by Ward’s

identity unnecessary.

The analysis of the off-shell kinematics and the obtained cross sections

are separately given below for DIS and the Drell-Yan process. The case of

electron scattering (see Section 3.4) is simpler and serves as an introduction

to the calculation of the Drell-Yan pair transverse momentum distribution in

Section 3.5.

3.2 Wigner function

A pure quantum state is defined by a set of quantum numbers n and a cor-

responding wave function, for instance ψn(r). A closed quantum system is

always in a particular quantum state, therefore it can always be characterized

by a wave function. On the other hand, a subsystem of a bigger quantum

system can be in a mixed state, for which a wave function does not exist.

The correlated particles of the Einstein-Podolsky paradox [80] are examples

of such systems. Mixed quantum systems can be described by a more general

quantity: the density matrix [43]

ρ(r, r′) ≡
∑

n

ωnψn(r)ψ∗
n(r′). (3.6)

In contrast to density matrix of statistical physics [81], ρ is not a probability.

Although a wave function ψ is a probability density and the diagonal elements

ρ(r, r) give probabilities of different states, non-diagonal elements ρ(r, r′) of the

density matrix are, in general, not positive definite and cannot be interpreted

as probabilities.

A relativistic generalization of a wave function is an operator field. In this

case, ρ is also generalized to an operator ρ̂. However, it is more convenient

to use instead a relativistic Wigner function ŴΓ(r, p), which is an operator

with the Lorentz and spinor structure defined by a Clifford algebra member Γ.

For instance, if ψ(r) is a quark field, the quark Wigner function is defined as

follows

ŴΓ(r, p) ≡
∫
d4ηeiη·pψ̄(r − η/2)L† Γ L ψ(r + η/2), (3.7)

where L is the gauge link operator that serves to preserve the gauge invariance

of W . For η0 > 0, L = 1 in the light cone gauge, in which A+
g = 0.
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(a) vacuum (b) correlated state

(c) four photon Fock state (d) Schrödinger cat

Figure 3.1: Wigner functions of multi-photon systems versus polarization and
energy (the illustrations is from [79]). (a) a state with no photons. (b) a
system with polarization and energy strongly correlated. (c) a Fock state of
four identical photons. (d) ”Schrödinger cat” system, i.e., a superposition of
a state and an anti-state.



33 3.2 Wigner function

The concept of Wigner function is widely used in quantum information

theory [82], which deals with systems of photons [79]. Since photon ensembles

have only two coordinates (for instance, polarization and energy), one can

plot calculated Wigner functions for different states on a three-dimensional

plot. For example, the Wigner functions of the following systems are plotted

in Fig. 3.2 [79]

• vacuum [83]: there are no photons, both coordinates fluctuate around

zero (Fig. 3.1(a));

• a coherent state [84], for which the two coordinates strongly correlate

(Fig 3.1(b));

• a Fock state [83] of four photons with the same energy and polarization

(Fig. 3.1(c));

• a ”Schrödinger cat” state [79], which is a superposition of a state and an

anti-state with an equal weight (Fig. 3.1(d)).

For example, for a mixture of a Fock state with 1 photon and a vacuum state

α|1〉 + (1 − α)|0〉, (3.8)

Wigner function is given by [83]

W (X,P ) =
2

π

(
4α(X2 + P 2) + 1 − 2α

)
exp{−2(X2 + P 2)}. (3.9)

Figure 3.2: Wigner function for a single particle state [79].

Just like the quantum mechanical density matrix, the Wigner function of a

quantum system is not positive definite. Interference of quantum fluctuations
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Integral of W (�p, xµ) Process

q(x) =
∫

d2pT

(2π)2

∫
d3r

(2π)3

∫
dp−
(2π)

Wγ+(�r, p) DIS γ∗p → X

q(x, pT ) =
∫

d3r
(2π)3

∫
dp−
(2π)

Wγ+(�r, p) Drell-Yan p̄p → γ∗X

f(r, x) =
∫

d2kT

(2π)2

∫
dp−
(2π)

Wγ+(�r, p) virtual Compton scattering γ∗p → γp

f(b⊥, x, pT ) =
∫

dz
2π

∫
dp−
(2π)

Wγ+(�r, p) double boson production γ∗p → V1V2p

q(x, pT , p
−) =

∫
d3r

(2π)3
Wγ+(�r, p) Drell-Yan p̄p → γ∗X

Table 3.1: Parton distributions measured in high energy processes as integrals
of quark Wigner function. Vi ∈ {γ,W±, Z0}.

leads to negative values of W at zero (P , X) in Fig. 3.2, which illustrates a

single particle state (α = 1). This reflects Heisenberg uncertainty principle,

due to which the quantum-complementary [85] variables of W can not be

measured simultaneously. However, integration of W over X yields a positive

definite distribution of P (displayed in Fig. 3.2 as pr(P )) and vice versa. This

is a general property of Wigner functions. Summarizing, integrals of Wigner

function are measurable and can be interpreted as probability distributions,

e.g. pr(P ) is a momentum distribution.

Let us define the matrix elements of the quark Wigner function in the basis

of nucleon wave functions as

WΓ(�r, p) = 〈P |ŴΓ(r, p)|P 〉, (3.10)

W (S)Γ(�r, p) = 〈P, S|ŴΓ(r, p)|P, S〉, (3.11)

where P is the nucleon’s momentum, S its spin. The time dependence has

been omitted due to energy conservation.

Because of the uncertainty principle, it is impossible to extract WΓ(�r, p)

from a single measurement. On the other hand, one can access integrals of

it in various processes. We list some of the measurable integrals and the

processes, in which they can be accessed, in the table 3.1.

Parton distribution functions are Wigner function matrix elements inte-

grated over all the variables except p+ and are measurable in DIS. Polarization

properties of the quarks inside the proton are studied by looking at Wigner

functions with different Dirac structure. For example, the helicity distribution
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is given by (cf. (2.62))

∆q(x) =

∫
d2pT

(2π)2

∫
d3r

(2π)3

∫
dp−

(2π)
W (S)γ+γ5(�r, p)

=

∫
dξ−

4π
eixp+ξ−〈Ps|ψ̄(0)γ+γ5ψ(0, ξ−,�0T )|Ps〉. (3.12)

Transversities [86] are (cf. (2.63))

δq(x) =

∫
d2pT

(2π)2

∫
d3r

(2π)3

∫
dp−

(2π)
W (S)γ+γ1γ5(�r, p)

=

∫
dξ−

4π
eixp+ξ−〈Ps|ψ̄(0)γ+γ1γ5ψ(0, ξ−,�0T )|Ps〉 (3.13)

and

h(x, �pT ) =

∫
d3r

(2π)3

∫
dp−

(2π)
Wγ+γ1γ5(�r, p) (3.14)

=

∫
dξ−

4π
ei(xp+ξ−+�pT ·�ξT )〈P |ψ̄(0)γ+γ1γ5ψ(0, ξ−, �ξT )|P 〉. (3.15)

In the scope of this thesis, we are most interested in the one distribution

that depends on p−, and, therefore, on the off-shellness of the quark, since the

off-shellness m2 and p− are related by m2 = p−p+ − �p2
T ,

q(x, pT , p
−) =

∫
d3r

(2π)3
Wγ+(�r, p). (3.16)

3.3 Model for the quark virtuality distribu-

tion

A model for the virtuality distribution can be built analogically to nuclear

physics based on a concept of spectral function [71, 87]. In nuclear physics,

the spectral function method is used widely. The on-shell condition for the

nucleon reads P 2 = M2
N , where MN is the nucleon mass in vacuum. Thus, only

3 components of the on-shell nucleon’s 4-momentum are independent. In case

of an interacting nucleon, P 2 is no longer fixed and its distribution (spectral

function) is given by the details of the interaction. All four components of the

off-shell nucleon’s momentum are independent. Thus, a hadron is said to be

off-shell, if its momentum squared is different from the free hadron mass, i.e.
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when it is virtual.

The distribution of P 2 is given by the nucleon spectral function. The

concept was first introduced by Källen and Lehmann and is explained, for

instance, in [46]. Spectral function of a nucleon is defined by [46]

ρ(P 2) = (2π)3
∑

α

δ4(P − Pα)|〈0|φ(0)|α〉|2, (3.17)

where φ(x) is an interacting nucleon field, {|α〉} is a full set of nucleon asymp-

totic states. As stated by the confinement hypothesis, quarks have no asymp-

totic states. Therefore, the quark spectral function in the Källen-Lehmann

sense does not exist. Instead, we introduce a phenomenological distribution of

the quark off-shelness and dub it the quark spectra function in our model.

Partons in the nucleon are always virtual. For example, in the parton

model, the parton momentum squared is p2 = (xBjP )2 = x2
BjM

2
N , which is

usually far from the current quark mass squared (= 0 in our calculations).

We call a parton off-shell, if the parton’s momentum has four independent

components. In this case the parton off-shellness p2 is not fixed and should

be integrated over. This differs from the “trivial off-shellness” of the parton

model, in which the quark is virtual, but it’s off-shellness is fixed (to x2
BjM

2
N ).

More realistically, one should include the transverse motion of partons. Then,

for a free parton, p− = p2
⊥/p

+. In our calculations, p− is not fixed by p+ or

p2
⊥. Instead, we integrate over all kinematically allowed p−.

In the following, we additionally assume that the dependence of q, defined

in (3.16), on p− factorizes from the p⊥-dependence:

dσ =
∑

i

e2i f̃i(ξ, �p⊥) ⊗ dσ̂(ξ, �p⊥, m) ⊗ A(m), (3.18)

cf. (3.4). In (3.18), dσ̂(ξ, �p⊥, m) is the off-shell partonic cross section, and

m ≡ √p2 is the parton’s off-shellness related to p− via m2 = p+p− − �p2
⊥. We

choose

f̃i(ξ, �p⊥) = fi(ξ, �p⊥). (3.19)

Identifying f̃i(ξ, p⊥) with the usual parton distribution functions means that

we apply a quasi-particle picture, in which all effects involving more than one

parton are encoded in the virtuality distribution A(m). The latter has a width

caused by parton-parton interactions (see e.g. [88] and references therein).

In our calculations, a Breit-Wigner parametrization for the parton virtual-
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ity distribution A(m) is applied:

A(m) =
1

π

Γ

m2 + 1
4
Γ2
. (3.20)

The width Γ of partons is considered constant at each hard scale (Q2 in DIS,

M2 in Drell-Yan). We find the value of Γ by comparing the calculated cross

sections to the data. For simplicity we use the same A(m) for all parton types.

Note that we considered only the region m > 0. (3.20) is normalized as

∫ ∞

0

A(m)dm = 1. (3.21)

We choose Breit-Wigner parametrization on analogy with the nucleon spec-

tral function in nuclear physics [27]. This distribution is also often called the

Lorentzian function due to its application in geometry and statistics [89]. Note

that as Γ → ∞, A(m) → δ(m). Moments of the Lorentzian function do not

exist ∫ ∞

0

mnA(m) = ∞, for all natural n. (3.22)

Therefore, we cannot define the average off-shellness 〈m2〉. However, Γ/π can

be understood as the measure of quark off-shellness, because

lim
a→∞

∫ a

0

m2

a
A(m) =

Γ

π
. (3.23)

Summarizing, we propose to parametrize a fully unintegrated parton distri-

bution as a product of the unintegrated distribution and a Breit-Wigner quark

off-shellness distribution

q(ξ, �p⊥, p−) = fi(ξ, �p⊥)A(
√
p−ξP+ + �p⊥ 2). (3.24)

3.4 DIS cross section formula

3.4.1 Collinear approximation

The factorization formula (3.1) for DIS gives

dσ

dt̂dû
=
∑

i

e2i

1∫
0

dξ

∫
d�p⊥fi(ξ, �p⊥)

dσ̂

dt̂dû
, (3.25)
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where s, t, u are the Mandelstam variables, the parton quantities are labeled

with hats.

Ignoring the off-shellnesses of partons, the sub-process qe → q′e′ cross

section dσ̂/dt̂dû is equivalent to that of electron-muon scattering, when the

electron and muon masses are neglected [32]:

(
dσ̂

dt̂dû

)
on-shell

=
2πα2

t̂2ŝ2

(
ŝ2 + û2

)
δ(ŝ+ û+ t̂), (3.26)

with α = e2/4π, and the δ-function reflects the on-shell condition on the parton

level:

ŝ + û+ t̂ = 0. (3.27)

Let us consider the Bjorken limit (Q2 → ∞ with xBj -fixed, where q is

the momentum transfer, Q2 ≡ −q2) in the rest frame of the nucleon. In this

limit, one can neglect the transverse motion of partons compared to the ”+”-

component of the partonic momentum, i.e., the partons are collinear with the

hadron. In this case, the partonic and hadronic invariants are simply related:

t̂ = t, ŝ = ξs, û = ξu. (3.28)

From (3.27) and (3.28) one gets the constraint

ξ → − t

s+ u
= − q2

2P · q ≡ xBj . (3.29)

Therefore, the cross section of DIS in the Bjorken limit is

(
dσ

dtdu

)
LO

=
∑

i

e2ixBjfi(xBj)

(
2πα2

t2s2

(s2 + u2)

s+ u

)
, (3.30)

where

fi(xBj) ≡
∫
d�p⊥fi(xBj , �p⊥),

”LO” stands for leading order of perturbative QCD. The formula (3.30) coin-

sides with the parton model result [28].

3.4.2 Off-shell kinematics in DIS

In electron-nucleon DIS, photons of sufficiently high virtuality will interact

with a single quark inside the nucleon and not with the nucleon as a whole. In
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Figure 3.3: The handbag graph for DIS and the relevant initial state interac-
tions that could build up a finite quark width.

this case, the process is described by a hand-bag diagram (see fig. 2.7), where

the quark after the interaction with the electron is fixed to the mass shell by

the unitarity cut. Physically, an on-shell quark in the final state fragments

and, together with the hadron remnants (that move in the opposite light cone

direction with respect to the active quark), forms the final high-mass hadronic

state.

The active quark in the final state can acquire a small off-shellness and

transverse momentum due to gluon exchange in the final state. However, such

processes are additionally suppressed by Q2. It can be interesting to study the

FSI effect on DIS and fragmentation [9]. However, we are primarily interested

in the fully unintegrated parton densities and, therefore, concentrate on the

ISI. The quarks in the initial state are virtual already because they are bound

and interact with each other (see fig. 3.3). Therefore, the ‘-’ component of the

initial quark momentum is not fixed, and DIS probes not the equal light cone

time correlation, but the parton correlation function that we are after.

Let P be the four-momentum of the nucleon and p the momentum of the

quark, which interacts with the virtual photon having momentum q. We denote

the fraction of the nucleon’s light cone momentum P+ carried by the struck

quark in the DIS scattering as

ξ ≡ p+/P+. (3.31)
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By demanding the outgoing quark to be on the mass-shell, one obtains:

0 = p2
f = (p+q)2 = p2+2p ·q+q2 = p2+2(p+q−+p−q+−�p⊥ ·�q⊥)−Q2, (3.32)

where Q2 ≡ −q2 ≥ 0. In a coordinate system, in which q+ = 0,

0 = p2+2(p+q−−�p⊥�q⊥)−Q2 = p2+ξ
2P · q
Q2

Q2−Q2+2ξ �P⊥·�q⊥−2�p⊥·�q⊥. (3.33)

Using the definition of Bjorken variable xBj = 2P · q/Q2, the above equa-

tion 3.33 can be solved with respect to ξ:

ξ = xBj
p2 +Q2 + 2(�p⊥ · �q⊥)

Q2 + 2xBj(�P⊥ · �q⊥)
. (3.34)

One can see that as Q2 → ∞, ξ approaches xBj and so that the momentum

fraction carried by the struck quark becomes determined by the momenta of

the electron and the nucleon.

3.4.3 DIS cross section taking into account quark off-

shellness

For finite Q2, the fact that the partons are off-shell can generate large correc-

tions to the formulas (3.27)-(3.30). We would like to point out the important

analogies and differences to the on-shell case:

• The energy-momentum conservation reads (cf. (3.27))

ŝ + û+ t̂ = m2, (3.35)

where m2 ≡ p2 denotes the virtuality of the struck parton.

• In case of an off-shell initial quark, we find the following relation between

the partonic and hadronic variables

t̂ = t = −Q2, (3.36)

ŝ = ξ(s−M2
N ) +m2, (3.37)

û = Q2 − ξ(s−M2
N) = ξ(u+M2

N) +Q2(1 − ξ

xBj
), (3.38)

which coincides with (3.28) in the Bjorken limit. We choose the z-axis
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in the direction of the incoming electron’s momentum.

• The hadron light cone momentum fraction carried by the struck parton

(ξ ≡ p+/P+) is not equal to the Bjorken xBj , unless Q2 → ∞. The

relation between xBj and ξ is

xBj = ξ
Q2

Q2 −m2 − ξ(M2
N − m2+�p2

⊥
ξ2 ) Q2

s−M2
N

+ 2�p⊥�q⊥
. (3.39)

Relation (3.39) yields a nonlinear equation for xBj , because �q⊥ depends

on xBj as follows:

�q⊥ 2 = Q2(1 − Q2

s−M2
N

(
1

2xBj

+
M2

N

s−M2
N

)). (3.40)

One can see that �q⊥ 2 ≤ Q2 and that it reaches its maximum at s �
Q2/2x. Due to (3.39), the ISI in DIS can be interpreted as a smearing

of the parton momentum fraction ξ around its parton model value xBj .

In the following three cases equation (3.39) simplifies:

– Taking the Bjorken limit:

xBj = ξ. (3.41)

– Neglecting the transverse momentum of the struck parton inside the

nucleon, but keeping m2 �= 0:

xBj = ξ
Q2

Q2 −m2 − ξ(M2
N − m2

ξ2 ) Q2

s−M2
N

. (3.42)

– Taking into account both the parton’s transverse momentum and

off-shellness, but considering the limit s� Q2/2x, s�M2
N :

xBj = ξ
Q2

Q2 −m2 + 2|�p⊥|
√
Q2 cos(φ)

, (3.43)

where φ is the azimuthal angle of the quark momentum. As Q2 goes

to infinity, equation (3.43) coincides with (3.41).
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• The off-shell partonic cross section is

(
dσ̂

dt̂dû

)
off-shell

=
2πα2

t̂2ŝ2

(
ŝ2 + û2

)
δ(ŝ+ û+ t̂−m2), (3.44)

where û and ŝ depend on m2 via (3.36) and (3.39).

The leading order expression for the Lorentz invariant DIS cross section

(3.30) is modified by the ISI as follows:

(
dσ

dtdû

)
ISI

=
∑

i

e2i

∞∫
0

dmA(m)

1∫
0

dξ

∫
d�p⊥ fi(ξ, �p⊥)

(
dσ̂

dtdû

)
off-shell

, (3.45)

where we used t̂ = t from (3.36).

In order to compare our calculations to the experiment or to the leading

order cross section (3.30), we also need to change variables from partonic û to

hadronic u or xBj (xBj is related to the hadronic Mandelstam variables (s, t,

u) by (3.29)). We choose the following independent variables for the hadronic

cross section

t, xBj . (3.46)

The partonic cross section dσ̂ depends on

t, û, m2, ξ, �p⊥, (3.47)

with m2, ξ and �p⊥ being the integration variables.

Firstly, we transform dσ/dtdû of (3.45) to dσ/dtdxBj as follows 1

(
dσ

dtdxBj

)
ISI

=

∫ m2

−∞
dû

(
dσ

dtdû

)
ISI

δ(xBj − xBj(s, t, û)), (3.48)

where m2 is the struck parton off-shellness, xBj as a function of the variables

(3.47) is defined by (3.39). We note in passing that (dσ/dtdxBj) is negative,

while (dσ/dtdû) is positive. This is taken into account in (3.48) by the choice

of integration boundaries.

1Alternatively, on can use the Jacobian method:

dσ

dtdxBj
=

∂(t, û )
∂(t, xBj)

dσ

dtdû
=

∂û

∂xBj

dσ

dtdû
.
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Then, we obtain the hadronic cross section as an integral over the partonic

one, using the equations (3.44), (3.45), (3.48),

(
dσ

dtdxBj

)
ISI

=
∑

i

2πα2e2i
t2

∞∫
0

dmA(m)

1∫
0

dξ

∫
d�p⊥ fi(ξ, �p⊥)

∫
dû

(ŝ2 + û2)

ŝ2
δ
(
ŝ+û+t−m2

)
δ(xBj − xBj(s, t, û, ξ,m

2, �p⊥)),(3.49)

where ŝ = ξ(s−M2
N ) +m2. The integration over û can be done using one of

the δ-functions.

The result is:

(
dσ

dtdxBj

)
ISI

=
∑

i

2παe2i
t2

∞∫
0

dm

1∫
0

dξ

∫
d�p⊥ A(m)fi(ξ, �p⊥)

×
(

1 +
(Q2 − ξ(s−M2

N))2

(ξ(s−M2
N ) +m2)2

)
×δ (xBj − xBj(s, t, û, ξ,m

2, �p⊥)
)
, (3.50)

where xBj(s, t, û, ξ,m
2, �p⊥) is given by (3.39) and û = −t − ξ(s −M2

N). The

δ-function can be used to perform the integration over the azimuthal angle of

the parton momentum. The remaining three integrations must be performed

numerically. The limit s � M2
N , Q

2/2x was taken for simplicity. For the

unintegrated parton distributions f(ξ, �p⊥) we use the factorized form (3.69)

discussed in more detail in the next section. With these simplifications, the in-

tegrations can be done in Mathematica [90] program (within about 30 minutes

per plot on Athlon2400). The results for DIS are presented in Section 4.1.

3.5 Drell-Yan process cross section formula

3.5.1 Off-shell kinematics in Drell-Yan

We applied the same technique to calculate the cross section of the Drell-

Yan process (pp → X + l+l−). In this case, an off-shell quark-antiquark pair

annihilates into a pair of leptons (see Fig. 3.4). The virtuality of the quark

(antiquark) coming from the target proton (m2
1 ≡ p2

1) and that of the antiquark

(quark) coming from the projectile proton (m2
2 ≡ p2

2) are in general not equal.

We assume for simplicity, however, that their distributions A(m) are the same.
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Figure 3.4: Relevant initial state interactions that can build up intrinsic trans-
verse momentum and width of quarks in the proton. The Drell-Yan process.

The connection between the observables and partonic variables in case of

two off-shell particles is more complicated. Moreover, the choice of proper

partonic variables is frame dependent. We obtain the following kinematic

equations in the hadron center of mass system

M2 = m2
1 +m2

2 + ξ1ξ2P
−
1 P

+
2 +

(m2
1 + �p 2

1⊥) (m2
2 + �p 2

2⊥)

ξ1ξ2P
−
1 P

+
2

− 2�p1⊥ · �p2⊥;

xF =

√
s

s−M2

(
ξ2P

+
2 − ξ1P

−
1 +

(m2
1 + �p 2

1⊥)

ξ1P
−
1

− (m2
2 + �p 2

2⊥)

ξ2P
+
2

)
. (3.51)

We use

ξ1 = p−1 /P
−
1 , ξ2 = p+

2 /P
+
2 , (3.52)

P1 (P2) is the 4-momentum of the target (projectile) hadron, p1,2 denote mo-

menta of the annihilating quark and antiquark, M2 is the invariant mass

squared of the produced leptons. s denotes the hadron center of mass en-

ergy squared. The Feynman variable is defined as xF ≡ pz/(pz)
max, where �p is

the lepton pair momentum. In some works, for example [28], an approximate

definition for the Feynman variable is used: xF ≈ 2pz/
√
S. We used the exact
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definition [1] that can be written in the hadron center of mass system as follows

xF ≡ pz

(pz)max

=
2pz

√
s

s−M2
. (3.53)

Experimentally observed Drell-Yan pairs have small M2 compared to S, so the

difference between the two definitions of xF is small. However, in the Drell-

Yan scaling limit, M2 ∼ s and the difference is finite (see formulas (3.55) and

3.56 below).

One sees that the definition of ξ2 is analogous to the DIS case, whereas

the target’s momentum fraction is defined as a ratio of minus-components. In

some articles, alternative definitions are used: ξ1 = p+
1 /P

+
1 , ξ2 = p+

2 /P
+
2 . Our

choice of ξi definitions is based on the behavior of the hadron momenta in the

Drell-Yan scaling limit (s→ ∞).

Let us consider the Drell-Yan scaling limit (s → ∞). The light cone com-

ponents of hadron momenta in the center of mass system are

(
P∓

1

)2
=
(
P±

2

)2
=
s

2
−M2

N ±
√(s

2

)2

−M2
Ns. (3.54)

Thus, the plus-component of the projectile’s momentum P+
2 and the minus-

component of the target’s momentum P−
1 go to infinity ∼ √

s, while all the

other components are negligible in the scaling limit.

With the chosen definitions of ξi, we get as a limit of (3.51):

M2 = ξ1ξ2s;

xF =
ξ2 − ξ1
1 − ξ1ξ2

. (3.55)

Applying approximate definition xF ≈ 2pz/
√
s, we recover the well known

parton model relations:

M2 = ξ1ξ2s;

xF = ξ2 − ξ1. (3.56)

This means that we can use ξ1 = p+
1 /P

+
1 , ξ2 = p−2 /P

−
2 as the arguments of

the parton distribution functions in the factorization formula for the Drell-Yan

process in the center of mass system.

In contrast, hadron light cone momenta scale differently in the target rest
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frame:

P±
2 =

s

2MN

−MN ±
√(

s

2MN

)2

− s; P±
1 = MN . (3.57)

The motion of the projectile is again confined to the light cone. However,

there is no special direction for the target parton. Therefore, one needs to

parameterize the ”soft” properties of the target with more general distribution

functions, which depend on the 4-momentum of the parton instead of a single

scalar variable ξ. These functions W (p) (partonic Wigner distributions) were

introduced in Section 3.2.

M. Sawicki and J.P. Vary have considered the Drell-Yan process in the

target rest frame within the non-collinear factorization framework in [91]. They

used the analogous to DIS definitions of the both momentum fractions,

ξ1 = p+
1 /P

+
1 ; ξ2 = p+

2 /P
+
2 ; (3.58)

and found scaling violation. Indeed, in the target rest frame (3.51) transforms

to

M2 = m2
1 +m2

2 +
ξ1MN

ξ2P
+
2

(
m2

2 + �p2
2⊥
)

+
ξ2P

+
2

ξ1MN

(
m2

1 + �p2
1⊥
)− 2�p1⊥ · �p2⊥;

xF =
1

w

(
ξ1MN + ξ2P

+
2 − (m2

1 + �p2
1⊥)

ξ1MN

− (m2
2 + �p2

2⊥)

ξ2P
+
2

)
, (3.59)

with

w =

√
s

2

(
s

2M2
N

− 1 +
M2

s

)
/

√
s

4M2
N

− 1, (3.60)

if we use the definitions (3.58).

Bearing in mind equations (3.57) and (3.59), we arrive at the following

limiting values for M2 and xF :

M2 =
ξ2
ξ1

(
m2

1 + �p2
1⊥
)
;

xF = 2ξ2. (3.61)

Hence, the variables (3.58) do not coincide with the Bjorken variables in the

Drell-Yan scaling limit.

On the other hand, there are no scaling violations, is the definitions (3.52)

are used. Contrary to the statement of [91], the relations (3.61) are not a
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dynamics effect, but an artifact caused by the use of the alternative definitions

(3.58).

The choice of (3.52) was based on the behaviour of the hadron momenta in

the scaling limit. Indeed, the relations (3.54) imply that the Drell-Yan process

becomes light-cone dominated in the scaling limit and, therefore, the operator

product expansion method can be used in order to proof the factorization

theorem (see [46] for detail). This does not hold in the target rest frame (cf.

(3.57)). We conclude that kT -factorization (3.1) is not applicable in the target

rest frame, because the motion of the target parton is not confined to a light

cone in the high S limit.

3.5.2 Drell-Yan cross section taking into account quark

off-shellness

Using the Feynman rules for QCD derived, for instance, in [92], we find the

perturbative QCD cross section of the off-shell quark-antiquark annihilation

into a pair of leptons:

dσ̂

d�p ′
1d�p

′
2

=
e4e2q

[
t̂2 + û2 −m4

1 −m4
2 + ŝ(m1 +m2)

2
]

16πε′1ε
′
2ŝ

2Nc

√
(p1 · p2)2 −m2

1m
2
2

δ(p1+p2−p′1−p′2), (3.62)

where �p ′
1,2 are the three-momenta of the leptons, ε ′1,2 their energies, and eq the

parton charge in units of the proton charge. The color factor is Nc = 3.

The off-shell partonic cross section differential over the Drell-Yan process

observables – mass M , Feynman variable xF , and transverse momentum pT of

the lepton pair – is

dσ̂

dM2dxFdp2
T

=

∫
d�p ′

1

2ε′1

d�p ′
2

2ε′2
dφ κ

[
t̂2 + û2 −m4

1 −m4
2 + ŝ(m1 +m2)

2
]

×δ(p1 + p2 − p′1 − p′2)δ(p− p′1 − p′2); (3.63)

κ =
α2e2q (S −M2)√

SEM48Nc

√
(p1 · p2)2 −m2

1m
2
2

, (3.64)

where the integration over �p′1 and �p′2 is in the whole 3-dimensional space, and

φ is from 0 to 2π.

After performing analytically the seven integrations over non-measured

quantities, four δ-functions are integrated out and the remaining four preserve
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the correct relation between the hadronic and partonic variables (cf. (3.51)):

dσ̂

dM2dxFdp2
T

=κ′
[
2M4 −M2

(
m2

1 − 6m1m2 +m2
2

)− (m2
1 −m2

2

)2]

×δ

M2 −m2

1 −m2
2 − ξ1ξ2P

−
1 P

+
2 −

(
m2

1 + �k2
1⊥
)(
m2

2 + �k2
2⊥
)

ξ1ξ2P
−
1 P

+
2

+ 2�k1⊥�k2⊥




×δ

xF −

√
s

s−M2


ξ2P+

2 − ξ1P
−
1 +

(
m2

1 + �k2
1⊥
)

ξ1P
−
1

−
(
m2

2 + �k2
2⊥
)

ξ2P
+
2






×δ
((

�k1⊥ + �k2⊥
)2

− p2
T

)
, (3.65)

with

κ′ =
2α2e2q

3M4Nc

√
(k1 · k2)2 −m2

1m
2
2

. (3.66)

In (3.65),

ε1 ≡ 1

2

(
ξ1P

−
1 +

(m2
1 + �k 2

1⊥)

ξ1P
−
1

)
, ε2 ≡ 1

2

(
ξ2P

+
2 +

(m2
2 + �k 2

2⊥)

ξ2P
+
2

)
. (3.67)

Generalizing the ansatz (3.18) to the case of two off-shell partons in the

initial state, we obtain the hadronic cross section by integrating over the masses

and transverse momenta of quark and antiquark:

dσ

dM2dxFdp2
T

=
∑

i

∫
d�p1⊥

∫
d�p2⊥

∫ ∞

0

dm1

∫ ∞

0

dm2

∫ 1

0

dξ1

∫ 1

0

dξ2A(m1)A(m2)

×fi(Q
2, ξ1, �p1⊥)f̄i(Q

2, ξ2, �p2⊥)
dσ̂

dM2dxFdp2
T

. (3.68)

The integration in (3.68) is 8-fold, dσ̂ is given by equations (3.65) and (3.66),

and ∫
d�p⊥ ≡

∫ ∞

0

p⊥dp⊥

∫ 2π

0

dφp⊥.

The common parametrization for the unintegrated parton distributions is [12,

14, 93]

f(Q2, �p⊥, ξ) = f(�p⊥) · q(Q2, ξ), (3.69)

where

f(�p⊥) =
1

4πD2
exp{− �p 2

⊥
4D2

}, (3.70)
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and q(Q2, ξ) is the conventional parton distribution. For the latter, we have

used the latest parametrization by Glück, Reya, Vogt [53]. The mean primor-

dial transverse momentum of partons is

< �p 2
⊥ >= 4D2. (3.71)

The Gaussian form of f(�p⊥) allows the analytical evaluation of the integrals

over �p1⊥ and �p2⊥. Then, we are left with a four-dimensional integral to be done

numerically (see App. B for details on numerics). In the special case of a con-

stant spectral function width, one of the integrals over the off-shellness can be

reduced to a superposition of special functions (incomplete elliptic integrals).

However, it turned out to be faster to perform the integrals numerically than

to evaluate these particular spectral functions.

3.5.3 Intrinsic-kT approach as a limiting case

We will compare the result of our model, in which the partons in the proton

have a finite width, with the experimental data and with the cross sections

obtained by two other methods ( perturbative QCD and the intrinsic-kT ap-

proach).

In kT -factorization, the formula

dσ = f(ξ1, �p⊥1)f(ξ2, �p⊥2) ⊗ dσ̂(ξ1, ξ2, �p⊥1, �p⊥2) (3.72)

is used, where dσ̂ is the Born cross section for the qq̄ annihilation into a pair

of leptons, f(ξ, �p⊥) is the unintegrated parton distribution defined in (3.2). A

proof for the kT -factorization in the Drell-Yan process is given in the leading

twist in [62, 78]. In this case, the primordial transverse momenta of q and q̄

have (in general, non-zero) values defined by these distributions in the same

way as the usual integrated parton distributions define the large light cone

fractions of the parton momenta (p+ for the projectile parton and p− for the

target parton).

In [62, 78], the fourth component of the parton momentum (p− for the

projectile parton or p+ for the target parton) is set to zero due to the following

reason. For large hard scales M , the projectile parton momentum is p2 =

(p+
2 , p

−
2 , �p2⊥) ∼ M(1, λ2, �λ), where λ = m2/M . The parameter λ is small

for M > 1 GeV, since the parton off-shellness and transverse momentum are
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related to the inverse of the confinement radius and are not expected to scale

with M . Our results will show that this assumption is not reliable. In fact,

the width of the quark off-shellness (m2
2) distribution depends on the virtuality

M2 of the photon that probes it (see Sect. 4.3 and Sect. 4.6 for details).

A phenomenological ‘intrinsic-kT approach’ has been developed on the basis

of the kT -factorization theorem. In this model, the unintegrated distributions

are taken in the form (3.69), (3.70). An additional difference from [62, 78] is

that the smaller light cone component of the parton momentum is put to its

on-shell value: p−2 = �p2
2⊥/p

+
2 , which is small, but not zero. This approach is

well described in the literature [12, 14, 15, 21] and proves to be very useful for

the calculation of cross sections and asymmetries of different processes.

The intrinsic-kT approach is a limiting case of our model at Γ → 0. The

Drell-Yan process cross section in this approach can be obtained from (3.68) by

putting all parton masses to 0 and dropping the mass integrations and spectral

functions. In particular, the following kinematic relations are ensured by the

δ-functions in this case:

M2 = ξ1ξ2P
−
1 P

+
2 +

�p 2
1⊥�p

2
2⊥

ξ1ξ2P
−
1 P

+
2

− 2�p1⊥ · �p2⊥;

xF =

√
s

s−M2

(
ξ2P

+
2 − ξ1P

−
1 +

�p 2
1⊥

ξ1P
−
1

− �p 2
2⊥

ξ2P
+
2

)
. (3.73)

In Section 4.2, we compare the cross section calculated in our model with

off-shell partons to the result of the intrinsic-kT approach. In order to per-

form such a comparison, we have calculated the Drell-Yan cross section in the

intrinsic-kT approach by using the full on-shell partonic cross section and the

exact kinematics (3.73).

In the works [14,15], the Drell-Yan process was studied also in the intrinsic-

kT approach, but with an additional approximations of the collinear sub-

process cross section and the approximate kinematical relations (3.56). We

compare our model with this simplified version of the intrinsic-kT approach

in Sect. 4.2. We show in Sect. 4.6 that this approximation is equivalent to

truncating the twist expansion at the leading term.
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Results

4.1 DIS cross section dependence on the model

parameters D and Γ

The results of our calculations for the deep inelastic electron-proton scattering

cross section using the formulas of the subsection 3.4.3 for a range of Γ as

compared to the parton model (eq. (3.30)) are shown in fig. 4.1, where Γ

is the width of parton off-shellness distribution (3.20). There is a moderate

effect of the initial state interaction in DIS in the region of small Bjorken

xBj and low momentum transfer Q2. The cross section deviation reaches 45%

at Q2 = 1 GeV2, if the parton spectral function width and mean transverse

momentum are both equal to 300 MeV. In fig. 4.1, one can also see that the

cross section calculated in our model differs from the LO even when the parton

width is negligibly small (5 MeV). This effect is due to the non-vanishing

intrinsic transverse momentum.

In order to separate the effects of the parton off-shellness from those of

the intrinsic transverse momentum, we plot the relative difference between

the result of our model with off-shell partons and the calculations taking into

account only the intrinsic transverse motion (fig. 4.2), cf. subsection 3.5.3. To

obtain the cross section in the latter approach, we have put Γ to zero in the

formulas of section 3.4 thus forcing the parton on-shell. It is seen that this

difference amounts to at most 10 % of the cross section 4.2.

The Q2 = 1 GeV2 value used in Fig. 4.2 is very low. As we will show

in Section 4.6, the effect of parton off-shellness in of higher twist, i.e. Q2-

suppressed. Therefore, the deviation of the DIS cross section in our model

51
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Figure 4.1: Relative deviation of the calculated DIS cross section from the
leading order pQCD for the range of parton spectral function widths 5 MeV
to 0.9 GeV. Q2 = 1 GeV2, s� Q2.

Figure 4.2: Relative deviation of the calculated DIS cross section from the
result of calculations taking into account only intrinsic transverse momentum
effects. Q2 = 1 GeV2, s� Q2.
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Figure 4.3: Relative deviation of the calculated DIS cross section from the
leading order of pQCD for different Q2. The spectral function width is fixed
to Γ = 0.2 GeV and the transverse momentum dispersion to D = 0.1 GeV,
s�Q2.

from the intrinsic-kT approach result is even lower at Q2 > 1 GeV2 relevant for

experiments. The Q2-suppression of parton virtuality and intrinsic transverse

momentum effects in DIS is illustrated in fig. 4.3.

For values of Q2 above 25 GeV2, the initial state interaction in DIS gives

at most a 5% deviation from the lowest order cross section (3.30). For most

of the experimentally investigated values of Q2, the ambiguity in the parton

distribution function parameterizations due to the renormalization scale un-

certainty is of the same order as the effect of parton off-shellness on DIS cross

section.

In the region of Q2 ≤ 25 GeV2, the difference is 30 − 40 %, which should

be observable. However, in order to make a quantitative comparison to the

experiment at such low Q2 and xBj , we would have to incorporate into our

model other effects, such as resonance production and diffractive scattering

[94–96].

We conclude that, using the model described in the present work, we cannot

extract the value of the parton width in the nucleon from the DIS data. This

is the result expected by the analogy to nuclear physics, because the DIS cross

section is too inclusive. On the other hand, the DIS data do not contradict
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the assumption of a finite parton width in the proton.

4.2 Drell-Yan process cross section depen-

dence on D and Γ

In contrast to the DIS case, the effect of parton off-shellness on the transverse

momentum distribution of the Drell-Yan lepton pairs is substantial. In this

section, we present the Drell-Yan triple differential cross section calculated by

the method described in Section 3.5. We compare the result of our model, in

which the partons in the proton have a finite width, with the experimental

data and with the cross sections obtained in two other approaches (LO pQCD

and standard kT -factorization).

Although the leading order (LO) of collinear perturbative QCD (pQCD)

predicts the correct dependence of the double differential Drell-Yan cross sec-

tion d2σ/dM2dxF on the hard scale M , it fails to reproduce

1. the magnitude of this cross section, the discrepancy being usually para-

metrized by a K-factor;

2. the average transverse momentum pT of the dileptons;

3. the pT -spectrum of Drell-Yan pairs, which is given by the triple differen-

tial cross section d3σ/dM2dxFdpT .

Experimentally observed Drell-Yan lepton pairs have non-vanishing transverse

momentum pT , which can be as large as several GeV. Meanwhile, in the lead-

ing order approximation of pQCD, the cross section is proportional to δ(pT ).

Indeed, in collinear QCD, both the transverse momentum and the light cone

energy of quarks inside hadrons are neglected compared to the component of

the quark momentum parallel to the hadron momentum. Thus, the initial

state, i.e. the colliding quark and antiquark to be annihilated into a lepton

pair, has no transverse momentum. Therefore, the final state has zero trans-

verse momentum, too. Possible extensions of the LO pQCD are

a) addition of the NLO processes,

b) taking into account the quark transverse motion and off-shellness.

In the former case (a), the lepton pair can gain non-vanishing pT , if it

recoils against an additional jet in the final state. However, such processes are
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Figure 4.4: Transverse momentum distribution of the Drell-Yan lepton pairs
in the intrinsic-kT approach for different values of the parton primordial trans-
verse momentum dispersion. M = 4 GeV, xF = 0.1, Γ = 0.

suppressed by αS. In case (b), the recoil transverse momentum is carried by

hadron remnants, formed by the “spectator” partons.

The quark and gluon off-shellness can have a large effect for some observ-

ables, as will be shown in Sections 4.3, 4.5 and 4.7. In our model, both the

double differential and triple differential cross section of the Drell-Yan process

are very well reproduced in a wide energy range and with different hadrons in

the initial state: pp, pA, p̄p. As we will show in the present section, the triple

differential Drell-Yan cross section is sensitive to both parameters of the model

(D and Γ), thus allowing for a double fit (see Section 4.3). On the other hand,

the study of the double differential cross section presented in the subsection 4.4

enables us to relate the model parameters to the phenomenological K-factor.

Calculations using LO pQCD and collinear factorization analogous to (3.1)

dσ = f(ξ1)f(ξ2) ⊗ dσ̂(ξ1, ξ2) (4.1)

give a simple result for the triple differential Drell-Yan cross section (pT -

distribution of the dileptons) - a δ-function at zero pT . This follows from
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Figure 4.5: Transverse momentum distribution of the Drell-Yan lepton pairs in
our model for different values of the parton spectral function width: from Γ = 0
(solid) to Γ = 200 MeV (dash-dot). M = 4 GeV, xF = 0.1, D = 0.7 GeV.

the fact that the annihilating q and q̄ in this approach are collinear with the

corresponding hadrons, thus the qq̄ pair has no transverse momentum in the

hadron center of mass system. Therefore, the resulting lepton pair cannot

gain any transverse momentum in this model. In contrast, the experimen-

tally measured transverse momentum distribution of the dileptons extends to

pT = 4 GeV at a hard scale (the mass of the lepton pair M) as high as 8.7 GeV.

Note that NLO corrections do not cure the disagreement with the data. The

Drell-Yan pair pT -distribution obtained in fixed order pQCD is divergent at

pT = 0. A resummation of an infinite series of diagrams is necessary to obtain

a finite value for the triple differential Drell-Yan cross section at pT = 0 in

pQCD with on-shell partons [20].

In order to analyze the effect of a finite parton width and distinguish it

from the effect of the intrinsic transverse momentum, we have performed the

calculations in both the intrinsic-kT approach and in our model allowing for off-

shell partons. We used the formalism developed in Section 3.5 to calculate the

cross section of the Drell-Yan process in the kinematics of the experiment E866

[76, 97] in the intrinsic-kT approach and for a parton off-shellness distributed
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Figure 4.6: Drell-Yan cross section in three approaches: simplified intrinsic-kT

with collinear sub-process cross section (dash), full intrinsic-kT (dash-dot), our
model at Γ = 225 MeV (solid). Everywhere, D = 550 MeV,

√
s = 40 GeV,

M = 7.5 GeV.

according to the Breit-Wigner spectral function (3.20).

We present the obtained cross section

dσ

d�p
≡ 2

π
√
s

dσ

dxFdp2
T

(4.2)

for different values of the parameters in figures 4.4 and 4.5. We illustrate in

fig. 4.4 that the slope of the distribution mainly depends on the dispersion of

the intrinsic transverse momentum (D), which is proportional to the primordial

transverse momentum of the parton (see (3.71)). In the limit, in which the

dispersion of the intrinsic transverse momentum (D) goes to zero, the leading

order result of perturbative QCD, i.e. a sharp peak at pT = 0, is restored.

On the other hand, the parton width variation leads to changes of the

cross section magnitude and influences the behavior of the distribution in the

region of low pT (see Fig. 4.5). With increasing Γ, magnitude of the cross

section decreases, the decrease being most pronounced at low pT , which shifts

the peak of the distribution to higher pT . This indicates that some additional

nonperturbative effects are included via a finite parton width. One can also see

in Fig. 4.5 that our model approaches the result of the standard intrinsic-kT
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method as the parton width (Γ) goes to zero.

The formula (3.68) is often simplified by neglecting the dependence of σ̂

on �kT1 and �kT2, for example in [22] and in PYTHIA [24]. In this case, the

integration of σ̂ can be done analytically. Summarizing, there are three phe-

nomenological approaches to the Drell-Yan process beyond LO pQCD:

1. our model, accounting for both intrinsic transverse momentum (D �= 0)

and off-shellness (Γ �= 0) of quarks;

2. intrinsic-kT approach (D �= 0), which is the limiting case of our model

at Γ = 0;

3. simplified intrinsic-kT approach (Γ = 0), in which the primordial trans-

verse momentum is not zero (D �= 0), but the non-collinearity of the

q̄q → l+l− sub-process cross section dσ̂, i.e. its dependence on �k1 and
�k2, is neglected.

We compare the effects of primordial kT , non-collinearity of dσ̂ and quark

off-shellness by plotting the triple differential Drell-Yan cross section calculated

in the three aforesaid phenomenological approaches in Fig. 4.6. The simplified

intrinsic-kT approach gives a Gaussian for the pT -distribution (dash line). As

we will show in Section 4.6, the approximation of Γ = 0 and collinear dσ̂ is

equivalent to restricting oneself to the leading order in the twist expansion,

that is, in the case of the unpolarized Drell-Yan process, the expansion in

powers of 1/M . In Fig. 4.6, the importance of higher twist corrections in the

Drell-Yan process is illustrated by the difference between the solid and dash

lines.

The part of higher-twist effects incorporated in the full intrinsic-kT ap-

proach changes the distribution considerably (cf. the dash and dash-dot curves

in Fig. 4.6). On the other hand, additional higher twist effects, modelled by

quark off-shellness and given by the difference between the dash-dot and solid

curves, are of the same order. We conclude that higher twists in the Drell-Yan

process can be large and that we have to take into account both non-collinearity

and off-shellness of quarks in order to model them.
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4.3 Analysis of Drell-Yan data on triple differ-

ential cross section

4.3.1 Fit to the data of experiment E866 on pp→ µ+µ−X

In figures 4.7-4.12, calculations both in the model with off-shell partons and

in the standard kT -factorization approach are compared to the data of the

Fermilab experiment E866 for the continuum dimuon production in pp col-

lisions at 800 GeV incident energy, corresponding to
√
s = 40 GeV. In this

experiment, both the double differential Drell-Yan cross section dσ/dM2dxF

(data published in [97]) and the triple differential cross section dσ/d�p (data

published in [76]) were measured in a wide range of M and xF (here, �p is the

lepton pair’s momentum). The pT -distribution was obtained in terms of the

triple differential cross section averaged over the azimuthal angle of the lepton

pair

E
dσ

d�p
≡ 2E

π
√
s

dσ

dxFdp2
T

=
2E

π
√
s

∫
bin

dσ

dxFdp2
TdM

2
dM2, (4.3)

where

E ≡
√
M2 + p2

T + x2
F (s−M2)2/(4s). (4.4)

The data points were averaged in several bins in M and xF . The xF binning

is responsible for the wiggly structures both in the data and some of our

calculations.

The result of the intrinsic-kT approach is shown in figures 4.7 and 4.8 (solid

line). The slope of the cross section can be reproduced by an appropriate choice

of the single parameter (D) of the intrinsic transverse momentum distribution,

given by (3.70). The optimal values forD are 500−600 MeV, which correspond

to

< p2
⊥ >

1/2= 1.0 − 1.2 GeV. (4.5)

A slightly smaller value for this parameter was obtained in [14, 15] from the

analysis of the data of the experiment E744 on Drell-Yan cross section in

pp collisions at 400 GeV incident energy:

< p2
⊥ >

1/2= 0.8 − 1.0 GeV. (4.6)

Still, the data are overestimated by a factor of 2 − 3, depending on the

mass of the Drell-Yan pair (M). Dashed lines in figures 4.7 and 4.8 illustrate
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(a) 4.2≤M ≤5.2 GeV

(b) 5.2≤M ≤6.2 GeV

Figure 4.7: Drell-Yan cross section in intrinsic-kT approach (solid line) com-
pared to the data of E866 [76]. An additional overall K-factor is necessary to
reproduce the cross section amplitude (dashed line), −0.05≤xF ≤0.15.
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(a) 6.2≤M ≤7.2 GeV

(b) 7.2≤M ≤8.7 GeV

Figure 4.8: Same as Fig. 4.7, but higher mass bins.
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that the data can be fitted by introducing an additional overall factor (K).

The discrepancy between the calculations and the data is larger for higher

M . Thus, in the intrinsic-kT approach, the magnitude of the cross section

cannot be correctly reproduced. An additional overall K-factor is necessary

that reflects the importance of higher order corrections to the Drell-Yan cross

section.

In contrast, the calculations with a finite parton width yield not only the

experimentally measured shape of the cross section but also its amplitude

without anyK-factor. The comparison of our results with the data is presented

in figures 4.9-4.12. The values for the average parton primordial transverse

momentum

< p2
⊥ >

1/2= 0.9 − 1.1 GeV (4.7)

are compatible with those existing in the literature (4.6). Allowing for off-shell

partons, we eliminate the need for any K-factor. Choosing Γ in the order of

100 MeV (cf. table 4.1 for details), both the amplitude and the slope of the

cross section are well reproduced.

The dependence of the optimal values for the parameters (dispersion D and

width Γ) on the mass of the Drell-Yan pair was obtained by fitting experimental

data within different bins ofM independently. The result is presented in figures

4.9-4.12 and in table 4.1. Note that the varying quality of the data in different

mass bins leads to large uncertainties in the extraction of the width. In table

4.1 we present the average values and uncertainties for D and Γ. The latter

have been obtained by analyzing the χ2 values as a function of D and Γ.

We find that the optimal Γ increases with the hard scale (the mass of the

Drell-Yan pair). The dependence of Γ on M indicates that, at higher scales,

partons with broader spectral functions are probed. However, as we will shown

in Sect. 4.6 by analyzing the M2 → ∞ limit, Γ decreases as 1/M with growing,

asymptotically large M2. The increase of Γ with M that we have obtained for

M = 4.2 − 7.8 GeV must be due to relatively low hard scales and may be a

consequence of phase space limitations arising as M → 0. We did not study

the dependence of our parameters on xF .

The analysis of the data in the mass bin 6.2 ≤ M ≤ 7.2 GeV calls for

more discussion. As shown in Fig. 4.11, the best fit (dashed line) to this data

set leads to values for both parameters (D=0.43 GeV, Γ=1.1 GeV), which are

not in the trend set by the fits to the other three data bins (cf. table 4.1).

Thus, we did not trust this fit and sought for more experimental input. For
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Figure 4.9: The Drell-Yan cross section as calculated in our model (solid line)
compared to the data of the Fermilab experiment E866 for the continuum
dimuon production in 800 GeV proton, 4.2≤M≤5.2 GeV, −0.05≤xF ≤0.15.
Only statistical errors shown.

Figure 4.10: Same as fig. 4.9, only for a higher mass bin: 5.2≤M≤6.2 GeV.
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Figure 4.11: The Drell-Yan cross section as calculated in our model compared
to the data of E866 on pp→µ+µ−X, 6.2≤M ≤7.2 GeV, −0.05≤xF ≤0.15,
and to the data of E772 on pd→µ+µ−X, 6≤M ≤7 GeV, 0≤xF ≤0.3. Only
statistical errors shown. See main text for more details about the different
lines.

Figure 4.12: Same as fig. 4.11, only for a higher mass bin: 7.2≤M≤8.7 GeV.
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M 4.2-5.2 5.2-6.2 6.2-7.2 7.2-8.7

D 450 ± 100 530 ± 70 540* 550 ± 60
Γ 65 ± 20 200 ± 75 210* 225 ± 75

Table 4.1: Optimal parameters for different masses of the Drell-Yan pair,
−0.05≤xF ≤0.15. All values are in MeV. Values denoted with stars are trend-
average and not best-fit. See main text for details.

pT ≥ 1 GeV, the data of the experiments E866 on pp→ µ+µ−X and E772 [98]

on pd → µ+µ−X agree very well in all the mass bins, except the one of Fig. 4.11

(see Fig. 4.12, for example). Therefore, we compared our fit (dashed line) to the

experimental data on the pd cross section from E772 in approximately the same

mass range (Fig. 4.11). One can see that the calculations with D = 0.43 GeV

and Γ = 1.1 GeV (dashed line) do not reproduce the high-pT part of the pd

cross section. On the other hand, if the trend-average values from table 4.1

are applied (D = 0.54 GeV, Γ = 210 MeV, solid line in Fig. 4.11), the cross

section calculated in our model both describes the E866 data on the border

of experimental error bars and reproduces the pd cross section of E772 at

pT ≥ 1 GeV.

Allowing for a finite parton width and using a single-parameter form for the

parton spectral function, we account for non-perturbative effects, including the

K-factor. The result of the collinear factorization and fixed order pQCD (δ-

peak at pT = 0) is not reached in the experiment even at masses of lepton pairs

as high as M ∼ 16 GeV. There is one area of hard scales, where the intrinsic-

kT approach seems to reproduce the cross section with good accuracy: at low

M the K-factor of the intrinsic-kT approach is closer to 1. As the dilepton

mass goes higher, the measured distribution is getting more sharply peaked.

This suggests that the result of LO pQCD might be recovered at Drell-Yan

pair masses, which are higher than those yet observed. On the other hand, our

model allowing for off-shell partons with finite width works well for all hard

scales M .

4.3.2 Reproduction of the data of experiments E605 and

E772 on pA→ µ+µ−X

In Section 4.3.1, our model was compared to the data on the triple differ-

ential Drell-Yan cross section d3σ/dM2dxFdpT from experiment E866 [76] at
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Figure 4.13: Prediction for the pT spectrum of Drell-Yan dileptons in our model
at

√
s = 40 and xF = 0.1 as compared to the data of experiment E605 [99].

Fermilab in pp collisions at 800 GeV incident energy. Both the slope and mag-

nitude of the pT distribution of the Drell-Yan pairs were described well without

the need for a K-factor. In particular, the experimentally measured pT is re-

produced in this model by fitting the model parameter D (the dispersion of

the quark intrinsic transverse momentum). At s = 1600 GeV2, we obtained

D = 0.5 ± 0.18 GeV. On the other hand, the detailed shape of the distribu-

tion turned out to be sensitive to the off-shellness, giving Γ = 50−300 MeV

(depending on the mass bin) for this particular experiment.

The distribution of the transverse momentum of lepton pairs produced in

the Drell-Yan process off nuclei pA → l+l−X also can be reproduced within

this model. For example, in Fig. 4.13 the calculation for the transverse mo-

mentum spectrum of Drell-Yan dileptons of our model is compared to the data

of the experiment E605 [99] on p Cu collisions at
√
s = 38.8 GeV, xF = 0.1.

The cross section plotted in Fig. 4.13 is given by (4.3). The model parame-

ters D, Γ used in the calculations were fitted to data on pp → l+l−X in the

previous subsection and no readjustment was done for the pA case.

On the other hand, one can study nuclear effects in the Drell-Yan process,

using higher accuracy data, for example, the pd Drell-Yan data from the ex-

periment E772. See the comparison of our model result for the pp process
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Figure 4.14: Prediction for the transverse momentum spectrum of Drell-Yan
dileptons in a model, accounting for the intrinsic-kT and off-shellness of quarks
in the proton, as compared to the data of the experiment E772 [98] on p d col-
lision at

√
s = 38.8 GeV. Only statistical errors shown. The model parameters

D, Γ were fitted to the data on pp→ l+l−X. xF = 0.1.

compared to the pd cross section divided by A = 2 in Fig. 4.14. The discrep-

ancy between the Drell-Yan pair production in pp and pd can be absorbed into

the parametrization of nucleon parton distribution functions. However, it is

näıve to assume that the effects of Fermi motion and binding of nucleons in

nuclei is negligible. A model to account for these effects in pd Drell-Yan is

suggested in [100].

4.4 Drell-Yan transverse momentum evolu-

tion with M and s in NLO pQCD

In this section, we study the average pT of the Drell-Yan pairs produced in

p̄p collisions in the scope of conventional perturbative QCD. Consequently,

intrinsic transverse momentum and off-shellness of the quarks are neglected

for the duration of the current section. Therefore, important features are

missing and we do not expect to reproduce the experimental pT .

At NLO of perturbative QCD, several diagrams contribute to the triple

differential cross section, see Fig. 4.15. Among these, the vertex corrections do

not generate transverse momentum. Therefore, we are interested in the gluon
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(a) (c)(b)

Figure 4.15: O(αS) contributions to the Drell-Yan process: (a) gluon
Bremsstrahlung, (b) vertex correction, (c) gluon Compton scattering. Vir-
tual photons (dashed lines) split into lepton pairs, waved lines denote gluons,
arrows denote quarks. In each diagram, time runs from left to right.

Bremsstrahlung and gluon Compton scattering. The pair with invariant mass

M has a transverse momentum that relates to the scattering angle as [101]

p2
T =

(ŝ−M2)2

4ŝ
sin2 Θ, (4.8)

where ŝ = x1x2s is the total squared energy of the colliding partons in terms

of their momentum fractions in the collinear approximation, and Θ is the

scattering angle of the outgoing lepton pair with respect to the incoming quark

momentum in the quark centre of mass system.

In particular, the gluon Compton scattering contributes to the pairs with

pT � M [102], i.e. in the tail of the pT distribution. On the other hand, the

gluon Bremsstrahlung process generates the bulk of the Drell-Yan pairs with

a non-vanishing perturbatively generated pT . According to [101], the cross

section of the process q̄q → g + µ+µ− is

d2σ̂

dM2d cos Θ
=

8α2e2qαS

27M2

ŝ−M2

ŝ2 sin2 Θ

{
1 + cos2 Θ + 4

M2ŝ

(ŝ−M2)2

}
. (4.9)

By convoluting the sub-process cross section (4.9) with parton distribu-
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Figure 4.16: Function f(τ, αS) introduced in (4.11). This function governs the
evolution of the pT of Drell-Yan pairs with s and M2 at NLO perturbative
QCD.

tions, one expects to obtain the pT distribution of the Drell-Yan pairs. Unfor-

tunately, the resulting cross section is singular at pT = 0 [73], so that the triple

differential cross section cannot be described by NLO perturbative QCD. In

order to be able to compare the NLO result with other approaches and with

experiment, the authors of [101] and [103] proposed instead to calculate the

average squared transverse momentum of Drell-Yan dileptons

〈p2
T 〉pert =

∫
p2

T (d2σNLO/dpTdM
2)dpT

dσNLO/dM2
, (4.10)

which is finite. In formula (4.10), dσNLO is the double differential hadronic

Drell-Yan cross section at the next-to-leading order.

The result is

〈p2
T 〉pert = αS(M2)sf(τ, αS(M2)), (4.11)

where τ ≡M2/s. Therefore, in the leading power of αS(M2), the mean squared

pT of Drell-Yan pairs is proportional to s, to αS, and to a functional of parton

distributions f(τ, αS) derived in [101]. Based on (4.11), it is sometimes con-

cluded that 〈�p 2
T 〉pert scales linearly with s [22, 104, 105]. However, there is an

additional nonlinear dependence on s in f(τ, αS(M2)) through its dependence
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Figure 4.17: Evolution of the perturbative component of Drell-Yan pair trans-
verse momentum pT ≡√〈�p 2

T 〉pert with s at different values of M .

on τ ≡ M2/s. The dependence of f on αS is introduced by the scaling viola-

tions in the parton distributions, while the dependence of f on τ arises from

the gluon Bremsstrahlung cross section [101].

In order to determine the evolution of 〈�p 2
T 〉pert with M and

√
s, we have

calculated the function f(τ, αS(M2)) numerically, using a recent parametriza-

tion [53] for parton distributions. The result is shown in Fig. 4.16. We see that

only for a narrow region around τ ≈ 0.2, f(τ, αS) is approximately constant

with τ , and 〈p2
T 〉pert is proportional to s. The position of the peak of f slightly

shifts to the right with growing M .

The resulting dependence of pT ≡ √〈�p 2
T 〉pert on s and M is plotted in

Fig. 4.17 and 4.18, respectively. One can see in Fig. 4.17 that the evolution of

perturbative pT with s is almost logarithmic, in contrast to the näıve expec-

tation of being proportional to
√
s. Furthermore, the slope of the logarithmic

rise with s depends on M . Note that there is an interesting cross-over at about

s ≈ 50 GeV2 (Fig. 4.17). While the perturbative 〈p2
T 〉pert of Drell-Yan pairs in-

creases with increasing M at high center of mass energy
√
s (see Fig. 4.18(a)),

it decreases with M at low s (for instance, at s = 32 GeV2 relevant for the

future PANDA experiment [23], Fig. 4.18(b)) due to phase-space limitations.

The transverse momentum distribution of Drell-Yan dileptons, i.e. the
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(a) (b)

Figure 4.18: Perturbatively generated pT ≡√〈�p 2
T 〉pert.

triple differential cross section dσ/dM2dxFdp
2
T , in the NLO perturbative QCD

is singular at pT = 0 [101,106] and underestimates experimental data at high

pT [104, 107]. The average pT of Drell-Yan pairs also cannot be reproduced in

NLO. Indeed, the pT calculated above is around 0.6 GeV at s = 1600 GeV2

and M ≈ 7 GeV (see Fig. 4.18(a)). This value is about a factor of 2 smaller

than the width of the pT distribution measured by the Fermilab experiment

E866 [76]. We have to conclude that NLO pQCD is insufficient to describe

present data on pT of Drell-Yan pairs.

The natural approach to generate additional pT is to take into account

the primordial transverse momentum of quarks in the proton. The primordial

quark transverse momentum is a non-perturbative effect and, from the uncer-

tainty principle, averages at � 200 MeV. On the other hand, we will show in

Section 4.6 that the higher twist effect of the intrinsic kT on the Drell-Yan cross

section is of the same order as the effect of non-vanishing quark off-shellness

in proton, which is caused by the interaction of partons of one hadron in the

initial state. Therefore, both the intrinsic kT and quark off-shellness have to

be taken into account for the sake of consistency.

4.5 Double differential Drell-Yan cross section

In this section, we would like to make a consistent comparison of our model

and NLO results. However, the triple differential cross section Ed3σ/d3p is
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Figure 4.19: Result of LO collinear QCD for a double differential Drell-Yan
cross section (dashed line) at

√
s = 20 and xF = 0.1 as compared to experiment

E439 [52]. Solid line is the LO result scaled up with a factor K = 1.6.

singular at pT → 0 in every fixed order of pQCD [69,73]. We, therefore, apply

our model now to the double differential cross section d2σ/dMdxF .

The K- factor, which is needed to increase the magnitude of the LO predic-

tion for the double differential Drell-Yan process cross section so that it agrees

with the data, can be decreased from 2 to 1.1 by taking into account NLO

processes [108]. In order to determine, what part of this LO K-factor can be

accounted for by the model with intrinsic kT and off-shellness of quarks, we

compare data to the double differential cross section calculated in our model.

We use
d2σ

dM2dxF

≡
∫ (p2

T )max

0

d3σ

dM2dxFdp
2
T

dp2
T , (4.12)

where the triple differential cross section is taken from (3.68). Note that the

maximum transverse momentum of the Drell-Yan pair (p2
T )max is fixed by the

kinematics

(p2
T )max =

(s+M2 −M2
R)2

4s
− x2

F

(s−M2)2

4s
−M2, (4.13)

where M2
R is the minimal invariant mass of the undetected remnant.

In Fig. 4.19, the Drell-Yan process cross section d2σ/dMdxF predicted
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Figure 4.20: Drell-Yan cross section in our model at D = 500 MeV, Γ =
200 MeV compared to the data of experiment E439 [52]. K = 1.

at leading order of perturbative QCD (dashed line) is compared to the data

of the Fermilab experiment E439 [52] on pW collision at 400 GeV incident

energy, at xF = 0.1. The LO prediction lies below the data. The solid line

shows the LO curve scaled up with a factor K = 1.6. The K-factor depends

somewhat on the parametrization of parton distributions used. We use here

the parametrization [53]. If one assumes a larger contribution of sea quarks,

the K-factor needed to describe the data is lower.

The double differential Drell-Yan process cross section in our model (4.12)

is compared to data in Fig. 4.20. The data are reproduced well with K = 1.

We conclude that in the experimentally relevant region the K-factor of the

double differential Drell-Yan cross section can be explained by two alternative

scenarios: either as an effect of higher orders of perturbative QCD as shown

in [69,108] or as an effect of non-collinearity and off-shellness of quarks in our

phenomenological approach. The experimental cross section magnitude can

be reproduced in NLO calculations by fitting the renormalization scale or in

our model by fitting the parameters D and Γ. The latter explanation of the

K-factor has the advantage that it can explain also the triple differential cross

section.
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Figure 4.21: Drell-Yan cross section in a simplified intrinsic-kT approach at
D = 50 MeV (short dash), D = 250 MeV (dash), D = 500 MeV (dash-dot)
compared to LO pQCD (thin solid line) and the data of experiment E439 [52].
The solid line gives the theoretical curves multiplied byD-dependent K-factors
fitted to the data. Everywhere, Γ = 0.

In the following, we additionally study the relative importance of quark

off-shellness and quark intrinsic transverse motion by comparing our result to

that of the intrinsic-kT approach. The intrinsic-kT approach [12,13,21,109] is

a limiting case of our model at Γ → 0. The factorization assumption in this

case gives

d4σ

dM2dxFd�pT
= g(�kT1) ⊗ g(�kT2) ⊗ d2σ̂(�kT1, �kT2)

dM2dxF
δ(�pT − �kT1 − �kT2). (4.14)

The formula is often simplified by neglecting the dependence of σ̂ on �kT1

and �kT2, for example in [22] and in PYTHIA [24]. In this case, the pT spectrum

of Drell-Yan pairs d3σ/dM2dxFdp
2
T is also simply a Gaussian in p2

T . The cross

section (4.14) has to be integrated over the azimuthal angle of the lepton pair

and over p2
T according to (4.12). Because of the finite integration interval

in (4.12), we do not recover the normalization of the kT -distribution (3.70),

but obtain a suppression that increases with D.

The double differential Drell-Yan process cross section in the intrinsic kT

approach with collinear sub-process cross section at three values of D is com-

pared to the LO of pQCD and the data of the experiment E439 in Fig. 4.21.
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The magnitude of the measured cross section cannot be reproduced in this lead-

ing order intrinsic kT approach, in which the dependence of the partonic dσ̂

on �k1T and �k2T are neglected. The part of higher-twist effects incorporated in

the full intrinsic-kT approach changes the distribution considerably compared

to the result of leading twist, cf. Fig. 4.6 and its discussion in Section 4.2.

Just as in LO of pQCD, scaling with an overall K-factor ranging from 1.6

to 4 is necessary to describe the data. It is apparent from Fig. 4.21 that the K-

factor extracted from the data is D-dependent. Therefore, this scaling factor

should be understood as a phenomenological parameter and not as a measure

of higher order corrections.

4.6 Twist decomposition of the phenomeno-

logical corrections due to intrinsic kT and

off-shellness of quarks

In the previous section we have shown that the double differential Drell-Yan

cross section is reproduced by our model accounting for intrinsic kT and off-

shellness of quarks without a need for a K-factor. In addition, the pT distrib-

ution of the Drell-Yan pairs can be explained in our model (see Sect. 4.3), but

not in NLO of pQCD [73,104,107]. Therefore, the effects of quark off-shellness

and intrinsic kT do not arise solely from the diagrams of NLO pQCD. In-

stead, we will show that they parametrize higher twist processes. Some of the

diagrams that contribute to the Drell-Yan cross section at higher twist are

shown in Fig. 4.22. Gluon radiation in the initial state and gluon exchange

between the active parton and spectators generate intrinsic kT and virtuality

of quarks in the proton in the Drell-Yan process. Some of these processes

(for example, the gluon exchanges that connect factorized regions - the sub-

process and a soft matrix element) are suppressed by powers of s in the scaling

limit. However, the power-suppressed corrections give a sizable contribution

to the transverse momentum spectrum of Drell-Yan pairs at finite s accessible

in modern experiments.

In this section, we investigate the relationship of NLO and higher twist

corrections to those calculated in our phenomenological approach by comparing

their behaviour in the Drell-Yan scaling limit, in which s→ ∞ and M2 → ∞
with τ = s/M2 finite. The NLO corrections are proportional to αS; therefore
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Figure 4.22: Example of gluon radiation diagrams generating intrinsic kT and
virtuality of quarks in the proton as probed in the Drell-Yan process.

we expect only a logarithmic dependence of these corrections on the hard

scale s ∼ M2. On the other hand, higher twist contributions are suppressed

in powers of s in the scaling limit. In order to determine whether the effects

of quark virtuality and intrinsic kT are leading twist, we study the behaviour

of the Drell-Yan cross section calculated in our model in the scaling limit.

In the scaling limit (s → ∞, s/M2 =const), the spectral functions in

(3.68) effectively drop out due to normalization (cf. discussion later), and the

hadronic cross section goes to

d3σ

dM2dxFdp2
T

=
∑

q

Φq(x1, x2)

(
d2σ̂q

dM2dxF

)
LO

1

8D2
exp

(
− p2

T

8D2

)
, (4.15)

where

Φq(x1, x2) ≡ qA(x1)q̄
B(x2) + q̄A(x1)q

B(x2), (4.16)(
d2σ̂q

dM2dxF

)
LO

=
4πα2e2q
9M4

x1x2

x1 + x2
(1 − x1x2), (4.17)
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and the parton momentum fractions (x1, x2) are defined via

M2 = x1x2s; (4.18)

xF = x2 − x1. (4.19)

For comparison, note that the lowest order triple differential cross section

is given by

(
d3σ

dM2dxFdp
2
T

)
LO

=
∑

q

Φq(x1, x2)

(
d2σ̂q

dM2dxF

)
LO

δ
(
p2

T

)
. (4.20)

From (4.15) one observes that the corrections to the pT distribution of the

Drell-Yan pairs due to quark non-collinearity in the proton are not suppressed

in the limit s→ ∞. The model taking into account the intrinsic kT of partons

therefore parametrizes some of the leading twist effects. This part of the

model effects, i.e. the Gaussian smearing of pT , is related to contributions of

the higher order diagrams of the perturbative QCD series as is shown for deep

inelastic scattering at small Bjorken x in [69].

On the other hand, the corrections to the LO cross section generated by the

kT dependence of the sub-process cross section dσ̂ are suppressed by powers

of the hard scale s. Therefore, they represent part of the higher twist effects.

To study this in more detail, we expand the cross section (3.68) in a series

in 1/s around s = ∞, keeping this time not only the leading term, as it has

been done in (4.15), but all the terms that are suppressed by less than s2. We

analyze the cross section at the specific value of xF = 0 to make the formulas

less bulky.

Again, we start from the general formula (3.68). First, we expand the

integrand of (3.68) in 1/s. For this purpose not only dσ̂ of (3.65) has to be

evaluated at s → ∞, but also the combination of parton distributions (3.69)

that enters (3.68) has to be Taylor expanded around (ξ1 =
√
τ , ξ2 =

√
τ ). The

arguments of parton distributions ξ1 and ξ2 are fixed after integrating out the

δ-functions in (3.65). As a result, the probed parton light cone momentum

fractions depend on quark intrinsic transverse momentum and off-shellness.

After integrating (3.68) over ξ1, ξ2 and angles, the quantity Φq(ξ̃1, ξ̃2) enters

the hadronic cross section formula. Here, ξ̃1 and ξ̃2 are

ξ̃1 =
√
τ

(
1 +

p2
T/2 −m2

2 − k2
2√

τs
+O

(
1

s2

))
, (4.21)
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ξ̃2 =
√
τ

(
1 +

p2
T/2 −m2

1 − k2
1√

τs
+O

(
1

s2

))
. (4.22)

Keeping the first two orders in the Taylor expansion of Φq(ξ̃1, ξ̃2) and in the

1/(τs)-expansion of dσ̂, we obtain:

dσ3
q

dM2dxFdp
2
T

∣∣∣∣
xF =0

=
α2e2q(1 − τ)

8πD412τ 2s3

∫ ∞

0

dk2
2

∫ (k2
1)max

(k2
1)min

dk2
1

∫ (m2)max

0

dm2

∫ (m1)max

0

dm1

×
A(m1)A(m2) exp

(
−k2

1+k2
2

4D2

)
√
k2

1k
2
2 − 1

4
(p2

T − k2
1 − k2

2)
2

[
Gq

1(τ)

√
τ

8

(
p2

T

2
−m2

1 − k2
1

)

+Gq
2(τ)

√
τ

8

(
p2

T

2
−m2

2 − k2
2

)

+ T q(τ)

(
τs

8
+
p2

T

6
+
k2

1

6
+ F (m1, m2)

)
+O

(
1

s

)]
, (4.23)

where

(k2
1)min ≡ (pT − k2)

2; (4.24)

(k2
1)max ≡ (pT + k2)

2; (4.25)

(m1)max ≡
√
τs + p2

T/2 − k2
1; (4.26)

(m2)max ≡
√
τs + p2

T/2 − k2
2; (4.27)

F (m1, m2) ≡ 1

τ

(
2(m2

1 +m2
2)(τ/8 + x2

1/6 − x1

√
τ/6) + (m1 +m2)

2τ/6

+m2
1τ/6 + (m2

1 −m2
2)x1

√
τ/6 −m2

1τ
√
τ/(6x1)

+
τ

8
(m2

1 −m2
2 + k2

1 − k2
2)
)

; (4.28)

T q(τ) ≡ Φq(
√
τ ,
√
τ ); (4.29)

and

Gq
1(τ) ≡ ∂Φq(x1, x2)

∂x1

∣∣∣∣
(x1=

√
τ ,x2=

√
τ)

, (4.30)

Gq
2(τ) ≡ ∂Φq(x1, x2)

∂x2

∣∣∣∣
(x1=

√
τ ,x2=

√
τ)

(4.31)

are the derivatives of the parton distribution product (4.16) at (x1 =
√
τ , x2 =√

τ ).

To further investigate the dependence of the integral (4.23) on s, we have
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to specify the quark spectral function. Indeed, the integration variables m1

and m2 at s→ ∞ can be arbitrarily big, as can be seen from (4.26) and (4.27).

Therefore, only after the integration over mi has been performed can we judge

whether any off-shellness generated term is sub-leading in s and how much it

is suppressed. On the other hand, the integration over mi provides additional

terms ∼ k2/s, making the separation of off-shellness and intrinsic kT effects

involved.

In the following, we perform the analytical integration of (4.23), assuming

different functional forms for the spectral function A(m):

1. a Dirac delta-function δ(m),

2. a Breit-Wigner function (Lorentz distribution) with a constant parameter

Γ, see (3.20).

In the former case, the model reduces to the intrinsic-kT approach. Inte-

grations over mi drop out, while the remaining integrals over k2
1 and k2

2 can

be done analytically via Bessel functions. As the result, one finds the leading

term (4.15) plus 1/(τs) suppressed contributions.

Let us now consider the second, more general, case. The cross section

for A(m) = δ(m) is the limiting case of the formulas given below for a Breit-

Wigner distribution (3.20) at Γ = 0. Inserting the spectral function (3.20) into

(4.23), performing all the integrations and keeping only the first few leading

terms in 1/M , we obtain (note that M2 = τs → ∞, as s→ ∞)

d3σq

dM2dxFdp
2
T

∣∣∣∣
xF =0

=
1

8D2
exp

(
− �p2

T

8D2

)∑
q

(
d2σ̂q

dM2dxF

)
LO

[T q(τ)

+
{
4 T q(τ) −√

τ (Gq
1(τ) +Gq

2(τ))
} 1

π

Γ

M

+

{√
τ (Gq

1(τ) +Gq
2(τ)))

(
p2

T

4
− 2D2

)
+

8

3
T q(τ)

(
5p2

T

4
+D2

)}
1

M2

+ O

(
Γ

M3

)]
. (4.32)

At leading twist, the Gaussian distribution of pT (4.15) is recovered. How-

ever, it is modified by the higher twists, suppressed in the limit s → ∞,

but substantial at finite s accessible in experiment. The term proportional to

1/M = 1/
√
τs is pT -independent and leads to an overall enhancement of the

cross section, while the pT -dependent terms proportional to 1/M2 additionally

modify the shape of the pT distribution.
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The contribution of the off-shellness of quarks to (4.32) is given by the

summands proportional to Γ. It is suppressed by powers of M and vanishes in

the intrinsic kT approach, in which Γ = 0. Thus, the model, which additionally

accounts for quark off-shellness, parametrizes more higher twist effects than

the intrinsic-kT approach alone.

It is interesting that the effects due to the finite quark width Γ appear in the

expansion at odd powers of 1/M in contrast to those due to the intrinsic-kT .

The first Γ-dependent correction is proportional to 1/M = 1/
√
τs. Therefore,

the corrections due to the virtuality of quarks seem to have a non-analytical

dependence on s as (τs)−1/2. In order to preserve analyticity of the cross

section we have to assume that the quark spectral function width Γ has a

particular scaling behavior at large hard scale of the probe M =
√
τs:

Γ(M) ∼ 1

M
, as M → ∞. (4.33)

Then, in (4.32), the terms proportional to Γ/M and the terms proportional to

1/M2 together constitute the dominant higher twist correction to the leading

result (4.15) in the scaling limit.

We expect the formula (4.32) to give a good approximation to the Drell-

Yan cross section (3.68) at large finite M and s. In order to illustrate this,

we compare the result of the exact calculations, i.e. the numerical integration

of (3.68), to the leading twist approximation (4.15) and to the next-to-leading

twist result (4.32) in two regimes:

• at M ≈ 7 GeV and s = 1600 GeV2, see Fig. 4.23;

• at M = 1 GeV and s = 30.25 GeV2 relevant for FAIR [77], see Fig. 4.24.

As expected, the sum of leading and next-to-leading terms of the power

series (4.32) reproduces the full calculations quite well at M as high as 7 GeV.

The approximate cross section has the same average magnitude and slope.

Therefore, it is dominating the K-factor type corrections to the leading twist

cross section. Only the bend of the cross section at low pT , which is seen

in the full calculations and in the data (Fig. 4.13), is not reproduced at the

next-to-leading twist.

From the Fig. 4.24, one sees that our model predicts the higher twist effects

to be very large at low M and s. The discrepancy between approximate and

exact Drell-Yan cross sections is large in this regime, too, especially at low pT .
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Figure 4.23: Cross section of pp → l+l−X at M ≈ 7 GeV, s = 1600 GeV2

in our model (solid), in the leading order in 1/M2 (dash), up to the next-to-
leading order in 1/M2 expansion (dash-dot). D = 650 MeV, Γ = 225 MeV,
xF = 0.

Figure 4.24: Cross section of pp̄→ l+l−X at M = 1 GeV and s = 30.25 GeV2

in our model (solid), in the leading order in 1/M2 (dash), up to the next-to-
leading order in 1/M2 expansion (dash-dot). D = 600 MeV, Γ = 250 MeV,
xF = 0.



Chapter 4: Results 82

We conclude that one needs to go beyond the next-to-leading twist at these

low M and s. In this region, our model becomes indispensable, because it

effectively sums higher orders and higher twists.

4.7 Prediction for the triple differential cross

section of p̄p→ l+l−X at GSI-FAIR

Applying the model described in Section 3.5 and tested in Section 4.3 to calcu-

late the triple differential cross section of the process pp̄→ l+l−X at the centre

of mass energy
√
s = 5.5 GeV, we study a rather interesting, not yet experi-

mentally explored kinematical regime. The planned experiment PANDA [23]

at the future GSI facility is to probe the Drell-Yan process at this energy. We

will predict the triple differential Drell-Yan cross section at
√
s and M values,

relevant for PANDA. We will find a cross section magnitude of up to 10 nb in

the low mass region. A measurement with 10% accuracy is desirable in order

to constrain the partonic transverse momentum dispersion D and the spectral

function width Γ within ±50 MeV. In this case, we will be able to extract the

evolution of these parameters with M and
√
s.

The model was tested in Section 4.3 by comparing the triple differential

cross section d3σ/dM2dp2
TdxF of the processes pp → µ+µ− + X and pd →

µ+µ− + X to the data of the experiments E866 [76] and E772 [98] at
√
s =

40 GeV. The two parameters of the model (D and Γ) should be extrapolated

to the values of M = (1 − 5.5) GeV and
√
s= 5.5 GeV relevant for PANDA.

From the fits to experiments at different values of s and M , we estimate the

parameter D ≈ 0.6 ± 0.18 GeV. The large uncertainty of the extrapolation

is reflected in our estimate of the parameter error. The model parameter

D should be understood as representing the summed effect of the transverse

motion of partons inside the nucleon and of the perturbative corrections [22]:

D2 = D2
intr +D2

pert. The transverse momentum coming from higher orders of

collinear perturbation theory shows at constant τ ≡M2/s a linear dependence

on s in addition to the logarithmic dependence on M2 [101, 103]: 〈p2
T 〉pert =

s αS (M2) f (τ), see Section 4.4. On the other hand, the non-perturbative

Dintr does not show a strong dependence on s. An analysis in event generator

PYTHIA [24] has shown that the perturbative corrections constitute only 0.1%

of the pT -spectrum of Drell-Yan pairs with pT �= 0 at PANDA kinematics [110].

Thus, we set D ≈ Dintr, using an s-averaged value for Dintr.
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Figure 4.25: Comparison of the predictions of different models: (solid)
intrinsic-kT approach; (dash) intrinsic-kT approach with collinear sub-process
cross section; (dash-dot) PYTHIA generator. For all lines, xF = 0, D =
0.5 GeV,

√
s = 5.5 GeV. The lines marked with (1) correspond to M = 1 GeV;

(2), M = 2 GeV; (3), M = 3 GeV.

Fig. 4.25 presents a comparison of the predictions we have obtained in three

different models: in our model at Γ = 0, D= 0.5 GeV, which is equivalent to

the intrinsic-kT approach (solid lines); in the widely used simplified version

of the intrinsic-kT approach, in which the dependence of σ̂ on kT is neglected

(dashed line); by PYTHIA [24], taking into account QED and QCD initial

state radiation and intrinsic-kT (dash-dotted line). The models agree in the

overall strength of the cross section within a factor of 3.

The demand of positive mass of the remnant MR determines the maxi-

mum pT according to (4.13). In PYTHIA, however, a stronger constraint is

implemented: MR ≥ 2mqq ≈ 1.6 GeV, where mqq is a diquark mass. While

generating the plot under discussion, we used 1.6 GeV as the lower bound for

the remnant mass in all the other models, too, for consistency. The dilepton

mass bin width in the simulation was set to 100 MeV.

Note the qualitative difference of the cross section at the Drell-Yan pair

mass M = 1 GeV in the intrinsic-kT approach (solid lines). In contrast to the

higher mass bins, the peak of the pT -distribution for M=1 GeV is not at zero

in our model (solid line in Fig. 4.25). This behavior appears at M � 2D, i.e.



Chapter 4: Results 84

(a) M = 1 GeV

(b) M = 2 GeV

Figure 4.26: Prediction for the pT -distribution of Drell-Yan lepton pairs at
PANDA. Intrinsic transverse momentum dispersion D = 0.6 GeV. The solid
line is the result of calculations in the intrinsic-kT approach (width Γ = 0).
The other curves are generated with Γ in the range that we have determined
in Section 4.3. Note that the scale changes from nb in the subfigure (a) to pb
in the subfigure (b).

√
s=5.5 GeV, xF =0.1.
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(a) M = 3 GeV

(b) M = 4 GeV

Figure 4.27: Same as Fig. 4.26, but for higher masses of Drell-Yan pairs.
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in the distribution of the low virtuality photons, which can be produced by the

partonic transverse motion alone. It is worthwhile to stress that this drastic

change in the pT -dependence of the cross section takes place for all values of

Γ (see Fig. 4.26). An experimental verification of this effect would constitute

a direct test for the transverse momentum distribution of partons.

Note, however, that this effect appears only if the kT -dependence of the

partonic cross section is not neglected (this is the difference between the solid

and dashed lines in Fig.4.25). This big effect of the non-collinearity of the

sub-process cross section is in accordance with the results of Section 4.2 (see

the discussion of the plot 4.6) and Section 4.6.

Fig. 4.26 and 4.27 show several theoretical curves for the cross section (4.3)

with Γ = (100 − 250) MeV, which is the range determined from fitting E866

data. The results of our calculations in the intrinsic-kT approach (Γ= 0) are

plotted for comparison (solid lines). The evolution of the spectral function

with the hard scale is unknown. It cannot be directly related to the evolution

of the kT -distribution, because the quark off-shellness depends also on k−. One

can see that the effect of the Γ variation on the cross section is of the order of

10%. On the other hand, the variation of the parameter D within theoretical

uncertainty at fixed Γ (as presented in Fig. 4.28) also leads to considerable

changes of the cross section. Though, as it was shown in Section 4.3, one can

do a double fit and extract both parameters from the same data set.

The measurement of this cross section at
√
s as low as 5.5 GeV will provide

essential information on QCD in the regime where effects beyond leading order

and leading twist are expected to be large [111]. The high amplitude of the

predicted cross sections (up to 10 nb) indicates that PANDA at the design

luminosity has a potential to measure the triple differential unpolarized cross

section of p̄p→ l+l− +X with high statistics and an unprecedented accuracy.

The transverse momentum spectrum of Drell-Yan pairs at low
√
s is gen-

erated predominantly by the non-perturbative primordial intrinsic transverse

momentum of the partons. On the other hand, the distribution of the intrinsic

kT in this region is poorly known. PANDA data will be a valuable input that

should allow one to pin down the quark transverse momentum distribution in

the proton. Again, the M = 1 GeV mass bin shows the mentioned shift of the

peak towards higher pT .

The presented results also suggest that one can use the future PANDA

data to gain information on the spectral function of partons bound in the
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Figure 4.28: Variation of the cross section with D at fixed Γ.
√
s = 5.5 GeV,

xF = 0.1, M = 4 GeV.

nucleon. Indeed, as we see from Fig. 4.26 and 4.27, an experimental accuracy

of 20-30% would be enough to answer the question of whether the cross section

can be described by a model with on-shell quarks. The results of the earlier

calculations at higher
√
s together with the PANDA data can be used also to

extract the dependence of the quark spectral function in the proton on the

hard scales M and
√
s. For this purpose, we need an experimental accuracy of

at least 10%, so that one can reliably extract the parameter Γ in different mass

bins. Should the accuracy be even better, the data can be used to investigate

the details of the quark spectral function shape.
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Conclusions and outlook

The research presented here reveals the importance of accounting for the par-

ton off-shellness in addition to its intrinsic transverse momentum when study-

ing the proton structure in high energy scattering processes. Both the off-

shellness and intrinsic transverse motion are generated by the partonic inter-

action and gluon radiation in the initial state.

We have developed a formalism to study the quark structure of hadrons

going further than the widely studied picture of collinear noninteracting par-

tons. The parton off-shellness effects missed in the standard treatment were

taken into account by dressing the parton lines with phenomenological spec-

tral functions and using the factorization assumption. In this way, higher twist

corrections to standard pQCD were modelled.

We have calculated the cross sections of deep inelastic ep scattering and the

Drell-Yan process pp → l+l−X, pA → l+l−X and p̄p → l+l−X in the model

allowing for a finite parton width. Off-shellness effects arise from the fact that

the time-like lightcone momentum of the parton (p−) is not fixed by an on-

shell condition (p− = p2
⊥/p

+) or by a collinearity condition (p− = 0). Since the

partons in the proton interact, p− is in fact distributed with some finite width.

In order to disentangle the off-shellness effects from the effect of the parton

primordial transverse momentum, we have additionally calculated the Drell-

Yan cross section in the standard intrinsic-kT approach. The obtained cross

sections in both models were compared to the data on the triple differential

cross section of the process pp→ l+l−X, pA→ l+l−X and p̄p→ l+l−X.

We have found a moderate effect of the initial state interaction in DIS

in the region of small Bjorken xBj and low momentum transfer Q2. For a

parton width of 300 MeV, the cross section change due to the finite quark
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width in the proton reaches 10% at Q2 = 1 GeV2. On the other hand, the

effect is Q2-suppressed. For values of Q2 above 10 GeV2, the initial parton

off-shellness generates only at most 2% of the cross section. For most of the

experimentally investigated values of Q2, the difference between the off-shell

result and the leading twist cross section is too small to be resolved by present

experiments. We conclude that the value of the parton width in the nucleon

cannot be extracted from the DIS data, because the DIS cross section is too

inclusive. This is the result expected by the analogy to nuclear physics. On

the other hand, DIS data do not contradict the assumption of the finite parton

width in the proton.

In contrast, we discover a substantial contribution of the parton off-

shellness to the transverse momentum distribution d3σ/dM2dxFdp
2
T of the

high-mass virtual photons produced in hadron-hadron collisions in the whole

range of hard scales, at which the cross section has been measured. The triple

differential Drell-Yan cross section is a more exclusive observable than the DIS

cross section. That is why the effect of the parton off-shellness was expected

to be larger in the Drell-Yan case. Our results confirm this expectation.

Although the intrinsic-kT approach alone can reproduce the slope of the

experimentally measured distribution of dileptons, an overall K-factor is nec-

essary to fit the data. Both the shape and magnitude of the cross section are

much better reproduced by a model that allows for off-shell partons. In partic-

ular, one can fit the data without a K-factor. The parton width in the proton

was estimated from the comparison to the data. For a mass of the Drell-Yan

pair of 4.2−8.7 GeV, the best fits were obtained with quark (antiquark) width

of 50 − 250 MeV and intrinsic transverse partonic momentum dispersion of

400− 600 MeV. This corresponds to a mean primordial transverse momentum

of the parton inside a proton of
√〈�p⊥ 2〉 = 0.8 − 1.2 GeV.

Further, we have compared the double differential Drell-Yan cross section

d2σ/dM2dxF and the pT distribution of the Drell-Yan dileptons in the following

approaches: collinear perturbative QCD at next-to-leading order and, again,

our model, which makes use of phenomenological distributions for kT and

off-shellness of quarks in the proton. We find that the transverse momentum

spectrum of the Drell-Yan pairs at NLO pQCD disagrees with experiment both

quantitatively and qualitatively. In contrast, we find that the phenomenolog-

ical model with off-shell non-collinear partons successfully describes both the

double differential Drell-Yan cross section and the pT spectrum of Drell-Yan



Chapter 5: Conclusions and outlook 90

pairs without the need of a K-factor.

The analysis of the Drell-Yan process cross section in our model in the

Drell-Yan scaling limit has shown that the phenomenological model parame-

trizes higher twist effects. Higher twist contributions were up to date usually

considered to be small, because they are suppressed by powers of the hard

scale. As a rule, they are neglected in pQCD calculations. However, the power

suppressed effect can be large at realistic energies.

We have found that the intrinsic transverse momentum of quarks generates

both leading twist and 1/(τs) = 1/M2 suppressed effects. This is in line with

our analysis of section 4.15, which has shown that only part of observed 〈p2
T 〉

can be explained by NLO effects. In addition, we have shown that next-

to-leading twist corrections due to quark off-shellness lead to a cross section

magnitude change and are, therefore, responsible for a part of the K-factor

type discrepancy between leading order pQCD and the data.

If a Breit-Wigner parametrization for a quark spectral function is used, the

next-to-leading contribution turned out to be proportional to Γ/
√
τs. This

lead us to suggest that the quark spectral function width Γ scales as Γ(M) ∼
1/M at large hard scale M =

√
τs.

The formula that we obtained for the Drell-Yan cross section at the next-

to-leading twist level can be very useful for applications, for example, in an

event generator. Indeed, it requires no numerical integration, while providing

a good approximation to the full calculations at M � 5 GeV. However, at

M � 5 GeV, one has to go beyond the next-to-leading order in the power

series and use our model.

The results show that the higher twist corrections to high energy processes

can be large. Therefore, a detailed study and modelling of these effects is

necessary, if one hopes to reliably extract quark and gluon properties from

hadron scattering data.

Since the Drell-Yan process is expected to be one of the leading back-

ground contributions at the future high energy facilities, it is important to

predict its cross section as precisely as possible. For example, it has been sug-

gested [112,113] to use the Drell-Yan process and dijet production as centrality

triggers in pp collisions at the Large Hadron Collider [114]. On the other hand,

experiments PANDA [23] and PAX [115] will study the Drell-Yan process at

the future FAIR facility [77]. Our prediction for the Drell-Yan process cross

section in the kinematics relevant for PANDA has shown that the transverse
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momentum spectrum of Drell-Yan pairs at low
√
s is generated predominantly

by the non-perturbative primordial intrinsic transverse momentum of the par-

tons. The analysis in the Section 4.6 has proven that our model is indispensable

in this low energy regime.

On the other hand, the distribution of the intrinsic kT in this region is

poorly known. PANDA data will be a valuable input that should allow one

to pin down the quark transverse momentum distribution in the proton. We

note again that the M = 1 GeV mass bin shows a shift of the peak of the

distribution towards higher pT . Observation of this peak shift is a clear test of

the predictive power of our model.

The obtained triple differential cross section of the dilepton production in

pp and p̄p collisions is also a necessary input for models, studying the nuclear

medium via high energy dileptons, produced in pA, p̄A and AA collisions. In

order to meet this demand and to consistently evaluate the ISI effects in high

energy processes, we need to improve our knowledge of the parton off-shellness

distribution in the nucleon.

In particular, it should be possible to reduce the sizable uncertainty in the

width by analyzing additional data sets. Also, the evolution of Γ with M

can be extracted from data. Firstly, this will serve as a test of our prediction

of Γ falling at asymptotically large M . Secondly, known dependence of the

parameters on s and M will give the model even greater phenomenological

significance.

Also, the single-parameter Breit-Wigner parametrization might be insuffi-

cient. In order to pin down the quark (gluon) virtuality distribution, the study

of other exclusive processes will be necessary, for example, jet production.

An important step towards understanding the underlying theory of our

phenomenological approach can be made by going beyond the leading order

in αS while accounting for the off-shellness of the incoming (outgoing) par-

tons. The NLO calculations of the triple differential Drell-Yan cross section is

also important since calculations by different groups lead to different conclu-

sions: the authors of [106] claim to have described the data at high Drell-Yan

transverse momentum very well, while [107] has an opposite result.

Another issue to be addressed is the application of our model to single-

and double-spin asymmetries, which is of enormous importance in light of the

planned experimental efforts. It is also very interesting theoretically, because

higher twist effects are expected to dominate some of the asymmetries [55].



Appendix A

Light cone coordinates

A four-vector in Cartesian coordinates is

a = (a0, a1, a2, a3), (A.1)

and the scalar product, in Minkowski metric, is defined as

(a · b) ≡ aµb
µ = aµg

µµbµ ≡ a0b0 − �a ·�b = a0b0 − a1b1 − a2b2 − a3b3. (A.2)

We use the following definition for light cone coordinates

a = (a+, a−,�a⊥), (A.3)

with

a+ = a0 + a3, (A.4)

a− = a0 − a3, (A.5)

�a⊥ = (a1, a2), (A.6)

the scalar product being

(a · b) =
1

2

(
a+b− + a−b+ − 2�a⊥ ·�b⊥

)
. (A.7)

The following relations are useful

a2 = a+a− − �a2
⊥; (A.8)
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a− =
a2 + �a2

⊥
a+

. (A.9)

Note that an alternative convention exists:

a+ = (a0 + a3)/2, (A.10)

a− = (a0 − a3)/2, (A.11)

�a⊥ = (a1, a2), (A.12)

(a · b) = a+b− + a−b+ − �a⊥ ·�b⊥. (A.13)



Appendix B

Numerics

In order to calculate the triple differential Drell-Yan cross section, we need to

take numerically a four dimentional integral - over the off-shellnesses (m1, m2)

and momentum fractions (ξ1, ξ2). The difficulty is due to following points.The

spectral functions (mi distributions) are sometimes very narrow. There are

integrable divergences at ξ1 = 0 due to the properties of parton distributions

(approximately 1/
√
ξi ), and additionally an integrable divergence on the upper

limits of integrations arising from the analitical integration over the angle

between the partonic transverse momenta. One needs many evaluation of the

cross section during the double fit to the data in order to not only find the

minimal χ2 but also define the error bars for both parameters.

By a change of variables (x→ x2), the divergencies at 0 are softened. How-

ever, because the upper bounds of the inner integrals depend on the outer in-

tegration variables via a complicated system of inequalitites, achieving proper

sampling is not so easy. The two courses of action are

1. finding analitically the upper bounds and programming a custon inte-

gration routine that takes into account the existence of divergencies in

this region,

2. using a good library integration routine, which is able to determine di-

vergencies at each step.

We used both approaches with the same interface enabling simply calculation

of a cross section or a fit, with the output and input from/to an ASCII file or

screen (of course, in case of a fit, the input is only from a file). In the first case,

we programmed in C++ [116] a custom routine using adoptive sub-division

method, explained, for example, in [117]. We inputs the desired cross section
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Figure B.1: χ2 of the double fit corresponding to Fig. 4.12.

accuracy and the maximum recursion depth (usually, 50000). Relative and

absolute accuracies for the sub-integrals are obtained automatically at each

recursion step. This method is faster than others that we tried. The drawback,

though, is that the error bars of the results are not calculated. In the second

case, we used a deterministic adaptive routine from CUBA library [118]. This

routine is a little slower, because the error bars of the result are also calculated.

The results in both routines coincide within accuracy.

Neither method needs a lot of operating memory (<3MB). A calculation

in the off-shell case at each (M , s, xF , pT , D, Γ) takes about 20-50 minutes on

Athlon2400. The lower pT , Γ, or D, the longer the calculation. The intrinsic-

kT approach is an order of magnitude faster. In calculating double differential

cross section, as additional integration over pT is performed, but it is smooth.

The time compared to the triple differential case is about a factor of 5 more.

Two types of double fits are programmed: fitting the pair of parameters

(D, Γ) in the off-shell case and fitting the pair (D, K-factor) in the intrinsic-kT

approach. In the first step, an approximate fit is done by a parabolic method.

After that, one parameter (usually, D) is probed at equal intervals, while

the golden section method is applied for fitting the second parameter. Thus,

a detailed 3D plot of χ2 can be built in order to determine the accuracy of

parameter determination. Due to the quality of the data, the obtained minima

of χ2 were quite shallow (see Fig. B.1).
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