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Chapter 1

Introduction

The goal of this thesis is a description of the properties of baryon resonances and mesons
in nuclear matter. The issue of how mass and width of hadrons change in the medium
is of interest for two reasons. First, various experiments have found indications for such
medium modifications. Second, the change of hadron masses in a medium is related to the
restoration of one of the fundamental symmetries of QCD, namely chiral symmetry, which
is spontaneously broken in the vacuum.

Let us quickly review the current experimental status of in-medium modifications of
hadrons. We begin with a discussion of the ρ meson, which is of particular interest. Its
decay into dileptons, which travel nearly undisturbed in the nuclear medium and can carry
information from hot and dense environments, makes it an ideal probe for in-medium
studies. A much debated signal are the dilepton spectra measured in heavy-ion collisions.
Whereas in the vacuum the e+ e− cross section shows a clear peak around the ρ mass, this
peak appears to be shifted to smaller invariant masses when created in heavy-ion collisions.
This has been found in experiments of the NA45/CERES [3, 4, 129, 76] collaboration and
of the HELIOS collaboration [92]. Complementary information can be obtained from
photonuclear experiments [31], which are expected to take place in the near future at
JLAB. Photonuclear reactions play also an important role for the investigation of baryon
resonances in the nuclear medium. Here the most striking effect is seen in photoabsorption
experiments, where the peak structure in the second resonance region is completely lost
[14, 15, 43]. One possible explanation of this finding is that the D13(1520) resonance
receives a significant broadening in nuclear matter. In [65] a broadening of about 300 MeV
has been obtained for this resonance in a resonance fit to photoabsorption data. Also the
analyses of [32, 73, 112] have corroborated the influence of a broadening of the D13(1520)
on the photoabsorption data. An alternative explanation has been offered in the work of
[55], which is based on a microscopic description of γN → πN and γN → 2πN reactions.
There it has been found that the peak structure may already be lost by the change of
interference patterns due to Fermi motion. Consequently, there a smaller broadening of
only 100 MeV is required to describe the data. Photon- and pion induced reactions on
nuclei have also unraveled the in-medium properties of the P33(1232) resonance [54, 99, 98].
The general consensus is that a broadening of that state of about 80 MeV relative to the
Pauli-blocked width is required by the data. Due to its strong coupling to the Nη channel,
the in-medium properties of the S11(1535) can be analyzed by means of photo induced η
production on nuclei [133, 115]. These experiments suggest only mild modifications of the
S11(1535). A prime source of information on pions and η mesons in nuclear matter is the
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2 Chapter 1. Introduction

study of pionic [11] and η-mesic atoms [48].

We now turn to the connection of the restoration of chiral symmetry with hadron mass
modifications. Chiral symmetry is a symmetry under vector and axial-vector transforma-
tions, which rotate states of opposite parity into each other. In the limit of vanishing
quark masses, the Lagrangian of QCD is invariant under chiral transformations. Since it is
generally believed that QCD is the fundamental theory of strong interactions, one would
expect that the hadronic spectra display this symmetry, i.e. that states of different parity
have the same mass. This is not the case, however. One finds for example, that the masses
of ρ and a1 mesons, having the quantum numbers 1− and 1+ respectively, are not even
approximately the same, with mρ = 0.77 GeV and ma1

= 1.2 GeV. The phenomenon that
a symmetry of the underlying Lagrangian is not exhibited in the ground state of the theory,
is called the spontaneous breaking of that symmetry. According to Goldstones theorem,
the spontaneous breaking of chiral symmetry requires the existence of Goldstone bosons,
which in the case of QCD are the pseudoscalar mesons π, η and K. The spontaneous break-
ing of chiral symmetry is also reflected in the non-vanishing expectation value of the chiral
condensate

〈
ψ̄ ψ
〉

= −(240 MeV)3, which is not invariant under chiral transformations and
would therefore vanish in a chirally restored phase.

It is expected that in the vicinity of the deconfinement phase transition, i.e. at a
few times normal nuclear matter density and/or temperatures around 170 MeV, chiral
symmetry is restored. An indication for that are calculations of the chiral condensate
within the NJL model and lattice QCD, which predict that the chiral condensate drops to
zero at the corresponding temperatures and/or densities [113]. While a general consensus
exists concerning the behaviour of the chiral condensate in the medium, the effects of the
restoration of chiral symmetry on hadron masses are much less clear. The only thing one
knows for sure is that in the chirally restored phase, the masses – or, more general, the
spectral functions – of chiral partners have to be the same. This can be realized in different
ways. Taking as an example ρ and a1 meson, both spectral functions could have peaks of
equal strength at the ρ and the a1 masses or they could be smeared over the entire invariant
mass range [60, 64]. More specific statements are model dependent. For baryon resonances
the influence of chiral symmetry is not very transparent at all, here it is even difficult to
clearly identify chiral partners. The Goldstone bosons, in particular the pion, are better
controlled by chiral symmetry arguments, since their masses have to remain small in the
broken phase.

In two approaches, Brown-Rho scaling and QCD sum rules, an attempt is made to
relate the in-medium changes of condensates and the masses of hadrons. The Brown-Rho
scaling hypothesis [21] is based on the assumption that the scale invariance of the QCD
Lagrangian should also be respected by effective low-energy theories. This line of thought
leads to the conclusion that the in-medium hadron masses display the same scaling as the
chiral condensate itself, which results in typical mass reductions of about 20% at normal
nuclear matter density. Historically, the Brown-Rho scaling has been a major stimulant for
both the theoretical and the experimental search for medium modifications. However, it is
not unanimously accepted within the community and has lead to controversial discussions.
The QCD sum rules use a dispersion relation to relate an integral over a spectral function
to quark and gluon condensates [106, 120]. This way in-medium changes of the condensates
must be met by changes of the spectral function. Here most analyses have been concerned
about the ρ meson [62, 47, 78]. As a general feature, the sum rules require a shift of spectral
strength down to smaller invariant masses. On a quantitative level, this redistribution may
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proceed in various ways: assuming a small width of the ρ meson, an attractive mass shift
compatible with Brown-Rho scaling is predicted, which can be substantially weakened
or even reversed into repulsion if the width of the ρ is sizeable [78]. On a quantitative
level, one should be aware that uncertainties exist concerning the size and the in-medium
behaviour of various condensates entering the sum rule analysis.

We have now elucidated that the in-medium properties of hadrons are in principle linked
to a fundamental property of QCD, namely the spontaneous breaking of chiral symmetry
and its (partial) restoration at finite temperatures and/or densities. While this serves
certainly as a main motivation to study in-medium physics, one has to realize that modi-
fications of mass and width are expected from standard many-body theoretical arguments
as well. For example, in nuclear matter a hadron can scatter inelastically on a nucleon
which results in a loss of that hadron. Formally this is described by the introduction of a
complex in-medium self energy. The imaginary part of the self energy describes corrections
to the lifetime of the particle and its real part changes of its mass. For sufficiently small
densities, the in-medium self energy is related to the hadron-nucleon forward scattering
amplitude by the low-density theorem [29]. Up to which extent a many-body theory –
based essentially on vacuum hadron-nucleon scattering amplitudes – incorporates effects
from the restoration of chiral symmetry, is an open question. Given an ideal hadronic the-
ory which takes into account all our knowledge of hadron-nucleon scattering in the vacuum
and of many-body effects like Pauli-blocking or 3-body absorption, a careful comparison
with experimental data would help to decide whether additional mechanisms, which go
beyond the standard many-body framework, have to be invoked. In any case, a sound
many-body theory is required if one wants to make quantitative statements about the
partial restoration of chiral symmetry in hot and dense matter.

Stimulated both from experiment and the findings of Brown-Rho scaling and QCD sum
rules, a significant theoretical effort has been undertaken to construct hadronic models for
the in-medium properties of ρ mesons, see for example [52, 111, 122, 62, 38, 107, 24, 84].
A comprehensive overview of these models is given in the report [113]. These models
differ significantly in their setup and in their quantitative results, but they all predict that
spectral strength is moved to smaller invariant masses in nuclear matter, as is suggested
both from QCD sum rules and from dilepton spectra. However, at the moment the dilepton
spectra do not allow for a discrimination of the hadronic models for the ρ meson. Maybe
this situation can be improved by the forthcoming experiments with the HADES detector at
GSI. Concerning the properties of the P33(1232) and the pion in nuclear matter, exhaustive
studies have been carried out in the framework of the ∆-hole model or related models
[33, 99, 98, 7, 49, 132, 61, 67, 126]. Less well studied are the baryon resonances D13(1520)
and S11(1535). For the former, the broadening suggested from photoabsorption data can
be generated dynamically by coupling this state either to the ρ meson [107] or to the pion
[67]. In the works [26, 56] the in-medium properties of the S11(1535) have been found to
be small, which is in agreement with experimental observations.

From a theoretical point of view it would be desirable to describe as many in-medium
effects as possible within one model in order to arrive at a combined understanding of these
phenomena. For example, reshuffling the spectral strength of the ρ meson (as suggested
from dilepton spectra) might have an immediate impact on the width of the D13(1520)
[107] and can help to explain the nuclear photoabsorption data [32, 73, 112]. Similarly, a
quantitative analysis of the optical potential of the η meson is constrained from the fact
that recent data on η photoproduction [115, 133] suggest that the in-medium modifications
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experienced by the S11(1535) are relatively small. To this end we have set up a model which
generates the in-medium modifications of mesons and baryon resonances within a self-
consistent coupled channel analysis. The mesons are dressed by the excitation of resonance-
hole loops and a remarkably complicated spectrum with various peak structures is found
for the mesonic spectral functions. In a second step the in-medium self energy of the baryon
resonances arising from the dressing of the mesons is calculated. The corresponding set
of coupled-channel equations is then solved iteratively. In the course of the iterations one
leaves the regime of the low-density theorem [29], which relates the in-medium self energy
to vacuum scattering amplitudes. It is least reliable for systems close to threshold, where
already small changes of the available phase space can lead to large modifications of the
resonance and therefore the meson as well. A well-known example is the Λ(1405) coupling
to the KN channel, see for example [63, 83]. Another case is the ρND13(1520) system: in
a previous publication [107], a first step in this direction was done and strong effects from
the interplay of ρ and D13(1520) were reported, modifying both the ρ spectral function and
that of the baryon resonance. We have extended the model presented in [107] in several
ways: in order to guarantee the normalization of the vacuum and the in-medium spectral
functions, we employ dispersion relations to generate the real part of the self energies.
Since most baryon resonances couple strongly to the pion, a complete analysis of their in-
medium properties requires also a dressing of the pion. In order to obtain reliable estimates
for the S11(1535), which couples dominantly to the ηN channel, the η meson is included as
well. Finally, stimulated by the fact that the in-medium width of the P33(1232) needs to be
protected by repulsive short-range terms, we have developed a framework that allows for
the incorporation of such effects for resonances with negative parity, such as the D13(1520)
and the S11(1535).

The thesis is organized in the following way. In Chapter 2, we study under some
simplifying assumptions the pion and ∆ in nuclear matter. This chapter is meant to
introduce the main concepts that will be relevant for the rest of this work. It discusses
the formation of particle-hole states from resonant pion-nucleon scattering and investigates
how the ∆ width is modified due to changes of the pion dispersion relation. Some emphasis
is given to the role of short-range correlations.

Chapter 3 is concerned about the description of ρ meson and baryon resonances in the
vacuum. There we explain how we calculate the vacuum self energy. Special care is taken
with respect to the use of dispersion relations to obtain the real part of the self energy.

In Chapter 4 we discuss up to which extent our model is constrained from data on
meson-nucleon data. In particular, we discuss problems connected with the experimental
identification of the coupling of baryon resonances to the ρ meson. In Chapter 5, the
basic theoretical ingredients of our model are laid out. We give explicit formulae for
the in-medium self energies of mesons and baryon resonances and discuss their relation
to the low-density theorem, i.e. we give an interpretation of the self energy in terms of
scattering amplitudes. In Chapter 6 we discuss in some detail, how the nucleon-nucleon
and the resonance-nucleon interaction receive contributions from short-range correlations,
which modify the meson exchange picture at small distances. Here we also extend the
formalism for the description of such correlations to the case of negative parity resonances
and show how short-range correlations affect the in-medium self energies of mesons and
baryon resonances.

The role of mean-field potentials of Walecka type for the in-medium properties of
hadrons is discussed in Chapter 7. In particular, we explain that these potentials have
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a large effect on the self energy of baryon resonances.
In Chapters 8, 9 and 10 we present the results of our model. In Chapter 8, we give the

main results found for the in-medium properties of ρ mesons, pions and η mesons as well as
the baryon resonances D13(1520), P33(1232) and S11(1535). Some general features of these
results are studied in Chapter 9. There we comment on the density dependence of the self
energies, on the influence of dispersion relations and the effect of mean field potentials.
Also a systematic study concerning the momentum dependence of the ρ spectral function
is carried out. In Chapter 10 the in-medium properties of the ω as obtained within a
resonance-hole model are discussed.

In Chapter 11 we give a summary of the thesis and discuss in which way our model
can be extended. In the Appendices we present some necessary details of the calculations,
which have not been mentioned in the main text in order to enhance the readability of the
thesis.
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Chapter 2

The Pion in Nuclear Matter

In this Chapter we will discuss the propagation of pions in nuclear matter within the well
known frame work of the ∆-hole model [99, 33, 100]. The aim is to introduce the main
physical concepts that will be relevant for the rest of this work. Within the ∆-hole model,
both the properties of pions and ∆ resonances in nuclear matter are studied.

We will begin with a discussion of the formation of so called particle-hole states. These
form an integral part of the pion self energy in nuclear matter and lead to a complicated
multi-peak structure in the pion spectral function. Apart from the in-medium properties
of the pion, the strong coupling in the π N ∆ system determines also the shape of the ∆
spectral function and leads to a finite width of Γ = 120 MeV already in the vacuum. This
gives rise to the question of self-consistency, since the in-medium modifications of the pion
which are due to the ∆ will in turn influence the properties of the ∆ in nuclear matter and
so forth. The calculations carried out in this Chapter are of approximative nature only.
This allows to furnish the discussion with analytical formulae, thus providing a qualitative
understanding of the formalism.

2.1 Particle-Hole Formation

In this Section the basic ingredient of π propagation in nuclear matter, namely the forma-
tion of particle-hole states, will be discussed. The physical picture is that by scattering on
a nucleon provided by nuclear matter the meson converts into a baryon resonance, thus
creating a particle and a nucleon hole. Therefore one often refers to this process as the
formation of a resonance-hole or particle-hole state. The formation can happen in two
ways: either the resonance-hole pair is formed with an incoming or with an outgoing pion,
corresponding to s and u channel scattering, respectively. The corresponding Feynman
diagrams are depicted in Fig. 2.1. In the following we will concentrate on the excitation
of ∆-hole pairs, where ∆ stands for the P33(1232) resonance, which dominates the pion
propagation in nuclear matter. Besides the ∆-hole mode in the pion propagation, there are
further dominant particle-hole excitations, for example the N ?(1520)N−1 state coupled to
the ρ meson or the N ?(1535)N−1 state coupled to the η meson. The discussion of the
in-medium properties of ρ, π and η meson will form the central part of this work.

Let us now go into the details. To keep the expression as simple as possible, we neglect
the decay width of the ∆ resonance as well as Fermi motion and use non-relativistic vertex
functions. Studies similar to ours have for example been performed in [50, 40]. At this stage,
the reader should not worry about the numerical factors in the following formulae. They

7
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Figure 2.1: Feynman diagrams representing the resonance hole excitation. Left: s-channel
contribution. Right: u-channel contribution.

are not essential for a qualitative understanding and will be explained in later Sections. We
need to calculate the self energy of the pion, Π∆(q0,q), in terms of which the in-medium
propagator of the pion is defined as:

Dmed
π (q0,q) =

1

q2
0 − q2 −m2

π − Π∆(q0,q)
. (2.1)

Within the above assumptions, the self energy of the pion, taken as the sum of s and u
channel contributions, is given by (cf. [50] and Chapter 5.2.1):

Π∆(q0,q) =
16

9

(
f

mπ

)2

q2

∫
d4p

(2 π)4
Gmed

N (p) (G∆(p+ q) + G∆(p− q))

=
8

9
q2

(
f

mπ

)2

ρ
Ē

q2
0 − Ē2

=
q2 ρC∆

q2
0 − Ē2

. (2.2)

Here q = (q0,q) denotes the four-momentum of the meson and p that of the nucleon. By

Ē =
√

m2
∆ + q2 −mN (2.3)

we denote the energy, which is necessary for a pion with given momentum q to scatter on
a nucleon at rest into an on-shell ∆ and the factor C∆ is given by:

C∆ =
8

9

(
f

mπ

)2

Ē . (2.4)

Neglecting the decay width, the non-relativistic ∆ propagator G∆ has the form:

− iG∆(k0,k) =
1

k0 −
√

m2
∆ + k2

. (2.5)

Note that via the relativistic dispersion relation for the energy of the ∆ kinematic correc-
tions of the propagator are taken into account. By Gmed

N (p) the non-relativistic nucleon
propagator is denoted (cf. Appendix B.5):

− iGmed
N (p) =

1 − θ(pF − |p|)
p0 − E(p) + iε

+
θ(pF − |p|)

p0 − E(p) − iε
. (2.6)



2.1. Particle-Hole Formation 9

It contains two parts [33]: the first part represents the propagation of nucleons above the
Fermi sphere, and the second part describes hole states. Since a meson can not decay
into two baryons, only the hole propagation gives a contribution to the self energy and
the nucleon momentum has to be smaller then the Fermi momentum pF . In going to the
second line, we have made the low-density approximation that the Fermi momentum pF

is small and that therefore the 4-vector of the nucleon momentum may be approximated
by p = (mN , 0). Then the integrand can be pulled out of the integral. The remaining
integral then yields a factor ρ/4 in spin-isospin symmetric nuclear matter. In principle,
replacing the absolute value of the nucleon momentum by the Fermi momentum is a better
approximation. However, when keeping the nucleon momentum finite, one needs to take
into account Fermi motion and the simple form of the result of Eq. 2.2 is lost.

After iterating this self energy insertion by means of the Dyson-Schwinger equation (see
Appendix D), one obtains for the full meson propagator:

Dmed
π (q0,q) =

1

q2
0 − E2

π − q2 ρC∆

q2
0 − Ē2

.

The meson energy Eπ is given by Eπ =
√

m2
π + q2, with mπ the meson mass. Let us now

examine, where the pole(s) of Dmed
π (q0,q) is (are) located. To this end, the propagator is

rewritten as:

Dmed
π (q0,q) =

q2
0 − Ē2

(q2
0 − E2

π)(q2
0 − Ē2) − q2 ρC∆

(2.7)

=
q2
0 − Ē2

(q2
0 − q2

01)(q
2
0 − q2

02)

=
a1

q2
0 − q2

01

+
a2

q2
0 − q2

02

.

The q0i are solutions of the equation

(q2
0 − E2

π)(q2
0 − Ē2) − q2 ρC∆ = 0

⇒

q2
01 =

Ē2 + E2
π +

√

(Ē2 − E2
π)2 + 4q2 ρC∆

2
(2.8)

q2
02 =

Ē2 + E2
π −

√

(Ē2 − E2
π)2 + 4q2 ρC∆

2
.

The strength factors ai follow by means of the relation

ai = Dmed
π (q0,q)(q2

0 − q2
0i)|q0=q0i

,

leading to

a1 =
q2
01 − Ē2

q2
01 − q2

02

=
1

2
− ∆E

2
√

∆E2 + q2 ρC∆

(2.9)

a2 =
Ē2 − q2

02

q2
01 − q2

02

=
1

2
+

∆E

2
√

∆E2 + q2 ρC∆

,
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Figure 2.2: Left: Dispersion relation of the interacting (solid, dashed) and free (dotted)
modes in the π N∆ system. Right: Strength of the interacting modes. The results are
shown for density ρ = ρ0.

where ∆E = Ē2 −E2
π has been introduced. These formulae are identical to those obtained

in [50].
This result can be interpreted in the following way: due to the existence of two poles,

the pion propagates in nuclear matter in two different modes. One is related to the meson
mode already present in the vacuum and the other one to the excitation of ∆ hole states.
The strength of both modes follows from Eq. 2.9. This scenario is easily extended to
the case of the coupling to n resonances: then the propagator would have n + 1 poles,
corresponding to the propagation of n+ 1 modes.

Next we discuss the dispersion relations of Eq. 2.8 and the relative strength in both
modes as given by Eq. 2.9. In the limit of a vanishing coupling ρC∆, the dispersion
relations are given by Eπ(q) and Ē(q). After the coupling has been turned on, both
modes repel each other, as can be seen by expanding Eq. 2.8 for small coupling C∆, i.e.
q2 ρ C∆

∆E2 � 1:

q2
01 =

Ē2 + E2
π

2
+

∣
∣
∣
∣

Ē2 − E2
π

2

∣
∣
∣
∣
+ ε

=

{
Ē2 + ε if Ē2 > E2

π

E2
π + ε if Ē2 < E2

π

q2
02 =

Ē2 + E2
π

2
− |Ē

2 − E2
π

2
| − ε (2.10)

=

{
E2

π − ε if Ē2 > E2
π

Ē2 − ε if Ē2 < E2
π

,

with ε = q2 ρ C∆

|∆E| > 0. Note that the repulsion gets weaker with increasing energy difference
∆E. If on the other hand ∆E becomes very small, then the above expansion of Eq. 2.8
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does not hold any longer. In the limiting case ∆E = 0 one obtains the following solutions:

q2
01 = E2 +

√

q2 ρC∆ (2.11)

q2
02 = E2 −

√

q2 ρC∆ ,

where E2 = Ē2+E2
π

2
.

In Fig. 2.2 we show the dispersion relation of the interacting system (solid and dashed
line) together with the free dispersion relations (dotted lines). Here and for the remaining
plots in this Chapter we take for the density ρ = ρ0 = 0.15 fm−3. These results are very
interesting. They display effects from level repulsion and furthermore the full solutions
q01 and q02 change their character as the momentum increases. This reflects the fact that
the free dispersion relations Eπ and Ē cross each other at momenta around q = 0.3 GeV.
The solution q02 (solid line) corresponds at small momenta to the pion mode, but at large
momenta it resembles the ∆ hole mode. Similarly, the solution q01 (dashed lined) switches
from the ∆ hole mode at small momenta to the pionic mode at large momenta. This
behaviour of the solution is also seen in Eq. 2.10. The distribution of strength in both
branches follows along these lines, see right panel of Fig. 2.2: At small momenta more
strength sits in q02 (solid line) and at large momenta in q01 (dashed line), implying that in
general more strength is accumulated in the meson branch compared to the particle-hole
branch. There is a crossing point (at Eπ = Ē) where the strength in both branches is
equal. At this point the solutions q01 and q02 switch from the pion to the ∆ hole mode and
vice versa.

As we have just seen, the full dispersion relations seem to repel each other as compared
to the free case. This phenomenon is known as level repulsion and can be observed in any
quantum mechanical two-level system with a perturbation coupling both levels. To see
that, consider the following Hamiltonian:

H = H0 + V

=

(
E1 0
0 E2

)

+

(
0 V
V 0

)

. (2.12)

The eigenvalues λ1/2 of H have the form

λ1/2 =
E1 + E2

2
±
√
(
E1 − E2

2

)2

+ V 2 . (2.13)

Identifying E1 = E2
π, E2 = Ē2 and V =

√

q2 ρC∆, one recovers Eq. 2.8.
Let us now turn to the strength factors ai of Eq. 2.9. They fulfill a sum rule a1+a2 = 1.

This fact suggests a probabilistic interpretation of the ai: they give the probability that
the meson is either in the mesonic mode or in the particle-hole mode. One can recast the
sum rule in a more formal manner. Using that

Im 1
q2
0i − q2

0 + i ε
= −π δ(q2

0i − q2
0) , (2.14)

the following expression holds:

−
+∞∫

−∞

dq0 q0
π

ImDmed
π (q0,q) =

+∞∫

−∞

dq0 q0 Amed
π (q0,q) = 1 (2.15)

Amed
π (q0,q) = − 1

π
ImDmed

π (q0,q) .
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Figure 2.3: Contribution from short-range correlations to the pion self energy. Note that
in principle one has independent parameters g′ for the interaction of ∆N−1 and ∆N−1

loops, of ∆N−1 and NN−1 loops and of NN−1 and NN−1 loops. For simplicity we take
these parameters to be the same in this Chapter.

The quantity Amed
π (q0,q) is called spectral function and will play a central role in this work.

One can indeed show, that the above sum rule for the spectral function is a very general
statement and holds true for any spectral function obeying certain restrictions. Details
can be found in Appendix E.

2.2 Short-Range Correlations and Meson Propaga-

tion

A modification of the above results arises from short-range correlations. In the context
of meson propagation this means, that a particle-hole state, once it is produced, does
not necessarily have to decay into a pion, but might rather form a complex multi-meson
state. Phrased differently, this reflects the fact that the nucleon-nucleon or resonance-
nucleon interaction is not exhausted by pion exchange contributions alone, see Chapter
6. As detailed there, the modifications of the pion exchange interaction are conveniently
summarized in a point interaction with a strength parameter g ′, which is often called the
Migdal parameter. The lowest order contribution of such short-range interactions to the
pion self energy is shown in upper left diagram in Fig. 2.3.

After summing up the short-range corrections, one arrives at a modified expression for
the propagator (cf. Eq. 2.7):

Dmed
π (q0,q) =

1

q2
0 − E2

π − q2 χ∆

1 − g′ χ∆

. (2.16)

Here we have introduced the loop function

χ∆ = ρC∆/(q
2
0 − Ē2) . (2.17)
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Figure 2.4: Influence of the short-range correlations. Left: Dispersion relations q01, q02
and q03 of the interacting modes in the π N∆ system for g′ = 0.6 (dash-dotted lines) and
g′ = 0. Right: Same for the strength in all three branches. q01 and q02 correspond to
∆-hole and pion mode, q03 is the nucleon-hole mode.

In order to understand the effect of g′, let us consider the self energy:

Π∆(q0,q) =
q2 χ∆

1 − g′ χ∆

=
q2 ρC∆

q2
0 − Ē2

q2
0 − Ē2

q2
0 − Ē2 − g′ ρC∆

(2.18)

=
q2 ρC∆

q2
0 − Ē2 − g′ ρC∆

.

Apparently the self energy can be cast into a form similar to the case of g ′ = 0, if the
replacement Ē2 → Ē2 + g′ ρC∆ is made. With this adjustment the results from Eqs. 2.8
and 2.9 are valid also if short-range correlations are included. This implies that through the
short-range interactions an additional repulsion for the particle-hole branch is induced (cf.
[50]). By level repulsion arguments then also the meson branch will be shifted upwards.

From now on we study a slightly extended version of the ∆ hole model and include also
the nucleon-hole loop, which leads to the self energy contribution:

ΠN(q0,q) = 2q2

(
fN

mπ

)2

ρ
ĒN

q2
0 − Ē2

N

(2.19)

χN(q0,q) = 2

(
fN

mπ

)2

ρ
ĒN

q2
0 − Ē2

N

, (2.20)

with ĒN =
√

m2
N + q2 − mN . The inclusion of the nucleon does not imply principal

complications, but we refrain from giving analytical results for position and strength of
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Figure 2.5: Influence of the short-range correlations on the dispersion relation of the NN−1

pair. Shown is the dispersion relation for g′ = 0 (solid) and g′ = 0.6 (dashed).

the individual poles of the pion propagator. Instead, numerical solutions will be presented.
We also multiply the total self energy with a form factor:

F 2(q) =

(
Λ2 + q2

∆

Λ2 + q2

)2

. (2.21)

The parameter q∆ is the momentum of an on-shell pion from the decay of an on-shell ∆.
For the cutoff we take Λ = 2 GeV. This form factor is chosen for the following reason:
in the following two Sections 2.3 and 2.4, we calculate the width of the ∆, which is also
multiplied by the same form factor. For an on-shell ∆ the form factor F is equal to unity
and therefore does not change the on-shell width of the ∆. It is somewhat arbitrary to
multiply ΠN with this form factor since it includes the momentum q∆. However, since the
results presented here are only of qualitative nature, we have not chosen a different form
factor for the πNN vertex.

If the nucleon-hole loop is added to the model, one needs to consider interactions
between the following particle-hole loops: ∆N−1 with ∆N−1, ∆N−1 with NN−1, and
NN−1 with NN−1, see Fig. 2.3. This means, that one could in principle have three
independent short-range parameters g′ describing the strength of these interactions. For
simplicity, we will assume a universal coupling for all particle-hole loops.

In Fig. 2.4 we show position and strength of the poles both for the case of no short-
range correlations and and for a value of g′ = 0.6. The calculations without short-range
correlations are depicted by dotted lines (nucleon-hole, q03), solid lines (q02) and dashed
lines (q01). The results with short-range correlations are shown in dash-dotted lines. As
expected there is a moderate repulsion of all three levels, when the short-range correlations
are switched on. In addition, the strength of the branches is somewhat rearranged.

Historically, the effects of short-range correlations on the in-medium properties of pions
have been of great interest since the possibility of pion condensation was pointed out in
[93, 94]. Pion condensation occurs if the propagator has a pole at q0 = 0, see for example
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Figure 2.6: Influence of the ∆ on position (left) and strength (right) of the nucleon branch.
The calculation with (without) the ∆ is indicated by solid (dashed) lines. In both calcu-
lations no short-range correlations are included.

[75, 94]. Let us now discuss how pion condensation is removed by short-range correlations.
In Figs. 2.5 we show the nucleon-hole branch as arising from a full calculation with (dashed
line) and without (solid line) short-range correlations. One finds that for g ′ = 0 the nucleon-
hole branch dives into the region of negative q2

0 at finite momenta ranging from q = 0.2 GeV
to q = 0.7 GeV, where the strength in this branch is non-vanishing (cf. right plot in Fig.
2.4). This implies the existence of pion condensation for these momenta. The situation
is remedied after the short-range correlations have been introduced, and the nucleon-hole
branch is situated in the region of positive q2

0 for all momenta. It is also interesting to
understand the mechanism responsible for the downward shift of the NN−1 excitation. As
can be seen in Fig. 2.6, it is the influence of the ∆ which, by level repulsion, moves the
nucleon branch into regions of negative q2

0 (cf. [99, 33]). As shown on the right panel, the
presence of the ∆ enhances the strength in the nucleon branch by up to a factor of 3.

2.3 The ∆ Properties in Medium

In this Chapter we discuss the properties of the ∆ in nuclear matter. Due to its coupling
to the Nπ channel, the ∆ resonance has a vacuum width of 120 MeV. In the medium there
will be important corrections to this free space value from Pauli-blocking and collisional
broadening. Due to Pauli-blocking, the phase space available for the nucleon is reduced
since its momentum must be larger than the Fermi momentum. Collisional broadening
acts in the opposite direction: by interacting with the surrounding nucleons in nuclear
matter, the ∆ can either be absorbed via the process ∆N → N N or it can be scattered in
a different phase space element via ∆N → N ∆, which is often referred to as quasi-elastic
scattering in the literature [100, 98]. Both processes shorten the lifetime of the ∆ and thus
increase its width. We mention that the numerical results presented in this Chapter aim
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Figure 2.7: Contribution to collisional broadening. Left: absorptive (∆N → N N) process.
Right: quasi-elastic (∆N → N ∆) process.

at a qualitative understanding of the underlying mechanisms and should not be taken at
face value.

To lowest order in the nuclear density ρ, the in-medium broadening follows from the
formula [32, 65, 22]:

Γcoll = ρ v σtot
∆ ,

where ρ is the density, v is the velocity of the ∆ relative to nuclear matter and σtot
∆ denotes

the total ∆N cross section. We will come back to this formula in Section 5.3.2, where
we demonstrate explicitly that the Feynman diagrams shown in Fig. 2.7 – dressing the
meson propagator with only one particle-hole loop – correspond to Γcoll. Then the in-
medium width is given as a sum of the Pauli-corrected vacuum width ΓPauli and collisional
broadening:

Γmed = ΓPauli + Γcoll . (2.22)

In this Section as well as in the rest of this work we will go beyond this approximation and
replace the vacuum pion propagator by the in-medium one, i.e. we resum the particle-hole
loops in the pion propagator. In this Section, short-range correlations will only be taken
into account for the pion self energy. As we will discuss in the following Section 2.4, the
short-range correlations lead to additional diagrams for the ∆ self energy, which are not
considered in this Section.

In terms of the self energy Σ∆(k0,k), the propagator of the ∆ is defined as:

G∆(k0,k) =
1

k0 − E∆(k) − Σ∆

2
√

k2

. (2.23)

Note that Σ∆ is averaged over the spins of the ∆, which with our normalization leads to
the additional factor 2

√
k2. For details concerning the averaging process see Appendix

D.1.1. Keeping this in mind, Σ∆ follows from the integral:

Σ∆(k0,k) = −
(
f

mπ

)2
16

3

√
k2mN

∫
d4p

(2π)4
F 2(k − p)(k − p)2 GN (p)Dπ(k − q) .(2.24)

Here GN(p) and Dπ(k − q) denote the propagator of pion and nucleon, respectively. As
in Section 2.1, we assume a non-relativistic framework for nucleon and ∆. To obtain
the imaginary part of the self energy, we use Cutkosky’s cutting rules. They require
to replace the propagators of nucleon and pion by their respective spectral functions.
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Since the particles have no width, these spectral functions are proportional to δ functions
multiplied with a strength factor a, which is the residue of the δ peak. When calculating
the imaginary part of the vacuum self energy, both propagators have poles at the on-
shell points, p2 = m2

N and q2 = (k − p)2 = m2
π. The residues at these poles are equal

to unity. In the medium, Pauli-blocking of the nucleon has to be taken into account.
Furthermore, as discussed before, the pion propagator now contains two additional poles
from the excitation of nucleon-hole and ∆-hole states. Each of these three poles comes
with a (momentum dependent) strength factor ai. Taking this into account, we find for
the width Γ = −Im Σ∆/

√
k2 of a ∆ at rest:

Γvac(k
2) =

1

6

(
f

mπ

)2
mN

π
√
k2

q3 F 2(q) (2.25)

ΓPauli(k0,k = 0) =
1

6

(
f

mπ

)2
mN

π
√
k2

q3 F 2(q) θ(|q| − pF ) (2.26)

Γmed(k0,k = 0) =
1

6

(
f

mπ

)2
mN

π
√
k2

∑

q2
i

ai q
3 F 2(q) θ(|q| − pF ) . (2.27)

The sum in the third equation extends over all three poles of the in-medium pion propagator
q2
i = q2

0i − q2. The 3-momentum q = q(k2, q2
i ) of the pion is a function of the invariant

mass k2 of the ∆ and that of the pion mode q2
i . The θ-function takes into account effects

from Pauli-blocking and pF = 0.27 GeV is the Fermi momentum at normal nuclear matter
density. Also included is a form factor F (q). The form of these results is very intuitive:
the vacuum result contains phase space factors and a squared matrix element proportional
to q2, evaluated at the kinematics corresponding to a decay into an on-shell pion. In the
nuclear medium, the decay can happen into three different branches. The decay into any of
those branches is of the same form as the vacuum width if one corrects for the (momentum
dependent) mass of the branch. The total width is then given as a sum over these branches
where each branch is weighted by the appropriate strength factor ai.

In order to further illuminate this picture, we show in Fig. 2.8 the three dispersion
relations q2

i of the interacting pion (solid lines) as well as the invariant mass available for
the pion from the decay of an on-shell ∆ (dashed line), which for a ∆ at rest is given
by (

√
k2 − EN )2 − q2, where EN =

√

m2
N + q2. The points where the latter crosses the

pion dispersion relations indicate the invariant mass q2
i of the individual branches in Eq.

2.25. Whereas a decay into the highest lying branch q2
1 is not only possible for an on-shell

∆ with invariant mass 1.232 GeV, the remaining two branches are easily accessible. For
comparison, we also indicate the position of the vacuum pion (dotted lines) and the Fermi
momentum (dash-dot-dotted line).

Let us now turn to a physical interpretation of Eq. 2.27. In light of Eq. 2.22 it
is tempting to associate the decay into the individual branches either with the meson-
nucleon decay (Γvac) or with ∆N scattering processes (Γcoll). We will argue now, that such
an interpretation is in general not possible. In our model, the mode q2

3 always represents
the NN−1 branch, and consequently we can identify this mode with the absorptive process
∆N → NN . Going beyond Eq. 2.22, which describes ∆ absorption on a nucleon with the
exchange of a vacuum pion, in the corresponding part of Eq. 2.27 the exchanged pion is
medium modified by the coupling to NN−1 and ∆N−1 states. More complicated is the
interpretation of the remaining two branches, since – as discussed in Section 2.1 – they
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Figure 2.8: Shown are the three poles q2
i of the in-medium pion propagator (solid lines)

together with the invariant mass available for the pion in the decay of an on-shell ∆ at
rest, which is given by (

√
k2−EN)2−q2 (dashed line). For comparison also the position of

the free pion (dotted line) and the Fermi momentum (dash-dot-dotted line) are indicated.

correspond to different modes at different momenta. Thus, it is in general not possible
to relate one of these branches to elastic scattering ∆N → N∆ or the decay ∆ → Nπ.
However, by inspecting Fig. 2.8 and Fig. 2.2 one sees, that the kinematics for the decay
of an on-shell ∆ at rest is such that it is legitimate to interpret branch q2

2 as the ∆-hole
branch and branch q2

1 as the pion branch as both branches are tested for momenta q > 0.3
GeV. Since the in-medium dispersion relations differ significantly from that of a pion in
vacuum, the resulting decay width into the in-medium pion branch can differ significantly
from the free vacuum width ∆ → Nπ. For the kinematics described before, the in-medium
pion branch is heavier than the vacuum one and thus we expect a smaller contribution
from this branch. Also, the in-medium branches have strength factors ai < 1, which leads
to a further reduction of the decay into the pion branch relative to the vacuum decay. This
suggests that a splitting of Γmed according to Eq. 2.22 is not sensible when the particle-hole
loops are resummed in the meson propagator.

The in-medium width Γmed of a ∆ at rest at normal nuclear matter density is shown
by the dashed line in the left plot of Fig. 2.9 for a density ρ = ρ0. For comparison also
ΓPauli is displayed by the solid line. For the short-range correlations in the pion propagator
we take g′ = 0.4. For a ∆ at rest, ΓPauli is either zero below a critical invariant mass or
it is equal to its vacuum value, depending on whether the nucleon momentum is larger
or smaller than the Fermi momentum. At normal nuclear matter density the width of an
on-shell ∆ is completely blocked and opens up only at invariant masses of about 1.27 GeV,
as can be seen by the step in the solid line in Fig. 2.9 at this energy. After the interactions
with the particle-hole loops have been switched on, the width increases dramatically, as
indicated by the dashed line in the left plot of Fig. 2.9. This is due to phase space effects
which allow for very large decay widths into the branches q2

2 and q2
3 , whereas the branch

q2
1 is energetically not available for an on-shell ∆ (cf. Fig. 2.8) and contributes only at

energies above 1.45 GeV, thus explaining the step at this energy in Γmed. The individual
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Figure 2.9: Left panel: Γmed (dashed) and ΓPauli (solid) of the ∆ at normal nuclear matter
density with g′ = 0.4. Right panel: Contribution of the individual poles q2

i to the total
in-medium width. The sum of these contributions gives the in-medium width indicated by
the dashed line in the left plot. The density is ρ = ρ0.

contributions to Γmed are shown in the right plot of Fig. 2.9.
The in-medium width Γmed of the ∆ is in the order of 400 MeV for an on-shell ∆,

corresponding to a broadening of roughly 300 MeV, which is much larger than the empirical
value of 80 MeV [54]. We will show in the next Section, that the vertex corrections
introduced by the short-range interaction help to substantially reduce this number.

Let us make a general comment at this point: not always does the coupling to addi-
tional many-body states increase the width. Imagine a situation where the excitation of a
resonance-hole state requires more energy than available from the decay of the resonance
under consideration. Then only the meson pole will contribute, however with a reduced
strength a < 1, since some strength is carried by the resonance-hole loop. As a result, the
decay width in the medium could be smaller than in vacuum, if the reduced strength in the
meson pole is not compensated for by enhanced phase space factors from level repulsion.
This effect is entirely due to the summation of the resonance-hole loop insertion into the
meson propagator according to the Dyson-Schwinger equation. By considering only the
lowest diagram for the self energy, involving just one resonance-hole loop insertion, one
would find that the width does not change at all, if the resonance can energetically not be
reached.

2.4 Effect of Short Range Correlations

In Chapter 6 we discuss the influence of short-range correlations on the NR interaction in
nuclear matter. As a result we will find that the correlations not only suggest an in-medium
modification of the meson propagator, but also generate vertex corrections and additional
contact terms in the NR interaction. We now study the effect of these terms on the width
of the ∆. The formulae used in this Chapter will be derived in Chapter 6.
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R R R R

Figure 2.10: Diagrams illustrating the influence of short-range correlations on the decay
width. Left panel: vertex corrections, right panel: direct contribution. Each loop repre-
sents a resummed nucleon-hole or resonance-hole bubble.

Taking into account the vertex corrections and the additional term from the short-range
interactions, the in-medium ∆ self energy is given by:

Σmed
∆ (k0,k) = −

(
f

mπ

)2
16

3

√
k2 mN

∫
d4p

(2π)4
GN (p)F 2(k − p) × (2.28)

×
[

(k − p)2Dmed
π (k − p)

(1 − g′ χ)2
+

g′

1 − g′ χ

]

.

The notation here is the same as in the previous Section, see Eq. 2.24. By Dmed
π the

in-medium propagator of the pion is denoted. For χ we have χ = χN + χ∆, see Eqs. 2.17
and 2.20.

Comparing this result with Eq. 2.24, two additional factors are found: a vertex correc-
tion factor 1/(1− g′ χ)2 and an additional term g′/(1− g′ χ). The vertex correction factor
1/(1 − g′ χ)2 can be motivated as follows: due to the short-range correlations, the ∆ can
not only couple to a pion but also to a particle-hole state. This is indicated by the bubbles
at the left and right self energy vertices in the left graph of Fig. 2.10. Each bubble yields a
factor g′ χ and a resummation gives 1/(1−g′ χ). This factor appears squared since left and
right vertex of the self energy are dressed. One can also have a term where the pion does
not appear at all in the ∆ self energy. This term, which is depicted by the right graph in
Fig. 2.10, will be called ”direct term” from now on. Again, the factor 1/(1 − g ′ χ) results
from a resummation of particle-hole loops.

Let us assume for now that only ∆-hole states are included in the calculation. The
numerical results shown later in this Section are obtained with inclusion of the nucleon-
hole loop as well. When calculating the imaginary part of the self energy, one needs to
locate the poles of the terms in the brackets. The residue of the poles then gives the
strength with which these poles contribute to the width. Inspecting Eq. 2.28, one sees
that the integrand has poles at the pion propagator Dmed

π . In addition, there is a new pole
at

1 − g′ χ∆ . (2.29)

Taking this into account we find for the width Γmed = −Im Σmed
∆ /

√
k2 of a ∆ at rest (cf.

Eq. 2.25):

Γmed(k0,k = 0) =
1

6

(
f

mπ

)2
mN

π
√
k2

∑

q2
i

q3 ai hi F
2(q) θ(|q| − pF ) +X . (2.30)
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a(g′ = 0) a(g′ = 0.4) h Γ(g′ = 0)[MeV] Γ(g′ = 0.4)[MeV]
∆N−1 0.21 0.39 0.42 138 92
N N−1 0.15 0.12 0.35 462 86

Table 2.1: Values the strength factor ai, the vertex correction hi and the partial decay
width of a ∆ into the ∆N−1 and N N−1 branches for various values of the short-range
parameter g′.

This is very similar to the result of Eq. 2.25 with F (q) denoting the form factor. The
sum extends over both poles of the propagator (remember that the nucleon-hole loop is not
considered for the moment) and the relative strength of the poles is given by the residue ai.
Again Γmed = −Im Σmed

∆ /
√
k2. There are two additional quantities, the vertex correction

factor hi and a term denoted by X. The factor hi reads:

hi =
1

(1 − g′ χ∆)2
,

where χ∆ is evaluated at the pole q2
i of the pion propagator. In X we have summarized

the contributions to Im Σmed
∆ originating from the new pole at

1 − g′ χ∆ = 0 . (2.31)

Let us consider the contribution of X by evaluating the residue of the pole Eq. 2.31:

(k − p)2 Dmed
π

(1 − g′ χ∆)2
+

g′

1 − g′ χ∆
=

[
(k − p)2

(q2
0 − E2

π)(1 − g′ χ∆) − (k − p)2 χ∆
+ g′

]

×

× 1

1 − g′ χ∆

∣
∣
∣
∣
χ∆=1/g′

.

The term in brackets indicates the residue, which vanishes if one plugs in χ∆ = 1/g′.
Therefore there is no contribution from this pole to the width.

It is also interesting to study the factors hi. According to Eq. 2.10, if the pion energy
is larger than that of the ∆N−1 state, the location of these poles is given by:

q2
01 = E2

π + ε

q2
02 = Ē2 − ε .

One therefore finds the following results for the hi:

h1 =

(

1 − g′
ρC∆

E2
π − Ē2 + ε

)−2

, h2 = (1 + g′ρC∆/ε)
−2

.

Clearly, h1 > 1 and h2 < 1. Since we have assumed that q01 > q02, this means that more
weight is given to the higher lying states through the short-range correlations. Since phase
space favours low lying states, this means that the width decreases due to the influence
of the short-range correlations. This qualitative feature does not depend on our choice
Eπ > Ē and holds also for Ē < Eπ.
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Figure 2.11: Left panel: In-medium width and Pauli-blocked width of the ∆ at normal
nuclear matter density. Short-range correlations are included in the pion propagator(dash-
dotted), also in the vertex corrections (solid) and not at all (dashed). Right panel: Con-
tribution of the individual poles to the total in-medium width.

We will now present some numerical results for the decay width of an on-shell ∆ at rest
in nuclear matter. Here the contribution from nucleon-hole loops is included. Then the
decay into the pion branch is Pauli-blocked and we can identify the solution q02 with the
∆N−1 branch and solution q03 with the NN−1 branch, as already discussed in the previous
Section 2.3. In the numerical calculations the nucleon-hole excitations are included. We
have chosen g′ = 0.4 for the Migdal parameter, assuming that the coupling of all particle-
hole loops to each other is the same. In Table 2.1 we show results for the strength parameter
ai, the vertex correction hi and the width for g′ = 0 and g′ = 0.4. One can see by
considering the results for the hi that the effect of the short-range correlations is to reduce
the strength of the low-energy excitations (NN−1 and ∆N−1). This leads to a reduction of
the partial decay widths into the nucleon-hole branch and the ∆-hole branch. By looking
at the numbers in Table 2.1, it becomes clear that the short-range correlations form an
essential part of the theory, reducing the total decay width – given as the sum of NN−1

and ∆N−1 branch – from about 600 MeV to 180 MeV. A value of about 180 MeV is in
good agreement with phenomenology, which requires a broadening of 80 MeV [54].

In the left plot of Fig. 2.11 we show the width as a function of the invariant mass
of the ∆. Compared are different scenarios: the dashed line corresponds to a calculation
where short-range correlations are not taken into account. For the dash-dotted curve
short-range correlations only enter into the pion self energy, i.e. hi = 0 and the solid curve
represents a full calculation. The dash-dotted curve is identical to the dashed curve in the
left panel of Fig. 2.9. By comparing the solid and the dash-dotted lines, one sees that the
effect of the short-range correlations on the pion propagator is of much less importance
for the ∆ width than the vertex corrections. The right plot of Fig. 2.11 disentangles
the individual contributions to the full width (solid line in the left plot). While nucleon-
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hole (dashed line) and ∆-hole (solid line) branch produce similar contributions, the pion
branch sets in only at large invariant masses. This explains the step found in the left plot
of Fig. 2.11 at invariant masses around 1.4 GeV. Comparing this with the right plot of Fig.
2.9, where short-range correlations are taken into account only for the pion propagator,
supports our finding that through the correlations strength is moved up to the highest lying
state: whereas the contributions from nucleon-hole (dashed line) and ∆-hole (solid line)
are strongly suppressed, the pion branch (dotted line) produces a much larger contribution
if the short-range correlations are switched on. Thus at

√
k2 ≈ 1.45 GeV the partial width

from this branch is enhanced by a factor of two relative to the calculation with no vertex
corrections.

In Fig. 2.12 we investigate the behaviour of the on-shell width as a function of g ′.
It does not come as a surprise that with increasing g ′ the width decreases. The results
highlight again the sensitivity of the results on the strength of the correlations. This is
both interesting and reason for concern since for most particle-hole loops information on
g′ is not available.

Figure 2.12: In-medium width of the ∆ as a function of the strength of the short-range
correlations.
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Chapter 3

Mesons and Baryon Resonances in

the Vacuum

In this Chapter we discuss the vacuum spectral functions of the ρ meson and baryon
resonances, which are denoted by A(q) and ρ(k), respectively. The spectral function is
defined as the imaginary part of the retarded propagator, see Appendix E and [16]. In
terms of the retarded self energies Π+

vac(q) and Σ+
vac(k) they are given by:

A(q) = − 1

π

Im Π+
vac(q)

(q2 −m2
M −Re Π+

vac(q))
2 + Im Π+ 2

vac(q)
(3.1)

ρ(k) = − 1

π

Im Σ+
vac(k)

(k2 −m2
R −Re Σ+

vac(k))
2 + Im Σ+ 2

vac(k)
.

In this work we will denote the four-momentum of meson M by q = (q0,q) and that of
resonance R by k = (k0,k). Note that our ansatz for ρ(k) does not take into account the
full Dirac structure of the self energy. A detailed discussion of this topic can be found in
Chapter 5.2.4 and in Appendix E.5. In Appendix E we also explain the relation between
retarded and Feynman self energy and propagator. As shown there, retarded propagator
and self energy are analytic in the upper half of the complex energy plane, whereas the
Feynman quantities do not have this property. However, as detailed in Appendix E, there
is a close relation between both retarded and Feynman quantities in the vacuum:

ImD+/Π+(q0,q) = sgn(q0) ImDF/ΠF (q0,q) (3.2)

ReD+/Π+(q0,q) = ReDF/ΠF (q0,q) .

These relations hold both for bosons and fermions. Due to analyticity, the imaginary part
and the real part of retarded propagator and self energy are connected by a dispersion
relation.

Both A(q) and ρ(k) are normalized quantities. In order to guarantee this within our
model, we calculate the retarded self energies Π+

vac and Σ+
vac in the following way:

• for positive energies, the imaginary part of the Feynman self energy is identical to the
imaginary part of the retarded self energy. We can therefore use Cutkosky’s cutting
rules to obtain Im Π+

vac and Im Σ+
vac for q0 > 0.

• for mesons we use the antisymmetry of the imaginary part of the self energy

Im Π+
vac(−q0) = −Im Π+

vac(q0)

25
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and apply a dispersion relation to obtain the real part of the self energy. A derivation
of the antisymmetry in q0 can be found in Appendix E.

• as outlined in Appendix E for baryons the antisymmetry of the imaginary part of the
self energy holds in vacuum, but not in the nuclear medium. Therefore we neglect the
contribution from negative energies to the dispersion integral already in the vacuum.

Calculating the real part of the self energy from a dispersion relation does not automatically
produce a normalized spectral function. In addition, the high energy limit of the self energy
must fulfill certain relations if the spectral function is to be normalized. A further discussion
of this topic can be found in [77] and in Appendix E.

Having computed its self energy, the width Γ of the particle is given by (cf. Appendix
D.2):

Γ = −Im Π+
vac/

√
k2 ,

and similarly for fermions.
The issue of how to obtain normalized spectral functions is of relevance to us when going

to the nuclear medium. Then within our coupled channel analysis the spectral function
of any state is allowed to influence the spectral function of any other state. This implies
that even rather small violations of the normalization can lead to errors in the calculation,
which are difficult to control. We will discuss this issue in detail in Chapter 9.3.

Let us make a purely technical note: throughout this work we will encounter various
traces, arising from the spin summation at the meson-nucleon-resonance vertices. For most
of the results presented in this thesis we keep only the leading non-relativistic contribution
of these traces. This does not greatly affect the results in the vacuum presented in this
Chapter, where effectively only the parametrization of the resonance decay width is modi-
fied. In Section 9.4 – which is based on the results reported in [109] – we will demonstrate
that the non-relativistic approximation works also well for the in-medium self energies of
mesons as long as the kinematical quantities are consistently evaluated in the rest frame
of the resonance. The advantage of using non-relativistic expressions it that this way the
expressions for the in-medium self energies are simplified, see Chapter 4. In particular,
a consistent relativistic description of the short-range interactions is a formidable task
[75, 82] and - albeit in principle desirable - beyond the scope of this work.

3.1 ρ Meson

In this Section we discuss the properties of the ρ meson in vacuum. We explain the Lorentz
structure of propagator and self energy and discuss in detail how the self energy Π+

vac is to
be calculated. Our treatment follows that of [52].

The propagator of a non-interacting ρ meson in vacuum has both a four-transversal
and a four-longitudinal part:

− iDµν
ρ (q) =

1

q2 − (m0
ρ)

2 + iε

[

gµν − qµ qν

(m0
ρ)

2

]

(3.3)

=
1

q2 − (m0
ρ)

2 + iε
P µν

T − qµ qν

q2

1

(m0
ρ)

2

=
1

q2 − (m0
ρ)

2 + iε
P µν

T − 1

(m0
ρ)

2
P µν

L (q) .
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r r

p

p r

p

Figure 3.1: Self energy Πvac resulting from the coupling of the ρ to pions. The diagram on
the left corresponds to the usual decay of a ρ to two pions. The diagram on the right gives
rise to an energy independent real mass shift.

Here P µν
T stands for the four-transverse projector introduced in Appendix B, Section B.3.

The mass m0
ρ is the bare mass of the ρ.

Due to interactions with pions the ρ acquires a finite width and its bare mass is shifted
to the physical mass. This is described by the following Lagrangian [16, 52]:

Lρπ = (Dµ π)? (Dµ π) −m2
ππ

?π − 1

4
ρµν ρ

µν +
1

2
(m0

ρ)
2ρµ ρ

µ

ρµν = ∂µ ρν − ∂ν ρµ , Dµ = ∂µ + igρρµ . (3.4)

Note that the coupling of the ρ to the pions has been introduced via minimal substitution
and contains ρππ and ρρππ vertices. By gρ we denote the coupling strength to pions and
m0

ρ is the bare mass of the ρ, which is not equal to its physical mass mρ = 0.77 GeV as
observed in experiments.

The coupling derived from Eq. 3.4 is current conserving (since it has been introduced
via minimal substitution) and therefore proportional to the four-transverse projector P µν

T .
As a consequence, only the transverse part of the propagator is modified by the self energies.
Also when coupling the ρ meson to baryon resonances, we use current conserving couplings,
see Appendix C.1.1, and can therefore discard the four-longitudinal part of the propagator
altogether since it does not contribute to physical quantities. After resumming the self
energy according to the Dyson Schwinger equation (cf. Appendix D.1), one obtains for the
transverse part of the propagator:

Dµν
ρ (q) = DT

ρ (q)P µν
T with DT

ρ (q) =
1

q2 − (m0
ρ)

2 − Πvac
.

We now turn to the evaluation of the self energy Π+
vac. To this end we first write down

the Feynman self energy, which is determined from the two Feynman graphs depicted in
Fig. 3.1, leading to the expression [52]:

− iΠµν
vac(q

2) = g2
ρ

∫
d4l

(2π)4

(2l − q)µ (2l − q)ν

[l2 −m2
π + iε] [(l − q)2 −m2

π + iε]
(3.5)

−g2
ρ

∫
d4l

(2π)4

2gµν

l2 −m2
π + iε

.

The first expression is energy dependent and has a finite imaginary part, whereas the
second one is purely real and energy independent. Both diagrams are needed to ensure
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that the self energy is current conserving, i.e. qµ Πµν
vac = 0. In order to see this we consider:

− i

g2
ρ

qµ Πµν
vac =

∫
d4l

(2π)4

[

(2lq − q2)(2l − q)ν

(
l2 −m2

π + iε
)(

(l − q)2 −m2
π + i ε

)

−qν 2
(
(l − q)2 −m2

π

)

(
l2 −m2

π + iε
)(

(l − q)2 −m2
π + i ε

)

]

(3.6)

=

∫
d4l

(2π)4

[{

− 2lν

l2 −m2
π + iε

+
2lν

(l − q)2 −m2
π + iε

}

−qν 2
(
(l − q)2 −m2

π

)
+ 2lq − q2

(
l2 −m2

π + iε
)(

(l − q)2 −m2
π + i ε

)

]

With the substitution l → l + q in the second term of the curly brackets, this can be
transformed to yield

− i

g2
ρ

qµ Πµν
vac =

∫
d4l

(2π)4
(−qν)

2lq − q2

(
l2 −m2

π + iε
)(

(l − q)2 −m2
π + i ε

)

=

∫
d4l

(2π)4
(−qν)

{ −1

l2 −m2
π + iε

+
1

(l − q)2 −m2
π + iε

}

(3.7)

= 0 .

In the last step again the above substitution has been made. However, these transfor-
mations are not allowed since the integral is divergent. By inspecting Eq. 3.5 one sees
that the numerator in the first integral goes like l6 whereas the denominator goes like l4.
Therefore the loop integral needs to be regularized. The regularization scheme needs to
retain the symmetry properties of the self energy. For this reason, the self energy can
not be regularized by introducing a cutoff at the vertices. As explained in [16] this would
violate the transversality of the self energy.

Following the work of [52] we use Pauli-Villars regularization. The basic idea is to add
terms to the Lagrangian, which are of the same form as Eq. 3.4 but where the pion field
is replaced by a fictitious heavy particle of mass Λ. The new states do not affect the low
energy (q2 < Λ2) behaviour of the theory. At large energies, however, a cancellation of
divergent terms is achieved. The self energy can then be cast into the form [52]:

Πµν
vac(q) → Πµν

vac(q; mπ) −
N∑

i=1

BiΠ
µν
vac(q; Λi) . (3.8)

The number of necessary subtractions N is determined by the degree of divergence of
the loop integral, in our case we have N = 2. For further details of the Pauli-Villars
regularization we refer to [52] or textbooks on quantum field theory [16, 106].

The expressions Eqs. 3.5 and 3.8 give the Feynman self energy. As discussed in Ap-
pendix E and in the introduction to this Chapter, the retarded self energy Π+

vac is readily
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Figure 3.2: Im Π+
vac as a function of the invariant mass of the ρ meson (solid line). By

the dashed line we have indicated the limiting value of Eq. 3.10.

obtained from the Feynman self energy with the result:

Re Π+
vac(q) = − g2

ρ

24π2
q2

[

G(q,mπ) − G(q,Λ) + 4 (Λ2 −m2
π)/q2 + ln

Λ

mπ

]

Im Π+
vac(q) = −sgn(q0)

g2
ρ

48π
q2

[

θ(q2 − 4m2
π)

(

1 − 4m2
π

q2

)3/2

− (3.9)

−θ(q2 − 4 Λ2)

(

1 − 4 Λ2

q2

)3/2
]

,

where we have introduced the function

G(q,m) =







y3/2 arctan(1/
√
y) for y > 0

−1

2
(−y)3/2 ln

∣
∣
∣
∣

√−y + 1√−y − 1

∣
∣
∣
∣

for y < 0

y =
4m2

q2
− 1 .

The imaginary part Im Π+
vac nicely displays the effect of the Pauli-Villars regularization:

it is the sum of two formally identical terms which differ in the mass (mπ → Λ) and in
the sign. Thus, effectively this regularization scheme acts as a form factor in q2 and in the
limit of q2 → ∞, Im Π+

vac approaches a constant value:

lim
q2→∞

Im Π+
vac = −sgn(q0)

g2
ρ

8π

(
Λ2 −m2

π

)
, (3.10)

as can be seen by a Taylor expansion of Eq. 3.9. The width goes to zero for large invariant
masses since

Γvac = −Im Π+
vac/

√

(q2) .
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Figure 3.3: Comparison of our model for the pion electromagnetic form factor with exper-
imental data from the analyses of [9, 5].

We have plotted −Im Π+
vac in Fig. 3.2. By the dashed line we have also indicated the

limiting value of Eq. 3.10. Since Im Π+
vac approaches a constant at large invariant masses,

real and imaginary part of the ρ self energy are related by a once subtracted dispersion
relation:

Re Π+
vac(q) = q2 P

∫ ∞

4m2
π

dq′ 2

π

Im Π+
vac(q

′)

q′ 2(q2 − q′ 2)
. (3.11)

The subtraction is made at the point q = 0 in order to satisfy the condition Re Π+
vac(q = 0)=

0 as required from gauge invariance [52, 62]. This condition is explained by the observa-
tion that the photon self energy from the coupling to pions is up to the coupling constant
identical to that of the ρ meson. For the photon the condition that the self energy vanishes
at q2 = 0 is crucial since otherwise it would become massive. Introducing a mass term as
a compensation for the self energy violates gauge invariance. In [116] it is shown that a
cutoff regularization always leads to a finite mass term for the photon, which is related to
the fact that the gauge invariance of the self energy is violated within such a scheme.

The three free parameters in Eq. 3.9, m0
ρ, gρ and Λ, are determined by fitting the phase

shift of π π scattering in the vector-isovector channel and the pion electromagnetic form
factor. One gets [52]:

m0
ρ = 0.875GeV , gρ = 6.05 , Λ = 1GeV . (3.12)

In Fig. 3.3 we show the electromagnetic form factor |Fπ|2 of the pion, which is defined by
[33]:

|Fπ(q)|2 =
(m0

ρ)
4

[
q2 − (m0

ρ)
2 −Re Π+

vac(q)
]2

+ Im Π+
vac

2(q)
, (3.13)
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Figure 3.4: Normalization function norm(q2) (left) and spectral function (right) with (solid)
and without (dashed) Re Π+

vac(q).

in comparison with experimental data. The agreement with the data is of very good quality.
Only the little structure near the peak, which results from ρ− ω mixing (see for example
[97]), is missed since such effects are not taken into account in the model.

In Fig. 3.4 we plot the normalization of the spectral function of the ρ meson as a func-
tion of the upper integration limit, comparing a calculation with (solid line) and without
(dashed lined) real part of the self energy:

norm(q) =

q∫

0

dq′ 2 Avac
ρ (q′) (3.14)

If Re Π+
vac is neglected, the bare mass has to be replaced by the physical mass. We find that

the spectral function containing Re Π+
vac is normalized to unity, whereas neglecting Re Π+

vac

leads to a violation of this constraint, which is mainly due to small differences around the
pole region. Here the inclusion of Re Π+

vac leads to a somewhat squeezed spectral shape,
hence the contribution to the normalization integral is a little bit smaller. When discussing
baryon resonances we will encounter such a modification of the spectral shape again.

3.2 Baryon Resonances

3.2.1 Resonance Nomenclature

A resonance is labeled by a set of quantum numbers of the partial wave in which it appears
in π N scattering experiments. This set comprises total spin and isospin as well as the
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relative angular momentum of the π N system, which identifies the parity of the resonance.
To be more specific, a partial wave amplitude where the π N system is in a relative l-wave,
forming a state with total spin J = j

2
and isospin I = i

2
would be labeled by lij. The parity

of the π N system is P = +1 for l = 1, 3, 5 . . . and P = −1 for l = 0, 2, 4 . . ., since the
parity is given by P π PN (−1)l = (−1)l+1. It follows, that the ∆(1232) resonance which
shows up in the P33 partial wave has the quantum numbers I = 3

2
, J = 3

2
and parity

P = +1. The N ?(1520) resonance is observed in the D13 channel and consequently has
the quantum numbers I = 1

2
, J = 3

2
and P = −1. For a given partial wave also the lowest

relative orbital angular momentum of any other 2-body state follows from the conservation
of parity: for example, in the P33 partial wave, the ρN system is in a relative p-wave and
for the D13 it is in a relative s-wave.

Around the decay threshold
√

k2
thr, the energy dependence of the width is determined

by the orbital angular momentum l:

Γ(
√
k2 ≈

√

k2
thr) ∼ p2l+1 , (3.15)

with p the cm momentum of the decay products. One power of p is due to the two-
body phase space (Appendix B.6), the remaining powers follow from the dynamics of the
interaction. Away from the threshold, higher orders of p modify the expansion.

3.2.2 Framework

The self energy of a baryon resonance arises from the coupling to meson-nucleon channels,
see Fig. 3.5. After calculating the corresponding decay width, we obtain Re Σ+

vac by
a dispersion analysis. Following standard Feynman rules, the decay width of a nucleon
resonance with invariant mass

√
k2 and spin-1

2
into a pseudoscalar meson ϕ = π, η of mass

mϕ and a nucleon is in the resonance rest frame given by:

Γϕ(k) = IΣ
q

8πk2

1

2

∑

s r

ūs(pN)V uR,r(k) ūR,r(k)V† us(pN)

=
1

2
IΣ

pcm

8πk2
Tr
[

V (k/+
√
k2)V† (pN/ +mN )

]

(3.16)

=
1

2
IΣ

(
f

mϕ

)2

F (k, q)2 pcm

8πk2
Ωϕ

=
1

2
IΣ

1√
k2
Tr
[

(k/+
√
k2) Im Σ(k)

]

.

The last line follows if Cutkoskys cutting rules (Appendix D.2.1) are employed to calculate
Γϕ(k). It shows explicitly how the decay width is related to the averaged self energy
〈Σ〉 (cf. Appendix D.1.1). By pcm the momentum of the meson in the rest frame of the
decaying resonance is denoted and pN is the four-momentum of an on-shell nucleon. The
vertex function V is derived from the interaction Lagrangians given in the Appendices
C.1.1 and C.2. In Appendix C.1.2 we give a formal definition of V as well as a few
illustrating examples. Performing a summation over the spins of nucleon and resonance
leads to the traces Ωϕ. Explicit expressions (both relativistic and non-relativistic) are
found in Appendix C.1.2, Table C.5 and Table C.6 and in Appendix C.2, Table C.2. The
coupling constants f are obtained by fits to the corresponding hadronic partial decay
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p/r/h

R N R

Figure 3.5: Self energy of a baryon resonance from the decay into a π, η or ρ meson.

widths given in Table A.2. The isospin factor IΣ is 1 for ∆ resonances with isospin 3
2

and
3 for N∗ resonances with isospin 1

2
if the decay into an isovector π meson is considered.

For the isoscalar η this factor is 1 and there is no coupling to ∆ resonances. The two-fold
degeneracy of a spin- 1

2
field is taken into account with a factor 1

2
. The form factor F (k, q)

will be discussed in the paragraphs following Eq. 3.20. Note that an on-shell spinor for
the decaying particle of mass k2 has been employed, such that the completeness relation
reads k/+

√
k2 rather than k/+M , see Appendix B.2, Eq. B.15.

In analogy with Eq. 3.16, one obtains for spin- 3
2

resonances:

Γ(k) =
1

4
IΣ

(
f

mM

)2
pcm

8πk2
Ωϕ (3.17)

=
1

4
IΣ

1√
k2
Tr
[

(k/+
√
k2)P µν

3/2 Im Σµν(k)
]

,

where the trace Ωϕ now results from the coupling of spin- 3
2

resonances. By pcm the momen-
tum of the meson in the rest frame of the resonance is denoted. Spin averaging is taken
into account with a factor of 1

4
.

When considering the decay into one stable and one unstable particle, an integration
over the spectral function of the unstable particle is necessary. For a resonance with fixed
mass

√
k2 and spin j decaying into the Nρ channel, for example, one finds:

ΓNρ(k) =

(
√

k2−mN)
2

∫

4m2
π

dq2 ΓNρ(k, q)Aρ(q) (3.18)

ΓNρ(k, q) =
1

2 j + 1
IΣ

(
f

mρ

)2

F 2(k, q)
pcm

8πk2
(2 ΩT + ΩL) ,

where ΓNρ(k, q) stands for the width of a resonance for decay into a ρ meson with invariant

mass
√

q2. The isospin factor IΣ is the same as for the pions. Explicit expressions for the
spin-traces ΩT/L are found in Table C.2, Appendix C. Again pcm is the momentum of the
meson in the rest frame of the resonance. Note that ΩT/L and pcm depend implicitly on
the invariant mass

√

q2 of the ρ meson.
In Table A.2 on page 193 we give a list of all resonances and their decay channels.

For most states the sum Γπ N + Γη N + Γρ N does not exhaust the total width. As an
approximation we put the remaining width into the ∆π channel and take the energy
dependence to be s-wave for negative parity states and p-wave for positive parity states.
In contrast to the other decay channels we do not modify Γ∆π when going to the nuclear
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Figure 3.6: Form factor FF1 of Eq. 3.22 (solid line) and form factor FF2 of Eq. 3.23
(dashed line) for the D13(1520) resonance. The cutoff parameter in FF2 is taken to be
Λ = 1 GeV, the parameters s0 and Λ of form factor FF1 are listed in Table A.2.

medium. The corresponding Lagrangians are given in Appendix C.2 and lead to traces
Ω∆, which are given explicitly in Table C.2. In analogy to the N ρ width, we find for Γ∆π:

Γ∆π(k) =

(
√

k2−mπ)2∫

(mN +mπ)2

dm2 Γ∆π(k,m) ρ∆(m) (3.19)

Γ∆π(k,m) =
1

2 j + 1
IΣ

(
f

m∆

)2

F 2(k,m)
pcm

8πk2
Ω∆ .

The isospin factor IΣ is 1 both for the decay of isospin- 3
2

and isospin-1
2

states and Γ∆π(k,m)
stands for the decay into a pion and a ∆ with invariant mass m. Since the ∆ resonance is
a broad particle, we need to integrate over its spectral function ρ∆(m). As in the case of
the Nρ decay, the spin trace Ω∆ and the cm momentum pcm depend implicitly on in the
invariant mass m of the pion.

We discussed before the threshold behaviour of the decay width. By inspecting the
results for the traces Ωϕ, ΩT/L and Ω∆ as given in Appendix C, one can see that the
correct threshold behaviour emerges in our formalism.

We write the form factor F (k, q) at the resonance-meson-nucleon vertex in the following
form:

F (k, q) ≡ Fs(k)Ft(q) . (3.20)

The form factor Ft(q) is a usual monopole form factor:

Ft(q) =
Λ2

M −m2
M

Λ2
M − q2

. (3.21)
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The values taken for ΛM are listed in Table A.1. We multiply the resonance-nucleon-meson
vertex with a monopole type form factor since this vertex is also used in baryon-baryon
interactions, where the large space-like 4-momenta acquired by the exchange particle need
to be cut off. For the decay of a resonance into a stable final state we have q2 = m2

M and
therefore Ft(q) = 1. For Fs(k) we take different parameterizations at the RNρ and the
RNϕ vertices. When considering an RNρ vertex we choose [104]

Fs(k) =
Λ4 + 1

4
(s0 −m2

R)2

Λ4 + (k2 − 1
2
(s0 +m2

R))2
, (3.22)

while at the RNϕ vertex we take [104, 123]:

Fs(k) =
Λ4

Λ4 + (k2 −m2
R)2

. (3.23)

In the following we will refer to the form factor of Eq. 3.22 as FF1 and to the form factor
of Eq. 3.23 as FF2.

We have plotted both FF1 (solid line) and FF2 (dashed line) in Fig. 3.6. As a function
of k2 the form factor of Eq. 3.22 is asymmetric with respect to the resonance mass mR.
It is equal to unity both at k2 = m2

R and at the decay threshold k2 = s0 < m2
R, larger

than unity within the interval {s0, m
2
R} and smaller outside. The exact shape depends on

the cutoff Λ and the threshold parameter s0. We give values for the cutoff Λ in Table
A.2 and take s0 = (mN + 2mπ)2. In the following Section we will support the somewhat
unconventional form factor Eq. 3.22.

For positive energies, the imaginary part of the self energy Im Σ+
vac is obtained from

the decay width via (cf. Appendix D.2.2)

Im Σ+
vac(k

2) = −
√
k2 Γ(k2) . (3.24)

Note that this self energy is averaged over the spin of the resonance, see Appendix D.1.1.
The reader will have noticed that the baryon resonances are treated on a different level than
the ρ meson. There we had to worry about current conservation which made it mandatory
to regularize the self energy loops by means of the symmetry preserving Pauli-Villars
regularization scheme. For baryon resonances these problems do not arise: this is obvious
for the contribution from the pseudoscalar mesons π and η, and also the contribution from
the ρN channel produces no problems, since we use current conserving couplings involving
the structure ρµν = ∂µ ρν − ∂ν ρµ, see Appendix C.1.1. Therefore we can follow a more
straightforward strategy and calculate the width (which is always finite) first and furnish it
with a form factor. The real part of the self energy is obtained using a dispersion integral:

Re Σ+
vac(k) = P

∞∫

ωmin

dω

π

Im Σ+(ω,k)

ω − k0

− cvac(k) (3.25)

with

cvac(k) = P
∞∫

ωmin

dω

π

Im Σ+(ω,k)

ω −
√

m2
R + k2

.

Here P denotes the principal value. The energy ωmin =
√

(mN +mπ)2 + k2 follows from
the threshold for the decay into Nπ. By mR the mass of the resonance is denoted. As
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can be inferred from Fig. 3.7, the suppression from the form factor F (k, q) is sufficient
to produce a decreasing width, such that the dispersion integral converges. Had we not
used a form factor here, we would have had to consider multiple subtracted dispersion
relations, thus potentially spoiling the normalization of the spectral function: Taking as
an example the P33(1232), the leading subtraction would have been proportional to k4

0,
since Im Σ ∼ k4

0. According to Appendix E.2.3 the spectral function would not have been
normalized any more. The subtraction cvac(k) is convenient to ensure that the physical
mass of the resonance is recovered, but it is not necessary to ensure convergence of the
dispersion integral.

In principle the dispersion integral extends over negative energies as well. We omit this
contribution since in the nuclear medium no symmetry exists which relates Im Σ+(k0) to
Im Σ+ (−k0). This issue is addressed in Appendix E.2.3. We have checked that in the
vacuum the contributions from negative energies to the dispersion integral can safely be
neglected. Also in cold nuclear matter we do not expect that antibaryons are important.

3.2.3 Results for Re Σ and Im Σ

In this Section we present results for the self energy and the propagator of baryon reso-
nances. We start with a discussion of the P33(1232) and the D13(1520) resonances, both
of which have according to the PDG [46] an on-shell width of about 120 MeV. We will
see that a strong energy dependence of ΓNρ leads to unexpected results for the spectral
function. We will then discuss two more resonances, the P13(1720) and the F35(1905), both
of which have a large coupling to the Nρ channel.

In Fig. 3.7 we show the decay width of the P33(1232) and the D13(1520) resonances as
a function of their invariant mass. Note the different scales on the y axes. The Nρ width
(solid line) of the D13 state displays a strong energy dependence, which is of kinematical
origin. The resonance is below the nominal threshold for the decay at mN +mρ = 0.938 +
0.77 ≈ 1.7 GeV. Therefore the decay into this channel can only proceed via the low mass
tail of the ρ meson, which in turn generates a steep increase of the width as the available
phase space opens up. Since the maximum width achieved in this channel is much larger
than the on-shell width we will refer to this state as subthreshold, even though this is
strictly speaking incorrect.

Let us now turn to the results for the self energy and the spectral function, which
are depicted in Figs. 3.8 and 3.9. From Fig. 3.8 we find that around the resonance
peak the spectral functions of the D13(1520) and the P33(1232) (solid lines) obtained by
a full calculation including the real part of the self energy do not differ much from those
obtained by neglecting Re Σ (dashed lines). In both cases we observe a slight squeezing of
the resonance peak in the spectral function, which is more pronounced for the D13(1520).
Going away from the resonance peak, we observe an additional shoulder for the D13(1520).
Since this shoulder has most probably no direct influence on observables due to the large
off-shellness, we are not concerned about this. The real part of the self energy of both states
– indicated by the solid and the dashed lines in Fig. 3.9 – is comparable around resonance,
with a slightly larger energy variation for the D13(1520). Away from the resonance peak
we observe a strong energy variation in the real part of the self energy of the D13(1520)
which is responsible for the additional shoulder found in the spectral function. The change
of curvature at

√
k2 −mR ≈ 0.2 is due to the Breit-Wigner like behaviour of the imaginary

part of the self energy – with a peak at roughly
√
k2 − mR ≈ 0.3 both for P33(1232)
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Figure 3.7: Left: Partial decay widths of the D13(1520). The Nρ width ΓNρ as following
from form factor FF1 of Eq. 3.22 is indicated by the solid line, the result from form
factor FF2 of Eq. 3.23 by the dotted line. Right: Width of the P33(1232) resonance in
vacuum. The ρ component is negligible over the energy interval shown here and has not
been plotted.

and D13(1520) – which has to translate into a Breit-Wigner type real part, i.e. it has to
vanish around the peak. The dashed-dotted line in Fig. 3.8 shows the spectral function of
the D13(1520) as resulting from the use of a smaller partial decay width ΓNρ = 12 MeV
instead of ΓNρ = 26 MeV. Using the smaller width the shoulder nearly disappears whereas
the resonance peak becomes a little bit broader. In the next paragraph we link both effects.
We will come back to the issue of the proper choice for ΓNρ in Chapter 4.

Next we address the question as to why form factor FF2 should be discarded at the
RNρ vertex. Therefore consider the results for Im Σ, Re Σ and the spectral function
ρ, which are depicted by the dotted lines in Figs. 3.7, 3.8 and 3.9. All three curves
display unsatisfying features: the Nρ decay width rises very quickly to values above 1
GeV, around the resonance peak the real part of the self energy has a strong energy
dependence ∂Re Σ/∂k2 and we observe a significant squeezing of the resonance peak in the
spectral function ρ. The sum of these effects provides enough evidence to abandon form
factor FF2 and take form factor FF1 instead.

These three effects are connected to each other in the following way: the rapid increase
of ΓNρ translates into a strong energy dependence of Re Σ: if Im Σ is nearly constant
around the pole of the resonance, one expects Re Σ to be small since the contributions
from below and above the pole approximately cancel. Turning this argument around
implies that a rapid variation with energy leads to a sizeable Re Σ. A squeezing of the
peak results which can be understood by expanding Re Σ to first order in k2. One gets for
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Figure 3.8: Spectral function ρ of the D13(1520) (left) and the P33(1232) resonances. In
both cases the solid lines indicate the results as following from using FF1 for ΓNρ. The
dashed line shows the spectral function without Re Σ. In the left figure, the dash-dotted
curve is the spectral function of the D13(1520) if a value of 12 MeV for ΓNρ is used. In the
dotted curve the form factor FF2 of Eq. 3.23 is taken at the RNρ vertex.

the spectral function (cf. Section 3.2.4):

ρ(k) ≈ −1

π

z2Im Σ(k)

(k2 −m2
R)2 + z2Im Σ(k)2

(3.26)

z =

(

1 − ∂Re Σ(k)

∂k2

)−1
∣
∣
∣
∣
∣
k2=m2

R

.

One can infer from all three curves in Fig. 3.9 that ∂Re Σ(k)/∂k2 < 0 and therefore z < 1.
This factor effectively measures the influence of Re Σ and indicates that – depending
on the energy variation of Re Σ – strength is shifted away from the resonance peak to
larger invariant masses. This explains the pronounced peak at energies around 2 GeV.
Now one can also understand why form factor FF1 can cure this problem: its functional
form restricts the energy variation of the Nρ width of the D13(1520), which we have
identified as the main source of trouble, and weakens the subthreshold character of this
state. Similarly, when the smaller width of ΓNρ = 12 MeV (dash-dotted line in the left
plot of Fig. 3.8) is used, the energy variation is smaller resulting in a broader peak. In
the following Section 3.2.4 we will discuss the z factor in more detail. There we will also
make the relation between the energy dependence of the imaginary part and the real part
of the self energy more explicit. Since we do not observe significant modifications of the
spectral function from the decay into a pseudoscalar meson and a nucleon, we prefer to
use the more conventional form factor FF2 at the RNϕ vertices.
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Figure 3.9: Real part of the self energy of the D13(1520) resonance (solid and dotted lines)
and the P33(1232) resonance (dashed line). The solid line is obtained using form factor
FF1 of Eq. 3.22 and the dotted line follows from form factor FF2 of Eq. 3.23.

Let us now turn to the other two resonances to be discussed, the P13(1720) and the
F35(1905). The large decay width of ΓNρ = 300 MeV for the P13(1720) given in [89]
also leads to problems when calculating Re Σ . Since such a large decay width seems
questionable for a resonance close to the nominal Nρ threshold and coupling in a p-wave
to this channel, we instead use the PDG estimate ΓNρ = 110 MeV for this resonance. For a
further discussion of the parameters of this resonances see Chapter 4. Like the D13(1520),
the P13(1720) state is essentially subthreshold with respect to Nρ. In Fig. 3.10 we show the
spectral function of the P13(1720) (left) and the F35(1905) (right). The latter has a large
partial decay width of ΓNρ = 282 MeV, but is already far above the nominal Nρ threshold.
We compare a calculation with and without Re Σ. The results without Re Σ are indicated
by the dashed lines, those obtained with inclusion of Re Σ with form factor FF1 (FF2)
are shown by the solid (dotted) line. For both resonances the form factor FF2 leads to
pronounced resonant structures away from resonance, and for the P13(1720) we observe a
squeezing of the resonance peak, which is more or less absent for the F35(1905). By using
the asymmetric form factor FF1 the resonant structures are softened into shoulders, see
solid lines. In comparison to a calculation without Re Σ (dotted lines) substantially more
strength sits a invariant masses above resonance. Since the F35(1905) has by no means
subthreshold character, the large effects from Re Σ must be of a different origin than for
the D13(1520). We will now address this issue by considering the normalization of the
spectral functions.

In Fig. 3.11 we show the normalization integral for the four resonances discussed so far
as a function of the upper integration limit k2:

norm(k) =

k2
∫

0

ds ρ(s) . (3.27)
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Figure 3.10: Strength function ρ of the P13(1720) (left) and the F35(1905) (right). The
dashed line corresponds to a calculation w/o Re Σ, in the solid (using form factor Eq. 3.22)
and dotted (using form factor Eq. 3.23) lines Re Σ is included.

According to the discussion in Appendix E, for k2 → ∞ the normalization integral should
approach unity. As can be seen, this is the case for the calculations including Re Σ (solid
lines). Neglecting Re Σ leads to typical deviations from unity of about 15%. For the
F35(1905) state the normalization is violated even more, if Re Σ is not taken into account.
The normalization integral converges independent of Re Σ since the width decreases suffi-
ciently fast at large momenta.

Let us now study the relation between the normalization integral and the cutoff param-
eter Λ in the form factor Fs. The value of the normalization integral depends on the form
factor in the following way: increasing the cutoff parameter leads to larger values for the
imaginary part of the self energy away from resonance. In this region the spectral function
can be approximated by neglecting the self energy in the denominator:

ρ(k) ≈ Im Σ

(k2 −m2
R)2

. (3.28)

Clearly, a larger Im Σ away from resonances increases the value of the normalization
integral.

Having established this relation between the energy dependence of Im Σ and the nor-
malization of the spectral function, one can interpret the results obtained for the spectral
function in a new light: if without Re Σ the normalization is smaller than one, inclusion of
the real part mainly leads to the build up of a shoulder at larger invariant masses, which
is necessary to bring the normalization up to unity. The best examples for this behaviour
are the spectral functions of the F35(1905) (Fig. 3.10) and also of the P33(1232) (Fig. 3.8).
Both states are relatively far above the respective thresholds for decay into πN or ρN . For
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Figure 3.11: Normalization of the spectral function for different states. In the upper line
the normalization of the D13(1520) (left) and the P33(1232) are depicted, in the lower line
we show the normalization of the P13(1720) (left) and the F35(1905). The dashed lines
correspond to a calculation neglecting Re Σ, in the dashed line Re Σ is included and we
use the form factor FF1 of Eq. 3.22.

the D13(1520) and the P13(1720) this build up of an additional peak is accompanied by a
squeezing of the resonance peak owing to the subthreshold character of both resonances,
which as we argued before leads to a strong energy dependence around the resonance pole
and induces the squeezing.

If on the other hand, the normalization integral gives values larger than unity, the
main effect of Re Σ is to squeeze the resonance peak. An example of that we have already
seen: the spectral function of the ρ meson in vacuum, see the dashed curve in Fig. 3.4.
This observation indicates also why we find in our analysis form factors that lead to a fast
decrease of the width and therefore to a spectral function, which without Re Σ is normalized
to a value smaller than one: The corresponding peaks/shoulders at larger invariant masses
are not of great concern since they are probably hard to detect. On the other hand, a
squeezing of the resonance peak – that would follow from larger cutoffs – is more likely to
be in conflict with established properties of the resonances (for example from phase shifts).

In Fig. 3.12 we display the impact of the form factor on Re Σ and spectral function.
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Figure 3.12: Spectral function of the P33(1232) in four different calculations. The solid and
dashed lines indicate results obtained with Λ = 1 GeV, whereas the dotted and dash-dotted
lines result from Λ = 2 GeV.

Shown are four results for the spectral function of the P33(1232): the solid (with Re Σ) and
and the dashed lines (without Re Σ) correspond to calculations using for the cutoff Λ = 1
GeV. The same curves are shown in Fig. 3.8. For dotted (with Re Σ) and dash-dotted
(without Re Σ) lines we used a larger cutoff Λ = 2 GeV, which leads to a normalization
larger than unity if Re Σ is not taken into account. One can see that the spectral functions
are nearly identical if the real part of the self energy is neglected. If included, however,
very different results are obtained: the smaller cutoff produces a shoulder and the larger
cutoff produces a squeezing of the peak.

Finally a note on the values chosen for the cutoff parameter Λ in form factor FF1, Eq.
3.22: If we were interested only in a description of the spectral function in the vacuum, we
could in principle use arbitrarily small values for the cutoff Λ in form factor Eq. 3.22 and
thus suppress the effect from Re Σ. Due to the asymmetry in the form factor, the price to
pay for a small cutoff is a large enhancement in the region s0 < s < m2

R. As a compromise,
we fix the cutoff such that the enhancement induced by the squared cutoff remains smaller
than 2 and if possible, i.e. if the effects on the spectral function ρ are comparatively small,
we relax the cutoff even further. This way we keep some control on the effects of the form
factor on the in-medium self energies of both mesons and baryons.

3.2.4 Toy Model

In this Subsection we analyse the previous results in some more detail. First we will discuss
the z factor, which is most useful for the discussion of subthreshold resonances. Then we
will set up a toy model that allows for the analytic evaluation of the dispersion integral
and makes the relation between the imaginary part of the self energy and real part more
explicit.
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z Factor

Consider the spectral function ρ of a baryon resonance. Assume that around the peak of
the resonance Re Σ can be approximated by a linear Taylor expansion:

Re Σ(k) ≈ Re Σ(m2
R) + (k2 −m2

R)
∂Re Σ(k)

∂k2

∣
∣
∣
∣
k2=m2

R

(3.29)

= (k2 −m2
R)Re Σ′(k)

∣
∣
k2=m2

R

.

The second line follows if one performs a subtraction of the self energy such that the
physical mass is not shifted. With this approximation the spectral function ρ reads:

ρ(k) = − 1

π

Im Σ(k)

(k2 −m2
R −Re Σ(k))2 + Im Σ(k)2

(3.30)

= − 1

π

z2 Im Σ(k)

(k2 −m2
R)2 + z2 Im Σ2(k)

.

The z factor has been introduced around Eq. 3.26. For an interpretation of this quantity
consider the case of a subthreshold resonance, which couples to a continuum of states above
the threshold s0 [16, 106]. Then we have for the propagator around the pole:

G(k) = 1/(k2 −m2
R −Re Σ(k) + i ε) ≈ z/(k2 −m2

R + i ε) , (3.31)

such that the spectral function around the pole is given by:

ρ(k) ≈ z δ(k2 −m2
R) . (3.32)

This situation is schematically presented in Fig. 3.13. Here the z factor gives the
strength of the quasi-particle peak. Since the total strength is normalized to unity, we
must have z < 1. This can be confirmed explicitly by calculating the derivative from a
dispersion relation:

Re Σ(mR) =
1

π
P

∞∫

s0

dl2
Im Σ(l2)

l2 −m2
R

,

leading to

∂Re Σ(k)

∂k2

∣
∣
∣
∣
k2=m2

R

=
Re Σ(m2

R + ∆) −Re Σ(m2
R)

∆

=
1

π∆

∞∫

s0

dl2 Im Σ(l)

(
1

l2 −m2
R − ∆

− 1

l2 −m2
R

)

(3.33)

=
1

π

∞∫

s0

dl2
Im Σ(l)

(l2 −m2
R)2

.

We have assumed that m2
R < s0, so that there is no singularity in the integrand and the

principal value integral reduces to a normal one. Since Im Σ< 0, the derivative is negative
and z < 1.
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Figure 3.13: Schematic plot of the spectral function ρ in the case of a subthreshold reso-
nance with s0 > m2

R. Besides a quasi-particle peak with strength z < 1 there is a continuum
of states above the threshold s0.

For broad resonances above the threshold the direct interpretation of z is lost. Some-
where in between both extremes are resonances which are subthreshold with respect to only
one of their decay channels, but above the threshold for the other channels. An example
is the D13(1520) which is (nearly) subthreshold with respect to the Nρ channel, but above
the decay thresholds for Nπ and ∆π.

Let us relate the findings of this Section to the case of the D13(1520). Applying the
derivation of Eq. 3.33 to calculate the contribution of the high energy tail of the width
– which we define by the condition that it sets in above resonance – to the z factor of
the resonance, shows that this part of Im Σ leads to a depletion of strength in the quasi-
particle peak. The strength of the depletion scales directly with Im Σ. This is line with
our findings that using the asymmetric form factor FF1 of Eq. 3.22 leads to less squeezing
of the resonance peak: this form factor leads to smaller values of Im Σ far away from
resonance. We have now found two arguments as to why Re Σ affects the spectral shape
of the D13(1520), namely the energy dependence of Im Σ around resonance and its high
energy behaviour. In fact, both quantities are closely related to each other: a strong energy
dependence around resonance directly imposes large values far off-shell. In the next Section
we will see that indeed both effects work hand in hand in producing a small z factor.

3.2.5 Analytic Expressions

Let us now consider a model allowing to study the effects of the energy dependence of
Im Σ on Re Σ in some detail. To this end we set up a simple parameterization of Im Σ
such that the dispersion integrals can be solved analytically. We assume that the mass of
the resonance be s0 = 1.5 GeV2 GeV and the on-shell width Im Σ(s0) = 0.2 GeV2. The
parameterization of the width as a function of k2 = s is split up into two intervals:

Im Σ(s) = Θ(s− a)Θ(b− s) Im Σ1(s) + Θ(s− b) Im Σ2(s) . (3.34)

The upper and lower bounds of the interval are taken to be a = 1 GeV2 and b = 6.25 GeV2.
We assume that in the interval {a, b} the width is given either by a quadratic or a linear
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polynomial:

Im Σ1(s) =







a1 (s− a) (I)

a2 (s− a)2 (II)
. (3.35)

The constants a1 and a2 are chosen such that they reproduce the on-shell width Im Σ(s0).
If one assumes that the decay products are both massless, then pcm ∼ s1/2 and the above
polynomials correspond to a s-wave (I) or a p-wave (II) decay.

For the high energy tail s > b we study two different parameterizations:

Im Σ2(s) =







c1 (a)

2 c1 b

s+ b
(b)

, (3.36)

where c1 = Im Σ1(b).
We calculate Re Σ in the interval {a, b} from a dispersion integral:

Re Σ(s) =
s− s0

π
P

∞∫

a

ds′
Im Σ(s′)

(s′ − s)(s′ − s0)
(3.37)

=
1
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π
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b

ds′
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′)

(s′ − s)(s′ − s0)

︸ ︷︷ ︸

Re Σ2

.

Here we have split the dispersion integral into two regions. Note that the second integral
is not a principal value integral since s, s0 < b. The advantage of this splitting is that it
allows for a Taylor expansion of Im Σ1(s) in the finite interval {a, b}, and all contributions
except for the leading term lead to trivial polynomial integrals:

Im Σ1(s
′) = Im Σ1(s) + Im Σ′

1(s)(s
′ − s) +

1

2
Im Σ′′

1(s)(s
′ − s)2 ,
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+
1

4
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]

− (s→ s0) .

The derivatives of Im Σ follow from the parametrization I and II in Eq. 3.34. For the
contribution of the high energy tail we find

Re Σ2(s) =




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∣

2b
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∣
∣
∣
∣
− (s→ s0) (b)

. (3.39)
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Figure 3.14: Left: real part of the self energy Re Σ(s) for the four cases as discussed in
the text. For example, the label Ia indicates that Im Σ has been calculated using formula
I in Eq. 3.34 and formula a in Eq. 3.35 and similar for the other curves. Right: Same for
the spectral function ρ(s).

As already discussed, it is the first derivative of Re Σ which is responsible for the
modification of the spectral shape. Within our model, we find for this quantity from Eqs.
3.38 and 3.39:

∂Re Σ1(s)

∂s
=

1

π

[

−Im Σ1(s)
b− a

(s− a)(b− s)
+ Im Σ′

1(s)ln
b− s

s− a
+ Im Σ′′

1(s)
b− a

2

]

≡ Re Σ0 ′
1 + Re Σ1 ′

1 + Re Σ2 ′
1 (3.40)
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π

1
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(a)

c1
π

2b
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[

− 1

s+ b
ln

2b

b− s
+

1

b− s

]

(b)

≡ Re Σ′
2 .

In the left plot of Fig. 3.14 we display results for Re Σ(s) for the four scenarios
Ia − IIb discussed in the text. Note that around resonance the energy dependence of
Re Σ is essentially determined by the energy variation of the imaginary part, i.e. those
curves using a linear s dependence (solid and dashed lines) and those using a quadratic
s dependence (dotted and dashed-dotted lines) deliver very similar results, whereas the
parametrization of the high energy tail, Eq. 3.35, does not have a great influence. This
behaviour is also reflected in the spectral shape of ρ(s), which is shown in the right plot
of Fig. 3.14. Again, the differences in the results are due to the linear or quadratic s
dependence of Im Σ(s). If a quadratic s dependence is used (corresponding to parameter
sets IIa and IIb), we find the normalization of ρ to be larger than one, when the real part
of the self energy is neglected. This is mirrored in the squeezing of the resonance peak
once Re Σ is switched on (see dotted and dash-dotted lines in the right plot of Fig. 3.14).

In order to analyze this finding in more detail, we have calculated the z factor for each of
the four combinations. Also, since our concern is to establish a direct connection between
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z Re Σ′
2 Re Σ0 ′

1 Re Σ1 ′
1 Re Σ2 ′

1

Ia 0.94 0.06 −0.06 0.059 0
Ib 0.96 0.046 −0.06 0.059 0
IIa 0.65 0.28 −0.06 0.12 0.21
IIb 0.69 0.19 −0.06 0.12 0.21

Table 3.1: Numerical values for the parameter z as obtained within the four models
discussed in the text. Also given are the contributions to the derivative ∂Re Σ(s)/∂s taken
at s = m2

R from the individual moments of Im Σ(s).

the energy variation of Im Σ(s) and that of Re Σ(s), we give the individual contributions
to ∂Re Σ/∂s as defined in Eq. 3.40. The results are given in Table 3.1.

The z factors confirm the conclusions from the discussion of Re Σ and ρ: a linear
s dependence of Im Σ(s) produces a z factor much closer to unity as compared to a
quadratic s dependence. The results for the individual contributions of the moments of
Re Σ(s) nicely confirm our assumption that it is mainly the energy variation which is
responsible for the z factor. The result for Re Σ0 ′

1 (s) is small and independent of the
choice of the parametrization. This is understandable since only the global parameters
on-shell width and the intervall limits a and b enter.Much larger contributions are derived
from the derivatives of Im Σ1(s). In particular, the contribution from the second derivative,
Re Σ2 ′

1 , is sizeable. The high energy tail Re Σ2(s) adds sizeably to the total derivative if
parametrization II is employed, whereas it is rather small for parametrization I. This is
due to the much higher value of Im Σ(s) at s = b, which sets the overall scale for the
contribution of Re Σ2(s) to the dispersion integral. Thus the relation between the z factor
and the energy dependence of Im Σ(s) is enhanced by the influence of the high energy
tail. The functional form of Im Σ2(s) has only a moderate influence on the z factor,
parametrization (a) giving a somewhat smaller result for z than parametrization (b) as
Im Σ2 (s) is larger in this case and - as pointed out in the discussion around Eq. 3.33
- the high energy tail per se decreases the z factor. Since all four spectral functions are
normalized, for parameter sets IIa and IIb, a large amount of strength sits in the high
energy tail.

In Fig. 3.15 we compare results for the spectral function obtained with and without
Re Σ(s). This is done for two parameter sets, Ia and IIa. Expect for the dotted line –
corresponding to parameter set IIa with Re Σ– all calculations produce essentially identical
results. Switching the real part on or off has no great impact on parametrization Ia. On
the other hand, using parameter set IIa, which produces a stronger energy dependence
of the imaginary part of the self energy, a substantial squeezing is introduced from Re Σ.
This implies that for this curve the missing strength sits in the high energy tail. If Re Σ
is neglected the spectral function is not very sensitive on the parametrization of Im Σ.

Summarizing, in this Section we have found from a simple model that the energy
dependence of the width has a significant effect on the spectral function via the real part
of the self energy. By comparing a linear and a quadratic s-dependence of Im Σ we
have found that the latter leads to a substantial squeezing of the peak. Although our
parametrization has not assumed a subthreshold character of the resonance, the effects of
the real part of the self energy are approximated by the z factor. Analyzing the various
contributions to the z factor, it turns out that both the derivatives of Im Σ and its high
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Figure 3.15: Influence of the real part of the self energy on the spectral function ρ.

energy tail give important contributions to the z factor. This analysis therefore supports
our previous conjecture that the strong energy dependence of ΓNρ is responsible for the
reshaping of the spectral functions of the D13(1520) and the P13(1720).



Chapter 4

Meson Nucleon Scattering - Input

from Experiment

In the low density limit, the meson self energy is proportional to the meson-nucleon forward
scattering amplitude as is detailed in Chapter 5.2. Via the optical theorem (see Eq. B.38
in Appendixs B.6), the imaginary part of the forward scattering amplitude is related to
the total meson nucleon cross section. Concentrating on the ρ meson we thus obtain:

Im Πρ ∝ σρN =
∑

X

σρN→XN . (4.1)

Via detailed balance the in-medium properties of the ρ are thus partially constrained from
hadronic data on the reaction πN → ρN . In the context of the properties of vector mesons
in nuclear matter, this line of thought was first put forward in [39] and used to critically
examine the results proposed in [62, 111] and has led to a readjustment of cutoff parameters
in those works. Let us now discuss in how far experimental constraints are built into our
model and to what extent uncertainties in the model parameters prevail.

In our model the meson self energy consists of resonance-hole loops corresponding to the
assumption that meson-nucleon scattering is dominated by the excitation of intermediate
resonances. In fact, it is well known that π N scattering can be approximately exhausted
by resonance contributions, i.e. the non-resonant background terms are comparatively
small. For a demonstration we show Fig. 4.1, where total cross sections of pion induced
reactions are plotted. The calculations include only resonance contributions and are taken
from the PhD thesis of M. Effenberger [30]. We use this as a motivation to neglect back-
ground contributions altogether and, consequently, accept some uncertainty on the level
of the scattering amplitude. While being suitable for πN scattering and possibly also ηN
scattering [104, 57], a resonance picture is much less appropriate for γN reactions. There
non-resonant background terms build up the main part of the amplitudes [105, 40, 95].

Experimental information enters into our model via the determination of the coupling
constants at the meson-nucleon-resonance vertices. These are obtained by fitting analytical
expressions for the decay widths ΓNπ, ΓNη and ΓNρ to the experimentally observed values.
For the coupling strength of π, η and ρ to the nucleon and at the ∆N ρ vertex we take
standard values based on NN scattering, see Appendix A.

Whereas π and η are stable under the strong interaction, the ρ has a large decay width
of 150 MeV. Also, the η and π0 mesons decay electromagnetically, making them unsuitable
as beam particles. This leads to the following experimental situation: information on the
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Figure 4.1: Description of pion induced reactions on the nucleon with a resonance model.
The plot is taken from the PhD Thesis [30].
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pion coupling to baryon resonances exists in abundance and is rather well under control,
owing to the existence of π beams and the fact that a pion in the final state can easily be
tracked down. Also, the η couplings are rather well established. Information of the partial
decay width of resonances to these channels is obtained by fits to partial wave amplitudes
as well as total and differential cross sections.

The situation is more involved for the ρ meson. Information on the coupling of baryon
resonances to the N ρ channel originates mainly from an analysis of the reaction π N →
2 π N [90, 89, 124]. This is a formidable task as the available data base comprises several
10.000 events [90]. To simplify the problem, it is assumed that the 3-body 2 π N final state
may be decomposed into various 2-body isobar states, such as ρN , ∆ π or N ε, which in
the last step of the reaction then decay to form the 2 π N state. If the total energy of the
reaction is sufficiently large (

√
s > 1.8 GeV) to produce a ρ meson above the threshold of

mN +mρ = 1.7 GeV, the ρN contribution can safely be separated from the other isobars
by means of the 2 π invariant mass spectra. At smaller energies the ρ is identified from
its angular distribution. To this end a partial anaylsis of the reaction π N → 2 π N is
carried out for the individual isobar states [90, 51, 28, 20]. These amplitude together with
the well-known decay properties of the isobar states determines the angular distribution of
the 2πN final state. Once a good partial wave analysis is at hand, one can proceed along
the same lines as in the πN → πN case and perform a resonance fit to the partial wave
amplitudes, thus determining the properties of the resonance [89, 124]. In the following we
discuss the uncertainties arising in various partial wave amplitudes concerning the coupling
of resonances to the Nρ channel.

4.1 The D13 Amplitude

As it will turn out, a significant part of this work hinges on the coupling of the D13(1520)
resonance to the Nρ channel. According to the PDG, this resonance has a total width of
about 120 MeV, with roughly 70 MeV decay width to the π N channel and the remaining
50 MeV being split up in equal parts between the ρN and the ∆ π isobar states (cf. Table
A.2). In this work we use a value of ΓNρ = 26 MeV, as suggested by Manley et al [89]. In
the following we give a short motivation for this choice.

Obviously, it is hopeless to determine the coupling to ρN by considering the invariant
mass distribution, because the energy available for the ρ is at maximum mR −mN ≈ 580
MeV, roughly 200 MeV less than the pole mass of the ρ. This implies, that the decay is
strongly suppressed from phase space and may only happen through the low mass tail of

data points in 1.5-1.55 GeV isobar states considered

Manley et al [90] 35796 ∆π, Nρ, Nσ, N ?π
Herndon et al [51] 25203 ∆π, Nρ, Nσ
Dolbeau et al [28] 22492 ∆π, Nρ, Nσ
Brody et al [20] 5017 ∆π, Nρ(

√
s > 1.6 GeV) + phase space

Table 4.1: Parameters of the partial wave analyses discussed in the text. Given are the
number of events in the relevant energy range and the included isobar states.



52 Chapter 4. Meson Nucleon Scattering - Input from Experiment

Figure 4.2: D13 partial wave amplitude of the reaction πN → ρN . Left: Squared ampli-
tude from [51]. Right: Imaginary part from [90]. Also shown are the resonance fits from
[89] and [124].

the ρ distribution. In this light it is surprising that the partial wave amplitudes show a
rather clear resonant shape in the πN → ρN channel in the D13 partial wave amplitude
around the energy of this resonance, see Fig. 4.2. This is found in the works of Manley
et al [90], Herndon et al [51] and Dolbeau et al [28]. Only in the work of Brody [20] - the
oldest analysis and also the one comprising the smallest data set - no coupling is found,
since below

√
s = 1.6 GeV the Nρ contribution is set to zero and what - besides ∆π -

remains below that threshold value is attributed to phase space. A list of the included
isobar states and the size of the underlying data set of each analysis is shown in Table 4.1.
Thus the picture emerging from the analysis of πN scattering is that the D13(1520) couples
to a state with the quantum numbers of the Nρ channel. However, it may be possible that
some of that strength is not due to the physical ρ meson state, but to pure phase space
as is suggested by the work of [20]. A clean discrimination of these two channels is not
easily achieved since they lead to the same angular distribution. In spite of this ambiguity,
one should keep in mind that the more quantitative analyses of [90, 28, 51] have opted to
assign the full strength to the ρ meson and that the results of [20] have not been confirmed
by the follow-up experiment of [28]. This is demonstrated in Fig. 4.3, where the results
for the total cross section of the reaction π−p → ρ0n as found in both works are shown
together with a resonance fit resulting from the parameters as extracted by [90].

As can be inferred from Fig. 4.2, where the results of both the resonance fits of Manley
et al [89] and Vrana et al [124] are displayed, a reasonable fit of the partial wave amplitudes
from [90] - which does not assume any phase space contributions - can be achieved. As a
result a relatively large decay width (in view of the available phase space) of the D13(1520)
into Nρ emerges. Thus, both in [89] and in [80] a partial width of 26 MeV is found, a
value that we use throughout this work and that is very close to what is given in the PDG
[46]. In contrast, the analysis of [124] yields a somewhat smaller value of 11 MeV. In Table
A.2 and Table A.3 we give a detailed listing of the resonance parameters as found in the
analyses [89] and [124].

Further support for a rather large value for ΓNρ comes from a complementary experi-
ment, where photo production of pion pairs on the nucleon has been measured [70]. There
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Figure 4.3: Total cross section for the reaction π−p→ ρ0n. Shown are the results from the
analyses of [20] and [28] in comparison to a resonance fit with the parameters of [89].

the 2π invariant mass spectra - measured at photon energies just below the nominal thresh-
old for ρ production - follow the expected phase space distribution in the isoscalar channel
(π0π0). On the other hand, in the isovector channel a systematic asymmetry, favouring
larger invariant masses, is reported. An appealing interpretation of this finding assigns this
asymmetry to the ρ meson, which does not couple to the isoscalar channel. In the subse-
quent theoretical work of [95], this conjecture has been put on a more solid basis. There
a coupling of the D13(1520) to the Nρ channel is necessary for a succesful description of
two pion photo production in all isospin channels.

In [37, 84] meson-nucleon scattering is described in terms of 4-point interactions. After
iterating the interaction, the resonant structures seen in experiment emerge dynamically.
Fitting these structures with a Breit-Wigner type ansatz, width and mass can be compared
with what is obtained in other analyses. For the decay width of the D13(1520) to N ρ a
value of about 6 MeV is found, smaller than the results from [89, 124]. We would like
to stress the point that these different findings are not due to the different model input
(resonances versus contact interactions) but result from fitting to different parameter sets.
As mentioned in [37] the small width found for the D13(1520) is due to the fact that a
direct fit of π N → ρN data from [20] is performed, thus leaving the region around this
resonance essentially unconstrained, whereas the larger values for ΓNρ found in [89, 124] are
derived from fits to the more exhaustive database of [90]. In [84] an even smaller coupling is
obtained after the inclusion of photo-induced data to the coupled channel analysis. There
the direct constraint of photo data to the hadronic ρN vertex results from the assumption
of strict vector meson dominance (VMD). The ρ coupling strength is then essentially
determined by the isovector part of the photon coupling and not from the hadronic data,
which reduces the values obtained for ΓNρ again. In principle, this in line with our finding
concerning VMD as published in [110]. As we will discuss in detail in Chapter 10, already
the electromagnetic and hadronic decay branching ratios hint that VMD leads to smaller
predictions for ΓNρ compared to hadronic analyses. The difference between our approach
and that of [84] is whether one prefers the VMD predictions or argues that this mismatch
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hints primarily on a failure of VMD on a quantitative level.
Although we cannot exclude the possibility of such a weak coupling to the Nρ channel,

we believe that there is enough experimental evidence supporting a rather large width ΓNρ

of the D13(1520). We base our calculations on ΓNρ = 26 MeV as suggested in [89]. In order
to get some feeling for the sensitivity of our results on ΓNρ we present also calculations
using ΓNρ = 12 MeV reported in [124].

4.2 Other Partial Waves

Uncertainties concerning resonance parameters not only exist for the D13(1520) state, but
for many of the high lying resonances included in this work. Fortunately, in most cases
it turns out that the results are not too sensitive to changes in the parameters. This is
not true, however, for the P13(1720) and the D33(1700) states, which have a large energy
overlap with the Nρ system.

For both resonances a large branching ratio into the 2πN final state is well established
in the literature, see for example [89, 124, 104, 105]. However, so far no agreement has
been reached both for the total width of the resonance and for the relative strength of
Nρ and ∆π contributions. Note first, that the decay of the P13(1720) to N ρ is strongly
suppressed from phase space, if one takes into account that the coupling is p-wave. In this
light, the huge partial decay width assigned in [89] of about 300 MeV seems questionable.
Therefore we have opted to take the PDG value ΓNρ = 110 MeV [46] for this channel,
which is in agreement with the findings in [124]. For the D33(1700) in [89] a value of 46
MeV is found, whereas the PDG suggests a value of 120 MeV. Here we follow the results of
[89]. This way we arrive at a conservative estimate concerning the influence of both states
for in-medium effects.



Chapter 5

The Physics Program - Low Density

Theorem and Beyond

In this work we discuss the properties of π, η and ρ mesons as well as baryon resonances
in nuclear matter within a self-consistent coupled channel approach. The in-medium prop-
erties of these states are determined by their spectral functions, which in analogy to the
vacuum (see Chapter 3) are given by:

Amed(q) = − 1

π
Im

1

q2 −m2
M − Π+

vac(q) − Π+
med(q)

(5.1)

ρmed(k) = − 1

π
Im

1

k2 −m2
R −

〈
Σ+

med(k)
〉 , .

where mM and mR stand for the mass of the meson or baryon resonance, respectively. The
notation for meson and baryon self energies is different: while within our model in the
meson sector a clear separation of vacuum and in-medium contributions is possible, the
in-medium self energy of baryon resonances is based on the same Feynman diagrams as in
the vacuum, thus not allowing for a clear separation of both contributions. We therefore
denote by

〈
Σ+

med

〉
the full self energy in the medium. The brackets denote that we consider

an averaged self energy as explained in Appendix D.1. From now it is understood that
the baryon self energy is always obtained in an averaged sense even when not explicitly
mentioned.

Similar to the vacuum case, the calculation of the in-medium self energy proceeds in
three steps: we first obtain the imaginary part of the self energy for positive energies, using
Cutkoskys cutting rules. By implying anti-symmetry of Im Π we are able to write down a
dispersion relation, yielding Re Π. As already mentioned in the introduction of Chapter 3
and as further detailed in Appendix E, for baryon resonances the antisymmetry of Im Σ
found in the vacuum does not carry over to the nuclear medium. Therefore we neglect
there the negative energy contribution to the dispersion integral. In the remainder of this
Chapter we will lay out the details of these calculations.

5.1 Breaking of Lorentz invariance

In this section we discuss two properties of the in-medium self energy of baryons and
mesons. Whereas in the vacuum a meson is by a four-vector qµ = (q0,q), the description
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of mesons in nuclear matter requires another four-vector, nµ, characterizing the medium.
As a consequence, the self energy depends in general not only on q2, but also on two
other Lorentz invariant structures which can be build up from qµ and nµ: q.n and n.n. A
convenient choice is to evaluate nµ in the rest frame of nuclear matter

nµ = (mN , 0) . (5.2)

Then q.n = q0 mN and the self energy is a function of both energy q0 and the invariant
mass q2. Alternatively, one can formulate the self energy as a function of energy q0 and
3-momentum q as measured in the rest frame of nuclear matter, Πmed = Πmed(q0,q). The
same argument holds for baryons and we have Σmed = Σmed(k0,k).

In the case of particles with spin, there is a further implication due to the presence of
nuclear matter. In the vacuum the self-energy does not depend on the polarization, i.e.
the projection of the spin onto the 3-momentum. An intuitive explanation is that one may
always perform a Lorentz boost to the rest frame of the particle, where all polarizations
coincide. In nuclear matter, the situation is more complicated and the self energy depends
also on the polarization. Boosting to the rest frame of the particle does not help any more,
since a polarization can be defined with help of the 4-vector nµ. As a result, at finite
3-momenta one has to consider several self energies and spectral functions. For a particle
at rest in nuclear matter these quantities become degenerate.

For vector mesons the existence of several spectral functions is related to the fact
that with the 4-vectors qµ and nµ two current conserving projectors can be constructed
[16, 106], whereas in the vacuum only one such structure exists. These projectors are given
in Appendix B.3. Therefore we have to calculate two independent self energies and spectral
functions for vector mesons, which become degenerate in the limit q = 0.

In the case of baryon resonance, we average the self energy as detailed in Appendix
D.1. Therefore we loose the information on the spin-dependence of the self energy and the
spectral function. Since both the realization of a polarized resonance state in a nuclear
medium and its detection are impossible, however, this approximation does not lead to a
loss of important information.

5.2 Mesons

Let us now calculate the contribution to the meson self energy in nuclear matter due to
the excitation of a resonance. This process is depicted in Fig. 5.1. A qualitative analysis
of the underlying physical processes can be found in Chapter 2. Before presenting the final
formulae used for the numerical calculations, we will start with a simple model, showing
the general philosophy of the framework. As a result, the low density theorem [29, 81] will
emerge.

5.2.1 The Low Density Theorem

Assume that the coupling of a pseudoscalar meson ϕ of mass mM to a baryon resonance
is described by the relativistic Lagrangian:

L = g ψ̄R ψN ϕ+ h.c. . (5.3)
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Im Im

2

Figure 5.1: Going from the self energy (left) via the total cross section (right) to the
imaginary part of the forward scattering amplitude.

Such a Lagrangian is appropriate for the coupling of a resonance with the quantum numbers
Jπ = 1

2

−
to pions. The isospin coupling is of the form χ†σχϕ, yielding an additional factor

IΠ = 2 for the self energy if an isovector meson is considered.
We use relativistic propagators for nucleon-hole and resonance (cf. Appendix B.5):

−iGN (p) =
n(p)

2EN (p)

p/+mN

p0 − EN (p) − iε

−iGR(k) =
k/+

√
k2

k2
0 − E2

R(k) − Σ(k)
.

The on-shell energies of nucleon and resonances are given by EN(p) and ER(k). The
factor

√
k2 (instead of mR) in the numerator of GR(k) will be explained in Section 5.2.4

and Σ(k) is the averaged vacuum self energy of the resonance, calculated according to the
results of Chapter 3 and Appendix D.1.1. For the Fermi distribution function one has
n(p) = θ(pF − |p|). Note that for the nucleon we only keep the hole-propagator. The
contribution from the particle part vanishes and the antiparticle contribution becomes
relevant only at meson masses around the threshold for decay into NN̄ pairs.

With p the 4-momentum of the nucleon, q that of the meson and k = p + q the 4-
momentum of the resonance, the application of Feynman rules, Appendix B, leads to the
following expression for the meson self energy:

− iΠ(q0,q) = IΠ

∫
d4p

(2 π)4
(−i g)2 Tr [GN (p)11GR(k)11] (−1) (5.4)

Π(q0,q) = −i IΠ g2

∫
d4p

(2 π)4

n(p)

2EN (p)

Ω

(p0 − EN (p))(k2
0 − E2

R(k) − Σ(k))
.

The factor (-1) in the first line is due to the fact that one has a fermion loop. By Ω
we denote the trace arising from the spin-summation, which is necessary since the Dirac
indices form a closed loop and the vertex factor 11 is derived from the Lagrangian of Eq.
5.3:

Ω = Tr
[

(p/N +mN )(k/+
√
k2)
]

= 4
√
k2(Ecm

N +mN ) ,

where Ecm
N =

√

m2
N + p2

cm is calculated in the rest frame of the resonance. For the remain-
der of this Section we will only keep the leading non-relativistic term

Ω → 8
√
k2mN ,

where corrections of the order pcm/mN have been neglected. It can be derived from the
non-relativistic Lagrangian:

L = g ψ†
R ψN ϕ+ h.c. .
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Using Cutkoskys cutting rules (cf. Appendix D.2), the imaginary part of the self energy
is given by:

Im Π(q0,q) = −1

2
IΠ g

2

∫
d4p

(2 π)4

n(p)

2EN(p)
(2π i) δ(p0 − EN) (−2π i) ρ(k) Ω

= IΠ g
2

∫
d3p

(2 π)3

n(p)

2EN(p)
Im

Ω

k2
0 − E2

R(k) − Σ(k)
(5.5)

≈ 1

2mN
IΠ g

2 ρ

4
Im

Ω

k2
0 − E2

R(k) − Σ(k)
.

Here ρ(k) = − 1

π
Im

1

k2
0 − E2

R(k) − Σ(k)
. In the last step we have made the approximation

– valid at small densities – that the dependence of the integrand on the nucleon momentum
p can be neglected such that it can be pulled out of the integral. In spin-isospin symmetric
nuclear matter – to which we will confine ourselves throughout this work – the remaining
integral then gives a factor of ρ/4. As demonstrated in Appendix D.1.1, the imaginary
part of the resonance self energy from the decay into N M is given by:

−Im Σ/
√
k2 = ΓR(k2) =

qcm
8 π k2

1

2
|M2| =

qcm
8 π k2

g2 4mN

√
k2 IΓ .

For the isospin factor we have IΓ = 3 and qcm is the cm momentum of the final states. The
factor 4mN

√
k2 is a remnant of the non-relativistic reduction.

Let us now discuss how this formula translates into the well known collisional broad-
ening, relating the width to the total cross section of that particle on a nucleon [32, 65]:

Γcoll = ρ v σMN .

Assuming again that the MN interaction is exhausted by a single resonance, we get:

σMN =
1

flux

1

4
|M|2 Φ2

= Iσ
1

4 qcm
√
s

2 g4 |GR|2 4m2
N

qcm
4 π

√
s

= Iσ
m2

N

2 s π
g4 |GR|2

⇒ (5.6)

Im Π(q0,q) = −ρ σπN qcm

√
s

mN
= −ρ σπN qlab .

Here, Φ2 stands for the 2-body phase space, Appendix B.6. The isospin factor for the
squared matrix element is Iσ = 6. Identifying Im Π = −q0 Γ (see Appendix D.2.2), the
desired result for Γcoll is obtained. From this derivation it is clear that one thus obtains the
width of the meson in the rest frame of nuclear matter. If one needs the width in the rest
frame of the meson, one has to multiply the above formula for Γ by a factor q0/

√

q2. The
relation between self energy and total cross section is shown in the left and middle diagram
of Fig. 5.1. The Eq. 5.6 has the intuitive interpretation that by scattering processes –
elastic or inelastic – the meson is converted into another state, which is akin to saying that
is has decayed.

The same expression could have been obtained by using the optical theorem:

σ =
1

2 qcm
√
s
ImMforward ,
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q
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k=p+q

q

p p

k=p-q

Figure 5.2: Feynman diagram representing the resonance hole excitation. Left: s-channel
contribution. Right: u-channel contribution. The double-line stands for any of the reso-
nances or a nucleon. The meson lines represent any of π, η or ρ meson.

which implies a relation between the spin/isospin averaged forward scattering amplitude
M and the self energy (see also right diagram in Fig. 5.1)

Im Π = −ρ 1

2mN
ImMforward . (5.7)

The last equation also explains why the low density theorem is sometimes referred to as
the ρ T approximation (with T rather than M being the forward scattering amplitude).
In an alternative derivation of the low density theorem one would calculate the forward
scattering amplitude and compare it directly to the self energy.

5.2.2 Full Expressions for Πmed

In this Section we give the full expressions for the contributions to the self energy of ρ, π and
η mesons as following from the excitation of one resonance. The corresponding Feynman
graphs are depicted in Fig. 5.2, where the left graph is the s-channel contribution and the
right graph is the u-channel contribution.

Let us begin with the calculation of the s-channel contribution, left diagram in Fig.
5.2. We will first show in detail, how the calculation is done for a pseudoscalar meson ϕ
coupling to a resonance with the quantum numbers Jπ = 1

2

+
. The interaction Lagrangian

is given by:

L =
f

mϕ
ψ̄R i γ

5 γµ ψN ∂µϕ ,

leading to the vertex factor (see Appendix C.1.2)

V = ±γ5 γµ qµ .

The sign depends on whether an incoming or an outgoing meson is considered.

As usual, we denote the 4-momentum of meson, nucleon and resonance by q, p and k,
respectively. Momentum conservation requires that q + p = k. Using standard Feynman
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rules, we get in agreement with Eq. 5.4 for the self energy:

Πϕ(q0,q) = −i IΠ
(
f

mϕ

)2 ∫
d4p

(2 π)4

n(p)

2EN(p)

Tr
[

V(pN/ +mN)V† (k/+
√
k2)
]

(p0 − EN(p))(k2
0 − E2

R(k) − Σ(k))
(5.8)

= −i IΠ
(
f

mϕ

)2 ∫
d4p

(2 π)4

n(p)

2EN(p)

Ωϕ

(p0 − EN(p))(k2
0 − E2

R(k) − Σ(k))
.

Applying Cutkosky’s cutting rules to this expression, we obtain for the imaginary part of
the self energy:

Im Πϕ(q0,q) = IΠ

(
f

mϕ

)2 ∫
d3p

(2 π)3

n(p)

2EN(p)
Im

Ωϕ

k2
0 − E2

R(k) − Σ(k)
.

The isospin factor IΠ is calculated from the isospin part of the Lagrangian and is IΠ = 2
for isospin-1

2
and IΠ = 4/3 for isospin- 3

2
resonances if pions or are considered. For the

isoscalar η we have IΠ = 2. In addition we multiply the self energy with the form factor
F (k, q) (not shown explicitly) of Eq. 3.20, Chapter 3.2. When considering the coupling of
meson ϕ to other resonances, only the corresponding interaction Lagrangians – leading to
the spin traces Ωϕ – and resonance propagators have to be modified. When we refer to a
non-relativistic calculation of the meson self energy, a calculation is meant where the traces
Ωϕ are obtained from non-relativistic Lagrangians. We have given an explicit example for
that in the previous Section. Explicit expressions for Ωϕ are given in Appendix C.

The transverse and the longitudinal self energy of the ρ meson, ΠT
ρ and ΠL

ρ , are ob-
tained by contracting the three-transverse and three-longitudinal projectors T µν and Lµν ,
respectively, with the self energy tensor Πµν (cf. Appendix D.1.1):

ΠT
ρ =

1

2
T µν Πµν (5.9)

ΠL
ρ = Lµν Πµν .

The projectors are given explicitly in Appendix B.3. We then find for the self energy of
the ρ meson:

ΠT/L
ρ (q0,q) = −i IΠ

(
f

mρ

)2 ∫
d4p

(2 π)4

n(p)

2EN(p)

ΩT/L

(p0 − EN (p))(k2
0 − E2

R(k) − Σ(k))
,

Im Π
T/L
ρ (q0,q) = IΠ

(
f

mρ

)2 ∫
d3p

(2 π)3

n(p)

2EN(p)
Im

ΩT/L

k2
0 − E2

R(k) − Σ(k)
. (5.10)

The isospin factor IΠ is calculated from the isospin part of the Lagrangian and is IΠ = 2
for isospin-1

2
and IΠ = 4/3 for an isospin 3

2
resonance. As for the pseudoscalar mesons, we

multiply the form factor F (k, q) (not displayed explicitly 5.10), see Chapter 3, Eq. 3.20.
The spin traces ΩT/L are given in Appendix C.

We do not explicitly calculate the u-channel diagram. It does not have an imaginary
part for positive meson energies q0 > 0 and we will show later in this Section that its real
part is generated automatically when a dispersion relation is used to obtain the real part
of the self energy. In order to see that the imaginary part of the u-channel diagram is zero
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for positive energies, we calculate the invariant mass k2
u of the intermediate resonance for

a u-channel process. We get for k2
u:

k2
u = (p− q)2 = m2

N + q2 − 2mN q0 = (mN − q0)
2 − q2 ≤ m2

N . (5.11)

The imaginary part of the self energy only opens up above the threshold of Im Σ(k), i.e.
for invariant masses > (mN +mπ)2. Since k2

u < m2
N , it follows that the contribution from

the u-channel to the imaginary part of the self energy is zero.
The complete self energy is given as the sum of these individual contributions. A

complete list of the resonances which are taken into account is given in Table A.2. We
include all resonances which have a sizeable coupling to either of the mesons that are
considered in this work. As for the parameters mass and decay width we follow with
one exception the parametrization of Manley et al [89]. This exception is the P13(1720)
resonance, for details see Section 4. The coupling constants f are fitted to reproduce the
partial decay widths.

Apart from the resonance excitations, we also take into account the conversion of mesons
into nucleon-hole loops. This is done in a strictly non-relativistic manner. The non-
relativistic interaction Lagrangian is given in Appendix C.2, Eq. C.17. Since the nucleon
is stable, the integration over the Fermi distribution can be performed analytically and one
finds [33]:

ΠN
M(q0,q) = 4q2

(
fNNM

mM

)2

UN (q)F 2
t (q) . (5.12)

Here M stands for either π, η or ρ meson and the coupling constants fNNM are given in
Table A.1 in Appendix A. The form factor Ft(q) is defined in Eq. 3.21 in Chapter 3.2,
the corresponding cutoff parameters are listed in Table A.1. The Lindhart function UN(q),
consisting of s and u channel contributions, is given explicitly by [33, 119]:

UN (q) =

∫
d3p

(2π)3

{
n(p)(1 − n(p + q))

q0 − E(p + q) + E(p) + iε
+

n(p + q)(1 − n(p))

−q0 − E(p) + E(p + q) + iε

}

=
mpF

π2

{

−1 +
1

2q

[

1 − (ν/q − 1

2
q)2

]

ln

(
ν/q − 1

2
q + 1

ν/q − 1
2
q − 1

)

−

1

2q

[

1 − (ν/q +
1

2
q)2

]

ln

(
ν/q + 1

2
q + 1

ν/q + 1
2
q − 1

)}

(5.13)

ImUN (q) =







−2mN pF

4πq

[

1 −
(
ν

q
− 1

2
q

)2
]

for q > 2 , 1
2
q2 + q ≥ ν ≥ 1

2
q2 − q

−2mN pF

4πq

[

1 −
(
ν

q
− 1

2
q

)2
]

for q < 2 , 1
2
q2 + q ≥ ν ≥ q − 1

2
q2

−2mN pF

4πq
2 ν for q < 2 , 0 ≤ ν ≤ q − 1

2
q2

.

Here we have defined the variables ν = q0mN/p
2
F and q = |q|/pF . The real part of the self

energy follows by replacing the argument in the logarithms of UN by its absolute value,
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the imaginary part is due to negative arguments in the logarithm. Following a suggestion
made in [56], for the case of η and π mesons, we multiply UN with a recoil factor:

UN(q0,q) → UN (q0,q)

(

1 − q0
2mN

)2

, (5.14)

which is a O
(

p
mN

)

correction from the relativistic pseudo-vector coupling [33].

The Eqs. 5.8 and 5.10 can not only be used to obtain the imaginary part of the self
energy, but they also yield its real part. In the actual calculations, however, we obtain
the real part by means of an unsubtracted dispersion relation, thus making sure that the
self energy remains an analytic function in the upper half of the complex energy plane and
that the spectral function of the meson remains normalized. In Chapter 9 we investigate
to which extent both approaches differ. The dispersion relation reads:

Re Π+
M (q0,q) = P

∞∫

0

dω2

π

Im Π+
M (ω,q)

ω2 − q2
0

. (5.15)

The index + indicates that the dispersion relation produces the retarded self energy. By
writing the dispersion relation as an integral over positive energies only, we have made
use of the antisymmetry of Im Π+

M(q0,q), see Appendix 9.9. The unsubtracted dispersion
relation converges due to the influence of the form factors, which cut off the high energy
tail.

Note that due to the antisymmetry of Im Π+, in this way we also generate the u channel
contribution: changing the meson energy from q0 to −q0 in an s-channel diagram yields
exactly the corresponding u-channel diagram since an incoming meson with negative energy
−q0 is nothing but an outgoing meson with positive energy q0. As an example, consider
the excitation of a sharp resonance with quantum numbers Jπ = 3

2

+
and compare a direct

calculation of the self energy including s- and u-channel (yielding the Feynman self energy)
with a dispersive calculation into which only the s-channel enters (this way the retarded
self energy is generated). Fermi motion is neglected. If our assertion is correct we expect
that both approaches give the same real part and up to a sign the same imaginary part as
well (cf. Appendix E.2). Summing up s- and u-channel contributions from Fig. 5.2 gives
from a direct calculation (compare with Eq. 2.2 in Chapter 2.1):

Re ΠF
M (q0,q) =

4

9
ρq2

(
f

mM

)2 [
1

q0 +mN − ER(q)
︸ ︷︷ ︸

s−channel

+
1

−q0 +mN − ER(q)
︸ ︷︷ ︸

u−channel

]

=
8

9
ρq2

(
f

mM

)2
ER(q) −mN

q2
0 − [mN − ER(q)]2

(5.16)

Im ΠF
M (q0,q) =

4

9
ρq2

(
f

mM

)2
{
θ(q0) δ[q0 +mN − ER(q)] +

θ(q0) δ[−q0 +mN − ER(q)]
}

(5.17)

The imaginary part is proportional to δ functions since we neglect finite width effects as
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Figure 5.3: Invariant mass q2 Eq. 5.20 as function of the 3-momentum q of the
following resonance-hole excitations: D13(1520)N−1 (solid), S11(1535)N−1 (dashed) and
P33(1232)N−1 (dashed-dotted). Also indicated are the masses of ρ, η and pion (straight).

well as Fermi motion. The dispersion integral

Re Π+
M(q0,q) = P

∞∫

−∞

dω

π

Im Π+
M(ω,q)

ω − q0
(5.18)

is easily solved:

Im Π+
M (q0,q) = −π 4

9
ρq2

(
f

mM

)2
{
θ(q0) δ[q0 +mN − ER(q)] −

θ(q0) δ[−q0 +mN − ER(q)]
}

Re Π+
M (q0,q) =

4

9
ρq2

(
f

mM

)2 [
1

q0 +mN − ER(q)
︸ ︷︷ ︸

q0>0

+
1

−q0 +mN − ER(q)
︸ ︷︷ ︸

q0<0

]

(5.19)

This makes the relation between the u-channel contribution and the antisymmetry of
Im Π+

M (q) explicit: the real part obtained by summing up s and u-channel contributions
is identical to the real part resulting from a dispersion relation. The imaginary parts are
up to a sign identical.

Throughout this work the coupling of the ρ meson to baryon resonances is described by
current conserving interaction Lagrangians, see Appendix C.1.1. This is strictly speaking
not mandatory as long as massive ρ mesons are considered. However, in our in-medium
calculations we will have to cover the complete 4-momentum range, in particular also the
photon point q2 = 0. Choosing an interaction Lagrangian which is not current conserving
then leads to unphysical results in the vicinity of the photon point for longitudinal degrees
of freedom, for which the coupling to the photon has to vanish.
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Let us finally discuss the physics contained in the particle-hole excitations. The meson
spectral function generated by the self energies of Eqs. 5.8, 5.10, 5.14 and 5.15 is character-
ized by the formation of additional peaks arising from the excitation of particle-hole loops.
This has been discussed already in the introductory Chapter 2. At a given 3-momentum
the energy of a resonance-hole state with resonance mass mR is approximately determined
by the equation:

q2
0 − q2 +m2

N + 2mNq0 = m2
R , (5.20)

which does not take into account effects from level repulsion. In Fig. 5.3 we have indicated
the solution of this equation for the most interesting particle-hole states. Also indicated
are the meson peaks. Similar pictures are shown in Figs. 2.2 and 2.4. The actual position
of the particle-hole peaks is only approximately determined by Eq. 5.20 and is modified by
effects from level-repulsion, see disucssion around Eq. 2.10 in Chapter 2 for more details.
The invariant mass q2 of this branch moves down to smaller values as the 3-momentum
increases, eventually reaching space-like kinematics q2

0 < q2 [107]. This in-medium shift of
spectral strength to the space-like region is not only encountered in resonance-hole models
such as ours. Quite generally, the threshold for the conversion of a meson M into a pion is
determined by the requirement that the invariant energy of the M N system must exceed
(mN +mπ). As a function of momentum, the corresponding q2 of the meson M decreases
and becomes finally space-like. Whereas for these conversion processes the space-like region
is reached only for finite 3-momentum q, one can on top have Landau damping, i.e. the
absorption of a meson on a nucleon. This process is confined to space-like mesons for all
3-momenta considered. One can therefore expect that the spectral strength available for
physical final states like – for vector mesons – e+e− or π+π− pairs decreases as a function
of the momentum, since more strength is shifted to regions which cannot be reached by
the time-like physical final states.

5.2.3 Nonrelativistic Reduction, Lindhardt Functions and Sus-

ceptibilities

The Eqs. 5.8 and 5.10 are valid both within a relativistic and a non-relativistic framework.
In the actual calculations we will often use a non-relativistic formalism, where only the
leading non-relativistic terms of the traces Ωϕ and ΩT/L are kept. A detailed derivation of
the non-relativistic reduction is given in Appendix C.2. In a systematic study [109], which
forms part of this work, it was demonstrated that the non-relativistic reduction produces
satisfying results when performed in the cm frame of the resonance. For details see Chapter
9.4. A particularly convincing example for that is the πN∆ vertex. Comparing the results
obtained from the fully relativistic Lagrangian and a non-relativistic reduction one finds
(cf. Tables C.1 and C.2):

Lrel =
f

mπ

ψ̄µ ψ ∂µπ → Ωrel =
8

3

√
k2 (Ecm

N +mN)q2
cm (5.21)

Lnrel =
f

mπ
ψ†,i ψ ∂iπ → Ωnrel =

16

3

√
k2mN q2 .

Here we have replaced the rest mass m∆ by the invariant mass
√
k2. The relativistic

trace Ωrel has been evaluated in the cm-frame. One finds that when taking q2 = q2
cm
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for Ωnrel, Ωrel is obtained from Ωnrel by the replacement mN → Ecm
N which only for very

large momenta induces some corrections. The numerical results shown in Chapter 9.4.1
indicate, that using cm kinematics in the non-relativistic reduction provides consistently
convincing results also for the vector mesons. In Chapter 9.4.1 we also stress that in a
non-relativistic formalism the same kinematics have to be used for the self energy and for
the determination of the coupling constants.

Let us introduce at this point some quantities which are often found in non-relativistic
works (for example in [33, 7, 98]) and to which we will refer in later parts of this work
(Section 5.3.2 and 6.6). The Lindhardt function UR(q) for resonance-hole states is defined
in analogy to the nucleon-hole excitation as the momentum integral over the product of
nucleon and resonance propagator:

UR(q) =

∫
d3p

(2 π)3

n(p)

2EN(p)

1

k2
0 − E2

R(k) − Σvac(k)
.

Here we have k = q + p. If one takes into account the energy dependence of Σvac(k), it is
not possible to find an analytic solution of the integral. A second function that is often
encountered in the discussion of particle-hole excitations is the so called susceptibility χ,
defined as:

χM(q) = IΠ

(
f

mM

)2

Ωred UR(q) , (5.22)

where M refers to the meson under consideration. The quantity Ωred is obtained from Ω
by dividing out the squared meson energy or momentum. For example, for particle-hole
loops coupling in a p-wave to a meson, the relation between Ω and Ωred reads:

Ω = q2 Ωred , (5.23)

as can be inferred by considering the expressions listed in Table C.2 and Table C.3. Having
explained UR, χ and Ωred, we can write down the self energy in the following factorized
ways:

ΠM (q) = IΠ

(
f

mM

)2

Ft(q )ΩUR(q) = q2 (q2
0, q

2)Ft(q)χM(q) .

Here the factors q2
0 and q2 arise for resonance-hole states coupling in a relative s-wave to

the mesons. In order to write down the self energy ΠM(q) in this way one needs to pull
the trace Ω out of the integral. This is not exact because the cm momentum depends on
the invariant mass

√
k2 of the resonance and is therefore implicitly also a function of the

nucleon momentum p. However, the deviations from a full calculation are small.

5.2.4 Comments on the Relativistic Calculation

In the first part of this Section we discuss a problem that arises in the calculation of the
meson self energy when working with relativistic expressions for the traces Ωϕ and ΩT/L.
This discussion has initially been published in [109], but here we are able to explore the
origin of the problem in some more detail. As a result the reason for the replacement
k/+M → k/+

√
k2 in the relativistic propagator of spin- 1

2
and spin-3

2
states (cf. Appendix

D.1.1 ) within our frame work will emerge. The second part of this Section is devoted to
a short discussion of the coupling scheme for spin- 3

2
resonances suggested in [101].
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A Sign Problem

In Section 5.2.1 we have related the imaginary part of the in-medium meson self energy to
the total meson-nucleon cross section. Within our sign conventions this requires Im ΠM

to be negative. Naively, we would expect that the self energy calculated according to Eqs.
5.8 and 5.10 obeys this constraint. In the following we will investigate this issue with a
simple relativistic Lagrangian describing the coupling of pions to resonances with positive
or negative parity:

L = g ψ̄R

{
i γ5

11

}

ψN ϕ+ h.c. (5.24)

From this Lagrangian the self energy can be calculated according to Eq. 5.8. Neglecting
Fermi motion, i.e. taking p = (mN , 0), 4-momentum conservation takes on the form

qµ = (q0,q)

pµ = (mN , 0) (5.25)

kµ = qµ + pµ = (q0 +mN ,q) .

Thus we get for the self energy:

Im Ππ(q0,q) = IΠ g
2 ρ

8mN

Tr

[

(p/+mN)

{
i γ5

11

}

(k/+mR)

{
−i γ5

11

}]

×

×Im
1

k2
0 − E2

R(k) − 〈Σ(k)〉

= IΠ g
2 ρ

8mN

Im
4mN [mN + q0 ∓mR]

k2
0 − E2

R(k) − 〈Σ(k)〉 . (5.26)

The isospin coefficient IΠ is either 2 or 4/3, depending on whether nucleon or ∆ resonances
are considered. Here 〈Σ(k)〉 is the averaged vacuum self energy – see Appendix D.1.1 – in
contrast to Σ(k), which is full self energy containing a Dirac structure.

Since it will be needed in a moment, let us give an explicit expression for the vacuum
resonance self energy Σ(k) = 2 (k2 Im I1 +mR Im I2) as arising from the Lagrangian Eq.
5.24, see Appendix D.1.1:

− iΣ(k) = (−i g)2

∫
d4p

(2π)4

i

p/−mN

{
i γ5

11

}
i

(k − p)2 −m2
π

{
−i γ5

11

}

= i (k/ I1(k) + I2(k)) (5.27)

Im I1(k) =
1

4k2
Tr [k/ Im Σ(k)] = −α p EN (p)

k2

Im I2(k) =
1

4
Tr [Im Σ(k)] = ±α p EN(p)√

k2
.

Here α denotes a common factor and p is the momentum of the nucleon in the rest frame
of the resonance. The upper/lower sign refers to a positive/negative parity resonance.

Coming back to the meson self energy, we see from Eq. 5.26, that its imaginary part
undergoes a change of sign for resonances with positive parity (upper sign) at q0 = mR −
mN . This means that for q0 < mR −mN , Im Ππ is positive, which is wrong.
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As we will see in a moment, this problem is due to the resonance propagator entering
into Eq. 5.26:

GF (k) =
k/+mR

k2 −m2
R − 〈Σ(k2)〉 . (5.28)

This is an approximation to the exact propagator, which is commonly found in the litera-
ture. It violates an important relation of the strength functions ρ1 and ρ2 [16], which are
defined via (see Appendix E.1.2):

ρ1(k) = − 1

4π k2
Tr [k/ ImGF (k)] (5.29)

ρ2(k) = − 1

4π
Tr [ImGF (k)] .

As detailed in Appendix E.1.2, they have to obey the relation:
√
k2ρ1(k) − ρ2(k) ≥ 0 . (5.30)

A direct calculation of ρ1 and ρ2 from propagator Eq. 5.28 exhibits that for k2 > m2
R this

constraint is not fulfilled:

ρ1(k) = − 1

π

〈Im Σ(k)〉
(k2 −m2

R − 〈Re Σ(k)〉)2 + 〈Im Σ2(k)〉 =
ρ2(k)

mR
.

Before we found that the self energy changes sign for q0 + mN < mR. In order to relate
this to k2 < m2

R, we write

(q0 +mN)2 = m2
N + q2 + 2mN q0 + q2 = k2 + q2 ≤ m2

R

⇒ k2 < m2
R − q2 .

Thus, we have reason to hope that using a correct propagator will solve the sign problem
of the self energy.

In order to confirm this, let us recalculate Im Ππ by assuming the most general form
for Im G̃F , as it follows from the Lehmann representation Eq. E.5:

Im G̃F (k) = −π (k/ρ1(k) + ρ2(k))

Im Ππ(q0,q) = −π IΠ g2 ρ

8mN
4mN [(mN + q0)ρ1(k) − ρ2(k)] (5.31)

≤ −π IΠ g2 ρ

8mN
4mN ρ1(k)

[

(mN + q0) −
√
k2
]

≤ 0 ,

where in going from the second to the last line we have used relation Eq. 5.30 and

(q0 +mN)2 = m2
N + q2 + 2mN q0 + q2 = k2 + q2 ≥ k2 .

We demonstrate now that the exact propagator fulfills constraint Eq. 5.30 and that there-
fore the sign problem is due to a bad approximation of the full propagator. Without
approximations we have for ḠF (k):

ḠF (k) =
k/ (1 − I1) + (mR + I2)

k2(1 − I1)2 − (mR + I2)2
. (5.32)
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with the self energies I1 and I2 as given above. Obtaining ρ1 and ρ2 from Eq. 5.29 yields:

ρ1(k) = − 1

πD

[
〈Im Σ(k)〉 − Im I1(k)(k

2 −m2
R)
]

(5.33)

ρ2(k) = − 1

πD

[
〈Im Σ(k)〉 mR − Im I2(k)(k

2 −m2
R)
]

.

Here we have neglected the real part of the self energy, for which analytic expressions
are not available. By D we denote the squared absolute value of the denominator of the
propagator. Plugging in explicit expressions for I1 and I2, one finds after some algebra
that

√
k2 ρ1(k) − ρ2(k) = α

p

πD
(
√
k2 −mR)2 EN ±mN√

k2
> 0

for all energies and momenta, independent of the parity of the resonance. Thus, when
using a consistent propagator the sign problem of the meson self energy is avoided.

In the actual calculations we do not keep the full Dirac structure of the propagator but
make an approximation to it which simultaneously retains the simplicity of Eq. 5.28 and
satisfies the constraint of Eq. 5.30:

GF (k) =
k/+mR

k2 −m2
R − 〈Σ(k)〉 → k/+

√
k2

k2 −m2
R − 〈Σ(k)〉 (5.34)

√
k2ρ1(k) − ρ2(k) = 0 .

Using this expression for the propagator, the self energy is given by:

Im Ππ(q0,q) = IΠ g
2 ρ

8mN
Im

4mN

[

mN + q0 ∓
√
k2
]

k2
0 − E2

R(k) − 〈Σ(k)〉 . (5.35)

While the imaginary part of the propagator Eq. 5.34 is correct in the sense that it fulfills
the fundamental constraints listed in Appendix D.1.1, the real part of the propagator
should strictly speaking be obtained by means of a dispersion relation as follows from the
Lehman representation of Eq. E.5 in Appendix E.1.2. We have checked explicitly that
the differences between the (approximated) real part of Eq. 5.34 and a full solution using
dispersion relations are small. When using a dispersion relation for the self energy Σvac,
the Lehmann representation for the propagator is automatically respected.

For spin-3
2

states the same problem arises. We cure it as in the spin- 1
2

case by replacing

m2
R →

√
k2 in the original Rarita-Schwinger propagator, Eq. B.27 in Appendix B.4 and

end up with the expression:

Gµν new
F (k) =

k/+
√
k2

k2 −m2
R − 〈Σ(k)〉 P

µν
3/2(k

2) . (5.36)

Some remarks about this propagator are in order. First we note that it is directly propor-
tional to the spin- 3

2
projector P µν

3/2. Second, in analogy to the case of spin- 1
2

resonances this
expression is – strictly speaking – not correct for the real part, but again we expect the
deviations to be negligible for our purposes. Finally, Eq. 5.36 and variants thereof have
already been discussed in the literature [12, 2, 118, 130]. In [2] it is introduced to insure
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gauge invariance of photon-nucleon amplitudes. This is not necessary in our case as the
vector mesons are introduced via the gauge invariant field tensor V µν . On the other hand,
in [12] it was shown that Eq. 5.36 is incorrect in the limit of a small decay width Γ, since
it does not contain an inverse. This observation is in full agreement with our previous
statements about the real part of Eqs. 5.34 and 5.36. Also, as pointed out in [12, 118], the
propagator Eq. 5.36 displays a pole at k2 = 0, which is never reached when considering
the imaginary part of the meson self energy Eqs. 5.8 and 5.10. Therefore the relativistic
results presented in this work do not suffer from these poles. One should also be aware
of the fact that the use of gauge-invariant couplings for the spin- 3

2
field – which introduce

additional orders of the resonance momentum – as suggested in [101] avoids these poles,
see following Subsection.

The Pascalutsa Coupling for Spin- 3
2

Resonances

In Appendix C.1.1 we give explicit expressions for standard Lagrangians describing the
coupling of baryon resonances to several meson-nucleon channels. Lagrangians like this
can be found in various places, see for example [35, 36, 104, 105, 123, 12, 2, 118, 130] and
references therein. For resonances with spin j ≥ 3

2
, in [101] an alternative way of describing

the resonance physics has been proposed. We will shortly comment on this method and
consider its effect on our results.

The propagation of spin- 3
2

resonances away from their mass shell involves on top of
the expected spin- 3

2
components also spin- 1

2
contributions. This is seen explicitly in the

decomposition of the Rarita-Schwinger propagator in Appendix B.4, Eq. B.27. A similar
phenomenon is encountered in the propagation of spin-1 states, where away from the on-
shell point the propagator contains modes which are not 4-transverse (see Eq. B.22 in
Appendix B.3. In [101] it has been suggested that in order to propagate only spin- 3

2

modes, a special type of Lagrangians describing the coupling of the resonance should be
employed. The idea is that a properly chosen Lagrangian projects onto the spin- 3

2
sector

exclusively and does not admit off-shell contributions with spin- 1
2
. Lagrangians satisfying

this requirement are constructed by means of the antiysymmetric tensor

ψµν = ∂µψν − ∂νψµ

or its dual ψ̃µν = 1
2
εµναβ ψ

αβ. In a Feynman diagram this quantity leads to the tensor

Γµν = gανkµ − gαµkν

multiplying the Rarita propagator. The crucial observation is that kµΓµν = 0. By in-
specting the decomposition of the Rarita-Schwinger propagator in Eq. B.27, Appendix
B.4, one realizes that only its spin- 3

2
contribution is going to give finite contributions, if at

both vertices, which are contracted with the propagator, the tensor ψµν is employed. The
situation is akin to that of spin-1 fields, where by using Lagrangians containing the field
tensor Fµν only the 4-transverse part of the propagator yields finite contributions.

As suggested in [103] a close relation exists between the conventional coupling and Pas-
calutsa type couplings, which are obtained from the conventional ones by the replacement:

Vµ ψµ → Vµγ5γ
νψ̃µν .

Here Vµ is the vertex factor derived from the conventional Lagrangian. Following the
argument in [103], apart from a normalization factor, the scattering amplitude obtained
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R P R

p/r/h

Figure 5.4: Feynman diagram representing the in-medium decay of a baryon resonance
into a nucleon and a dressed meson. The particle-hole loops stands both for nucleon and
resonance excitations and it is understood that it represents a complete resummation of
particle-hole insertions. The symbol P indicates that Pauli blocking is taken into account.

from the Pascalutsa coupling is up to a factor k2/m2
R identical to the standard one. We

checked this conjecture for all the traces appearing in our framework and always found it
to be valid. This finding implies that by using Pascalutsa type Lagrangians the unphysical
pole at k2 = 0 mentioned above is avoided.

In this work we do not present results arising from the Pascalutsa coupling. The extra
factor k2/m2

R only affects the off-shell behaviour of the self energy, while leaving the on-
shell point (and therefore the determination of the coupling constants) untouched. The
small effects in the off-shell behaviour are easily overshadowed by the uncertainties in the
form factor (functional form, cutoff) and therefore a systematic comparison of Pascalutsa
and standard Lagrangians will not provide any new insight.

5.3 Resonances

We will now turn to a discussion of the in-medium properties of baryon resonances. There
two competing mechanisms have to be considered. Pauli blocking will reduce the decay
width. This affects mostly resonances which are close to one of the meson-nucleon thresh-
olds and have a considerable branching ratio into this channel. For example, at normal
nuclear matter density the width of a ∆(1232) at rest vanishes. A second source of in-
medium modifications is resonance-nucleon scattering: due to the scattering process the
resonance is converted into a different state and therefore its decay width increases. We
generate these processes by replacing the vacuum meson propagator with the in-medium
one, see Fig. 5.4. The connection between the imaginary part of the self energy diagram
thus obtained and collisional broadening will be made explicit in Section 5.3.2. As in the
case of Pauli blocking, we expect these effects to be most important for those resonances
with decay channels that are suppressed from phase space. Then already slight modifica-
tions of the spectral function can result in relatively large effects. On a qualitative level
these phenomena have been studied in Chapter 2.

5.3.1 The in-medium self energy of baryon resonances

We calculate the in-medium broadening of baryon resonances by replacing the vacuum
meson propagator by the in-medium one. The corresponding Feynman diagram is shown
in Fig. 5.4. Applying Cutkosky’s cutting rules, one finds for the width of a nucleon
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resonance with spin- j
2

and invariant mass
√
k2 decaying into a pseudoscalar meson ϕ or a

ρ meson:

Im Σ+
ϕ,med(k0,k) = − IΣ

2j + 1

(
f

mϕ

)2

√
k2
0−m2

N∫

kF

dp p2

8 πEN
×

×
+1∫

−1

dxF 2(k, (k − p)) Ωϕ Amed
ϕ (k − p) (5.37)

Im Σ+
ρ,med(k0,k) = − IΣ

2j + 1

(
f

mρ

)2

√
k2
0−m2

N∫

kF

dp p2

8 π EN
×

×
+1∫

−1

dxF 2(k, (k − p)) (2 ΩT Amed
ρ,T (k − p) + ΩL Amed

ρ,L (k − p)) .

Here the integration variable x – defined as cos ∠(k,p) – is implicitly contained in (k−p)2 =
(k0 −EN )2 − (k−p)2. Propagator and spectral function of meson M are denoted by Dmed

M

and Amed
M , respectively. The isospin factor IΣ is 1 for ∆ resonances with isospin 3

2
and 3

for N∗ resonances with isospin 1
2
. For the decay into Nη IΣ = 1. The integration variable

p refers to the nucleon momentum with respect to the rest frame of nuclear matter, EN is
the on-shell energy of a nucleon and we have EF =

√

m2
N + p2

F . This explains the lower
integration bound, reflecting Pauli blocking. The upper integration limit follows from the
condition that the meson energy q0 > 0. These expressions are similar to what one obtains
in the vacuum for the decay into one stable and one unstable particle, see Eqs. 3.18 and
3.19 in Chapter 3.2. For practical reasons we perform the phase space integration in Eq.
5.37 in the rest frame of nuclear matter and not in the rest frame of the resonance. In
passing we mention that there is an additional contribution to the imaginary part of the
resonance self energy which is due to the decay of a nucleon from the Fermi sphere into a
resonance and a meson. For details see Appendix D.3. Since the energy of the resonance
involved in this process is necessarily smaller than the Fermi energy and therefore much
smaller than the on-shell energy of the resonance, this term does not change the imaginary
part of the self energy in the vicinity of the resonance and should also have a small impact
on the real part which is obtained via a dispersion relation (see Section 5.3.3).

We do not modify the ∆π decay channel. For the D13(1520) we do not expect this
channel to be important since the partial decay width of 25 MeV is quite small in view of
the available phase space, resulting in a small coupling constant. For some of the higher
lying resonances, the situation is not as clear since they have a sizeable coupling to this
channel. Here and in particular for the P11(1440) a modification of the ∆π channel would
be interesting, though it probably will not affect the central results of this work.

5.3.2 Relation to Resonance Nucleon Scattering

In this Section we discuss the physical interpretation of the imaginary part of the resonance
self energy Eq. 5.37. By cutting diagram 5.4 one generates two diagrams which are shown



72 Chapter 5. The Physics Program - Low Density Theorem and Beyond

R N

N

R N

N N

Figure 5.5: Interpretation of the in-medium self energy as a sum of a collision term and
the decay into a nucleon and a dressed meson.

in Fig. 5.5: the diagram on the left stands for resonance-nucleon scattering processes
and the diagram on the right describes the resonance decay into a nucleon (with Pauli-
blocking) and a dressed meson. Such a separation is intuitive: when dressing a meson with
one resonance-hole excitation, its spectral function contains two branches, a particle-hole
branch and a meson branch. Resonance-nucleon scattering (or the decay R → N(N−1R))
is related to the particle-hole branch, the resonance decay into meson and nucleon is related
to the meson branch.

For illustrative purposes we study now the contribution of the particle-hole branch.
Therefore we consider Eq. 5.37 for the decay R → NM in the low density limit. The
resonance is supposed to have the quantum numbers Jπ = 3

2

+
and the meson is a pseu-

doscalar, such that the decay is p-wave. Furthermore, we assume that the position of the
free resonance-hole pair is below the meson, i.e. mR −mN < mM . The calculation is done
non-relativistically and we obtain the following expressions for propagator, self energy and
spin-trace Ω (see also Section 5.2.3):

ImDmed
M = ImDvac

M + |Dvac
M |2 Im ΠM

ΠM = IΠ

(
f

mM

)2

Ωϕ UR , Ωϕ = 16/3mN mR q2 .

Here IΠ = 4
3

is an isospin factor and q stands for the 3-momentum of the meson. In terms of
these quantities the imaginary part of the in-medium resonance self energy can be written
in the low density limit as a sum of the vacuum width and an in-medium contribution:

Im Σ(k0,k) = Im Σvac(k) + Im Σcoll(k0,k) (5.38)

= Im Σvac(k) +
1

4

∫
d3p

(2π)32EN(p)
|Dvac

M |2 IΠ IΣ
(

f

mM

)4

Ωϕ 2 ImUR

︸ ︷︷ ︸

I

.

The integrand I is related to the scattering amplitude RN → NR, which reads

M = −
(

f

mM

)2

4mN mR (S1 · q)Dvac
M (S†

2 · q) .

The squared and spin/isospin averaged amplitude |M̄|2 is:

1

2jR + 1

1

2jN + 1

1

2IN + 1

∑

spins

|M|2 =
1

16

(
f

mM

)4

Ωϕ 2 |Dvac
M |2 Iσ = |M̄|2 .
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One readily calculates Iσ = 4/3 and remembering that IΣ IΠ = 4/3, Im Σ is expressed in
terms of |M̄|2 as follows:

Im Σcoll(k0,k) = 4

∫
d3p

(2π)32EN(p)
|M̄|2 ImUR , (5.39)

Assuming that the vacuum width of the R vanishes, ImUR is proportional to a δ function
which puts the RN−1 state on-shell. This generates the low density limit of the left diagram
of Fig. 5.5:

ImUR(k0,k) = − ρ

8mN

π δ(k2 −m2
R) (5.40)

Im Σcoll(k0,k) = − ρ

4mN

∫

dΦ2 |M̄|2 = − ρ |k| σ .

Here we have used expressions for the 2-body phase space Φ2 and the total cross section
σ listed in Appendix B.6. By relating the total cross section to the forward scattering
amplitude, the low density theorem Eq. 5.7 is recovered and we have shown, that in
the low density limit the excitation of particle-hole pairs in the meson spectral function
generates resonance-nucleon scattering terms in the resonance self energy.

If the resonance is allowed to scatter into additional final states, then the above formula
for collisional broadening is extended to

Im Σcoll(k0,k) = − ρ |k|
∑

X={R′ ,N}
σRN→NX ,

where R′ stands for any of the involved resonances and N is the nucleon. For the meson
self energy the appearance of various final states translates into the excitation of additional
particle-hole states:

Im ΠM =
∑

X={R′ ,N}
Im ΠX

M . (5.41)

If one is interested in the collisional broadening from scattering into final state X, one only
takes into account the particle-hole excitation due to this state, ΠX

M , in the self energy ΠM .
We now discuss the question, up to which extent one can identify collision terms, if a

resummation of particle-hole loops in the propagator is performed, leading to:

ImDmed
M = Im ΠM

∣
∣
∣
∣

1

q2 −m2
M − ΠM

∣
∣
∣
∣

2

(5.42)

We showed above, that in the low density limit the collision into state X is obtained by
considering only the corresponding piece of the self energy, ΠX

M . This suggests that with
the replacement

Amed
M = − 1

π
Im ΠX

M

∣
∣
∣
∣

1

q2 −m2
M − ΠM

∣
∣
∣
∣

2

(5.43)

in Eq. 5.37, one can trigger on the individual scattering process RN → NX [7, 98]. As
compared to the low-density limit of Eq. 5.40, now the collision term contains medium
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modifications resulting from the dressing of the meson propagator. A further difference
to the low-density limit is that a decomposition of the self energy into vacuum part and
collision term as in Eq. 5.38 can not be sensibly achieved anymore. The reason is that the
decay mode meson-nucleon is modified: the dispersion of the meson branch differs from
the free dispersion relation and the meson branch has strength factor z < 1.

What has been said so far applies only if the resonance under consideration lies below
the meson, i.e. if mR −mN < mM . The situation becomes much more involved when the
resonance state R lies above the meson mass. A typical example for that is the coupling
of pions to the ∆-hole state. We have detailed in Chapter 2, Sections 2.1 and 2.3, that
then the free dispersion relations of meson and particle-hole cross each other at a finite
3-momentum and that the interpretation of the branches of the spectral function in terms
of meson and particle-hole modes becomes more complicated. Also the low density limit,
Eq. 5.40, is difficult to obtain if mR −mN > mM . The reason is that then in the collisional
term, Eq. 5.40, the exchange meson can be on shell, since the decay R → NM is possible.

We conclude from the above discussion that in a full calculation the absorptive processes
RN → NN can always be obtained from Eq. 5.43. Another scattering process which will
be of interest to us is the scattering D13(1520)N → ND13(1520) with ρ exchange. Since
the D13(1520)N−1 excitation is below the ρ meson, Eq. 5.43 is applicable.

5.3.3 Mass Shift and Level Repulsion

As in the vacuum case, we calculate the real part of the self energy in the medium by
means of a dispersion relation, which guarantees that the spectral function of the resonance
remains normalized:

Re Σ+
med(k0,k) = P

∞∫

EF

dω

π

Im Σ+
med(ω,k)

ω − k0
− cvac(k) . (5.44)

The lower integration bound is the Fermi energy EF below which Im Σ+
med(ω,k) vanishes,

see Eq. 5.37. We generate the main body of the dispersive mass shift in our approach.
Processes like RN → R′R′′, which are not considered in this work, are on-shell either closed
or suppressed from phase space and should give comparatively small attractive corrections
as detailed below. Non-relativistic corrections from relativistic nuclear mean fields can
be sizeable [71], but large uncertainties arise since their size is only poorly known for the
baryon resonances. In Chapters 7 and 9 we will discuss effects from mean fields under the
assumption that they are identical for nucleon and resonance.

The Eq. 5.44 has a nice physical interpretation which relates the dispersion integral to
effects from level repulsion. To see this, we rewrite the dispersion integral in the following
way:

Re Σ+
med(k0,k) = P

∞∫

EF

dω

π

Im Σ+
vac(ω,k) + ∆Im Σ+(ω,k)

ω − k0
− cvac(k) (5.45)

= Re Σ+
vac(k) + ∆Re Σ+(k0,k) .

The quantities ∆Re Σ+
vac and ∆Im Σ+

vac are defined via:

∆Σ+(k0,k) = Σ+
med(k0,k) − Σ+

vac(k) .
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Figure 5.6: Schematic plot indicating the relationship between the imaginary part of the
self energy and a mass shift. The vertical line indicates the position of the resonance.

If evaluated on the mass shell k2 = m2
R, ∆Re Σ+ gives a direct measure of the mass shift

induced by the in-medium corrections. Let us now consider two limiting cases:

(I) ∆Im Σ+







< 0 , k2 < m2
R

≈ 0 , k2 > m2
R

and (II) ∆Im Σ+







≈ 0 , k2 < m2
R

< 0 , k2 > m2
R

(5.46)

This situation is depicted in Fig. 5.6 by the solid (case I) and dashed (case II) lines.
The dotted line indicates the position of the resonance, which is supposed to have mass
of 1.5 GeV. In scenario (I) the dispersion integral produces a repulsive mass shift, i.e.
∆Re Σ+ > 0. This follows since in the region of a non-vanishing ∆Im Σ+ one has ω < k0

and ∆Im Σ+ < 0. On the other hand, in scenario (II) an attractive mass shift is generated
from the dispersion integral.

This finding can be interpreted in terms of level repulsion. Think of a broad baryon
resonance as a sharp resonance state coupling to a continuum of meson-nucleon states.
Scenario (I) corresponds to a situation where in the nuclear medium states are polarized
below resonance but none are affected above resonance. Due to level repulsion the inter-
acting states move the resonance peak up to larger invariant masses. In scenario (II) the
situation is reversed: now the additional states are added above the resonance, pushing the
resonance peak down. We have noted in the discussion of Eq. 5.44 that the contribution
from scattering into two (different) resonances gives presumably small and attractive cor-
rections. Within the picture of level repulsion this is understood as follows: the imaginary
part belonging to such processes opens up only for invariant masses above the resonance
and attraction results. The only exception is the that the incoming resonance R has enough
energy such that the invariant mass of the incoming RN system exceeds m′

R +m′′
R. In any

case, the main effect of such processes will be the population of continuum states above
the resonance and as a result they will act as an attraction.
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This picture relating the size of the real part of the self energy to the effects from
level repulsion, allows also for an estimate of the effects of form factors on the results.
When comparing calculations using form factor FF1 (Eq. 3.22 in Chapter 3.2.2) with
calculations using form factor FF2 (Eq. 3.23 in Chapter 3.2.2), level repulsion suggests
that more repulsion is provided by the form factor FF1. This is due to the asymmetry of
FF1, which leads to a relative enhancement of strength below resonance and to a depletion
of strength above resonance. This way a repulsion relative to a calculation using FF2 is
achieved.

In practical calculations, ∆Im Σ+ populates the region around resonance more sym-
metrically and clear predictions about the sign of the mass shift are not possible (note
also that in a symmetric case the absolute size of the mass shift is smaller). One example,
where the above arguments can be applied, is the Λ(1405) resonance which couples to the
KN channel. Here the effects from Pauli-blocking can be related to scenario (II). Since
the Λ(1405) is below the KN threshold, Pauli blocking removes states from above the
resonance. This means that in comparison to the vacuum less repulsion is experienced by
the resonance peak which therefore moves up. Such a behaviour is indeed found in various
many-body calculations, see for example [83, 63].

Before closing this Section we discuss a particular effect concerning an in-medium shift
of the peak of the spectral function. Let us therefore introduce the notions ”in-medium
mass” and ”peak position”. The in-medium mass is determined by the real part of the
in-medium self energy of the resonance via the equation:

k2 −m2
R −Re Σ+

med(k0,k) = 0 . (5.47)

In contrast to that, the peak position describes the actual peak of the spectral function ρ
(and is therefore more closely related to observables). Both quantities are only identical
when the imaginary part of the self energy is not energy dependent. To be more quantita-
tive, let us calculate the derivative of the spectral function taken at the in-medium mass.
Remembering the general Breit-Wigner like form of the spectral function ρ, it follows that
a positive value for the derivative at this point corresponds to a repulsive shift of the peak,
while attraction is indicated by a negative derivative. One finds:

π
∂ρ

∂k2
= − Im Σ+ ′

med

(k2 −m2
R −Re Σ+

med)
2 + Im Σ+ 2

med

+
Im Σ+

med

[(k2 −m2
R −Re Σ+

med)
2 + Im Σ+ 2

med]
2

× 2 [(k2 −m2
R −Re Σ+

med)(1 −Re Σ+ ′
med) + Im Σ+

med Im Σ+ ′
med]

=
Im Σ+ ′

med

Im Σ+ 2
med

.

Here the second step follows from using the defining equation Eq. 5.47 for the in-medium
mass. This result indicates that the mass shift is directly proportional to the derivative of
the imaginary part of the self energy. For all cases discussed in this work the resonance
width is increasing around the in-medium mass. Since the imaginary part of the self energy
is proportional to −Γ, this implies that ∂ρ/∂k2 is negative and that therefore a shift of the
peak of the spectral function down to smaller invariant masses is expected.

This finding allows us to give a qualitative estimate concerning the influence of form
factors on the observed of the peak position: a form factor that flattens the width around
resonance will lead to more conservative estimates concerning the in-medium shift of the
peak position. In particular, the form factor FF1 of Eq. 3.22 in Chapter 3.2 leads to
smaller peak shifts than form factor FF2 of Eq. 3.23.
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Figure 5.7: Feynman diagram corresponding to the improved meson self energy Im Π1

(left). The right diagram shows that by cutting the self energy diagram, a scattering
process on two nucleons is generated.

R R

M

N
R RN

-1
N

-1
N

Figure 5.8: Baryon resonance self energies as generated in our scheme. Left: Self energy
in the first iteration (Eq. 5.37). Right: Self energy in the second iteration.

5.4 Iteration Scheme

We have now set the stage for a typical self consistency problem. Starting with a model for
the in-medium self energy of mesons, we are led to modify also the resonance self energy,
which in turn serves as input for an improved calculation of the meson self energy and so
forth.

In the actual calculation we proceed as follows: Having calculated the in-medium self
energy of the resonances according to Eqs. 5.37 and 5.44, we can improve the meson self
energy by replacing Σ+

vac → Σ+
med in Eqs. 5.8 and 5.10:

Im Π
(1)
π/η(q0,q) = IΠ

(
f

mϕ

)2 ∫
d3p

(2 π)3

n(p)

2EN(p)
Im

Ωϕ

k2
0 − E2

R(k) − Σ+
med(k)

(5.48)

Im Π
T/L,(1)
ρ (q0,q) = IΠ

(
f

mρ

)2 ∫
d3p

(2 π)3

n(p)

2EN(p)
Im

ΩT/L

k2
0 − E2

R(k) − Σ+
med(k)

.

Thus an improved meson spectral function A1
med is generated, leading to a new guess for

the resonance self energy. We iterate this scheme until convergence is reaches. As it will
turn out in the result section, this is the case after at most three iterations.
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In Fig. 5.7 we show the Feynman diagram corresponding to the improved meson self
energy of Eq. 5.48. The diagram on the left is the self energy as generated by plugging in
the in-medium width of the resonance. The diagram on the right is obtained by cutting
the self energy diagram and displays the physical scattering amplitude leading to the
imaginary part of the meson self energy. One sees that the iteration generates reactions of
the incoming meson with more than one nucleon.

In Fig. 5.8 we show the resonance self energy as obtained after the first iteration (Eq.
5.37) – this is just a different way of drawing diagram Fig. 5.4 – and after the second
iteration. One sees that the diagrams of the first iteration involve at least one nucleon and
those after the second iteration involve at least two nucleons. As in the case of the mesons,
the iterative procedure generates diagrams that are related to scattering processes on more
than one nucleon.

5.5 What Is Not in The Model ?

In this Section we will briefly comment on physical processes that are not included in the
calculations.

Let us begin with the meson self energies, which in lowest order in the nuclear density
are determined by the meson-nucleon forward scattering amplitude. We saturate this
quantity by the assumption that meson-nucleon scattering proceeds only via intermediate
baryon resonances. As argued in Chapter 4, this is a reasonable approximation for pions
and η mesons, whose scattering amplitudes are dominated from the P33(1232) and the
S11(1535) resonances, respectively. However, for small momenta we are missing the s-wave
component of the pion-nucleon scattering amplitude, which is responsible for the repulsive
mass shift of the pion observed in pionic atoms.

More complicated is the situation for the ρ meson. Here a lot of theoretical work has
been devoted to the calculation of effects arising from the dressing of the pions in the pion
cloud [24, 52, 62, 113, 111, 122], which forms the self energy of the ρ meson in the vacuum.
The corresponding Feynman diagram is depicted in the left digram of Fig. 5.9. As shown
in the right diagram of Fig. 5.9, it corresponds to non-resonant contributions to the ρN
forward scattering amplitude. Such terms are not present in our calculation. However,
their effects are found to be rather small, when the ρN scattering amplitude is subjected
to constraints from pion-nucleon scattering and photoabsorption on the nucleon [113].

r p

p

N N

r r

p

p

Figure 5.9: Left: In-medium contribution to the ρ self energy arising from dressing the
pions in the pion cloud. Right: Corresponding non-resonant contribution to the ρN scat-
tering amplitude.
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R R

p/r/h

R’ R R’

NN

p/r/h

Figure 5.10: Contribution to the baryon resonance self energy (left) arising from the
scattering process RN → R′N .

Let us now turn to baryon resonances. There exist many diagrams which are not
included in our scheme. For example, scattering processes of the type RN → R′N as de-
picted in Fig. 5.10 are not taken into account. Here the main problem is the determination
of the coupling constants at the RR′M vertex. Information from phenomenology exists
at most for the decay R → P33(1232)π and quark models give estimates for the vertex
P33(1232)P33(1232)π [33]. For other vertices, information about the coupling constant is
very scarce.

Further examples of diagrams not taken into account are shown in Fig. 5.11. The
diagram on the left corresponds to an exchange diagram in RN scattering. The right
diagram is a higher order correction to the left diagram of Fig. 5.10.

Let us finally mention, that we do not dress the nucleon, i.e. except for Pauli-blocking
no medium modifications of the intermediate nucleons are taken into account. Since it is
generally acknowledged that the nucleon undergoes a broadening of at most 20 − 30 MeV
at normal nuclear matter density [42], we expect such effects to be small.

R

N

M

R
R R

M

N

Figure 5.11: Examples of Feynman graphs that are not considered in this work.

5.6 Mixing of Different Meson and Resonance States

In this Section we discuss a phenomenon that is directly related to this work, but that
we find interesting enough for a short discussion. In nuclear matter, one can think of
various Feynman diagrams corresponding to mixing processes of meson or resonance states
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p r

Figure 5.12: Feynman diagram representing the mixing of different mesons.

by scattering on a nucleon, for example πN ↔ ρN or D13(1520)N ↔ S11(1535)N . A
Feynman diagram representing such a mixing process in shown in Fig. 5.12. Such mixing
is of great interest if the masses of the states under consideration are reasonably close. In
this Section we show that after the usual summation over the spins of the nucleons has
been carried out, sharp conditions on the quantum numbers of the states that can mix
with each other arise.

Starting point is the following relation between scattering amplitudes of states with
definite helicity, which is a consequence of parity conservation [103]:

T fi
−λ′,−λ(θ) = η(η′)−1(−1)λ−λ′ T fi

λ′,λ(θ) (5.49)

η ≡ ηkηp(−1)sk+sp+1/2 ,

where we have introduced ηq and sq denoting parity and spin of the particle with momentum
q. The helicity λ of the initial or final state is defined the difference of the projections of
the angular momentum on the axis of the incoming particles (meson or resonance) in the
cm frame of the reaction. Since the self energy is determined from the forward scattering
amplitude, we can consider the case λ = λ′. If the forward scattering amplitude changes
sign under λ→ −λ, the self energy vanishes.

Let us first discuss the mixing of (pseudo)scalar and (axial)vector states. Here mixing
can occur between longitudinal spin-1 meson and spin-0 mesons, since the z component of
the angular momentum is to be conserved. It follows that switching the nucleon helicity
amounts to switching the total helicity. Thus, if the factor η changes sign when going from
(pseudo)scalar to (axial)vector states, no mixing occurs. This implies, that a change of the
spin must be followed by a change of the internal parity. Therefore, one can have σ − ω
mixing [131], but pions can not mix with ρ mesons.

Of particular interest with respect to the restoration of chiral symmetry are the so
called chiral partners, states which have the same quantum numbers except for the parity.
In a chirally restored phase their spectral functions have to be identical. Examples are
ρ− a1 or π − σ. From the above discussion it follows that mixing of the chiral partners is
not possible since they have the same spin but different parity.

Similarly, one can argue for the mixing of baryon resonances. If in addition to summing
over the nucleon spin, also a summation over the spin of the resonance is performed, mixing
only occurs for certain quantum numbers. In total we can 4 different helicity constellations
if the scattering of a spin- 1

2
resonance is considered, leading to a total helicity of −1, 0 or

+1. Through the optical theorem the total cross section is proportional to the sum of the
imaginary parts of these amplitudes. Using the same arguments as above, it follows that
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mixing is only possible if the parity does not change. Similarly, if mixing of spin- 1
2

and
spin-3

2
is considered, a change of parity has to be accompanied by a change of the spin.
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Chapter 6

The Resonance-Nucleon Interaction

In this Chapter we discuss the modifications of the nucleon-nucleon and the resonance-
nucleon interaction at small distances. We start by considering the NN potential. As
we will see, the pion exchange part of the NN potential contains a δ-type contribution in
position space. Since due to its small mass, pion exchange is not expected to be appropriate
at small distances, additional terms are added to the potential which simulate the physics
at short short-distances. Similar terms are needed for the ρ exchange contribution. These
correction terms are commonly called short-range correlations (SRC).

The δ-type pathologies are not restricted to the NN potential alone. They show up
for any potential where the exchanged meson couples in a p-wave to the baryon current.
The most prominent example is the P33(1232)N potential. There it is well known that a
successful description of NN → NNπ scattering requires the introduction of short-range
terms [71, 7, 49, 58]. More important for us, it turns out that a realistic model for the
in-medium properties of the P33(1232) state needs to take into account such short-range
corrections. We have already discussed this issue in Chapter 2 and will show further
results in Chapter 8. Since we are interested in the in-medium properties of both positive
and negative parity states, we also have to address the question of how to incorporate
short-range corrections for those states. In contrast to the P = +1 sector, recipes are
hardly available at the moment. The development of a framework allowing for a realistic
description of short-range effects for P = −1 states is one of the major novelties of this
thesis.

This Chapter is organized as follows. We start with a discussion of the NN potential
and explain the appearance of δ terms in position space. The correction terms are then
introduced in two different ways. On the one hand we follow the approach of [100], where
short-range correlations are introduced on the basis of a correlation function in position
space. This ansatz is contrasted with a formulation where the SRC are generated from
contact interactions. These contact interactions are provided by relativistic Lagrangians
which respect the quantum numbers of the states under consideration. They contain a
priori unknown parameters, describing the strength of the interaction. By matching both
approaches we can derive acceptable ranges for those strength parameters.

6.1 The NN potential

In this short introduction to the NN potential we will closely follow the arguments pre-
sented in [33, 99]. Within the One Boson Exchange model, the NN interaction is written

83
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s, w, p, r

1

2

Figure 6.1: One-Boson-Exchange model for the NN interaction.

down in terms of meson exchange contributions. For many applications it is sufficient to
consider the exchange of four mesons, σ, ω, π and ρ. The potential is depicted in Fig. 6.1.
The corresponding interaction terms read in a relativistic formulation:

Lσ = gσ ψ̄N ψN σ

Lπ = i
fNNπ

mπ
ψ̄N γµ γ5 ψN ∂µ π (6.1)

Lρ = gρ

(

ψ̄N γ
µ ψN ρµ +

κρ

2mN
ψ̄N σ

µνψN ρµν

)

Lω = gω

(

ψ̄N γ
µ ψN ωµ +

κω

2mN

ψ̄N σµνψN ωµν

)

.

Here σ, π, ρ and ω denote the respective meson fields, ρµν and ωµν are the corresponding
field tensors. For the pion, we have chosen a pseudovector coupling ∝ γµγ5. The quantum
numbers of the pion allow also for a pseudoscalar Lagrangian,

Lπ = i g ψ̄N γ
5 ψN π .

By using the Dirac equation, it is readily shown that for on-shell nucleons both Lagrangians
give the same results, if one properly relates the coupling constants fNNπ and g. When
considering off-shell nucleons this equivalences is lost, however. From chiral symmetry ar-
guments the pseudovector coupling is generally preferred. We will not discuss this question
in more detail, since in the remainder of this work we will work in the non-relativistic limit,
where both couplings lead to identical results.

Note that the Lagrangians describing the coupling of the isovector mesons π and ρ
contain also an isospin part, which reads:

χ† τ χ π and χ† τ χ ρ ,

where χ denotes the nucleon isopin spinor. For simplicity we will omit the isospin part in
the following discussion.

Taking the non-relativistic reduction of these expressions allows to disentangle the NN -
potential into a spin-independent, a spin-longitudinal (σ ·q) and a spin-transverse (σ×q)
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piece:

Lσ = gσ ψ
†
N ψN σ

Lπ = i
fNNπ

mπ
ψ†

N σk ψN ∂
k π (6.2)

Lρ = gρ

[

ψ†
N ψN ρ0 +

(
1 + κρ

2mN

)

ψ†
N σj ψN εjkl ∂k ρl

]

Lω = gω

[

ψ†
N ψN ω0 +

(
1 + κω

2mN

)

ψ†
N σj ψN εjkl ∂k ωl

]

.

Since gω/gρ ≈ 3 whereas κρ ≈ 6 and κω ≈ 0 [33], one sees that the ω meson mainly
contributes to the spin-independent term, whereas the ρ is important in the spin-transverse
channel.

The meson exchange potential is given as the product of vertex factor – for example,
for pions one obtains fNNπ/mπ σ · q from the above Lagrangians – and propagator of the
exchanged meson. In addition, we multiply each vertex with a form factor F (q), where q is
the 4-momentum of the meson. The exact form of F (q) is not important at this point and
will be specified later. One therefore arrives at the following non-relativistic potentials:

V σ(q0,q) = g2
σ

1

q2
0 − q2 −m2

σ

F 2
σ (q0,q)

V ω(q0,q) = g2
ω

1

q2
0 − q2 −m2

ω

F 2
ω(q0,q)

V π(q0,q) =

(
fNNπ

mπ

)2
(σ1 · q) (σ2 · q)

q2
0 − q2 −m2

π

F 2
π (q0,q) (6.3)

V ρ(q0,q) =

(
fNNρ

mρ

)2
(σ1 × q) (σ2 × q)

q2
0 − q2 −m2

ρ

F 2
ρ (q0,q) .

Here the indizes 1 and 2 refer to the upper and lower vertex of the potential as shown in
Fig. 6.1 and we have introduced fNNρ/mρ = gρ/(2mN)(1 + κρ). In a next step we express
the spin-dependent π and ρ contributions in terms of spin-central (σ1 ·σ2) and spin-tensor
S12 = 3 (σ1 · q̂) (σ2 · q̂) − (σ1 · σ2) terms. One easily verifies that

(σ1 × q̂) (σ2 × q̂) =
2

3
σ1 · σ2 −

1

3
S12 (6.4)

(σ1 · q̂) (σ2 · q̂) =
1

3
σ1 · σ2 +

1

3
S12 .

Here q̂ stands for a unit vector in q direction. The spin-dependent potentials then read:

V π(q0,q) =

(
fNNπ

mπ

)2
q2

q2
0 − q2 −m2

π

(
1

3
σ1 · σ2 +

1

3
S12

)

(6.5)

V ρ(q0,q) =

(
fNNρ

mρ

)2
q2

q2
0 − q2 −m2

ρ

(
2

3
σ1 · σ2 −

1

3
S12

)

.
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Figure 6.2: Diagrammatic interpretation of the short-range correlations and the parameter
g′. There exist similar diagrams, where the pion is replaced by a ρ meson.

6.1.1 The Correlation Potential

For the remainder of this chapter we will concentrate on how the meson-exchange picture
is modified at small distances due to the presence of so called short-range correlations.
Consider the static limit, i.e. the limit q0 → 0, of V π(q0,q). Concentrating on the spin-
central term exhibits a very peculiar result:

V π
C (q0 = 0,q) = −1

3

(
fNNπ

mπ

)2
q2

q2 +m2
π

σ1 · σ2

= −1

3

(
fNNπ

mπ

)2 (

1 − m2
π

q2 +m2
π

)

σ1 · σ2 .

Obviously, upon Fourier transformation, the central part of the π potential will be pro-
portional to δ(r) in position space. The same argument holds for the ρ meson exchange
potential. Introducing a form factor for the potential will formally get rid of the δ function,
but it does not solve the problem that there are large contributions from π and ρ exchange
at small distances, where at least the pion exchange is not very reliable.

In order to remedy this situation, one introduces an additional repulsive term V π
corr(q0,q)

which is supposed to cancel the δ function. This must be a constant term in momentum
space and upon comparison with the central part of the pion potential, one finds

V π
corr(q0,q) = g

(
fNNπ

mπ

)2

σ1 · σ2 , (6.6)

with g = 1
3
. The physical interpretation of this term is that it resembles more complicated

physical processes, like for example the simultaneous exchange of a π and several σ and/or
ω mesons, as indicated in Fig. 6.2 [33, 99]. Diagrams like that are expected to be important
at small distances and form the origin of short-range correlations. We would like to add
here, that the ω exchange can not play the role of the repulsive short-range potential, since
the ω is an isoscalar, whereas pion and ρ meson are isovector (remember that we omit the
isospin part of the potential for notational convenience).

6.1.2 Contact Interactions

We now start with a more quantitative analysis of short-range correlations. A reliable
direct computation of multiple meson exchange diagrams such as the one shown in Fig.
6.2 is not possible, because there is a large number of diagrams which can contribute. Since
these diagrams are expected to be important at small distances, it is natural to parametrize
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them either in terms of contact interactions or in terms of the exchange of a single, very
heavy meson (which is not necessarily identified as a physical meson).

The contact interactions have to be chosen such that they become active in the same
spin and isospin structures as the original pion and ρ exchange terms, whose behaviour at
small distances has to be improved by the contact terms. In order to achieve this, we obtain
them by contracting the hadronic currents coupling to pion and ρ meson. Depending on
whether this current is taken from the relativistic π N N or ρN N Lagrangian of Eq. 6.1,
we denote the Lagrangian describing the contact interaction by Lπ

C and Lρ
C , respectively:

Lπ
C = cπ J

µ Jµ (6.7)

Lρ
C = cρB

µ ν Bµ ν . (6.8)

We stress that these contact interactions do not describe the exchange of a pion or a ρ
meson, the index π and ρ refers to the interaction from which the hadronic currents Jµ and
Bµν are obtained. The strength parameters cπ and cρ are at this point unknown. We will
come back to their determination in Section 6.1.4. The tensor Bµν is defined by rewriting
the NNρ Lagrangian of Eq. 6.1 as:

L = Bµ ν ∂µ ρν . (6.9)

More explicitly, the current Jµ and the tensor Bµν read:

Jµ = i
f

mπ

ψ̄N γ
µ γ5 ψN

Bµν =
f

mρ
ψ̄N σ

µν ψN .

An alternative way of deriving these contact interactions is to consider the exchange of
a heavy meson with the quantum numbers Jπ = 1+ (Lπ

C) or Jπ = 2+ (Lρ
C). Also in this

picture the multiple meson exchange mechanisms of Fig. 6.2 are parametrized. Sending
the mass of the exchange particle to infinity, the contact interactions of Eqs. 6.7 and 6.8
result [118]. More explicitly, the Lagrangian describing the coupling of an axial vector
meson (the a1 meson for example) with Jπ = 1+ to nucleons has the following form:

L = g ψ̄N γ5 γµ ψN aµ
1 .

The nucleon-nucleon scattering amplitude derived from this Lagrangian is proportional to:

M ∝ g2
(
ψ̄N γ5 γµ ψN

) gµν − qµ qν/m2
a1

q2 −m2
a1

(
ψ̄N γ5 γν ψN

)
.

Taking the limit ma1
→ ∞ of this expression yields the same result for the scattering

amplitude that would have been obtained by employing the Lagrangian of Eq. 6.7. This
procedure does not correspond to the exchange of a physical meson since the mass is not
the physical one.

We have now explained the general relativistic form of the Lagrangians of Eqs. 6.7
and 6.8 describing the contact interaction. In our calculations we will only be interested
in the leading non-relativistic terms of these Lagrangian. We present now details of the



88 Chapter 6. The Resonance-Nucleon Interaction

non-relativistic reduction. As a result we will find that in the non-relativistic limit they
lead to the spin-structure ∝ σ1 · σ2 as required from Eq. 6.6.

Starting from Eq. 6.7 and performing a non-relativistic reduction of Lπ
C , i.e. dropping

terms in pN/mN , we find for the contact interaction:

Lπ
C = cπ

(
fNNπ

mπ

)2
(
ψ̄N γ5 γ

µ ψN

) (
ψ̄N γ5 γµ ψN

)
(6.10)

⇒ cπ

(
fNNπ

mπ

)2 (

ψ†
N σ

i ψN

)(

ψ†
N σi ψN

)

,

Note that in the lower line of each of the equations ψN denotes the non-relativistic two-
component spinor fields.

In order to build Lρ
C, we first decompose the baryonic tensor Bµ ν into its spatial (j, k)

and time (j, 0), (0, k) components. The non-relativistic interaction is then obtained by
keeping only the leading terms in pN/mN of Bµν :

ψ̄N σ
µ ν ψN =







(j, k) : εjkl ψ†
N σl ψN

(j, 0) : −i ψ†
N σj σ · ∂

2mN

ψN

(0, k) : −(j, 0)







(6.11)

In the derivation we have used that the leading component of σij – i.e. the component
that leads to the leading non-relativistic term of Bµν – is given by (cf. Appendix B.1):

σij =
i

2

[
γi , γj

]
→ − i

2

[
σi , σj

]
= εijk σk .

Dropping now the terms σ·pN

2mN
gives:

Lρ
C = 2 cρ

(
f

mρ

)2 (

ψ†
N σ

i ψN

)(

ψ†
N σi ψN

)

. (6.12)

Both π and ρ induced interactions have the same spin-structure ∝ σ1 ·σ2, as required from
Eq. 6.6. The form of Lπ

C and Lρ
C implies, that in any calculation where Lπ

C contributes,
also Lρ

C has to be considered. Therefore it is advisable to consider the sum of both terms
with a new parameter gp, where the index p refers to the p-wave coupling of the underlying
interaction. The short-range terms of the NN interaction read then:

gp

(
fNNπ

mπ

)2

σ1 · σ2 =

[

cπ

(
fNNπ

mπ

)2

+ 2 cρ

(
fNNρ

mρ

)2
]

σ1 · σ2 . (6.13)

Keeping terms of higher order in the non-relativistic expansion, the contributions from Lπ
C

and Lρ
C are presumably different. It is therefore hard to find an argument based on the

quantum numbers of the involved states, that explains why in the non-relativistic limit
both interactions yield formally the same results.

Now we need to determine the strength parameter gp. In the next Subsection we will
show how this can be done.
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6.1.3 Correlation Integral

In this Section we explain a method to generated short-range correlations that was orig-
inally introduced in [100]. The aim is to find a way to obtain estimates for the so far
unknown strength parameter cπ and cρ of the Eqs. 6.7 and 6.8. This is done by compar-
ing the approach presented in this Section with the contact interactions of the previous
Section.

Consider a typical meson exchange potential in position space, V (q0, r), defined as

V (q0,q) =

∫

d3r eiq rV (q0, r) .

In order to model the short-range correlations, which are not present in V , we introduce the
correlation function C(r), such that V (q0, r) → V (q0, r)C(r). Therefore, also the exchange
potential in momentum space will be modified:

Ṽ (q0,q) =

∫

d3r eiq r V (q0, r)C(r) . (6.14)

The crucial question now is how to choose the correlation function C(r). A popular choice
consists of setting C(r) = 1− j0(qCr), with j0(qCr) the lowest order Bessel function. This
can be motivated by observing that C(0) = 0 and C(r → ∞) = 1, which is in accordance
with our expectation that the correlations cancel the singularity of the potential at zero
distance, whereas at large distances they hardly affect the physics. For the correlation
parameter qC we adopt the usual value of qC = mω [100]. Loosely speaking this reflects
that the correlations are driven by multiple ω exchange. This choice for C(r) has the
advantage that its Fourier transform is simply a δ function:

∫

d3r eiqr j0(qCr) =
2 π2

q2
C

δ(q − qC) ,

thus making an analytical evaluation of the integral Eq. 6.14 feasible. Using this relation
and the well-known folding theorem, the full exchange potential including correlations can
be cast into the form:

V (q0,q) → Ṽ (q0,q) = V (q0,q) − 2 π2

q2
C

∫
d3k

(2π)3
δ(|q − k| − qC)V (q0,k) (6.15)

= V (q0,q) − Vcorr(q0,q) .

Let us now subject the π and ρ exchange parts of the NN potential (see Eq. 6.3) to
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the correlation integral. The contribution from π exchange leads to:

V π
corr(q0,q) =

2 π2

q2
C

∫
d3k

(2π)3
δ(|q − k| − qC)

(
fNNπ

mπ

)2

F 2
π (q0,k) kikj

σi
1 σ

j
2

q2
0 − k2 −m2

π

=
2 π2

q2
C

∫
dΩ

(2π)3
q2
C

(
fNNπ

mπ

)2

F 2
π (q0,k

′ + q)
σi

1 σ
j
2

q2
0 − (k′ + q)2 −m2

π

×

×



qi qj
︸︷︷︸

I

+ k′i k
′
j

︸︷︷︸

II

+ k′i qj + k′j qi
︸ ︷︷ ︸

III





|k′|=qC

(6.16)

≈
(
fNNπ

mπ

)2

F̃ 2
π (q0,q)

σi
1 σ

j
2

q2
0 − q2 − q2

C −m2
π






qi qj
︸︷︷︸

I

+

∫
dΩ

4π
k′ik

′
j||k′|=qC

︸ ︷︷ ︸

II







=

(
fNNπ

mπ

)2

F̃ 2
π (q0,q) D̃π(q0,q) σi

1 σ
j
2 (qiqj +

1

3
q2
C δij) .

Here the quantities D̃π(q0,q) and F̃π(q0,q) stand for the usual meson propagator and
monopole form factors with the replacement q2 → q2 + q2

C :

D̃π(q0,q) =
1

q2
0 − q2 − q2

C −m2
π

, F̃π(q0,q) =
Λ2

Λ2 − q2
0 + q2 + q2

C

.

The second line follows from the first line via the variable substitution k → k′ = k − q.
In order to arrive at the third line an approximation has been made [100]: There are three
terms depending on the angle x = cos θ between the vectors k and q, namely the form
factor F , the propagator and the terms in square brackets. Instead of performing the dx
integration over the product of these three terms, the integration is done for each term
individually. This procedure implies that all terms linear in x vanish. For example, for the
integral over the propagator we get:

∫

dx
1

q2
0 − k2 − q2 − 2 |q||k|x−m2

π

∣
∣
∣
∣
|k|=qC

≈ 1

q2
0 − q2

C − q2 −m2
π

As a further consequence of this approximation the therm denoted by III does not con-
tribute to the correlation potential. One might worry about the quality of these approx-
imations. Since in the remainder we will only consider the case q = 0 GeV, where the
integrand does not depend on x, this needs not to be of concern to us.

The contribution of term II can either be checked explicitly or by realizing that
∫

dΩ

4 π
kikj = a δij .

Taking the trace of this expression yields:

δij

∫
dΩ

4 π
kikj = k2 = 3 a ⇒

∫
dΩ

4 π
kikj||k|=qC

=
1

3
q2
C δij ,

which explains the result for term II.
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The important point of the result of Eq. 6.16 is that the leading term in the 3-
momentum of V π

corr(q0,q) is a constant proportional to q2
C , whereas the original potential

V π(q0,q) is in leading order proportional to q2.
The ρ exchange potential is treated along the same lines. The final result for the

correlation part of both the π and ρ exchange potentials reads therefore:

V π
corr(q0,q) =

(
fNNπ

mπ

)2

F̃ 2
π (q0,q) σi

1 σ
j
2 D̃π(q0,q)

(

qiqj +
1

3
q2
Cδij

)

(6.17)

V ρ
corr(q0,q) =

(
fNNρ

mρ

)2

F̃ 2
ρ (q0,q) σi

1 σ
j
2 D̃ρ(q0,q)

(

−qiqj + (q2 +
2

3
q2
C)δij

)

.

These equations show that the short-range correlations mix the spin-longitudinal and the
spin-transverse channel. It is therefore rewarding, to write out the sum of both V π

corr(q0,q)
and V ρ

corr(q0,q) in terms of the spin-longitudinal and spin-transverse channels. Using Eq.
6.4 yields:

V π
corr(q0,q) + V ρ

corr(q0,q) =

[(
fNNπ

mπ

)2

(q2 +
1

3
q2
C)D̃π F̃

2
π +

(
fNNρ

mρ

)2
2

3
q2
C D̃ρ F̃

2
ρ

]

(σ1 · q̂)(σ2 · q̂)+

[(
fNNπ

mπ

)2
1

3
q2
C D̃π F̃

2
π +

(
fNNρ

mρ

)2

(q2 +
2

3
q2
C) D̃ρ F̃

2
ρ

]

(σ1 × q̂)(σ2 × q̂) .

(6.18)

Here we have suppressed the arguments in propagator and form factor. In the limit q = 0,
the contributions to both the spin-longitudinal and spin-transverse potential are identical
and proportional to the central part only:

V π
corr(q0,q = 0) + V ρ

corr(q0,q = 0) =

q2
C

3

[(
fNNπ

mπ

)2

D̃π F̃
2
π + 2

(
fNNρ

mρ

)2

D̃ρ F̃
2
ρ

]

(σ1 · q̂)(σ2 · q̂)

+
q2
C

3

[(
fNNπ

mπ

)2

D̃π F̃
2
π + 2

(
fNNρ

mρ

)2

D̃ρ F̃
2
ρ

]

(σ1 × q̂)(σ2 × q̂)

=
q2
C

3

[(
fNNπ

mπ

)2

D̃π F̃
2
π + 2

(
fNNρ

mρ

)2

D̃ρ F̃
2
ρ

]

σ1 · σ2 .

(6.19)

Keeping the 3-momentum q finite, the contributions of pion and ρ exchange to the central
part of the potential are not identical any more. This reflects the observation made at the
end of Section 6.1.2 that the next-to-leading order contributions of Lπ

C and Lρ
C generate

different structures.

6.1.4 Matching

We will now obtain estimates for gp by matching the Eqs. 6.19 and 6.13. Our contact
interactions produce only terms proportional to σ1 ·σ2 and for the matching we keep only
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the central part of the correlation potential taken at q = 0 GeV. Comparing the correlation
potential Eq. 6.19 and the contact interaction Eq. 6.13, yields the following result for gp:

gp

(
fNNπ

mπ

)2

=
q2
C

3

[(
fNNπ

mπ

)2

F̃ 2
π D̃π + 2

(
fNNρ

mρ

)2

F̃ 2
ρ D̃ρ

]

. (6.20)

It has been known for a long time that this way reasonable guesses for gp are obtained, if
one takes q0 ≈ 0 GeV and qC = 0.782 GeV [99, 100]. Phenomenology requires values for gp

to be in the order of 0.6 for the NN potential, see for example [99, 100, 7, 49, 71, 58] and
references therein. With the parameters used in this work for the coupling constants and
the cutoff parameters (given in Table A.1 in Appendix A) we obtain a value of 0.35 which
is somewhat smaller than what is required by phenomenology. One should note, however,
that the results are quite sensitive to the precise value of the cutoff parameters Λπ and Λρ.
Taking Λπ = 1.2 GeV instead of Λπ = 1 GeV and Λρ = 2 GeV instead of Λρ = 1.5 GeV, a
significantly larger value of gp = 0.51 is derived (cf. [99]). Due to these sensitivities we take
phenomenological values for gp rather than relying on the precise value of the correlation
integral. Note that gp is larger than 1

3
, a value suggested in the discussion following Eq.

6.6. Apart from rather small effects coming from the form factor, which in fact decrease
the value of gp, both the correlation integral approach and the contact interactions explain
this effect with the ρ admixture in the π potential, see Eqs. 6.19 and 6.20.

Let us summarize the results: we have shown that starting from two different sides –
the contact interactions of Eqs. 6.7 and 6.8 and the correlation integral Eq. 6.14 – one ar-
rives at the same non-relativistic description of the short-range correlations. Furthermore,
matching both results allows for a reasonable computation of the strength parameter gp.
In the practical calculations we will not use values for gp as following from the correlation
approach, but vary them freely within commonly accepted boundaries in order to obtain
a decent fit of the in-medium properties of the P33(1232). The reader may now rightly ask
himself why we had to go through the lengthy formalism of Section 6.1.1, if its results are
discarded at the end. The reason is that later on we want to discuss the effects of short-
range terms for P = −1 states. There we will again encounter parameters characterizing
the strength of the short-range correlations. In contrast to the case of P = +1 states, there
no accepted boundaries for these parameters exist, in fact not much work has been done
on this field at all except for a study in [117]. We use the correlation integral method to
obtain estimates for the strength of the short-range correlations. However, in order to do
so we first had to demonstrate that this way the better known potentials for states with
positive parity are well described.

6.2 Positive Parity Resonances

In the previous Section we have discussed the appearance of short-range correlations in the
NN interaction. However, such correlations are also present in resonance-nucleon processes
like those shown in Fig. 6.3. We first discuss the case of positive parity P = +1 states.
For Jπ = 1

2

+
resonances the results from the NN interaction can be translated piece by

piece, only obvious adjustments concerning the coupling constant f and isospin factors
have to be made. In this work we are also interested in a few resonances with the quantum
numbers Jπ = 3

2

+
. In particular, the P33(1232) and the P13(1720) play an important role
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in the discussion of pions and ρ mesons in nuclear matter. We will see that one can treat
the corresponding RN transition potentials in exactly the same way as the NN potential.

6.2.1 Contact Interactions

The contact interactions Lπ
C and Lρ

C for Jπ = 3
2

+
states are obtained similarly to the NN

case. Based on the relativistic Lagrangian given in Appendix C, Eq. C.1, we obtain the
non-relativistic contact interaction by dropping terms of the order pN/mN :

Lπ
C = cπ

(
fRNπ

mπ

)2
(
ψ̄µ

RψN

) (
ψ̄NψR,µ

)
(6.21)

⇒ cπ

(
fRNπ

mπ

)2 (

ψ†
R S

i † ψN

)(

ψ†
N Si ψR

)

,

Here the spin-3
2

transition matrix S has been introduced, which contains the Clebsch-
Gordan coefficients for the spin coupling 1

2
⊕ 1 = 3

2
, see Eq. B.25 in Appendix B.4. In the

ρ sector we find for the spatial (j, k) and the time (j, 0) , (0, k) components of the tensor
Bµν of Eq. 6.9

i
(
ψ̄µ

R γ
ν − ψ̄ν

R γ
µ
)
γ5 ψN =







(j, k) : ψ†
R ε

jkl S†
l ψN

(j, 0) : i ψ†
R S

j † σ · ∂
2mN

ψN

(0, k) : −(j, 0)

(6.22)

Since the derivation of Bij is a somewhat tricky, let us give some details. First of all,
we need the relation σi σj = δij + i εijk σk (cf. Appendix B.1). Keeping only the leading
non-relativistic terms we find:

Bjk = i
(
ψ̄j

R γ
k − ψ̄k

R γ
j
)
γ5 ψN → i

(

ψ†
R S

j † σk − ψ†
R S

k † σj
)

ψN

= i
(

ψ†
R S† × σ

)

l
εjkl ψN = i ψ†

R S
j′ σk′ εj′k′l ε

jkl ψN

= ψ†
R S

j′ δj′ l ε
jkl ψN = ψ†

R Sl ε
jkl ψN

��������

R

N

R

N

Figure 6.3: π and ρ meson contribution to the transition potential RN → NR and
RN → NN .
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Whereas the spinor ψN in the first equation is a relativistic one, in the remaining equations
it stands for a non-relativistic spinor. In going from the forth to the fifth equation we have
used that σi σj S

j = 0 since σi σj is proportional to the non-relativistic spin- 1
2

projector,
see Eq. C.13 in Appendix C.2. Dropping terms σ·pN

2mN
leads to the contact interaction:

Lρ
C = 2 cρ

(
fRNρ

mρ

)2 (

ψ†
R S

i † ψN

)(

ψ†
N Si ψR

)

. (6.23)

The results obtained here are – apart from the replacement σi → Si – identical to those
for the NN interaction. Both π and ρ exchange lead in the non-relativistic limit to the
same structure and they can be combined to give:

gp

(
fRNπ

mπ

)2

S1 · S2 =

[

cπ

(
fRNπ

mπ

)2

+ 2 cρ

(
fRNρ

mρ

)2
]

S1 · S2 . (6.24)

6.2.2 Correlation Integral and Matching

The π and ρ exchange pieces of the RN potential are obtained from the corresponding
pieces in the NN potential by letting σi → Si in Eqs. 6.5 and 6.19. Also the coupling
constants and – in the case isospin- 3

2
resonances – isospin factors have to be changed. One

thus gets for the correlation part of the RN transition potential:

V π
corr(q0,q = 0) + V ρ

corr(q0,q = 0) =

q2
C

3

[(
fNNπ

mπ

)2

D̃π F̃
2
π + 2

(
fNNρ

mρ

)2

D̃ρ F̃
2
ρ

]

S1 · S2 .

(6.25)

As for the NN potential, we can now obtain estimates for gp by matching Eqs. 6.24
and 6.25. For the P33(1232) resonance we find – depending on the form factor – values
in the range of gp = 0.2 − 0.3. Note that the short-range strength in this channel is
somewhat smaller compared to the NN channel, where we found values around 0.35. This
is explained by the fact that the ρ contribution – measured by the ratio (fρ/fπ)2 (mπ/mρ)

2

– is larger in the NN channel. It is interesting to note that similar results are reported from
phenomenology [71, 49, 58]. The values for gp taken in this work respect this finding, see
Table A.1. This shows again that the results obtained via the correlation integral approach
Eq. 6.14 are reasonable at least on a qualitative level and are therefore a good starting
point for the discussion of negative parity resonances.

Spin-5
2

resonances are treated in a more phenomenological manner: we have not at-
tempted a construction of contact interactions from pion or from ρ meson exchange. For
the pion propagation in nuclear matter we neglect the effects from short-range correlations
in the Jπ = 5

2

+
sector altogether. For the ρ meson we carry over the results obtained in the

Jπ = 1
2

+
and Jπ = 3

2

+
sectors. This ad-hoc prescription is motivated from the fact that

subjecting the ρ meson part of the exchange potential to the correlation integral leads to
exactly the same results in all three sectors. This is due to the fact that the potentials are
p-wave.
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6.3 Negative Parity Resonances

In the previous Sections we have discussed the correlation potential for the nucleon and
resonances with positive parity. Although the quantum numbers of the particles are not
the same, we obtained similar contact interactions owing to the fact that the underlying
meson-nucleon-resonance interaction is p-wave. We will now turn to states with negative
parity. Here the coupling to pions and ρ mesons is either s-wave or d-wave.

Before going into details, let us first present a basic argument concerning the relative
importance of the correlations for s-wave potentials. As detailed in Subsection 6.1.1, p-
wave potentials contain a contribution proportional to unity in momentum space, thus
producing a δ type interaction in position space. We show now that for s-wave potentials
this does not hold. A typical non-relativistic Lagrangian appropriate for the coupling of
negative parity resonances to the πN system is of the form:

L = f ψ†
R ψ π , (6.26)

The potential derived from this Lagrangian is given by:

V (q0,q) = f 2 F 2
π

q2
0 − q2 −M2

, (6.27)

where Fπ is a form factor. This potential does not produce a δ(r) contribution. It follows
that there is no immediate need to introduce short-range correlation. Nonetheless, corre-
lations such as those generated from the approach in Eq. 6.14 do exist. Performing the
correlation integral leads to the following potential:

V (q0,q) = f 2 F 2
π

q2
0 − q2 −M2

− f 2 F̃ 2
π

q2
0 − q2 − q2

C −M2
. (6.28)

The function F̃π is introduced after Eq. 6.16. The correlations manifest themselves in the
replacement q2 → q2 + q2

C in the second term. Comparing this with the result from Eq.
6.17 for p-wave resonances, we find an important difference: whereas at small momenta
the leading term of the correlations there is a constant, the uncorrelated potential is pro-
portional to q2. Thus, a large correction is induced for small momenta. For s-wave states,
on the other hand, both the uncorrelated potential and the correlation correction start
off with the same momentum dependence and the relative effect of correlations is much
reduced. Since the potential and scattering amplitudes are directly related, this means
that short-range correlations are presumably not an important ingredient for an analysis
of NN scattering involving s-wave states.

On the other hand, when going to the nuclear medium effects from short-range terms
might become more sizeable. As we will detail in Section 6.5, these terms are iterated
and one is sensitive to the absolute size of the short-range correlations which in part is
determined by the coupling constant f . It follows that if f is sufficiently large, important
corrections from the short-range correlations can be expected.

6.3.1 Contact Interactions

Let us now turn to the discussion of negative parity states. We proceed along the same
lines as for P = +1 states. For the contact interactions derived in the π sector the following
Lagrangians are obtained.
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Jπ = 1
2

−
:

Lπ
C = cπ

(
f

mπ

)2
(
ψ̄R γ

µ ψN

) (
ψ̄N γµ ψR

)
(6.29)

⇒ cπ

(
f

mπ

)2 (

ψ†
R ψN

)(

ψ†
N ψR

)

.

Jπ = 3
2

−
:

Lπ
C = cπ

(
f

mπ

)2
(
ψ̄µ

R γ
5 ψN

) (
ψ̄N γ5 ψR,µ

)
(6.30)

⇒ cπ

(
f

mπ

)2 (

ψ†
R S

i † σk ∂k

2mN
ψN

)(

ψ†
N

←

∂k σk

2mN
Si ψR

)

.

For Jπ = 3
2

−
resonances, the contact interaction is of the order σ·pN

2mN
and up to now we

have dropped such terms. Here these terms should be kept for consistency, since they also
arise in the non-relativistic reduction of the πNR interaction (see Eqs. C.1 and C.15 in
Appendix C), where they produce the necessary d-wave coupling.

In order to obtain the non-relativistic contact interaction Lρ
C, we first decompose the

tensor Bµν into spatial (j, k) and time (j, 0), (0, k) components. Keeping only the leading
non-relativistic terms, this leads to the following expressions for the nucleon-resonance
interaction:

Jπ = 1
2

−
:

i ψ̄R σ
µ ν γ5 ψN =







(j, k) : i ψ†
R ε

ijl σl
σ · ∂
2mN

ψN

(j, 0) : ψ†
R σ

j ψN

(0, k) : −(j, 0)

(6.31)

Lρ
C = 2 cρ

(
f

mρ

)2 (

ψ†
R σ

i ψN

)(

ψ†
N σi ψR

)

.

Jπ = 3
2

−
:

(
ψ̄µ

R γ
ν − ψ̄ν

R γ
µ
)
ψN =







(j, k) : −i ψ†
R ε

jkl S†
l

σ · ∂
2mN

ψN

(j, 0) : ψ†
R S

j † ψN

(0, k) : −(j, 0)

(6.32)

Lρ
C = 2 cρ

(
f

mρ

)2 (

ψ†
R S

i † ψN

)(

ψ†
N Si ψR

)

.

As in the P = +1 case, these interactions are the simplest contact interactions leading
to non-vanishing contributions in typical diagrams such as Fig. 6.4. The technical steps
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R1 R2

Figure 6.4: Lowest order correction of the self energy from the contact interaction. The
double-line stands for any of the resonances or the nucleon and does not need to represent
the same state in both loops.

involved in the non-relativistic reduction are similar to those encountered in the P = +1
sector, which are discussed in detail around Eqs. 6.12 and 6.23.

As mentioned already in the introduction of this Chapter, there is a clear difference
between the contact interactions for P = +1 and those for P = −1 states. In the negative
parity sector Lπ

C and Lρ
C are not equivalent. Considering, for example, a correction to the

meson self energy according to Fig. 6.4, the pion self energy will not receive contributions
from Lρ

C and neither will the ρ self energy receive contributions form Lπ
C . For spin-1

2

resonances this can be motivated as follows: since the coupling to pions is s-wave and the
pion is a pseudoscalar particle, there is no vector available that could couple to a σ matrix
and consequently the leading non-relativistic term of Jµ contains no spin-flip terms. For the
ρ meson, albeit coupling an s-wave as well, there is still the polarization vector ρ and the
therefore the leading non-relativistic terms of Bµν produce spin-flip contributions. Doing
the spin-summation as appropriate for calculations in nuclear matter, the decoupling of π
and ρ sector follows. To be more explicit, let us consider the diagram Fig. 6.4. Assuming
that the external meson is a pion and that the contact interaction is derived from Lρ

C , we

find for the self energy contribution of a Jπ = 1
2

−
state:

Ππ(q0,q) ∝ Tr [σi] Tr [σj] = 0 . (6.33)

A similar argument holds for Jπ = 3
2

−
states. It is therefore necessary to keep both Lπ

C

and Lρ
C independently and fix the respective parameters cπ and cρ. We will from now on

denote cπ and cρ by gd
π, gs

π and gs
ρ, where s and d indicate the angular momentum of the

underlying meson-nucleon interaction.

6.3.2 Correlation Integral and Matching

We now subject the π and ρ exchange potentials to the correlation integral Eqs. 6.14 and
6.15, which allows us to determine the strength of the contact interaction. Let us start off
with the ρ exchange for Jπ = 3

2

−
states. Constructing the potential from the corresponding

non-relativistic Lagrangian as given in the Appendix C, Eq. C.15, leads to the following
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result:

V s
ρ (q0,q) = −

(
f

mρ

)2

F 2
ρ V

µν gµν Dρ(q0,q)

=

(
f

mρ

)2

F 2
ρ Dρ(q0,q)

(
q2
0 S1 · S2 − (S1 · q) (S2 · q)

)
(6.34)

⇒
(
f

mρ

)2

F 2
ρ Dρ(q0,q)

(
q2
0 − q2

)
S1 · S2

with

V µν = Si
1 S

j
2





qi qj q0 qj

qi q0 q2
0



 .

Here we have projected out the spin-central part S1 ·S2, which is generated by the contact
interactions. The energy dependence of the s-wave potential is a direct consequence of
current conservation, which we impose on the coupling of the baryon resonances to the
vector meson-nucleon channel.

The correlation potential Vcorr obtained via Eq. 6.15 reads:

V ρ
corr(q0,q) =

(
f

mρ

)2

F̃ 2
ρ D̃ρ(q0,q)

(

q2
0 −

1

3
q2
C

)

S1 · S2 . (6.35)

By matching this with Eq. 6.32, we can estimate the strength of the contact interaction
to be

gs
ρ ≡ 2 cρ =

(

q2
0 −

1

3
q2
C

)

F̃ 2
ρ D̃ρ(q0,q) . (6.36)

Here it becomes crucial at which energy one evaluates this expression. Usually the non-
relativistic potential is written down in the limit q0 → 0. This is a reasonable reference
frames for usual exchange potentials, where the squared 4-momentum transfer is negative.
This is not necessarily a good approximation when heavy resonances like the D13(1520)
are considered, where also timelike mesons can be exchanged. This is the case when the
resonance is above the threshold for decay into meson-nucleon. Also in the meson self
energy – which is also modified by short-range correlations – one often has the case that
the dominant part of the interaction takes place of time like mesons. For example, in
order to form a resonance in a scattering reaction on a nucleon at rest (as typical in the
discussion of in-medium properties of ρ mesons), the energy of the ρ is determined by the
requirement (p+ q)2 = m2

R, leading to:

q0(q) =
√

m2
R + q2 −mN . (6.37)

Comparable energies are also dominant in the elastic reaction RN → NR. For the
D13(1520) this amounts to an energy of q0 ≈ 0.5 GeV at vanishing 3-momentum. Plugging
this value into Eq. 6.36 we find gs

ρ ≈ 0.05−0.1. On the other hand, taking q0 = 0 GeV, one
obtains gs

ρ ≈ −0.05. The negative sign follows since the q2 dependent part in the potential
Eq. 6.34 comes with a relative minus sign. In the discussion of the results in Chapter 8



6.3. Negative Parity Resonances 99

we will discard the effects from a negative gs
ρ. We believe that the matching point defined

in Eq. 6.37 leads to a realistic estimate of the strength of the short-range correlations and
that the point (0, 0) is not of particular relevance for the interaction of a ρ meson and a
D13(1520).

A second arguments for rejecting a negative gs
ρ goes like this: as will be discussed in

detail in Chapter 8, we find a strong broadening of the D13(1520) due to its coupling to Nρ.
The main motivation for the study of repulsive short-range correlations for P = −1 states
is the question in how far these terms affect the broadening. By considering negative
short-range terms, however, we would enhance the broadening. In a handwaving way
this can be understood by realizing that the short-range terms are supposed to remove
strength from the interaction (in the case of p-wave interactions the δ-type contribution).
If, however, these terms come with the opposite sign, strength is added and an increase of
the broadening is expected.

We take the uncertainties in gs
ρ into account by varying this parameter within the

boundaries (0, 0.1) in our calculations. For simplicity we take the same gs
ρ for all other 3

2

−

states.
The non-relativistic Lagrangian describing the coupling of Jπ = 3

2

−
states to Nπ is

given in Appendix C, Eq. C.15, and leads to a d-wave potential:

V π(q0,q) =

(
f

mπ

)2

F 2
π

1

4m2
N

(S1 · q) (σ1 · pN) (S2 · q) (σ2 · pN)

q2
0 − q2 −m2

π

. (6.38)

Just as for the ∆, the interaction of pions and nucleons is spin-longitudinal in the D13

channel. The only difference is an additional momentum dependence from the nucleon.
From Eq. 6.15 we obtain for the central part of the correlation potential:

V π
corr(q0,q) =

1

3
q2
C F̃

2
π

(σ1 · pN) (σ2 · pN)

4m2
N

(
f

mπ

)2

(S1 · S2) D̃π(q0,q) . (6.39)

This result is similar to that of p-wave potentials, see Eq. 6.16. While the correction

of the potential induced by the correlations, V π
corr, scales with 1

3
q2
C

p2
N

4 m2
N

and seems to be

suppressed by a factor
p2

N

4m2
N

, comparison with Eq. 6.38 shows that the original meson

exchange potential V π scales like q2 p2
N

4 m2
N

. Therefore the relative correction from V π
corr is

as large as for p-wave states. The spin-structure of V π
corr is the same as found in Lπ

C , Eq.
6.30, which in principle allows for the matching:

gd
π =

1

3
q2
C F̃

2
π D̃π(q0,q) . (6.40)

If one determines the matching energy q0 via Eq. 6.37, a large value of about 0.6 for gd
π

results since one approaches the (unphysical) pole of D̃π when q2
0 − q2 − q2

C = m2
π. Such a

pole is also found in scattering processes in the vacuum where the exchange particle can
go on-shell, as detailed in [10, 102, 98]. From that point of view its appearance is not a
complete surprise in our formalism. It is worthwhile checking whether the pole is due to
the angular averaging that is used to obtain the correlation integral, see discussion around
Eq. 6.16. To see this, just consider the angular integral over the denominator in Eq. 6.16:

+1∫

−1

dx

q2
0 − q2 − q2

C − 2 |q| qC x
=

1

2|q| qC
ln

[

1 +
4|q| qC

q2
0 −m2

π − (|q| + qC)2

]

. (6.41)



100 Chapter 6. The Resonance-Nucleon Interaction

Since the argument of the logarithm contains two zeros at finite q the problem of poles
persists independently of the angular average.

For energies up to about 0.4 GeV the results for gd
π do not vary much. This suggests that

one might consider a matching point at these smaller energies. Following this procedure
results around gd

π ∝ 0.2 follow, which is smaller than for p-waves since no corrections from
the ρ meson enter into the expressions. Another option to obtain a reasonable estimate for
gd

π is to utilize the above mentioned similarity of d-wave potentials Eq. 6.39 and the p-wave
potentials Eq. 6.25, and assume that the strength of the respective short-range correlation
terms is comparable. This would lead to gd

π ≈ 0.4. Taking into account the uncertainties
for gd

π, we vary this parameter in the interval (0, 0.4). Note that due to the larger mass of
the ρ meson the pole problem does not arise when matching gs

ρ.

Turning to Jπ = 1
2

−
states, not much changes in the ρ sector. With the usual replace-

ment S → σ, we find exactly the same expressions as for Jπ = 3
2

−
states, Eqs. 6.35 and

6.36. Here the state we are most interested in is the S11(1535) and we take the same value

for gs
ρ as for Jπ = 3

2

−
resonances. This is suggested from Eqs. 6.36, 6.37 and the fact that

the S11(1535) and the D13(1520) have similar masses. We take this value also for all other
1
2

−
resonances, thus reducing the amount of parameters.

Last we discuss the pion sector for Jπ = 1
2

−
states. As can be inferred from Appendix

C, the pion potential is s-wave with a trivial spin-structure:

V (q0,q) =

(
f

mπ

)2
q2
0

q2
0 − q2 −m2

π

, (6.42)

producing for the correlation part:

V π
corr(q0,q) =

(
f

mπ

)2
q2
0

q2
0 − q2 − q2

C −m2
π

. (6.43)

Here the q0 dependence follows from the vector coupling employed to describe π N R dy-
namics. Concerning the calculation of the short-range parameter gs

π, one could in principle
follow the argument as before and take:

gs
π = q2

0 F̃
2
π D̃π , (6.44)

with q0 determined from Eq. 6.37. Clearly, one runs again into the pole problem. We
therefore take gs

π = 0.1 as in the ρ sector. As it will turn out, our results are not sensitive
on this parameter, since there are no s-wave states with a large coupling to N π and
consequently the effects from the contact interactions are small regardless of the precise
value for gs

π.

In our model only Jπ = 1
2

−
states couple to the η meson. For the corresponding

short-range parameter gs
η we take in accordance to the pion a value of gs

η = 0.1.

6.4 Mixing Terms

Up to now we have considered processes of the type RN → NR. An interesting question
is whether the contact interactions allow for mixing of different resonance states. On the
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level of Feynman diagrams this corresponds to a situation where in Fig. 6.4 R1 and R2

stand for different states. These terms are driven by the following contact Lagrangians:

Lπ
C = cπ J

µ
R1 Jµ,R2 (6.45)

Lρ
C = cρB

µν
R1Bµν,R2 .

Clearly, processes like R1N → NR2 are possible if R2 has the same quantum numbers as
R1. The situation is more complicated if resonance R2 has different quantum numbers.
While in a fully relativistic framework mixing is always possible regardless of the quantum
numbers of the involved states, certain restrictions arise in the non-relativistic limit. For
pions, mixing is allowed in the non-relativistic reduction, if the leading terms of both Jµ

R1

and Jµ
R2 are derived either from the vector (i) or the time (0) component. Similarly, in

Lρ
C the leading terms of both Bµν

R1 and Bµν
R2 must be either the spatial (k, j) or the time

(k, 0), (0, j) components. Since these restrictions are present only in the non-relativistic
reduction, they can not be due to the conservation of quantum numbers.

For the pion sector, these considerations lead to the conclusion that mixing is allowed
between Jπ = 3

2

+
, Jπ = 3

2

−
and Jπ = 1

2

+
states. In all three cases the leading non-

relativistic contributions come from the vector components of Jµ. In contrast, there is no

mixing to Jπ = 1
2

−
states, which derive their leading behaviour from the 0-th component

of Jµ. For the remainder of this work the most important finding is the possibility that
nucleon, P33(1232) and D13(1520) states can mix.

In the ρ sector the situation is slightly different. For positive parity states the leading
components come from the spatial (j, k) components and for negative states from the time
(j, 0) or (0, k) components of Bµν , such that the contraction vanishes if states of different
parity are considered. This implies, that unlike the pion case, there is no mixing of the
D13(1520) state to the P33(1232) or the nucleon. However, mixing between states of the
same parity is possible and taken into account in this work.

Let us now write down the Lagrangians describing the mixing phenomena. They are
obtained from Eq. 6.45. For example, the mixing of Jπ = 1

2

+
or Jπ = 3

2

+
states and

Jπ = 3
2

−
states is described by:

LC = gdp
π

(
f

mπ

)2 (

ψ†
R1 S

i † σk ∂k

2mN

ψN

)(

ψ†
N Si ψR2

)

+ h.c.

LC = gdp
π

(
f

mπ

)2 (

ψ†
R1 S

i † σk ∂k

2mN

ψN

)(

ψ†
N σi ψR2

)

+ h.c.

(6.46)

Here dp indicates that the Lagrangian describes the mixing of p and d waves and the index
π implies that mixing takes place only in the pion sector. The coupling f 2 stands for the
product of the coupling constants of both involved resonances. Similarly, the mixing of
Jπ = 1

2

+
and Jπ = 3

2

+
states as well as the mixing in the ρ sector of Jπ = 1

2

−
and Jπ = 3

2

−

states follows from the Lagrangian:

LC = g

(
f

mπ

)2 (

ψ†
R1 σ

i ψN

)(

ψ†
N Si ψR2

)

+ h.c. (6.47)

Here g stands either for gp (positive parity states) or for gs
ρ (negative parity states). Values

for g and gdp
π can be found in Table A.1.
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The mixing of negative parity and positive parity states in the pion sector is proportional
to the momentum pN as is evident from Eq. 6.46. This is to be expected from parity
conservation: consider a scattering process of a P = +1 state and a nucleon into a P =
−1 state and a nucleon. The switch in the internal parities of the involved states must
then be compensated by an odd angular momentum, leading to the observed momentum
dependence.

Let us clarify that by the terminology ”mixing” we do not imply the existence of
self energy diagrams where one resonance converts into another resonance in the nuclear
medium (this would correspond to diagrams like that of Fig. 6.5, where different resonances
are meant by R). We have discussed in Chapter 5.6, that rather sharp conditions must be
met by the quantum numbers of the involved resonances for that to happen. In particular,
the mixing of spin-1

2
and spin-3

2
states is only allowed if the parity of the resonance changes.

In this Chapter we mean by mixing the possibility that different resonance-hole loops can
couple directly to each other. As has been pointed out, here restrictions only arise in the
non-relativistic reduction.

6.5 Effect on the self energies Πmed and Σmed

In this Section we discuss how the previous results for the in-medium self energies of mesons
and baryon resonances, Eqs. 5.37 and 5.48, are modified in the presence of short range
interactions.

For notational convenience, let us first recall the definition of the susceptibility χM from
Chapter 5.2.3:

χR
M(q0,q) = IΠ

(
f

mM

)2 ∫
d3p

(2 π)3

n(p)

2EN(p)

F 2
s (k) Ωred

k2
0 − E2

R(k) − Σmed(k2)
, (6.48)

where k = p + q is the resonance 4-vector. The form factor Fs(k) has been introduced
around Eq. 3.22. The trace Ωred arises from a spin trace of the contact interactions.
Results for Ωred are given in Appendix C in Table C.3. For the nucleon we define in
analogy:

χN
M(q0,q) = 4

(
fNNM

mM

)2

UN (q) . (6.49)

Since the short-range interactions couple resonances of various quantum numbers to
each other, the resulting coupled channel problem ought to be written down in a matrix
formulation. Before proceeding we define the quantities

gp
π ≡ gp (6.50)

gp
ρ ≡ f 2

RNπ

f 2
RNρ

m2
ρ

m2
π

gp .

and similarly if the interaction of two different resonances is considered. Then we can
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introduce the following matrices:

χπ =







χp
π 0 0 0

0 χd
π 0 0

0 0 χs
π 0

0 0 0 χf
π







(6.51)

gπ =







gp
π gdp

π 0 0
gdp

π gd
π 0 0

0 0 gs
π 0

0 0 0 0







(6.52)

Π0
π =







Πp
π 0 0 0

0 Πd
π 0 0

0 0 Πs
π 0

0 0 0 Πf
π







(6.53)

Each entry is a matrix itself. For example, χp
π is a diagonal matrix consisting of all the

states to which the pion couples in a p-wave and similarly for χd
π and χs

π. The diagonal
elements of the matrix Π0

π contain the self energies, Eqs. 5.48 and 5.15, grouped in the
same order as in the matrix χπ. Since we allow for different gp

π parameters, we find for the
matrix gp

π assuming that n resonances couple in a p-wave:

gp
π =








gp,NN
π gp,R1N

π · · · gp,RnN
π

gp,R1N
π gp,R1R1

π
...

. . .

gp,RnN
π gp,RnRn

π








. (6.54)

In the following we take all entries but gNN
π to be the same, see Table A.1. The matrices

gs
π and gd

π describe the coupling of s- and d-wave states to themselves. The structure
of the matrix gπ indicates the mixing of resonances with different quantum numbers as
discussed in Chapter 6.45. Thus, we have a coupling of p- and d-wave states represented
by gdp

π , whereas the s-wave states couple only to themselves. We take the same entries for
gd

π and gdp
π . For spin-5

2
states, which couple in an f -wave to Nπ, we have no short range

correlations, which is indicated by the entry 0 in the field of the f -wave resonances. In
Table A.1 we give explicit values for the short-range parameters.

For the ρ meson one can introduce similar matrices χρ and gρ which are constructed
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in exactly the same way:

χρ =

(
χp

ρ 0
0 χs

ρ

)

(6.55)

gρ =

(
gp

ρ 0
0 gs

ρ

)

(6.56)

Π0,T/L
ρ =

(
Πp,T/L

ρ 0

0 Πs,T/L
ρ

)

(6.57)

The matrix gp
ρ looks formally identical to gp

π. For simplicity, we relax the relation between

gp
π and gp

ρ Eq. 6.50 for the two Jπ = 3
2

+
states P13(1720) and P13(1878) and take the same

values gp
ρ as for the P33(1232). This is reasonable, since the vacuum properties of these

states are only poorly known. In the case of the P11(1440), which is a Jπ = 1
2

+
state, we

would in principle face the same problem, if it would couple to both pion and the ρ meson.
Since this is not the case in our model, we do not to worry about this state. For Jπ = 5

2

+

states we take gp
ρ = gp,∆N

ρ . To be more explicit, if there was only the P33(1232 (∆), one

more Jπ = 3
2

+
state and one more Jπ = 5

2

+
state, the matrix gp

ρ would have the following
form:

gp
ρ =







gp,NN
ρ gp,∆N

ρ gp,∆N
ρ gp,∆N

ρ

gp,∆N
ρ gp,∆∆

ρ gp,∆∆
ρ gp,∆N

ρ

gp,∆N
ρ gp,∆∆

ρ gp,∆∆
ρ gp,∆N

ρ

gp,∆N
ρ gp,∆N

ρ gp,∆N
ρ gp,∆N

ρ







. (6.58)

The matrix Πρ
0,T/L contains the self energies from Eqs. 5.48 and 5.15.

For the η meson the corresponding matrices χη, gη and Π0
η have the same form as for

the ρ. Here the only state coupling in a p-wave is the nucleon, all other resonances couple
in an s-wave, see also Table A.2.

Let us finally introduce the vector v as

vT =
(

1 1 . . . 1
)

︸ ︷︷ ︸

N×

, (6.59)

where N is number of resonances included in the calculation.
Having defined these quantities, we can now proceed and present the results for the

self energy. We first the full expressions before motivating the results in more detail. In
Fig. 6.4 we display the lowest order correction to the meson self energy. Summing up to
all orders leads to the following result for the self energy of meson M [7]:

ΠM(q0,q) = F 2(k, q)vT 1

1 − χM gM
Π0

M v . (6.60)

Taking into account the contact interactions, the resonance self energy consists of two
diagrams, see Fig. 6.5. In terms of scattering processes these diagrams correspond to the
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R R R R

Figure 6.5: The resonance self energy in the presence of short-range correlations. The loop
insertion stands for any particle-hole state discussed in the text. Note that any loop as a
representative of the full vertex correction 1/(1 − gχ) or the resummed and renormalized
self energy.

coherent sum of a scattering with meson exchange and scattering via a contact interaction
as we will show in Section 6.6. Iterating the particle-hole insertions generates vertex
corrections at the resonance-nucleon-meson vertices. We split the resonance self energy
into three parts:

Im Σ(k0,k) = Im Σπ(k0,k) + Im Σρ(k0,k) + Im Ση(k0,k) (6.61)

according to whether the resonance has decayed into a medium-modified pion, η or ρ
meson. Throughout the following formulae Ωϕ and ΩT/L as well as Ωred have to be chosen
according to the quantum numbers of the resonance.

For the imaginary part of the resonance self energy one obtains a matrix [7]. The
diagonal elements of this matrix yield the imaginary part of the self energy for the individual
resonances. Thus we obtain for the pionic decay mode:

ImΣπ(k0,k) = − IΣ
2j + 1

(
f

mπ

)2 ∫
dp p2

8π2

+1∫

−1

dx
1

EN
× (6.62)

×Im
[

ΩϕDπ F
2(k, (k − p))

1

1 − gπ χπ

v vT 1

1 − χπ gπ

+ Ωred F 2
s (k) gπ

1

1 − χπ gπ

]

.

For the decay into an η meson one obtains the same result, if the appropriate matrices are
chosen:

ImΣη(k0,k) = − IΣ
2j + 1

(
f

mη

)2 ∫
dp p2

8π2

+1∫

−1

dx
1

EN
× (6.63)

×Im
[

Ωϕ Dη F
2(k, (k − p))

1

1 − gη χη

v vT 1

1 − χη gη
+ Ωred F 2

s (k) gη
1

1 − χη gη

]

.
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Finally, for the decay into a ρ meson we find:

ImΣρ(k0,k) = − IΣ
2j + 1

(
f

mρ

)2 ∫
dp p2

8π2

+1∫

−1

dx
1

EN

× (6.64)

×Im
[

(2 ΩT DT
ρ + ΩL DL

ρ )F 2(k, (k − p))
1

1 − gρ χρ

v vT 1

1 − χρ gρ

+

+ 3 (2)Ωred F 2
s (k) gρ

1

1 − χρ gρ

]

.

Since a longitudinal ρ meson does not couple to P = +1 resonances, we have a factor of 2
in the second term for these states. In the above formulae, the meson propagator DM is
obtained with the self energy of Eq. 6.60, containing short-range correlations.

Let us now discuss the above formulae of Eqs. 6.60, 6.62, 6.63 and 6.64 in some more
detail. We begin by studying the case of a pion coupling to the P33(1232). In a subsequent
step, we will add the nucleon to the system. We add a remark concerning the notation:
by ΠR

π and χR
π we refer to the pion self energy and susceptibility due to the excitation of

resonance R and similar for χN
π and ΠN

π . The upper index (0, 1) refers to the order in the
short-range parameter g, in which the calculation is done.

If only one resonance is taken into account, the self energy Eq. 6.60 reduces to the
following expression (here form factors are suppressed for the sake of simplicity):

ΠR
π =

Π0,R
π

1 − gp ,RR
π χR

π

, (6.65)

where Π0,R
π is the self energy containing no short-range correlations. We will now show

how this expression is obtained.
The non-relativistic Lagrangians describing the dynamics of pions and resonance-hole

states are given by (cf. Appendix C.2 and Eq. 6.21):

LC = gp,RR
π

(
fR

mπ

)2 (

ψ†
R S

i † ψN

)(

ψ†
N Si ψR

)

L =
fR

mπ

ψ†
R S

i † ψN ∂i ϕ+ h.c. .

Remembering the definition of Lindhardt function UR and susceptibility χR
π as given in

Chapter 5.2.3, we can write Π0,R
π in the following form:

Π0,R
π = IΠ UR

(
fR

mπ

)2

4mN

√
k2 qi qj Tr [Si Sj]

= IΠ UR

(
fR

mπ

)2
4

3
q2 4mN

√
k2

= IΠ UR

(
fR

mπ

)2

Ωϕ = q2 χR
π .

Here k2 is the invariant mass of the P33(1232) and IΠ is an isospin factor. Let us now cal-
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Figure 6.6: Lowest order short-range correlation corrections to the meson self energy.

culate the first order correction in the short-range parameter gp,RR
π , see upper left diagram

in Fig. 6.6:

Π1,R
π = gp,RR

π I2
Π U

2
R

(
fR

mπ

)4

16m2
N k

2 qi qj Tr [Si Sk] Tr [Sk Sj]

= IΠ UR

(
fR

mπ

)2

4mN

√
k2

4

3
q2 × gp,RR

π IΠ UR

(
fR

mπ

)2

4mN

√
k2

4

3

= IΠ UR

(
fR

mπ

)2

Ωϕ × gp,RR
π IΠ UR

(
fR

mπ

)2

Ωred

= Π0,R
π × gp,RR

π χR
π .

Apparently each additional resonance-hole bubble generates a factor gp,RR
π χR

π , leading to
a geometric series which is readily summed up to give the result of Eq. 6.65.

This important result will help us to explain the effect of short-range correlations on
the baryon resonance self energy as well, see Eqs. 6.62, 6.63 and 6.64. With the above
Lagrangians we get for Im Σπ, (neglecting form factors):

Im Σπ = − IΣ
2j + 1

(
fR

mπ

)2 ∫
dp p2

8π2

+1∫

−1

dx
1

EN
×

×Im
[

ΩϕDπ

(
1

1 − gp,RR
π χR

π

)2

+ Ωred gp,RR
π

1 − χR
π g

p,RR
π

]

.

The first term in brackets corresponds to the left diagram of Fig. 6.5. Apart from the
correction of the pion propagator, which is implicitly encoded in Dπ, it contains a vertex
correction factor 1/(1 − gp,RR

π χR
π )2. This follows from the above observation that each

bubble yields a factor gp,RR
π χπ. The second term in the brackets corresponds to the right

diagram in Fig. 6.5, and describes the decay of the resonance exclusively into particle-hole
states. We find again the characteristic factor gp,RR

π χR
π , which after the resummation gives

1/(1 − gp,RR
π χR

π ).

Let us now discuss the case that the pion can couple both to the nucleon and the
P33(1232) resonance. For the pion self energy this leads to the remaining three diagrams
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in Fig. 6.6 not yet considered so far. In order to calculate them, the following Lagrangians
need to be included in our formalism (cf. Appendix C.2, Eqs. 6.10, 6.12 and 6.47):

LC = gp,RN
π

fR

mπ

fN

mπ

(

ψ†
R S

i † ψN

)(

ψ†
N σi ψN

)

+ h.c.

LC = gp,NN
π

(
fN

mπ

)2 (

ψ†
N σ

i † ψN

)(

ψ†
N σi ψN

)

L =
fN

mπ
ψ†

N σ
i † ψN ∂i ϕ .

The first Lagrangian describes the coupling of resonance-hole to nucleon-hole loops, the
second the coupling of nucleon-hole to nucleon-hole loops and the last one the coupling
of pions to nucleons. One checks straightforwardly that the first order (in the short-range
parameter g) self energy is given by:

Π1,R
π = Π0,R

π × gp,RR χR
π + Π0,R

π × gp,RN χN
π + Π0,N

π × gp,RN χR
π + Π0,N

π × gp,NN χN
π .

This is exactly the same result that one gets by explicitly calculating Ππ from equation
Eq. 6.60 in lowest order in g:

Ππ = vT χπ gπ Π0
π v ,

where

vT =
(

1 1
)

gπ =

(
gp,RR gp,RN

gp,RN gp,NN

)

χπ =

(
χR

π 0
0 χN

π

)

Π0
π =

(
Π0,R

π 0
0 Π0,N

π

)

One thus sees how the matrix notation takes care of the coupling between different particle-
hole states to each other as generated by the short-range correlations.

6.6 Relation of Resonance Self Energy to Scattering

Amplitudes

In this Section we extend the discussion of Chapter 5.3.2 concerning the relation between
the resonance self energy and the resonance-nucleon scattering amplitudes in the presence
of short-range correlations. Again the resonance has the quantum numbers Jπ = 3

2

+
and

the meson is pseudoscalar such that the decay is p-wave. Then Σcoll(k0,k) – the in-medium
correction to the self energy (cf. Eq. 5.38) in the low density limit – takes on the following
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Figure 6.7: Interpretation of the self energy in terms of scattering diagrams. On the left:
meson exchange amplitude M1. On the right: contact term M2.

form (neglecting the form factors):

Im Σcoll(k0,k) = −IΣ
4

(
f

mM

)2 ∫
d3p

(2π)3

1

2EN

×

×Im
[

ΩϕDM

(
1

1 − gp
M χp

M

)2

+ Ωred gp
M

1

1 − gp
Mχ

p
M

]

(6.66)

ρ→0→ −IΣ
4

(
f

mM

)2 ∫
d3p

(2π)3

1

2EN

[
Ωϕ |Dvac

M |2 Im Πmed
M +

+ 2 Ωϕ gp
M Dvac

M Imχp
M + Ωred gp 2

M Imχp
M

]
,

where we have made a low-density expansion in the last line. In order to facilitate the
notation we will omit in the following the indices M and p as well as the form factors and
write f/mM → fR.

Let us now consider the coherent sum of the scattering amplitudes M1 and M2, de-
picted in Fig. 6.7. They describe resonance-nucleon scattering in terms of a meson ex-
change diagram and a diagram generated by contact interactions. Using non-relativistic
Lagrangians one obtains the following expressions for the scattering amplitudes:

M1 = −f 2
R (S1 · q) (S2 · q)Dvac

M 4mN mR

M2 = −g f 2
R (S1 · S2) 4mN mR .

In terms of the quantities Ω and Ωred, introduced in Chapter 5.2.3

ΠM = IΠ f
2
R Ωϕ UR , χ = IΠ f

2
R Ωred UR

Ωϕ = 16/3mN mR q2 , Ωred = 16/3mN mR ,
(6.67)

one finds for the spin-averaged squared matrix element:

|M1 + M2|2 = |M1|2 + |M2|2 + 2Re (M1 M?
2)

= f 4
R Ωred 2

[
q4 |Dvac

M |2 + g2 + 2 g q2Dvac
M

]
.

Note that we have kept only the spin-longitudinal part of the contact interaction. The
spin-transverse part corresponds to the exchange of ρ mesons, which we do not discuss in
this Section.
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A straightforward calculation along the same lines as in Section 5.3.2 shows that the
self energy may be expressed in terms of the squared matrix element as (cf. Eq. 5.39):

Im Σcoll(k0,k) =
1

4

∫
d3p

(2π)3 2EN (p)
|M1 + M2|2 ImUR . (6.68)

This equation makes the relation between the scattering processes and the imaginary part
of the self energy explicit. The first term of Im Σcoll(k0,k) corresponds to the sum of the
squared amplitude |M1|2 and the interference term of M1 and M2, the second term of
Im Σcoll(k0,k) corresponds to |M2|2. In analogy to the steps around Eq. 5.40 in Section
5.3.2 the interpretation of Eq. 6.68 is the following: The imaginary part of the meson self
energy as obtained in the presence of short-range correlations is related to the resonance-
nucleon cross section σ via Im Σcoll = −ρ |k| σ, where the cross section is generated from
a meson exchange and a short-range term. This is depicted in Fig. 6.7.

We close this Section by commenting on a problem due to the non-relativistic frame-
work. As we will see in Chapter 9.4, the non-relativistic reduction is a good approximation
when calculating the meson self energy, if the kinematical variables are evaluated in the
rest frame of the resonance under consideration. In the above expressions we have so far
not taken this into account and the same momentum q was taken at both vertices, though
the invariant mass and therefore the corresponding cm momentum formed at each vertex
are different.

Taking the kinematical cm corrections into account, the amplitudes M1 and M2 are
modified:

M1 = −f 2
R (S1 · qcm,a) (S2 · qcm,b)D

vac
M 4mN

√
mamb (6.69)

M2 = −g f 2
R (S1 · S2) 4mN

√
ma mb ,

where the indices a and b refer to the upper and lower vertex of the diagrams in Fig. 6.7,
respectively. The invariant masses of the meson-nucleon system at the upper and lower
vertices are denoted by ma and mb, respectively. The relativistically improved squared
matrix element is given by:

|M1 + M2|2 = f 4
R Ωred

1 Ωred
2

[
q2
cm,a q

2
cm,b |Dvac

M |2 + g2 + 2 g qcm,a qcm,bD
vac
M

]
.

Here the quantities Ωred
1 and Ωred

2 are obtained from the Ωred of Eq. 6.67 by replacing
mR → ma (mb). There is no problem with the terms |M1|2 and |M2|2. The different
momenta q2

cm,a and q2
cm,b correspond to the different momenta at the N M decay vertex

and at the meson self energy, see Eq. 6.66. Problematic is only the interference term,
which should be proportional to qcm,a qcm,b. This momentum dependence is not found in
Eq. 6.66. The origin of the problem is the fact that the instruction to choose appropriate
cm kinematics is not easily translated into Feynman rules. This argument does not depend
on the low density limit taken in the above expressions and we therefore make the following
replacement in the self energy of meson M of p-wave resonances (taking the pion part of
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the self energy as an example) :

ImΣπ(k0,k) = − IΣ
2j + 1

(
f

mπ

)2 ∫
dp p2

8π2

+1∫

−1

dx
1

EN
×

×Im
[

Ωϕ Dπ F
2(k, (k − p))

∣
∣
∣
∣

1

1 − gπ χπ

v vT 1

1 − χπ gπ

∣
∣
∣
∣
+ (6.70)

+Ωϕ qcm,bmb

qcm,ama
Dπ F

2(k, (k − p))

(
1

1 − gπ χπ

v vT 1

1 − χπ gπ
−

−
∣
∣
∣
∣

1

1 − gπ χπ

v vT 1

1 − χπ gπ

∣
∣
∣
∣

)

+ Ωred F 2
s (k) gπ

1

1 − χπ gπ

]

.

Without these modifications one is in danger to produce negative values for the imag-
inary part of the self energy, since one does not calculate a quantity proportional to a
squared matrix element any more and the interference term is overestimated. In the calcu-
lations, we correct only the decay of p-wave resonances. For s-wave resonances, the leading
term of the squared matrix element goes with the energy of the meson and the mistakes
made in the momenta are not as serious.

6.7 Relativistic Formalism

Our description of short-range correlations is non-relativistic. A relativistic extension of
the model would be of great interest, in particular when considering the resonance-nucleon
interaction for heavy resonances, where the exchanged 4-momenta can become sizeable.
For positive parity states first attempts towards a fully relativistic description, based on
Lagrangians of the type Lπ

C, have recently been proposed in [75, 82]. The results presented
there indicate that the non-relativistic limit is only recovered for vanishing 3-momenta and
energies. Therefore the quality of the non-relativistic frame work should be worse here
than for the case of meson-nucleon scattering, where only the 3-momentum of the meson
is required to be small. In the discussion of negative parity resonances we have already
encountered possible short-comings of the non-relativistic frame wok when discussing the
ambiguity concerning the matching point of contact interactions and correlation integral.
Also the discussion presented at the end of the previous Section indicates problems with a
non-relativistic scheme.

However, a complete and relativistic description of short-range correlations forms a task
of high complexity. Already when considering only the contact interactions as derived from
Lπ

C , the formalism is significantly complicated [82]. It is to be expected that the complex
structures generated from Lρ

C will lead to even more involved structures. A consistent
treatment is furthermore complicated by the fact that the accepted phenomenological range
for values of gp needs to be rejected if the relativistic corrections are sizeable. Then
new appropriate values for the short-range parameters have to be obtained from fits to
observables.
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Chapter 7

Mean Field Potentials

Up to now we have discussed the NN and RN interactions resulting from π and ρ exchange
as well as from short-range correlations. In the resonance self energy those terms lead to
both real and imaginary parts. We now turn to a different class of diagrams. Starting
point is the QHD-I model, originally introduced by Walecka [119]. This model accounts
for the empirically observed large scalar and vector components in the NN interaction
on the basis of a meson exchange picture. Nuclear systems are described by means of
the exchange of the scalar σ meson and the ω vector meson. The corresponding Feynman
diagrams are shown in Fig. 7.1. Only the diagrams of lowest order in the coupling constant,
which generate Hartree or tadpole contributions, are taken into account. This suffices for
a description of the bulk properties of nuclear matter and of nuclei. For the pion and ρ
meson, the Hartree contributions vanish in isospin symmetric nuclear matter due to the
isospin of both mesons.

7.1 The Underlying Theory

Let us write down the Lagrangian of the QHD-I model [119]:

LI = ψ̄ [γµ(i∂
µ − gvV

µ) − (mN − gsϕ)]ψ +
1

2
(∂µ∂

µϕ−m2
sϕ

2) − 1

4
FµνF

µν . (7.1)

���

Figure 7.1: σ and ω exchange generating a scalar self energy Σs = gsρs and a vector self
energy Σv = gvρB.

113
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Here, ϕ stands for the scalar field, Vµ is the free vector field and Fµν is the usual antisym-
metric field tensor. From this Lagrangian the equations of motion are readily obtained:

(∂µ∂
µ +m2

s)ϕ = gsψ̄ ψ

∂µF
µν +m2

vV
ν = gvψ̄γ

νψ (7.2)

[γµ(i∂µ − gvVµ) − (mN − gsϕ)]ψ = 0 .

This constitutes a coupled set of quantum field equations, a solution of which is not easily
obtained. Also, in the light of the large coupling constants gs and gv perturbative approxi-
mations are not appropriate. An alternative approach considers the limit of large densities.
Then the source terms on the right hand side of the above equations become very large
and the meson field operators can be replaced by their constant expectation values:

ϕ → 〈ϕ〉 ≡ ϕ0

Vµ → 〈Vµ〉 ≡ V0 δµ0 .

Note that for a particle (nucleon or resonance) at rest in nuclear matter rotational in-
variance requires that the space components of the vector field vanish as long as infinite
nuclear matter is considered and one averages over the spin of the particle. If the particle
has a finite momentum, this is not true any more and finite components 〈Vi〉 are in prin-
ciple allowed. In this work we will not be concerned about such terms. In the mean field
approximation, the equations for the meson fields reduce to:

m2
sϕ0 = gsψ̄ ψ ≡ gs ρs (7.3)

m2
vV0 = gvψ

†ψ ≡ gv ρB ,

where we have introduced the scalar density ρs and the baryon density ρB:

ρs = γ

∫ kF

0

d3p

(2π)3

mN

EN(p)
(7.4)

ρB = γ

∫ kF

0

d3p

(2π)3
.

Here γ denotes the spin/isopin degeneracy of the system. Within these approximations
also the field equations for the nucleon can be solved analytically:

[iγµ∂µ − gvV0 − (mN − gsϕ0)]ψ = 0 . (7.5)

This is the free Dirac equation with a shifted energy p?
0 and effective mass m?

N :

p?
0 = p0 − gvV0 ≡ p0 − Σv (7.6)

m?
N = mN − gsϕ0 ≡ mN − Σs ,

with the scalar and vector self energies Σs and Σv, respectively. By directly calculating
the self energy from the tadpole diagrams in Fig. 7.1, the same results for Σs and Σv

would be obtained, which shows that the mean field approach and the tadpole self energies
are equivalent. For a further discussion see [119]. We mentioned before that the spatial
components of the vector field are not taken into account in this work. Explicit calculations
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show that the corresponding self energy is relatively small [27, 121]. Had we kept these
terms, also the 3-momentum of the nucleon (or the resonance) would have to be modified.

We turn now to the solution of the Dirac equation. Neglecting the potentials, the Dirac
equation and its solution read in momentum space [106]:

(p/−mN) us(p) = 0 (7.7)

us(p) =
√

Ep +mN






11

σ · p
Ep +mN




 χs .

For the eigenvalue one has Ep =
√

p2 +m2
N , as can be checked by plugging us(p) into the

Dirac equation. Taking care of the coupling to the mean fields modifies the Dirac equation
and one obtains:

(p/? −m?
N ) us(p

?) = 0 (7.8)

us(p
?) =

√

E?
p +m?

N






11

σ · p
E?

p +m?
N




 χs ,

with the notation:

p? = (p?
0,p) (7.9)

E?
p =

√

m? 2
N + p2 .

Into the eigenvalue both Σs and Σv enter via p0 =
√

m2
N + p2 → p?

0 =
√

m? 2
N + p2, while

the eigenvector us(p) is only modified from the scalar self energy Σs. The normalization
of the spinors changes in the nuclear medium according to:

ūs(p) us′(p) = 2mN δss′ → 2m?
N δss′ (7.10)

u†s(p) us′(p) = 2Ep δss′ → 2E?
p δss′ .

Before proceeding, let us mention that in the literature various extensions of the QHD-I
model exist. In order to describe asymmetric nuclei, additional fields carrying isospin like π
or the ρ have to be introduced. As is turns out, the quality of the Hartree mean-field model
can be substantially improved by allowing for non-linear self interactions of the sigma field
[72, 69, 53]. The resulting Lagrangian is similar in form to that of Eq. 7.1, but contains
additional self interactions terms for the σ meson [72, 69]:

LI = ψ̄ [γµ(i∂
µ − gvV

µ) − (mN − gsϕ)]ψ +
1

2
(∂µ∂

µϕ−m2
sϕ

2) +

+
1

3
g2ϕ

3 − 1

4
g3ϕ

4 − 1

4
FµνF

µν . (7.11)

The modified equation of motion for the sigma field read in the mean field approximation:

m2
sϕ0 − g2ϕ

2
0 + g3ϕ

3
0 = gsρs . (7.12)

This leads to a different effective mass for the nucleon, as the expectation value ϕ0 and
therefore the scalar self energy Σs = gsϕ0 are different in this picture. We will discuss this
issue in some detail in the following Subsection.
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Figure 7.2: Ratio m?
N/mN in nuclear matter as a function of the nuclear density. Shown

are the results for the QHD-1 [119], the NL-2 [72] and the NL-3 [69] model. The parameters
of these models are given in Table 7.1.

7.2 Numerical Results: The Effective Mass

The baryonic current ψ̄ γµ ψ is a conserved quantity. Therefore, the baryon density, which
is the 0-th component of the current, is time independent. It follows, that for a given
coupling constant gv the value of the vector self energy Σv can be immediately obtained.
For example, with the parameter set of QHD-I (see Table 7.1)one obtains Σv = 350.24
MeV.

For the scalar self energy Σs, the situation is more complicated. The ϕ0 field is generated
by the scalar density, which in turns depends on ϕ0. This leads to a transcendental equation
for ϕ0:

ϕ0 =
gs

m2
s

ρs (7.13)

=
gs

m2
s

γ

kF∫

0

d3p

(2π)3

mN − gsϕ0
√

(mN − gsϕ0)2 + p2
.

For spin/isospin symmetric nuclear matter we have γ = 4. Using QHD-I, we get for the
scalar self energy Σs = 430 MeV.

Taking into account the non-linear self interactions of the scalar field modifies this GAP
equation according to [72, 69]:

ϕ0 =
gs

m2
s

ρs +
g2

m2
s

ϕ2
0 −

g3

m2
s

ϕ3
0 (7.14)

It turns out that the self interactions somewhat screen the scalar field, leading to a larger
value for the effective nucleon mass, see Table 7.1. This screening effect is reflected in the
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ms[MeV ] mV [MeV ] gs gv g2[
1

fm
] g3 m?

N/mN ρ0[
1

fm
]

QHD-I 520 783 10.47 13.78 − − 0.541 0.148

NL-2 504.89 780 9.111 11.493 −2.304 13.783 0.67 0.1483

NL-3 508.194 782.501 10.217 12.868 −10.431 −28.885 0.60 0.1483

Table 7.1: Parameters of the three mean field models discussed in this Section. Given are
different parameter sets and results for the effective mass and the saturation density.

ratios m?
N/mN as shown in Fig. 7.2. One sees that for a given density the QHD-1 model

[119] produces the smallest values for these ratios and the NL-2 model [72] the largest
ones. Note that in the medium the nucleon mass is very strongly reduced, up to a factor
of 1/2 at normal nuclear matter density. In Table 7.1 we give explicit values for the ratio
m?

N/mN at saturation density ρ0. The values given there correspond to self energies Σs

ranging from 310 − 430 MeV.
Let us now introduce two interesting functionals of Σv and Σs. First, consider the

expectation value of the full Hamilton operator, yielding the single-particle energy:

H = γ0 γp + γ0mN − γ0 Σs + Σv (7.15)

〈u| γ0 Σs + Σv |u〉 = 2E?
p

(

−m
?
N

E?
p

Σs + Σv

)

.

This demonstrates how Σs and Σv conspire to produce the well known binding energy of
about −70 MeV in nuclear matter. Also, for larger momenta the binding is weakened,
since the attractive scalar part gets suppressed by a factor m?

N/E
?
N . Such a momentum

dependence is also found in various non-relativistic parameterizations of the NN potential
[128]. This phenomenon is recovered by considering the so called Schrödinger equivalent
potential [79]. It is derived from the dispersion relation

p2 + (mN − Σs)
2 = (ε+mN − Σv)

2 , (7.16)

where ε ≡ E?
p + Σv −mN denotes the single particle energy of the nucleon. These terms

can be rearranged to yield the Schrödinger equivalent potential US.e.:

p2

2mN
+ US.e. = ε+

ε2

2mN
(7.17)

US.e. = −Σs +
ε+mN

mN

Σv +
1

2mN

(
Σ2

s − Σ2
v

)
.

The potential US.e. has a similar momentum dependence as the single particle energy,
implying a reduced attraction as the momentum increases.

The results presented here for Σs are based on the Walecka model QHD-I [119] and
modifications thereof [72, 69]. These models allow for a succesful description of nuclear
properties. It is important to realize that the large values for Σs found in such models are
not a consequence of specific model ingredients. In our opinion this is demonstrated by
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the fact that similar values for Σs are obtained by starting from a realistic description of
NN scattering as achieved by the Bonn potential(s) [87]. In [79] it has been demonstrated
explicitly that a self consistent calculation of Σs from solving the in-medium NN scattering
problem leads to comparable results.

In the present work we consider the effect of potentials not only for the nucleon, but
also for baryon resonances. While the corresponding self energies are based on the same
diagrams, no information exists about the coupling constants to σ and ω meson. Therefore
we assume some sort of universality, implying that the scalar and vector self energies are
the same for both nucleon and baryon resonances. This assumption has to be taken with
some care, since explicit calculations for the P33(1232) resonance [121, 27] find much smaller
values for both Σs and Σv. Unfortunately, referring to the known non-relativistic mean-
field potential of the P33(1232) [33] does not help, since this potential is the difference of
the relativistic scalar and vector potentials, see Eqs. 7.15 and 7.17. It does therefore not
provide information about the size of the underlying relativistic potentials Σs and Σv.

7.3 Effect on Observables

As we have just established, the Walecka model leads to an effective mass (from the scalar
potential) and energy (from the vector potential) of the nucleon or resonance in nuclear
matter. We now establish how this affects the calculation of observables. The result will
be that the shift of the energy does not appear in the final expressions as long as the
vector potential is taken to be the same for all particles involved. We prove this assertion
by constructing the normal mode expansion of the Dirac field, allowing for an ab initio
calculation of in-medium matrix elements.

7.3.1 The Normal Mode Expansion: Vacuum

Let us begin by reviewing the normal mode expansion in the vacuum. For simplicity, we
keep only the positive energy part. All the steps are straightforwardly extended to the
negative energy sector as well. One finds [106]:

ψ(x) =

∫
d3p

(2 π)3

1
√

2Ep

∑

s

as(p) us(Ep,p) eipx . (7.18)

The factor 1/
√

2Ep is introduced to guarantee the anti-commutation relation:

[ψ(x), π(y)] = i δ3(x − y) , (7.19)

and is a direct reflection of the normalization of the spinors u†(p) u(p) = 2Ep.

The time dependence of the field is obtained from the commutator of the field and the
Hamilton operator. In terms of creation and annihilation operators, the Hamilton operator
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reads:

H =

∫

d3x ψ̄(x) (−iγ ∇ +m) ψ(x)

=

∫
d3p

(2 π)3

∑

s

Ep a
†
s(p) as(p) (7.20)

and

[H, as(p)] = −Ep as(p) .

The steps leading to the second line clarify that the energy Ep enters as the eigenvalue
of the Dirac equation into the final expression. With the commutator of the Hamilton
operator and the creation/annihilation operator, the time dependence of the Dirac field is
found to be:

ψ(x, t) =

∫
d3p

(2 π)3

1
√

2Ep

∑

s

as(p) us(Ep,p) e−i (Ep t−px) . (7.21)

7.3.2 The Normal Mode Expansion: Medium

If one wants to write the corresponding expression in the presence of scalar and vector
potentials, one needs to find out if the energies Ep in the expansion Eq. 7.21 have to be

replaced by E?
p =

√

m? 2 + p2 or by the new eigenvalue E?
p + Σv. The energy appears at

three places: in the spinor us, as normalization factor 1/
√

2Ep and in the phase determin-
ing the time evolution of ψ(x, t). We have already demonstrated that in the spinor the
replacement reads Ep → E?

p . The factor 1/
√

2Ep has been introduced for normalization
reasons. According to Eq. 7.10 the normalization of the spinors changes to 2E?

p , thus

suggesting the replacement 1/
√

2Ep → 1/
√

2E?
p .

This leaves us with the time dependence of ψ(x), which is governed by the commutator
of ψ(x) and the Hamilton operator H. We therefore construct H in nuclear matter. In
steps analogous to those in the vacuum and remembering that it is the eigenvalue that
shows up in the expression, one finds

H =

∫
d3p

(2 π)3

∑

s

(E?
p + Σv) a

†
s(p) as(p) . (7.22)

Therefore the in-medium mode expansion of the Dirac field reads as follows:

ψ(t,x) =

∫
d3p

(2 π)3

1
√

2E?
p

∑

s

as(p) us(E
?
p ,p) e−i ((E?

p+Σv) t−px) . (7.23)

7.3.3 Calculation of Matrix Elements: Resonance Decay

We now give one explicit example that demonstrates how the mean-field potentials show
up in matrix elements. As an example, we describe the decay of a resonance R into a
nucleon and a meson ϕ. Since the exact form of the Lagrangian is not relevant for our
discussion, we pick a simple one:

L = g ψ̄R ψN ϕ . (7.24)
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Using the normalization conditions:

|p〉 =
√

2Ep a
†
p |0〉 ,

{

ap, a
†
p′

}

= (2π)3δ3 (p − p′) , (7.25)

such that ∫
d3p

(2π)3

ap
√

2Ep

|p〉 = 1 , (7.26)

one obtains in lowest order perturbation theory for the matrix element describing the decay
of the resonance with momentum k into nucleon (momentum p) and meson (momentum
q):

〈p; q| iT |k〉 = −i
∫

d4x 〈p; q| ψ̄(x)ϕ(x)ψR(x) |k〉

= −i
∫

d4x
d3p′

(2π)3

d3q′

(2π)3

d3k′

(2π)3

1

2Ep′2Eq′2Ek′
×

× 〈p, q| a†s(p′) ūs(E
?
p′,p

′) a†(q′) as′(k
′) us(E

?
k′,k

′) |k〉 × (7.27)

× e
−i(E?

k′
+ΣR

V −E?
p′
−ΣN

V −Eq′ ) x0 ei(k′−p′−q′) x

= −i (2π)4 δ(E?
k − E?

p + Eq + ΣR
V − ΣN

V ) δ3(k − p − q) ū(E?
p ,p) u(E?

k,k) .

The energies Ep, Ek and Eq stand for the energy of nucleon, resonance and meson, re-
spectively. Note that in the final expression the vector potential only shows up in the
energy conserving δ-function. Taking it to be the same for both nucleon and resonance,
it drops completely out of the expression. On the other hand, the spinors of nucleon and
resonance appear with the modified on-shell energy E?

p and E?
k . In particular, they contain

the effective masses m?
N and m?

R. These corrections will also be present in a non-relativistic
frame work, despite the fact that in the non-relativistic reduction of the Dirac equation the
size of the potential is essentially determined by the difference of Σs and Σv. This is the
case since the non-relativistic reduction of matrix elements is determined by the leading
components of the nucleon/resonance spinors, which in turn are only modified by Σs and
cancellations between Σs and Σv are not possible.

We have now established in which way the matrix elements have to be adjusted in the
presence of mean-field potentials. Throughout this work we will assume that the vector
potentials of nucleon and resonance are the same and can therefore neglect them from our
considerations.



Chapter 8

Results

In this Chapter we present the results of our coupled channel analysis. In the Sections
8.1 and 8.2 we give the main results obtained for pion, η and ρ meson as well as for the
resonances P33(1232), D13(1520) and S11(1535). Both Sections represent slightly extended
versions of our publication [108] and are obtained within the self-consistent coupled channel
approach. In Chapter 9 we study certain aspects of the results in more detail.

8.1 Mesons

8.1.1 ρ Meson

In Fig. 8.1 we show the spectral functions AT
ρ and AL

ρ for momenta 0, 0.4 and 0.8 GeV at

density ρ0 = 0.15 fm−3. Let us first discuss the general features of the results before turning
to the details. We begin with the transverse channel AT

ρ . Due to the large width of many
of the involved resonances and their close overlap with the broad ρ meson, the individual
particle-hole peaks cannot be identified for all resonances. However, the structure coming
from the D13(1520) is clearly seen. This state couples in a relative s-wave and is responsible
for the peak at invariant masses below the ρ seen at small momenta. If the momentum
increases, the relative importance of this state is reduced due to the fact that it moves away
from the ρ pole. Then it is the sum of a few higher lying p-wave states like the F35(1905)
or the P13(1720) which mostly affects Aρ [38, 109]. Because they couple in a p-wave, these
resonances are not seen at small momenta. Thus in the transverse channel the following
general picture emerges: at small momenta the spectrum is dominated by the excitation
of the D13(1520) state, leading to a pronounced double-peak structure. Increasing the
momentum, the additional peak diminishes, but a sizeable broadening of the original ρ
peak persists, which varies from Γmed = Im ΠT

ρ (q2 = m2
ρ)/mρ ≈ 130 MeV at q ≈ 0.4 GeV

to Γmed = 250 MeV at q = 0.8 GeV. One should not conclude that the broadening keeps
increasing with momentum. Within our model, there is a certain momentum above which
all the resonances have passed the point q2 = m2

ρ. Beyond that momentum the particle-hole
excitations move away from the resonance and their influence on the ρ spectral function
becomes less important.

The different momentum dependence of AT
ρ and AL

ρ , which is expected from the breaking
of Lorentz invariance in nuclear matter (see Chapter 5.1), is nicely displayed in the Fig.
8.2 where the transverse (left) and the longitudinal (right) spectral functions are shown as
functions of momentum q and invariant mass m =

√

q2. Whereas at small momenta both
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Figure 8.1: Spectral function of the ρ meson at normal nuclear matter density. Shown
are the transverse and longitudinal spectral functions AT

ρ and AL
ρ , which are degenerate

at q = 0 GeV. Shown are the effects of iterating the spectral function and of varying the
short-range parameter gs

ρ. The picture in upper right corner represents a zoom around the
D13(1520)N−1 peak for q = 0 GeV.
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Figure 8.2: Spectral function of the ρ meson at normal nuclear matter density as a function
of three momentum q and invariant mass m =

√

q2. In the upper graph the transverse
spectral function is shown and in the lower one the longitudinal spectral function is shown.
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spectral functions are very similar and dominated by the D13(1520) excitation, at larger
momenta we observe a different behaviour. For a more detailed discussion let us return
to Fig. 8.1. Whereas at small momenta up to 0.4 GeV both spectral functions develop a
similar behaviour, for large momenta around 0.8 GeV AL

ρ is much less modified and starts
resembling the vacuum spectral function. This is due to the fact that the p-wave resonances
- responsible for the broadening of the meson peak in AT

ρ - do not couple to a longitudinal
ρ meson and that - apart from the D13(1520) - the s-wave states do not couple strongly
enough to cause a large effect. Furthermore, their coupling is proportional to q2 and gets
therefore smaller when the momentum increases until it eventually vanishes in the vicinity
of the photon point q2 = 0, which is approached by states with a mass around 1.5 GeV at
a momentum of 0.8 GeV.

In Fig. 8.1 we also compare the effects from higher order corrections in the density and
from inclusion of the short-range correlations (SRC) for s-wave states. For p-waves, the
SRC are always taken into account. Concerning the iterations, we obtain good convergence
after maximal four iterations. At low momenta the main effect of the iterations is to smear
out the region around the peak generated by the D13(1520) (see especially top right plot
in Fig. 8.1). This is due to a broadening of that state, which is discussed below in
Section 8.2.2. The strength sitting in the ρ peak remains stable. At larger momenta one
observes a minor shift of the ρ peak down to smaller invariant masses. This shift is due
to a combined effect of the in-medium modifications of the higher lying resonances and
is therefore not easily disentangled. In our previous publication [107], the iterations led
to a structureless ρ spectral function due to a large in-medium broadening of the baryon
resonances. We find that this discrepancy results from the use of different form factors.
In the previous publication the form factor did not depend on the invariant energy k2

of the baryon resonance, but on the 3-momentum q of the ρ meson relative to nuclear
matter, leading to much larger self energies away from the resonance-hole peak. This
way the in-medium broadening of baryon resonances was allowed to generate large effects
far away from the resonance peak, in particular in the vicinity of the ρ peak. Using an
k2 dependent form factor, the effects of resonance broadening are confined to the region
around the resonance peak. Thus the width of the ρ peak remains smaller than before and
at large momenta the ρ regains a quasi-particle structure. This effect does not depend on
whether one uses form factor FF1 of Eq. 3.22 or FF2 of Eq. 3.23. The form factor at the
meson-nucleon-resonance vertex does not only affect the meson self energy Π

T/L
ρ , but also

the resonance self energy. In order to prevent the resonance width from exploding away
from the on-shell point, a form factor like Eq. 3.22 or Eq. 3.23, producing the necessary
suppression, is mandatory. We conclude that with the new form factor the effects from
self-consistency are estimated more reliably. The effect of the form factor on the first
iteration is discussed in Chapter 9.4.

The SRC for s-wave states have mainly the effect of moving the D13 peak slightly up,
leaving the gross structure of the results untouched (see again top right plot in Fig. 8.1).
The repulsive nature of the SRC is well known. In analogy to the discussion in Chapter
2.2, this can be seen by putting the resonance width to zero. Then the contribution of the
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Figure 8.3: Comparison of a calculation of AT
ρ employing the parameter set of Manley

[90](left) and that of Vrana [124] (right). The calculations are done at a density ρ = ρ0.
Note that we only show the timelike part of the spectrum since there are no differences in
the parameter sets for the P33(1232) and the nucleon. For the SRC in the s-wave sector
we take gs

ρ = 0.1.

D13(1520) to the transverse self energy can be cast into the form (cf. also [50]):

ΠT
ρ (q0,q) = q2

0

χs

1 − gs
ρ χs

(8.1)

= q2
0

C

q2
0 − Ē2 − gs

ρC
,

where we have introduced Ē = ER−mN , simulating the kinematical situation of a ρ meson
scattering on a nucleon at rest. The constant C > 0 is proportional to the density and the
coupling constant. One sees that the inclusion of SRC acts like a repulsive mass shift of
the resonance. This effect is enhanced by the fact that the attractive in-medium shift of
the peak of the spectral function of the D13(1520) is less pronounced once the short-range
interactions are switched on, see Section 8.2.2. Since s-wave states are less important at
large momenta, we find virtually no influence of gs

ρ on the results. Therefore only three
curves (instead of five) can be distinguished in the bottom of Fig. 8.1. Summarizing, the
spectral function is rather stable with respect to SRC in the s-wave sector, which mainly
influence the details around the D13 peak at small momenta.

In Fig. 8.3 we study the influence of the resonance parameters as extracted from [90]
and [124]. As explained in Chapter 4, those analyses differ in that they assign different
strength to the N ρ channel, the analysis [90] favouring larger values for the partial decay
widths. As can be seen, the differences between both results are most pronounced around
the D13(1520) peak, where the smaller coupling leads to a reduced influence of that state.
However, at lot of strength is still removed from the ρ peak. At larger momenta the
differences are quite small and the broadening of the ρ peak remains untouched.
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Comparison with other models: Let us now compare our results with those obtained
from other models for the ρ meson. In the works of [111, 24] the main source of in-medium
modifications is due to the renormalization of the ρππ decay in the nuclear medium, gener-
ated by the coupling of pions to nucleon-hole and ∆-hole states. On the level of scattering
amplitudes this corresponds to a consideration of background terms of the ρN scattering
amplitude. The overall picture emerging from such works is a substantial broadening of
the ρ peak, accompanied by a slight repulsion. In addition, the effects from coupling the
ρ to D13(1520)N−1 holes have been estimated in [24] and the peak structure reported here
and in our previous publications has been qualitatively confirmed. In [122] the momentum
dependence of the spectral function inherent to such models has been studied and found
to be small. This is in clear contrast to the finding in our work. As shown in Fig. 8.1 the
resonance-hole loops create a sizeable dependence on q, which is a direct consequence of the
condition that the invariant mass of the meson-nucleon system equals that of the excited
resonance. Such kinematical constraints are absent for the decay of a ρ meson into pions in
nuclear matter, where the corresponding self energy is build up from background terms of
the ρN scattering amplitude (cf. Section 5.5). Therefore the small momentum dependence
found in [122] is reasonable. In the work of [62] the ρN forward scattering amplitude has
been calculated based on a combination of vector meson dominance (VMD) and heavy
baryon chiral perturbation theory. There a strong broadening of the ρ in combination with
attractive mass shift is reported. As compared to our scheme the models [111, 24, 62, 122]
are clearly more elaborate concerning the in-medium ρππ decay. Qualitatively, however,
such effects only lead to an additional broadening and shift of the ρ peak. On the other
hand, the gross features of the spectral function – especially the rich peak structure – is
given by the resonance-hole excitations studied here with great sophistication.

Closer in spirit to our approach are the works of [38, 84, 37]. In [38] the effects of
coupling the ρ to two p-wave resonances, the P13(1720) and the F35(1905), are considered,
which only contribute at finite momenta. This model predicts the existence of additional
peaks in the spectral function and a broadening of the original ρ peak. In [84, 37] the
ρN scattering amplitude is generated as a solution of a coupled-channel Bethe-Salpeter
equation. This way resonant structures are formed dynamically. This analysis is restricted
to small momenta since no p-wave states are incorporated in the model. For a ρ at rest
the in-medium modifications are found to be much smaller than in our work, owing to a
much smaller coupling of ρN in the D13 channel (see also discussion in Section 4.1). For a
more detailed overview of the different models we refer the reader to [111].

While differing in many details, the results have one general feature in common: all of
them predict a sizeable shift of spectral strength down to smaller invariant masses of the
ρ. This is required by the QCD sum rules [47, 62, 78] and offers a possible explanation for
the apparent shift in the dilepton spectra measured in heavy ion collisions.

Dilepton Spectra: Much of the interest in the in-medium properties of the ρ meson has
been triggered by dilepton spectra of the CERES/NA45 [3, 4, 76, 129] and the HELIOS
[92] collaboration, indicating an enhancement of spectral strength below the free ρ mass.
We turn therefore to a computation of momentum integrated dilepton rates as resulting
from our model for the ρ meson. This rate is defined as [44, 113]:

dRe+e−

dq2
(q) =

∫
d3q

2q0

dRe+e−(q0,q)

dq4
. (8.2)
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Figure 8.4: Momentum integrated dilepton rates at a temperature T = 140 MeV for three
different densities, 0.5 ρ0 (dashed-dotted), ρ0 (solid) and 1.5 ρ0 (dashed). In all curves SRC
with gs

ρ = 0.1 and gd
π = 0.4 are included.

Using the assumption of strict Vector Meson Dominance (VMD), the four-fold momentum
differential rate is directly related to the transverse and longitudinal spectral functions of
the ρ meson:

dRe+e−

dq4
=

α2

π2 q2
nB(q0, T )

m0,4
ρ

g2
ρ

[
2

3
AT

ρ (q0,q) +
1

3
AL

ρ (q0,q)

]

. (8.3)

Here α is the electromagnetic fine-structure constant and gρ = 6.05 denotes the coupling
strength of the ρ to the photon. The thermal Bose occupation factor reads:

nB(q0, T ) =
1

eq0/T − 1
. (8.4)

The formula Eq. 8.3 is derived in [44]. Without repeating this derivation here, one can
nonetheless motivate the terms appearing in this equation: The underlying concept is the
optical theorem, relating the total cross section to the imaginary part of the e+ e− forward
scattering amplitude. This amplitude contains a photon propagator, which explains the
factor 1/q2. Within the VMD picture the photon then couples to hadrons via a ρ meson.
This leads to the appearance of the ρ spectral function in Eq. 8.3. The factor m0,4

ρ /g2
ρ

comes from the coupling of the photon to the ρ meson. Finally, the Bose distribution nB

characterizes the distribution of states with energy q0 at a given temperature T .
In Fig. 8.4 we present results for the momentum integrated dilepton rates

dR
e+e−

dq2 (q) for
the densities ρ = 0.5 ρ0, ρ = ρ0 and ρ = 1.5 ρ0. For the temperature we take T = 140 MeV,
which should be typical for SPS energies [113, 38]. For comparison we have also plotted
the dilepton spectrum as resulting from using the vacuum ρ propagator in Eq. 8.3. No
experimental acceptance cuts are taken into account.
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The overall picture is that our model produces a substantial reduction of strength
around the free ρ peak and leads to a strong enhancement of the dilepton yield at small
invariant masses around 300− 600 MeV, where the resonance-hole contributions dominate
the dilepton spectrum. The strong population of small invariant masses is due to the
excitation of the resonance-hole pairs, for example the D13(1520) and the P13(1720) states.
It is further enhanced by the factor 1/q2 as well as the thermal Bose distribution factor
in Eq. 8.3. The D13(1520)N−1 excitation leaves a clear trace in the peak structure seen
at invariant masses of about 500 MeV. Probably we overestimate the effects resulting
from dressing the ρ meson by using the strict VMD picture where the photon coupling of
hadrons is directly related to the hadronic coupling. In Chapter 10 we will show explicitly,
that within such an approach the electromagnetic coupling of the baryon resonances is
overestimated by about a factor of 2. Still the qualitative picture remains valid also with
more elaborate versions of VMD.

The spectral function AT/L
ρ is calculated at zero temperature. This is a reasonable

approximation for resonance-hole states. Finite temperature effects only slightly rearrange
the nucleon distribution function and also the small overestimation of Pauli-blocking –
which is not important for the D13(1520) – should leave the results shown in Fig. 8.4
qualitatively intact. We do not consider scattering processes of the ρ meson on pions
present at finite temperatures lead to a further broadening of the ρ peak of about 80 MeV
at T = 140 MeV [113]. Albeit non-negligible, inclusion of this effect would not lead to
qualitative changes of the results in Fig. 8.4.

8.1.2 π Meson

The properties of the pion in nuclear matter have been exhaustively studied within the
∆-hole model, see for example [99], where the pion is allowed to couple to the P33(1232)
resonance and the nucleon. Our model goes beyond that by explicitly including resonances
with higher mass, like the P11(1440) or the s-wave states S11(1535) and S11(1650). In
addition, we generate corrections which are due to the self-consistent iteration of resonance
and meson spectral functions. In that way different mesons influence each other to some
extent.

In Fig. 8.5 we show results for the spectral function Aπ at three momenta, 0.4 GeV
0.5 GeV and 0.6 GeV, after the first (dashed lined) and the fourth (solid line) iteration at
density ρ0. One can clearly see the multi-peak structure of the spectral function due to the
excitation of nucleon-hole (left most peak) and P33(1232)-hole states (peak in the middle).
In the momentum range under consideration the kinematics are such that the pion branch
is above the P33(1232) and the nucleon branches, see also Fig. 5.3. Due to level repulsion
the position of the pion peak is therefore shifted to larger invariant masses. In Fig. 8.5
this is indicated by the dotted vertical line at the invariant mass of the free pion. Note
that a substantial amount of spectral strength is sitting at space-like four-momenta. For
momenta q ≥ 0.6 GeV the additional peaks from nucleon and P33(1232) become much less
pronounced since they are too far away from the pion pole and the pion starts resembling
a good quasi-particle. The results presented here are in qualitative agreement with those
of other analyses, see for example the results presented in [56], where on the basis of a
model that is close to ours after the first iteration the spectral function is plotted for a
momentum of q = 0.5 GeV.

The effects of the iteration (solid line) lead to a smearing of pion and the P33(1232)
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Figure 8.5: Spectral function of the pion at ρ = ρ0. Shown is the spectral function at three
momenta, 0.4 GeV, 0.5 GeV and 0.6 GeV after the first (dashed line) and fourth (solid
line) iteration. Also indicated is the position of the free pion peak (dotted vertical line).

peaks, while leaving the nucleon contribution unchanged. More importantly, however, there
is no significant shift of spectral strength down to smaller invariant masses by the iterations.
This point will become important when we discuss the properties of the P33(1232) in nuclear
matter.

In Fig. 8.6 we display the influence of the remaining resonances besides the P33(1232)
on the pion spectral function. We show the results after the first iteration in order to avoid
mixing up effects from the inclusion of these additional states and from the iterations.
We find a modest influence of two s-wave states, the S11(1535) and the S11(1650), and
the P11(1440), coupling in a p-wave. Although these states have sizeable decay widths
into the Nπ channel, the large available phase space prevents a strong coupling of these
resonances and the coupling is not sufficient to produce distinct peaks in the spectral
function. Nonetheless, these states serve as a background contribution and smear out
the pion peak. The somewhat smaller repulsion in the pion peak is due to the attractive
interaction generated by heavy resonance-hole states due to level repulsion. Their impact
is most pronounced at 3-momenta q ≥ 0.6 GeV where the energy of the corresponding
resonance-hole states is close to that of the pion, see Fig. 5.3. Effects from the D13(1520)
state are suppressed by the d-wave coupling. Thus only at large momenta we see the
influence of that state.

At very small 3-momenta q, the πN scattering amplitude receives contributions from
non-resonant s-wave terms [13], which are not included in our model. Therefore our results
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Figure 8.6: Spectral function of the pion at ρ = ρ0. Shown is the spectral function at thee
momenta, 0.4 GeV, 0.5 GeV and 0.6 GeV after the first iteration. The solid line indicates
the results if all resonances are included, for the dashed line only the P33(1232) and the
nucleon are coupled to the pion. Also indicated is the position of the free pion peak (dotted
vertical line).

are not completely reliable in this kinematical regime and we cannot comment on the
problem of s-wave repulsion demanded by data on pionic atoms [11]. Due to level repulsion,
our model gives a small attraction of the pion since all the s-wave resonance-hole pairs have
energies larger than mπ. This shortcoming at small momenta has no sizeable effects on
the results of the iterative scheme presented in this work, however, since the regime of
small 3-momenta is hardly tested in the decay of baryon resonances due to Pauli-blocking.
Apart from these details, the spectral function of the pion is at low momenta dominated
by the pion peak since both the nucleon-hole and the P33(1232)-hole excitation are p-wave
and open up only at finite momenta.

8.1.3 η Meson

In the discussion of the in-medium properties of the η meson we focus on the question
of η-mesic nuclei, where the ηN interaction is tested at small relative momenta. It is
well known from coupled-channel analyses of πN scattering, that close to threshold the
ηN interaction is dominated by the S11(1535) resonance, see for example [104, 57]. As
was already pointed out in e. g. [56, 125, 96], the presence of the S11(1535) in the ηN
interaction provides an attractive optical potential Uη since the resonance pole is about 50
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Figure 8.7: Real (left) and imaginary (right) part of the in-medium self energy of the
η meson. Shown are calculations at densities ρ = ρ0 and ρ = 0.4 ρ0. The dashed lines
indicate the results following from the first iteration Eq. 5.8 and the solid incorporate all
the effects from dressing the S11(1535).

MeV above the ηN threshold. In terms of the self energy Πη, the optical potential reads
close to threshold:

Uη(mη, 0, ρ) =
Πη(q0, 0, ρ)

2mη
. (8.5)

Let us first focus on the vacuum scattering amplitude, which via the low-density the-
orem Eq. 5.8 yields a first estimate for Πη. In our model the S11(1535) resonance has a
total width of about 151 MeV with ΓNη = 66 MeV, corresponding to a branching ratio of
44%. In the approach described in [56] this state is generated dynamically and the result-
ing resonance parameters are quite different [57]: for the total width a value of 94 MeV is
found whereas the partial width ΓNη is the same as in our model. To be more quantita-
tive, let us compare results for the scattering length aηN : we find aηN = (0.43 + i 0.32)
fm. The model of [57] produces aηN = (0.26 + i 0.24) fm, whereas in [104] a value of
aηN = (0.991 + i 0.347) fm is reported and in [84] a scattering length aηN = (0.43 + i 0.21)
fm results. We conclude that our model and that of [56] yield results for the elementary
ηN amplitude, which – albeit different – are well within the commonly accepted range.

The different resonance parameters have a direct effect on the self energy Πη of the
η meson calculated via Eq. 5.8, which is indicated with dashed lines in Fig. 8.7 for the
densities 0.4 ρ0 and ρ0, where ρ0 is the normal nuclear matter density ρ0. Comparing
our results with those obtained in [56], one finds that for the imaginary part the peak
value is smaller in our case whereas off-shell we obtain larger values. Both findings are an
immediate consequence of the larger total width in our model.

The most important in-medium correction is generated from Pauli-blocking the Nη
width of the S11(1535). At normal nuclear matter density and for a resonance at rest the
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Figure 8.8: Left: Optical potential Uη of the η meson at q = 0 GeV as a function of the
nuclear density ρ. The solid lines indicate the results including in-medium corrections, for
the dashed lines the vacuum scattering amplitude has been used. Right: Spectral function
Aη of the η meson in nuclear matter at ρ = ρ0. Shown are the results for three momenta:
q = 0 GeV, q = 0.4 GeV and q = 0.8 GeV.

Pauli-blocked width is zero, however even if excited by a η meson at rest the resonance
has a finite 3-momentum k ≈ 0.2 GeV due to the Fermi motion of the nucleons. This
weakens the effects of Pauli-blocking and the approximation to put ΓNη = 0 as done
in [96] is not accurate. On top of Pauli-blocking there are additional mechanisms that
influence mass and width of the S11(1535). This is discussed in Section 8.2.3 and we
find an additional broadening of about 30 MeV for the S11(1535) relative to the Pauli-
blocked width at these small momenta, accompanied by a small repulsive mass shift of the
S11(1535). Concentrating on the point q0 = mη (indicated by the dotted vertical line in
Fig. 8.7) as appropriate for the optical potential, we find that the mass shift leads to a
depletion of Im Πη while leaving Re Πη nearly unaffected. The peak of Im Πη is shifted
upwards whereas the height of the peak remains essentially the same. In the analysis of
[56] this is different since the relative weight of Pauli-blocking is enhanced due to the larger
branching ratio for this channel and an enhancement of the peak of the self energy in the
nuclear medium results.

In Fig. 8.8 we plot the optical potential as a function of the density. As expected,
the low-density approximation Eq. 5.8 shows a linear behaviour in the density both for
the real and imaginary part of Uη. When the in-medium corrections are included, we
find deviations from this linearity for the imaginary part, which is strongly reduced as
was already indicated in the discussion in the preceding paragraph. At normal nuclear
matter density we find Uη = (−50 − i 43) MeV in the low density approximation and
Uη = (−52− i 24) MeV in the full calculation. The SRC have no big effect on the potential,
neglecting the SRC in the s-wave sector one obtains Uη = (−49 − i 29) MeV. It follows
that the iterations lead to a strong reduction of the imaginary part while hardly affecting
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the real part of the optical potential. This behaviour is a direct reflection of the results
found for the self energy, see Fig. 8.7. It is interesting that the analysis of [56] leads to a
comparable final result, Uη = (−54−i 29) MeV, despite the fact that the scattering lengths
in both models are different. In [125] Uη = (−20 − i 22) MeV is found, i.e. the attraction
provided by Uη is found to be only half of our value, whereas the width is comparable.
Summarizing these results, most models seem to predict similar results for the imaginary
part of the optical potential while uncertainties on the level of a factor of two persist for
the real part. As far as the existence of η-mesic nuclei is concerned, the strong attraction
found in our approach and in that of [26] is certainly encouraging.

We close the discussion of the properties of the η meson in nuclear matter by inspecting
the spectral function Aη shown in Fig. 8.8. There the spectral function is displayed for
three momenta q = 0 GeV (solid line), q = 0.4 GeV (dashed line) and q = 0.8 GeV
(dashed-dotted line). Also indicated is the position of the free η peak. In the calculations
SRC are taken into account, they have however only a small effect. One observes that
at q = 0 GeV the coupling of the η to S11(1535)N−1 loops is not sufficient to generate a
distinct peak in the spectral function. Only a shoulder arises at invariant masses slightly
above the η peak, which is located at q2 = 0.25 GeV2. This is in contrast to the findings
both of [56] and [125] and is probably explained by the substantially smaller peak value
of Im Πη found in our work, which – as mentioned above – is due to a larger total width
and a smaller branching ratio into Nη. The position of the η peak is shifted downwards
as expected from the attractive nature of the interaction at small momenta. Going to
larger momenta we find that at 0.4 GeV the η peak is substantially broadened. Around
this momentum the energies of the η branch and the S11(1535)N−1 are comparable (see
also Fig. 5.3), leading to a strong mixing and broadening of both states. At even larger
momenta the resonance-hole excitation is below the η. This induces a small repulsion of
the η peak, whereas only a moderate broadening occurs.

8.2 Baryonic Resonances

8.2.1 P33(1232)

It is well known that the in-medium broadening of the P33(1232) state is in the order of 100
MeV at normal nuclear matter density. This value has been extracted a long time ago in an
analysis of pion-nucleus scattering, [54]. From the same analysis a slight repulsion of the
P33(1232) of about 20 MeV relative to the nucleon is reported. Certainly, any model trying
to describe the P33(1232) state in nuclear matter should arrive at comparable results. We
thus use this resonance as a testing ground for our model: a reasonable description of its
in-medium properties suggests that no major mechanisms are missing in our approach.

We have adjusted the parameters of the π N ∆ system - cutoffs, SRC - such as to achieve
a reasonable description of the in-medium properties. In the right graph of Fig. 8.9 we
plot the spreading potential Vsp defined by:

ImVsp(k0,k) =
Im Σmed(k0,k) − Im Σpauli(k0,k)

2
√
k2

(8.6)

and compare to the experimental data found in [54]. Following an argument in [98] that
the effective density felt in a nucleus is 0.75 ρ0 rather than ρ0, we perform the comparison
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Figure 8.9: Left: Comparison of our model with the phenomenological spreading potential
Vsp of [54]. The density is taken to be ρ = 0.75 ρ0. Right: Influence of the SRC on the
width of the P33(1232) at ρ = ρ0. Compared are a calculation with (solid line) and w/o
(dashed line) SRC.

at this density. The kinematics corresponds to that of a pion, which hits a nucleon with
an average momentum of 3

5
pF and forms a ∆ of energy k0 and momentum k:

k0 = q0 +

√

m2
N +

3

5

p2
F

2mN
, k2 = q2 +

3

5
p2

F , Tπ = q0 −mπ . (8.7)

As shown in the left plot of Fig. 8.9, we achieve a reasonable description of ImVsp in our
model. The values needed for cutoff and short-range parameter – given in Table A.1– lie
well within the commonly accepted range, see for example [7, 49, 98]. In Fig. 8.10 we show
width and spectral function of the P33(1232) state for a fixed momentum of 0.4 GeV. The
width at k2 = m2

R is found to be roughly 190 MeV, leading to broadening of the in-medium
spectral function. In our model the peak position of the spectral function of the P33(1232)
remains more or less unchanged, while Re Σ(k2 = m2

R)/(2mR) ≈ 15 MeV, indicating a
slight repulsion of the resonance. The reason that this repulsion is not observed in the
spectral function is due to the energy dependent width as outlined in the introduction to
this Section.

If one calculates the baryon self energy according to Eq. 5.37 and constructs the in-
medium spectral function of the π by coupling the pion to nucleon-hole and resonance-hole
states, a dramatic overestimate of the in-medium width of the P33(1232) state results. Only
after the inclusion of SRC according to Eq. 6.62 and 6.64, one arrives at satisfying results
for the broadening [98, 7, 49]. This is shown in the right graph in Fig. 8.9. The effect of the
correlations is to systematically move strength up to the higher branches of the spectral
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Figure 8.10: Width (left) and spectral function (right) of the P33(1232) moving with a
relative momentum of 0.4 GeV. The solid line indicates the result obtained after four
iterations whereas the dashed lined is the result after the first iteration. The density is
ρ = ρ0.

function. Then the available phase space is reduced and a reduction of the width results.
A similar argument was put forward in [67]. In Chapter 2.4 we have systematically studied
this effect within a simplified toy model. As pointed out there, the crucial effect from the
short-range correlations is not the modification of the pion propagator but the induced
vertex corrections.

In both plots of Fig. 8.11 we analyze the findings of the right plot of Fig. 8.9 in
more detail. The left plot shows a decomposition of the results obtained without SRC. By
comparing the solid and the dashed line one finds that the main body of the in-medium
width is due to the inclusion of nucleon and P33(1232). Furthermore, we show the results
for the absorptive channel P33(1232)N → NN by the dotted and dash-dotted lines. These
curves are obtained by multiplying the integrand of Eq. 5.37 in Chapter 5.3.1 by a factor
Im Ππ

NN /Im Ππ
tot as suggested by the discussion around Eq. 5.43 in Chapter 5.3.2. Not

contained is the ∆ → Nπ decay contribution, therefore these results should not be directly
compared with the solid and the dashed lines which give the total in-medium width. It
is interesting to note that the dash-dotted curve gives a broadening which is already in
the right order of magnitude before SRC are included. Indeed, in the literature some
calculations exist [61, 123] where the in-medium properties are obtained just from dressing
the pion with nucleon-hole loops. As discussed in Chapter 9.2, by considering nuclear
mean fields – as done in these works – a further reduction of the broadening is achieved. In
the light of our results, it should be clear, however, that this is not satisfying. By simply
adding the P33(1232) to the pion self energy, the absorptive broadening goes already up
by 50 MeV (compare dash-dotted and dotted lines). This qualitatively confirms that the
results of the toy model presented in Chapter 2. There we argued at the end of Section 2.2
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Figure 8.11: Width of the P33(1232) moving with a relative momentum of 0.4 GeV at
ρ = ρ0 as found after the first iteration. In the left plot we show results obtained w/o SRC.
The solid line is the result obtained when all resonances are included, in the dashed line
only N and P33(1232) are taken into account. The dotted line projects onto the nucleon-
hole channel, while the dash-dotted line indicates the results when the pion is dressed only
by nucleon-hole loops. In the right plot the same curves obtained with SRC are shown.

that due to the influence of the P33(1232) more strength is shifted into the nucleon-hole
branch. Without explicitly showing the corresponding results, we note that by increasing
the cutoff in form factor Ft of Eq. 3.21, Chapter 3.2, mainly the absorptive width, which
is generated at relatively large pion momenta, is enhanced. This is line with the results for
the width presented in Chapter 2.4, Table 2.1, where a large partial width into the NN
channel is reported.

In the right plot of Fig. 8.11 we show the in-medium width with inclusion of SRC.
Again, the in-medium width is nearly entirely generated from the dressing of the pion with
the P33(1232) and the nucleon as can be inferred by comparing the solid and the dashed
line. The dotted line shows that the absorptive part of the broadening is only about half
the size as compared to the calculation without SRC. Note that in order to obtain that
curve, both Im Σπ and Im Σρ have are multiplied by a factor Im Π

π/ρ
NN/Im Π

π/ρ
tot , since the

short-range correlations give also contributions to the Nρ channel (cf. Eq. 6.62 in Chapter
6.6).

In [98] it was found that 3-body absorption of the P33(1232) contributes significantly to
the total width. There the 3-body contribution was calculated based on the same diagrams
that we generate in the second iteration step, i.e. Im Σ2

med is the sum of 2-body and 3-
body processes. Also an additional diagram was calculated, which we do not consider here
and which was claimed to be comparatively small by the authors of [98]. In contrast to
that work, we find only small effects of about 10 MeV from the iterations, i.e. our total
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broadening is essentially due to 2-body processes contained in Im Σ1
med . A significant

modification of Im Σ2
med relative to Im Σ1

med can only follow if also the in-medium spectral
function of the meson undergoes sizeable corrections, i.e. if A1

π and A2
π are very different. In

particular, due to phase space arguments a large 3-body contribution for the P33(1232) can
only result from a substantial shift of spectral strength down to smaller invariant masses
in the pion spectral function when going from A1

π to A2
π. Such a rearrangement is not

produced by the moderate resonance broadening obtained after the first iteration, see also
Fig. 8.5, where the effect of iterations on the pion spectral function is explicitly displayed.
Therefore only a large additional attraction of the P33(1232) relative to the nucleon might
help. This however is at variance with the phenomenological spreading potential [54]. We
add that 3-body physics also plays no important role in the iterative scheme of [49].

We close the discussion of the P33(1232) with a comment on the absolute size of the
absorptive channel as shown in Fig. 8.11. This channel of the in-medium width of the
P33(1232) is constrained from data on the reaction NN → P33(1232)N via the low density
theorem Γ = ρ v σP33(1232)N→NN . In [73] it has been estimated that these data suggest an
absorptive broadening of about 40 MeV. This is less than what we find in our model, which
– in approximate agreement with the results of [7] – gives a value of roughly 80 MeV (see
right plot of Fig.8.11). We have checked that these differences can not be explained from
the resummation of particle-hole loops in the pion propagator. This demonstrates that in
principle our model should be constrained from scattering data. A fit of these data would
probably have lead to different model parameters. For example, in [73] a much smaller
cutoff at the NNπ of Λ = 0.6 GeV has been used. We have decided not to fit our model
to scattering data for the following reasons: 1) Only absorptive processes are constrained
from data. Whereas they are important for the P33(1232), the heavier resonances can easily
scatter into various final states according to the process RN → NR′ with mR′ ≤ mR. These
reactions and elastic scattering are, however, not directly accessible in NN scattering and
we expect much weaker – if any at all – constraints for the model. When discussing the
broadening of the D13(1520) in Chapter 8.2.2, we will see that there the main body of the
broadening is due to such inelastic processes. 2) For the P33(1232) we are mainly concerned
about a qualitative description of its global properties, i.e. a description of the spreading
potential as shown in the left plot of Fig. 8.9. The main lesson learned from the P33(1232)
is the necessity to include short-range correlations.

p

P (1232)33

N

N

N

N

X=N, P (1232)33

Figure 8.12: Main contribution to the self energy of the P33(1232) in nuclear matter.

We summarize the results of this Section by showing the most important diagram
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contributing to the self energy of the P33(1232) in nuclear matter in Fig. 8.12: the scattering
processes P33(1232)N → NX, where X = N, P33(1232). Important is the pion exchange
term and the corrections induced from short-range correlations.

8.2.2 D13(1520)

Our previous calculation [107] of the in-medium properties of the D13(1520) has been based
on the effects induced by the in-medium spectral function of the ρ meson. As a result a
large broadening of the D13(1520) state was reported. The origin of this broadening is
easily explained: due to the coupling to particle-hole states, spectral strength is moved
down to smaller invariant masses in the ρ spectral function, thus opening up the phase
space for the decay of the D13(1520).

This model has now been extended in three ways. On top of considering the effects of
modifications in the ρ spectral function - corresponding to RN scattering with ρ exchange -
the in-medium spectral information of the pion is taken into account. Furthermore, guided
by the experience with the P33(1232) state, effects from short-range correlations (SRC) are
considered. Finally, we calculate the dispersive in-medium mass shifts.

Figure 8.13: Decay width ΓNρ (left) and ΓNπ(right) of the D13(1520). For the Nρ width
we show results w/o SRC at two different momenta, 0 and 0.8 GeV. Also indicated is the
effect of the iterations. The Nπ width ΓNπ is shown for a momentum k = 0.8 GeV. Here
the effects for SRC are indicated. All results are obtained at ρ = ρ0.

Neglecting the SRC for the moment, the following picture emerges: the broadening
induced from the ρ meson is in the order of 200−250 MeV at k2 = m2

R, i.e. at the vacuum
pole of the propagator for momenta around k = 0.8 GeV, see left plot in Fig. 8.13. In the
same figure we also show that for a D13(1520) at rest the broadening is about 150 MeV
only in this channel. These numbers are in approximate agreement with the results of our
previous calculation [107]. In the language of scattering processes, most of this broadening
is due to scattering RN → RN with a D13 in the final state, which explains the smaller
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Figure 8.14: In-medium Nρ width of the D13(1520) for resonance momenta of k = 0 GeV
(left) and k = 0.8 GeV (right). The different curves are explained in the text.

broadening observed for small momenta k: the available phase space for the scattering
process opens up with increasing 3-momentum of the resonance. The inelastic processes
D13N → NN and D13N → NP33(1232) play only a moderate role, accounting in total for
at maximum 30 − 40% of the total broadening. Unfortunately, this makes it difficult to
obtain reliable constraints on our model from the consideration of inelastic NN scattering.

From the in-medium pion decay we find from the right plot of Fig. 8.13 a broadening of
about 40 MeV – difference between full calculation (solid line, gd

π = 0) and vacuum result
(dotted line) – when SRC are neglected. The momentum dependence is small, therefore we
show results for only one momentum k = 0.8 GeV, appropriate in photonuclear reactions.
In contrast to the ρ, here most of the broadening comes from decay into the P33(1232) or
from absorption on the nucleon. The D13(1520) as a final state plays only a minor role since
it couples in a d-wave, thus reducing the effectively available phase space. This relatively
small broadening is at variance with the findings of [67] where a strong broadening of
several hundred MeV from this channel is reported. We recall that in [67] the D13(1520) is
dynamically generated in a coupled channel approach. Even though our results are quite
sensitive to the value of the cutoff parameter Λ, we would have to relax Λ from 1.0 GeV
- as appropriate in π N ∆ dynamics - to a value of at least 2 GeV in order to generate
a broadening of about 200 MeV. We conclude that within our approach a substantial
softening of the D13(1520) state due to the decay into an in-medium pion seems unlikely.
The decay mode D13(1520) → ∆π is not modified in the nuclear medium in our model.

We mentioned before that the in-medium Nρ width of the D13(1520) is mainly built
up of elastic resonance nucleon scattering D13(1520)N → ND13(1520). For the in-medium
width in the Nπ channel the claim was that only the scattering processes into nucleon and
P33(1232) are important whereas elastic scattering or inelastic scattering into higher lying
states is negligible.

In order to support these statements we have calculated the Nρ width in two simplified
frame works, where only the D13(1520), the P33(1232) and the nucleon couple to the ρ
meson. These are denoted by subset (I) and subset (II). The difference between both
frame works is that in the calculation (II) we have multiplied the integrand of Eq. 5.37 by
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Figure 8.15: In-medium Nπ width of the D13(1520) for a resonance momentum of k = 0.8
GeV. The different curves are explained in the text.

a factor

Im Π
D13(1520)
ρ

Im Πtot
ρ + Im Πvac

, (8.8)

where Im Πtot
ρ denotes the sum of nucleon, D13(1520) and P33(1232) contributions to the

self energy of the ρ meson. This way we can trigger on the elastic scattering contribution,
see also discussion around Eq. 5.43 in Chapter 5.3.2. In calculation (I) such a factor is
not multiplied. It follows that the difference between both curves indicates the effects
from inelastic scattering processes D13(1520)N → NN and D13(1520)N → P33(1232)N
and from the decay into D13(1520) → Nρ. In Fig. 8.14 the results of our calculation are
shown for two resonance momenta, k = 0 GeV (left) and k = 0.8 GeV (right). The results
from subset (I) are displayed by dashed lines and those from subset (II) by dotted lines.
Also shown are results including all resonances (solid lines), which allows for all reactions
of the type D13(1520)N → NR and the Nρ decay. The overall picture emerging from both
plots in Fig. 8.14 is the following: Scattering into a nucleon or a P33(1232) amounts to a
broadening of about 50 MeV (see difference between subset (I) and subset(II)). Another 50
MeV are due to the inclusion of all remaining resonances (see difference between solid line
and subset (I)). The main effect of these higher lying states is to enhance the D13(1520)
peak in the ρ spectral function (cf. Figs. 9.8 and 9.9 in the following Chapter 9). The
contribution from elastic resonance-nucleon scattering on the other hand (see subset (II))
is very momentum dependent and of the order of 50 MeV at k = 0 GeV and 150 MeV for
a momentum of k = 0.8 GeV, which can be motivated by the increase of available phase
space.

For the pion we have carried out a similar analysis and compare in Fig. 8.15 three
calculations: the solid line corresponds to a full calculation as obtained after the first
iteration, the dashed curve shows the results when just using subset (II) and for the dotted
lines the in-medium Nπ width is obtained without including the D13(1520). One sees
that all three curves show only very little difference. We conclude that the in-medium
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Figure 8.16: Spectral function of the D13(1520) resonance at momenta k = 0 GeV and
k = 0.8 GeV. The solid lines are obtained with SRC, in the dashed lines effects from SRC
are not included. The results are shown for ρ = ρ0.

broadening is nearly entirely driven by the inelastic scattering processes D13(1520)N →
NN and D13(1520)N → NP33(1232).

The spectral function is shown in Fig. 8.16 in the dashed lines for two different momenta
k = 0 (left) GeV and k = 0.8 GeV (right). In comparison to the vacuum spectral function
(dotted line) the main modifications are a shift of the peak to smaller invariant masses
accompanied by a smearing of the peak. Concerning the peak shift, we obtain an attraction
of about 50 − 100 MeV within our scheme. This is demonstrated in Fig. 8.18 where the
dashed line shows the peak as a function of the 3-momentum of the resonance. The major
part of this shift is not due to the influence of Re Σ, however. In the left plot of Fig. 8.17
(dashed line) we show Re Σmed for a momentum of k = 0.8 GeV, where the peak shift is
larger than at small momenta (see Fig. 8.16). At k2 = m2

R one finds an attractive mass
shift of Re Σmed/(2mR) ≈ 10 MeV. The remaining larger part of the peak shift is due to the
energy dependence of the width as outlined in Chapter 5.3.3: Owing to the large absolute
size and energy dependence of Im Σmed as shown in Fig. 8.13, the maximum of the spectral
function is shifted to smaller energies. As a consequence the resonant peak is not as broad
as one might expect from the large in-medium widths at k2 = m2

R. We have visualized
this effect by plotting the width of the D13(1520) not at k2 = m2

R but rather at the true
maximum of the spectral function in the right graph of Fig. 8.18 (dashed line). Note that
the fluctuations in the curves shown in Fig. 8.18 are due to finite grid size effects. As
explained in more detail in Chapter 5.3.3, the use of the asymmetric form factor FF1 of
Eq. 3.22 in Chapter 3.2.2 leads to conservative estimates for the shift of the peak position
and as long as a broadening of the D13(1520) is generated by the mechanisms discussed
in this work, such a shift is inevitable. By considering the shape of the spectral function
shown in Fig. 8.16, it becomes clear that a Breit-Wigner type parametrization in terms of
mass and width is not possible, a tendency that is already visible in the vacuum. Instead,
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Figure 8.17: Effect of SRC on ΓNρ (left) and Re Σ (right). The solid lines indicate the
results with SRC, the dashed lines obtained w/o SRC.

we find a structure with a rather narrow peak, but a large tail for k2 > m2
R. In comparison

to the vacuum curve, the overall picture is that of a smearing of spectral strength over a
much larger energy interval. In that sense the qualitative picture of a broadening of the
resonance as advocated in [107] is not changed, although the calculations have been refined
in many details.

The effect of the iterations is found to be quite small both for pion and ρ meson. This
we have shown in Fig. 8.13 for ΓNρ, where the solid lines represent the results obtained
after convergence has been reached. A tendency persists that in the second iteration the
width gets somewhat reduced. This results from the effect of resonance broadening on
the ρ spectral function: there the D13 peak ”dies out” and less spectral strength sits at
low invariant masses, leading to a relative suppression of the ρ decay mode. Since the
D13(1520) decouples more or less completely from the pion spectral function, we do not
find any effects from the iterations in this sector and we do not show explicit results for
this channel. Higher iterations then change only very little in the actual results.

Let us now switch on the SRC. In connection Chapter 6.3, we have already argued that
for s-wave potentials these effects are supposedly small, since unlike the p-wave case no
big additional scale (like qc) is introduced. However, in a full in-medium calculation the
contact interactions are iterated to all orders, see Chapter 6.5. This produces a correction
of the form 1/(1− gs

ρ χs) for the resonance width, which is large if either gs
ρ or the coupling

constant at the meson-nucleon-resonance vertex are large. Due to the large coupling of the
D13(1520) to N ρ, a sizeable reduction might result.

Using for the strength of the contact interaction gs
ρ = 0.1 as advocated in Chapter 6.3,

a reduction of the broadening from the N ρ channel from 250 MeV down to around 150
MeV results, see right plot in Fig. 8.17. This result is quite sensitive on the value chosen
for gs

ρ, similar to the case of the P33(1232). Unfortunately gs
ρ is completely unconstrained

from experiment. Since in our model positive and negative parity states do not couple
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Figure 8.18: Left: Peak position of the spectral function of the D13(1520). Right: Width
of the D13(1520) taken at the peak position. Shown are calculations with gs

ρ = 0.1 (solid
line) and gs

ρ = 0.0 (dashed line). The density is ρ = ρ0.

directly to each other via SRC, the decay width into N∆ or NN is left untouched and the
reduction happens primarily in the channel D13N → ND13. The effect of the correlations
on the pionic decay mode, for which the results are shown in the right plot of Fig. 8.13, is
just the opposite. Since the channel D13N → ND13 is not important, it is the mixing to
nucleon- and P33(1232) states that leads to a reduction of the width. Again there exists
some uncertainty about the correlation strength. Using gd

π = 0.4, the broadening is reduced
and the width into Nπ is about 20 MeV larger than the Pauli-blocked width.

The pole of the spectral function is less shifted once the correlations are switched on,
compare solid and dashed curves in the left plot of Fig. 8.16. The total broadening is
smaller and therefore the kinematic effect leading to a shift of the peak of the spectral
function is reduced. Furthermore, as can be seen in the left plot of Fig. 8.17, Re Σ
itself is a little bit more repulsive when the short-range interactions are switched on. The
effect of the correlations on the width of the peak is not as strong as one might have
expected by comparing the width at equal values of k2 as shown in Fig. 8.18. This is
easy to understand: due to the smaller attraction, with SRC the width is tested at larger
invariant masses, leading to a relative increase. Comparing both scenarios, even though
the in-medium effects are somewhat reduced if the SRC are taken into account, the overall
picture of a strongly broadened resonance structure survives.

We close this discussion by considering the spectral function as following from the
parameter set of [124], where the branching ratio into Nρ is only about half the size
as compared to what is found in [90]. In the discussion concerning the ρ in-medium
properties we were able to conclude that the gross features of the in-medium spectrum are
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Figure 8.19: The spectral function ρ of the D13(1520) as obtained using the parameters
from [90](solid line) and [124] (dashed lined). Left: no SRC are included. Right: SRC are
switched on with the parameters gs

ρ = 0.1 and gd
π = 0.4. The density is ρ = ρ0.

left untouched by considering this parameter set. For the D13(1520) this statement does
not necessarily hold any more. In Fig. 8.19, we compare the results as following from the
parameter sets of [90] (solid line) and [124] (dashed line) for two values of the short-range
parameters gd

π and gs
ρ. The momentum of the resonance is k = 0.8 GeV. As shown in the

right graph of Fig. 8.19, if one chooses the parameters of [124] together with maximal
suppression from SRC, i.e. gs

ρ = 0.1 and gd
π = 0.4, a spectral function results which is

already rather close to the vacuum one. In that case the total broadening does not exceed
50 MeV, which is a small value as compared to the vacuum width of 120 MeV. Also the the
shift of the peak position is very modest. Taking the parameters of [124] with gs

ρ = 0 = gd
π

as shown in the left plot of Fig. 8.19, a considerable broadening of more than 100 MeV
remains at k2 = m2

R remains.

The main result of this Section is that the self energy of the D13(1520) is dominated
by the process D13(1520)N → ND13(1520) with ρ exchange. Possibly also effects from
short-range correlations are important. The corresponding Feynman diagram is shown in
Fig. 8.20.

8.2.3 S11(1535)

In this Section we discuss the results for the S11(1535) resonance. It will turn out that the
main part of the medium modifications is due to Pauli-blocking in the Nη channel and to
the coupling of the D13(1520) resonance to the ρ meson.

In the left plot of Fig. 8.21 we show the in-medium width of a S11(1535) with relative
3-momentum k = 0.8 GeV, which is approximately the momentum of an S11(1535) if
produced from a photon scattering on a nucleon at rest. Shown is the decay width after
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Figure 8.20: Main contribution to the self energy of the D13(1520) in nuclear matter.

the fourth iteration (dashed line) in comparison with a Pauli-blocked vacuum width (dotted
line), which is calculated on the basis of the Feynman graph Fig. 3.5, taking into account
Pauli-blocking of the nucleon. We find a broadening of about 30 MeV at the point k2 = m2

R

relative to the Pauli-blocked width. Although π N and η N produce the main part of the
total width, the in-medium modifications of π and η mesons do not lead to a broadening
of the S11(1535). In fact, for these two channels we find even a reduction of the width
below the Pauli-blocked width. The main effect comes from the in-medium modification
of the ρ meson. The origin of this broadening is the same as found for the D13(1520) state:
in the nuclear medium the ρ meson couples to the D13(1520)N−1 state and various other
particle-hole states which leads to shift of spectral strength to smaller invariant masses.
Therefore the phase space available for decay opens up, thus enhancing the 5 MeV partial
decay width as found in [90] to values around 20−30 MeV. This is a typical coupled channel
effect: the coupling of the D13(1520) to Nρ generates a broadening of the S11(1535) state.

In the work of [26] a qualitatively similar picture emerges. There the S11 is considered
to be at rest. In that formalism the particle-hole loops are not iterated and the 2π channel
is treated as pure phase space with a partial decay width of 10 MeV. Again, the broadening
found from π N and η N is small. The broadening from the 2π channel is somewhat larger
that found in our work, but this is partly due to the fact that the total 2π N width is taken
to be larger than our N ρ width.

The spectral function is only slightly modified as can be inferred from the right plot in
Fig. 8.21 by comparing the spectral function in the vacuum (dash-dotted line), with Pauli-
blocking only (dotted line) and the full results without SRC (dashed line). The peak of the
spectral function is shifted upwards relative to the nucleon by about 10 − 20 MeV. Such
a small (dispersive) mass shift is found also in other theoretical works on the S11(1535)
[56, 125].

In Fig. 8.22 we show the position of the peak (left) and the width of the peak (right)
as a function of the 3-momentum k. The peak position varies only very little. The width
taken at the peak position displays some momentum dependence. This is mostly due to
Pauli-blocking of the Nη channel, which completely prohibits the decay into this channel
at vanishing 3-momentum. At finite momenta the effects of Pauli-blocking are reduced,
leading to an increase of the the width, which is enhanced by the fact that – as in the
case of the D13(1520) – the Nρ broadening receives additional support from the opening
of phase space. As in the case of the D13(1520) the numerical fluctuations in the curves
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Figure 8.21: Left: Partial decay widths of the S11(1535) at a momentum of k = 0.8 GeV.
We compare results obtained from Pauli-blocking and our full in-medium calculations with
and w/o SRC. For the Nπ and Nη channels the effect of SRC is very small, therefore the
in-medium width is represented by the full lines only. Right: spectral function ρ of the
S11(1535) at the same momentum. The density is ρ = ρ0.

are due to finite grid effects.

Switching on the SRC reduces the broadening, see Figs. 8.21 and 8.22. Just as in the
case of the D13(1520) we find a reduction of the broadening in the ρN channel, whereas
the other two channels remain essentially untouched. The insensitivity of the π N and η N
channels to effects from SRC is explained from the comparatively small coupling constants
at the respective resonance-nucleon-meson vertices, which prevent large corrections terms
of the form 1/(1 − gχ). This substantiates our statement made in the introduction of
Chapter 6 that for s-wave states the SRC become only sizeable in the presence of large
coupling constants. The effects from the iteration are also similar to those observed for the
D13(1520). The strong broadening of that state leads to a reduction of strength at small
invariant masses and therefore the in-medium width of the S11(1535) slightly decreases.

We conclude from our results and those obtained in [26, 56, 125] that some consensus
exists in the literature concerning the in-medium properties of the S11(1535). A small
broadening relative to the Pauli-blocked width is expected, accompanied by a slight repul-
sive mass shift. In [74] is has been demonstrated that such medium modifications lead to
a natural explanation of experimental data on η photoproduction [115, 133]. There the
relatively large observed mass shift hinted in the data [133] is generated by the assumption
that resonance and nucleon feel the same momentum dependent mean-field potential. As
pointed out in [74], a small collisional broadening of the S11(1535) has also been found in
[32] based on estimates of resonance-nucleon cross sections.
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Figure 8.22: Left: Peak position of the spectral function ρ of the S11(1535). Right: Width
of this state taken at the peak position. Shown are calculations with gs

ρ = 0.1 and gs
ρ = 0.0.

For the width we also show the results from Pauli-blocking. The calculations are carried
out at normal nuclear matter density.

Summarizing, the broadening of the S11(1535) is a typical example of a coupled-
channel effect. The main physical effects are generated by the D13(1520) via the process
S11(1535)N → N D13(1520). The corresponding Feynman diagram is shown in Fig. 8.23.
Whereas we do not claim that the broadening found is accurate within 10 MeV, we can
exclude a significant in-medium modification of the S11(1535) within the mechanisms dis-
cussed in this work. A strong broadening would either require a much larger coupling to
Nρ – which is unlikely since the total 2π width Γ2πN is estimated to be around 10 MeV in
the vacuum [89, 46] – or effects from nuclear mean fields, which might increase the mass
difference between nucleon and S11(1535) and thus enhance the phase space available for
the decay.

r

N D (1520)13

NS (1535)11

Figure 8.23: Main contribution to the self energy of the S11(1535) in nuclear matter.
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Chapter 9

Results 2

This Chapter is concerned with some general aspects of our analysis. In Section 9.1 we
study the density dependence of our results. This Section forms part of the publication
[108]. In Section 9.2 the effect of nuclear mean fields is investigated and in Section 9.3
the influence of applying dispersion relations to the meson and resonance self energies
is discussed. All these calculations are performed in our self-consistent non-relativistic
framework. The aim of Section 9.4 is to examine the quality of the non-relativistic approx-
imation in some detail. This study is concerned exclusively about the ρ meson and no self
consistent iterations are attempted. In this Section also the influence arising from further
uncertainties concerning the choice of the proper interaction Lagrangian or the parameter
set is considered. The results shown in Section 9.4 are published in [109].

9.1 Density Dependence

In this Section we analyze the density dependence of our results. Within the low den-
sity expansion the in-medium self energies of mesons and baryon resonances are directly
proportional to the nuclear density ρ. Deviations from this linear scaling are already intro-
duced from Pauli blocking and Fermi motion. More importantly, within our self-consistent
scheme meson and resonance interactions with more than one nucleon are generated. They
correspond to terms of higher order in the nuclear density. Finally, short-range correlations
(SRC) exhibit terms of the from 1/(1 − gχ) which also produce deviations from a linear
density dependence. It is therefore interesting to study our results as a function of the
nuclear density and determine a critical density above which the low density expansion
becomes unreliable.

We begin with a study of the density dependence of our results for baryon resonances
and will restrict ourselves to the case of the Nρ decay of the D13(1520). In Fig. 9.1 we
show the collisional broadening defined as

Γcoll =
Im Σmed − Im Σpauli√

k2
, (9.1)

in the Nρ channel of the D13(1520) as a function of the nuclear density for two momenta,
k = 0.4 GeV (left) and k = 0.8 GeV (right). The broadening is evaluated at k2 = m2

R.
The dotted lines indicate the results from a calculation where the particle-hole loops have
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Figure 9.1: Collisional broadening of a D13(1520) with momenta k = 0.4 GeV (left)
and k = 0.8 GeV (right) as a function of the nuclear density ρ. Compared are four
calculations: low-density limit with Pauli blocking and Fermi motion (dotted), results of
the first iteration (dash-dotted) and the self-consistent (SC) calculation (dashed). By the
solid line we indicate the results from a self-consistent calculation where also effects from
SRC are taken into account.

not been iterated. It has been obtained by the replacement

AT/L
ρ (q0,q) → − 1

π
|Dvac

ρ (q)|2 Im Π
T/L
ρ (q0,q) (9.2)

in Eq. 5.37. This expression already goes beyond the low density theorem Γcoll = ρ v σvac

[32, 65, 22] by including Pauli-blocking and Fermi motion. Here σvac is the total resonance-
nucleon cross section and v the velocity of the resonance in nuclear matter. The effects
from resumming the particle-hole loops are shown by the dash-dotted lines and the impact
of the self-consistent (SC) scheme is shown by the dashed line. The solid line shows the
results from a self-consistent calculation which contains also the effects from SRC.

As one can see in the left plot of Fig. 9.1, already the low density curve (dotted line)
shows sizeable deviations from a linear density dependence (for ρ > .4 ρ0) for a resonance
with momentum k = 0.4 GeV. This is due to Pauli blocking, which becomes more active as
the density increases. The resummation of particle-hole loops in the ρ propagator leads to
a sizeable enhancement of the broadening already at small densities around 0.25ρ0. This
is a direct consequence of the fact that due to level repulsion this resummation leads to
an attractive shift of the position of the D13(1520) excitation in the ρ spectral function.
Due to this shift the phase space available for the reaction D13(1520)N → ND13(1520) is
enhanced. The effect of self consistency (dashed line) and short-range correlations (solid
line) is to reduce the width as has been discussed in Section 8.2.2. One should not compare
the results obtained with SRC and the low density curve, because the SRC change the
resonance-nucleon cross section.

At k = 0.8 GeV (see right plot in Fig. 9.1) the low density calculation (dotted line)
displays a nearly linear density dependence, which is due to the smaller impact of Pauli-
blocking at large momenta. The effect of resumming the particle-hole excitations is smaller
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Figure 9.2: Influence of the density on the imaginary part of the in-medium self energy
of ρ meson (left, top), pion (right) and η meson (left, bottom). The ρ meson and η meson
are taken to be at rest while for the pion is moving with a momentum of q = 0.5 GeV.
The results are shown for three different densities. In order to facilitate the comparison
we have rescaled the result obtained for ρ = 0.5 ρ0 by a factor of 3. In all calculations the
SRC have been taken into account.

at k = 0.8 GeV than at k = 0.4 GeV as can be seen by comparing the dotted and
dash-dotted lines. This is explained as follows: The resummation is important when the
particle-hole excitation and the ρ peak have comparable energies. This is the case for a
D13(1520)N−1 excitation at low resonance momenta. However, when calculating the in-
medium width of a fast moving D13(1520) the spectral function is tested at large momenta,
where the particle-hole excitation is far away from the ρ peak (cf. Fig. 5.3) and a smaller
effect of the resummation is to be expected. The effects of self-consistency (dashed line)
and SRC (solid line) are similar for both resonance momenta, both leading to a reduction
of the resonance width. The different slope found already at very small densities for
the calculation with SRC is due to a modification of the resonance-nucleon cross section
from the short-range terms. Summarizing these results, we find for the D13(1520) strong
deviations from a low density expansion. In particular for smaller momenta the low density
results are found to be unreliable already at densities around 0.25 ρ0, whereas at larger
momenta the low density expansion starts to work better. This has an interesting effect on
the momentum dependence of the width: in the low density limit the collisional broadening
is proportional to the resonance velocity v and rises therefore nearly linearly with the
momentum. Since the resummation of particle-hole loops leads to an enhancement of the
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broadening at smaller momenta while having only a small influence on the results at large
momenta, a flatter momentum dependence is expected (compare also right plot of Fig.
8.18).

Next we discuss the self energy of pion, η and ρ meson. Due to the complicated
peak structure arising from the resonance-hole excitations it is difficult to summarize the
information contained in the self energy at given density and momentum in one number.
Therefore we show the self energy as a function of the invariant mass in Fig. 9.2. There
the imaginary part of the self energy of the ρ meson (left, top), the pion (right) and the
η meson (left, botttom) are displayed for three densities ρ = 0.5 ρ0 (dotted lines), ρ = ρ0

(solid lines) and ρ = 1.5 ρ0 (dashed lines). In order to facilitate the comparison we also
show with dotted lines the result obtained at ρ = 0.5 ρ0 multiplied by a factor of 3, which
would equal the result at ρ = 1.5 ρ0 if the self energies would scale linearly with the
density. We observe that for the pion and the ρ meson a linear scaling with the density
is badly violated. A more detailed investigation shows that higher order corrections are
already important for densities ≤ 0.5 ρ0. This is not shown in Fig. 9.2. For the η meson
we find that the height of the peak scales nearly directly with the density whereas the
position of the peak is slightly shifted. As discussed in Section 8.1.3, this shift of the
peak leads to the observed strong non-linearities of the optical potential (cf. Fig. 8.8).
We already mentioned that the following sources act against a linear density dependence:
Fermi-motion, Pauli-blocking, self-consistent iterations and short-range correlations. It is
interesting to note that for each meson the most important deviation is generated by a
different mechanism: For η and ρ the iterations act against the low density theorem by
inducing a strong broadening for the D13(1520) and a slight repulsive mass shift for the
S11(1535). In contrast, for the pion it is mainly the sum of Fermi motion and short-range
interactions which is responsible for the non linear density dependence.

Let us make some comments about the applicability of the low density theorem. As we
have just demonstrated for the D13(1520), its range of validity can be rather small. This
is due to the combined effect of a large coupling constant to the Nρ channel and the fact
that the D13(1520) is essentially subthreshold with respect to this channel. Clearly, if the
coupling constant is small one does not expect a large correction of the self energy in the
medium anyway and it hardly matters whether one employs the low density theorem or
takes into account higher order corrections in the density.

A second criterion involves the mass difference ∆m = mR −mN −mM , which gives an
indication for the phase space available for the resonance decay into the meson-nucleon
channel. We expect a strong sensitivity of the results on higher order effects in the density
when ∆m is small. Then the decay R → N M is suppressed from phase space and one
becomes very sensitive to small changes of the mesonic spectral function. One example
of that we have discussed in the previous Chapter when disentangling the in-medium
broadening of the D13(1520) into its individual contributions. There it turned out that the
largest contribution to the broadening comes from the channel D13(1520)N → ND13(1520).
We also noted that the impact of higher lying resonances is mainly to add strength to the
D13(1520) peak of the ρ spectral function. This means that by iterating the particle-hole
loops in the ρ propagator more strength is moved to small invariant masses by resonances,
which within the low density approximation could not contribute to the broadening of the
D13(1520) due to phase space arguments. If on the other hand ∆m is large, such effects
would be completely absent, indicating that for large ∆m the low density theorem might
work better. We want to add that the size of the coupling constant and of ∆m are not
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independent: in general, large coupling constants are encountered for small values of ∆m,
since the combination of large coupling constants and large phase space factors leads to
unreasonably broad resonances.

The question of how to quantify what ”large coupling constant” and ”small ∆m” mean
in an actual physical problem will in general be difficult to answer. Further complications
arise when one is dealing with a coupled-channel problem which is not confined to one
resonance coupling to one meson and a nucleon. To quantify non-linearities arising from
the coupled-channel effects is in general not possible. Therefore one probably has to check
the validity of the low density theorem explicitly in each individual case.

In this work we have analyzed only the density dependence of the Nρ contribution to
the self energy of the D13(1520). The reason for this limitation is a problem arising when
calculating the amplitude for the scattering processes RN → NR or RN → NR′ in the
vacuum: if the exchanged meson is allowed to go on-shell, the scattering amplitude contains
a pole [10, 102, 98]. We have already discussed this in the Section 5.3.2. To be more specific,
this affects the pion exchange contribution of the amplitudes P33(1232)N → NP33(1232),
D13(1520)N → NP33(1232) or S11(1535)N → ND13(1520). Also the η exchange part of
the amplitude S11(1535)N → NS11(1535) is troubled by such a pole. Only for ρ exchange
amplitudes one is free of the pole problem due to the finite vacuum width of the ρ meson.
Since the ρ amplitude is dominant for theD13(1520), it made sense to discuss this resonance
neglecting the pion exchange part.

9.2 Influence of the Scalar Potentials

In this Section we discuss the influence of nuclear mean fields on the in-medium properties of
mesons and baryon resonances. The underlying theoretical concepts have been introduced
in Chapter 7. Let us repeat the main results found there: For the nucleon both the vector
self energy Σv and the scalar self energy Σs are found to be large and in the order of
300 − 400 MeV. Under the assumption that Σv is the same for all baryons (nucleon and
resonances) this quantity drops out of the calculations. In contrast, the scalar self energy
Σs enters into the calculations by modifying the spinors. We will touch on three topics

• modification of the resonance decay diagram, where the meson spectral function is
unmodified and Pauli-blocking is neglected

• the effect of mean field potentials on the meson self energy

• full results, obtained by dressing the mesons and adding the mean field potentials.

Let us first discuss the effects on the baryon resonance width induced by the mean
fields. Neglecting in a first step the dressing of the mesons and Pauli-blocking, the only
medium modification taken into account is the effect of mean field potentials.

Concerning the magnitude of the potentials for the resonances, we make a universality
assumption [126], meaning that both Σs and Σv are identical for nucleon and baryon
resonance. Then Σv drops out of the calculation. Naively one might think that with this
assumption the influence of Σs is quite small, since the phase space available for decay is not
greatly changed. However, this argument is not complete. The squared matrix element for
the resonance decay is proportional to the normalization of nucleon and resonance spinor:

|M|2 ∼ (ū u)N (ū u)R . (9.3)



154 Chapter 9. Results 2

Figure 9.3: Total decay width (left) and spectral function (right) of the P33(1232). The
decay width is shown for a calculation where the masses of resonance and nucleon have
been shifted according to the results of various nuclear structure models: NL-2(dashed),
NL-3 (dotted) and QHD-1 (dash-dotted). For the spectral function we have indicated the
additional dispersive mass shift (dotted line). The results are shown for ρ = ρ0.

As discussed in Chapter 7.1, the normalization of the spinors is proportional to the effective
mass and is therefore reduced in the presence of scalar potentials. Roughly speaking one
would expect from this argument that the in-medium decay width is reduced by a relative
factor of (m?

N m
?
R)/(mN mR), which is large in view of the small effective masses reached in

the nuclear medium, where mN/m
?
N ∼ 0.5 − 0.6 (this ratio is closer to one for resonances

since they are heavier). On the other hand, the decay width scales with

Γ ∝ 1

m2
R

|M|2 , (9.4)

such that the effects from the mean fields are reduced by the replacement 1/m2
R → 1/m? 2

R .
After a little calculation one finds for the ratio of the width obtained with mean field
potentials, Γpot, and the vacuum width, Γvac, the approximate scaling behaviour:

Γvac/Γpot =
mR m

?
N

m?
R mN

. (9.5)

Here both quantities are evaluated at the respective on shell point, i.e. at mR in the
vacuum and at m?

R in the medium.
In Figs. 9.3 and 9.4 we show width (left) and spectral function (right) of the P33(1232)

and D13(1520) resonances. For the P33(1232) we observe a clear reduction of the vacuum
width. Depending on the nuclear structure model, the on-shell width taken at s = m? 2

R

is reduced by values ranging from 25 MeV (NL-2, dashed line) to 40 MeV (QHD-1, dash-
dotted line). For the sake of comparison also the vacuum result (solid line) and the width
obtained by using the parameters of NL-3 (dotted line) are indicated. This reduction is
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Figure 9.4: Same as Fig. 9.3, but for the D13(1520).

a direct consequence of the rescaling discussed above: using the potential QHD-1, one
obtains Γpot/Γvac ≈ 0.8 from Eq. 9.5, corresponding to Γpot ≈ 95 MeV. This is in
qualitative aggrement with the numerical results. Similar calculations have been performed
in [126, 61, 123]. The results presented in these works are in qualitative agreement with our
findings and a reduction of the decay width in nuclear matter due to mean field potentials
is reported. Let us now turn to the spectral function, shown on the right plot of Fig. 9.3.
There we have indicated three calculations: the vacuum result (solid line) and two results
obtained from the QHD-1 model, which delivers the largest medium modification. The
dashed line is obtained by including Re Σ whereas for the dotted line Re Σ has not been
taken into account. As one can see, the mass shift induced by the energy dependence of
the width is substantial and leads to a repulsion of more than 50 MeV for this state. The
much higher peak values of the in-medium spectral functions (compare solid and dotted
lines) are explained from the fact that in the normalization integral the spectral function
is multiplied by the invariant mass, which – on an absolute scale – is much smaller around
the resonance peak in the case that potentials are included.

Width and spectral function of the D13(1520) are shown in Fig. 9.4. Here the width is
actually slightly enhanced in the presence of scalar potentials as indicated by the dashed
(NL-2), dotted (NL-3) and dash-dotted (QHD-I) lines in the left plot. For comparison, we
show again the vacuum result (solid line). This enhancement is due to the Nπ channel.
There the matrix element contains an additional factor 1/m2

N(see traces given in Table
C.2,Appendix C.2), enhancing the width. For the other two decay channels, Nρ and ∆π,
the expected reduction of the width is found in the medium. As a net effect the total
width of this resonance is not greatly changed and the in-medium spectral functions are
very similar to the vacuum ones. This is shown in the right plot of Fig. 9.4.

Let us now turn to the full in-medium results for the baryon resonances as obtained
by adding the mean field potentials to the self-consistent iteration scheme. The results are
shown in Figs. 9.5 and 9.6. There the abbreviation SC stands for self-consistent. We have
taken the parameter set NL-2, which predicts the smallest mean fields and therefore gives
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Figure 9.5: Total decay width (left) and spectral function (right) of the P33(1232) in
nuclear matter at ρ = ρ0. Shown is the effect of mean field potentials (dashed, dash-
dotted) in comparison to a full calculation without these potentials (solid) and the vacuum
curves. The dashed and dash-dotted curves differ by the used parameter set. The results
are shown for ρ = ρ0.

a lower bound for the effects induced by the mean fields. As is indicated by the dashed
curves in Fig. 9.5, the tendency that for the P33(1232) the mean field potential leads to an
increased repulsion and to a reduction of the broadening persists also in the iterated scheme.
For comparison we have indicated the results obtained without potentials by the solid lines
and the vacuum curves by the dotted lines. For the P33(1232) the inclusion of mean field
potentials leads to a very small broadening of this state and a large repulsion. This is in
conflict with phenomenology, which requires a larger broadening and less repulsion [54], see
also Chapter 8.2.1. We therefore also present a calculation with a larger cutoff in the form
factor Ft and smaller values for the correlation parameters gp. Specifically we take Λ = 1.5
GeV (instead of 1 GeV) and gp

π = 0.3 (instead of 0.6/0.45). The results corresponding to
this parameter set (set II) are shown by the dash-dotted curves. One sees that they are
in better agreement with the expectations one has from the phenomenological spreading
potential. However, in set II the values for the short-range parameters are quite small,
whereas the cutoff parameter is relatively large.

The results for the D13(1520) are indicated in Fig. 9.6. Shown are results from the full
self-consistent approach with (dashed line) and without (solid line) mean field potentials
as well as the vacuum result (dotted line). For the calculations the effects of short-range
correlations for negative parity states have been included. In comparison to the P33(1232)
we find a moderate influence of the nuclear mean fields on the results. This is akin to
the situation encountered when considering only mean-field potentials in the in-medium
calculations (cf. Figs. 9.3 and 9.4). Compared to a calculation without potentials the
main difference is due to the Nρ channel, where the mean fields reduce the broadening by
50 MeV. The Nπ channel on the other hand comes out nearly identical, regardless whether
potentials are switched on or switched off. This means that the enhancement due to the
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Figure 9.6: Same as Fig. 9.3 but for the D13(1520).

factor 1/m2
N in this channel is counteracted by smaller effects from the iteration. We will

come back to this point when discussing the in-medium spectral function of the pion. As a
net effect, the total in-medium width of this state is smaller when nuclear mean fields are
taken into account (compare dashed and solid line in left plot of Fig. 9.6). Since the shift
of the peak position of the spectral function is essentially due to the in-medium broadening
(cf. Chapter 8.2.2), the shift of the resonance peak is smaller in the presence of potentials,
see dashed and solid lines in the right plot of Fig. 9.6.

Let us finally discuss the results for the in-medium spectral function of pions and ρ
mesons. They are depicted in Fig. 9.7 for a ρ meson (left) at rest and pion moving with
a relative momentum of 0.5 GeV (right). For comparison we show results of the self-
consistent framework with (dashed line) and without (solid line) inclusion of nuclear mean
fields. Concerning the meson self energies there is no such scaling behaviour as previously
encountered for the baryon resonances. This follows since there are no external baryon
lines in the self energy diagram that would introduce a scaling with the effective baryon
masses. We therefore do not expect a sizeable reduction of the self energy. However, at
finite momenta the position of the resonance peaks is shifted upwards due to the larger
recoil that can be taken by a lighter resonance. This is seen by calculating the meson
energy necessary to excite a resonance:

q0 =
√

m2
R + q2 −mN ≈ mR −mN +

q2

2mR

. (9.6)

Whereas the mass difference mR − mN remains unchanged if Σs is the same for nucleon
and resonance, the kinetic energy term is larger if the resonance mass is reduced by the
mean fields.

As one can see in the left plot of Fig. 9.7, the effects on the spectral function of the ρ
meson are relatively small. In comparison to a calculation without mean fields (solid line)
the dashed curve, where potentials according to the parameter set NL-2 are included, dis-
plays an additional peak structure located in between the peaks of the D13(1520) excitation
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Figure 9.7: Spectral function of the ρ meson at q = 0 GeV and the pion at q = 0.5
GeV at ρ = ρ0. Compared are calculations obtained within the self consistent scheme with
(dashed) and without (solid) mean fields potentials. The parameters for the mean field
potential are taken from the NL-2 model.

and the ρ peak, which is due to the D33(1700) state. This peak is visible in the presence
of mean fields since the width of this resonance is reduced. As expected we also find a
small repulsive shift of the D13(1520) excitation. Turning to the pion, the effects of nuclear
mean fields are much stronger. Note in particular the sizeable shift of the P33(1232) state
(located between nucleon-hole and pion peak). The shift is larger than for the D13(1520)
since the P33(1232) is lighter and therefore the recoil effect of Eq. 9.6 is more pronounced.
As a net effect, the inclusion of potentials leads to a rearrangement of strength in the pion
spectral function up to larger invariant masses and thus adds to the found reduction of
the in-medium width of the P33(1232). Also the fact that the in-medium Nπ width of
the D13(1520) is – despite the factor 1/m2

N from the matrix element – in total not greatly
affected from the potentials is due to this shift of spectral strength in the pion spectral
function.

As we have just seen the inclusion of nuclear mean fields as found both from nuclear
structure models [119, 72, 69] and from NN scattering [79], has sizeable effects on hadronic
spectral functions. In particular, the pion and the P33(1232) are found to be sensitive on
these potentials, whereas the D13(1520) is up to some extent protected by the fact that
a decrease of the Nρ and ∆π channels is counteracted by an increase of the Nπ channel,
owing to a factor of 1/m2

N in the matrix element for the Nπ decay. We are, however,
sceptical about the reliability of these results. The most obvious open problem concerns
the size of the resonance potential. For example, already minor shifts of the resonances
relative to the nucleon can lead to large phase space effects which either further enhance or
act against the reduction of matrix elements from the normalization of the spinors [126].
Also, for baryon resonances the absolute scale of Σs and Σv could be significantly smaller
than for the nucleon, without affecting the peak position of this state, which is sensitive
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only to the difference of both potentials. In [27] it was found that for the P33(1232) both
Σs and Σv are much smaller (≤ 10 MeV at ρ0) than for the nucleon. With such small self
energies the scaling effects discussed in this Section would be suppressed. In order to arrive
at a more reliable conclusion, systematic studies in this direction would be necessary.

9.3 Dispersion Relations

The real part of the in-medium meson self energy generated by the excitation of particle-
hole loops, can be computed either directly or by means of dispersion relations. When
dispersion relations are applied, a self energy energy results which is analytic in the upper
complex energy half plane. As detailed in Appendix E, this leads to a normalized spectral
function. Therefore we use dispersion relations in our iterative scheme. On the other hand,
by computing the self energy directly from Feynman diagrams, analyticity is destroyed
when the vertices are multiplied by form factors having bad analytical properties. Using a
simple model for the self energy, we will study the differences arising from calculating the
real part of the meson self energy in either way. In a second step also the importance of
including the real part of the resonance self energy is discussed.

We work in the low-density approximation, i.e. Π = ρM/(2mN) (cf. Chapter 5.8).
The particle-hole excitations are to be modeled by resonant scattering amplitudes. If
analytic, the forward scattering amplitude M obeys the dispersion relation:

ReM(ω) = P
∫ +∞

−∞

dω′

π

ImM(ω′)

ω′ − ω
. (9.7)

For the resonant scattering amplitude M we compare two different parameterizations.
Both are based on a Breit-Wigner ansatz:

M1(ω) =
2mN

ω − ωR + i γ
(9.8)

M2(ω) =
2mN

ω − ωR + i γ

λ2

λ2 + (ω − ωR)2
.

Here γ stands for the constant width of the resonance excitation and the additional factor
in M2 is a form factor with cutoff parameter λ (note the similarity with the form factor
FF2 of Eq. 3.23, Chapter 3.2.2). The factor 2mN is due to the normalization of the
nucleon spinor. Whereas M1 is analytic in the upper half of the complex energy plane,
the form factor in M2 destroys analyticity due to an additional pole in the complex energy
plane at ω = ωR ± i λ. This means that when we compare a direct calculation of ReM1/2

from Eq. 9.8 with a calculation via the dispersion integral Eq. 9.7, we expect to find the
same result for amplitude M1, but different results for amplitude M2. This we will show
in the following paragraph.

Let us subject both models for the scattering amplitude to the dispersion integral Eq.
9.7. Due to the simple form of the scattering amplitude, analytical solutions can be found
in both cases. For M1 one obtains:

ReM1(ω) = 2mN
ω − ωR

(ω − ωR)2 + γ2
. (9.9)
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Figure 9.8: Real part of the self energy (left) and spectral function (right) of a ρ meson at
rest. In this calculation the in-medium self energy consists of a D13(1520)N−1 excitation
only. The solid lines indicate a result obtained from a dispersion relation and the dashed
lines stand for a direct computation of the real part.

This is the same result that a direct computation of this quantity from Eq. 9.8 would
deliver and demonstrates that a resonant scattering amplitude which is described by a
Breit-Wigner with a constant width is analytic. On the other hand, for the scattering
amplitude M2 one obtains the following result:

ReM2(ω) = 2mN
(ω − ωR)λ2

[(ω2 − ω2
R) + γ2] [(ω2 − ω2

R) + λ2]
F (9.10)

F =
γ2 + γ λ+ λ2 + (ω − ωR)2

λ (λ+ γ)
.

Comparing with Eq. 9.8 demonstrates that a dispersion produces a different result for
ReM2 than a direct computation. The difference between both approaches can be sum-
marized in the factor F .

Let us give an interpretation of F . Remembering that typical values for the cutoff
parameter λ are in the order of 1 GeV whereas the width γ ≈ 0.1 GeV, it is tempting to
make a Taylor expansion of F in the variable ε = γ/λ :

F = (ω − ωR)2 1

λ2(1 + ε)
+
λ2 (1 + ε+ ε2)

λ2(1 + ε)
(9.11)

≈ (ω − ωR)2 + λ2

λ2
.

The last expression is identified as the inverse form factor, cf. Eq. 9.8. This is an interesting
result as it suggests, that ReM2 as obtained from a dispersion integral equals that following
from a direct computation except for the form factor. This result is actually quite intuitive:
neglecting the form factor, the imaginary part of M2 is a Breit-Wigner with width γ. The
form factor itself looks also like a Breit-Wigner centered around ωR with width λ. Since
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Figure 9.9: Spectral function of ρ meson (upper panel), pion (left, bottom) and η meson
(right, bottom). Shown are the results of the first iteration as obtained by using a dispersion
relation (solid line) or a direct computation (dashed line) to obtain Re Π. The vertical line
in the bottom right plot indicates the position of the η meson in the vacuum.

we have assumed that λ� γ, the imaginary part is in a first approximation not influenced
from the form factor. Via the dispersion integral this translates into a real part which
does not know much of the form factor. The physical implications of this finding are clear:
when dispersion relations are used, one expects larger real parts away from the resonance
position. Due to level repulsion this implies a shift of the peaks in the meson spectral
functions.

In the left plot of Fig. 9.8 we show the real part of the ρ self energy as obtained from a
dispersion relation (solid line) and from a direct calculation (dashed line). The momentum
of the ρ meson is taken to be q = 0 GeV. For both calculations the imaginary part of the
self energy is the same and it is due to the excitation of D13(1520)N−1 states. One can
nicely identify the feature discussed before: in the off-shell region the dispersion relation
leads to larger values for the real part of the self energy. In the right plot of Fig. 9.8 we
show the spectral function of the ρ meson as resulting from both approaches: here one sees
how the larger values of Re Πρ away from the resonance-hole branch affects the position
of the ρ peak, which is shifted upwards due to the enhanced level repulsion.

In Fig. 9.9 we show the full in-medium spectral function of ρ meson (upper panel), pion
(left, bottom) and η meson (right, bottom) as obtained after the first iteration, comparing
two calculations. The solid line is obtained using dispersion relations for Re Π, whereas
the dashed lines follow from a direct computation of this quantity. While on a qualitative
level both approaches lead to similar results, quantitatively they are characterized by the
observation that by using a dispersion relation the effects of level repulsion on the original
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Figure 9.10: Same as Fig. 9.9 for the normalization.

meson peak are enhanced: for a ρ meson (upper panel) and a pion at q = 0.6 GeV the
meson peak is above the particle-hole excitations and is therefore moved upwards. On
the contrary, the η at rest sits below the S11(1535)N−1 excitation and is therefore moved
downwards. In call cases these effects are enhanced by the dispersion relations. This is
a direct consequence of the larger self energy contribution away from the resonance-hole
branch that was discussed before.

When using dispersion relations to obtain Re Π, normalized spectral functions should
result. In Fig. 9.10 we have plotted the normalization integral

norm(q) =

q∫

0

dq′ 2 Amed(q′) (9.12)

as a function of the upper integration variable q. The solid (dashed) line shows a calcula-
tion with (without) dispersion relations. Results are shown for the ρ meson (upper panel),
the pion (bottom, left) and the η meson (bottom, right). In all cases normalized spectral
functions are obtained when using dispersion relations. For the ρ meson a (nearly) nor-
malized spectral function is also obtained when the real part of the self energy is obtained
directly from Feynman graphs. Note the slow convergence of the ρ spectral function which
is already seen in the vacuum (cf. Fig. 3.4 in Chapter 3.1). For pion and η meson the dif-
ferences are more pronounced and a direct computation of Re Π violates the normalization
by up to 10%.

Let us now turn to the baryon resonances. In the Figs. 9.11 and 9.12 we show results
for spectral function and normalization of the D13(1520) (top, left), the P33(1232) (bottom,
left) and the S11(1535) (bottom, right). Compared are calculations where the real part of
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Figure 9.11: Spectral function of the D13(1520) (top, left), the P33(1232) (bottom, left)
and the S11(1535) (bottom, right) resonances. Compared are calculations with (solid) and
without (dashed) taking into account Re Σ.

the baryon resonance self energy is obtained with (solid line) dispersion relations and where
it is neglected (dashed lined). In the latter case also the real part of the meson self energy
is directly computed, corresponding to the dashed lines in Fig. 9.9. The normalization in
the vacuum (w/o Re Σ) is also shown (dotted lines). Effects from short-range correlations
are taken into account and we show the self consistent results.

The differences of the spectral function (Fig. 9.11) are of quantitative rather than of
qualitative nature. The global attributes peak position and peak width remain essentially
the same and the main differences are found in the high energy tails of the spectral function.
Without explicitly showing it, we assure that the in-medium decay width is not sensitive
to the use of dispersion relations for the self energy of baryon resonances or mesons. This
is understandable since we do not find large mass shifts of the baryon resonances induced
from Re Σ(remember that the substantial shift of the peak position found for theD13(1520)
is due to the energy dependence of the decay width) and consequently the meson spectral
functions are not qualitatively changed by Re Σ. As already discussed before, the meson
spectral functions are also not very sensitive on how the meson self energy Re Π is com-
puted. This implies that the resonance width, which is obtained by integrating over the
meson spectral functions, is only weakly dependent on how Re Σ/Re Π is obtained. On
a quantitative level, the differences for the spectral function are more pronounced than
for the mesons. This is not surprising since for the baryon resonances we are considering
the total impact of the real part of the self energy and not just differences arising from
a different way of calculating this quantity. Turning to the normalization shown in Fig.
9.12, we find that in particular for the D13(1520) the inclusion of the real part is important,
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Figure 9.12: Same as Fig. 9.11 but for the normalization integral. The dotted lines show
the normalization of the vacuum spectral functions if Re Σ is neglected.

since otherwise the normalization is badly violated. It also changes sizeably in comparison
to the vacuum case. For the other two states the deviation of the normalization from unity
is non-negligible (on the level of 20%), but the normalization is only mildly affected from
the in-medium modifications.

9.4 Momentum Dependence

This Section is based on the publication [109] and addresses the question of how reliable
the momentum dependence of the ρ spectral function can be determined within a reso-
nance model. To that end various sources of uncertainties have been considered: we have
compared relativistic and non-relativistic calculations and we have studied how different
relativistic couplings affect the ρ spectral function at large momenta.

Let us make a technical remark: all the results presented in this Section are based on
calculations where the ρ spectral function has not been iterated. The real part of the ρ self
energy Π

T/L
ρ has been obtained directly from expression Eq. 5.10, i.e. a dispersion relation

has not been applied. The real part of the baryon resonance self energy Σ is neglected.
The traces ΩT/L appearing this equation are obtained from relativistic and non-relativistic
Lagrangians. Both the Lagrangians and the traces can either be found in the Appendices
C.1.1 and C.2 or in Section 9.4.3. For the form factor we take the functional form suggested
in Chapter 3.2, Eq. 3.23:

F (s) =
Λ4

Λ4 + (s−m2
R)2

. (9.13)
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This is contrasted with a calculation using as done in [107]:

F (q) =
Λ2

Λ2 + q2
. (9.14)

9.4.1 Relativistic Versus Non-Relativistic

Many calculations of the in-medium properties of the ρ meson within a resonance model
have considered a non-relativistic reduction of Eq. 5.4 [38, 107, 111, 122]. Whereas, at
low momenta, the main uncertainty of the results comes from the values of the coupling
constants, at large momenta an additional model dependence is introduced by the momen-
tum dependence of the self energy and the question arises up to which extent the following
findings of resonance models are model independent: In a non-relativistic calculation p-
wave resonances do not couple to longitudinal ρ mesons. Furthermore, AT

ρ and AL
ρ display

a completely different behaviour at high momenta. For AL
ρ the effects from resonance ex-

citation are rather small and the spectral function is strongly peaked at the ρ mass. AT
ρ ,

in contrast, is completely smeared out in this kinematic regime.

We will demonstrate now that the momentum dependence of the self energy can not
be reliably determined within a non-relativistic calculation and we argue that therefore a
relativistic framework is imperative in order to put the results on a more solid basis.

Within the low density theorem the self energy is proportional to f 2 ΩT/L, see Eqs. 5.8
and 5.10 in Chapter 5.2.2. From Eqs. 3.16 and 3.17 in Chapter 3.2 it is clear that ΩT/L

enters also into the determination of the the coupling constant f . It thus appears twice
in the forward scattering amplitude and in the in-medium self energy. An ambiguity now
arises for the choice of the reference frame in which the non-relativistic reduction leading
to ΩT/L is performed. In the works of [38, 107, 111, 122] the following choice was made:
the coupling constant was obtained by evaluating the matrix element in the cm frame (rest
frame of the resonance) whereas the self energy was calculated in the lab frame (rest frame
of nuclear matter). This is a suggestive choice since the decay width is usually defined in
the rest frame of the decaying particle whereas a nuclear matter calculation is preferably
performed in the rest frame of nuclear matter. The non-relativistic reduction itself does
not uniquely determine the reference frame, as it assumes that both the resonance and
nucleon momentum are small compared to their mass. This condition is equally well met
in the cm frame and in the lab frame.

As shown in [38, 107], for a resonance of positive parity both the resonance decay width
and the forward scattering amplitude are proportional to q2. For a given invariant energy√
s the three momenta in lab frame and cm frame are easily related (see Appendix Eq.

B.34 in Appendix B.6):

qlab = qcm

√
s

mN
. (9.15)

The coupling constant f is adjusted to the decay width. Computing the vertex function
either in the cm frame or in the lab frame leads to the following relation between the
resulting coupling constants:

f 2
lab = f 2

cm

m2
N

m2
R

. (9.16)

The most relevant contribution from each resonance to the self energy comes from the
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kinematical region
√
s ≈ mR where the forward scattering amplitude obeys

T 2
lab = T 2

cm

m2
R

m2
N

. (9.17)

It is evident that the consistent use of either lab frame or cm frame kinematics for
both the determination of the coupling constant and the forward scattering amplitude
leads to the same results. In contrast, the previously applied method of mixed kinematics

[38, 107, 111, 122] produces an in-medium self energy which is larger by a factor of
(

mR

mN

)2

.

Typically, the resonance masses vary between 1.5 and 2 GeV. Thus for p-wave resonances
the ambiguity in the non-relativistic reduction leads to uncertainties which can be as
large as a factor of four. For s-wave resonances the effects are less pronounced. Here
the transverse and the longitudinal channel are proportional to the energy ω2 and the
invariant mass q2 of the ρ meson respectively. Thus only the transverse channel will be
affected by the ambiguity of the reference frame at momenta comparable to its invariant
mass. Altogether, this is clearly not a satisfying situation which can only be resolved
within a relativistic approach.

In a resonance model the spectral function Aρ is most sensitive to the behaviour of
the scattering amplitude in the vicinity of s = m2

R, i.e. along the lines depicted in Fig.
5.3. In order to get a feeling for the differences between a relativistic and the different
non-relativistic descriptions, it is therefore rewarding to compare the results from both
approaches for the quantity ΩT/L. Explicit expression for relativistic and non-relativistic
traces are given in Appendices C.1.2 (Table C.1)and C.2.2 (Table C.2).

In Fig. 9.13 we show ΩT for two of the most prominent resonances in the non-relativistic
analysis, the D13(1520) and the P13(1720). It is plotted as a function of the invariant mass
of the ρ meson, the momentum being fixed by the condition s = m2

R. We compare the
relativistic results with three non-relativistic versions of Πmed:

i) relativistic (solid line)

ii) non-relativistic, self energy lab-frame, coupling constant cm-frame (dotted line)

iii) non-relativistic, both quantities cm-frame (dashed line)

iv) non-relativistic, both quantities lab-frame (dash-dotted line) .

Up to now, in the literature only calculations performed within kinematics ii) can be found
[107, 38, 111].

We first remark that the results are not degenerate at threshold, since in each case the
coupling constant has been adjusted to the measured partial decay width. As expected
from the above discussion, the calculations reveal large differences between the different
non-relativistic approaches ii)-iv) in the transverse channel. This effect is – as already
discussed – more pronounced for p-wave resonances, see right graph of Fig. 9.13. Here,
especially at low invariant masses, the commonly used non-relativistic version ii) is not
reliable at all, overestimating the results by a factor of 2− 3, whereas both version iii) and
iv) yield a surprisingly good agreement with the fully relativistic calculation i). In the s-
wave channel – left graph of Fig. 9.13 – it is again the non-relativistic version ii) displaying
a considerable disagreement with the relativistic calculation. Both versions iii) and iv)
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Figure 9.13: ΩT for the D13(1520) resonance (left) and the P13(1720) (right). Shown are
three different calculations, which are explained in Sect. 8.

yield better approximations. The exact form of the momentum dependence, however, is
not well reproduced in version iv).

We do not show results for ΩL. Here the effect from a relativistic calculation is rather
small, since the momentum dependence of ΩL is mainly determined from physical con-
straints at q = 0 and at the photon point: at small momenta a relativistic calculation and
its non-relativistic reduction must display a similar behaviour, whilst at the photon point
ΩL has to vanish in either version. Thus, both calculations do not have much room to
develop differently. There is a finite contribution to ΩL from p-wave resonances, which,
however, is small as compared to the transverse coupling. In the spin- 1

2
sector, one obtains

qualitatively similar results for ΩT/L.
Summarizing these results, we find that the previously used non-relativistic version

ii) is not a good approximation of a fully relativistic calculation. In contrast, using cm-
kinematics for both the determination of the coupling constant and the self energy leads
to a very reasonable agreement with the relativistic approach.

For this reason we argue also that the contribution from spin- 5
2

particles — for which a
relativistic theory is very complicated — should be evaluated within kinematics iii). Since
in a non-relativistic calculation the vertex factors of both the spin- 3

2
and spin-5

2
resonances

are proportional to q2, we expect from Fig. 9.13 that at high momenta the contribution
from spin-5

2
resonances is reduced as compared to previous works [38, 107, 111], where q2

was evaluated in the lab-frame.

9.4.2 Parameters and Form Factors

Turning now to the discussion of the results for the spectral function, we start with a
comparison between a relativistic calculation and the non-relativistic approach with kine-
matics iii). The good agreement for the results of ΩT/L translates into very similar results
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Figure 9.14: The transverse spectral function AT
ρ at 0 GeV and 0.8 GeV. Shown is a

comparison between a relativistic calculation and and a non-relativistic one using cm-
kinematics iii).

for the spectral function A
T/L
ρ , see Fig. 9.14. There the transverse spectral function is

plotted at momenta q = 0 GeV and q = 0.8 GeV. The resonance parameters are taken
from Manley et al, only the resonances with a ? in Table A.3 are included. We do not
present a comparison for the longitudinal channel as there the differences are even smaller.

We have now demonstrated that calculations of the spectral function, which differ only
in whether relativistic or consistent non-relativistic vertex functions (i.e. according to
kinematics iii) are used, yield nearly identical results. On the other hand, we have shown
in the previous Section that an inconsistent non-relativistic calculation (i.e. kinematics ii)
does not provide a good approximation of the traces ΩT/L and therefore the in-medium self
energy of the ρ meson. Aim of the remainder of this Section is to analyze, in which way this
and the use of different resonance parameters as well as form factors influences the results
for the spectral function in comparison with our first publication [107]. Anticipating the
results, we will find that in particular at large momenta the new results change substantially
relative to [107].

First we concentrate on a comparison of our non-relativistic calculation [107] (dot-
ted line) with a relativistic one (dashed line), where the same resonances as in the non-
relativistic case have been employed, but with resonance parameters taken from the analysis
of [89] rather than from the PDG. Now consider Fig. 9.15. At q = 0 the non-relativistic
calculation with PDG parameters shows a stronger depletion of the ρ peak than the rel-
ativistic approach with Manleys parameters. The form factor F (s) Eq. 9.13 suppresses
off-shell contributions (s 6= m2

R) of resonances much stronger than the previously used one
(9.14). This effects in general both the tail of the resonance excitation as, due to level
repulsion, the strength in the resonance peak. Thus, due to the form factor, the impact of
the excitation of the D13(1520) in the region of the ρ peak is noticeably reduced. This effect
is enhanced by the small partial ρN decay width of the D33(1700) found in the Manley
analysis as compared to PDG (ct. Table A.3). Its small coupling makes this resonance
play a merely negligible role in the relativistic calculation.

At larger momenta both approaches lead to very different results for AT
ρ , see the plots
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Figure 9.15: A
T/L
ρ for three different momenta. Compared are relativistic (solid line,

dashed line) and a non-relativistic calculation according to kinematics ii) (dotted line).
For the relativistic calculation the resonance parameters of Manley et al [89] are employed,
for the non-relativistic one the parameters of PDG [46]. For the solid curve all resonances
listed in Table A.3 are included, for the dashed line only those with a ? are taken into
account.

on the left in the middle and the bottom panel of Fig. 9.15, where the spectral function is
shown for momenta of q = 0.4 GeV and q = 0.8 GeV, respectively. As a general tendency,
much more strength is centered around the original ρ peak. This behaviour can be retraced
to various sources. As follows from the properties of ΩT/L, for a given branching ratio, a
relativistic calculation produces a much smaller ΠT

ρ than a non-relativistic one. The reso-
nance contribution is further suppressed by the form factor F (s), thus producing a more
conservative estimate of the resonance contribution. In addition, at higher momenta, ΠT

ρ

is reduced by the smaller branching ratio of the D33(1700). These depletion mechanisms
are only counteracted by the strongly increased branching ratio of the P13(1720). Over-
all, at high momenta AT

ρ is dominated by the D13(1520) and the P13(1720) as well as, to
some extent, by the spin- 5

2
resonances F15(1680) and F35(1905). Still the transverse spec-

tral function receives significant broadening with increasing 3-momentum in a relativistic
calculation, but this effect is not as pronounced as in the non-relativistic case.

Whereas AT
ρ receives strong qualitative modifications in a relativistic calculation, changes

in AL are only of a quantitative nature. This is shown in plots on the right of the middle
and bottom panels of Fig. 9.15. As already mentioned, the momentum dependence is dom-
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inated — both in a relativistic and a non-relativistic approach — by physical constraints at
q = 0 and q2 = 0. Consequently, the D13(1520) peak at q = 0.4 GeV contains nearly the
same strength in both approaches. The depletion of resonance strength around the ρ peak
is, as in the case of q = 0, due to the form factor and the small coupling of the D33(1700).
In the longitudinal channel the only sizeable contribution comes from the D13(1520).

The impact of the new, high lying resonances on our results – indicated by the solid lines
– is small and noticeable only at high momenta. This is easily understood for the following
reasons: Despite their large branching ratio, the coupling strength is relatively small, since
their mass is far above the ρN threshold and consequently the phase space is very large.
In addition, they have a very large total decay width, leading to a further suppression of
the contribution. At low momenta, these resonances can only be excited from ρ mesons far
above their pole mass. Correspondingly, their contribution to the imaginary part of Π

T/L
ρ

is drowned by the imaginary part of the vacuum self energy, the 2 π decay width. It is only
at momenta around 0.8 GeV (bottom panel of Fig. 9.15), that the resonance excitation
occurs at invariant masses around the pole mass of the ρ meson. At this point resonance
scattering becomes important. This explains why in Fig. 9.15 differences between both
relativistic calculations (solid and dashed line) are only seen at momenta around q = 0.8
GeV.

9.4.3 Influence of Couplings

So far, we discussed the differences between a relativistic and a non-relativistic calculation
of Π

T/L
ρ and their consequences for Aρ. There are, in addition, various ways for a reso-

nance to couple to the ρN system. In order to draw safe conclusions on the momentum
dependence of the ρN scattering amplitude, it is important to study the influence of the
chosen coupling on the results.

In this analysis we confine ourselves to the case of spin- 3
2

resonances of both positive
and negative parity. In addition to the Lagrangians given in Appendix C.1.1, Eq. C.2, we
also consider:

LRNρ =







f

m2
ρ

ψ̄µ γ5 ∂νψ ρµν

f

m2
ρ

ψ̄µ γ5 ψ ∂νρµν .

(9.18)

In the spin-1
2

sector there is no resonance which has a sizeable coupling to ρN and a strong
dependence of the final results on the coupling of spin- 1

2
resonances is not expected. In

the following discussion we will use some shorthand notations to distinguish between the
different vertex functions. The standard coupling from Eq. C.2 will be referred to as
coupling (i), to the first vertex function from Eq. 9.18 we refer as coupling (ii) and to the
second one as coupling (iii).

The self energy contribution is characterized by traces ΩT/L, see Eq. 5.10 in Chapter
4. Here we give these quantities as following from the Lagrangians of Eq. 9.18. Using the
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coupling denoted by ii) one derives:

Jπ = 3
2

+
: ΩL = 8

3
m3

N q
2 (mN + ω −√

s)
(

1 − q2

s

)

ΩT = 8
3
m3

N ω
2 (mN + ω −√

s)

Jπ = 3
2

−
: ΩL = 8

3
m3

N q
2 (mN + ω +

√
s)
(

1 − q2

s

)

ΩT = 8
3
m3

N ω
2 (mN + ω +

√
s)

(9.19)

The coupling denoted by iii) leads to:

Jπ = 3
2

+
: ΩL = 8

3
mN q

4 (mN + ω −√
s)
(

1 −
(

m2
N

q2

)
q2

s

)

ΩT = 8
3
mN q

4 (mN + ω −√
s)

Jπ = 3
2

−
: ΩL = 8

3
mN q

4 (mN + ω +
√
s)
(

1 −
(

m2
N

q2

)
q2

s

)

ΩT = 8
3
mN q

4 (mN + ω +
√
s)

(9.20)

To get a feeling for the changes, we present first ΩT/L in Fig. 9.16 and 9.17. The results
are shown for the D13(1520) and the P13(1720) resonances. The coupling constants f are
adjusted to the ρN branching ratios. The most distinct behaviour is exhibited by coupling
(iii). At the photon point, it enforces a vanishing contribution not only in the longitudinal,
but also in the transverse channel. This behaviour can be read off from the Lagrangian
LRNρ and is due to the derivative acting on the field tensor:

∂ν Fµν = −q2Aν . (9.21)

Clearly, the vertex function has to vanish at q2 = 0, regardless of the polarization of the
ρ meson. Consequently, ΠT

ρ has to fulfill the same constraints as ΠL
ρ and both quantities

become more or less identical. Thus, the coupling (iii) mostly affects the transverse channel,
as can be seen in the left plots of Figs. 9.16 and 9.17. Noteworthy is also the much larger
contribution from p-wave resonances to ΩL, which is due to the larger coupling constant
f required from this Lagrangian. This is explained as follows: In the determination of the
coupling strength the quantity 2 ΩT + ΩL enters, averaged over the ρ mass distribution.
Since this expression has to vanish at q2 = 0 in coupling (iii), its size is much reduced
at low invariant masses. This behaviour can only be compensated by a large coupling
constant. For p-wave resonances this effect is most evident, since in this case the matrix
element becomes sizeable mostly near the photon point for the couplings (i) and (ii). As
an example, we obtain a value of f = 36 for the P13(1720) in coupling (iii) as compared
to f = 10 in coupling (i). Clearly, the increased values for the coupling constants are
responsible for the enhanced resonance contribution in the longitudinal channel.

For coupling (iii) the coupling strength for the P33(1232) can not be obtained from
VMD since the matrix element vanishes at the photon point. We take an ad hoc value of
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Figure 9.16: ΩT (left) and ΩL (right) for the D13(1520). Shown is the influence of different
coupling schemes on the results. The couplings are explained in Sect. 9.4.3.

Figure 9.17: Same as Fig. 9.16 but for the P13(1720).
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Figure 9.18: Results for the ρ spectral function at q = 0 GeV (top) and at q = 0.8 GeV
(bottom). The couplings employed for the calculations are explained in Sect. 9.4.3.

f = 30 for the coupling constant, which is twice as much as obtained from coupling (i).
Varying f between values of 15 − 30 has only negligible influence on the results.

Coupling (ii) produces much less dramatic effects then coupling (iii) when compared
to coupling (i) and the general properties of ΩT/L do not change much in comparison. An
exception is the coupling of p-wave resonances to longitudinal ρ mesons, where coupling (ii)
generates a much larger contribution than coupling (i). This is shown in the left plot of Fig.
9.17. Quantitatively, also the coupling of s-wave resonances to transverse ρ mesons change
up to some extent. Nearly identical results are achieved for both remaining channels.

Turning now to the results for the spectral function, at q = 0 no significant modifica-
tion is observed, see graph in the upper panel of Fig. 9.18. However, at higher momenta
around q = 0.8 GeV (shown in the lower panel of Fig. 9.18), the distinct character of cou-
pling (iii) becomes apparent, reducing the resonance contribution at low invariant masses
for transverse ρ mesons. At the same time, a stronger modification of AL

ρ is exhibited.
Thus, coupling (iii) induces a qualitatively different behaviour for Amed

ρ , removing much
of the distinction between transverse and longitudinal ρ mesons at large momenta. In this
kinematical region spin- 5

2
resonances, for which we have only a non-relativistic coupling

at hand, have noticeable influence on the results. Therefore, by changing the interaction
in the spin-3

2
sector and leaving the spin- 5

2
sector unchanged, the effect of the coupling

scheme on the spectral function is underestimated. In order to obtain an upper limit for
this effect, we treat the spin- 5

2
resonances the same way as spin- 3

2
resonances, correcting

for the different spins of the states by a factor of 3/2. This procedure is reasonable, since
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— except for the multiplicity — the spin of the resonance affects mostly the angular de-
pendence of the matrix element. We checked that for the transition from spin- 1

2
to spin-3

2

resonances our prescription works fine within 10%.
The most distinct feature of coupling (ii) is an increased resonance contribution to

AL
ρ at large momenta relative to coupling (i). The transverse channel, however, does not

undergo large modifications as compared to coupling (i). This behaviour is expected from
the results for the traces shown in Figs. 9.16 and 9.17.

One should keep in mind, that in general the actual coupling of a resonance to the ρN
channel might contain contributions from all three couplings. Naturally this will smear out
the differences. One expects from the above discussion, that the general tendency will go
towards a less modified transverse ρ meson than predicted from coupling (i), whereas in the
longitudinal channel a stronger modification is likely. It is beyond the scope of this work,
however, to find realistic weighting factors for each coupling. This can only be achieved
by a complete relativistic partial wave analysis of π N → π π N data.



Chapter 10

Results 3 – The ω Meson

This Chapter is based on the publication [110] and is concerned about the coupling of ω
mesons to baryon resonances as following from a Vector Meson Dominance (VMD) analysis.
In a second step, the resonance couplings have been used to determine the in-medium
properties of the ω. The ω meson has not been included in our coupled channel analysis,
i.e. self consistency effects for the in-medium spectral function have not been considered.
This is motivated from the fact that the modifications that this states experiences in nuclear
matter are rather weak. After the publication, some models [104, 105, 84, 34] have emerged
which have tried to obtain information on the coupling of baryon resonances to Nω. We
have added a few comments concerning the results of these analyses.

10.1 Motivation

For a long time a satisfactory understanding of baryon resonances in the N ω channel has
been a unsolved problem. While many quark models predict resonances with a coupling to
this channel, for example [135, 134, 25], their experimental identification is very involved.
Only the advent of sophisticated coupled channel analyses [104, 105, 84] as well as more
precise data close to the threshold from the SAPHIR detector have allowed to shed some
light on this issue. Thus, in the analysis of [104, 105] in particular the resonances P11(1710)
and P13(1720) have been found to couple strongly to the N ω channel. In the model of [84]
– where resonances with positive parity are not included – mainly the D13(1520) shows up
in this channel.

An understanding of baryon resonances in the N ω channel is not only important for
a description of scattering experiments, but might also be of interest for the properties
of ω mesons in nuclear matter. This conjecture is guided from the experience with the ρ
meson, which has been shown to undergo significant modification in the nuclear medium
due to the excitation of resonance-hole loops. In this scenario a central role is played by the
subthreshold resonance D13(1520) [107, 109, 37], suggesting that especially information on
the coupling strength of subthreshold resonances to the N ω system would be very valuable
for a determination of the in-medium properties of the ω meson.

In this Chapter we present estimates for the coupling strength of baryon resonances
to the ωN channel fRNω. Vector Meson Dominance (VMD) is utilized to relate fRNω

to the isoscalar strength of the electromagnetic decay of the respective resonance, which
is extracted from helicity amplitudes. The analysis covers all resonances for which helic-
ity amplitudes are currently available [6, 46], most of which are below the nominal ωN
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threshold. Though the applicability of VMD in the resonance region is far from obvious,
we believe that even in the light of the more refined analyses of [105, 104, 84], such an
approach retains its value, since for resonances which are clearly subthreshold, a clear ex-
perimental evidence for a strong coupling will always be hard to achieve. Consequently,
in [105, 104] no strong evidence for a coupling of the D13(1520) is found, whereas the
resonances which are most important – the P11(1710) and P13(1720) states – are close to
the threshold. On the other hand, in [84] constraints from VMD enter into the analysis,
thus giving rise to presence of the D13(1520) in this channel. A coupling of subthreshold
resonances to the N ω system has also been reported in [114]. The authors of [114] derive
the coupling strength within a quark-model approach. We will compare our results with
those of [105, 104, 114, 84, 37].

The paper is organized as follows. The details of the extraction of fRNω are presented in
Sect. 10.2. In Sect. 10.3 we examine if our model gives reasonable results by comparing the
VMD prediction for the isovector strength with fits to the hadronic decay width into theN ρ
channel. Sect. 10.4 is devoted to a presentation of the results for fRNω and a discussion
of their compatibility with experimental information on the reactions π N → ωN and
γ N → ωN . Finally, in Sect. 10.5 the implications of excitations of resonance-hole loops
for the in-medium properties of ω mesons are examined.

10.2 Determination of fRNω

In this section we explain how we obtain an estimate for the magnitude of the coupling
strength of a baryonic resonance to the N ω channel. Before going into the details of the
calculation, we outline the basic idea of our approach.

Vector Meson Dominance (VMD) [130], a theory which describes photon-hadron in-
teractions exclusively in terms of vector meson-hadron interactions, relates the hadronic
coupling strength of resonances to vector mesons fRNρ(ω) and the isoscalar and isovector
part of the photon-coupling, see Fig. 10.1:

fRNω = gsmω
2 gω

e
(10.1)

fRNρ = gv mρ
2 gρ

e
.

As values for gρ and gω – the coupling strengths of ρ and ω meson to the photon – we take
gρ = 2.5 and gω = 8.7 [130]. The isoscalar and isovector coupling strength of the resonance
to the N γ system is given by gs and gv, respectively, see Eq. 10.3.

Thus VMD gives access to both fRNω and fRNρ, if it is possible to obtain gs and gv from
experimental data. In order to achieve this goal, it is clearly not sufficient to consider merely
the total electromagnetic decay width of the resonance. Rather, the coupling has to be
decomposed into an isoscalar and an isovector part, which is readily done by constructing
suitable linear combinations of proton- and neutron-amplitudes. These amplitudes are
known from experiment [6, 46], thus allowing to deduce numerical values for gs and gv.

In a nonrelativistic framework, the coupling of baryon resonances to the photon-nucleon
system can be formulated as [107, 38]:
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Figure 10.1: Diagrammatic description of the electromagnetic decay of a resonance in the
VMD approach. The diagrams correspond to Eq. 10.1.

LRNγ =







χ†
R εijk σ

i qj εkλ χN I + h.c. for JP = 1
2

+

χ†
R εijk S

i qj εkλ χN I + h.c. for JP = 3
2

+

χ†
R Rij F

ij
λ χN I + h.c. for JP = 5

2

+

χ†
R (σk ε

k
λ q0 − σk q

k ε0λ)χN I + h.c. for JP = 1
2

−

χ†
R (Sk ε

k
λ q0 − Sk q

k ε0λ)χN I + h.c. for JP = 3
2

−
.

(10.2)

Here χ†
R and χN denote resonance and nucleon spinors respectively. The σi are the

Pauli matrices, Si denotes the spin-3
2

and Rij the spin-5
2

transition operator. q is the c.m.

momentum of the photon, q0 its energy and ελ its polarization vector. F ij
λ denotes the

spatial components of the electromagnetic field strength tensor F µν
λ with F ij

λ = qi εjλ−qj εiλ.
By I we denote the isospin part of the coupling which is given as:

I = χI †
R

(

gs + gv

{
σ3

S3

})

χI
N for







IR = 1
2

IR = 3
2

. (10.3)

The spinors χI
R and χI

N represent resonance and nucleon isospinors and IR denotes the
isopin of the resonance. σ3 and S3 are defined as above. Note that owing to the VMD
hypothesis these Lagrangians are identical to the RNρ couplings (cf. Appendix C.2).

Note that the invariant amplitude – as derived from (10.2) and (10.3) – for the decay of
a resonance into a proton, Mp, is proportional to gp = gs + α gv, whereas for the neutron
the amplitude Mn is proportional to gn = gs − α gv. The factor α is defined as:

α = χI †
R

{
σ3

S3

}

χI
N . (10.4)

For nucleon resonances it is 1 and for ∆ resonances it is exactly the Clebsch-Gordan

coefficient for the respective transition, in this case α =
√

2
3

[33].
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Thus, the linear combinations

Ms =
1

2
(Mp + Mn)

(10.5)

Mv =
1

2
(Mp −Mn)







1 for IR = 1
2

1
α

for IR = 3
2

are proportional to gs and gv respectively. Ms and Mv describe the RNγ system in terms
of the isospin of the photon rather than the isospin of the nucleon.

Experimental information on the decay amplitudes Mp and Mn exists in form the of

measured helicity amplitudes A
p/n
1
2

and A
p/n
3
2

. They describe the transition of the photon-

proton and the photon-neutron system to a resonance state with jz = 1
2
or 3

2
, where the

quantization axis is defined along the direction of the photon momentum. From the helicity
amplitudes the isoscalar and isovector part of the coupling are constructed in exactly the
same way as shown in Eq. 10.5 for the Feynman amplitudes. The helicity amplitudes are
known from experiment at the pole-mass of the resonance, allowing the determination of
gs and gv.

To this end we introduce the γ-width Γγ
s/v, which – using the normalization from [46]

– is defined in terms of the helicity amplitudes As/v in the following way:

Γγ
s/v(mR) =

q2

π

2mN

(2jR + 1)mR

(

|As/v
1
2

|2 + |As/v
3
2

|2
)

, (10.6)

with jR and mR denoting spin and pole-mass of the resonance. Note that after the angular
integration has been performed no interference terms between A

1
2 and A

3
2 appears in Eq.

10.6.
Clearly, Γγ

s/v can also be expressed using Feynman amplitudes:

Γγ
s/v(k

2) =
1

(2jR + 1)

q

8 π k2
|Ms/v|2 , (10.7)

where
√
k2 is the invariant mass of the resonance and q the momentum of the photon in the

rest frame of the resonance. After summing over the photon polarizations, |Ms|2 assumes
the following form:

|Ms|2 = 4mN mR κ g
2
s q

2 F (k2) . (10.8)

The same relation holds for |Mv|2 with gs replaced by gv. For the formfactor F (k2) at
the RNγ vertex we assume the following functional dependence as given by Eq. 3.23 in
Chapter 3. For the cutoff parameter we take Λ = 1. If we consider on-resonance decays
(
√
k2 = mR) this formfactor is equal to 1. The numerical factor κ depends on the quantum

numbers of the resonance. For isospin- 1
2

resonances the values for κ are listed in Table
10.2. In the case of ∆ resonances they need to be multiplied by a factor of F 2 = 2

3
due to

isospin. The two expressions Eqs. 10.6 and 10.7 can now be equated allowing to solve for
gs/v:

g2
s/v =

4

κ

|As/v
1
2

|2 + |As/v
3
2

|2

q







1 for IR = 1
2

1
F 2 for IR = 3

2

. (10.9)
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fRNρ fRNρ fRNρ fRNρ fRNρ fRNρ

Arndt Feuster PDG Manley1 Manley2 PDG
D13(1520) 3.44±0.18 2.67 3.42±0.20 6.67±0.78 5.79±0.68 6.66±1.26
S31(1620) 0.89±0.42 0.10 0.69±0.23 2.14±0.30 2.06±0.28 2.61±1.01
S11(1650) 0.70±0.08 0.59 0.57±0.31 0.47±0.19 0.45±0.18 0.79±0.31
F15(1680) 3.48±0.39 — 3.14±0.37 6.87±1.57 6.36±1.45 7.33±2.29
D33(1700) 3.96±0.77 3.68 4.02±0.62 1.96±0.67 1.93±0.67 4.91±1.57
P13(1720) 0.25±0.42 0.93 0.19±0.79 13.17±3.35 12.09±3.17 7.42±1.64
F35(1905) 2.47±0.55 — 2.56±0.75 17.97±1.14 17.57±1.12 14.19±3.10
P33(1232) 13.40±0.2 11.96 13.29±0.28 — — —-

Table 10.1: Listed are the hadronic coupling constants fRNρ obtained from the isovector
electromagnetic amplitudes through a VMD analysis. The first column shows the results
employing the helicity amplitudes from Arndt et al [6]. In the second column the helicity
amplitudes from Feuster et al [36] are used instead and the third column shows the results
obtained from the PDG estimates [46]. For comparison we show also the values for fRNρ

resulting from direct fits to the partial decay width ΓRNρ. The values for ΓRNρ are taken
from Manley et al [89] (4th column) and PDG (6th column), the ρ decay is parameterized
according to Eq. 10.12. To point out further inherent uncertainties in the analysis, we
show in the 5th column the results from a fit to Manley’s values for the partial width,
using the parameterization from Eq. 10.13 of the ρ spectral function.

Again, in the case of ∆ resonances an additional factor α2 needs to be introduced.

Thus it is possible to obtain gs/v from helicity amplitudes. The hadronic couplings
fRNω(ρ) are then readily deduced from the VMD relation Eq. 10.1. The corresponding
values are listed in Tables 10.1 and 10.2.

A modified version of VMD (called VMD1 in [130]) contains also a direct coupling
between hadrons – in our case baryon resonances – and the photon. In particular, at the
photon point q2 = 0 the photon-resonance interaction proceeds without intermediate vector
mesons, whereas the decay into a massive photon consists of both a direct coupling term and
a term with an intermediate vector meson. In principle, it would be preferable to perform
an analysis such as ours within the framework of the modified version of VMD by studying
– currently unavailable – dilepton production data on the nucleon. This process involves
massive photons and would, in combination with the data for real photons, allow for a
separation of the direct photon and vector meson contributions. As a further advantage,
the coupling strength of the vector mesons then does not need to be extrapolated over the
large mass range from the photon point to the on-shell mass of ρ and ω meson.

10.3 Results for the ρ: How Reliable is VMD ?

In this section we study the applicability of VMD in the resonance region. This is done for
the isovector part of the analysis, where the VMD predictions for fRNρ can be compared
with the measured resonance decay width into the N ρ channel.

We consider all resonances with jR < 7
2
, for which both the hadronic decay widths into

N ρ and the helicity amplitudes are known. This excludes a few light resonances like the
S11(1535) and the P33(1600), for which only upper limits for the N ρ branching ratio exist
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[46]. For both the helicity amplitudes and for the partial N ρ decay width we use different
parameter sets in order to provide an estimate for the experimental uncertainties entering
this analysis. The helicity amplitudes are taken from Arndt et al [6] and the PDG [46].
Furthermore we use the values obtained in the work of [36], which is of particular interest
as it represents the only available approach which describes simultaneously hadronic-and
electromagnetic reactions over the full energy region of interest here. The ρ decay widths
are taken from the analysis of Manley et al [90, 89] and the PDG [46]. Furthermore, we
study the additional model dependence introduced by different parameterizations of the
spectral function of the ρ meson.

The hadronic coupling constant fRNρ is obtained via the following expression for the
R → N ρ decay width (taken on the pole mass of the resonance), see also Eq. 3.18 in
Chapter 3.2:

ΓR→N ρ =
1

8πm2
R

1

2jR + 1

mR−mN∫

2mπ

dm 2mAρ(m) |MR→N ρ|2 q . (10.10)

The decay amplitude MR→N ρ is obtained from the same Lagrangians as in the electro-
magnetic case and is proportional to fRNρ [107]. q is the three momentum of the ρ meson
in the rest frame of the resonance. Note that there is no formfactor in Eq. 10.10 because
we consider the on-resonance decay.

The spectral function of the ρ meson Aρ(m) is taken as:

Aρ(m) =
1

π

mΓ(m)

(m2 −m2
ρ)

2 +m2 Γ2(m)
. (10.11)

The decay into N ρ of low-lying resonances, for example the D13(1520), proceeds mainly
through the low-mass tail of Aρ. The shape of the tail is quite sensitive to the param-
eterization of the ρ decay width. To study the effect on fRNρ we compare two different
parameterizations of the ρ decay width:

Γ(m) =
(mρ

m

)2

Γ0

(
pm

pmρ

)3

(10.12)

and

Γ(m) =
(mρ

m

)

Γ0

(
pm

pmρ

)3 1 + r2 p2
mρ

1 + r2 p2
m

. (10.13)

The first version follows from a one-loop approximation of the self energy of the ρ meson
[107, 62], the second one is taken from the PDG [46]. m is the invariant mass of the ρ
meson, mρ = 0.768 GeV its pole mass and Γ0 = 150 MeV its decay width on the pole mass.
pmρ

(pm) denotes the 3-momentum of the pions measured in the rest frame of a decaying
ρ meson with mass mρ (m). The range parameter r, appearing in the second expression
has the numerical value r = 5.3/GeV [46].

In Table 10.1 the results for the coupling constants and the corresponding error-bars
- which are calculated from the error-bars assigned to the partial decay width and the
helicity amplitude in the respective analysis - are given. As a general tendency, our finding
is that VMD works well within a factor of two. It tends to somewhat underestimate the
coupling constants, leaving some room for an additional direct coupling of the resonance
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to the photon. This can be seen particularly well in the case of the D13(1520) and the
F15(1680), which are the most prominent resonances in photon-nucleon reactions, and
whose ρ decay widths are also well under control. Note that in the case of the S31(1620) and
the P13(1720) large discrepancies occur between the VMD predictions based on different
sets of helicity amplitudes, thus reflecting the uncertainties inherent in this analysis. The
helicity amplitudes from Arndt [6] and PDG [46] produce nearly identical results for the
ρ coupling of the P13(1720), which might seem suprising as the helicity amplitudes from
both works are very different. However, most of these differences cancel out in the isovector
channel after proton- and neutron- amplitudes have been subtracted from each other (see
Eq. 10.5). In the isoscalar sector this cancellation does not occur and both sets lead to
very different predictions for fRNω, see Sect. 10.4.

For the P13(1720) and the F35(1905) VMD is off by an order of magnitude. We argue
that this mismatch does not hint to a failure of VMD, but has to be attributed to the
unsatisfactory experimental information on these two resonances. Comparing the helicity
amplitudes of the P13(1720) obtained from different analyses [46, 36] reveals that neither
their sign nor their magnitude are under control at all. Also the partial decay width
into the ρN channel is subject to large uncertainties, here the PDG and Manley differ
by about a factor of three [46, 90, 89]. Obviously, the experimental observation of this
resonance is very complicated and its parameters might be sensitive to the details of the
underlying theoretical model, such as the treatment of the non-resonant background. For
a conclusive VMD analysis of these resonances it is therefore mandatory to enlarge the
data base and to describe hadronic- and photoinduced reactions within one model. In
[38] a VMD analysis for exactly these resonances was performed, leading to the general
conclusion - in contradiction to this work - that VMD is not at all reliable in the resonance
region.

Different parameterizations of the ρ decay width mainly influence the coupling constants
of low-lying resonances. Since the PDG parameterization of the ρ decay (see Eq. 10.13)
distributes more strength at invariant mass below the ρ meson pole mass, it leads to smaller
values for the coupling constant, thus leading to an improved agreement between VMD
and the hadronic fits. This effect is most notable for the D13(1520) (see fourth and fifth
column in Table 10.1).

In [34] it has been proposed that the discrepancy of VMD and hadronic models con-
cerning the extraction of the ρ coupling constant can be resolved by extending the VMD
model. Within this model the coupling of the (isovector) photon to hadronic currents pro-
ceeds not only via the ρ meson, but also via the excited ρ′ states. This process involves
the unknown coupling constants of the ρ′ states to the hadronic current. By extending
the their VMD model to large space-like 4-momenta Q2, constraints on these coupling
constants are derived from the requirement that the resulting electromagnetic form factor
scales like 1/Q6 as motivated from quark models. This requires a cancellation of terms
which is only possible when the coupling constants are related to each other. Ultimately
improved predictions from the VMD model are generated. For example, the discrepancy
factor of 2 for the D13(1520) resonance is explained this way. While this sound in principle
quite appealing, one should realize that a certain arbitrariness arises from the fact that
only two excited ρ meson states are considered in [34] and that their scheme looses any
predictive power if more ρ states included. Then the large Q2 limit does not yield enough
constraints on the coupling constants any more.

At this point we also want to comment (again) on the work published in [84]. There
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the applicability of VMD has been elevated as a guiding principle for the description of
hadronic processes involving vector mesons. As mentioned in Chapter 4.1, there a very
small coupling of the ρ meson to the D13(1520) is found. To be more quantitative, a
value of ΓNρ ≈ 2 MeV is reported. This is actually in reasonable agreement with our
VMD prediction, which would give a value ΓNρ ≈ 5 MeV, since within VMD the coupling
constant comes out to be roughly half the size as compared to the hadronic fit. This shows
that in [84] the Nρ coupling is nearly entirely constrained from photon data.

Summarizing the results, we conclude that VMD can be applied in the resonance region
on a phenomenological basis. We have shown that for the coupling constants fRNρ it leads
to an approximate agreement with values adjusted to the hadronic decay width ΓRNρ with
a tendency to somewhat underestimate these values. Therefore, our approach should yield
reasonable predictions – at least for the lower limits – of the unknown coupling constants
fRNω.

10.4 Results for the ω: Strong Coupling of Subthresh-

old Resonances

In this section we present our results for the coupling constants fRNω following from the
VMD analysis and discuss their compatibility with experimental information obtained from
pion- and photon-induced ω-production cross sections.

All nucleon resonances with jR < 7
2
, for which helicity amplitudes have been extracted,

are included. Thus we consider only one resonance above the N ω threshold in our analysis,
namely the D13(2080). Three different parameter sets for the helicity amplitudes are
used, the results from the analysis of Arndt et al [6] and Feuster et al [36] as well as
the values listed in the PDG [46]. The corresponding results for fRNω together with the
error-bars are given in Table 10.2. We find a strong coupling to the N ω channel in the
S11, D13 and F15 partial waves; especially the S11(1650), the D13(1520) and the F15(1680)
resonances show a sizeable coupling strength to this channel. In most cases the three
parameter sets for the helicity amplitudes lead to similar results. As in the case of the
ρ meson, however, for some resonances (P11(1440), S11(1650), P11(1710) and P13(1720))
the differences are more pronounced. In particular, for the P13(1720) and the P11(1710)
the poor experimental situation does not allow for a reliable extraction of the coupling
strength, thus emphasizing the difficulties concerning the P13(1720), which were already
discussed in the previous section. The relatively large coupling constant for the D13(1520)
might at first seem surprising as the helicity amplitudes suggest that its electromagnetic
decay is mainly an isovector one, corresponding to a small value for gs. However, fRNω is
proportional to gω (see Eq. 10.1), which is about three times larger than gρ. As a result,
the ρ and ω coupling are of the same size, but with a much larger error-bar for the ω
coupling.

It is noteworthy that the resonances with the largest coupling are well below the
N ω threshold. Subthreshold resonances in the N ω channel are also reported elsewhere
[84, 37, 114, 34]. In [37, 84] it is shown that within a coupled-channel analysis the descrip-
tion of π N scattering enforces resonant structures in the N ω channel. As in our work,
strong contributions from the S11 and D13 partial waves are found. Quantitatively, both
approaches yield quite different predictions for the coupling strength of the D13(1520),
however. Whereas our VMD analysis predicts a coupling strength of about 3 (see Table
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κ Arndt Feuster PDG
S11(1535) 4 1.27±1.58 1.36 0.76±1.23
S11(1650) 4 1.59±0.29 0.56 1.12±1.09
D13(1520) 8/3 2.87±0.76 2.28 3.42±0.87
D13(1700) 8/3 −−− 1.88 0.65±2.76
D13(2080) 8/3 −−− −−− 1.13±1.46
P11(1440) 4 0.61±0.68 1.26 0.85±0.48
P11(1710) 4 0.14±0.85 0 0.20±1.02
P13(1720) 8/3 0.29±1.30 2.18 1.79±3.18
F15(1680) 4/5 6.89±1.38 −−−− 6.52±1.49

Table 10.2: The coupling constants fRNω as extracted from the helicity amplitudes from
the Arndt et al [6](2nd column), Feuster et al [36] (3rd column) and the PDG group [46]
(4th column). In the first column we give the values for κ (see Eq. 10.9).

10.2), in [37] a value of fRNω ≈ 6.5 is given. This value is confirmed in the subsequent
analysis in [84]. At the same time it is found in a quark model calculation [114] that the
coupling constant of this resonance should be fRNω ≈ 2.6, which is surprisingly close to our
result. However, from their quark model calculation the authors of [114] obtain initially
coupling constants for hadronic Lagrangians which display very different energy depen-
dences compared to ours. To be specific, in the case of the D13(1520) close to threshold ω
and nucleon couple in a relative d-wave in their formalism, rather than forming an s-wave
state as following from our Lagrangian, see Eq. 10.2 (which for example has also been
employed in [37]). Thus a direct comparison of the results as done in [114] is possible only
after simplifying assumptions, if at all.

A complete coupled-channel analysis of pion and photo induced ω production has been
carried out in the coupled channel K-matrix analysis presented in [105, 104]. There the
resonance coupling to Nω is determined directly from a fit pion- and photoinduced ω
production data. Besides direct constraints from ω data, further constraints arise from
unitarity, i.e. from the fact that via the inelasticity πN → πN amplitude upper bounds
exist for the πN → ωN amplitude. As a result, the two resonance with the largest coupling
to Nω are found to be the P11(1710) and the P13(1720), both of which couple only weakly
in the VMD approach, which in addition yields large uncertainties for these two states (cf.
Table 10.2). Therefore the VMD predictions for these resonances should be considered with
great care. On the other hand, states that within VMD are found to couple substantially
to Nω like the D13(1520) or the S11(1535) play only a negligible role in the analysis of
[105, 104]. This may indicate a failure of VMD also for these states. It is however not clear
up to which extent any description of ω data is able to pin down the contribution from
resonances that are so far below the threshold.

A direct experimental observation of a resonant coupling of subthreshold resonances is
very complex, since the resonances can add to the cross-sections only through the high-
mass tails of their mass distribution and are therefore hard to disentangle from background
effects. Sensitivity to the contribution of subthreshold resonances in ω production exper-
iments can probably only be achieved by studying polarization observables. The current
data do not permit such a project, however. As was pointed out in various previous works
[19, 18, 85], an analysis of dilepton production on the nucleon in combination with VMD
might provide further insight on this issue.
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Figure 10.2: Total cross-section for the reaction π− p→ ω n. The data are taken from [8].

In spite of these difficulties, it is still rewarding to compare the VMD predictions with
existing data on the reactions π− p → ω n and γ p → ω p. Thus it is possible to infer
if the predicted coupling constants of the subthreshold resonances produce a satisfactory
overall agreement with data above the threshold. Comparison with data allows also to
discuss the results for the D13(2080), the only resonance in our analysis above threshold.
Based on recent data from photoproduction experiments, which display a richer structure
than expected within a simple meson-exchange model, the search for resonances in the
N ω channel has so far concentrated on the mass range of approximately 1.8 − 2 GeV. At
the current stage the data do not allow to pin down the quantum numbers of the involved
resonances, however, and a variety of predictions exist [23, 135, 134, 25]. The D13(2080) is
not amongst them. In contrast to the photoproduction data, no experimental signature of
a coupling of baryon resonances to the N ω channel above the threshold has been detected
in pion induced reactions [8]. We find for the D13(2080) an ω decay width of about 70 MeV
and argue that its contribution to both reactions is too small to be seen in experiment.

As a first approximation, we take the full production amplitude as an incoherent sum
of Breit-Wigner type amplitudes, describing s-channel contributions:

σab =
∑

R

2jR + 1

(2jN + 1)Ωa

π

k2
a

Γa Γb

(Ea − ER)2 + Γ2
tot/4

. (10.14)

Here a stands for the incoming channel (π− p or γ p) and b for the ωN channel. Γa(b)

denote the respective partial decay width of the resonance and Γtot its total decay width,
taking into account the ωN decay as well. The energy dependence of the photon and the ω
decay amplitudes is obtained from the Lagrangians given in Eq. 10.2 and the formfactor of
Eq. 3.23 with Λ = 1.0. Whenever possible, fRNω is obtained from the helicity amplitudes
from Arndt et al, otherwise the PDG estimates are used. For the remaining channels we
take the parameterization from Manley et al. In Eq. 10.14 Ωa is 1 for the pion and 2 for
the photon. ka is the cm-momentum of the particles in channel a and Ea denotes their
cm-energy. All resonances listed in Table 10.2 are included. We stress that the only free
parameter is the cutoff parameter Λ.
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Figure 10.3: Total cross-section for the reaction γ p → ω p. The data are taken from
[1].The straight line shows the cross-section resulting from the resonance model, where the
dashed line indicates the sum of resonance and pion-exchange contributions.

The results for both reactions are shown in Fig. 10.2 and Fig. 10.3. The data for the
π-induced reaction are taken from [8] and we use the photoproduction data of [1]. The
cross-section for π− p → ω n is reproduced rather well, especially near threshold, whereas
at high energies some strength is missing. This is in approximate agreement with the
findings of the authors of [37], who are able to give a satisfactory description of this process
around threshold in terms of subthreshold resonances. One can therefore conclude that the
excitation of subthreshold resonances constitutes an essential ingredient to the production
mechanism. This interpretation is confirmed by the fact that it is hard to understand
this process in terms of non-resonant amplitudes only. Already the contribution from ρ0

exchange overestimates the data; only by suppressing the amplitudes by the introduction of
very restrictive form factors a rough agreement with experimental data can be achieved [86].
Similar problems have been reported in [62] in a model that includes all Born terms. The
contribution coming from the only resonance above threshold – the D13(2080) – is about
0.1 mb, roughly 10% of the total cross-section. This is certainly too small to produce a
distinguishable resonant structure in the total cross-section.

On the other hand, the photoproduction data can not be saturated within the reso-
nance model. In particular, it seems futile to look for the D13(2080) in this reaction. It is
commonly assumed that the π0-exchange as invoked in [40] plays a key role in the photo-
production. In the coupled channel analysis of [105], the same conclusions concerning the
importance of that diagram are drawn. Therefore we – incoherently – added π0 exchange
to the resonance contribution, using the same parameters as given in [40]. As shown in
Fig. 10.3 the sum of both mechanisms yields a qualitative explaination of the data over
the energy range under consideration.

It is not surprising that the resonance contribution is more likely to produce lower
bounds for the cross-sections. We already discussed in Sect. 10.3, that the VMD analysis
tends to underestimate the hadronic coupling constants. Also, at energies above the ωN
threshold, the helicity amplitudes of only a few resonances are known and the experimen-
tally observed cross-sections have to be explained by additional production mechanisms,
such as the π-exchange in the photoproduction. Keeping this in mind, the predictions of
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the resonance model are in reasonable agreement with the data and can be viewed as a
first confirmation of the VMD analysis. Up to which extent the findings of [104, 105] –
predicting a strong coupling of P11(1710) and P13(1720) to N ω and therefore indicating
that at least these two resonances can not reliably be determined from VMD – would spoil
this conclusion also for the other resonances is not clear.

10.5 The ω Meson in Nuclear Matter

In the previous section we discussed the relevance of resonances in the ωN channel for an
understanding of ω production data. Here we study up to which extent the existence of
these resonant states affects the properties of ω mesons in nuclear matter. Of particular
interest in this context is the fact that the VMD analysis predicts a strong coupling of
subthreshold resonances, since in the case of the ρ meson it is widely acknowledged that
its in-medium properties are dominated by low lying resonances, especially the D13(1520).

The in-medium properties of the ω meson can be read off its spectral function, which
is defined as:

Amed
ω (q0,q) =

1

π

Im Πtot(q0,q)

(q2
0 − q2 −m2

ω − Re Πmed(q0,q))2 + Im Πtot(q0,q)2
. (10.15)

Energy and three-momentum of the ω meson are denoted by q0 and q. The total self energy
of the ω meson Πtot is the sum of the vacuum and the in-medium self energies Πvac and
Πmed. In this work we neglect ReΠvac and approximate Im Πvac with the dominating 3 π
decay width. We assume that this decay may only proceed via an intermediate ρ meson.
The coupling constant fωρπ is adjusted to reproduce the vacuum decay width of 8.41 MeV
[46].

To lowest order in the nuclear density ρN , the in-medium self energy of the ω meson
Πmed in symmetric nuclear matter is given by:

Πmed = ρN Tω N , (10.16)

where Tω N is the spin/isospin averaged ωN forward scattering amplitude. We approximate
the scattering amplitude as a sum over all resonances which are discussed in this work and
determine the resonance contributions in a non-relativistic approach.

For further details of the calculation the reader may consult our previous publication
on the ρ meson [107, 109]. Both calculations are carried out within the same framework,
differences appearing only in some minor points: First, the explicit values for the coupling
constants and isospin factors are different. More crucial, we now evaluate the self energy
in the cm-frame rather than in the rest frame of the nucleon. We do so since it has been
demonstrated in [109] that thus a much better approximation of a relativistic calculation is
achieved. As explained in [109], this leads in general to a reduction of the results. Finally,
at the ωN R vertex the same formfactor is taken as in Eq. 3.23, in contrast to the choice
in [107].

In Fig. 10.4 we show the spectral function for both an ω meson at rest and moving
with a momentum of 0.4 GeV with respect to the nuclear medium. The most obvious
observation is that our model predicts an in-medium ω meson which survives very well as
a quasi-particle. At rest, its peak position is slightly shifted upwards by about 20 MeV, due
to level-repulsion. The in-medium width is roughly 40 MeV as can be read off Fig. 10.5,
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Figure 10.4: The spectral function of an ω meson in nuclear matter versus its the invariant
mass m. Shown are results at q = 0 GeV (solid line) and at q = 0.4 GeV (dotted line). Only
the transverse part is displayed. As discussed in the text, there is virtually no difference
between transverse and longitudinal spectral function at 0.4 GeV.

where Πmed is depicted for an ω at rest. The ωN forward scattering amplitude contains all
elastic and inelastic channels. In the previous section we demonstrated that our model can
give a good description of the important π N channel close to threshold. This enhances
our belief that the VMD approach yields reasonable results for the in-medium properties
of the ω meson, especially for an ω at rest.

By construction, the in-medium self energy develops resonant structures in the sub-
threshold region. The most important contributions come from the D13(1520) and the
S11(1650) resonances. In contrast to the case of the ρ meson, these structures translate
only into small bumps in the spectral function, reflecting - as follows from the coupling
constants - that the ω self energy is substantially smaller than that of the ρ meson.

Our value for the in-medium broadening of the ω meson is in approximate agreement
with that obtained in [62] and – in a dynamical simulation – in [127] and [31]. Also in
the coupled channel analysis of [37] an in-medium broadening of 40 MeV for the ω meson
is reported. However, in this work the authors find that the ω spectrum displays a richer
structure in the subthreshold region, which is not surprising since their coupling constant
for the D13(1520) is much larger.

At higher momenta the influence of resonance-hole excitations gets reduced, see Fig.
10.4. Also, the longitudinal and transverse channel display a very similar behaviour (we
therefore only show the results for the transverse channel). This is different from the case of
the ρ meson, whose spectral function at large momenta receives a strong broadening in the
transverse channel from the the coupling of p-wave resonances, for example the P13(1720),
whilst the longitudinal mode is only slightly modified. In the case of the ω meson however,
only the F15(1680) shows a sizeable coupling strength.

In light of the results from [104, 105] predicting a strong coupling of the p-wave reso-
nances P11(1710) and P11(1720), the results at finite momenta are to be taken with some
care. In particular, we expect a larger broadening of the ω. For an ω at rest, however, the
p-wave states do not contribute to the self energy and therefore our results are not affected.
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Figure 10.5: In-medium self energy of an ω meson at rest as a function of its invariant
mass m. One clearly sees resonant structures from the excitation of the D13(1520) and the
S11(1650).

We have already mentioned that the ω decay in vacuum proceeds mainly via an inter-
mediate ρ meson. Due to kinematics, only the low-mass tail of the ρ mass spectrum is
involved in this process. Consequently, if a lot of ρ strength is shifted to smaller invariant
masses in the nuclear medium – as is generally believed, see for example [107, 109, 122] –
the ω meson will receive additional broadening. We have estimated this effect by replacing
the vacuum spectral function of the ρ with the in-medium one as given in [109] for the
calculation of the ω decay. To lowest order in the density, this corresponds to scattering
processes like ωN → π R, where R stands for any baryon resonance included in the calcu-
lation in [109]; such processes have so far not been included in any calculation. We find an
additional in-medium width for the ω of about 40 MeV at the ω mass from this process.
It has to be pointed out, however, that we did not take into account the corresponding
mass-shift of the ω meson. Since the ω decay width varies rapidly as a function of its mass,
this is a strong simplification.
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Summary & Outlook

We have constructed a model that allows for a combined description of in-medium mod-
ifications of hadrons. The constituents of the model are on the meson sector the pion, η
meson and ρ meson and on the baryonic sector all resonances that couple at least to one of
these states and the nucleon. Our previous work in this direction [107] has been extended
and improved in several ways: The basis space of included states has been significantly
enlarged. Due to the use of dispersion relations the spectral functions of all states are
guaranteed to remain normalized both in the nuclear medium and in the vacuum. Special
care has been taken with respect to the (non-relativistic) treatment of short-range corre-
lations (SRC), in particular in the s-wave sector. This was motivated by the fact that a
realistic description of the in-medium properties of the P33(1232) requires such repulsive
mechanisms.

For the ρ meson we find a significant shift of spectral strength down to smaller invariant
masses generated by its coupling to the D13(1520)N−1 state. In particular at smaller
momenta, the coupling to this state leads to a pronounced double-peak structure in the
spectral function. In order to corroborate this finding we have tested it against variations
of the coupling strength and against possible effects from SRC. As a result we find that the
results remain quite stable when varying the width within ranges suggested by different
analyses of pion-nucleon scattering. Also SRC do not qualitatively change the results.
At finite momenta, the in-medium properties of the ρ meson are influenced not only by
the D13(1520) but also by some other higher lying resonances and our model predicts a
different momentum dependence of transverse and longitudinal modes. In the transverse
channel we find that the spectral function is characterized by a substantially broadened
peak, whereas in the longitudinal channel the medium modifications get weaker and at
momenta q ≥ 0.8 GeV the vacuum spectral function is recovered in this channel. The
self-consistent iteration scheme mainly affects the results at low momenta and smears
out the D13(1520)N−1 peak. Thus, by and large the central findings from our previous
calculation [107] can be confirmed, while in particular at finite momenta the effects from
the iterations are weakened. We have also calculated the momentum integrated dilepton
rate at densities and temperatures typically encountered at SPS energies. The results
suggest that our model is able to generate the observed shift of spectral strength down to
smaller invariant masses.

For the pion we reproduce the essential features of the ∆-hole model, i.e. at finite
momenta around 0.3− 0.6 MeV the pion spectral function is dominated by a complicated
peak structure which is derived from the coupling of the pion to NN−1 and P33(1232)N−1

189
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states. Going beyond the usual ∆-hole model we have also investigated the effects of
coupling the pion to other resonance-hole states. The coupling of these states is not
sufficient to generate distinct peaks, but it nonetheless produces a smooth background that
influences the detailed structure of the pion spectral function. Turning to the η meson, we
have calculated both the optical potential – which is of relevance for a quantitative analysis
of η-mesic nuclei – and its spectral function. Based on reasonable predictions for the ηN
scattering length, we arrive at a potential that provides rather strong binding relative to
the life-time of the η. On a quantitative level the inclusion of medium modifications of
the S11(1535) is found to be important. The spectral function of the η meson exhibits an
interesting momentum dependence, receiving attraction at small momenta and repulsion
at large momenta (q ≈ 0.8 GeV), while in the intermediate momentum region we observe
a significant broadening of the η meson.

Turning to the baryon resonances, our model is able to reproduce the in-medium prop-
erties of the P33(1232) resonance and we obtain a reasonable fit of the phenomenological
spreading potential. Here the inclusion of SRC turns out to be absolutely crucial. We have
tried to explain this finding in some detail. The contribution from three-body processes is
found to be very small. Our results for the D13(1520) show some sensitivity on coupling
parameters and the effects of SRC. Assuming both a large coupling of this resonance to
the Nρ channel (corresponding to ΓNρ = 26 MeV), and small effects from SRC leads to a
significant total broadening of about 250−300 MeV. If, on the other hand, ΓNρ = 12 MeV
is taken in combination with a rather large value for the SRC, the in-medium broadening
of the D13(1520) is much reduced. We do not find large contributions to the broadening
from the pion sector. With these uncertainties in mind, the experimental and theoretical
challenge is to pin down the unsettled parameters in more detail. Finally, for the S11(1535)
we find only modest medium effects. Even though there is some uncertainty concerning
the resonance parameters and the strength of SRC, we can exclude the appearance of large
medium modifications on the basis of our model. It is interesting to mention that the
main body of the broadening found for the S11(1535) is due to typical coupled channel
effect: without the rearrangement of spectral strength in the ρ spectral function due to the
D13(1520), the observed broadening would have been even smaller.

We have investigated the differences between a relativistic and a non-relativistic calcu-
lation of the ρ spectral function. Here the essential finding is that a properly performed
non-relativistic reduction leads to very reasonable results for the meson self energies. The
uncertainties due to relativistic effects are certainly much smaller than those related to
poorly known resonance parameters. These results directly carry over to the other mesons.
Also investigated was the effect of various relativistic couplings on the momentum depen-
dence of the ρ spectral function. On a quantitative level, some dependency on the employed
coupling was found. For more conclusive statements detailed information on the relative
weight of these coupling schemes would be needed.

Some care has been taken to set up a self-consistent coupled channel analysis with nor-
malized spectral functions. The effects of self-consistency should clearly have an influence
on the density dependence of the in-medium properties. We have investigated this issue
and found that for the D13(1520) already at small densities around 0.25 ρ0 the low density
expansion breaks down and terms of higher order become important. Also the in-medium
properties of the mesons deviate from a low density expansion, which is either due to ef-
fects from self consistency (ρ meson, η meson) or the effects of SRC (pion). Such effects
are already important at small densities 0.25 ρ0 – 0.5 ρ0. Applying dispersion relations to
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obtain the real part of the in-medium self energies turns out to induce only comparatively
small corrections to the meson spectral functions. There also the normalization is essen-
tially fulfilled already if the real part of the self energy is directly obtained from Feynman
diagram. More important are the real parts of resonance self energies, where otherwise
violations of the normalization condition in the order of 30 − 40% can be found.

We have shortly discussed the effects of dropping baryon resonance masses resulting
from nuclear mean fields. Those are found to be sizeable, which can be explained by the
induced change of the normalization of the wave functions. In particular, the in-medium
width of the baryon resonances tends to be reduced by such effects. One should, however,
be aware of the large theoretical uncertainties related to this topic. In particular, one
knows nearly nothing about the size of the relativistic mean field potentials for the baryon
resonances.

Motivated by the fact that the ρmeson properties are strongly affected by the excitation
of resonance-hole states, we have set up a resonance-hole model for the ω meson as well.
No attempt has been made to consider effects from self consistency here. Since a coupling
of baryon resonances to the Nω channel is not established experimentally, we have used
helicity amplitudes in connection with VMD in order to generate estimates for the coupling
strength. The resonance-hole excitations lead to a much weaker modification of the ω
spectral function compared to the ρ meson, owing to smaller coupling constants which are
not sufficient to produce distinct particle-hole branches. The resulting broadening of the
ω meson is found to be in qualitative agreement with several other analyses.

Let us now turn to possible extensions of the model.

• In-medium decay ω → ρπ and ϕ→ ρπ
An interesting project would consist in a calculation of the in-medium decay ω → ρπ,
using in medium spectral functions both for the pion and the ρ meson. Since in the
vacuum this decay is suppressed from phase space, large effects can be expected in the
medium due to the rearrangement of spectral strength in both channels. Similarly,
one might also study the decay ϕ → ρπ. These calculations could be carried out in
a rather straightforward way.

• Testing the model
In order to test the predictions of this model for ρ meson and D13(1520) it might be
interesting to calculate some observables: Using a reliable description of γN → πN
and γN → 2πN , a calculation of nuclear photoabsorption could help to decide on
the in-medium properties of the D13(1520). It would also be interesting to compare
the results obtained with different parameter sets. By using a simple fireball model
one might try to calculate dilepton spectra from heavy ion collisions. Last but not
least, a QCD sum rule analysis could provide additional constraints on the size of
coupling constants.

• Finite Temperature Effects
An extension of our model to finite temperature involves two steps: 1) The diagrams
considered so far are modified since the Fermi distribution function changes with
temperature and since at finite temperature the nuclear ground state is also popu-
lated by resonances. 2) Whereas at finite density the hadron properties are driven
by hadron-nucleon scattering processes, at finite temperature one has to consider
hadron-pion scattering. The corresponding diagrams would have to be added to the
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model. Whereas both points have – at least to some degree – been considered in
the literature for the ρ meson, not much work has been done for the baryon reso-
nances. When going to finite temperature, also the nucleon spectral function should
be modified.

• ∆π decay channel
For the sake of completeness one could modify the ∆π decay channel of the baryon
resonances. This might have some effect on higher lying states, while it probably
leaves the results for the D13(1520) more or less untouched.

• Relativistic Short-Range Correlations
On a more theoretical level, it might be interesting to consider a relativistic extension
of our model for short-range correlation. This is a very demanding exercise and has
not been attempted in this thesis. Nonetheless, existing relativistic model for P = +1
states show that the non-relativistic limit is only recoved for both small momenta
and energies. This is critical in particular when considering heavy resonances. Thus
one can not expect that for SRC the non-relativistic reduction works as well as for
the meson-nucleon scattering amplitudes.

• Model for NN scattering
In an attempt to pin down uncertainties concerning the cutoff and short-range param-
eters, one might attempt a description ofNN scattering. Reactions like NN → NNπ
or NN → NNη might help to find reasonable ranges for these parameters.

The first three points are likely to be the most interesting ones. A calculation of the
in-medium width of the ω and φ meson would be interesting and could be quite easily
done. Also finite temperature effects for baryon resonances would be an interesting object
to study. However, here the technical complications are considerable. The most promising
way to test the model parameters is a combined consideration of nuclear photoabsorption,
heavy ion collisions and QCD sum rules. Ideally one can find one parameter which is in
reasonable agreement with all three quantities, which support the predictive power of our
model.

The last three points are less interesting. The implementation of the decay R → ∆π
can be easily done, but it will most likely not greatly affect the results. The other points
are interesting from a theoretical point of view. They involve, however, a large effort and
it is not guaranteed that at the end the model will be more quantitative.



Appendix A

Parameters

We use the following parameters:

coupling constant fNNπ = 1.0 fNNη = 2.34 fNNρ = 7.8 f∆Nρ = 10.5

cutoffs [GeV] Λπ = 1.0 Λη = 1.5 Λρ = 1.5 Λg = 1.5

short range gp,NN
π = 0.6 gp,RNRM

π = 0.45 gp,NN
η = 0.6

gs
π = (0, 0.1) gs

ρ = (0, 0.1) gd
π = (0, 0.4) = gpd

π gs
η = (0, 0.1)

Table A.1: Parameters used in the calculations.

Here the brackets denote the range within which we allow the respective parameter to
vary. Note that at each vertex corresponding to short-range interactions we multiply a
monopole form factor [7, 49]:

Fg(q
2) =

(
Λ2

g

Λ2
g − q2

)2

. (A.1)

The value for also Λg is also taken from this reference. Let us comment on theses choices
for coupling constants and cutoff parameters. For the coupling constant fπNN hardly any
uncertainties exist and a value of fπNN = 1 can be found in various places, for example in
[99, 7]. For fNNη and the cutoff Λη we take the values given in the work of [26], which was
originally suggested in [88]. The values for fρNN and fρN∆ lie within the ranges suggested
in for example [49, 17, 99] and are a obtained by a mix of quark model considerations and
fits to NN scattering. These fits also determine the approximately the values of the cutoff
parameters, in particular the rather large value for Λρ is suggested from those data, see for
example [49].

The cutoff used in the form factor F (k2) of Eq. 3.23 for pseudoscalar (π, η) meson is
taken to be Λ = 1 GeV.
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m Γtot ΓNπ ΓNρ
Γ∆π ΓNη ΓNω J I lφ lV Λs

ρ

∆(1232) 1.232 0.12 0.12 0 0 0 0 3/2 3/2 p p 0.8

N(1720) 1.717 0.131 0.011 0.11 0 0 0 3/2 1/2 p p 1.0

N(1879) 1.879 0.498 0.13 0.217 0 0 0.151 3/2 1/2 p p 1.1

N(1680) 1.684 0.139 0.096 0.011 0.031 0 0 5/2 1/2 f p 0.9

∆(1905) 1.881 0.329 0.041 0.282 0.06 0 0 5/2 3/2 f p 1.4

N(2000) 1.903 0.494 0.039 0.369 0.086 0 0 5/2 1/2 f p 1.4

N(1535) 1.534 0.151 0.077 0.005 0.004 0.066 0 1/2 1/2 s s 0.8

∆(1620) 1.672 0.153 0.014 0.044 0.0095 0 0 1/2 3/2 s s 0.9

N(1650) 1.659 0.173 0.154 0.005 0.008 0.006 0 1/2 1/2 s s 0.9

N(2090) 1.928 0.415 0.043 0.203 0.167 0.002 0 1/2 1/2 s s 1.5

N(1520) 1.524 0.124 0.073 0.026 0.025 0 0 3/2 1/2 d s 0.9

∆(1700) 1.762 0.598 0.081 0.046 0.471 0 0 3/2 3/2 d s 1.3

∆(1940) 2.057 0.460 0.081 0.046 0.471 0 0 3/2 3/2 d s 1.8

N(2080) 1.804 0.447 0.104 0.114 0.229 0 0 3/2 1/2 d s 1.6

Table A.2: List of all resonances which are taken into account in our calculation. All
quantities are given in GeV. Apart from mass and width into the individual decay channels,
we also give spin and isospin as well as the lowest orbital angular momentum needed in
pseudoscalar (φ) or vector (V ) meson scattering on a nucleon to form the resonance. In
the last row we denote the cutoff of the form factor F (s) at the ρN R vertex.
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m ΓNπ ΓNρ Γ∆π

∆(1232)(?) 1.232 1.234 1.232 112 118 120 0 0 0 0 0 0

N(1720)(?) 1.717 1.716 1.720 50 6 22.5 333 110 112 0 0 —

N(1879) 1.879 — — 130 — — 217 — — 0 — —

N(1680)(?) 1.684 1.679 1.68 97 88 84.5 16 10 12 32 31 29

∆(1905)(?) 1.881 1.873 1.905 36 22 35 258 59 > 210 3 164 < 88

N(2000) 1.903 — 2.0 31 — — 369 — — 62 — —

N(1535) 1.534 1.542 1.535 77 39 67.5 4.5 2 < 6 5 16 < 12

∆(1620)(?) 1.672 1.617 1.620 14 64 37.5 45 23 24 95 56 67.5

N(1650)(?) 1.659 1.689 1.650 154 150 105 5 28 12 9 12 6

N(2090) 1.928 1.822 2.090 41 42 — 203 92 — 166 12 —

N(1520)(?) 1.524 1.518 1.52 73 78 66 26 11 24 25 33 24

∆(1700)(?) 1.762 1.732 1.700 84 6 45 48 1 135 467 112 135

∆(1940) 2.057 — 1.940 81 — — 162 — — 217 — —

N(2080) 1.804 2.003 2.080 103 139 — 116 64 — 228 867 —

Table A.3: List of all resonances which are taken into account in our calculation. All
masses are given in GeV, the decay widths are given in MeV. We compare the results from
the analysis of Manley et al [89](left), Vrana et al [124](middle) with the values quoted in
the PDG [46](right). Those resonances with a ? have already been included in [107].
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Appendix B

Feynman Rules and Observables

B.1 γ Matrices and σ Matrices

B.1.1 σ matrices

The σ matrices are defined as follows:

σx =

(
0 1
1 0

)

, σy =

(
0 −i
i 0

)

, σz =

(
1 0
0 −1

)

. (B.1)

They fulfill the following (anti)commutation relations:

[σi, σj] = 2 i εijk σk , {σi, σj} = 2 δij .

Adding up both relations one gets the important formula

σi σj = δij + i εijk σk , (B.2)

which simplifies the calculation of traces over σ matrices. We give now some trace relations:

Tr [11] = 2 ,

T r [σi] = 0 ,

T r [σi σj] = 2 δij , (B.3)

Tr [σi σj σk] = 2 i εijk ,

T r [σi σj σk σl] = 2 (δijδkl − δikδjl + δilδjk) .

The totally antisymmetric three-dimensional tensor εijk is defined as:

εijk =







1 , if i, j, k cyclic
−1 , if i, j, k acyclic

0 , if any of i, j, k are equal
. (B.4)

The contractions of two ε tensors are given by:

εijk εmnk = δim δjn − δin δjm ,

εijk εmjk = 2 δim ,

εijk εijk = 6 .
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B.1.2 γ matrices

The γ matrices are defined by their anticommutator:

{γµ, γν} = 2 gµν . (B.5)

Two combinations of the γ matrices are of particular interest:

γ5 = i γ0 γ1 γ2 γ3 (B.6)

σµν =
i

2
[γµ γν] . (B.7)

From the definition of γ5 it follows directly that

{
γµ, γ5

}
= 0 . (B.8)

The hermitian conjugate of the γ matrices is defined as:

γµ † = γ0 γ
µ γ0 , (B.9)

from which follows that γ0, γ5 and σµν are hermitian, whereas the γi are antihermitian.
From the anticommuation relation and the definition of γ5 follow the following trace rela-
tions for the γ matrices:

Tr [11] = 0 ,

T r [γµ] = 0 ,

T r [γµ γν] = 4 gµν ,

T r
[
γµ γν γκ γλ

]
= 4

(
gµν gκλ − gµκ gνλ + gµλ gνκ

)
,

T r [any odd number of γ’s] = 0 ,

T r
[
γ5
]

= 0 ,

T r
[
γµ γν γ5

]
= 0 ,

T r
[
γµ γν γκ γλ γ5

]
= −4 i εµνκλ .

(B.10)

Throughout this work we will stick to the Dirac representation of the γ matrices, in which
they read:

γ0 =

(
11 0
0 −11

)

, γi =

(
0 σi

−σi 0

)

, γ5 =

(
0 11
11 0

)

. (B.11)

In analogy to the three-dimensional case one can define a four-dimensional totally anti-
symmetric tensor εµνκλ by:

εµνκλ =







1 , if µ, ν, κ, λ cyclic
−1 , if µ, ν, κ, λ acyclic

0 , if any of µ, ν, κ, λ are equal
. (B.12)



B.2. Spin-1
2

Spinors 199

B.2 Spin-1
2 Spinors

The spinor us(p) is a solution of the free Dirac equation:

(p/−m) us(p) = 0 (B.13)

ūs(p) (p/−m) = 0 ,

where ūs(p) is defined by:

ūs(p) = u†s(p) γ
0 .

By solving the free Dirac equation, the explicit form of us(p) is found to be:

us(p) =
√

Ep +m

(
χs

σ p

Ep+m
χs

)

, (B.14)

where χs is the Pauli spinor and Ep denotes the on-shell energy
√

m2 + p2. This implies

that for a resonance with pole mass mR but invariant mass
√

p2 one has Ep =
√

p2 + p2

and m =
√

p2. The normalization and the completeness relation of the spinors read:

ūr(p) us(p) = 2mδr s
∑

s

us(p) ūs(p) = p/ +m (on-shell) (B.15)

∑

s

us(p) ūs(p) = p/ +
√

p2 (off-shell) .

Projectors onto states with spin- 1
2

are readily constructed. The Dirac equation suggests
the following form for on-shell states

P1/2 =
p/+m

2m
, (B.16)

whereas for off-shell states with invariant mass
√

p2 6= m one finds:

P1/2 =
p/+

√

p2

2
√

p2
. (B.17)

B.3 Polarization Vectors

Free massive spin-1 particles are described by the Proca equation

∂µ V
µν +m2

V V
ν = 0 (B.18)

where V µν = ∂µV ν − ∂νV µ .

This implies 4-transversality of the free spin-1 fields:

∂µ V
µ = 0 .
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For a particle moving along the z axis, the three-transverse polarization vectors εTµ are
determined by the condition q ε T = 0. They read:

εTµ,1 =
1√
2

(0, 1, i, 0) , εTµ,2 =
1√
2

(0, 1,−i, 0) .

The corresponding vectors for a particle moving along a different direction are obtained
by a Lorenz transformation. The three-longitudinal polarization vector εLµ can be written
down in a covariant way:

εLµ(q) =

√

q2

(n.q)2 − n2q2

(

nµ − qµ
n.q

q2

)

=
1
√

q2
(−|~q|, q0 ~e~q) ,

where in the last line the special choice nµ = (mN , 0) was used. This choice is motivated
by the fact that we will be interested in the polarization of vector particles with respect to
nuclear matter, which is typically represented by nµ. Note that a proper definition of εLµ(q)
is only possible for time-like four-momenta qµ.The polarization vectors are orthogonal to
each other and normalized to −1:

ελ, µ ελ
′, ?

µ = −δλ λ′ .

With help of the polarization vectors one can construct the 4-transverse projector P T
µν :

∑

λ

ελ ,?
µ ελν = −gµν +

qµ qν
q2

= −P T
µν(q) .

One may also define a 4-longitudinal projector P L
µν, such that in the vacuum one gets two

projectors:

PL
µν(q) =

qµ qν
q2

. (B.19)

Note that only P T
µν(q) is current conserving, i.e. qµ P T

µν(q) = 0. The projectors have the
properties:

P T
µα(q)P αT

ν (q) = P T
µν(q)

PL
µα(q)P αL

ν (q) = PL
µν(q) (B.20)

P T
µα(q)P αL

ν (q) = 0 .

For the trace of both projectors one fins:

Tr
[
P T

µν

]
= 3 , T r

[
PL

µν

]
= 1 .

By summing only over the transverse or longitudinal polarization, one obtains the
corresponding projectors Tµν(q) and Lµν(q), which read in a covariant notation:

Lµν(q) = − q2

(n.q)2 − n2q2

(

nµ − qµ
n.q

q2

)(

nν − qν
n.q

q2

)

(B.21)

Tµν(q) = P T
µν(q) − Lµν(q) .
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One can easily check that they fulfill the usual projector properties such as

Lµν T
ν

α = 0 , Lµν L
ν

α = Lµα .

Furthermore, one has

Tr [Lµν ] = 1 , T r [Tµν] = 2 .

The propagator of a massive spin-1 field is given by:

− iDµν(q) =
gµν − qµqν/m

2

q2 −m2
(B.22)

=
P T

µν

q2 −m2 + iε
− 1

m2

qµqν
q2

,

where in the second line we have indicated that away from the mass shell also four-
longitudinal components are propagated.

B.4 Spin-3
2

Spinors

Spin-3
2

fields result from the coupling of spin-1 and spin- 1
2

fields. They carry both Lorentz-
and Dirac indices:

uµ
s (k) =

∑

r,m

(
3

2
, s|1

2
, r ; 1, m

)

ur(k) ε
µ
m(k) , (B.23)

where ur(k) and εm are spin-1
2

spinor and spin-1 polarization vector, respectively. Plugging
in the Clebsch-Gordan coefficients, this leads to the following explicit form of the spinors:

uµ

± 3
2

(k) = u± 1
2
(k) εµ±1(k)

uµ

± 1
2

(k) =

√

1

3
u∓ 1

2
(k) εµ±1(k) +

√

2

3
u± 1

2
(k) εµ0 (k) .

For a spin-3
2

particle of mass m propagating along the z axis, the spinor may be written
down in the following way:

uµ
s (k) =

√

Ek +m

(
11
σ k

Ek+m

)

Sµ χs , (B.24)

where χs denotes the spin states:

χ+ 3

2
=







1
0
0
0







, χ+ 1

2
=







0
1
0
0







, χ− 1

2
=







0
0
1
0







, χ− 3

2
=







0
0
0
1






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and the Sµ are coupling matrices containing the Clebsch-Gordan coefficients for the cou-
pling 1 ⊗ 1

2
= 3

2
:

S0 =
k

m





0
√

2/3 0 0

0 0
√

2/3 0



 , S1 =





−
√

1/2 0
√

1/6 0

0 −
√

1/6 0
√

1/2





S2 = i





√

1/2 0
√

1/6 0

0
√

1/6 0
√

1/2



 , S3 =
E

k
S0

(B.25)
As in the case of spin- 1

2
fields, the adjungated spinor is defined as:

ūs(k)
µ = uµ †

s (k) γ0 .

The spinors uµ
s (p) are subject to the Rarita-Schwinger equations:

(k/−m) uµ
s (k) = 0

kµ u
µ
s (k) = 0 (B.26)

γµ u
µ
s (k) = 0 .

Upon realizing that the matrix k/ acts on the spin- 1
2

component of uµ
s (k) and kµ on the

spin-1 part, which is four-transversal, the first two equations follow directly from Eqs. B.23
and B.24. Note also, that the second constraint is fulfilled also for off-shell states.

Spin-1 and spin-1
2

fields can not only be coupled to form a total spin of 3
2
, but they

may also form spin- 1
2

states. As it turns out, these spin- 1
2

modes show up in the off-shell
part of the spin-3

2
propagator Gµν(k):

iGµν(k) =
k/+m

k2 −m2

(

gµν − 1

3
γµ γν − 2

3m2
kµ kν +

1

3m
(kµ γν − kν γµ)

)

=
k/+m

k2 −m2
P µν

3/2 −
2

3m2
(k/+m)P µν

22 +
1√
3m

(P µν
12 + P µν

21 ) . (B.27)

Here the spin-3
2

projector P µν
32 as well as the projectors P µν

22 , P µν
12 and P µν

21 have been
introduced. The latter project onto the spin- 1

2
part of the theory. These projectors are

given by:

P µν
22 =

kµ kν

k2

P µν
11 =

1

3
γµγν − kµkν

k2
+

1

3 k2
(k/γµkν + kµγνk/)

P µν
21 =

1√
3k2

(kµkν − k/γµkν) (B.28)

P µν
12 =

1√
3k2

(k/kµγν − kµkν)

P µν
32 = gµν − 1

3
γµγν − 1

3k2
(k/γµkν + kµγνk/) .
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The fact that away from the mass shell modes with a different are propagated is akin to
the situation for spin-1 fields, see Section B.3. Whereas the meaning of P µν

32 is obvious,
the projectors onto the spin- 1

2
subspace need some discussion. Due to Eq. B.23 and

the transversality condition kµ ε
µ = 0, P µν

22 can be identified as a projector onto states
defined by 0 ⊕ 1

2
= 1

2
. This also elucidates the role of P µν

11 . Since the projectors fulfill the
completeness relation

P µν
3/2 + P µν

11 + P µν
22 = gµν , (B.29)

P µν
11 projects onto those states for which 1 ⊕ 1

2
= 1

2
. The Rarita-Schwinger spinors obey a

completeness relation:

∑

r

uµ
r (k) ū

ν
r(k) = −(k/+m)

(

gµν − 1

3
γµ γν − 2

3m2
kµ kν +

1

3m
(kµ γν − kν γµ)

)

,

which for on-shell states with k2 = m2 can be rewritten as:
∑

r

uµ
r (k) ū

ν
r(k) = −(k/+m)P µν

3/2(k) = Λµν . (B.30)

Here the relation (p/+
√

p2)
√

p2 =
√

p2(p/+
√

p2) was used.

B.5 Feynman Rules

Non Interacting Theory

• spin-0 propagator:
For each internal scalar boson line assign a factor

D(q) =
i

q2 −m2 + i ε

• spin-1 propagator:
For each internal vector boson line assign a factor

Dµν(q) = i
gµν − qµ qν/m2

q2 −m2 + i ε

• spin-1
2

propagator:
For each internal spin- 1

2
line assign a factor

G(p) =
i

p/−m

• spin-3
2

propagator:
For each internal spin- 3

2
line assign a factor

Gµν(k) = −i k/+m

k2 −m2 + i ε

(

gµν − 1

3
γµ γν − 2

3m2
kµ kν +

1

3m
(kµ γν − kν γµ)

)
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• external spin- 1
2
-particle with spin projection s:

us(p) , if in initial state , ūs(p) , if in final state

• external vector meson with polarization λ:

ελµ(p) , if in initial state , ελ ?
µ (p) , if in final state

• for each vertex an additional factor of (−i)

• for each incoming (outgoing) momentum a factor +(−) i qµ

• for each loop assign a factor

∫
d4p

(2π)4

• if two fermions are in the same loop, multiply with an additional factor of (−1)

With these rules one obtains iM, −iΠ and −iΣ.

Interacting Theory

In an interacting theory, the propagators are modified by self energy contributions. We
use the following expressions for the propagators of an interacting theory:

• spin-0 propagator:
For each internal scalar boson line assign a factor

D(q) =
i

q2 −m2 − Π(q)

• spin-1 propagator:
For each internal vector boson line assign a factor

Dµν(q) = i
gµν − qµ qν/m2

q2 −m2 − Π(q)

• spin-1
2

propagator:
For each internal spin- 1

2
line assign a factor

G(p) = i
p/+

√

p2

p2 −m2 − 〈Σ(p)〉

The definition of 〈Σ(p)〉 is given in Eq. D.12.

• spin-3
2

propagator:
For each internal spin- 3

2
line assign a factor

Gµν(k) = −i k/+
√
k2

k2 −m2 − 〈Σ(k)〉

(

gµν − 1

3
γµ γν − 2

3 k2
kµ kν +

1

3
√
k2

(kµ γν − kν γµ)

)

The definition of 〈Σ(k)〉 is given in Eq. D.17.
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• Relativistic nucleon propagator

The relativistic in-medium propagator of the nucleon accounts for the propagation
of particle, hole and antiparticle states [119]:

Gmed
N (p) = i

1

2E(p)

{

(p/+mN)

[

1 − θ(pF − |p|)
p0 − E(p) + iε
︸ ︷︷ ︸

particle

+
θ(pF − |p|)

p0 − E(p) − iε
︸ ︷︷ ︸

hole

]

(B.31)

−(p̃/+mN )
1

p0 + E(p) − iε
︸ ︷︷ ︸

antiparticle

}

,

with p/ = E(p)γ0 − pγ and p̃/ = −E(p)γ0 − pγ.

• Non-relativistic nucleon propagator

In a non-relativistic framework the in-medium propagator reduces to the propagation
of particle and hole states [33]:

Gmed
N (p) = i

1 − θ(pF − |p|)
p0 − E(p) + iε

+
θ(pF − |p|)

p0 − E(p) − iε
. (B.32)

B.6 Observables

In this Section we give explicit expressions for some often used relations:

• The cm momentum of the decay products in a reaction a↔ b + c is given by:

p2
cm =

(m2
a − (mb +mc)

2)(m2
a − (mb −mc)

2)

4m2
a

(B.33)

=
m2

a −m2
b +m2

c

4m2
a

−m2
c ,

where the second representation is useful if one of the decay products has a space
like 4-momentum. Closely related to pcm is plab, which is the momentum of particle
c if particle b is at rest. By equating the invariant energy s of particles b and c, one
obtains:

m2
b +m2

c + 2mbEc = s = (Ecm
b + Ecm

c )2

⇒ (B.34)

q2
cm =

m2
N

s
p2

lab .

• The Lorentz invariant two-body phase space Φ2 can be integrated out and one obtains
in the cm frame:

Φ2 =

∫

dΦ2 =
1

4π

pcm√
s

dΦ2 =
d3pb

(2π)3

1

2Eb

d3pc

(2π)3

1

2
√
s

(2π)4 δ(4)(pa − pb − pc) (B.35)
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where pb and pc denote the 4-momenta of the two particles in the final state, pcm is as
defined above and

√
s stands for the the total energy of the system in the cm frame.

• The differential cross section for a reaction of the type a + b→ c+ d is given by:

dσ =
1

2Ea 2Eb |va − vb|
|Ma+b→c+d|2 dΦ2 (B.36)

The first factor represents the flux and can be evaluated to yield:

1

2Ea 2Eb |va − vb|
=

1

4mb |pa lab|

=
1

4
√
s pcm

• The decay width Γ follows from the following formula:

Γ =
1

2Ea

∫

dΦ2 |Ma→b+c|2 (B.37)

=
1

2Ea
|Ma→b+c|2

pcm

4
√
s

.

The last transformation is possible when one averages over the spin of the decaying
particle, otherwise the squared matrix element depends on the angle. In the rest
frame of the decaying particle, one has Ea → √

s.

• The optical theorem relates the total cross section to the forward scattering ampli-
tude:

σ =
1

2
√
s pcm

Mforward . (B.38)



Appendix C

Lagrangians and Traces

C.1 Relativistic

In this Section we will write down the relativistic Lagrangians used for the description
of the coupling of baryon resonances to nucleons and pseudoscalar mesons ϕ or vector
mesons/photons V µ. The guiding principle in writing down these interaction terms is that
they are Lorentz invariant and gauge invariant and respect parity conservation.

C.1.1 Lagrangian

We assume the following coupling of a resonance with the quantum numbers Jπ (spin J
and parity π) to the ϕN channel:

LRNϕ =
f

mϕ
ψ̄R γ

µ

{
i γ5

11

}

ψN ∂µ ϕ for Jπ = 1
2

±

LRNϕ =
f

mϕ
ψ̄µ

R

{
11
i γ5

}

ψN ∂µ ϕ for Jπ = 3
2

±

(C.1)

The standard coupling of a resonance with the quantum numbers Jπ for spin J and
parity π to the V N channel reads:

LRNV =
f

mV
ψ̄R σ

µν

{
11
i γ5

}

ψN ∂µ Vν for Jπ = 1
2

±

LRNV =
f

mV
ψ̄µ

R γ
ν

{
i γ5

11

}

ψN Vµν for Jπ = 3
2

±

(C.2)

In Eq. C.1 the coupling of pseudoscalar mesons to the nucleon current is already
contained in the coupling to a resonance with quantum numbers Jπ = 1

2

+
. The interaction

of vector mesons with the nucleon current is determined by the Lagrangian:

L = gV

(

ψ̄N γ
µ ψN Vµ +

κV

2mN
ψ̄N σ

µνψN Vµν

)

, (C.3)

and for the NNϕ coupling we pseudovector coupling

L =
f

mϕ

ψ̄N i γ5 γ
µ ψN ∂µ ϕ . (C.4)
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C.1.2 Traces

In this work the Lagrangians are used to find analytic expressions for the decay width of a
resonance and to calculate the meson-nucleon forward scattering amplitude. In both cases
one needs to calculate a trace which is of the generic form

Ωϕ
1/2 = Tr

[

V (k/+
√
k2)V† (p/+mN)

]

(C.5)

Ωϕ
3/2 = Tr

[
Vµ Λµν(k)Vν † (p/+mN )

]
.

for pseudoscalar mesons and

Ω
T/L
1/2 = P T/L

µν Tr
[

Vµ (k/+
√
k2)Vν † (p/+mN )

]

(C.6)

Ω
T/L
3/2 = P T/L

µν Tr
[

Vµ
α Λαβ(k)Vν †

β (p/ +mN)
]

.

for vector mesons. The operator Λµν(k) has been introduced in Eq. B.30. The vertex
factors V are obtained from the above Lagrangians Eqs. C.1 and C.2. To be more specific,
we give V for the coupling a Jπ = 1

2

+
resonance to a pseudoscalar meson and to a vector

meson:
V = γµ i γ5 qµ pseudoscalar meson

Vν = σµν qµ vector meson
(C.7)

We display results for these traces in Table C.1 as obtained in the cm frame of the resonance
and in the rest frame of the nucleon.

The upper (lower) sign refers to resonances with positive (negative) parity. Here q0 and
q denote energy and three-momentum of the meson,

√
s the invariant mass of the meson-

nucleon system. The center-of-mass quantities qcm, q0,cm and Ecm
N are the 3-momentum and

energy of the nucleon in the rest frame of the resonance. The transition from laboratory

frame to center-of-mass frame is straightforward, if one realizes that q = qcm

√
s

mN
and

q0 +mN =

√
s

mN
Ecm

N .

C.2 Non Relativistic

In this Section we describe how the non-relativistic interactions derive from the relativistic
ones. The idea behind the non-relativistic reduction is the following: think of an amplitude
involving a spin- 1

2
resonance, a nucleon and a meson. It will be of the generic form:

Mss′ = NR NN

(

χ†
s,

σ · k
ER +mR

χ†
s

)(
Γ11 Γ12

Γ21 Γ22

)( χ′
s

σ · pN

EN +mN
χ′

s

)

(C.8)

Here NR and NN denote the normalization factors
√
ER +mR and

√
EN +mN arising

from the relativistic spinors (cf. Appendix B.2). The Γij are 2×2 matrices and χ is a two-
component Pauli spinor. By writing out the matrix product, one produces an expansion
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Ω
ϕ
1/2 lab 4mN (q2(mN + q0 ∓

√
s) + 2q2mN)

cm 4
√
s (q2 (Ecm

N ∓mN) + 2
√
sq2

cm)

Ω
ϕ
3/2 lab

8

3

m3
N

s
q2 (mN + q0 ±

√
s)

cm
8

3

√
sq2

cm (Ecm
N ±mN )

ΩT
1/2 lab ΩL

1/2 + 8m2
N q2

cm ΩL
1/2 + 8 sq2

cm

ΩL
1/2 lab 4mN q

2 (mN + q0 ∓
√
s)

cm 4
√
s q2 (Ecm

N ∓mN )

ΩT
3/2 lab ΩL

3/2 +
8

3
m2

N q2

(

1 +
mN q0 +m2

N

s

)

cm ΩL
3/2 +

8

3
sq2

cm

(

1 +
Ecm

N√
s

)

ΩL
3/2 lab

8

3
mN q

2 (mN + q0 ∓
√
s)

cm
8

3

√
s q2 (Ecm

N ∓mN )

Table C.1: Results for the relativistic traces Ω as appearing in the calculation of the
resonance decay width and the meson self energy. Further explanations are given in the
text.

in pN/EN and in k/ER:

Mss′ = NR NN χ
†
s

(

Γ11 + Γ12
σ · pN

EN +mN
+

σ · k
ER +mR

Γ21+ (C.9)

+
σ · k

ER +mR
Γ22

σ · pN

EN +mN

)

χs′ .

Keeping only the first non-vanishing term of this series then yields the non-relativistic form
of the amplitude. Only Γ11 and Γ12 contribute, if the resonance is assumed to be at rest.

We illustrate the procedure for the case of a pseudoscalar meson coupling to a resonance
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with Jπ = 1
2

+
. In the rest frame of the resonance the amplitude reads:

Mss′ = ūs γ
µ γ5 us′ qµ

= NR NN

(
χ†

s , 0
)
γ0 γµ γ5

(
χs′

σ · pN

EN +mN
χs′

)

qµ

= NR NN

(
χ†

s , 0
)
[

γ5 q0 +

(
σ 0
0 σ

)

q

]( χs′

σ · pN

EN +mN

χs′

)

(C.10)

= NR NN χ
†
s

[
σ · pN

EN +mN
q0 + σ · q

]

χs′

≈
√

2mR

√
2mN χ

†
s σ · qχs′ .

The only approximation in the above transformations has been done in the last line, where
the term pN/mN was neglected, in agreement with the non-relativistic scheme.

Spin-3
2

resonances are handled in much the same way. The treatment of the Rarita-
Schwinger spinors follows directly from Eq. B.24. To be explicit, we consider the case of
a pion coupling to a resonance with Jπ = 3

2

+
:

Mss′ = ūs S
µ † us′ qµ

= NR NN

(
χ†

s , 0
)

S†

(
χs′

σ · pN

EN +mN
χs′

)

q (C.11)

≈ NR NN χ
†
s S† · qχs′ .

By going from the first to the second line we made use of S0 = 0 for spin-3
2

particles at rest.
The matrix S denotes the spin- 3

2
transition operator, as given in Eq. B.25. This is one of

the cases where the non-relativistic reduction can be done without any approximations.

As mentioned before, we have so far assumed that the non-relativistic reduction is
performed in the rest frame of the resonance. This is, however, not mandatory and one
might as well choose the rest frame of nuclear matter with pN = (mN , 0). The leading
contribution proportional to Γ11 will formally look the same since it arises from the upper,
momentum independent, component of the spinor. However, energy and momentum of the
meson are then to be taken in the rest frame of nuclear matter.

A note concerning calculation techniques in the spin- 3
2

sector is in order now. In the
calculation of Ωϕ and ΩT/L one encounters a completeness relation over the non-relativistic
spin-3

2
states:

P ij
3/2 =

∑

r

ui
r u

j †
r =

∑

r

Si
r,s χs χ

†
s′ S

j †
r,s′ (C.12)

= δij − 1

3
σi σj .

We do not derive the last step explicitly, since it can be found in many references [33, 38].
This result is quite intuitive though if one compares it with the relativistic expression for
the spin-3

2
projector in Eq. B.28. Taking the limit k → 0 and keeping only the 2×2 matrix
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in the upper left corner, one recovers the result from Eq. C.12. Similarly, one can define
a projector onto spin- 1

2
states:

P ij
1/2 =

1

3
σi σj , (C.13)

which is the non-relativistic analogon to P µν
11 in Eq. B.28.

Not present in our relativistic formulation are the couplings to spin- 5
2

resonances, owing
to the rather involved formalism required. The construction of a non-relativistic spin- 5

2

state is less complicated. It can be generated by the coupling of two spin-1 states with one
spin-1

2
state:

uij
r =

∑

s,λ,λ′,κ

(
5
2
, r|2κ; 1

2
s
)
(2κ|1λ; 1λ′) εiλ ε

j
λ′ χs .

Note the analogy to the construction of spin- 3
2

states in Eq. B.23. The spin- 5
2

states carries
only vector indices since in the rest frame the 0-th components of the polarization vector
vanish. The corresponding projector onto spin- 5

2
states reads [38]:

P ij,kl
5/2 =

1

2
(δikδjl + δilδjk) −

1

5
δijδkl − (C.14)

− 1

10
(δik σj σl + δil σj σk + δjk σi σl + δjl σi σk) .

C.2.1 Lagrangian

The non-relativistic Lagrangians presented here are derived from the relativistic ones as
given in Eqs. C.1 and C.2.

The Lagrangian describing the coupling to a pseudoscalar meson and a nucleon reads:

LRNϕ = i
f

mϕ
ψ†

R σk ψN ∂k ϕ for Jπ = 1
2

+

=
f

mϕ
ψ†

R ψN ∂0 ϕ for Jπ = 1
2

−

LRNϕ =
f

mϕ
ψ†

R S
†
k ψN ∂k ϕ for Jπ = 3

2

+

= i
f

2mN mϕ
ψ†

R S
†
k σl (∂l ψN ) ∂k ϕ for Jπ = 3

2

−

LRNϕ =
f

mϕ

ψ†
RRi j σkψN ∂i ∂j ∂k ϕ for Jπ = 5

2

+

(C.15)
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The coupling to vector mesons and nucleons is described by:

LRNρ =
f

mV
ψ†

R σj ψN εjkl ∂k ρl for Jπ = 1
2

+

= i
f

mV
ψ†

Rσk ψN (∂k ρ0 − ∂0 ρk) for Jπ = 1
2

−

LRNρ = i
f

mV

ψ†
R S

†
j ψN εjkl ∂k ρl for Jπ = 3

2

+

=
f

mV
ψ†

R S
†
k ψN (∂k ρ0 − ∂0 ρk) for Jπ = 3

2

−

LRNρ =
f

mV
ψ†

R Rij ψN∂j ρ
T
i for Jπ = 5

2

+

(C.16)

In the last line the notion ρT
i is meant to imply that only transversely polarized vector

particles couple to spin- 5
2

resonances.
The non-relativistic coupling of pseudoscalar mesons and vector mesons is taken to be:

LNNϕ = i
f

mϕ

ψ†
N σk ψN ∂k ϕ

LNNρ =
f

mρ

ψ†
N σj ψN εjkl ∂k ρl .

(C.17)

We close this Section by writing down the Lagrangian from the coupling of baryon
resonances to the ∆π channel which are needed for the parametrization of Γ∆π, see Eq.
3.19 in Chapter 3. For spin- 1

2
resonances the coupling to this channel can be read off the

non-relativistic Lagrangians of Eq. C.15. For spin- 3
2

states one finds:

LR∆π =
f

m∆
ψ†

R S
†
k Sk ψ∆ π for Jπ = 3

2

−
.

LR∆π =
f

m∆
ψ†

R S
†
i Sj ψ∆εijk∂k π for Jπ = 3

2

+
.

(C.18)

For the coupling of spin- 1
2

resonances the appropriate Lagrangians of Eq. C.15 can be
applied.

C.2.2 Traces

In analogy to the relativistic case, we give now results for the traces Ωϕ and ΩT/L. The
results are given in Table C.2. Energy q0 and momentum q of the meson are taken either in
the cm-frame of the rest frame of nuclear matter. In the calculations we replace mR →

√
k2.

In Table C.3 we give results for the traces generated by the contact interactions describing
short-range correlations.
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Ω
ϕ
1/2 π = +1 8mN mR q2 Ω

ϕ
3/2 π = +1

16

3
mN mR q2

π = −1 8mN mR q
2
0 π = −1

16

3
mN mR

q4

4m2
N

Ω
ϕ
5/2 π = +1

16

5
mN mR q2

ΩT
1/2 π = +1 8mN mR q2 ΩT

3/2 π = +1
16

3
mN mR q2

π = −1 8mN mR q0
2 π = −1

16

3
mN mR q0

2

ΩL
1/2 π = +1 0 ΩL

3/2 π = +1 0

π = −1 8mN mR q
2 π = −1

16

3
mN mR q

2

ΩT
5/2 π = +1

12

5
mN mR q2

Ω∆ π = +1
80

9
m∆mR q2

π = −1 16m∆mR

Table C.2: Non-relativistic traces for the resonance decay and the meson self energy.

Ω
ϕ,red
1/2 π = +1 8mN mR Ω

,red
3/2 π = +1

16

3
mN mR

π = −1 8mN mR π = −1
16

3
mN mR

q2

4m2
N

Ω
T,red
1/2 π = +1 8mN mR Ω

T,red
3/2 π = +1

16

3
mN mR

π = −1 8mN mR π = −1
16

3
mN mR

Ω
L,red
1/2 π = +1 0 Ω

L,red
3/2 π = +1 0

π = −1 8mN mR π = −1
16

3
mN mR

Ω
T,red
5/2 π = +1

12

5
mN mR

Table C.3: Reduced traces Ωred, which arise from the contact interactions.
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Appendix D

Self-energy and Dyson-Schwinger

equation

In this Appendix we discuss the construction of the propagator in an interacting theory.
It is based on two ingredients: a self energy summarizing the effects of the interactions
and the Dyson-Schwinger equation which expresses the full propagator in terms of the self
energy. In the first part of this Appendix we discuss the Dyson-Schwinger equation and the
matrix structures arising for propagator and self energy for fields with spin. In the second
part we will be concerned about how to calculate the self energy. There we concentrate on
the calculation of the imaginary part. A detailed discussion of the real part can in found
Appendix E.

D.1 Dyson-Schwinger Equation

In the absence of interactions the propagator of a scalar field with mass M0 is given by
[106]:

D0(q
2) =

1

q2 −M2
0

. (D.1)

Interactions of the particle give rise to the self energy Π(q2), which leads to corrections of
the propagator D0(q

2). For energies above the threshold for 2-body decay, Π(q2) has both
a real and an imaginary part. In lowest order perturbation theory, the propagator then
reads:

D1(q
2) = D0(q

2) Π(q2)D0(q
2) . (D.2)

Such an approximation is useful whenever the particle is only weakly interacting and the
self energy is small, for example in QED [106]. For strongly interacting systems, it is
appropriate to perform a partial resummation of the self energy insertion Π(q2). The
resulting geometric series is readily summed up:

D(q2) = D0(q
2) + D0(q

2)Π(q2)D(q2)

=
D0(q

2)

1 −D0(q
2)Π(q2)

(D.3)

=
1

q2 −M2
0 − Π(q2)

.
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This equation is easily interpreted: as a consequence of the interactions the bare particle
mass M0 is shifted by Re Π(q2). The physical mass M is the solution of the GAP equation:

q2 −M2
0 −Re Π(q2) = 0 . (D.4)

The effect of a mass shift follows only after a complete resummation has been done and
can not be simulated by taking into account only a finite number of terms in Eq. D.3.
For energies where Im Π(q2) is non vanishing, the particle has a finite lifetime, or by the
uncertainty principle, its dispersion relation is not sharp anymore.

D.1.1 Fields with Spin

In this Section the more complicated case of a field carrying an external spin index is
considered. Think, for example, of a spin-1 particle, characterized by a polarization vector
εµ(q) or a spin-1

2
particle, described by a spinor us(q). Then the propagator of the field

and the self energy are matrices in Dirac space (spin- 1
2

fields), Lorentz space (spin-1 fields)
or in both spaces (spin- 3

2
fields), thus complicating the solution of the Dyson-Schwinger

equation. We will also discuss how the structure of propagator and self energy gets more
involved in the presence of a medium.

Spin-1

For a spin-1 particle with four-momentum qµ, the self energy tensor carries two external
Lorentz indices. It depends on the four-vectors qµ and, in the medium, on nµ, which
characterizes the medium. It follows that the most general Lorentz structure of the self
energy is given by:

Πµν(q, n) = gµν Π1(q, n) + qµ qν Π2(q, n) + nµ nν Π3(q, n) + nµ qν Π4(q, n) . (D.5)

Imposing current conservation qµ Πµν = 0 simplifies the above structure [106, 44] since only
certain combinations of pµ and nµ are allowed. These are the tensors P T

µν(q), Tµν(q) and
Lµν(q), which have been introduced in detail in Section B.3. They allow for a decomposition
of the self energy tensor Πµν :

Πµν(q) = P T
µν(q) Πvac(q) (Vacuum)

Πµν(q) = Tµν(q) ΠT (q) + Lµν(q) ΠL(q) (Medium)
. (D.6)

The argument nµ has been dropped here since throughout this work we will assume that
nµ = (mN , 0). In order to obtain the sought after scalar component of the self energy, the
self energy tensor is contracted with the appropriate projector:

Πvac(q) = 1
3
P T

µν Πµν(q) (four-transverse)

ΠT (q) = 1
2
Tµν Πµν(q) (three-transverse)

ΠL(q) = Lµν Πµν(q) (three-longitudinal)

. (D.7)

With these projectors the solution of the Dyson-Schwinger equation becomes trivial. Let
α denote (a) the 4-transverse channel (vacuum) or (b) the either the 3-transverse and



D.1. Dyson-Schwinger Equation 217

the 3-longitudinal channels (medium). The Dyson-Schwinger, which is initially a matrix
equation, reduces then into separate scalar equations for each channel α. In first order in
the self energy one obtains for the propagator Dµν

1 (q):

P νµ
α Dµν

1 (q2) = Tr [Pα] D1
α

= P νµ
α Dµκ

0 (q2)Πκλ(q2)Dλν
0 (q2) (D.8)

= P νµ
α

∑

β,γ,δ

P µκ
β P κλ

γ P λν
δ D0,β(q2) Πγ(q

2)D0,δ(q
2)

= Tr [Pα] D0,α(q2) Πα(q2)D0,α(q2)

Here α, β, γ, δ stand for the various polarization channels and µ, ν, κ, λ denote Lorentz
indices. This procedure can evidently be followed through step by step of the expansion
of the full propagator, leading to the result:

Dα(q2) =
1

q2 −M2
0 − Πα(q2)

. (D.9)

This has the same form as the Dyson-Schwinger equation for a scalar particle and shows
that the propagator has the same decomposition as the self energy.

In the Sections D.2 and D.3 we will show how one can calculate the imaginary part of
the self energy. The real part is then obtained by a dispersion relations. Further details
concerning the dispersion relations are presented in Chapter 3.1 and in Appendix E.2.

Spin-1
2

For spin-1
2

states self energy and propagator are matrices in Dirac space. In vacuum the
self energy of a spin- 1

2
particle is written down as:

Σ(k) = k/ I1(k) + I2(k) . (D.10)

The scalar quantities I1 and I2 are obtained by appropriate traces:

I1(k) =
1

4 k2
Tr [k/Σ(k)] , I2(k) =

1

4
Tr [Σ(k)] . (D.11)

In terms of these self energies the vacuum propagator GF (k) reads:

GF (k) =
1

k/−M − Σ(k)
=

k/(1 − I1) + (M + I2)

k2(1 − I1)2 − (M + I2)2
.

In this work we will not keep the full matrix structure of propagator and self energy and
make some simplifications instead. The exact self energy is replaced by a scalar averaged
quantity, which results from averaging Σ(k) over the spins:

〈Σ(k)〉 =
1

2

∑

s

ūs(k) Σ(k) us(k) (D.12)

=
1

2
Tr
[

(k/+
√
k2) Σ(k)

]

.

We will show in Sections D.2 and D.3 how the imaginary part of the self energy can be
calculated. The real part of the self energy is obtained via a dispersion relation from
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〈Σ(k)〉. For a detailed discussion see Chapter 3.2 and Appendix E.2. According to Eqs.
B.16 and B.17, this expression may be viewed as the projection of the self energy Σ(k)
onto spin-1

2
states. This also explains the prefactor 1

2
.

It is interesting that 〈Σ(k)〉 consists of nearly the same combination of I1 and I2 as
found in the denominator of the full propagator Eq. D.12, when quadratic terms in the
self energy are discarded. Comparison with Eq. D.12 shows that the denominator reads:

2 Im (k2 I1(k) − I1(k)
2 +M I2(k) + I2(k)

2) ≈ 2 Im (k2 I1(k) +M I2(k)) (D.13)

as compared to what is obtained from Eq. D.12

2 Im
(

k2 I1(k) +
√
k2 I2(k)

)

. (D.14)

Clearly, for on-shell particles both expressions are identical. But off-shell the multiplying
I2 is replaced by M →

√
k2. For the propagator we take the following form:

GF (k) =
k/+

√
k2

k2 −M2 − 〈Σ(k)〉 . (D.15)

The appearance
√
k2 instead of M in the numerator is motivated in Chapter5, Section

5.2.4.

In nuclear matter one has in principle to consider one more independent structure in
the self energy:

Σ(k) = k/ I1(k) + I2(k) + n/ I3(k) . (D.16)

Since we average out the Dirac structure of self energy and propagator, we do not need to
worry about this complication.

Spin-3
2

The self energy of a spin- 3
2

field has a rather involved structure, owing to the fact that is
a matrix in both Dirac and Lorentz space and a full decomposition of the self energy is
very complicated already in the vacuum [66]. In analogy to the spin- 1

2
states we therefore

consider an averaged self energy of the form:

Im 〈Σ(k)〉 =
1

4
ImTr

[

(k/+
√
k2)P µν

3/2(k) Σµν(k)
]

, (D.17)

and as in the case of spin- 1
2

states we obtain the real part of the self energy by a dispersion
relation over Im 〈Σ(k)〉. The full propagator of the spin- 3

2
field is cast into the form:

Gµν
F (k) =

k/+
√
k2

k2 −M2 − 〈Σ(k)〉 P
µν
3/2(k) , (D.18)

where the replacement M →
√
k2 is explained in Chapter 5, Section 5.2.4.
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D.2 Imaginary part of a self energy I

The imaginary part of a self energy diagram can be calculated in two different ways. The
first one is to consider the discontinuity of the self energy across the branch cut on the
positive real axis. This leads to the formulation of Cutkosky’s cutting rules [106]. An
alternative way is to consider the coupling to all intermediate states and calculate the
corresponding squared matrix element. This corresponds to a evaluation of the width Γ,
which is directly related to the imaginary part of the self energy.

D.2.1 Cutkosky’s cutting rules

Cutkosky’s cutting rules state the following. If one

• considers all possible cuts through propagator lines in a Feynman diagram that allow
the particles to be on shell

• replaces each propagator corresponding to a stable particle

according to
1

p2 −M2 + i ε
→ −2πi δ(p2 −M2)

• replaces each propagator corresponding to a broad particle by its spectral function

according to
1

p2 −M2 − Π
→ −2πiA

• sums over all cuts

then one obtains the discontinuity Disc(Π) = 2i Im Π.
We want to discuss this recipe now for a simple example, namely the self energy of a

particle φ1 interacting with particles φ2 and φ3:

L = λφ1φ2φ3 . (D.19)

According to the Feynman rules, see Appendix B, the self energy of particle 1 reads:

−iΠ1(q) = (iλ)2

∫
d4p

(2π)4

i

p2 −m2
2 + iε

i

(q − p)2 −m2
3 + iε

Applying the cutting rules one obtains for the imaginary part of the self energy:

Im Π1(q) = −λ
2

2

∫
d4p

(2π)4
(−2π)2δ(p2 −m2

2) δ((q − p)2 −m2
3)

in RF of 1
= −λ

2

2

∫
d3p

(2π)2
δ((
√

q2 − E2(p))
2 − p2 −m2

3)
1

2E2(p)

= −λ
2

2

1

π

p2

2E2(p)

E2(p)

2
√

q2 p

= − p

8π
√

q2
λ2 .

By RF we denote the rest frame of particle φ1. Note that p is the cm momentum of
particles φ2 and φ3 and

√

q2 is the invariant mass of particle φ1.
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D.2.2 Direct Calculation of Γ

We now aim at a direct calculation of Im Π. To this end we consider the decay width Γ,
which is given by (see Eq. B.37 in Appendix B.6) :

Γ(q) =
p

8πq0
√

q2

1

2j + 1
|M|2 , (D.20)

where p is the cm momentum of the decay particles, q2 is the squared invariant mass
of the decaying particle, j its spin and M is the decay amplitude. By q0 the energy of
the decaying particle is denoted. In the rest frame of the decaying particle q0 =

√

q2.
Applying this to the above situation with the matrix element determined by Eq. D.19, we
find |M|2 = λ2 and j = 0, such that

Γ(q) =
p

8π
√

q2q0
λ2 . (D.21)

It follows a relation between decay width and imaginary part of the self energy:

Im Π(q) = −q0 Γ(q) . (D.22)

Note that the self energy is a Lorentz scalar, whereas the width transforms such that the
product q0 Γ is Lorentz invariant. In Chapter 3 we give explicit expressions for the vacuum
self energies of ρ meson and baryon resonances.

D.3 Imaginary part of a self energy II

In this Section we calculate the imaginary part of the self energy in a slightly different
way. The idea is to rewrite the Feynman propagator in terms of the retarded/advanced
propagators and the quantities D</>: Based on the Eqs. E.21, E.29 and E.49 and using
the relation

sgn(p0 − µ) = 1 − 2 θ(µ− p0) = −1 + 2 θ(p0 − µ) (D.23)

we can rewrite meson and nucleon propagator as

DF (q) = D+(q) + 2 i π θ(−q0)A(q) = D−(q) − 2 i π θ(q0)A(q)

GF (p) = G+(p) + 2 i π θ(µ− p0) ρ(p) = G−(p) − 2 i π θ(p0 − µ) ρ(p) .

As we will see, the resulting terms have a more transparent analytic structure and they
allow for a straightforward calculation of the imaginary part of the self energy. As an
example, we calculate the self energy of a baryon resonance in the medium by decomposing
the Feynman propagator according to Eqs. E.18 and E.36:

ΣF (k) = i

∫
d4p

(2π)4
DF (k − p)GF (p) Ω

= i

∫
d4p

(2π)4

[
D−(k − p) − 2 i π θ(k0 − p0)A(k − p)

]
(D.24)

[
G+(p) + 2 i π θ(µ− p0)ρ

]
Ω

= i

∫
d4p

(2π)4

[
2 i π θ(µ− p0)D

−(k − p) ρ(p) − 2 i π θ(k0 − p0)G+(p)

×A(k − p) + 4 π2 θ(k0 − p0) θ(µ− p0)A(k0 − p0) ρ(p)
]
Ω .
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Here Ω is a trace from the spin summation at the resonance-nucleon-meson vertices. The
term involving the product of D− and G+

∫
d4p

(2π)4
G+(p)D−(k − p) (D.25)

vanishes since the poles of G+(p) and D−(k − p) are located in the same half plane and
therefore the dp0 integration vanishes. The remaining terms do not contain products of
propagators and Im ΣF is readily found. Additional factors from isospin and and coupling
constants are suppressed. The imaginary part of the self energy is now found to be:

Im ΣF (k) =

∫
d4p

(2π)3
[−θ(µ− p0) ImD−(k − p) ρ(p)+ (D.26)

θ(k0 − p0) ImG+(p)A(k0 − p0)+

2 π θ(k0 − p0) θ(µ− p0)A(k0 − p0) ρ(p)] Ω

=

∫
d4p

8 π2
A(k − p) ρ(p) [−2 θ(p0 − k0) θ(µ− p0)−

2 θ(k0 − p0) θ(p0 − µ)] Ω .

The second term is the usual decay of resonance with energy k0 > p0 into a meson of
positive energy and a nucleon above the Fermi sea. Apart from the Pauli correction –
represented by the term θ(p0 − µ) – this term is already present in the vacuum. The first
term, however, is (partly) new and describes a physical process where a nucleon decays
forming a resonance of positive energy, which is far off shell since its energy k0 < µ, and
a meson. In the vacuum µ = 0 and the first term just reflects the symmetry with respect
to k0 of the imaginary part of the Feynman self energy as expected from the discussion
in Appendix E.2. In the practical calculations we omit the first term. It is zero around
the resonance peak and may only influence the resonance region via the dispersion relation
used to determine the real part of the self energy. For completeness we mention that by
using Cutkosky’s rules one would have obtained the same result: the first terms originates
from the hole part of the nucleon propagator and the second term from its particle part.
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Appendix E

Analytic Structure of the Propagator

Aim of this Appendix is the study of the analytic properties of propagator and self energy.
Apart from the Feynman or causal propagator, we introduce also the retarded propagator
D+ and self energy Π+. In the first Section we will discuss the so called Källen-Lehmann
representation for the propagator of bosons and fermions. In particular, the constraints on
the spin-1

2
propagator arising from this representation are discussed in some detail. The

second Section deals with dispersion relations and sum rules for the imaginary part of
the retarded propagator, the spectral function. Also the relation between Feynman and
retarded propagator is studied.

E.1 Källen-Lehmann

E.1.1 Scalar Particles

The Feynman propagator of a non-interacting scalar particle of mass M is defined as
[106, 16]

DF (p2) = −i
∫

d4x ei p x 〈0|T φ(x)φ(0)|0〉 (E.1)

=
1

p2 −M2 + iε
.

In an interacting theory one has to consider the possibility of intermediate multi-particle
states. These may be either bound or continuous states. Therefore the analytic structure
of the Feynman propagator DF becomes more complicated: rather than a single pole at
the on-shell point with strength 1, there will be various poles originating from the single-
particle and (possibly) from bound states as well as a branch cut starting at the threshold
energy for the formation of multi-particle states. This behaviour is summarized in the
Källen-Lehmann spectral representation of the propagator:

DF (p2) = −i
∫

d4x ei p x 〈Ω|T φ(x)φ(0)|Ω〉 (E.2)

=
Z

p2 −M2 + iε
+

∞∫

4 M2

dk2ρ(k2)
1

p2 − k2 + i ε
.

223
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Here as well as in the remainder of this chapter, the contributions of bound states have
been suppressed. A detailed derivation of this famous representation can be found in many
text books on quantum field theory, see for example [106, 16].

The quantity ρ(k) is determined by the following matrix element [16]:

ρ(k) = (2 π)3
∑

λ

δ(k2 − k2
n)| 〈Ω|φ(0) |n〉 |2 , (E.3)

where |n〉 represents a single- or multi particle state of mass m2
n. Since particle number is

conserved, a normalization condition is fulfilled:

Z +

∞∫

4 M2

dk2ρ(k2) = 1 , (E.4)

implying that the strength of the one-particle state is less than unity. We will prove this
sumrule in Section E.2.

E.1.2 Spin-1

2
and spin-3

2
fields

For fields which carry spin, the Källen-Lehmann representation has a more involved struc-
ture. Let us discuss in some detail the case of a spin 1/2 field. Again we follow closely the
arguments presented in [16]. As it is demonstrated there, symmetry under Lorentz- and
parity transformations allows to write the propagator GF (p2) as an integral over two scalar
functions:

GF (p2) =

∞∫

0

dk2
[
p/ ρ1(k

2) + ρ2(k2)
] 1

p2 − k2 + i ε
. (E.5)

This result is not surprising: from Lorentz invariance one expects a scalar term and a
term multiplying γµ, which is to be contracted with the only available four-vector. Parity
conservation rules out terms ∝ γ5. Of some importance for the discussion of the meson-
nucleon forward scattering amplitude are some properties of ρ1 and ρ2 (see discussion in
Section 5.2.4), which we therefore quote and prove now. They are taken from [16]:

(1) ρ1(k
2) and ρ2(k

2) are both real

(2) ρ1(k
2) ≥ 0

(3)
√
k2 ρ1(k

2) − ρ2(k
2) ≥ 0

(E.6)

The proofs will rely on two representations of ρα β(k2):

ρα β(k2) = (2 π)2
∑

n

δ4(kn − k) 〈Ω|ψα(0)|n〉
〈
n|ψ̄β(0)|Ω

〉
(E.7)

ρα β(k2) = ρ1 k/ + ρ2 δα β (E.8)
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Also, the rule for constructing the hermitian conjugate of any Dirac-matrix Γµ will be used
[16, 41]:

Γ†
µ = γ0 Γµ γ

0 (E.9)

Proof 1:

ρ?
α β

E.7
= (2 π)2

∑

n

δ4(kn − k) 〈Ω|ψα(0)|n〉?
〈
n|ψ̄β(0)|Ω

〉?

= (2 π)2
∑

n

δ4(kn − k)
〈
n|ψ̄µ(0)|Ω

〉
γ0

µα γ
0
βν 〈Ω|ψν(0)|n〉

= γ0
βν ρνµ γ

0
µα

=
[
γ0 ρ γ0

]

E.8
= ρ1 k/

? + ρ2 δαβ

Proof 2: Here we consider Tr [ρ γ0] for both expressions E.7 and E.8:

Tr
[
γ0 ρ

] E.8
= 4 k0 ρ1

E.7
= (2 π)2

∑

n

δ4(kn − k) 〈Ω|ψα(0)|n〉
〈
n|ψ̄β(0)|Ω

〉
γ0

βα

= (2 π)2
∑

n

δ4(kn − k) 〈Ω|ψα(0)|n〉
〈
n|ψ†

α(0)|Ω
〉

= (2 π)2
∑

n

δ4(kn − k) | 〈Ω|ψα(0)|n〉 |2

≥ 0 .

Since k0 > 0 this implies that ρ1 > 0 as well. Repeating the same steps, but tracing with
the unit matrix rather than γ0 in order to project onto ρ2, one realizes that ρ2 may be
negative. This is interesting, as one might have been (incorrectly) tempted to interpret ρ2

as being related to some sort of scalar spectral function.
Proof 3: This time we consider the operator (i∇/ −m)ψ, where m =

√
k2 and build

its absolute square:

0 ≤ (2 π)2
∑

n

δ4(kn − k) 〈Ω|(i∇/−m)αµψµ(0)|n〉 ×

×
〈

n| [(i∇/−m)αν ψν(0)]† |Ω
〉

= (2 π)2
∑

n

δ4(kn − k) (i∇/−m)αµ 〈Ω|ψµ(0)|n〉 ×

×
〈
n|ψν(0)†|Ω

〉
[(i∇/−m)αν ]

†

= (2 π)2
∑

n

δ4(kn − k) (i∇/−m)αµ 〈Ω|ψµ(0)|n〉 ×

×
〈
n|ψ̄ν(0)|Ω

〉 [
(i∇/−m) γ0

]

να

= Tr
[
(k/−m)ρ(k2)(k/−m)γ0

]

= 8 k0

√
k2 (

√
k2 ρ1(k

2) − ρ2(k
2)) .
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C

Re p
2

Im p
2

p
2

thr

Figure E.1: Contour leading to the Källen Lehmann representation of any two point
function.

Since k0 ≥ 0, the desired relation is proved. Note that the steps leading to the second and
fourth line in the above calculation are based on the Lorenz-invariance of the field operator
ψ, which manifests itself in the relation

[P µ, ψ(x)] = −i ∂ψ(x)

∂xµ
. (E.10)

In analogy to the scalar case, one can write down a normalization condition for the function
ρ1(k

2):

∞∫

M2
min

dk2ρ1(k
2) = 1 . (E.11)

The relativistic propagator of spin- 3
2

fields contains additional Lorentz indices. There-
fore the most general decomposition of the propagator similar to that of Eq. E.5 is a
formidable task [66, 27]. As mentioned in Subsection D.1.1, we assume that self energy
and propagator are proportional to the projector P µν

3/2, Eq. B.28. Then the Lorentz struc-

ture is simplified and in direct analogy to the spin- 1
2

case one can write down:

Gµν
F (p2) =

∞∫

0

dk2
[
p/ ρ1(k

2) + ρ2(k
2)
] 1

p2 − k2 + i ε
P µν

3/2(k
2) . (E.12)

E.1.3 Dispersion Relation

In Fig. E.1 we show the analytic structure of the propagator in the complex p2 plane, see
also [106]. For invariant masses larger than p2

thr, the propagator develops a branch cut.
Using the identity [106]

ImDF (p2 + i ε) = −ImDF (p2 − i ε) , (E.13)

one sees that the discontinuity across this branch cut is given by:

Disc DF (p2) = 2 i ImDF (p2 + i ε) . (E.14)
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Since DF (p2) is an analytic function of p2 everywhere else in the complex p2-plane, the value
of DF (p2) is determined by Disc DF (p2) along the branch cut via a dispersion relation:

DF (p2) =

∞∫

k2
thr

dk2

π

ImDF (k2)

k2 − p2 − i ε
⇒ ReDF (p2) = P

∞∫

k2
thr

dk2

π

ImDF (k2)

k2 − p2
.(E.15)

Note that a dispersion relation is also suggested from the Lehmann representation. Dis-
persion relations hold also for the self-energies of mesons and baryon resonances, Π(p2)
and Σ(p2) respectively, since the propagator is constructed from the self energies:

Re Π(p2) = P
∞∫

k2
thr

dk2

π

Im Π(k2)

k2 − p2
.

This relation is very useful for the calculation of the real part of loop diagrams. The
imaginary part of the self-energy can be readily calculated using Cutkosky’s cutting rules,
see Appendix D. The principal value integral can then be obtained numerically. If the
dispersion integral does not converge, one needs to employ a subtracted dispersion relation.
The basic idea is not to consider the value of Re Π(p2), but rather the difference to some
reference value taken at q2:

Re Π(p2) −Re Π(q2) = P
∞∫

k2
thr

dk2

π

Im Π(k2)

k2 − p2
− P

∞∫

k2
thr

dk2

π

Im Π(k2)

k2 − q2
(E.16)

= (q2 − p2)P
∞∫

k2
thr

dk2

π

Im Π(k2)

(k2 − p2)(k2 − q2)
.

The high energy contribution is now suppressed by a relative factor of 1/k2, which improves
the convergence of the integral and reduces the sensitivity on the high-energy behaviour of
the imaginary part, which is hard to control within a hadronic theory. However, the price
to pay is that the subtraction constant Re Π(q2) is a priori unknown and needs to be fixed
by additional requirements. An example of that we have seen in Chapter 3, where the real
part of the ρ vacuum self energy was fixed using gauge invariance and the condition that
the photon remains massless.

E.2 Field Operators

In the previous Section we have discussed the Lehmann representation of the propagator of
mesons and baryons in the vacuum. Apart from discussing some properties of the strength
function ρ1 and ρ2, this also lead us to write down a dispersion relation connecting the
imaginary and real part of self energy and propagator. However, the arguments brought
forward in the previous Section are not easily extended into the nuclear medium. As
explained in Section 5.2.1, in a medium propagator and self energy depend on the energy
p0 and momentum |p| independently and a discussion of their analytic properties in terms
of the invariant mass p2 – as done in the Lehmann picture – can not be exhaustive.



228 Chapter E. Analytic Structure of the Propagator

We will now formulate the analytic properties of the propagator in terms of field oper-
ators. This way we can derive dispersion relations for the retarded propagator, explain the
sum rules Eqs. E.4 and E.11 as well as discuss the relation between retarded and Feynman
propagators. For the self energies the same relations must hold. This becomes clear when
one expresses the propagator in terms of self energies, e.g.

D(p) =
1

p2 −m2 − Π(p)
. (E.17)

Then the symmetries of ReD/ImD can only be satisfied if the self energies Re Π/Im Π
possess the same symmetry.

E.2.1 Bosons

Let us define the following quantities D<, D>, D+, D− and DF :

D>(x, y) = −i
〈
φ(x)φ†(y)

〉
, D<(x, y) = −i

〈
φ†(y)φ(x)

〉

D+(x, y) = −i θ(x0 − y0)
〈[
φ(x), φ†(y)

]〉

= θ(x0 − y0) 〈 D>(x, y) −D<(x, y)〉
D−(x, y) = −i θ(y0 − x0)

〈[
φ†(y), φ(x)

]〉

= θ(y0 − x0) 〈D<(x, y) −D>(x, y)〉
DF (x, y) = −i

〈[
θ(x0 − y0)φ(x)φ†(y) + θ(y0 − x0)φ

†(y)φ(x)
]〉

= D+(x, y) +D<(x, y) = D−(x, y) +D>(x, y) .

(E.18)

Here DF is the Feynman propagator, D+ is the retarded propagator and D− is the
advanced propagator. The quantities D> and D< have been introduced for notational
convenience at this place. Note the behaviour of D< and D> under complex conjugation:

D< †(x, y) = −D<(y, x) , D> †(x, y) = −D>(y, x) . (E.19)

In the following we are going to use that the ground state |G〉 both of nuclear matter and
the vacuum is invariant under translations and allows for the transformation:

〈
G|φ(−x)φ†(0)|G

〉
=

〈
G|T −1φ(−x)T T −1φ†(0)T |G

〉
(E.20)

=
〈
G|φ(0)φ†(x)|G

〉
.

The operator T generates translations.
Next we calculate the imaginary part of the retarded propagator in momentum space:

ImD+(p) =
1

2i

(
D+(p) −D+ ?(p)

)

= − i

2

{∫

d4x eipx θ(x0) [D>(x, 0) −D<(x, 0)] +

∫

d4xe−ipx θ(x0) [D>(0, x) −D<(0, x)]

}

= − i

2

∫

d4xeipx

{

θ(x0) [D>(x, 0) −D<(x, 0)] + θ(−x0) [D>(0,−x) −D<(0,−x)]
}

= − i

2

∫

d4xeipx

{

θ(x0) [D>(x, 0) −D<(x, 0)] + θ(−x0) [D>(x, 0) −D<(x, 0)]

}

(E.21)

= − i

2

∫

d4x eipx
[
D>(x, 0) −D<(x, 0)

]
= −1

2

∫

d4x eipx
〈[
φ(x), φ†(0)

]〉
.
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The spectral function A(p) is defined as the imaginary part of the retarded propagator:

A(p) = − 1

π
ImD+(p) =

1

2π

∫

d4x eipx
〈[
φ(x), φ†(0)

]〉
. (E.22)

Properties of D+

In this part we prove three properties of D+:

∞∫

−∞

dp0 p0 A(p2) = 1 normalization

A(p0,p) = −A(−p0,p) antisymmetry

ReD+(p) = P
∞∫

0

dq2
0

A(q0,p)

p2
0 − q2

0

dispersion relation

(E.23)

• Normalization

The proof of the normalization of A relies on basic commutator relations. Let us
introduce the conjugated momentum π(x) as [106]:

π(x) =
∂L

∂(∂x0
φ(x))

= ∂x0
φ†(x) (E.24)

[φ(x, t), π(y, t)] =
[
φ†(x, t), π†(y, t)

]
= i δ3(x − y) .

This allows to write down the following normalization condition for A:

∞∫

−∞

dp0 p0 A(p2) =
1

2π

∞∫

−∞

dp0 d
4x e−ipx1

i

(
∂x0

ei p0 x0
) 〈

[φ(x), φ†(0)]
〉

=
1

2π

∞∫

−∞

d4x e−ipx1

i
(∂x0

2 π δ(x0))
〈
[φ(x), φ†(0)]

〉

= i

∞∫

−∞

d4x e−ipxδ(x0) ∂x0

〈
[φ(x), φ†(0)]

〉
(E.25)

= i

∞∫

−∞

d3x e−ipx
〈
[π†(x), φ†(0)]

〉

= 1 .

• Antisymmetry

The proof of the antisymmetry in the energy hinges on the invariance of the ground
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state under isospin transformations. This is fulfilled in the vacuum and in isospin
symmetric nuclear matter, but not in asymmetric nuclear matter. An isospin rotation
transforms a boson into its own antiparticle and one finds for the expectation value
of two fields [106, 16]:

〈
φ(x)φ†(0)

〉
⇒

〈
φ†(x)φ(0)

〉
. (E.26)

This allows to relate A(p) and A(−p):

A(p) =
1

2π

∫

d4x eipx
〈[
φ(x), φ†(0)

]〉

A(−p) =
1

2π

∫

d4x e−ipx
〈[
φ(x), φ†(0)

]〉
(E.27)

=
1

2π

∫

d4x eipx
〈[
φ(0), φ†(x)

]〉
= −A(p)

⇒ A(p0,p) = −A(−p0,p) .

where the third line follows from the rotational invariance of the vacuum and the
nuclear medium. It follows that in asymmetric nuclear matter the spectral function
A(p) of charged mesons is not antisymmetric in the energy. Since neutral bosons are
described by real fields with φ(x) = φ†(x), one does not need to invoke invariance un-
der isospin transformations to relate A(p) and A(−p) here and the spectral function
of neutral bosons is antisymmetric in the energy also in asymmetric nuclear matter.

• Dispersion Relation The real part of the retarded propagator is related to A via
a dispersion relation:

ReD+(p) =
1

2

(
D+(p) +D+(p)?

)

=
1

2

∫

d4x eipx [θ(x0) − θ(−x0)] [D>(x, 0) −D<(x, 0)]

=
1

2

∫

d4x eipx [θ(x0) − θ(−x0)]

∫
d4q

(2π)4
e−iqx [D>(q) −D<(q)]

=
1

2 i

∫

dx0 [θ(x0) − θ(−x0)]

∫

dq0 e
i(p0−q0)x0 A(q0,p) (E.28)

=
1

2 i

∫

dq0 A(q0,p) i

[
1

p0 − q0 + i ε
+

1

p0 − q0 − i ε

]

= P
∫

dq0
A(q0,p)

p0 − q0
= P

∞∫

0

dq2
0

A(q0,p)

p2
0 − q2

0

,

where the last step follows from the antisymmetry of A.

This dispersion relation holds both in the vacuum and in the nuclear medium. The
retarded propagator can only be analytic if the retarded self energy is analytic as well and
a dispersion relation must hold for the self energy. Also, the antisymmetry of the spectral
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function translates directly into the self energy. Therefore we can write:

Re Π+(p0,p) = −P
∞∫

0

dq2
0

π

Im Π+(q0,p)

p2
0 − q2

0

.

Having derived relations for the retarded self energy and propagator and can now
address the issue up to which extent they are valid for the Feynman propagator and self
energy as well. To this end we establish some relations between DF and D+.

Relation between D+ and DF

We prove the following two relations between D+ and DF :

ReDF (p) = ReD+(p) (1)

ImDF (p) = −(1 + 2nB)A(p) (2)

(E.29)

We start by calculating the imaginary part of D<(p). With Eq. E.19 and using the
translational invariance of the ground state one gets:

ImD<(p) = − i

2

∫

d4x
{
eipxD<(x, 0) + e−ipxD<(0, x)

}
(E.30)

= −iD<(p) .

This implies that ReD<(p) = 0. The same relation holds for D>(p).

• Real Part

With help of Eqs. E.18 and E.30, it follows immediately that:

ReDF (p) = ReD+(p) (E.31)

• Imaginary Part

Eqs. E.18, E.21 and E.30 allow to express ImDF (p) as:

ImDF (p) = ImD+(p) + ImD<(p)

= − i

2
(D>(p) +D<(p)) .

This equation can be used to relate ImDF (p) and the spectral function A. To
this end we need to introduce the KMS relation which is discussed for example in
[45, 59, 68, 91]:

D>(p) = eβ (p0−µ) D<(p) . (E.32)

The KMS relation together with Eq. E.21 allows to express D>, D< and ImDF via
the spectral function A as:

D<(p) = − 2 i π nB A(p)

D>(p) = − 2 i π (1 + nB)A(p) (E.33)

ImDF (p) = − (1 + 2nB) πA(p) ,
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where the distribution function nB for bosons is defined as:

nB(p0) =
1

eβ(p0−µ) − 1
. (E.34)

Throughout this work we consider the case of zero temperature and symmetric nu-
clear matter. Then the meson chemical potential µ vanishes and we find the following
simple relation:

ImDF (p) = − sgn(p0) πA(p) . (E.35)

Thus for bosons the real parts of retarded and Feynman propagator (and therefore also
the self energy) are identical. Furthermore, for positive energies retarded and Feynman
quantities are the same. As a consequence we can calculate the real part of the Feynman
self energy in the following way: for positive energies, we use Cutkosky’s cutting rules to
obtain the imaginary part of the Feynman self energy. Then we make implicitly use of
the antisymmetry of the retarded self energy and use the dispersion relation Eq. E.28 to
obtain the real part of the self energy.

E.2.2 Fermions

In analogy to bosons Eq. E.18, one can introduce the following four quantities for fermions:

G>(x, y) = i
〈
ψ(x) ψ̄(y)

〉
, G<(x, y) = −i

〈
ψ̄(y)ψ(x)

〉

G+(x, y) = −i θ(x0 − y0)
〈{
ψ(x), ψ̄(y)

}〉

= θ(x0 − y0) 〈G>(x, y) − G<(x, y)〉
GF (x, y) = −i

〈[
θ(x0 − y0)ψ(x) ψ̄(y) − θ(y0 − x0) ψ̄(y)ψ(x)

]〉

= G+(x, y) + G<(x, y)

. (E.36)

Under complex conjugation one has:

[S<(x, y) γ0]
†

=
[
i
〈
ψ†(y)ψ(x)

〉]†
= − γ0 S

<(y, x) . (E.37)

For the Dirac propagators – having a complicated matrix structure – the imaginary part
is defined via the hermitian conjugate rather than the complex conjugate [16, 41]:

ReG(p) =
1

2

(
G(p) + γ0 G†(p) γ0

)
, ImG(p) =

1

2i

(
G(p) − γ0 G†(p) γ0

)
(E.38)

This definition of the imaginary part of the propagator produces

ImG(p) = Im
(
G1(p) p/+ G2(p)

)
= ImG1(p) p/+ ImG2(p) . (E.39)

Again, we introduce the spectral function via the imaginary part of the propagator:

ImG+(p) = −πA(p) (E.40)

Aαβ(p) =
1

2π

∫

d4xeipx
〈{
ψα(x), ψ̄β(0)

}〉
.
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of which according to the Lehmann representation Eq. E.5 in the vacuum only two inde-
pendent components, A1 and A2 exist, which are related to ρ1 and ρ2:

A1 = Tr [γ0 A] = − 1

π
Tr [γ0 ImG+] = 4 p0 ρ1(p

2) sgn(p0) (E.41)

A2 = Tr [A] = − 1

π
Tr [ImG+] = 4 ρ2(p

2) sgn(p0) .

In the nuclear medium one can build a third independent quantity by tracing the spectral
function with γi. We do not discuss this in more detail since in our actual calculations we
do not decompose the propagator into its individual Dirac components.

Properties of ReG+

With these definitions one obtains similar relations as for the bosons Eq. E.23:

+∞∫

−∞

dp0

4
A1 = 1 normalization

A1(p0,p) = A1(−p0,p) symmetry of A1

A2(p0,p) = −A2(−p0,p) antisymmetry of A2

ReG+(p) = P
+∞∫

−∞

dq0
A(q0,p)

p0 − q0
dispersion relation

(E.42)

• Normalization

The proof of the normalization of A1 makes use of the anticommutator relation of
fermion fields [106, 16]

{

ψα(x, t) , ψ†
β(y, t)

}

= δ3(x − y) δα β , (E.43)

which allows to formulate a normalization integral for A1:

∫
dp0

4
A1 =

∫
dp0

8π
d4x eipx

{
ψα(x) , ψ†

α(0)
}

=
1

4

∫

d3x
{
ψα(x) , ψ†

α(0)
}

(E.44)

= 1 .

This derivation also indicates that no sum rule exists for A2, since ψ and ψ̄ are not
related by an anticommutator.

• Symmetry of A1



234 Chapter E. Analytic Structure of the Propagator

We will now discuss the symmetry of A1. Let us therefore study the behaviour under
the transformation p→ −p:

A1(p) =
1

2π

∫

d4xeipx
{
ψ(x), ψ†(0)

}

A1(−p) =
1

2π

∫

d4xeipx
{
ψ(0), ψ†(x)

}
(E.45)

In order to relate both expressions we make use of the transformation properties of
the fields ψ and ψ̄ under charge conjugation [16]:

C ψα C−1 = Cαβ ψ̄β

C ψ̄α C−1 = −ψβ C
−1
βα (E.46)

C = i γ2 γ0 = −C−1 .

After doing some algebra one finds that under charge conjugation the expectation
value behaves in the following way:

〈
ψ(x)α ψ

†(0)α

〉
→

〈
ψ†(x)α ψ(0)α

〉
(E.47)

This implies that A1 is symmetric under p→ −p and therefore, due to the rotational
invariance of the ground state, under p0 → −p0. This argument holds only in the
vacuum, since nuclear matter is not invariant under charge conjugation which trans-
forms particles into antiparticles. The difference between fermions and bosons is that
for the latter isospin and charge conjugation have the same effect on the ground state
expectation values.

• Antisymmetry of A2

Let us now turn to A2:

A2(p) =
1

2π

∫

d4xeipx
{
ψ(x), ψ̄(0)

}

A2(−p) =
1

2π

∫

d4xeipx
{
ψ(0), ψ̄(x)

}
.

Under charge conjugation one finds:
〈
ψ(x)α ψ̄(0)α

〉
→ −

〈
ψ̄(x)α ψ(0)α

〉
,

and A2 is antisymmetric in the energy.

• Dispersion Relation The dispersion relation is derived in steps which are analogous
to those for the bosons.

Note that the symmetry of A1 and A2 under p0 → −p0 implies that both ρ1 and ρ2 are
symmetric. In the vacuum one can therefore rewrite the dispersion relation Eq. E.42 and
the sum rule in terms of an integral over positive energies only:

Tr [γ0 ReG+(p)] = 4 p0 P
∫

dq2
0

ρ1(q
2
0)

q2
0 − p2

0

Tr [ReG+(p)] = 4P
∫

dq2
0

ρ2(q
2
0)

q2
0 − p2

0

(E.48)

∫

dp2
0 ρ1(p

2
0) = 1 .
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These results are expected from Eqs. E.5 and E.11.

Relation between ReG+ and ReGF

For fermions there exist similar relations between Feynman and retarded propagator as for
bosons:

ReGF (p) = ReG+(p) real part

ImGF (p) = − sgn(p0 − µ)A(p) imaginary part

(E.49)

We will now prove these properties.

• Real Part

The proof follows along the same lines as for bosons, i. e. one makes use of the
relation ReG<(p) = 0.

• Imaginary Part

The imaginary part of the Feynman propagator can be expressed as (compare also
Eq. E.32):

ImGF (p) =
i

2
(G>(p) + G<(p))

To build a relationship between ImGF and A, again the KMS relation [45, 59, 68, 91]
is needed ( cf. Eq. E.32):

G>(p) = −eβ(p0−µ) G<(p) , (E.50)

which allows to write down the following relations:

G<(p) = 2 i π nF A(p)

G>(p) = −2 i π (1 − nF ) A(p) (E.51)

ImGF (p) = − (1 − 2nF ) πA(p) ,

where nF is the Fermi distribution function:

nF (p) =
1

eβ (p0−µ) + 1
(E.52)

T→0→ θ(p0 − µ) .

In a nuclear medium with a finite baryo-chemical potential the relation between
Feynman and retarded propagator is therefore different than for bosons and one
arrives at the result Eq. E.49.

As far as the calculation of the self energy is concerned, we obtain the following results:
in the vacuum the symmetry in p0 can be exploited and the real part of the self energy can
be obtained by a dispersion integral over positive energies only. Note in particular that
the averaged self energy 〈Σ〉 , Eq. D.12 in Chapter D.1.1, follows also from a dispersion
relation as is clear from Eq. E.48. In the medium, however, in principle a calculation of
the self energy for all energies is necessary, since the symmetry in the energy is not given
any more.
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C

Re p0

Im p0

Figure E.2: Contour of the integration leading to the normalization of A.

E.2.3 Normalization and Constraints on the Self Energy

The sum rules for bosons Eq. E.23 and fermions Eq. E.42 can alternatively be derived by
directly integrating the spectral function (see also [77]):

A(p) = − 1

π
Im

1

q2 −M2 − Π+
. (E.53)

There one utilizes the fact that D+ is an analytic function in the upper half plane and that
therefore any closed loop integral must vanish:

∫

C

dp0 p0 A(p) = 0

⇒ (E.54)
∞∫

−∞

dp0 p0 A(p) = lim
p0→∞

Im
1

π

π∫

0

idφ
(p0 e

i φ)2

(p0 ei φ)2 −M2 − Π+
= 1 .

The contour C is sketched in Fig. E.2.3. Note that a variable transformation p0 → p0 e
iφ

with dp0 = p0 e
i φ i dφ has been performed.

We want to point out explicitly that the derivation of Eq. E.54 imposes a constraint on
the high energy behaviour of the self energy Π+. For large energies, Π+ has to grow slower
than p2

0 so that the self energy can be neglected in the limit p0 → ∞. The high energy
behaviour of the imaginary part of the self energy is governed by the matrix elements M:

Im Π(q0 → ∞) → |M|2 pcm

p0
, (E.55)

where pcm is the three-momentum of the decay products and the factor pcm

p0
approaches a

constant for large energies. The matrix element contains typically a momentum dependence
of the form p2l

cm, where the orbital angular momentum l depends on the quantum numbers
of the involved particles. It follows that without form factor the imaginary part of the
self energy rises as a function of the energy which is in conflict with the constraint the
self energy has to grow slower than p2

0. This is a justification for the introduction of form
factors cutting off the contribution at large energies such as those employed throughout
this work.
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Deutsche Zusammenfassung

Ziel dieser Arbeit ist eine Beschreibung der Eigenschaften von Baryon-Resonanzen und
Mesonen in Kernmaterie. Die Frage, ob und wie sich Masse und Breite von Hadronen in
einem nuklearen Medium ändern, ist aus zweierlei Gründen von Interesse: Erstens sind
in einer Vielzahl von Experimenten Hinweise auf Mediummodifikationen von Hadronen
gefunden worden. Weiterhin besteht ein Konsensus, daß die Änderung von hadronischen
Eigenschaften in einem Medium in Zusammenhang steht mit der (teilweisen) Restaurierung
einer der grundlegenden Symmetrien der Quantenchromodynamik (QCD), nämlich der
chiralen Symmetrie. Wir werden nun diese beiden Punkte ausführen, bevor wir Aufbau
und Ergebnisse unseres Modells erläutern.

Wir beginnen mit einem Überblick der zum jetztigen Zeitpunkt bekannten experi-
mentellen Hinweise auf Änderungen von hadronischen Eigenschaften in Kernmaterie. Von
besonderem Interesse ist das ρ Meson, welches in Dileptonen zerfallen kann. Diese trans-
portieren aufgrund ihrer geringen Endzustandswechselwirkungen Informationen aus dichten
und/oder heißen Umgebungen. Zu vielen Diskussionen Anlass gegeben haben aus Schwer-
ionenkollisionen extrahierte Dileptonenspektren. Im Vakuum zeigen diese Spektren auf-
grund der direkten Kopplung ρ → e+e− einen deutlichen Peak bei der invarianten Masse
des ρ Mesons. Experimente der NA45/CERES Kolloboration [3, 4, 129, 76] und der HE-
LIOS Kolloboration [92] scheinen darauf hinzudeuten, daß bei endlichen Temperaturen und
Dichten mehr Dileptonenpaare bei kleineren invarianten Massen erzeugt werden, was auf
eine Verschiebung von spektraler Stärke des ρ Mesons hindeutet. Um diese Interpretation
zu untermauern, sind weitere Schwerionenexperimente an der GSI geplant. Komplementäre
Information kann aus photon- oder pioninduzierten Reaktionen am Kern gewonnen werden,
wie sie an der GSI und am JLAB in Vorbereitung sind. Photonukleare Experimente spielen
auch eine gewichtige Rolle bei der Untersuchung von Baryon-Resonanzen in Kernmaterie.
Aufsehen haben hier Messungen zur Photoabsorption erregt, die ein nahezu vollständiges
Verschwinden resonanter Strukturen im Medium suggerieren [14, 15, 43]. Besonders aus-
geprägt ist dies für die D13(1520) Resonanz. In welchem Ausmaße dieser Effekt auf einer
Verbreiterung der D13(1520) beruht oder auf sonstige Modifikationen der Produktionsam-
plitude zurückzuführen ist, ist gegenwärtig noch nicht vollständig geklärt. Photon- und
pioninduzierte Kernreaktionen haben maßgeblich zur Bestimmung der Eigenschaften der
P33(1232) Resonanz in Kernmaterie beigetragen und man glaubt heute allgemein, daß diese
eine Verbreiterung von etwa 80 MeV bei normaler Kerndichte erfährt [54, 99, 98]. Aufgrund
seiner dominanten Kopplung an den η N-Kanal kann auch die S11(1535) in photonuklearen
Experimenten gut studiert werden [133, 115]. Hier legen die Daten relativ geringe Medium-
modifikationen nahe. Eine Analyse der Eigenschaften von Pionen [11] und η Mesonen [48]
ist mit Hilfe von mesonischen Atomen möglich. So ist für das Pion eine leichte Erhöhung
der Masse von etwa 20 − 30 MeV bestimmt worden.

249
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Wir wenden uns nun dem Zusammenhang zwischen der Änderung von Hadroneigen-
schaften und der Restaurierung der chiralen Symmetrie zu. Vernachlässigt man die (kleinen)
Quarkmassen, so ist die Lagrangefunktion der QCD invariant unter chiralen Transforma-
tionen. Weil man heute allgemein davon ausgeht, daß QCD die fundamentale Theorie
der starken Wechselwirkung ist, würde man erwarten, daß sich diese Symmetrie durch das
Existieren von Teilchenmultipletts explizit manifestiert. Da eine chirale Transformation
Teilchen entgegengesetzter Parität miteinander in Beziehung setzt, würde dies implizieren,
daß sogenannte chirale Partner – Teilchen mit bis auf die Parität identischen Quanten-
zahlen – ähnliche Massen haben. Dies ist allerdings nicht der Fall: so ist zum Beipiel das
ρ Meson mit einer Masse von mρ = 770 MeV etwa 500 MeV leichter als sein chiraler Part-
ner, das a1 Meson. Wenn eine Symmetrie der zugrundeliegenden Lagrangefunktion nicht
vom Grundzustand der Theorie geteilt wird, so spricht man von der spontanen Brechung
dieser Symmetrie und das Goldstone-Theorem sagt die Existenz von masselosen Goldstone-
Bosonen vorraus. Im Falle der QCD identifiziert man die außergewöhnlich leichten Meso-
nen π, η und K mit diesen Goldstone-Bosonen. Ein weiteres Merkmal der sponanten
Symmetriebrechung ist der endliche Wert des chiralen Kondensats

〈
ψ̄ ψ
〉

= −(240MeV)3,
welches bei einer ungebrochenen Realisierung der chiralen Symmetrie verschwinden sollte.

Relevanz für die In-Medium Physik erlangt die spontane Brechung der chiralen Sym-
metrie, da man erwartet, daß diese oberhalb einer kritischen Temperatur und Dichte nicht
mehr gebrochen ist. Dies wird beispielsweise durch Modellrechnungen der Dichte- und
Temperaturabhängigkeit des chiralen Kondensats nahegelegt [113]. Die Restaurierung der
chiralen Symmetrie hat direkte Auswirkungen auf die Eigenschaften von Hadronen. Ins-
besondere sollten die Spektralfunktionen von chiralen Partnern – etwa ρ Meson und a1

Meson – in der restaurierten Phase gleich sein. Dieses Argument alleine läßt jedoch keine
quantitativen Rückschlüsse auf die genaue Form der Spektralfunktionen dieser Mesonen in
Kernmaterie zu [60, 64]. Noch komplizierter ist die Situation für Baryon-Resonanzen, wo
bereits die Identifikation von chiralen Partnern nicht eindeutig ist. Eine besondere Rolle
spielen die Goldstone-Bosonen, deren Masse relativ klein bleiben muß, solange man sich
noch in der gebrochen Phase befindet.

Bei zwei theoretischen Zugängen, ”Brown-Rho scaling” [21] und QCD Summenregeln,
wird versucht, eine Beziehung zwischen den Mediummodifikationen von Kondensaten –
nicht nur des chiralen Kondensats – und hadronischen Massen zu etablieren. ”Brown-
Rho scaling” führt – basierend auf Argumenten über die Skaleninvarianz der QCD La-
grangefunktion – zu einer direkten Relation zwischen chiralem Kondensat und hadronis-
chen Massen und sagt für alle Hadronen eine Absenkung der Masse von etwa 20% bei
normaler Kerndichte vorraus. Obwohl von großem Einfluß auf die theoretische und ex-
perimentelle Suche nach Mediummodifikationen, wird das ”Brown-Rho scaling” bis heute
sehr kontrovers diskutiert. Die QCD Summenregeln benutzen eine Dispersionsrelation,
um Quark- und Gluonkondensate mit einem Integral über hadronische Spektralfunktionen
in Verbindung zu setzen [106, 120]. Sie sind bisher in erster Linie für Mesonen einge-
setzt worden und sagen für das ρ Meson eine Absenkung an spektraler Stärke vorraus
[62, 47]. Allerdings können sie keine Aussagen über die detaillierte Form der Spektralfunk-
tion machen und sind daher insbesondere als Konsistenzcheck für hadronische Rechnungen
nützlich [78].

Die bisherige Diskussion sollte verdeutlichen, daß eine modellunabhängige quantita-
tive Bestimmung der Mediumeigenschaften von Hadronen nicht möglich ist. Wenn man
also an einer detaillierten Beschreibung interessiert ist, muß man auf eine hadronische
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Modellierung zurückgreifen. Medium-Modifikationen werden dann mittels einer komplexen
Selbstenergie beschrieben, die bei kleinen Dichten über das Niedrig-Dichte Theorem [29]
durch die Hadron-Nukleon Streuamplitude festgelegt ist. Um ein hadronisches Modell auch
bei höheren Dichten anwenden zu können, ist es im allgemeinen notwendig, Korrekturen zur
Niedrig-Dichte Näherung vorzunehmen und beispielsweise Effekte des Pauli-Prinzips oder
von 3-Körperprozessen zu berücksichtigen. In welchem Ausmaße ein solchermaßen konstru-
iertes hadronisches Modell Effekte der Restaurierung der chiralen Symmetrie wiedegeben
kann, ist eine offene Frage. Unstrittig ist allerdings, daß als Grundlage für weiterführende
Diskussionen ein solides hadronisches Vielteilchenmodell entwickelt werden muß.

In dieser Arbeit wird ein solches hadronisches Modell vorgestellt. Zielsetzung ist die
gleichzeitige Beschreibung von möglichst vielen Hadronen in Kernmaterie. Ein solcher Zu-
gang erlaubt es, das Modell an den zahlreichen zuvor erwähnten Mediummodifikationen
zu testen. Im Vergleich zu einem Modell, welches sich auf die Beschreibung von wenigen
Teilchen beschränkt, beinhaltet ein solcher Zugang zwei Vorteile: Zum einen stellt man so
sicher, daß die wichtigsten physikalischen Prozesse in den Rechnungen enthalten sind. Um
ein konkretes Beipsiel zu geben, die Beschreibung der recht gut bekannten Eigenschaften
der P33(1232) Resonanz in Kernmaterie erfordert die Einbeziehung von kurzreichweitigen
Wechselwirkungen, die sich dann auch für die anderen Baryonresonanzen als wichtig er-
wiesen haben. Allerdings hätten wir die Notwendigkeit solcher Korrekturen nicht erkannt,
wenn wir die P33(1232) nicht in unserem Modell beschrieben hätten. Ein weiterer Vorteil
einer gekoppelten Analyse besteht darin, daß man sensitiv wird auf die Art und Weise, wie
sich die Mediummodifikationen eines Hadrons auf die Eigenschaften der anderen Hadro-
nen übertragen. Als Illustration dienen die In-Medium Eigenschaften von ρ Meson und
D13(1520) Resonanz: Wir haben bereits erwähnt, daß die Dileptonenspektren eine Massen-
absenkung des ρ Mesons suggerieren und Photoabsorptionsdaten eine Verbreiterung der
D13(1520) Resonanz. Diese Phänomene können auf natürliche Art und Weise miteinander
in Verbindung gebracht werden, wenn man eine Kopplung der D13(1520) an den Nρ Kanal
zuläßt. Aus Phasenraumargumenten folgt dann, daß eine Massenabsenkung des ρ Mesons
automatisch eine Verbreiterung der D13(1520) nach sich zieht. Auch das optische Poten-
tial des η Mesons und die In-Mediumeigenschaften der S11(1535) Resonanz stehen direkt
miteinander in Beziehung.

Unser Modell ist wie folgt aufgebaut. Die Selbstenergie der Mesonen wird bestimmt
durch die Anregung von Teilchen-Loch Zuständen. Diese Mechanismen erzeugen ein kom-
pliziertes mesonisches Spektrum mit zahlreichen Peakstrukturen. Im folgenden Schritt
werden die so erzeugten Propagatoren der Mesonen zur Berechnung der Selbstenergie
der Baryon-Resonanzen herrangezogen. Dies führt zu einem Selbstkonsistenzproblem, da
nun die Selbstenergie der Mesonen von der Selbstenergie der Baryonen abhängt, welche
wiederum implizit durch die mesonische Selbstenergie bestimmt ist. Dieses Selbstkonsis-
tenzproblem wird iterativ gelöst. Effektiv werden durch die Iterationen Hadron-Nukleon
Streuprozesse von höherer Ordnung in der Dichte erzeugt. Wir berücksichtigen die Meso-
nen π, η and ρ sowie alle Baryon-Resonanzen, welche an diese Mesonen koppeln. Explizite
Resultate geben wir für alle Mesonen sowie die Resonanzen P33(1232), D13(1520) und
S11(1535).

Die Wechselwirkung zwischen Nukleonen, Mesonen und Baryon-Resonanzen wird be-
schrieben durch Lagrangefunktionen, welche grundlegende Symmetrien wie Eichinvarianz
und Paritätserhaltung respektieren. Der Imaginärteil der Selbstenergien von Mesonen und
Resonanzen wird gemäß der von Cutkosky formulierten Regeln berechnet. Der Realteil
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folgt dann aus Dispersionsrelationen. Durch dieses Vorgehen ist garantiert, daß die Spek-
tralfunktionen normiert sind. Weiterhin berücksichtigen wir Effekte von kurzreichweitigen
Termen in der Resonanz-Nukleon Wechselwirkung. Während diese für Resonanzen mit
positiver Parität bereits wohl studiert sind, besteht ein neuer Aspekt dieser Arbeit in
der konsistenten Formulierung solcher Wechselwirkungen für Resonanzen mit negativer
Parität.

Wir diskutieren nun die Ergebnisse unserer Rechnungen. Für das ρ Meson finden wir
starke Modifikationen durch seine Kopplung an den D13(1520)N−1 Zustand, welcher einen
zusätzlichen Peak in der Spektralfunktion des ρ Mesons bei kleinen invarianten Massen
verursacht. Dieser Peak ist am stärksten ausgeprägt bei kleinen Impulsen des ρ Mesons.
Bei größeren Impulsen ist die relative Wichtigkeit der D13(1520) reduziert und die Kop-
plung an andere Resonanzen größerer Masse wird wichtiger. Als Resultat finden wir bei
diesen Impulsen eine relativ stark verbreiterte Spektralfunktion für ein transversales ρ
Meson. Ein longitudinales ρ Meson zeigt ein deutlich anderes Verhalten bei größeren Im-
pulsen, hier ist die Modifikation nur sehr schwach ausgeprägt. Durch die Iterationen wird
die Spektralfunktion bei kleinen Impulsen deutlich modifiziert, was auf die starke Verbre-
iterung der D13(1520) zurückzuführen ist. Wir haben geprüft, inwiefern die Ergebnisse
sensitiv sind im Hinblick auf kurzreichweitige Wechselwirkungen und Unsicherheiten in
den Kopplungskonstanten. In beiden Fällen finden wir nur recht geringe Korrekturen.
Eine Berechnung der Dileptonenrate legt nahe, daß unser Modell zumindest qualitativ die
beoachtete Verschiebung im Dileptonenspektrum erklären kann.

Die Spektralfunktion des Pions wird dominiert duch die Kopplung an Nukleonen und
das P33(1232). Dies führt im Bereich mittlerer Impulse zwischen 0.3 − 0.6 GeV zu einer
Ausprägung von drei Peaks, während bei kleineren und grösseren Impulsen der Einfluß der
Teilchen-Lochanregungen nicht so groß ist. Weder die Einbeziehung weiterer Resonanzen
noch die Iterationen beeinflussen die Ergebnisse maßgeblich. Das η Meson wird durch seine
Kopplung an das S11(1535) dominiert. Dies führt bei kleinen Impulsen zu einer attraktiven
Wechselwirkung, während bei größeren Impulsen die Wechselwirkung repulsiv wird. Das
optische Potential des η Mesons zeigt in unserem Modell einen relativ großen attraktiven
Realteil, während der Imaginärteil recht klein ist. Dies läßt darauf hoffen, daß η-mesische
Atome experimentell erzeugt werden könnten.

Die In-Medium Eigenschaften des P33(1232) werden von unserem Modell zufriedenstel-
lend wiedergegeben und wir sind zuversichtlich, daß die wesentlichen physikalischen Mecha-
nismen in unserem Modell berücksichtigt werden. Für die D13(1520) Resonanz finden wir
durch ihre Kopplung an den ρN Kanal eine sehr starke Verbreiterung. Im Gegensatz zum ρ
Meson sind hier die Unsicherheiten in der Kopplungskonstanten und Effekte von kurzreich-
weitigen Wechselwirkungen sehr wichtig für die quantitativen Ergebnisse. Während durch
den ρN Kanal eine Verbreiterung von bis zu 250 MeV generiert wird, sind die Effekte durch
den πN Kanal relativ klein. Auch hier spielen kurzreichweitige Korrelationen eine gewisse
Rolle, insbesondere aber sind die Ergebnisse sensitiv auf die Wahl des Formfaktors. Auf
der anderen Seite sind die Modifikationen der S11(1535) Resonanz nur sehr klein. Die Kop-
plung an πN und ηN spielt so gut wie keine Rolle. Nur der ρN Kanal führt zu einer kleinen
Verbreiterung, die hauptsächlich auf die Kopplung an die D13(1520) zurückzuführen ist.
Bei kleinen Impulsen führt das Pauli-Prinzip zu einer merklichen Reduktion der totalen
Breite, was einen gewissen Einfluß auf die optische Potential des η Mesons hat.

Wir haben weiterhin einige allgemeine Aspekte unseres Modells untersucht. So haben
wir ausführlich diskutiert, daß relativistische Korrekturen zur nichtrelativistischen Reduk-
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tion nur geringfügige Änderungen für die Selbstenergie des ρ Mesons hervorrufen, solange
die nichtrelativistische Reduktion konsistent durchgeführt wird. Dieses Resultat übertragt
sich direkt auf die übrigen betrachteten Mesonen und Baryon-Resonanzen. Wir haben
außerdem die Gültigkeit der Niedrig-Dichte Näherung untersucht. Hier verliert diese
Näherung für das D13(1520) ihre Gültigkeit schon bei Dichten ≈ 0.4 ρ0. Auch für die
Mesonen π und ρ ist die Niedrig-Dichte Näherung nur begrenzt anwendbar. Für Systeme,
die durch schwächere Kopplungen charakterisiert sind – wie z. B. η Meson und S11(1535)
–, hat sie jedoch einen größeren Gültigkeitsbereich. Die Anwendung von Dispersionsre-
lationen zur Erzeugung von normierten Spektralfunktionen ist zwar prinzipiell wichtig,
führt aber in den meisten Fällen nur zu relativ geringen Modifikationen der Ergebnisse.
Am stärksten ausgeprägt ist der Einfluß auf die Selbstenergien der Baryon-Resonanzen im
Vakuum.

Wir haben weiterhin den Einfluß von Mean-Field Potentialen auf unsere Ergebnisse
studiert. Die gefundenen Effekte sind relativ groß, was sich auf die großen skalaren Poten-
tiale zurückführen läßt. Diese führen zu einer substantiellen Reduktion der Normierung
der Spinoren von Nukleonen und Resonanzen und folglich sind die gefundenen Verbre-
iterungen der Resonanzen deutlich kleiner. Allerdings ist diese Analyse mit erheblichen
Unsicherheiten die Größe der Mean-Field Potentiale für die Baryon-Resonanzen betreffend
behaftet, so daß man keine definitiven Schlußfolgerungen treffen kann.

Etwas losgelöst von dem bis jetzt diskutieren Modell haben wir die In-Mediumeigen-
schaften des ω Mesons im Rahmen eines Resonanzmodells studiert. Da experimentelle
Information über die Kopplung des ω Mesons an Resonanzen relativ rar ist, haben wir im
Rahmen einer Vektormesondominanz-Analyse diese Kopplung aus den relativ gut bekan-
nten elektromagnetischen Helizitätsamplituden extrahiert. Die resultierenden Kopplungs-
konstanten sind relativ klein, so daß sich keine Peakstrukturen ausbilden können. Insge-
samt finden wir eine leichte Verschiebung des ω Mesons hin zu größeren invarianten Massen,
kombiniert mit einer Verbreiterung von etwa 40 MeV.
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viele Freiräume für eigene Ideen eingeräumt. Seiner wohlwollenden Förderung verdanke ich
außerdem die Teilnahme an zahlreichen Konferenzn und Workshops sowie einen 4-wöchigen
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