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Chapter 1

Introduction

A nucleon is composed of quarks which are suggested to be elementary parti-
cles in nature. Quarks interact with each other by interchanging gluons. This
strong interactions of quarks and gluons are described by the theory of Quan-
tum Chromodynamics (QCD). In addition, quarks and gluons are normally
confined within hadrons, and cannot be detected as free particles. This means
that in a large nucleus being composed of nucleons, quarks and gluons in one
nucleon cannot travel freely into the neighboring nucleons. This is the case for
a normal nuclear matter. On the other hand, for high density matter, QCD
predicts the existence of a deconfined phase of quarks and gluons, the so-called
Quark Gluon Plasma (QGP) [CP 75]. Particularly, the numerical studies of
QCD on the lattice [K 02] show that there is a rapid rise of the energy density
of matter at the temperature 7' ~ 170 MeV, which indicates the occurrence of
a phase transition from hadronic matter to QGP. The energy density at the
critical temperature is ~ 1 GeV/fm® which is about an order of magnitude
larger than that of atomic nuclei. QGP is presumed to have been present very
shortly after the Big Bang in the early universe. In the laboratory, it is sug-
gested that colliding large nuclei with each other at high energy will deposit a
large amount of energy within a small volume, so that the required energy den-
sity for the transition between the confined and deconfined matter is achieved
in such collision experiments. In the last thirty years, several experiments of
nucleus-nucleus collisions are constructed and performed. The energy involved
in the collision increases continuously from an experiment generation to the
later one. The highest energy for the moment is /s = 200 AGeV (in the
center of mass frame of colliding nuclei) at the Relativistic Heavy Ton Collider
(RHIC) [RHIC 00] at Brookhaven National Laboratory, which began opera-
tion in 2000. At RHIC energy it is estimated using the Bjorken formula [B 83]
that the initial energy density is about 20 —30 GeV/fm®  which is high enough
to produce a QGP. QCD predictions of new physics under extreme condition
of high energy density and high temperature can be thus tested at RHIC. Ex-
perimental data collected until now show exciting novel phenomena. One of
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them, the elliptic flow, will be discussed below. We note that in the future
project at the Large Hadron Collider (LHC) at CERN, the collider energy
will be one order magnitude larger than the RHIC energy. The situation for
exploring QCD deconfined matter is even better at LHC.

Let us illustrate schematically what is expected to happen in a nucleus-
nucleus collision. In the first moment after the collision, quarks and gluons
originally confined in nucleons are liberated. The system of quarks and gluons
is likely strongly coupled and might become thermalized very fast to a QGP.
The formed QGP expands then hydrodynamically in space and time until
the energy density or temperature decreases to the critical point. At this
stage quarks and gluons begin to combine to form hadrons. This is a mixed
phase of quarks, gluons and hadrons. When hadronization is completed, there
exists a hadron gas. This phase expands further with hadronic interactions
until the system falls apart and decouples. The single particles will then be
detected. It shows that a nucleus-nucleus collision is a very complex process
and a QGP (if it exists) appears only as a transient state of QCD matter in
the collision. Therefore, the search for QGP has to be carried out by analysing
certain proposed hadronic and electromagnetic signatures like the strangeness
enhancement, .J/1 suppression or jet-quenching [M 86, S 80, MR, 82, KMR 86,
MS 86, KM 81, KLS 91, G 90]. These effects would appear when a thermal
system of quarks and gluons, a QGP, exists. However, the possible signatures
of the QGP may also come in part from the late time dynamics of a hadron
gas formed after the phase transition [MSSG 89, GCG 98, GL 01, GGJ 88,
VPKH 88, GGBCM 99, GGX 03]. In order to obtain a ‘clean’ signature, one
has to look for novel phenomena developed at the early time in the collision.
The elliptic flow vy is just one such ‘early signature’ of QGP. As seen in

dNp dNy 1

I2dyds ~ dpidy n (142v; cosg+2vy cOS2¢ + - +), (1.1)
T T

vy is defined as the second harmonic coefficient of a Fourier expansion in the az-
imuthal angle ¢ of the measured hadron spectrum. The v, parameter denotes
the quadrupole moment and is thus nonzero when an initial spatial anisotropy
of the reaction zone exists, which is realized for semi-central collisions. The idea
for studying v, is that if a QGP with high pressure is formed in a semi-central
collision, there will be an azimuthal dependence of the pressure gradients and
this will then push the particles to overcome the initial spatial asymmetry,
so that this azimuthal anisotropy will be transferred into a momentum space
anisotropy in the final state, which should be seen in the momentum depen-
dence of vy. The second point is that the elliptic flow vy is mainly generated
at the early times, since at those times the spatial anisotropy is at maxi-
mum. vy will saturate if the spatial asymmetry disappears. Therefore, one
does not expect a large generation of vy in the hadronic phase. Fig.1.1 shows
the data of measured vy parameter for various hadronic particles at RHIC



[PHENIX 03, STAR 04], compared with the predictions based on simple ideal
hydrodynamical models [KHHH 01]. The perfect agreements of the observed
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Figure 1.1: Differential elliptic flow wvy(pr). The data were collected by
PHENIX [PHENIX 03] and STAR [STAR 04] collaborations at RHIC. The
curves are hydrodynamic calculations [KHHH 01].

hadron mass dependence of the elliptic flow with the hydrodynamic calcula-
tons below 1.5 GeV/c indicate that the evolving system of quarks and gluons
builds up a sufficiently early pressure and potentially also achieves (local) equi-
librium. Moreover, this suggests a strongly interacting (small viscosity) QGP.
One can also see that the measured vy saturates at high pr, while the hydro-
dynamic model predicts a continuous rise of vy with inceasing pr. This shows
that higher momentum particles do not behave hydrodynamically.

In spite of the success of the hydrodynamic model predicting the elliptic
flow, one may ask for the timescale of thermalization of quarks and gluons,
at which the hydrodynamic model starts to apply, since the system in the
reaction is initially far from any (quasi-)equilibrium configuration. To ad-
dress the crucial question of thermalization in the non-equilibrium dynam-
ics, a number of QCD inspired theoretical analyses have been worked out
either using the relaxation time approximation [B 84, HW 96, W 96, Wo 96|
or performing full 3 + 1 dimensional Monte Carlo cascade simulations based
on the solution of the Boltzman equations for partons (quarks or gluons)
[GM 92, Z 98, MG 00, BMGMN 00, BMS 03]. While the relaxation time
method is only valid near equilibrium, Monte Carlo cascade simulations cover
all situations, especially for the case far from equilibrium. Even the hydrody-
namical behaviour of a thermal system can be, in principle, realized in such
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simulations. Therefore, it is essential to use cascade simulations, inspired by
QCD, to obtain quantitative predictions about the timescale of thermalization
and about the behaviour of the further evolution of QGP in a nucleus-nucleus
collision. In this thesis we develop a new cascade for on-shell partons to inves-
tigate the parton evolution in high-energy heavy ion collisions.

We first briefly review the already implemented parton cascade models
developed by other groups. The first parton cascade, VNI, inspired by the
perturbation QCD including binary elastic scatterings (2 < 2) and gluon
radiation and fusion (1 <> 2) was developed by Geiger and Miiller [GM 92].
The partons are initially off-shell. They do not only propagate in space-time
and in momentum space, but also propagate in their virtuality, the degree
of the offshellness. In the simulation for a central Au+Au collision at RHIC
energy [G 92] they concluded that a thermalized QGP will be formed at 7 ~
1.8 fm/c. However, the onset of potential hydrodynamical behaviour during
the parton evolution was not demonstrated in their analyses. In addition,
the treatment of the propagation of off-shell partons in their approach is not
clear from a quantum kinetic point of view. Recently, Molnar and Gyulassy
studied the buildup of elliptic flow at RHIC [MG 02] applying their on-shell
parton cascade, MPC [MG 00] (an improved version of ZPC [Z 98]), in which
up to now only elastic gluon interactions are included. In their analysis the
early pressure can be achieved only if an unrealistic, much higher cross section
than that dictated by pQCD is being employed. Furthermore, it is known
that the elastic (and forward directed) gg <> gg collisions cannot drive the
system to kinetic equilibrium, as pointed out in [SS 01]. This would suggest,
rather pessimistically, that the collective flow phenomena observed at RHIC
cannot be described via pQCD. On the other hand, the possible importance
of the inelastic pQCD interactions on overall thermalization was raised in
the so-called ‘bottom-up thermalization’ picture [BMSS 01]. It is intuitively
clear that gluon multiplication should not only lead to chemical equilibration
[BDMTW 93|, but also should lead to a faster kinetic equilibration [XS 94,
BV 01]. This represents one (but not all) important motivation for developing
a consistent algorithm to handle inelastic processes like gg <> ggg.

As a technical point in solving the transport equations, cross sections are
interpreted geometrically in most of the cascades to model the collision pro-
cesses. It turns out that in dense matter when the interaction length W
is not much smaller than the mean free path of particles, causality violation
[KDCDN 84, KBHMP 95] will arise in these cascade models and will lead to
numerical artifacts [ZGP 98]. One way to reduce these artifacts is to apply the
common test particle method (or ‘particle subdivisions’) [W 82, WMGPS 89,
in which the interaction length of the test particles is reduced by \/Nyes:, while
the mean free path is unchanged. N denotes the number of the test particles
per real particle. However, the limitation of these transport models is obvious:



Inelastic collision processes with more than two incoming particles cannot be
straightforwardly implemented since it is in general difficult to determine, for
instance, a 3 — 2 process geometrically. Therefore, until now, the role of the
inelastic processes in the formation of the QGP has not been studied fully
quantitatively. To develop a consistent algorithm including 2 <+ 3 processes is
a challenge and represents the technical part of the thesis.

An alternative collision algorithm suggested in [B 89, DB 91, L 93, C 02]
dealt with the transition rate instead of the geometrical interpretation of cross
section and determined proceeding collision processes in a stochastic manner
by sampling possible transitions in a certain subvolume and time interval.
This collision algorithm opens up the possibility to include the inelastic col-
lision processes into transport simulations. In this thesis we will present a
newly developed on-shell parton cascade using - for the first time - this sort
of stochastic collision algorithm. Also the oftenly employed scheme based on
the geometrical interpretation of cross section is discussed and compared with
the stochastic algorithm. In particular, we concentrate on the study of the
(unphysical) frame dependence. The new transport scheme will then be ap-
plied to simulate the parton evolution for a central ultrarelativistic heavy ion
collision at highest RHIC energy. The emphasis is put on the investigation
of gluon thermalization and their collective dynamics. For this investigation
the initial conditions are assumed to be generated by independent minijets
[KLL 87, EKL 89]. Other initial conditions, like the much discussed ‘Color
Glass Condensate’ [MV 94|, will also be implemented at the end. For the
present study we consider quarks and gluons as classical Boltzmann parti-
cles throughout the thesis. The Pauli-blocking and Bose enhancement can, in
principle, be taken into account.

The thesis is organized in the following way. In chapter 2 we present the
stochastic collision algorithm for solving the on-shell Boltzmann equations and
contrast this algorithm with the standard geometrical method. We explicitly
show implementations of two-body collision processes and 2 <> 3 collision
processes in the transport simulations. As a first test, the dynamical evolution
of a system within a fixed box is carried out to study global kinetic and chemical
equilibration. Such calculations are mandatory to demonstrate the correct
operation of the code and to look for the limitation of the algorithms.

Chapter 3 is concerned about the Lorentz invariance and the convergence of
results extracted from cascade simulations. Numerical artifacts are discussed.
We also make comparisons between the stochastic and geometrical collision
algorithm in the connection with the frame dependence and the convergence.

In chapter 4 we give the initial distribution of partons in the first mo-
ment after a central Au+Au collision at RHIC energy. The initial partons are
assumed to be generated via minijets production.

As a first application of the pQCD inspired parton cascade we study ther-
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malization of a parton system in a fixed box in chapter 5. In chapter 6 we then
finally present first results of cascade simulations for a central Au+Au colli-
sion at RHIC energy. Taking various initial conditions we predict relatively
fast thermalization of partons: full kinetic equilibration at 1 — 2 fm/c and full
chemical equilibration at 1 — 4 fm/c. The further expansion of the parton
system shows (quasi-)hydrodynamical behaviour up to 4 fm/c. We summarize
in chapter 7 and give an outlook for future studys.

In Appendix A and B more details of the geometrical collision algorithm
are given. We list the pQCD partonic scattering cross sections in Appendix
C for two-body processes and in Appendix D for gg <> ggg processes. In
Appendix E the numerical recipes for Monte Carlo samplings are presented.
Some fomulas of relativistic hydrodynamics are given in Appendix F.



Chapter 2

Numerical solution of the
Boltzmann equation

The Boltzmann equation is an equation of motion for f(r,p,t), the average
phase space density of particles with momentum p at the space-time point
(r,t). For the case that there is no external force acting on the particles, the
time derivative of f is computed by taking into account: 1) Particles with
momentum p continually drift into and out of the volume element of space
around r; 2) Collisions that take place in this volume suddenly change the
particle momenta. This results in the Boltzmann equation
of . p 0f

E-FE'E:CZCW"‘C%""“, (2.1)

where the second term of the left side expresses the drift of particles and C
denotes the collision term, which can be classified into terms corresponding
to two-body collision processes, Cao, to 2 <+ 3 processes, Ca3, and so on. An
essential assumption, absence of particle correlation, is postulated before each
individual collision. Thus the number of collisions is proportional to the prod-
uct of the phase space densities of the colliding particles and moreover to a
transition rate, which is a measure for the probability of the collision process.
The formulations of the collision terms will be given in the following sections.

One has to note that the Boltzmann equation is appropriate only for sys-
tems with weak, short-ranged forces. Strong collisions will lead to a fast varia-
tion of the particle density in space-time, which contradicts the basic condition
for the Boltzmann equation that the possibility of a macroscopic description
requires that changes of the particle density on microscopic scales of length
and time are negligibly small. Furthermore, if the force is long-ranged, then
the whole picture of local collisions breaks down completely.

The Boltzmann equation (2.1) is a non-linear equation for f. Therefore its
solution is in general not straightfoward. In particular case that the system is
in equilibrium, the equation (2.1) can be solved analytically, since in this case

7
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the collision term is exactly zero. If the system is near equilibrium, one can
linearize the collision term by employing the relaxation time approximation

C~ J=Ju , (2:2)
trel

where t,,; denotes the relaxation time of the particle density to that at equilib-
rium, f.,. For the situation that the system is far from equilibrium, numerical
facilities have to be applied, either performing the full 3 + 1 dimensional com-
putation on the lattice or making simulation of a real space-time evolution of
particles by means of the Monte Carlo technique. In the latter the particle
density in phase space is extracted to be

fr,p,t) =3 (2m)* 0% (r — ri(2)) 6°(p — Pil?)) (2.3)

2

where the sum runs over all the particles. Particles evolve freely between
two successive collisions. After collision new momentum will be determined
statistically by employing the Monte Carlo technique. The buildup of such
transport code is, in view of the numerical development, the main subject of
this thesis and is also the ‘cornerstone’ for the future projects.

In this chapter we will present the numerical implementations simulating
the individual collisions of on-shell particles in the course of their evolution.
Especially, 2 <+ 3 processes are treated - for the first time - fully consistently
within the stochastic method.

2.1 Numerical implementation of two-body col-
lision processes

We consider a system consisting of classical, ultrarelativistic particles which are
interacting via two-body collisions. The main emphasis is put on the numerical
realization of such collision sequences in a relativistic transport simulation,
which is theoretically based on the solution of the Boltzmann equations (2.1)
with the following collision term given by

Cor = 1 / d>ps l/ d>p} d*ph,
2 7 2B, (2n)%2E, v/ (21)32E} (27)32E}
X f1fo| Murgroynz|? (21) 160 (0 + Py — p1 — p2)
1 / d’pp 1 / d’py  d’p
2E,1 J (2m)32Ey v J (2m)32E] (2m)32F)
X f1fol Mg 1 ‘2(27)45(4) (p1 +p2 — Py —Dh).- (2.4)

v will be set to 2 when considering the double counting if 1’ and 2 are identical
particles. Otherwise v is set to 1.
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Since no mean field is considered throughout the present study, the evo-
lution of particles is intuitively straightforward: Particles move along straight
line between two collision events. After a particular collision the momenta of
colliding particles are changed statistically according to the differential cross
section. The determination of the collision sequence is, however, not unique
and depends on the particular numerical implementation. We present in this
section two numerical methods dealing with the realization of binary collisions.
Comparisons between these two methods will be made in detail when investi-
gating kinetic equilibration in a fixed box. We also study any potential (but
unphysical) frame dependence of transport simulations within both schemes
and how to minimize possible deficiencies. These results will be presented later
in chapter 3.

2.1.1 The geometrical method

In the first method a collision happens when two incoming particles approach
as close to each other that their closest distance is smaller than /o095 /7, where
099 denotes the total cross section for the colliding particles. In other words,
the collision probability is either 1 or 0, depending on how close the collision
partners come together. Since the total cross section is interpreted geometri-
cally, we label this procedure the geometrical method. In this picture of the
closest approach,which is already employed in parton cascade models like ZPC
[Z 98], MPC [MG 00] and PCPC [BMGMN 00], collisions do happen one by
one as time proceeds. If the initial positions and momenta of particles are
given, the next collision event can be determined by comparing the individual
times marking the occurrence of the various and possible collisions. Detailed
numerical procedure can be found in Appendix A and B.

Unlike the total cross section the closest distance is, however, not invariant
under Lorentz transformation. This may lead to the situation that a particle
pair collides in one frame, but might not in another frame, which is unphysical.
One faces here a violation of covariance, which is a historic problem in micro-
scopic simulation within relativistic transport models. In the present scheme
we define the closest distance in the center of mass frame of the individual
particle pair and thus make it to be a Lorentz invariant quantity by hand. In
spite of this definition the covariance of the Boltzmann equation is still not ful-
filled, because the time ordering of collisions might be changed under Lorentz
transformation [KDCDN 84, KBHMP 95]. Still, for a sufficiently dilute system
the geometrical method works rather robust. We will continue discussing this
problem of covariance violation later in this chapter and also in chapter 3. Be-
sides the problem just mentioned, the ordering time of one particular collision
itself which orders the occurrence of all collisions in a particular frame, called
lab frame, is not well defined. Since we determine the closest distance of two
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incoming particles in their center of mass frame, it is reasonable to define the
collision points for the two particles also in this frame at the closest distance
and at the same time. Consequently both particles, if they do collide, change
their momenta at the same time in their center of mass frame, but generally at
different times in the lab frame. (We now denote these individual two times by
collision times.) One can now define the ordering time at some stage between
these two collision times. There is, however, no unambiguous prescription. In
general, different choices for the ordering time will lead to different collision se-
quences. This, as numerically verified, does not strongly affect the behaviours
of physical (ensemble averaged) quantities shown below. In our simulation we
choose the smaller one of the two collision times as the ordering time. For
the clarity we note again that the ordering time marks the individual collision
event and is needed for ordering the collision sequence and for looking for the
next collision. If one collision happens, the two colliding particles do react
to this interaction at their (different) collision times, i.e. particles move with
their ‘old’ velocities to the space points at collision times, change the momenta
suddenly and then move further with the ‘new’ velocities.

In order to demonstrate the correct operation of the numerical realization
of the geometrical method, we will choose a situation when the outcome is
known analytically. For this purpose we carry out ‘box calculations’, in which
a particle ensemble with a none-quilibrium initial condition is enclosed in a
fixed box and will evolve dynamically until an appropriate final time. The
collisions of particles against the walls of the box are simply done via me-
chanical reflections. The times, at which particles collide with the walls, are
uniquely determined and added into the time table of collisions among parti-
cles to find out next action, either a binary collision or a collision against wall.
For sufficiently long times, the system should get kinetically equilibrated at
the end. For a classical, ultrarelativistic ideal gas the energy distribution has

the Boltzmann form
dN 1 5 T

= e

NE?dE 273 ’
which guides as an analytical reference for the numerical results. The temper-
ature T' can be obtained from the simple relation between energy and particle
density

(2.5)

e=3nT, (2.6)

where € and n are solely given by the initial condition due to the energy
and particle conservation. In the simulations particles are initially distributed
homogeneously within the box and their momentum distribution is chosen
highly anisotropic via

dN

All particles have initially the same momentum and the energy per particle
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is ¢/n = 6 GeV which leads to T = 2 GeV at equilibrium. In Fig.2.1 the
final energy distribution from such box calculations for a system of N = 2000
massless particles is depicted. The size of the box is set to be 5 fm x 5 fm X

10°3 . . . : : : :
3 Box calculation, L=5 fm, N=2000
isotropic collisions, 522=10 mb

geometrical method, N __ =1,

averaged over 50 runs

------ analytical, T=2 GeV

dN / NE°dE [GeV
3

0 . 5 . 10 . 15 . 20
E [GeV]

Figure 2.1: Energy distribution at final time (¢t = 5 fm/c) of a system consisting
of N = 2000 massless particles in a fixed box. The initial energy distribution
is set to be a delta-function at 6 GeV (2.7). The size of the box is 5 fm x 5 fm
x 5 fm. We here apply the geometrical collision algorithm. The collisions are
taken as isotropic and the total cross section is fixed to be a constant g9y = 10
mb. The dotted line denotes the analytical result of temperature 7' = 2 GeV.
The numerical distribution is obtained from an ensemble of 50 independent
realizations.

5 fm. We consider collisions with isotropic differential cross section and take a
constant total cross section of o99 = 10 mb. The final time is set to be 5 fm/c.
(As one will shortly realize, this chosen time is sufficient long for the system to
become equilibrated.) To improve statistics we have collected particles from
50 independent realizations. The dotted line, depicted in Fig.2.1, denotes
the analytical distribution (2.5) with temperature 7' = 2 GeV. We see a nice
agreement, between the numerical result and the analytical distribution except
a slight, but characteristic deviation at low energies. We will come back to
explain this discrepancy immediately.

Such a successful passing of the previous test is necessary for every collision
algorithm, but it is still not a sufficient argument to guarantee whether the
presented algorithm is operating correctly. One has to ask any numerical algo-
rithm for its limitation of correctly describing the underlying problem. To be
specific when considering the collision integral (2.4), it is not obvious whether
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the geometrical interpretation of the total cross section is a reasonable choice
to account for the Boltzmann process. In fact such a description has some
shortcomings concerning causality violations which have been pointed out for
example in [KBHMP 95]. Especially for the algorithm presented above we
have to face the fact that the collision times of colliding particles are different
in the lab frame. This will lead to a noticeable reduction of the collision rate
compared to one given by the collision integral. Assume that the difference of
the collision times is At.. Consequently the particle with larger collision time
should not collide again during this interval At., otherwise causality would be
violated. As pointed out in Appendix A, for a system in equilibrium the ensem-
ble averaged time delay < At. > depends only on the total cross section and
increases with the increasing total cross section. This will lead to an increase
of the mean free path and thus to a decrease of the collision rate. In other
words, the collision rate decreases when noncausal collisions are forbidden. We
can demonstrate this effect employing box calculations, in which we consider
an initially kinetic equilibrated gas distributed homogenously within the box.
The size of the box is taken to be the same as in Fig.2.1. We employ isotropic
collisions with a constant cross section of g95 = 10 mb. In Fig.2.2 collision rates
are depicted as solid squares for several particle densities. The collision rate is
obtained here as the time average of the collision number. While the box size
is fixed, we vary the particle number to get different densities. The solid line
shows the expected relationship between the collision rate and particle density
in equilibrium R = noss. We see a clear decrease of the collision rate when
the expected mean free path 1/nosy is not much larger than the interaction

length /099 /7. Such a numerical artifact would strongly slow down the kinetic
thermalization of an initially highly non-equilibrium state, as, for instance, in
case of ultrarelativistic heavy ion collisions. As also clearly seen from Fig.2.2,
the collision rate tends to saturate at high density. The reason is that the
collision rate has an upper limit which is exactly the inverse of the average
collision time difference < At. > /2 depending only on the total cross section
as mentioned before. One can compute < At. > /2 analytically. The detailed
calculation is given in Appendix A. It turns out that < At, > /2 =0.12 fm/c
for 093 = 10 mb. This indicates that the saturation value of the collision rate
would be 8.3 fm ' at high density.

We now return to the slight discrepancy at low energy as noticed in Fig.2.1
and consider this as a consequence of the same effect of the relativistic time
spread of collisions pointed out above, since in this particular situation the
particle density is so high that the mean free path is one order smaller than the
interaction length. To confirm this suspicion, we carry out similar calculations
as in Fig.2.1, but with a tiny cross section of o99 = 0.1 mb. The energy
distribution, depicted as thick histogram, is shown in Fig.2.3 compared with
the distribution (thin histogram) obtained by using 92 = 10 mb. One does not
see the artificial distortion in the spectrum at low energies any more when the
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Figure 2.2: Collision rates for given particle densities. The size of the box
is 5 fm x 5 fm x 5 fm. We apply here the geometrical collision algorithm.
The collisions are isotropic and the total cross section is fixed to a constant
of 090 = 10 mb. The particle system is taken initially as thermal with a
temperature of 7" = 1 GeV. The solid line shows the expected relationship
between collision rate and particle density: R = nogy. The solid squares show
the calculated collision rates without test particles (N5 = 1) and the open
squares show the results with 50 test particles per real particle (N5 = 50).

cross section and hence the relativistic time spread is small. As a conclusion,
the relativistic time spread effect not only decreases the collision rate, but also
slightly distorts the system out of equilibrium.

To suppress this numerical artifact and hence to conserve Lorentz co-
variance we employ the widely used test particle, or ‘subdivision’, technique
[W 82, WMGPS 89] based on the scaling

n— N Nisg and 0 — 0/Niest, (2.8)

where Ny, is the number of test particles belonging to one real particle. While
the mean free path is unchanged by the scaling, the interaction length is re-
duced by a factor of \/Ny,. This consequently reduces the relativistic time
spread which vanishes in the limit N;.;; — oco. The open squares in Fig.2.2
denote the results by using N, = 50. The tendency of convergence towards
the ideal limit is visible.

In Fig.2.4 we show the time evolution of the momentum anisotropy defined
as the fraction of the average longitudinal momentum squared over the average
transverse momentum squared. The initial conditions and parameters are set
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Figure 2.3: Energy distributions from box calculations. The thin histogram
shows the same distribution as in Fig.2.1. The thick histogram shows the
results with a smaller total cross section of 99 = 0.1 mb.

to be the same as in Fig.2.1. The dotted line depicts the result without apply-
ing the test particle method (Ns = 1) and the dashed line shows the result
with Ny = 50. The results confirm our reasoning that the relativistic effect
of spreading of the two collision times for a colliding particle pair increases the
relaxation time for achieving kinetic equilibrium.

2.1.2 The stochastic method

In the last section we have determined the collision probability of two incoming
particles by means of the geometrical interpretation of the total cross section.
Instead, one can also derive the collision probability of a chosen particle pair
directly from the collision term of the Boltzmann equation [DB 91, L 93, C 02].
When assuming two particles in a spatial volume element A%z with momenta
in the range (p1,p1 + A%p1) and (pa, p2 + A’py), the collision rate per unit
phase space for such particle pair can be read off from (2.4)

ANfojl’? _ 1 A3p, AP 1/ d®p; d*p,
At s A3z A3p; 2F, (2m)32E," 2 v ] (2m)32F; (27)32E,

x| Migora | 227) 6@ (py +py — py —py). (2.9)
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Figure 2.4: Time evolution of the momentum anisotropy from box calculations.
The initial conditions and parameters are set to be the same as in Fig.2.1. The
dotted (dashed) curve shows the results obtained by employing the geometrical
method without test particles (with 50 test particles per real particle). The
solid curve shows the result obtained by employing the stochastic method with
10 test particles per real particle.

Expressing distribution functions as

AN;
i = T ! =1,2, 2.1
! ﬁA%A?’pi L (2.10)

and employing the usual definition of cross section [GLW 80] for massless par-
ticles

|M12—>1'2f |2(27T)45(4) (p1 +p2 —pl1 _pIQ) ) (2-11)

022

_ 11 / d’py  d’p,
-~ 2sv) (27)32E] (27)32FE,

one obtains the absolute collision probability in a unit box A3z and unit time

At
ANZ22 At

Py = 7AN10AOZ§V2 = Uret 022 Asy
Vret = 8/2F1 Ey denotes the relative velocity, where s is the invariant mass of
the particle pair. Unlike in the geometrical method where the collision prob-
ability is either 0 or 1, Py now can be any number between 0 and 1. (Notice
that, in practice, one should choose suitable Az and At to make P to be
consistently less than 1.) Whether the collision will happen or not is sampled

(2.12)
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stochastically as follows: We compare Py with a random number between 0
and 1. If the random number is less than P,,, the collision will occur. Oth-
erwise there is no collision between the two particles within the present time
step. Due to the stochastic nature of sampling the collision events we call
this collision algorithm the stochastic method. If a particle pair collides, the
collision time will be sampled uniformly within the interval (¢,¢ + At). The
collision times for both colliding particles are here the same. The particle sys-
tem propagates now from one time step to the next. This is different compared
to the transport simulation scheme utilizing the geometrical method. Since in
the limit At — 0 and A3z — 0 the numerical solutions using the stochastic
method converge to the exact solutions of the Boltzmann equation [B 89], we
divide in practice the space into sufficient small spatial cells. For a true situ-
ation At and A3z have to be taken smaller than the typical scales of spatial
and temporal inhomogeneities of the particle densities. We assume that only
particles from the same cell can collide with each other. This and the choice
of A%z are just the numerical treatments and will not be constrained by the
interaction length /o9y /7, since the interaction length is a scale based on the
geometrical interpretation of the interaction and the stochastic method, which
gives the correct realization of the transition rate, is conceptually completely
different than the geometrical method.

In general we also might employ, in addition, the test particle technique in
order to reduce statistical fluctuations of the collision events in cells. Accord-
ingly the collision probability is changed to

092 At

e 2.13
Ntest A?)x ( )

i
P22 = Urel

by the scaling 0 — 0 /Nyes;.

In the following we discuss the Lorentz invariance of the stochastic algo-
rithm in the limit Az® — 0, At — 0 and Ny — 00. Since AtA3z, A3p/AE,
the distribution function f and the total cross section are Lorentz scalars, it
is easy to realize from (2.9) that the collision number ANZ;}? is a scalar under
Lorentz transformations. Furthermore this is also true for AN;, the particle
number counted within a phase space interval at time ¢. Hence, the collision
rate AN2?/AN;AT as well as the collision probability Py are scalars un-
der Lorentz transformations. Therefore, in the limit A3z — 0, At — 0 and
Niest — 00 the stochastic method yields per se a Lorentz covariant algorithm.
However, in practice, a non-zero subvolume A3z and non-zero timestep At dis-
turb full Lorentz invariance explicitely. Any potential, but unphysical frame

dependence will be discussed later in chapter 3.

To test and demonstrate the stochastic method we again pursue box calcu-
lations. The initial conditions are the same as in Fig.2.1. The size of the box
is set as before to be 5 fm X 5 fm x 5 fm. Since we consider a spatially ho-
mogeneous initial situation of particles and this configuration will not change
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very much during particle propagation, we choose a straightforward static cell
configuration and divide the box into equal cells. The cell length is set to be
1 fm in the calculations. We consider isotropic collisions and use a constant
total cross section of g99 = 10 mb.

The implementation of the collisions against the walls of the box is not
staightfoward when compared with the situation employing the geometrical
method, since for particles in the cells near the walls there is no time order
to decide whether they should experience collisions against the walls before or
after potential collisions with other particles within one time step. However,
this will not make strong effect on the rate of binary collisions and the rate
of collisions against walls, if the time step is chosen to be appropriately small.
In the simulations we choose the time step as the time span between next two
potential collisions against walls.

Fig.2.5 shows the final energy distribution obtained by an average over 50
independent runs (with N, = 1). One clearly recognizes that the stochastic

100 § T T T T T T T §
] Box calculation, L=5 fm, N=2000
isotropic collisions, 022=10 mb
=1
test ’

averaged over 50 runs

stochastic method, N

------ analytical, T=2 GeV

dN / NE’dE [GeV
3

—_
S
[}

o 5 10 15 20
E [GeV]

Figure 2.5: Energy distribution from box calculations. The initial conditions
and parameters are set to be the same as in Fig.2.1. We apply here the
stochastic collision algorithm. The box is divided into equal cells. The length
of a cell is 1 fm.

collision algorithm also passes this basic test. The agreement between the
numerical and analytical distribution is perfect and we do not see any distortion
in the spectrum in contrast to the situation experienced in Fig.2.1.

Since the stochastic method is based directly on the formal collision rate,

thus the numerically realized collision rate should be met in transport simu-
lations if the sampled statistics in each cell is sufficiently high. We extract
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the collision rates from box calculations employing the stochastic method and
show the results in Fig.2.6 as solid squares. The box size and cell configu-
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Figure 2.6: Collision rates for given particle densities. The initial conditions
and parameters are set to be the same as in Fig.2.2. We apply here the
stochastic collision algorithm. The cell configuration is the same as in Fig.2.5.

ration are set to be the same as in Fig.2.5. The system is taken at thermal
equilibrium for the initial condition. One nicely recognizes that the squares lie
on the expected line. (We do mention here that the box size is fixed and we
vary the particle number to simulate different particle densities. For instance,
a density of 1 fm™ corresponds to a total particle number of 125, which means
on average one particle per cell. For still lower densities not investigated, one
would have to work in addition with a suitable amount of test particles.)

For a system which is initially out of equilibrium the lack of statistics in cells
will affect the dynamical evolution of the system, since now all cells are corre-
lated during the relaxation time. To study the effect we repeat the same simu-
lations performed for Fig.2.5 starting with that particular non-equilibrium ini-
tial condition (2.7) and calculate the time evolution of momentum anisotropy.
We use here the test particle method to control statistical fluctuations. Fig.2.7
shows the time evolution of the anisotropy for different test particle numbers
Niesi- We see that the lack of statistics in cells leads to a slight slowdown in
the momentum relaxation. This effect is reduced by using larger values for
Niest, which in turn results in lower statistical fluctuations. We also see the
convergence of the momentum anisotropy for increasing Niey. It turns out
that statistics with 20 — 30 test particles per cell is sufficiently high to give the
correct momentum relaxation.
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Figure 2.7: Time evolution of momentum anisotropy from box calculations.
The initial conditions and parameters are set to be the same as in Fig.2.1 (or
Fig.2.5). The stochastic method is used here. The cell configuration is the
same as in Fig.2.5. The curves show the results with different test particles.

Let us summarize with some comparisons between the two simulation meth-
ods of treating collisions as presented in this section. In the simulation employ-
ing the stochastic method, the collision rate is correctly realized if the statistics
in the individual cell is sufficiently high. In contrast, the collision rate will be
numerically suppressed in the simulation using the geometrical method, when
the mean free path is not much larger than the interaction length among test
particles. In simulations with both algorithms the test particle technique has
to be applied in addition in order to solve the Boltzmann equation with suf-
ficient accuracy. For dense and strongly interacting system, convergence of
the numerical results with increasing test particle number turns out to be
more efficient in simulations employing the stochastic method than in simu-
lations employing the geometrical method, as shown in Fig.2.4. In transport
simulations applying the stochastic method we have to face the difficulty of
dynamically configurating the space into smaller cells, which is not necessary
in the geometrical method. Furthermore, the time step has to be chosen much
smaller than the cell volume to avoid a strong change of the density distribu-
tion in cells. This, of course, reduces the computing efficiency. In general one
should choose such a collision algorithm, so that numerical expense is small.
However, the stochasic method offers an advanced technique when dealing with
inelastic collision processes, which is the subject of the next section, whereas
it is rather impossible to get a consistent geometrical picture for multi-particle
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transition processes like 2 <+ 3 for instance. A further comparison between
the two algorithms will be discussed in chapter 3 concerning any potential, but
unphysical Lorentz frame dependence of the algorithms.

2.2 Numerical implementation of particle mul-
tiplication and annihilation processes

In this section we will now immediately extend the stochastic method to the
more complicated particle multiplication and annihilation processes involving
more than two particles. These processes are essential to drive the system
towards chemical equilibrium and also do contribute to kinetic equilibration.
The simplest processes are 2 <» 3. In physical terms such processes will be
specified then later in the thesis as gluon Bremsstrahlung and its back reaction.
Now we will discuss their numerical implementations. The implementation
of higher order processes is straightforward within the extended stochastic
algorithm.

The collision term corresponding the 2 <> 3 processes of identical particles
is given by the expression

Cos =

11 / d’py dpy 1 / Ppy &
2F; 21 ) (2m)32F, (2m)32E5 2! (27)32FE] (27)32E),
X f1 fo | Mg a0l (2m)* 69 (0 + Py — p1 — p2 — ps)
L1 / d’p, 1 / dpy Ay, dph
2E, ) (2m)32E, 3!'J (2m)32E] (2m)32F% (27)32F}
xfi fs I3 (Mugzsial* (2m)* 5 (P} + P4 + 05 — p1 — p2)
11 / d*py d’ps 1 / d*py d*ply
2F, 2! ) (2m)32F, (2m)32F5 2! J (2m)32F] (27)32E)
X fi fo f3 |Muzsova|* (21)* 6% (p1 + po + ps — P} — ph)
1 / d’py 1 / d’py  dpy  d’ph
2E, J (2m)32E, 3! (2m)32E} (27)32F) (27)32F}
X f1 fa Mz |2 (27)4 5™ (p1+p2— p’1 - plz - pé) . (2.14)
The collision probability P»3 for a particle multiplication process can be derived
analogously to (2.12) as

P 093 At
23 = Urel )
Ntest A?’l‘

where the total cross section og3 is defined as

(2.15)

11 / dp,  dp,  dp
O: - T 4 7 7 7
%7 2531 ) (21)32E; (27)32E, (27)32E}

(2.16)

|M12—>1'2'3' |2 (27T)45(4) (p1+p2—p'1 —P;—P;,)-
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One can also extend the geometrical method to the multiplication processes.
But it is in general impossible to obtain a unified scheme for the annihilation
processes in a consistent geometrical picture. In contrast, the extension to
3 — 2 processes via the stochastic method is straightforward. We write the
collision rate stemming from (2.14) per unit phase space in a form like (2.9)

A]V?Hz/]\f?fest _ 1 A3172 A?’P:’, hH fo fs

coll

Atﬁmxmpl ~ 2E; (27)32F, (27)32F5 Niest Niest Niest
e / d*p) d*p,

21) (2m)32E; (27)32E,
X (21)* 0@ (p1 + pa + p3 — Py — Do) (2.17)

‘M123—)1’2’ |2

where f;,7 = 1,2, 3, denote now the phase space density of the test particles.
Inserting (2.10) into (2.17) gives the collision probability of a 3 — 2 process

AN32 1 I At

P P ¢ p—
27 AN\AN,AN;  8E\EyE3 N2, (A3x)?

(2.18)

for given momenta of the incoming particles in a particular space cell. I35 is
defined as the integral 5 [ d®p{d®p) - -- in (2.17) over the final states.

Danielewicz and Bertsch [DB 91] obtained a similar expression for P,

g12 V3 At
Ntest Ntest (A3LE)2’

Py = v19 (2.19)
when investigating the production of deuterons in a non-relativistic transport
model of low energy heavy ion reactions, where they approximately factorized
the matrix element into a term describing a two-body collision and a term
mimicing particle fusion. oy is the total cross section for the two-body collision
and V3 can be interpreted as a volume: Once three particles are within this
volume, a 3 — 2 transition may be considered to occur. The volume scales
with V3 — V3/Niese when employing test particles. Therefore it is intuitively
clear why the quantity I3, in (2.18) scales with 1/NZ2_,. In contrast to (2.19),
expression (2.18) is a more general one formulated in a unified manner, and is
correct for any given matrix elements without any approximations.

As an example, when considering isotropic 2 <+ 3 collisions for identical
particles, integrals over momentum space for o935 and I35 can be easily calcu-
lated analytically and one obtains

I3y = 19272093 . (2.20)

Applying the probabilities (2.15) and (2.18) we are now able to study ki-
netic and chemical equilibration in a box. We assume a system consisting of
identical, massless particles and consider only isotropic 2 <+ 3 collisions. 093
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is set to be 10 mb. As in the box calculations refering to Fig.2.1, initially the
system is chosen to be strongly out of equilibrium according to eq. (2.7). The
particles are distributed homogeneously in the box. The box has a volume of
5fm x 5 fm x 5 fm and is divided into equal cells. The cell length is 1 fm.
Initially the system contains Ny = 2000 massless particles. Newly produced
particles will be positioned randomly within the individual cells where the tran-
sitions occur. Before we come to the results, let us determine the final particle
density and temperature to be expected when the system becomes thermally
equilibrated. For an ultrarelativistic (one component) Maxwell-Boltzmann gas
the following relations

T3
€ =3n, I and ng, = = (2.21)
hold in equilibrium. One can solve T" and n., for an energy density given by the
initial condition. In our case, according to eq. (2.7), we obtain 7' = 1.248 GeV
and n., = 25.64 fm~? which is larger than the initial particle density n(t,) = 16
fm™3. Fig.2.8 depicts the time evolution of the particle density obtained from
the box calculation. The results are obtained by averaging 10 independent

runs. We see that the particle density increases smoothly towards its final
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Figure 2.8: Time evolution of the particle density from box calculations. The
initial conditions and parameters are set to be the same as in Fig.2.1 (or
Fig.2.5). We consider isotropic inelastic collisions (2 <> 3) with a constant
cross section of g93 = 10 mb and employ the stochastic collision algorithm.
The cell configuration is the same as in Fig.2.5. The dotted line denotes the
estimate using a simple time relaxation approximation.
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value which agrees fully with the analytical expectation. The dotted curve
presents an estimate made by using the following relaxation approximation

_it=to

n(t) = neg + (n(to) —neg) € 7, (2.22)

where 6 stands for the relaxation time. In general, for any complex equilibra-
tion, this quantity will be time dependent. For the estimate the relaxation time
is taken by a simple fixed value at equilibrium 6 = 1/n.,023 which slightly over-
estimates the relaxation because of n., > ng, as also seen in Fig.2.8. In Fig.2.9
the final energy distribution is depicted by the histogram. The dotted line

T T T T 3
Box calculation, L=5 fm, N =2000
isotropic collisions, c,,=10 mb ]
stochastic method, N_ =1, 3

averaged over 10 runs

------ analytical, T=1.248 GeV
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Figure 2.9: Energy distribution from the same calculations as in Fig.2.8. The
histogram shows the numerical result. The dotted line shows the analytical
expectation and the dashed line shows the analytical distribution (the same
as in Fig.2.5) if the particle number would be conserved.

denotes the analytical distribution with the expected temperature 7" = 1.248
GeV. The numerical result agrees again perfectly with the analytical distribu-
tion. The fact that the final particle density and the final temperature obtained
from the inverse slope of the energy spectrum are identical to the two analyti-
cal values demonstrates that detailed balance between the multiplication and
annihilation processes is fully realized in our simulations. In Fig.2.10 we com-
pare the time evolutions of the normalized particle density (the fugacity) and
the momentum anisotropy. It turns out that for the given initial conditions the
kinetic equilibration is slightly slower compared to the chemical equilibration.
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Figure 2.10: Time evolution of the fugacity n(t)/n., versus the momentum
anisotropy from the same calculation as in Fig.2.8.



Chapter 3

Testing the frame independence

The Boltzmann equation (2.1) is a relativistic kinetic equation. Multiplying
eq. (2.1) by E gives
p“(')“f = Icoll . (31)

This is a Lorentz covariant expression. Therefore the covariance of its solution
should not be affected by the choice of the frame, in which the many-body
dynamics is actually described. Frame independence must also be fulfilled for
any physical observables which can be expressed as Lorentz scalars. However,
the equation (3.1) can not be solved exactly in practice by applying a trans-
port algorithm. Strictly speaking, the frame independence is not fulfilled in
any cascade-typ simulations. Our aim in this chapter is to study potential
frame dependence in our description employing collision algorithms presented
in chapter 2. We will also demonstrate the increasing insensitivity of the
particularly chosen frame and the convergence of the numerical results when
adding more and more test particles into the dynamics.

As explained in section 2.1, the geometrical method is based on the ge-
ometrical interpretation of the total cross section and the time ordering of
the collision events is generally frame dependent when the mean free path of
particles is in the same order as the mean interaction length. In contrast, in
simulations employing the stochastic method, which deals with the transition
rate, a time ordering of the collision sequence is not needed because collision
events will be sampled stochastically within a time step. Still, one has to
be aware that a non-zero subvolume of cells and a non-zero timestep disturb
the Lorentz invariance. Zhang and Pang had studied already the frame de-
pendence of parton cascade results in [ZP 97] applying a parton cascade code
with a similar geometrical collision scheme as presented here. They argued
that results from parton cascade simulations are not sensitive to the choice
of the frame when the collision criterion is formulated in the center of mass
frame of two incoming partons. We will demonstrate the issues in detail in
the following considerations and calculations. Furthermore, we note that in

25
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the Poincare-covariant parton cascade model [BMGMN 00] which is also clas-
sified to the transport model employing the geometrical method, the collision
sequence is ordered by a so-called Poincare-scalar, s, instead of by the usual
time, ¢. For this scheme the ordering of binary collisions and thus the evo-
lution of the system are indeed frame independent. However, it is doubtful
whether the space-time evolution, simulated in this model, preserves causality,
especially for the extreme case when the mean free path of particles is less
than the mean interaction length.

3.1 One dimensional expansion in a tube

For the purpose of studying the frame dependence we do not need consider
a special situation. However, as emphasized in the introduction, the here
presented cascade model will be applied to simulate the parton evolution in
ultrarelativistic heavy ion collisions. Therefore it makes sense to consider a one
dimensional expanding system as testing ground, since at the initial stage of
an ultrarelativistic heavy ion collision the partonic system will undergo mainly
a longitudinal expansion. For convenience, particles of the test system are
classical Boltzmann particles instead of quarks and gluons. Furthermore, in the
present chapter we will employ isotropic collisions and a constant cross section.
In order to mimic a perfect longitudinal expansion we embed all particles into
a cylindrical tube with infinite length. The reflections of particles against the
tube wall are operated in a same way as performed in the box calculations.

Initially, particles are considered to be thermal in their local spatial ele-
ment. We use a Bjorken-type boost invariant initial conditions [B 83]
_ p cosh(y—n)

fp,m)=e T, (3-2)

where 7 is the proper time 7 = /t? — 22 and y and 7 denote, respectively,
momentum and space-time rapidity

1. E+p,
yziln

1. t+z2
) 77:_111

. 3.3
E —p, 2 t—=z (3:3)

Due to the assumption of the boost invariance, quantities such as particle
density n, energy density € and temperature 7' depend only on the proper time
7. For an ideal, longitudinal and boost-invariant hydrodynamical expansion
we obtain

70

n(r) = n(n) o (3.4)

To

€r) = e(n) (—)4/3, (3.5)

-
To

T(r) = T(n) (?)1/3. (3.6)
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Detailed calculations can be found in Appendix F. Besides the study of the
frame dependence we also attempt to address the possibility of buildup of an
approximately ideal hydrodynamical expansion in cascade simulations when
the collision rate is considered to be very high. The time dependences (3.4),
(3.5) and (3.6) then serve as ideal references when comparing them with results
extracted from the numerical simulations.

To be able to apply the stochastic method, the tube needs to be subdivided
into sufficient small cells. A static cell structure as configurated in the box cal-
culations is not suitable any more for an expanding system. However, since the
expansion is only one dimensional, we can still employ a static configuration
in the transverse plane. Instead of a lattice structure (which will also work),
we make use of the symmetry in the given situation and consider a spider web
like structure in the transverse plane. Particularly we divide the polar angle ¢
and the radial length squared 72 equally within the interval [0, 27] and [0, R?|
respectively, where R denotes the radius of the cylindrical tube. This division
gives a same transverse area AF = A¢Ar?/2 for all cells. Longitudinally we
have to construct a comoving cell configuration which adapts to the expand-
ing system, since, as a reminder, the spatial inhomogeneity of particles in the
local cells should be small within any time step. With the thermal distribu-
tion function (3.2) it can be simply realized by employing the formula given
in Appendix F that the particle number per unit space-time rapidity dN/dn
calculted at time ¢ in a frame (and also at 7 as well) is constant, i.e. time
independent, when the system expands hydrodynamically. This gives us the
guideline to divide the tube longitudinally into equal small n-bins. We mark
the individual cells [n;, 7;41] with the central value n = (1; + 7;41)/2 and the
size Ane. = n;+1 — n;- Then the longitudinal length of a particular cell reads

Az(t) =t [tanh(n + An./2) — tanh(n — An./2)] (3.7)

and increases linearly in time. At time ¢, when going outwards from the
expansion center towards the front edges, the cells becomes more and more
narrow. Since the particle diffusion within a time step should not destroy
the homogeneity in the local cells very much, the time step has to be chosen
smaller than the shortest longitudinal size among all cells. In simulations we
set the time step to be half of the shortest Az of the cell located at the front
edge

At (t) = 0.5 Azmin(t) = 0.5¢ [tanh(n,, + An./2) — tanh(n, — An./2)] , (3.8)

where 7,, denotes the outermost 7-bin.

With (3.8) we obtain the collision probability for a two-body process in the
central cell (n = 0)
At 0.5 [tanh(n,, + An./2) — tanh(n,, — An./2
Pro = Ure1022-—— = VUrer022 [ (77 7 / ) (77 7 / )] -

Ay Az, 2 tanh(An./2)

(3.9)
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For the parameters o9y = 10 mb, Az = 2.5 fm?, n,,, = 3.0 and Az, = 0.2, the
collision probability Ps, in the central region is expected to be a small value,
Py, < 0.004. In order to make an estimate of the collision probability in the
noncentral cells we go to their local comoving frames for convenience, since
the collision probability is invariant under Lorentz transformations. The time
in the local frame of a 7-bin is 7 = ¢/, where v = cosh 77 denotes the Lorentz
factor. Suppose that the system undergoes one dimensional hydrodynamical
expansion, the collision rate R = n < v,¢022 > in the local frame of a moving
noncentral cell is higher than that in the central cell by factor v, since the par-
ticle density is just y-times higher according to (3.4). (Note that the estimate
becomes complicated when the total cross section depends on s instead of a
constant, since the distribution of s is a function of the temperature and the
temperatures in the central and noncentral cell are different at time ¢ according
to (3.6).) On the other hand, the transformed time step A7 is y-times smaller
than At. Therefore the averaged collision number, which is a Lorentz scalar,
is the same in all cells within a time step At. Furthermore, for the given cell
configuration there are on average the same number of particles in each cell.
This leads to the conclusion that for an approximate one dimensional hydro-
dynamical expansion and choosing a constant cross section, the mean collision
probability of two incoming particles (for an ensemble average) is the same
wherever the collision will occur. Due to the fact that the collision probability
is small, we follow the scheme of [DB 91] and [L 93] to reduce the computing
time: We choose randomly A collision pairs instead of n(n — 1)/2 possible
doublets (n being the particle number in a cell). In order to achieve the cor-
rect collision rate, we have to accordingly amplify the collision probability to
be

Py — in. (3.10)

The choice of N is arbitrary. In the following simulations we set ' = n.

For the numerical simulations we consider a tube with a radius of R = 5
fm. All particles will be produced initially at 7 = 0.1 fm/c and are distributed
homogeneously within a space-time rapidity region n € [—3 : 3]. The initial
temperature at 7y is set to be Ty = 2.6 GeV and thus the initial particle density
is

dN TS
d—n(TO) = mR? 7_‘.—27'0 = 1748. (3.11)

We have chosen these parameters to achieve an initially dense system. For the
cell configuration we set

A¢p =2m/8, Ar?’=R?/4fm®> and An.=0.2. (3.12)

The transverse area of cells is thus about 2.5 fm? and the particle number in
one cell is around 11.
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The total cross section of the two-body collisions is set to be 099 = 10 mb
if only 2 <+ 2 processes are included. We also carry out calculations including
both 2 <+ 2 and 2 <+ 3 processes. To be able to make comparisons between
simulations without and with inelastic processes, we set the cross sections in
the latter case to be 099 = 5 mb and 93 = 5/2 mb, which will lead to the
same number of absolute transitions per unit time in both cases. The angular
distributions of the transitions are considered to be isotropic.

To study the frame dependence we will simulate the expansion in a so-called
lab frame (XYZ), whose origin agrees with the center of the expanding system
and in a boosted reference frame (XY’Z’), which is moving relatively to the
lab frame with velocity 8 = —tanh 7. The situation is illustrated in Fig.3.1.
In the simulations we set 79 = 2. Particles are initialized in the lab frame. The

’ X
A

;:
2 |

Figure 3.1: One dimensional expansion in a tube. The lab frame is labeled
by X, Y and Z, the boosted frame by X', Y’ and Z' which is moving with a
velocity of 3 relative to the lab frame.

initial positions and momenta of particles in the boosted frame are obtained
by Lorentz transformations from the lab frame. Since particles are initialized
longitudinally within a limited spatial region in rapidity, the pictures of the
expansion in the two frames will be quite different. The expansion in the lab
frame is symmetric, while in the boosted frame the right part of the system
expands faster than the left part at late times. Therefore the expansion itself is
frame dependent at late times due to the limitation of the particle initialization.
We will concentrate on a so-called central region which is a cylinder around
n = 0 in the lab frame and correspondingly around 7 in the boosted frame
with a size of Anp = 1. The time evolutions of observables such as n(7), €(7),
T(7) and others will be extracted in this central region in the two frames and
will be compared. We will present the results in section 3.3.
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3.2 Improved cell configuration

Before we concentrate on the further analysis, we have to make sure that
the cell configuration constructed in the previous section is really suitable
for an expanding system simulated by employing the stochastic method. To
demonstrate this we perform a one dimensional expansion in the lab frame with
the parameters set in the previous section and extract d/N/dn distribution at
time ¢. One expects that the distribution will be constant over a large region,
since this was the basic motivation for the cell construction. Fig.3.2 shows the
dN/dn distribution within an interval of n € [—0.3 : 0.3] at time 0.11, 0.13,
0.16 and 0.2 fm/c. The dotted line depicts the initial value dN/dn(ry) = 1748.

2000 T T T T T T T T T T
1900 -
= 18004 -
—
©
Z
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1600 ——t=0.11fmlc kI
—t=0.13 fm/c
—1t=0.16 fm/c
—1t=0.2 fm/c
1500 . 1 . 1 . 1 . 1 . 1 .

-0.3 -02 -01 0.0 0.1 0.2 0.3

Figure 3.2: Space-time rapidity distributions at different times (¢t = 0.11,
0.13, 0.16 and 0.2 fm/c from histogram with smallest amplitude to histogram
with largest amplitude) from a simulation of one dimensional expansion in a
tube. We consider a thermal and boost-invariant initial condition for evolving
particles: Particles are produced initially on a hyperbola of 7 = 0.1 fm/c and
are distributed homogenously within a space-time rapidity interval n € [—3 :
3], dN/dn(ry) = 1748, which is depicted by the dotted straight line. The initial
temperature is set to be T(7y) = 2.6 GeV. The radius of the tube is R = 5 fm.
We consider 2 <> 2 collisions with isotropic cross section and a constant total
cross section of g99 = 10 mb. The stochastic method is used in the simulation.
The n-bins of the cell configuration are set to be An. = 0.2. No test particles
(Ngest = 1) are used in the simulation. The distributions are obtained by an
average over 10* independent realizations.

Astonishingly, at first sight one notices a clear structure in the distribution
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within the n-bins. (Remember that the size of the n-bins is set to be An, = 0.2.)
One can also realize that this structure approaches a characteristic final shape
at late times. The meaning of the structure is that particles in a cell are
spatially centered. This has no physical reason, but comes from a numerical
artifact due to the finite size of the cell structure, which can be understood
as follows: We concentrate on the central 7-bin, n € [—0.1 : 0.1], and assume
that the expanding system is in local thermal equilibrium. Any change of the
dN/dn distribution in the central n-bin is caused from collisions among the
particles and from the ongoing particle diffusion. Even in the central 7-bin
the collective motion is still outwards in spite of the small flow velocity. There
are more particles moving outwards than particles moving towards the center.
Suppose two extreme cases of collision occurring in the central n-bin: In case
1 two particles are moving towards the center and are approaching each other.
In case 2 two particles are moving outwards and back-to-back. Due to the
considered isotropic scattering the momentum distribution of the particles after
the collision is same in both cases. Since, on average, the case 2 happens more
frequently than the case 1, one can draw the conclusion that collisions in a 7-
bin tend to bring more particles back into the center than to push them towards
the outside when the collective flow in an 7-bin is indeed directed outwards.
This is the reason for the artificial structure of the dN/dn distribution in
the small 7-bins. On the other hand, since the distribution of dN/dn is no
more constant, the particle diffusion from the center outwards is now stronger
than the diffusion towards the center. The diffusion is thus counterbalancing
the particle centralization and the dN/dn distribution will approach a final
shape when the balance between the diffusion and the centralization is fully
established.

In Fig.3.3 we compare the dN/dn distributions at time ¢ = 0.2 fm/c from
the simulations with An, = 0.2 and with a smaller size of An. = 0.1. In the
simulation with An, = 0.1 we employ 2 test particles per real particle in order
to obtain the same statistics as in the case with An, = 0.2 and Ny, = 1. We
see a weaking in the structure of dN/dn, though the structure does still exist.
In the limit An. — 0, however, the characteristic substructure in the dN/dn
distribution will vanish, since the velocity of the intrinsic collective flow in
the n-bins goes to zero. Therefore decreasing the size of the 7-bins and using
more test particles would be a natural way to reduce this numerical artifact.
However, the more test particles, the longer will the computing time be. A
more elaborate way which does not need further test particles is to move the
cell configuration randomly from time to time. For instance, we move the
central n-bin n € [-0.1 : 0.1] to [-0.1 + & : 0.1 4+ &], where £ is a random
number distributed within [0 : An, = 0.2]. Although particles in each 7-bin
will be still centered within each time step after collisions, but because of the
random shift of the cell configuration the associated center of the bin for a
particular particle is also moving, so that there is no absolute center for the
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Figure 3.3: Space-time rapidity distributions at time ¢ = 0.2 fm/c in tube
calculations. The initial condition and collision cross section are the same as
in Fig.3.2. The stochastic method is employed in the simulations. The result
showing structure with larger(smaller) period is obtained from the simulation
with An. = 0.2(0.1). In the simulation with Az, = 0.1 we use 2 test particles
per real particle in order to achieve the same statistics in each cell as that
in the simulation with An, = 0.2 and Ny = 1. The histogram, which is
nearly constant, is obtained from the simulation with improved moving cell
configuration of An. = 0.2 and Ny, = 1. The dotted line shows the initial
distribution dN/dn = 1748. All the distributions are received by an average
over 10* independent realizations.

particle. Therefore, on average, the effect of the centralization will be washed
out. In Fig.3.3 we depict the dN/dn distribution from simulations employing
the improved moving cell configuration with An, = 0.2. We see that the
distribution is nearly constant and does not show any unwanted substructure.
In Fig.3.3 we also notice a tiny enhancement of the dN/dn distribution when
compared with the initial distribution dN/dn = 1748. We will come back to
this further artifact in the next section.
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3.3 Results

3.3.1 2 ¢+ 2 processes without test particles

At first we present the results from simulations with the improved cell con-
figuration and without introducing test particles. Fig.3.4 and Fig.3.5 show
the time evolution of the particle density, energy density and temperature in
the central space-time rapidity region in the two frames. The results are ex-

Geometrical method, 2<->2
lab frame

~~~~~ boosted frame
— hydro.

n(t) [fm ]

e(t) [GeV fm ™

T(t) [GeV]

0.1 1
t [fm/c]

Figure 3.4: Time evolution of the particle density, energy density and tem-
perature extracted in the central space-time rapidity region n € [—0.5 : 0.5]
from simulations of one dimensional expansion in the lab and boosted frame
of a tube. The geometrical method is employed in the simulations. The ini-
tial condition and collision cross section are the same as in Fig.3.2. No test
particles (Nys; = 1) are used. Only 2 <+ 2 processes are included. The results
are obtained by an anerage over 20 independent realizations. The thin lines
indicate time evolutions of the quantities in the hydrodynamical limit.

tracted from the simulations employing the geometrical and stochastic method
respectively and are obtained by averaging 20 independent realizations. The
effective temperature is defined as T = €¢/3n and corresponds to the statisti-
cal temperature when the system is at local kinetic equilibrium. Otherwise T
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Figure 3.5: Time evolution of the particle density, energy density and temper-
ature extracted in the central space-time rapidity region n € [—0.5 : 0.5] from
simulations employing the stochastic method in the lab and boosted frame of
a tube. The initial condition and collision cross section are the same as in
Fig.3.2. No test particles (N5 = 1) are used. Only 2 <> 2 processes are
implemented. We apply the moving cell configuration with An, = 0.2. The
results are obtained by an average over 20 independent realizations.

can be regarded as the mean energy per particle. In the simulation with the
stochastic method we set the size of the n-bins to be An. = 0.2. The time
scale in Fig.3.4 and Fig.3.5 denotes the time in the local frame of the central
region. The solid and dotted curves depict the results achieved in the lab and
boosted frame respectively. The thin solid lines show the ideal hydrodynam-
ical limit calculated via a corresponding integral of the thermal phase space
distribution (3.2). Please note that we have taken the size of the central region
into account. Therefore the hydrodynamical results (3.4), (3.5) and (3.6) are
modified by

An

a, = 3 tanh (A7/2) (3.13)
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O = acr=1), a=—"0> " 4 (3+ (sanh )
) = acdr =1, 0= e h(An/2) /A,,/z " anh

x(coshn/)*?  (3.14)
Qe

Tt) = arT(r=t), ar:= _ (3.15)

In the limit An — 0 the additional factors go to 1. For An = 1.0 we obtain
a, = 1.082, a, = 1.1737 and thus ar = 1.0848.

From Fig.3.4 and Fig.3.5 we see that the frame dependence of the con-
sidered quantities is quite noticeable in the simulation when employing the
geometrical method, while it is rather weak in the simulation employing the
stochastic method. Moreover and astonishingly, the ‘temperature’ in the sim-
ulation with the geometrical method is increased at the beginning of the ex-
pansion. This ‘reheating’ is unphysical, since the isotropic initialization of the
particle system does not give any reason for an introversive pressure. The gra-
dient of the pressure is directed outward, so that in the further evolution the
longitudinal work done by the pressure should lead to a cooling of the system.
We also rule out any explanation based on a possible viscous effect which might
bring some effective net energy flow into the local region, because there is no
reheating in the simulation with the stochastic method. From the investiga-
tions within a static box we have realized that the collision rate obtained in
the simulation with the geometrical method will be suppressed when the mean
free path is in the same order as (or even smaller than) the interaction length.
This is indeed the situation at the beginning of the expansion in the tube. The
suppression of collisions will obviously slow down the cooling of the system,
but this can not lead to any reheating. However, the fact that particles can
interact with each other over a larger distance than the mean free path makes
it reasonable that the pressure could be incorrectly built up. The effect of the
‘anti-pressure’ is thus a numerical artifact. We extract the collision rate and
the difference of space-time rapidities of colliding particles per collision event
< An >,y in the central region from the simulations carried out in the lab
and boosted frame. The results are depicted in Fig.3.6. The collision rates
are obtained by counting the collision events in the central region within a
time interval of 0.02 fm/c. It is clearly seen that the collision rates in the
simulation with the stochastic method agree well with the expectation. The
slight discrepancy can be understood as the consequence of the relative large
size of the n-bins (A7, = 0.2). In contrast, the collision rates in the simulation
with the geometrical method are strongly suppressed at high densities due to
the relativistic effect of the time spread of the two collision times, as explained
in section 2.1.1. The results of the < An >.,; show that particles interact in
fact over very large distance at high densities in the simulation when employ-
ing the geometrical method. The decrease of the < An >.,; at the highest
densities corresponding to the very beginning of the expansion is due to the
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Figure 3.6: Collision rate (left panel) and averaged difference in space-time
rapidity of colliding particles (right panel) in the central space-time rapidity
region for various particle densities experienced during the expansion. The
results are extracted from the same simulations performed for the extractions
of n(t) and €(¢) in Fig.3.4 and Fig.3.5. The solid line in the left panel shows
the analytical expectation.

fact that at the early times particles with large n are still not formed. In the
simulation employing the stochastic method the interaction length is, however,
controlled by the cell structure. In summary, we suspect that the larger inter-
action distance (compared with the mean free path) may be the reason for the
‘reheating’.

Fig.3.7 shows the space-time rapidity distributions at the proper time 7 =
0.2 and 1.0 fm/c extracted from the simulations in the lab and boosted frame
with the geometrical (upper panel) and the stochastic (lower panel) method
respectively. The solid (dotted) curves depict the distributions in the lab
(boosted) frame. The thin solid lines show the initial distribution dN/dn(7y) =
1748 within n € [—3 : 3]. We see that the results obtained when employing
the geometrical method show a strong frame dependence. A clear hump exists
around the expansion center 7 = 0 in both frames and broadens gradually.
(Note that the expansion center in the boosted frame is at n = —2 after
the shift.) The humps indicate a net particle diffusion towards the expansion
center, which again can be explained as a consequence of the ‘anti-pressure’
effect: The introversive pressure drives the particles back to the expansion
center. In the distributions obtained when using the stochastic method we
see a relative tiny hump at the expansion center which disappears at the later
time. The slight enhancement has been also noticed in Fig.3.3. We recognize
that the size of the cell bins An. = 0.2 is not small enough to overcome the
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Figure 3.7: Particle distributions versus space-time rapidity at the proper time
7 = 0.2 and 1.0 fm/c extracted from simulations employing the geometrical
and stochastic method in the lab and boosted frame. The initial condition
and collision cross section (and cell configuration) are the same as in Fig.3.4
(and in Fig.3.5). In order to compare the distributions in the same physical
regions directly, we have shifted the distributions in the boosted frame by
—1no = —2. Except that the distributions extracted from the simulations in
the boosted frame using the stochastic method are obtained by an average
over 10 independent realizations, all other distributions are obtained from 20
independent realizations. The thin solid lines indicate the initial distribution
dN/dn(ry) = 1748.

numerical artifact completely. Moreover, we notice the cuts at n» = 4 in the
distributions at 7 = 1.0 fm/c for the expansion in the boosted frame. This
is due to the fact that the end time of the simulation in the boosted frame is
t' = 210 fm/c and thus particles with 1 being greater than 6 (or 4 after the
shift) have smaller proper time than 1 fm/c.

In Fig.3.8 we depict the momentum rapidity distributions at proper times.
The thin solid curves show the initial rapidity distribution

dN _ RT¢mo sinh(27,,)
dy 71 cosh(2n,) + cosh(2y)’

(3.16)

where 7, denotes the boundary of the initial system which has been set to be
3. In Fig.3.8 one also recognizes the particle diffusion towards the expansion
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Figure 3.8: Particle distributions versus momentum rapidity at the proper time
7 = 0.2 and 1.0 fm/c extracted from simulations employing the geometrical and
stochastic method in the lab and boosted frame. The results are obtained from
the same simulations performed for the extractions of dN/dn(7) in Fig.3.7. The
thin solid curves indicate the initial distribution at 7o = 0.1 fm/c.

center, though the effect is not strong. The disributions obtained when using
the stochastic method show perfect ‘no frame dependence’ and a collective flow
outwards to the higher rapidity at late times.

For an initially thermal system it seems reasonable that the system will
be still locally in or close to kinetic equilibrium during the further expansion.
On the other hand, we have also realized that numerical artifacts make strong
effects at the beginning of the expansion, especially in the simulations apply-
ing the geometrical algorithm. Therefore it is essential to question whether
the encountered numerical problem does affect the maintenance of the kinetic
equilibrium in the cascade simulations of the one dimensional expansion. For
this we extract the transverse momentum distributions at ¥y = 0 within an
interval y € [—0.5 : 0.5] at different proper times and compare them with the
analytical thermal distributions. In Fig.3.9 and Fig.3.10 the pr distributions
extracted from the simulations in the lab frame are depicted. Fig.3.9 shows
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Figure 3.9: Distributions of the transverse momentum per unit rapidity at
y=0at 7 =1.0and 4.0 fm/c (from upper to lower histogram) in a simulation
employing the geometrical method in the lab frame. The solid lines show the
analytical distributions (3.17) with the temperatures read off from Fig.3.4.

the results at 7 = 1.0 and 4.0 fm/c in the simulations with the geometrical
method and Fig.3.10 shows the results at 7 = 0.2, 1.0 and 4.0 fm/c in the sim-
ulations with the stochastic method. The thermal distributions shown by the
solid lines are obtained as integral of the thermal particle distribution function
(3.2) by means of the Cooper-Frye formula [CF 74]

1 dN 1 2m2R? 1 Ay/2 p b — o comm
Nprdpr Ay, )= ) Ay/ 77/ ypr7cosh(y—n)e

(3.17)
where Ay = 1 and the temperature 7'(7) is read off from Fig.3.4 or Fig.3.5
at t = 7. We see good agreements between the numerical and the analytical
distributions, even for the case of the geometrical method. The analogous pr
distributions, extracted from the simulations in the boosted frame (at y = 7y =
2), are also compared with the analytical spectra (both not shown in figures).
The agreements are perfect as those presented in Fig.3.9 and Fig.3.10. As
a conclusion, although the expansion does not proceed fully close to ideal
hydrodynamics, the expanding system is still kinetically equilibrated at least
until 7 = 4 fm/c in the simulations with the stochastic method as well as with
the geometrical method, although in the latter case the cooling of the system
occurs much slower.

As a last point, we show in Fig.3.11 the proper time evolution of the trans-

pp cosh(y—n)
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Figure 3.10: Distributions of the transverse momentum per unit rapidity at
y =0at 7= 0.2, 1.0 and 4.0 fm/c (from upper to lowest histogram) in a
simulation employing the stochastic method in the lab frame. The solid lines
show the analytical distributions (3.17) with the temperatures read off from
Fig.3.5.

verse energy extracted at y = 0 per unit rapidity from both type of simulations
in the lab and boosted frame respectively. The thin solid line depicts the result
in the hydrodynamical limit

dE 7rR2 _ P cosh(y—m)
G| 0 = Gy [dnderpircosh(y —n)e R
3 2 4 3 9 4 4/3 F-1/3

The time evolutions of the transverse energy have similar shapes like that of the
temperature shown in Fig.3.4 and Fig.3.5. We also recognize the unphysical
‘reheating’ occurring in the simulations with the standard geometrical method.

Summarying this section, we have studied the frame dependence of a one
dimensional expansion in a tube by employing the two collision algorithms
presented in this paper. The comparisons show that quantities extracted in
the simulations with the geometrical method have a much pronounced and
unphysical frame dependence. Numerical artifacts are very significant in these
simulations, especially at the beginning of the expansion when the system
is very dense. In contrast, the results obtained from the simulations when
employing the stochastic method show almost ‘no frame dependence’.
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Figure 3.11: Proper time evolution of the transverse energy per unit mo-
mentum rapidity at ¥y = 0 in the simulations employing the geometrical and
stochastic method in the lab and boosted frame. The thin solid line shows the
analytical evolution in the hydrodynamical limit.

3.3.2 2+ 2 processes with test particles

The time evolutions of the particle density, energy density and temperature
depicted in Fig.3.4 and Fig.3.5 demonstrate that simulated dynamics does not
undergo an ideal hydrodynamical expansion. On the one hand, it is true that
the ideal hydrodynamics can not be realized in simulations with finite collision
rate. One has to take the finite viscosity into account. Thus it is interesting
to make comparisons between the transport results and those calculated from
viscous hydrodynamics [DG 85, GPZ 97, M 02]. This subject is, however, be-
yond the scope of this thesis. On the other hand, even the viscous expansion
can not be solved exactly due to the limitation of the numerical implementa-
tions. Especially, as observed in the simulations with the geometrical method,
the numerical artifacts make strong unphysical effects. In this subsection we
introduce the test particle method into the dynamics to reduce this numerical
uncertainty and to study the convergence of the transport solutions.

From the experiences in the box calculations, one realizes that the com-
puting becomes more time-consuming when more and more test particles are
added into the simulations. One way to reduce the computing time in the
present case is to consider a tube with a smaller radius. The (real) particle

density is however unchanged. In simulations with the geometrical method we
set the radius of the tube to be R' = R/\/Niest with R = 5 fm. However, in
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simulations with the stochastic method we instead keep the radius of 5 fm, in
order to be able to refine the cell configuration.

Fig.3.12 depicts the relative frame dependence of the particle density, en-
ergy density and temperature extracted in the central region in the simulations
with the geometrical method with Ny, = 1, 4 and 25 respectively. The sim-
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Figure 3.12: Relative frame dependence of the particle density, energy density
and temperature in the simulations employing the geometrical method. The
initial condition and collision cross section are the same as in Fig.3.4. The
results are obtained by averaging 20, 2 and 20 independent realizations for
increasing test particles N = 1, 4 and 25 respectively.

ulations are performed in the lab frame. We obtain the results by averaging
20, 2 and 20 independent realizations respectively. Note that the simulation
with N, = 4 is exceptionally carried out with the default radius of R = 5
fm. We see that the potential frame dependence is more and more reduced
when more and more test particles are considered. The reduction of the frame
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dependence is also clearly demonstrated in Fig.3.13. Here the distributions of
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Figure 3.13: Comparison of the space-time and momentum rapidity distribu-
tion with N;.,; = 25 with the distribution without test particles at 7 = 0.2 and
1.0 fm/c. The distributions are extracted from the simulations employing the
geometrical method in the lab frame by averaging 20 independent realizations.
The thin solid lines indicate the initial distributions at 7o = 0.1 fm/c.

the space-time and as well as momentum rapidity obtained with N, = 25
(by dotted curves) are compared with the distributions without test particles
(or Niest = 1 by solid curves) at 7 = 0.2 and 1.0 fm/c. The humps, which exist
in the distribution without test particles due to the artificial back diffusion, do
not occur with N;.,; = 25. Moreover, the shapes of the distributions obtained
with Ny = 25 are almost the same as those obtained using the stochastic
method with Ny = 1, shown in Fig.3.7 and Fig.3.8.

For the case employing the stochastic method it is not necessary to study
the reduction of the frame dependence with the test particle method, since
the frame dependence is actually very weak even without test particles (see
Fig.3.5).

We also employ the test particle method to study the convergence of the
transport solutions. Fig.3.14 shows the time evolution of the temperature ex-
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tracted in the central region in the simulations with increasing test particles
in the lab frame. In the simulations with the stochastic method the size of
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Figure 3.14: Convergence of temperature in the simulations in the lab frame
with increasing test particles. The initial condition and collision cross section
(and cell configuration) are the same as in Fig.3.4 (and in Fig.3.5). The results
in the simulations employing the geometrical method are obtained by averaging
20, 2, 20, 5, 5 and 5 independent realizations for Ny, = 1, 4, 25, 100, 400
and 900 respectively. The results in the simulations employing the stochastic
method are obtained by averaging 20, 10, 2 and 1 independent realizations for
Niest = 1, 2, 4 and 8 respectively.

the n-bins is refined to An, = 0.2/N;es;. There are on average 11 test particles
in one cell. (We have also performed simulations with doubled test particle
number in one cell to increase the statistics. The outcome shows almost no
changes.) Since in the tube calculations the particle distribution in the trans-
verse direction is absolutely homogeneous, there is no need to refine the cells
transversely. In Fig.3.14 we see the clear tendency of convergence. The time
evolution of the temperatures extracted from the simulations with the geo-
metrical and stochastic method converge towards almost the same curve. It is
obvious that the solution obtained with the stochastic method converges more



3.3. Results 45

efficiently than the solution obtained with the geometrical method. Therefore,
we do favour the stochastic method to be applied in transport simulations of
system with high particle density. Furthermore, we see that the effect of the
artificial reheating, appearing in the simulation with the geometrical method
with Niess = 1, reduces and vanishes in the simulations when employing higher
test particles.

In Fig.3.15 we depict the collision rate and the mean difference of the
space-time rapidities of colliding particles per collision < An >.,; in the sim-
ulations with the geometrical method with increasing test particles. We see
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Figure 3.15: Collision rate and averaged difference in space-time rapidity of
colliding particles. The results are extracted in the central space-time rapidity
region n € [—0.5 : 0.5] for various particle densities experienced during the
expansion. The simulations are the same as performed in the upper panel of
Fig.3.14 when discussing the convergence of the temperature.

that the collision rate increases when using more test particles. However, even
for Niest = 900 the collision rates at high densities are still suppressed. (Note
that the interaction length decreases only with 1/4/Ny..) This is the reason
why the temperature extracted from the simulation employing the geometri-
cal method with N = 900 is slightly higher than that extracted from the
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simulation employing the stochastic method with Ny = 8 (see Fig.3.14). We
also see that the < An >.,; decreases when the number of the test particles
increases. Putting Fig.3.15 in relation to Fig.3.14 confirms our suspicion in
the previous subsection that unwanted collisions over large distances may lead
to the buildup of ‘anti-pressure’ which then influences the particle diffusion.

3.3.3 Including 2 <> 3 processes

We now include the inelastic 2 <+ 3 processes into the dynamics of the one
dimensional expansion in the tube and study the frame dependence and the
convergence for the new situation. The stochastic method is applied to sim-
ulate the (in)elastic collisions whose cross sections are set to be g9 = 5 mb
and o3 = 2.5 mb. These parameters lead to the same rate of the elastic and
inelastic transitions. We consider isotropic collisions and set the size of the
n-bins to be An, = 0.2/Nyes.

In Fig.3.16 we show the time evolutions of the particle density, energy
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Figure 3.16: Time evolution of the particle density, energy density and tem-
perature extracted in the central space-time rapidity region n € [—0.5 : 0.5]
from the simulations with Ny, = 1 employing the stochastic method in the
lab and boosted frame. The initial conditions and cell configuration are the
same as in Fig.3.5.
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density and temperature extracted in the central space-time rapidity region
from the simulations with N = 1 carried out in the lab and boosted frame.
The results are obtained by an average over 10 independent realizations. The
thin solid lines in Fig.3.16 indicate time evolutions in the hydrodynamical
limit. We see that the results are absolutely frame independent. Comparing
to the results with only two-body collisions shown in Fig.3.5, we notice that
the particle density is slightly enhanced. This enhancement is not due to any
numerical artifacts, but the consequence of the chemical equilibration: In the
thermal equilibrium the particle density is related with the temperature by
n = T?3/n?. Since during the expansion the temperature is always higher
compared to the ideal hydrodynamical limit due to finite viscosity, therefore,
there have to be more particles being produced than annihilated in order to
account for the undersaturated system and to achieve a new balance. To
address the chemical equilibration we concentrate on the time evolution of the
fugacity which is defined as A(t) = n(t)/n®(t), where

Tr) a0 TO0)

3 2

U(4) = g nel(r) = _
n(t) = a, n®(7) = ay, - i

(3.19)

a, and ar are factors given in (3.13) and (3.15) taking the size of the central
region into account. The T'(¢) in (3.19) is just the extracted temperature from
the simulation. Fig.3.17 depicts the time evolution of the fugacity. We see
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Figure 3.17: Time evolution of fugacity extracted from the same simulations
performed for the extraction of n(t) and €(t) in Fig.3.16.

that the chemical equilibrium is almost achieved and maintained during the
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expansion in both frames. We have also extracted the pr distributions and
compared with the analytical spectra at different times. The results show that
the kinetic equilibrium is also maintained during the expansion.

The collision rates of 2 < 2, 2 — 3 and 3 — 2 processes, extracted
from the simulation in the lab frame, are depicted in Fig.3.18. We see perfect
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Figure 3.18: Collision rate in the central region for various particle densities
experienced during the expansion. The results are extracted from the same
simulations performed for the extractions of n(t) and €(t) in the lab frame in
Fig.3.16. The solid squares, solid circles and open circles depict, respectively,
the collision rates for 2 <+ 2, 2 — 3 and 3 — 2 transitions. The solid and
dotted line show the analytical expectations.

agreements of the extracted collision rates with the expectations. Furthermore,
the collision rates of 2 — 3 and 3 — 2 processes are almost identical, which
demonstrates once more the maintenance of the chemical equilibrium in the
expanding system.

We show in Fig.3.19 the particle distributions versus the space-time rapidity
n and versus the momentum rapidity y at 7 = 0.2 and 1.0 fin/c, obtained
from the simulations in the lab and boosted frame. The frame dependence is
not noticeable and lies within the statistical errors. In Fig.3.19 we also see
the enhancement in the particle number over a large range due to the slight
particle production in the ongoing chemical equilibration.

Finally, when using more test particles, the results from the present sim-
ulations will converge to their exact forms. Due to the settings of g9 = 5
mb and 093 = 2.5 mb one would expect that the total collision rate including
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Figure 3.19: Particle distributions versus space-time rapidity and momentum
rapidity at the proper time 7 = 0.2 and 1.0 fm/c, extracted from the simula-
tions with Ny = 1 employing the stochastic method in the lab and boosted
frame. The initial condition, collision cross section and cell configuration are
the same as in Fig.3.16. The distributions extracted in the lab(boosted) frame
are obtained by averaging 20(6) independent realizations. The thin solid lines
indicate the initial distributions at 7o = 0.1 fm/c.

elastic and inelastic processes is the same as that in the simulation with purely
elastic collisions and 099 = 10 mb. Therefore, the convergence with increas-
ing test particles would be exactly the same in both cases. Still, as realized
from the above comparison between Fig.3.16 and Fig.3.5, the temperatures
(and the number densities as well) in the central space-time rapidity region
are slightly different due to the new balancing as explained above. Therefore,
the convergence of the temperature, for instance, will not be the same as that
shown in the lower panel of Fig.3.14. On the other hand, the new balancing
should not affect the time evolution of the energy density. This quantity is
shown in Fig.3.20 in both cases with increasing Ny.;. We see the exactly same
convergence of the energy density in the central region for the purely 2 < 2
and the 2 <> 2, 2 <> 3 case.
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Figure 3.20: Convergence of energy density in the simulations in the lab frame
with increasing test particles. The cascade simulations are performed employ-
ing the stochastic algorithm. The dotted lines depict the results with g9 =5
mb and o3 = 2.5 mb, while the thin solid lines depict the results with purely
elastic collisions and 099 = 10 mb. The results are obtained by averaging 20,
10, 2 and 1 independent realizations for N, = 1, 2, 4 and 8 respectively. The
thin dashed lines show the hydrodynamical limit.

After this exhaustive discussion of testing the operation of the cascade, we
now proceed to describe real heavy ion collisions.



Chapter 4

The initial conditions of partons
in uRHIC

In heavy ion collisions at high collider energy like at RHIC and LHC, one
assumes that when the two heavy ions go through each other, a large amount of
partons (quarks and gluons) normally confined within hadrons will be liberated
and overwhelm the wounded nucleons, especially in the midrapidity region.
The picture of the very early stage of the collision, when potentialy the partons
are freed from the two nuclear wave functions and do become on-shell particles,
is crucial for all kinetic cascades which can only describe the further evolution.
Hence, one has to incorporate a physical model for describing the very initial
phase of liberated partons serving as initial conditions for cascades. These
initial conditions will be discussed in this chapter.

One such physical picture is based on the idea of a free superposition of
minijets being produced in the individual semi-hard nucleon-nucleon interac-
tions. Minijets denote here partons with high transverse momentum. The
creation of minijets can be well described by the perturbative QCD. It is es-
timated in [EKL 89] that partons with py > 2 GeV will carry off 50% (80%)
of total transverse energy per unit rapidity at RHIC (LHC). These minijets
are expected to undergo further collisions and become thermalized [KLL 87].
However, cascade simulations with this kind of initial condition and employing
elastic gg — ¢g collisions failed to verify the achievement of thermalization.
On the other hand, the inelastic gg <> ggg interactions are expected to be
efficient processes making the system thermalized. Therefore, it is our main
interest to investigate thermalization under the initial condition of minijets
production again, when using the new parton cascade including 2 <> 3 pro-
cesses. The results will be presented in chapter 6. The initial distributions
of soft partons with smaller p; can be solved in the classical effective field
theory approach which is, in exact analogy to a spin glass, a Color Glass Con-
densate (CGC) [MV 94| and is characterized by @, the momentum scale at

o1
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which gluon distributions saturate. At RHIC @ is estimated to be 1 GeV.
The CGC model is based on the idea of gluon saturation of the QCD structure
function of the nuclei at sufficiently low x. The so-called ‘bottom-up’ scenario
[BMSS 01] of thermalization relies on these initial conditions, where in the
leading order of the coupling constant «, the various time scales of kinetic
evolution is parametrically estimated. We will very briefly discuss the CGC
initial conditions and show the corresponding results on thermalization at the
end of chapter 6. Detailed analysis will follow in future investigations. At

present, we concentrate on the description of the multiple minijets production
at RHIC.

A ‘jet’ refers originally to a set of fairly well collimated hadrons observed in
hadronic and also in eTe™ reactions. One suggests, for example in a nucleon-
nucleon collision, that large py events proceed via ‘hard scattering’ involving
the collision of just one parton from each initial nucleon. This is in agreement
with the whole philosophy of the parton model. The partons involved are scat-
tered through large pr and are supposed to fragment into showers of hadrons.
It is thus accepted that high p; jets are implied by perturbative QCD and that
they are the simplest and perhaps best evidence supporting it.

We now redefine a jet to be a produced parton with high pr > py and
compute the jet cross section by applying pQCD. In nucleon-nucleon collisions
the differential jet cross section is given [WG 91] by

dgjet 2 2 dO’ab TR
) K “ , , —(5,t,1), 4.1
dpa.dy, dys %ﬂhf (21, p7)22fo(@2, PT) dt (5,1, ) (4.1)

where the sum runs over all parton species, pr is the transverse momentum
and y; and ys are the momentum rapidities of the produced partons. z; and
xo are the Feynman variables denoting the longitudinal momentum fractions
carried by the partons respectively. These variables are related by
x x

T = 7T (¥ +€¥), xp= 7T (e7¥ +e72), (4.2)
where x7 = 2pr/+/s. Note that the intrinsic transverse momentum of each
colliding parton is zero. do,, stands for the leading order pQCD parton-parton
cross sections which depend on the subprocess Mandelstam variables

§=mxx95, t=—-pr(l+e2™¥), da=—pi(l+e"¥2). (4.3)

f(x,Q?) denote the parton structure functions which are parametrizations
based on experimental data from deep inelastic lepton- and neutrino-nucleon
scatterings. Q? is the momentum transfer squred (with minus sign) in such
reactions and serves as a kind of resolution scale for partons. The parton
structure function f,(z,@?) gives the probability for finding parton species a
at z and at Q2 in a nucleon. In this study we employ the Gliick-Reya-Vogt
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parametrizations [GRV 95| for the parton structure functions, which are valid
for 0.4 < Q? < 10% GeV and 10~° < z < 1. They are sufficiently accurate for
the RHIC energy, since the smallest x of minijets is estimated to be around
1073 — 1072 at RHIC. The scale % in hadronic reactions is ambiguous. We
set it to be the transverse momentum of the produced parton Q? = p2. The
phenomenological factor K, set to be 2, accounts for higher-order pQCD cor-
rections. It is straightfoward that the differential cross section doje;/ didzidzs
for a jet (or two back-to-back jets) production is equal the convolution of the
corresponding parton structure functions and the elementary pQCD cross sec-
tion do/ dt. A transformation from didx;dzxs to dp2dy,dy, gives the additional
factors 2,29 in eq. (4.1).

The total jet cross section with pr > py in a nucleon-nucleon reaction can
be obtained for given /s by integrating the differential cross section (4.1) over
p%, y1 and yp. The integration region is restricted by py < pr < /5/2, 11 < 1,
Ty < 1 and z179 > 4p%/s. This leads for a fixed pr to the restriction

ly1] < In(1/xp +4/1/2% — 1) (4.4)

and for a fixed py and y; to
—In(2/xpr —e™) < yo < In(2/x7 — €¥1). (4.5)

At RHIC energy calculation gives 0.: = 38 mb for py = 2 GeV. To demonstrate
agreements of the pQCD calculations with the measured data on jets produc-
tion we show in Fig.4.1 the experimental data [UA1, UA2] of the jet cross
section at very large pp, measured by the UA1 and UA2 for pp — jet + X
at /s = 540 GeV (left panel) and at /s = 200, 500 and 900 GeV (right
panel). The solid lines depict the pQCD calculations by integrating (4.1) over
yo for fixed y; = 0. We see perfect agreements at smaller energies. However,
at /s = 900 GeV one can recognize a relative large deviation of the pQCD
calculation from the data. The reason is probably that the GRV parametriza-
tions for the parton structure functions are inaccurate at this high energy.
In addition, the next leading order pQCD partonic cross sections seem to be
important correcting the distributions.

We now consider the jets or minijets (for small pr) production in a heavy
ion collision at high energy and assume that an ion-ion collision can be simply
modeled as a sequence of binary nucleon-nucleon collisions [KLL 87, EKL 89].
Nuclear effects like the EMC effect or the shadowing effect at small z [EKS 99|
are not taken into account. The averaged number of produced minijets is then
just proportional to the number of binary nucleon-nucleon collisions

< Njet > = Ojet TAB(b) . (46)

Tag(b) denotes the nuclear overlap function for nucleus-nucleus collision at
impact parameter of b, which is given by

Tan(b) = / Prrida dPoredzs na(ry) ng(rs) 02(b — (xr1 — x72)),  (4.7)
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Figure 4.1: UA1 [UA1] and UA2 [UA2] data for pp — jet + X process at
Vs = 540 GeV (left panel) and /s = 200, 500 and 900 GeV (right panel).
The solid lines depict the pQCD calculation by integrating (4.1).

where n4/p5(r) is the nuclear density. In physical terms, 0T4p(b), where o
denotes the total nucleon-nucleon cross section, gives roughly the number of
binary semi-hard nucleon-nucleon collisions in an A + B collision at impact
parameter b [EKL 89]. The total jet cross section oje; with pr > py =2 GeV
in a nucleon-nucleon collision at /s = 200 GeV is calculated by integrating
the differential jet cross section (4.1) und turns out to be 38 mb. Employing
the Woods-Saxon distribution for the nuclear density of a Lorentz contracted

nucleus
Y o

14 Bap (/o5 + (y2)? — Ra)/d)

where d = 0.54 fm, R, = 1.124Y3 — 0.86A~'/3 fm and ny is determined
from the normalization [d3rins = A, one obtains Taa(b = 0) ~ 30/mb
for a central Au+Au collision. We thus estimate that with a cutoff py = 2
GeV about 1200 minijets will be produced in a central Au+Au collision at
maximal RHIC energy. Note that this number does crucially depend on the
cutoff pg, which makes the minijet picture not so much promising. On the
other hand, one might improve this by choosing some selfconsistent relation
for this crucial parameter [EKRT 00]. In Fig.4.2 we show the momentum
rapidity distributions of minijets produced at RHIC, which are computed by
integrating (4.1) over pr and y, and then multiplying the overlap function
T44(0). We see first that gluons are initially the dominant parton species.
About 70% of the produced minijets are gluons. Second, when subtracting the

nA(XTla 21) = (4-8)
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Figure 4.2: Momentum rapidity distributions of minijets produced at RHIC.
The distribution for gluons, quarks and antiquarks are depicted separately.
The solid curve shows the distribution of minijets in total.

distribution of the see quarks, which is equal to that of the antiquarks, from
the total distribution of the quarks, one obtains the distribution of the valence
quarks. It possesses peaks at larger rapidity, which corresponds the fact that
the valence quarks take the most fraction of the momentum of the nucleon and
have large x. At midrapidity the contribution of the valence quarks is very
small. This shows that the heavy ions at RHIC energy indeed penetrate each
other and leave almost a baryon free region behind them.

Since in a heavy ion collision minijets are assumed to be produced in inde-
pendent binary nucleon-nucleon collisions, the initialization of the individual
produced minijets in momentum space is straightforward: Minijets are sam-
pled statistically according to the differential jet cross section (4.1) averaged
over possible proton-proton, proton-neutron and neutron-neutron collisions.
The space-time coordinates of the minijets are initialized within a simple ge-
ometrical picture when the two Lorentz contracted nuclei do overlap. For
convenience for the moment, we set the zero point of the time scale to be the
moment of the full overlap. Then the longitudinal positions of the two nucleus
centers are at + v t, respectively, where v is the velocity of the nuclei. One
now identifies the intrinsic coordinates z; and z; in (4.7) with the global space
and time coordinate

2 =z—0t and 29 =z+uvt. (4.9)
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Changing from z; and 2, to z and ¢ yields for eq. (4.7) for b=0and A =B

Tsa(b=0) = /dQ:ch d*zpo 2vdt dz ny(xr1, 2 — vt) na(Xpe, 2 + V1) X
X 52(XT1 - XTQ)

= /dQ:ch 2vdtdz na(xr1,2 —vt)na(xr, z +vt).  (4.10)

One thus receives the statistical distribution for sampling the space-time co-
ordinates of the individual produced minijets

d < Njer >

m NTLA(XTl,Z—Ut)TLA(XTl,Z+Ut). (411)

The probability for producing a parton at (r,¢) is thus proportional to the
convolution of the nuclear densities of the two overlapping nuclei at the indi-
vidual space-time point. Due to the choice of the zero point in time, about
half of the produced partons are liberated at negative times. Therefore, with
this convention of the zero point in time the space-time rapidity 7 (3.3) is
not a well-defined quantity. In order to correct this, we shift all the times to
be larger than the absolute values of the corresponding longitudinal positions,
ie. t = t+1t; > |2|, with a uniquely chosen t;. This actually implies that
ts ~ 0.5R 4/, i.e. half of the overlapping time. Since we apply Woods-Saxon
distribution (4.8) for the nuclear density, we can not exactly specify when the
first touch of the two colliding nuclei occurs. % is thus - strictly speaking -
a parameter in our simulation. For a larger ¢; particles pile up in the central
space-time rapidity region and for a smaller ¢; particles distribute within a
wider rapidity range during the very early evolution. On the other hand, in-
dependently on the chosen t,;, most of the partons are in fact produced in the
central rapidity region due to the geometry of the overlapping nuclei. In the
simulations which will be presented later in chapter 6, we determine ¢; with
the assumption that the initial partons are distributed within a space-time
rapidity range of n € [—5 : 5].

In the above picture concerning the implementation of the space-time pro-
duction of minijets, it is assumed that partons become immediately on-shell
when the (semi-)hard nucleon-nucleon collisions occur. Alternatively, one may
introduce an additional formation time for every minijet, At; = coshy A1y ~
coshy - 1/pr, which models the off-shell propagation of the freed partons.
Within that time span, one assumes, for simplicity, that the still virtual parton
does not interact and moves with speed of light. Fig.4.3 shows the space-time
configurations of the initial partons without and with the formation time. We
see two very different configurations. While the partons with no formation
time gather in a small space-time region around (z = 0 fm, ¢t = 0.1 fm/c), the

partons with the formation time distribute widely. It looks that they are pro-
duced on hyperbolas around 7 = v/1? — 22 = 0.2 fm/c with a width of 0.1 fm/c.
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Figure 4.3: Space-time configurations of the initial partons without (open
circles) and with (solid circles) the formation time.

In spite of the different pattern of the space-time distribution of the initial par-
tons between without and with the formation time, we will realize, confirmed
by numerical simulations presented in chapter 6, that the introduction of such
a formation time does not affect our main findings too much.
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Chapter 4. The initial conditions of partons in uRHIC




Chapter 5

Quark Gluon Plasma in box

A quark gluon plasma (QGP) is suggested as a kineticly and chemically equi-
librated system of deconfined quarks and gluons. Such state of matter is
presumed to have been formed after the big bang and also expected to exist
temporarily during the course of an ultrarelativistic heavy ion collision in the
laboratory. The main goal of the heavy ion collision experiments at RHIC and
of the future experiments at LHC is to find evidence of such a new state of
matter, the existence of quark gluon plasma. From the theoretical point of
view it is also very interesting to address the possibility of the formation of
QGP under different theoretical assumptions of the initial conditions, and to
investigate the further evolution of the quark gluon system in space and time.
A cascade type transport simulation solving relativistic Boltzmann equations
for quarks and gluons with Monte Carlo technique is just well suited for such
a study. Whereas the current parton cascade models, MPC [MG 00|, PCPC
[BMGMN 00] and VNI/BMS [BMS 03], have not included the 2 <+ 3 processes,
we can apply the extended stochastic collision algorithm presented in the last
section to build up a parton cascade describing the space-time evolution of
interacting quarks and gluons including gg <> ¢ggg within the framework of
perturbative QCD. As a first application, we restrict ourselves in this chap-
ter to investigate the formation of a quark gluon plasma in a fixed box. The
convenience is that a thermalized parton system should be formed in any case
after some time. Although this situation can not be given in reality, one can
still address the way of equilibration for different particle species. Further-
more, box calculations offer an essential test for the numerical realization of
detailed balance of gg <+ ggg and gg <> qq processes. A realistic space-time
approach for the simulation of parton evolution during the early stage after an
ultrarelativistic heavy ion collision will be presented in chapter 6.

The parton interactions include all two-body processes: (1) gg <> gg, (2)

99 <> qq (3) 9 > 94, (4) g <> q¢, (5) q¢’ > qd', (6) 47 <> ¢q, (7) 7 <> ¢'7 and
three-body processes (8) gg <> ggg. The matrix elements squared in leading

99
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order of the perturbative QCD are taken from [ORG 78] and [GB 82]. We
regularize the infrared divergences by using the Debye screening mass [Wo 96|
m?, for gluons

d®p 1
(2m)°p
and the quark medium mass mﬁ for quarks

md = 167?045/ (Nofy + 14 1,) (5.1)

N2 -1 d®p 1
2 c
m, = 4ma, N, (2ﬂ)32—)(fg + fa), (5.2)

where N, = 3 for SU(3) of QCD and n; is the number of quark flavor. All
formulas for the differential cross sections are listed in Appendix C and D.
Here we write down only the differential cross sections (or the matrix element
squared) of the dominant processes for achieving kinetic and chemical equili-
bration [W 96, BDMTW 93]:

do99799 9ra?
2 = 2 52 9 (53)
dg? (g7 +m3p)
do99—99 2
= — (5.4)
qu 3S(qL + mq)
994 82 1292q2
|Mgg—>ggg|2: <— 2 2 2)( 2 Lz 2 ) (5'5)
2 (qf +mp) k% (kL — qu)* + mp)]

where ¢? = 47a,. The matrix element (5.5) describing the gg > ggg tran-
sitions is factorized into a part for elastic scattering and a part for gluon
radiation (or gluon fusion). q,; and k; denote, respectively, the perpendicular
component of the momentum transfer and that of the momentum of the radi-
ated gluon in the c.m. frame. In a dense medium the radiation of soft gluons
is assumed to be suppressed due to the Landau-Pomeranchuck-Migdal (PLM)
effect: The emission of a soft gluon should be completed before it scatters
again. This leads to a lower cutoff of £, via a step function ©(k, A, — coshy),
where y is the rapidity of the radiated gluon in the c.m. frame and A, de-
notes the gluon mean free path which is the inverse of the gluon collision rate
Ay = 1/R,;. R, is the sum of the rate of the following transitions: gg — gg,
99 — 44, 99 — 94, 99 — gg99 and ggg — gg.

The collision rate is an important quantity governing the time scale of
kinetic and chemical equilibration. In Fig.5.1 we depict the thermally averged
cross section < v,qo > and the gluon collision rates as function of temperature
for g9 — g9, 99 — qq, g9 — gq and gg — ggg transitions. < v,q0 > are
calculated numerically, for which we take the screening masses obtained at
equilibrium (f, = f, = e E/T)

8 16
m2D = (3 + ’]’Lf);OZSTQ and mg = gasTQ . (56)
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Figure 5.1: Gluon collision rates and thermally averaged < v,0 > as function
of temperature. The solid, dashed, dotted and dash-dotted line show the
temperature dependence for gg — g¢9g9, g9 — 99, g9 — gq and gg — qq
transitions respectively. We consider here two quark flavors and employ a
constant coupling a; = 0.3 (for the cross sections and the screening masses).

In the calculations we consider two quark flavors (n; = 2) and employ a
constant coupling oy = 0.3. The corresponding collision rates are obtained
by R = n, < v,qo >, where n, = v,7%/7* is the gluon density in thermal
equilibrium. v, = 2x8 denotes the degeneracy of gluons. Because of our simple
minded inclusion of the LPM effect, the cross section 044,44, depends on the
sum of the rates Ry = Rgy_,g9+ Rgg—q7+ 99999 + Rgg9— g9, in Which, however,
Ryg 999 a0d Rggg_ygq(= Rgg—gqg in equilibrium) depend again on 044, 444. This
problem is solved by a selfconsistent, iterative computation. Inspecting Fig.5.1
we see that the collision rates are proportional to the temperature, which
indicates that the < v,¢0 > are inversely proportional to 72. This behaviour
stems from the fact that the cross section 04,4, and o44_,4, depend mainly on
1/m? and the cross section o,y g4y and gy, mainly on 1/s. Furthermore
we realize that the collision rate of the three-body processes is in the same
order as the rate of two-body gluon collisions.

We now come to some numerical details when simulating the parton equili-
bration in a fixed box. As shown in Appendix D, the computations of o935 and



62 Chapter 5. Quark Gluon Plasma in box

I35 over momentum space are reduced to a four- (D.9) and a two-dimensional
(D.13) integration respectively. Even then, the computations are still time-
consuming when oy3 and I35 have to be calculated for every gluon doublet and
triplet in cells, since the number of integrations is proportional to n? and n?
respectively (n being the total gluon number in an individual cell). In order
to reduce the computing time, one first thinks of tabulating g5 as well as I3,.
In simulations we then make interpolations using these tabulated data sets.
This gives a convenient way for obtaining o93 because the underlying integral
depends on only two parameters, m3,/s and A,/s, as mentioned in Appendix
D. The same data sets have been used for calculating g3 in thermal equilib-
rium as shown in Fig.5.1. In contrast to the case for o3, I3, depends on five
parameters (see Appendix D). A tabulation of I3, is thus crude due to the
limitation of the storage, which leads to large errors by interpolations. There-
fore we decide to calculate I3 in simulations using the Monte Carlo algorithm
VEGAS [PTVF 92] with low computing expense (2 iterations and 100 func-
tion calls). Furthermore, in order to reduce the computing time we employ
the method as explained in chapter 3: Instead of evaluating probabilities of
all possible collisions, we choose randomly N out of the possible doublets or
triplets, since in our case the transition probabilities of any channel are in fact
very small within one time step. The corresponding collision probabilities are
amplified accordingly to be

n(n —1)/2
Nog 7

n(n—1)/2

n(n—1)(n—2)/6
Nog '

N2

Py — Poy Py3 — Po3 Psy — Pso

(5.7)
The choices of Nyy, Nog and N3y are arbitrary. In the following simulations we
set ./\/22 = N23 = Ngg =n.

The initial condition for the box calculations is taken by sampling multiple
minijet production in heavy ion collisions at RHIC energy /s = 200 GeV,
which was discussed in the last chapter in detail. The parameter pg is set here
to be 2 GeV. We consider gluons stremming from a central rapidity region
y € [—0.5: 0.5] as the only initial parton species, since at the central rapidity
region the partons with small x dominate and these are almost gluons. The
initial number of gluons is assumed to be 500, about 3 times larger than that
of gluon jets at RHIC. The momentum spectrum of the gluons has a power-law
behaviour and thus initially the parton system is strongly out of equilibrium.
The primary minijets produced in a real high energy heavy ion collision are
distributed within a thin disc due to the Lorentz contraction. Instead of such
a space-time configuration discussed in the previous chapter, we assume a
homogeneous spatial distribution of partons in the box for simplicity. This
allows us to still use a static cell configuration. In the following studies we are
interested in the way of how thermalization of different parton species proceeds
and also interested in the timescales of kinetic and chemical equilibration.
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The size of the box is set to be 3 fm x 3 fm x 3 fm and the box is divided
into equal cells. The length of a cell is set to be 1 fm. These settings are tuned
as that there will be enough gluons (about 15) in each cell during the whole
evolution. (For quarks strong statistic fluctuation occurs at the beginning of
the evolution due to the initial lack of quarks.)

We employ a constant coupling of oy = 0.3 in the rest of this chapter for
evaluating the screening masses and the cross sections. The screening masses
m%, and m? are calculated dynamically according to (5.1) and (5.2). The
integrations are computed as

d3p 1 1
/(27T)3pf - V;E’ (58)

where the sum runs over all particles in a volume V', which should be, in
general, small in order to maintain the local homogeneity. Since the initial
position of partons is distributed homogeneously, we extend the sum over all
particles in the fixed box.

The gluon collision rate, which will be employed for evaluating o93 and I3s,
can be obtained from the calculated collision probabilities, since the sum of the
probabilities of all possible collisions gives the average total collision number
within the current time step. We then have

> PP _
Ry = ) f=99,4q, 999, (5.9)
99— IN,At
. po99—99
R S A S (5.10)
999—99 %NgAt
Zi Pig(I—)gq
and qu—)gq = W , (511)
g

where the sums run over possible particle doublets or triplets in the individual
cells and also over all cells. N, denotes the total gluon number in the box.
On the other hand, the P79 and P79 depend again on 0,3 and I3,
respectively. Therefore, a correct calculation for o3 and I3y as well as P?79%9
and P799799 should be a selfconsistent, iterative computation. However, since
such computations are too time-consuming, we employ the gluon collision rate,
obtained at the last time step, to calculate o3 and I35 within the current time

step.

When the parton system becomes fully equilibrated at the later evolution,
the final values of gluon and quark number should be given by

3

eq _ ,, =
Ng —Vgﬂ_2

v, (5.12)

TS
Nyt =2v, 5V, (5.13)
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where v, = 2 x 8 and v, = 2 x 3 X ny are the degeneracy factors of a gluon
and quark respectively. The factor 2 in (5.13) indicates the sum of quark and
antiquark. Employing the relation

E = 3(N& + Ne)T, (5.14)

which holds in thermal equilibrium, we obtain the final temperature

T = (Eﬁiz)i . (5.15)

V 3(v, + 2v,)

The total energy E can be determined by the specified initial momentum
distribution of minijets (4.1). Considering only up and down quarks (ny = 2)
we get a final temperature of about 430 MeV and thus m2 ~ 0.7GeV? and
m? ~ 0.1GeV? for oy = 0.3,

Fig.5.2 shows time evolutions of the gluon and quark number. 60 indepen-
dent realizations are collected to obtain sufficient statistics. We see that the
time evolution of the gluon number has two stages. At first the gluon number
increases rapidly to a maximum and then relaxes towards its equilibrium value
on a slower scale. The quark number starts from zero because of the initial
absence of quark species and increases smoothly towards its equilibrium value.
The gluon and quark number do reach their final values simultaneously. These
behaviours of Ny(t) and N,(t) reveal the well-known scenario of two-stage
chemical equilibration: The gluon system equilibrates at first as if no quarks
were there and then cools down gradually by producing quark-antiquark pairs
until the quarks reach the equilibrium. Such two-stage equilibration could also
happen in a real high energy heavy ion collision [S 92].

Next we compare the equilibrium values of gluon and quark number of
Fig.5.2 with the analytical values which one would expect directly from the
initial conditions. The final temperature in one individual run can be obtained
by inserting the total amount of energy into expression (5.15). Averaged over
60 runs we have < 7" >= 427.84 MeV. Inserting the averaged temperature
into (5.12) and (5.13) gives < Ng? >= 428 and < Ng? >= 643. The values
extracted from Fig.5.2 are N, = 430 and N, = 640. We see that the agree-
ments are pretty good, which demonstrates that our new cascade algorithm is
indeed very successful in keeping the detailed balance even for the considered
complexity of employing pQCD motivated cross sections. We also calculate
the equilibrium number of gluons when no quarks are considered (n; = 0). In
the present situation this is Ngeq = 852, which is somewhat greater than the
maximum of gluon number read off from Fig.5.2, since in the latter case gluons
are already lost due to the production of quark-antiquark pairs starting at the
beginning of the evolution.

In Fig.5.3 we depict the energy distributions of the partons (gluons and
quarks) at different times. The initial (¢ = 0 fm/c) distribution possesses a
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Figure 5.2: Time evolution of the gluon and quark number in box calculations.
We consider here gluons and quarks with two flavors as parton species. Col-
lision processes are the elementary two-body parton-parton scatterings and
three-body processes gg <> ggg in leading order of perturbative QCD. The
coupling is assumed to be a constant of oy = 0.3. The initial momentum
distribution of particles is taken from the minijets production in central ra-
pidity interval y € (—0.5 : 0.5) in a nucleon-nucleon collision at RHIC energy
/s =200 GeV. The initial particles are gluons and distributed homogenously
in the box. The size of the box is 3 fm x 3 fm X 3 fm and the box is divided
into equal cells. The length of a cell is 1 fm. The initial gluon number is set
to be 500. The results are obtained from an average over 60 runs. The dotted
curves show the results solving a set of rate equations (5.19) and (5.20).

cutoff at £ = py = 2 GeV and is highly nonthermal. Immediately after the
onset of interactions, soft gluons with smaller energy do emerge by the process
99 — ggg and thermalize very quickly. We see that even at 0.3 fm/c the energy
distribution for partons with smaller energy than 2 GeV is almost exponential.
The hard particles with larger energy are still out of equilibrium. There is still
a hump at 2 GeV. This hump will vanish gradually and at 2 fm/c the total
distribution becomes exponential. One can refer to this stage as the onset of
kinetic equilibration. The energy distribution at a final time of ¢ = 50 fm/c
is also depicted in Fig.5.3. We have compared this spectrum to the analytical
form eq. (2.5) with the averaged temperature < 7' >= 427.84 MeV obtained
from the initial input. (The analytical distribution is not shown in Fig.5.3.)
The agreement is very good.

To study the kinetic equilibration in more detail, we calculate the time
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Figure 5.3: Energy distributions at different times from the same calculation
as in Fig.5.2.

evolutions of the momentum anisotropy

2<p?>,
<p%>g

2<p>,
<p2T>q

(), (t) (5.16)

for gluons and quarks, which are shown in Fig.5.4. We see that the momentum
of the gluons and quarks becomes isotropic at almost same time of about 1 —2
fm/c which is just the timescale when the energy spectrum gets exponential,
as shown in Fig.5.3. However, if one looks at the time evolutions of the ef-
fective temperatures in Fig.5.5, which are defined as T (t) := E,(t)/3 N,(t)
and T,(t) := E4(t)/3 N,(t), one notices that between 0 fm/c and 10 fm/c the
temperature of quarks is lower than the one of gluons. The reason is that
the quarks stem mainly by the gg — ¢q¢ quark pair production and the cross
section 044,45 is inversely proportional to s. Therefore, when the quark pro-
duction is still more dominant compared to the annihilation process, more
quark-antiquark pairs with smaller energies are produced than those with
larger energies, compared to the equilibrated Boltzmann distribution. Cor-
respondingly, there would be a slight suppression in the energy spectrum of
quarks at high energy and in the energy spectrum of gluons at low energy
during the ongoing chemical equilibration. It takes time for the gluon-quark
mixture to obtain an identical temperature via the gluon-quark interactions.
This identical, final temperature is extracted from Fig.5.5, T, = T, = 429
MeV, and agrees perfectly with the expectation of < T >= 427.84 MeV.
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Figure 5.4: Time evolution of the momentum anisotropy for gluons and quarks
from the same calculation as in Fig.5.2.

The parton fugacity is defined as follows

_ Ny(®) _ No(®)
Ag(t) == Nea) and A\ (1) = Nea(r)” (5.17)
where
N;q(t) = l/gT";’T—(Zt)V and N;q(t) = 2I/qT(;_—(2t)V. (5.18)

In the upper panel of Fig.5.6 the time evolutions of the fugacity are depicted for
gluons and quarks by the solid curves. We see that while the gluons approach
the chemical equilibrium at about 3 fm/c, the quarks do equilibrate later at
20 fm/c. These time-scales agree well with those when the collision rates of
g9 — ggg and gg — qq process become same as the rates of their backreaction,
respectively, as shown in the lower panel of Fig.5.6 by the solid curves where
the corresponding absolute collision numbers counted within a time interval of
At = 0.1 fm/c about t are depicted. The two-stage chemical equilibration is
clearly demonstrated in Fig.5.6.

In Fig.5.7 we show the gluon collision rates per particle (upper panel) and
the corresponding cross sections < v,0 > (lower panel). The collision rates
per particles are obtained by counting the collision events within a time interval
of At =0.1 fm/c at ¢ and then divided by the particle number (or half of the
particle number for collisions with identical incoming particles) at the same
time. Since R = n < v.q0 >, dividing the collision rates per particle by the
corresponding particle densities gives the cross section < v,¢0 >. From Fig.5.7
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Figure 5.5: Time evolution of the temperature for gluons and quarks from the
same calculation as in Fig.5.2.

we see that the quantities approach the final values gradually. Comparing
these final values with the analytical results read off from Fig.5.1 at the final
temperature gives perfect agreements. (Note that the analytical results are
R = 0.630, 0.585, 0.0981 and 0.390 fm™', < v,q0 >= 0.4, 0.368, 0.0617 and
0.164 mb for gg — gg9, 99 — 99, g9 — qG and gq — gq processes respectively.)
Furthermore, we notice from the small window in Fig.5.7, which depicts the
results from 0 to 3 fm/c, that the cross sections for gg — ggg, g9 — gg and
gq — gq processes are very large at the beginning of the evolution. This is due
to the undersaturation of partons which leads to a smaller sceening masses.
In Fig.5.8 the time evolutions of the screening masses are shown. Also here,
the agreements of the extracted equilibrium values from the figures with the
analytical values (5.6) are perfect. For gg — ¢g process, however, the cross
section is still small at the beginning of the evolution. The reason is that the
cross section for this channel has only logarithmical dependence on the quark

. . 1 S
screening mass, i.e. 0gg e ~ ¢ In(1 + 4mg)'

Now we turn to describe the chemical equilibration using a set of rate
equations. The evolution of the parton numbers is governed by the master
equations

Ny = N oo ol o (5.19)
N, = 2N o, (5.20)

where the dot denotes the derivation of time. Note that N, is the sum of
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Figure 5.6: Time evolution of the fugacity for gluons and quarks from the
same calculation as in Fig.5.2 (upper panel). Collision numbers counted with
a time interval of At = 0.1 fm/c about ¢ for different channels from the same
calculation as in Fig.5.2 (lower panel).

quarks and antiquarks. Ncio” are the collision rates

\799>999 N92 1

Neon = 7 < Urel Ogg—gg9 > V ) (5.21)
. N2 1

Néqog[?_)gg ] )\97“] < Urel Ogg—gg9g9 = V , (522)
. _ N2 1

Ngg%?qq =< Urel Ogg—q3 = =5 (523)

2 1%

. N 2 1

Ngoqll—mg =Ny (ﬁ) < Uret Ogg—sgg9 > V ) (524)

where in (5.22) equality is only valid when assuming that the system is in ki-
netic equilibrium. One can also easily realize from Appendix C that 044 g9/0gg—qs =
32/9ny, in which 044_,,; sums over all the final states with different flavors.
For the given initial values, N, = 500, N, = 0 and A\, = 0.12, and taking the
equilibrium values for the cross sections we solve the master equations (5.19)
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Figure 5.7: Time evolution of the collision rates per particle (upper panel) and
the cross sections (lower panel) for different channels. The results are obtained
from the same calculation as in Fig.5.2.

and (5.20) numerically employing the simple Euler method. After each time
step we compute the parton fugacities according to (5.17) and (5.18), where
we assume Ty (t) = T,(t) = E/3(N,(t) + N,(t)). E is obtained from the initial
condition. The results are depicted in Fig.5.2, Fig.5.5 and the upper panel of
Fig.5.6. We see that at late times the simple master equations do describe the
same chemical equilibration as the Boltzmann equations did. At early times
the results based on the solution of the master equations are clearly underes-
timated due to the fact that the cross sections and thus the collision rates at
early times are actually larger than the final equilibrium values. However, more
surprisingly, the quark numbers in Fig.5.2, obtained by solving the Boltzmann
equations and the master equations, show almost the same time evolutions.

From the present study of creating QGP in a box some speculations are
made when we consider parton evolution in a real ultrarelativistic heavy ion
collision. (1) Two-stage equilibration is a good scenario describing parton
thermalization in high energy heavy ion collisions. (2) The cross section ogg_444
is in the same order as 044,49 and thus the gg <+ ggg processes should play
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Figure 5.8: Time evolution of the screening mass for gluons and quarks from
the same calculation as in Fig.5.2.

an important role in chemical and as well as kinetic equilibration. Analyses
based on a full 3+ 1 dimensional transport simulation of the parton evolution
after a high energy heavy ion collision will be presented in the next chapter.
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Chapter 6

Full 3+ 1 dimensional operation
of the parton cascade for central
Au+Au collisions at RHIC:
kinetic and chemical
equilibration

As motivated in the introduction, the perfect agreement of the recent RHIC
data on elliptic flow parameter v, with the predictions from the hydrodynami-
cal model indicates that a thermalized system of quarks and gluons is produced
at RHIC. One the other hand, the parton cascade simulations employing 2 — 2
pQCD interactions failed to demonstrate the onset of thermalization. It is sug-
gested that 2 <> 3 processes are more responsible to equilibration and should
be included in transport simulations. In chapter 2 and 3 we have presented
a new parton cascade including such inelastic collisions. Covariance and con-
vergence of the numerical algorithm have been demonstrated. In the previous
chapter the correct implementations of gg <> ggg processes are confirmed for
an example of parton evolution in a fixed box. In this chapter we take the step
forward to simulate the space time evolution of partons produced in a central
Au+Au collision at maximal RHIC energy /s = 200 GeV by means of the well
tested stochastic collision algorithm. The simulation is performed in the cen-
ter of mass frame of the colliding nuclei. For the present and first exploratory
study we include only the pQCD motivated gluonic interactions gg <> gg and
gg <> ggg in the dynamical evolution. Simulations with all parton degrees of
freedom will be postponed to a sequent study.

73
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6.1 Cell configuration

To be able to apply the stochastic method to simulate the full collision se-
quences, we divide the space into appropriate cells. The individual cell struc-
ture has to be considered selfconsistently to be well suited to the details of
the dynamical evolution of the parton system. Since it is a priori not clear
whether the parton evolution is invariant under Bjorken boost, a configura-
tion with constant division in space-time rapidity, An =constant, as chosen in
chapter 3 when simulating one dimensional expansion of a thermal system in
a tube, is here not really reliable. The cell structure should be refreshed every
time step to adapt to the dynamical parton evolution. In principle, one dimen-
sional expansion is still a good approximation for the whole parton evolution
for the first few fm/c after a central nucleus-nucleus collision. We thus still
employ a static cell configuration in the transverse plan: Cells are transversely
set as squares with a length of 0.5 fm. Longitudinally, space is divided into Az
bins, where each bin contains about the same number of test particles. This
ensures the same statistics for each bin and automatically adapts to the density
profile of the evolving parton system. This dynamical structuring begins at
the center of the fireball and then proceeds to the very outside. Test particles
from the far outside are not included into the cell configuration, because there
the density distribution is too inhomogeneous. Instead, we then consider only
elastic scatterings among these partons treated via the geometrical method.
To obtain sufficient statistics, one has to tune the test particle number in each
bin to be large enough: It turns out that a number of 20 test particles on
average in each cell is sufficient during the first 4 ~ 5 fm/c. However, in the
region with lower particle density, especially in the transversal surface, there
are not enough test particles. If the test particle number in a cell is less than
a certain cutoff, which is set to be 4 in the simulations, we treat test particles
in this cell again only by means of elastic scatterings with the geometrical
method. How fine the longitudinal bins would be, depends on Ny, the num-
ber of test particles per real particle. We set N,; = 60 in the simulations.
In total, this leads to an equivalent division of roughly equally sized bins in
space-time rapidity with An ~ 0.2, as shown in Fig.6.1 where the structure of
longitudinal bins in space-time rapidity is depicted for progressing time. This
structure is extracted from one simulation for a central Au+Au collision at
RHIC energy. Other results obtained from the same simulation are presented
in the next section. In Fig.6.1 one also sees a ‘zigzag’ pattern. That is due to
the random shift of the cell structure by a small amount in the longitudinal
(as well as transversal) direction after every time step, in order to avoid that
particles belong to the same cell for too long time, as discussed in chapter 3.
Besides this fine mesh of cells we also have to choose a sufficiently small time

step to prevent a too strong change of the spatial configuration in each local
cell. In the simulations, this time step is time dependent and is determined



6.2. Assumptions and Results 1 75

10— ——— 11—
0.8 B
0.6 X
0.4 X
0.2 X

1 oo WA At
0.2 i

04] ”‘WWWMWWMWWWMW;

064 L

084 L

0 15 20 25 30 35 40
t [fm/c]

0l
00 05 1

Figure 6.1: Structure of longitudinal bins in space-time rapidity. The structure
is extracted from one simulation for a central Au+Au collision. In this figure,
only the structure of longitudinal bins in the region € [—0.8 : 0.8] is depicted.

to be the one fifth of the smallest occurring cell length. For the case that a
collision probability turns out to be greater than 1, all operations done within
the current time step are redone with an appropriately chosen smaller time
step.

6.2 Assumptions and Results I

6.2.1 Assumptions

We calculate the dynamical screening mass m% in a similar way as done for

the box calculations in chapter 5 [W 96]
d3p

(2m)3p

The evaluation is carried out (quasi-)locally. V' denotes the volume of a local
region and the sum runs over all test particles in the region. The presence
of the cell structure makes it reasonable to calculate the screening mass in
each cell. However, the statistical uncertainty due to fluctuations is still large,
since there are at maximum 20 ~ 30 test particles in one individual cell, and
thus an extraction of the particle phase space density f is not precise. If one
assumes that the expansion in the first few fm/c is mainly longitudinal, and

11
m? = 167ra5/ Ne fy 167 Nee- 3 —. (6.1)
i Dbi
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further, that the transverse parton distribution is homogeneous over a large
transversal area, one can extend the sum in (6.1) over a more broader region
compared to the individual cell. In the simulations we consider a volume V'
as a cylinder with a radius of 6 fm in the individual Az-bin. Within each bin
m% /a is assumed to be transversely constant. This approximation will lead
to an underestimate of m? /o, in the very central area and an overestimate
in the outside area when the transverse flow builds up, since within the same
Az-bin the particles moving with larger transverse velocity have larger energy
and thus make a smaller contribution to the sum in (6.1) than the particles
moving with smaller transverse velocity. The radius is a parameter which we
set to be roughly equal to the radius of a Au nucleus. It turns out that the
influence of this parameter on the screening mass is still quite sensitive at least
for late times. A future improvement will be to simulate the parton evolution
within a parallel ensemble technique, which will give the possibility to locally
extract the particle phase space density more precise.

The coupling «; is assumed to be

127
(33 —2ny) ln(s/AQQCD)

for individual collisions, where s denotes the invariant mass of a particular
colliding system of two or three particles. We set the quark flavour n; to be
3 and Agep to be 200 MeV. In general, Q? in (6.2) stands for the momen-
tum transfer in collision such as in deep inelastic scattering. For many-body
collisions, however, the scale Q? is not unambiguous.

QS(QQ) ~ as(s) =

(6.2)

The gluon collision rate R,, which will be employed to determine the effec-
tively incorporated Landau-Pomeranchuck-Migdal (LPM) suppression in the
gg <> ggg processes by means of a low-momentum cutoff, is evaluated locally
in cells

Ry = Ryggg + Rggsg99 + Rggg—gg, Where

i P
Rygy =T~ [=99,999 and (6.3)
901 = "IN, Ar
Zi Piggg_).gg
Rgg9—99 = %NQAT . (6.4)

The P;s denote the respective individual collision probabilities. The sum over
P; gives the mean number of collisions occurring during a time step At in a cell
with Ny gluons. A7 denotes the corresponding time interval in the comoving

frame AT = At/y, where v = 1/4/1 —v2/c? and v is the collective velocity
of the moving cell. For a cell with about 20 gluons there are in total 200
individual possible gg — gg and gg — g¢gg collisions each and 1200 possible
999 — gg collisions. The statistics is high enough to ensure evaluations of
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the collision rates in local cells to be sufficiently precise, in contrast to the
calculation of the screening mass. Still a problem remains, which is that the
calculation of the collision probability for a ggg — gg process by a two di-
mensional integral is time-consuming. To reduce the computing time we have
to take the following approximation, which has already been applied for the
box calculations in chapter 5: We randomly choose about 20 gluon triplets
instead of the total 1200 combinations and compute the amplified collision
probabilities (5.7). Therefore the statistical fluctuation of the collision rate
Ry 49 is stronger than that of the others. Also, when extracting the velocity
of an individual space element we encounter the same difficulty of insufficient
statistics as explained by calculating the screening mass. We assume that all
the cells in a Az-bin have the same longitudinal velocity

dp p.
_%N 1 Zpiz (6.5)
— 3 ~ T _, -
Vf(ngjsf Ng i E;

where the sum runs over the test particles within a cylinder with a radius of 6
fm in the considered Az-bin, and N, denotes the gluon number in the cylinder.
The transverse component of the velocity is set to be zero. In principle, this
assumption can be corrected when a parallel computing device is employed
for achieving considerable higher statistics. Then one is able to look for and
calculate transverse flow of each individual cell more accurately.

6.2.2 Results I

We now present first numerical results obtained for the time evolution of the
gluons produced in a central Au+Au collision at RHIC energy /s = 200
GeV. The initial conditions for the cascade are the multiple minijets with
pr > po = 2 GeV produced in the collision. No formation time is introduced
here for the minijets. As mentioned in Chapter 2, a 2 — n collision with n > 2
can be realized within the geometrical method. However, the difficulty of the
geometrical method lies in the consistent realization of the back reaction n — 2.
At this point the stochastic method shows its advantage in contrast, although
the realization of ggg — gg process is time-consuming as explained before. If
the multiplication processes (g9 — ggg) are dominant compared to the back
reactions in the initial phase of the gluon expansion, then a cascade simulation
including gg <> gg and gg — ggg collisions employing the geometrical method
[SM 02] would be an alternative for studying the parton evolution in heavy
ion collisions. To see whether this consideration is reasonable, we carry out
simulation with gg <+ gg and gg — ggg processes (but within the stochastic
method). In both simulations the number of the test particles is set to be
Niest = 60. In order to further focus on the importance of the inelastic channels
to the evolution, to the thermalization and to the potential onset of nearly ideal



78 Chapter 6. Kinetic and chemical equilibration at RHIC

hydrodynamical behaviour of the partonic system, we also perform simulations
for comparison only with pure elastic scatterings among the gluons. Since in
this case no gluons will be produced during the evolution, more test particles
are needed to build for a fine cell structure. We set Ny.o; = 240. All results
are obtained by an average over 30 independent realizations.

Rapidity distributions

Fig.6.2 and Fig.6.3 show the particle number distributions per unit rapidity
versus the space-time rapidity and the momentum rapidity at the times 0.2,
0.5, 1.0, 2.0, 3.0 and 4.0 fm/c, respectively, obtained from the simulation of
a central Au+Au collision at RHIC energy including pQCD gg < gg and
gg < ggg interactions. The time interval of the overlapping for the two Au

—-—-t=0.2 fm/c

dN/dn

Figure 6.2: Gluon number distribution versus space-time rapidity at the time
t=0.2,0.5, 1.0, 2.0, 3.0 and 4.0 fm/c during the expansion in a real, fully 3-D
central Au+Au collision with pQCD gg <+ gg and gg <> ggg interactions at
the maximal RHIC energy.

nuclei is about 0.17 fm/c. Therefore, the first extraction at 0.2 fm/c is just after
the end of the production of the primary partons (or minijets). In Fig.6.2 one
sees a noticeable spreading of the dN/dn distribution with progressing time.
The reason is that the initially produced partons are distributed within a very
small longitudinal region due to the Lorentz contraction of the Au nuclei. Their
momentum rapidities, however, have a wider distribution, as can be seen in
Fig.6.3. The spreading of the space-time rapidity distribution continues until
its width reaches a comparable magnitude with that of the momentum rapidity



6.2. Assumptions and Results 1 79

—-—-t=0.2 fm/c
450 T T T T T T T T T T T T T T T T T T |ecceae t:0.5 fm/c
............ t=1 O fm/c
400 - - -t=2.0 fm/c
350 0000 AT | t=3.0 fm/c
| —1t=4.0 fm/c
300 + E
5 250 F .
Z L i
S 200
150 b
100 - .
50+ .
0 11— —F
6 5 4 -3 -2-10 1 2 3 4 5 6
y

Figure 6.3: Gluon number distribution versus momentum rapidity at the time
t=0.2, 0.5, 1.0, 2.0, 3.0 and 4.0 fm/c during the expansion.

distribution. For the special case of a simple non-interacting free streaming
system, the dN/dn distribution will then have exactly the same shape as the
dN/dy distribution at late times. In the present case we see that at 4 fm/c the
width of space-time rapidity distribution is about 4.2 and approaches nearly
the width of the distribution of the momentum rapidity being about 5. It
can be clearly seen that the spreading of the dN/dn distribution indeed slows
down at late times. In the central space-time rapidity region the gluon density
first decreases due to this spreading, and then increases because of the ongoing
gluon production via the gg — ggg process. The gluon multiplication is most
clearly demonstrated by inspecting the momentum rapidity distributions in
Fig.6.3, where for instance at y = 0 the gluon number is twice amplified until
4 fm/c. Moreover, at late times the net gluon production slows down, which
implies the completion of the ongoing chemical equilibration. Of course, from
the momentum rapidity distributions it is difficult to recognize any evidences
for kinetic equilibrium. To investigate whether the system indeed does ther-
malize or not, one needs more detailed analyses in sufficiently local regions.
We will present the results in next subsection.

Fig.6.4 shows the momentum rapidity distributions of the transverse energy
(upper panel) and the total energy (lower panel) at the different times during
the expansion. While the distributions would not change during an evolution
like free streaming, we see in Fig.6.4 the decrease of the transverse energy and
the energy transport from the center towards the higher rapidity due to the
longitudinal work done by the potential pressure. This gives first significant
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Figure 6.4: Momentum rapidity distributions of the transverse energy (upper
panel) and the total energy (lower panel) of gluons at the time ¢t = 0.2, 0.5,
1.0, 2.0, 3.0 and 4.0 fm/c during the expansion.

indications of (partial) hydrodynamical behaviour. In addition, we note that
when comparing Fig.6.3 with the upper panel of Fig.6.4, the shape of the latter
clearly looks more alike one dimensional Bjorken expansion than that for the
particle number distribution. Hence, one can not really conclude whether
simple Bjorken expansion of constant dE7/dy and dN/dy manifests or not.

Thermalization in the ‘central region’

In the following we study possible gluon thermalization in the ‘central region’
being defined as a longitudinally expanding cylinder located in the middle of
the expanding system. The radius of the cylinder is fixed to be 1.5 fm and
its length is An = 1.0 from —0.5 to 0.5. In view of the possible buildup of
transverse flow, one could consider a cylinder with varying radius which is
comparable with the longitudinal length. On the other hand, however, the
statistics within such cylinder would be very low at early times. Since the
analysis of transverse flow, which we want to address next, shows that the
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transverse flow velocity is not large close to the central region even at time of
4 fm/c, the above choice with fixed radius is a reasonable compromise.

In Fig.6.5 we depict the time evolution of the gluon density and energy den-
sity in the central region by the solid curves. The dotted and dashed curves
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£ 10p -
=
T for the central region: e ..
x,<1.5 fm, -0.5<n<0.5 e
1000 |
E
>
[0)
S

00 05 10 15 20 25 30 35 40
t [fmi/c]

Figure 6.5: Time evolution of the gluon density and energy density in the cen-
tral region: radial transverse extension zp < 1.5 fm and n € [-0.5: 0.5] for a
central Au+Au collision at the maximal RHIC energy. The short-dotted curves
denote the ideal hydrodynamical limit of one dimensional Bjorken-type expan-
sion with a fixed intercept at time ¢ = 0.5 fm/c. The dotted and dashed curves
show, respectively, the results obtained from simulations with only elastic gluon
scatterings and with gg <> gg, g9 — ggg (without ggg — gg) collisions.

show, respectively, the results obtained from simulations with only elastic gluon
scatterings and with gg <> gg, g9 — ggg (without ggg — gg) collisions. We
see that the densities are very high at early times. An implementation of the
formation time for gluons (see chapter 4) will reduce the densities. The results
will be shown later. In Fig. 6.5 we have also plotted there by the short-
dotted curves for comparison with the standard Bjorken behaviour n ~ 1/t
and € ~ 1/t*/? with a fixed intercept at time ¢ = 0.5 fm/c. Compared to that
one clearly recognizes that the particle number density extracted from the
simulation including complete elastic and inelastic collisions decreases more
slowly (with an exponent of about —0.7) due to the net particle production.
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The decrease of the particle number density extracted from the simulation
without the annihilation processes ggg — gg slows down further, while for the
simulation with only elastic collisions the partilce number density decreases
more fast. The differences in the particle number density between the three
simulations are not small. On the other hand, most interestingly, the energy
density extracted from the three simulations more or less exactly follows the
form which one would expect from ideal Bjorken hydrodynamics. Although
the standard relation P = ¢/3 is all what enters into ideal hydrodynamical evo-
lution for massless constituents, irrespective whether the system is chemically
saturated or not, we have to note that the agreement shown in the lower pan-
nel of Fig.6.5 with the ideal hydrodynamics could be an accident. As we will
realize later, the elastic gluonic scatterings alone cannot drive the system into
kinetic equilibrium. Therefore no ideal fluid can be built up in the simulation
with only gg <+ gg collisions.

Moreover, we see from Fig.6.5 that at 4 fm/c the energy density is still 1
GeV fm 3. Thus the parton picture of particle interactions is valid for the first
4 fm/c in a central Au+Au collision at RHIC. After that hadronization should
occur and the system is then possibly in a parton-hadron ‘mixed phase’.

Fig.6.6 shows the spectra of transverse momentum in the central region at
different times during the expansion. The boldfaced histogram, which has a
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Figure 6.6: Transverse momentum spectrum in the central region at different
times (¢t = 0.2, 0.5, 1, 2, 3 and 4 fm/c from second upper to lowest histogram)
during the expansion. The most-upper and boldfaced histogram with a lower
cutoff at pr = 2 GeV denotes the spectrum of the primary gluons (minijets).

lower cutoff at 2 GeV, depicts the initial distribution of the primary gluons
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(minijets). The spectrum possesses a typical power-law behaviour. Already at
0.2 to 0.5 fm/c a tremendous population of the soft gluons below 2 GeV has
taken place. However, still a remedy of the edge at 2 GeV in spectra is visi-
ble. The ‘edge’ vanishes at about 1 fm/c and the distributions become nearly
exponential and progressingly steepen at the later times 2, 3 and 4 fm/c. The
ongoing steepening of the spectra in time represents a further strong indication
of a (quasi-)hydrodynamical expansion of an almost kinetically equilibrated
system with decreasing temperature.

In contrast, Fig.6.7 depicts the spectra of the transverse momentum ob-
tained from the simulation with only elastic scatterings. The population of
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Figure 6.7: Transverse momentum spectrum in the central region extracted
from the simulation with only elastic collisions at different times. The most-
upper and boldfaced histogram with a lower cutoff at pr = 2 GeV denotes the
spectrum of the primary gluons (minijets). According to the increase of the
population of the soft gluons below 2 GeV, the other histrograms present the
spectrum at times 0.2, 0.5, 1.0, 2.0, 3.0 and 4.0 fm/c respectively.

the soft gluons below 2 GeV is rather low and the distributions at large pr are
only slightly altered. Indeed gluons with highest momenta get more populated.
It is obvious that the gluon system is not thermalized during the expansion in
this case.

We do not show the pr spectra extracted from the simulation without the
999 — gg collisions, since the spectra are similar as plotted in Fig.6.6. The
only difference is that the spectra are more steep at late times, because the
stronger net gluon production leads to the stronger cooling. Also in this case
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we expect a fully kinetic equilibration of gluons in the central region during
the expansion.

To study kinetic equilibration in more detail, we first concentrate on the
momentum anisotropy < p7 > /2 < p? >. For an ideal, one dimensional
boost-invariant hydrodynamical expansion the value of the anisotropy ex-
tracted within a region n € [—An/2, An/2] is given by

py cosh(y—n)

<pk>  [fdz[dprdyEpre T®
2 - . cosh(y—mn)
2 <p?> 2 % dz [ dPprdy Ep2e” T
J&"? dn (cosh n)?/3

= , 6.6
6 "% dn (cosh n)8/3 — 5 ["* dn (cosh )2/3 (6)

where Z = t tanh(A7/2). The expression (6.6) depends only on the longitu-
dinal length of the local region where the momentum anisotropy is extracted,
and goes to 1 in the limit An — 0. In the central region with Anp = 1, the
anisotropy is equal to 0.65 for an ideal expansion. In Fig.6.8 the time evo-
lution of the momentum anisotropy extracted from the present simulations
is depicted by the solid curve. Compared with the thermal value (0.65), the
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Figure 6.8: Time evolution of the momentum anisotropy extracted in the
central region. The solid curve shows the result from the simulation with full
dynamics, while the dotted and dashed curves depict, respectively, the results
from the simulation with only elastic scatterings and with gg <> gg, g9 — ggg
(without ggg — gg) collisions.

curve (with gg <> gg, gg <> ggg) in Fig.6.8 shows first a significant increase
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during a short time 0.6 fm/c and then a smooth relaxation to that thermal
value. The early increase of the momentum anisotropy is due to the initial
pr cutoff, pr > 2 GeV, and the fact that the primary gluons with large longi-
tudinal momentum also have large rapidity and thus move rapidly out of the
central space-time rapidity region. The following decrease of the anisotropy
unambiguously implies the ongoing persistence of kinetic equilibration. The
reason why the anisotropy is still slightly larger than the thermal value is due
to the fact that particles with larger pr equilibrate later, as also seen from the
pr spectra in Fig.6.6. From that particular analysis, quantitatively, the gluon
system becomes approximately fully equilibrated at 2.5 fm/c. On the other
hand, as just stated, the clear bending over at a time of 0.75 fm/c signals that
the strong thermalization has already started at that time, as one also no-
tices from the onset of the pronounced exponential behaviour at a similar time
as seen in Fig.6.6. Inspecting again the time evolution of the energy density
shown in the lower panel of Fig. 6.5, the almost agreement with the standard
Bjorken behaviour ¢ ~ 1/t*/3 gives another evidence that the system in the
central region behaves nearly as an ideal fluid.

As seen in Fig.6.8, the momentum anisotropy extracted from the simula-
tion with only elastic scatterings saturates at much higher value than 1 at late
times. This is a further argument to demonstrate that there is no kinetic equi-
libration in this case. The comparison shows that the inelastic collisions play
the essential role on driving the system into kinetic equilibrium. However, we
remark that in the full dynamics with the inelastic channels, the contribution
of the elastic scatterings to kinetic equilibration should be significantly larger
than that in the simulation with purely gg <+ gg collisions, because in the full
dynamics we have more gluons due to the radiation and the ongoing chemical
equilibration leads to larger screening mass of gluons and thus larger scatter-
ing angle for elastic collisions. In Fig.6.8 we also recognize the ongoing kinetic
equilibration in the simulation without the ggg — ¢g collisions. The slightly
slowdown of the decrease of the momentum anisotropy, when compared with
that for the simulation with complete inelastic channels, indicates a smaller
rate of total inelastic collisions.

The rapid diffusion of the high-energy particles out of the central region at
the beginning of the expansion also explains the dramatic decrease of the gluon
density, energy density (both shown in Fig.6.5) and the effective temperature
T = €/3n at early times, which is shown in the upper panel of Fig.6.9 by
the solid curve. The further decrease of the temperature until 200 MeV at
4 fm/c is due to the fact that work is done by the pressure and also due
to the ongoing production of gluons. For simple free streaming the effective
temperature would be constant over the whole time, just like the case in the
simulation with only elastic collisions (dotted curves). To characterize the time
dependence of the temperature we assume that the temperature behaves like
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Figure 6.9: Time evolution of the effective temperature (upper panel) and
the exponent describing the cooling of the system (lower panel) in the central
region. The curves are arranged in the same way as in Fig.6.8.

T ~ 1/t* with a time dependent exponent. «(t) is shown in the lower panel of
Fig.6.9 by the solid curve. We see that the exponent is almost constant, about
0.6, at late times and is roughly double the size of 1/3, which one expects for
an ideal, one dimensional boost-invariant expansion. This is mainly due to the
further production of gluons and also might indicate the buildup of transverse
flow. In the simulation without ggg — gg collisions the temperature deceases
the fastest with an exponent of 1 due to stronger particle production. Since
detailed balance is ignored in this case, the gluon fugacity, depicted in Fig.6.10
in a way similar as in chapter 5 (see eq.(5.17)), becomes much higher than 1
at late times. This demonstrates the importance of the back reactions. Those
are absolutely essential for chemical equilibration. For the simulation with full
dynamics chemical equilibration is still not fully achieved until 4 fm/c.

We conclude that starting from a special, yet highly nonthermal initial
condition a gluon plasma, even not fully thermalized, may form at 1 fm/c
in a central Au+Au collision at RHIC energy and its ongoing evolution in
bulk behaves (quasi-)hydrodynamically. Of course, this reasoning will depend
crucially on the initial conditions chosen. If we would only double the number
of initial gluons, thermalization should occur faster. Indeed, our initial gluon
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Figure 6.10: Time evolution of the gluon fugacity extracted in the central
region. The curves are arranged in the same way as in Fig.6.8.

number is lower compared to other studies in the literature [MG 02, EKRT 00],
where a factor of 4 — 6 more initial gluons is assumed. This will then clearly
imply that full gluon equilibration within a consistent pQCD approach can
have a full realization at RHIC. A detailed study, addressing various initial
conditions for the gluon number, i.e. different forms of minijet productions or
color glass condensate initial conditions, will be presented in the later sections.

Fig.6.11 shows the time evolution of the cross sections which are first cal-
culated as ensemble averages over all the possible doublets in a cell and then
averaged over all the cells within the central region. As < v, >= 1 in the
central region, the collision rates of the gg <> gg and gg — ggg are obtained
by R =n < v,q0 >~ n < o > respectively. We have compared these collision
rates with those counted directly from the simulation and have seen nice agree-
ments. The increase in time of the two cross sections is due to the fact that
the cross sections are inversely proportional to the screening mass squared and
the latter is proportional to the temperature squared. One sees that g4, 44 is
always larger than o4y, 440. For kinetic equilibration, however, not only a large
total cross section but also large scattering angle are essential for a possible
fast thermalization. In other word, the transport cross section [MG 02]

o = / do $in? Oy, = / Ao dcé—“ §in? Oy, 6.7)

is the key quantity controlling the ongoing of the equilibration by given particle
density n. 6., denotes the scattering angle in the center of mass frame of the
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Figure 6.11: Time evolution of the averaged cross section and the averaged
transport cross section in the central region. The solid and dashed (short
dashed and short dotted) curves depict the averaged cross sections (transport
cross sections) for the gg — gg and gg — ggg processes respectively.

colliding particles. For a gg — ggg process each outgoing particle has its own
scattering angle. In this case we modify (6.7) by (sin® 6, + sin® 6, + sin?63)/3
instead of sin® f,,,. The averaged transport cross sections are shown in Fig.6.11
by the short dashed and short dotted curves. Taking into account that at late
times the collision rate of the ggg — ¢gg is comparable with the rate of the
g9 — ggg process, one realizes that the inelastic processes are actually the
dominant processes driving the system to kinetic equilibrium. This represents
an important finding of the investigation.

Following the expression of the differential cross section one knows that the
gluon elastic collisions favour small angle scatterings. That is the reason why
the parton evolution simulated with only pQCD elasctic interactions resembles
a free streaming, although the collision rate in this case is actually not small.
The transport cross sections in Fig.6.11 indicate that the angular distribution
of the inelastic collisions is more moderate than that of the elastic collisions.
As can be realized from the differential cross sections expressed in Appendix
C and D, the angular distribution of the elastic scatterings depends on m? /s,
while it depends on m3,/s and A;4/s for the inelastic collisions. In Fig.6.12 we
depict the angular distributions of the gg — gg and gg — ggg scatterings for
the parameters m% /s = 0.05 and \;/s = 4. The distributions are calculated
according to the differential cross sections. The two parameters are chosen
from an intermediate situation within the simulation. We see that while the
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Figure 6.12: Angular distribution of the scattering processes gg — gg (solid
curve) and gg — ggg for a representative situation during the gluon evolution.
03 denotes the scattering angle of the radiated gluon and its radiation partner
has the angle 6. The distributions are computed with the parameters m?2 /s =
0.05 and A,4/s = 4 extracted in the central region at an intermediate time
during the evolution.

angular distribution of the elastic collisions clearly shows forward scatterings
as expected, the angular distribution of the inelastic collisions is surprisingly
almost isotropic. The reason for this behaviour is due to the effective LPM
cutoff being implemented. For a larger A\;y/s the gg <> ggg processes would
also favour the more the small angle scatterings. Notice that f3 denotes the
angle of the radiated gluon and thus possesses also a cutoff in its distribution
due to the incorporation of the LPM suppression of low momentum gluon
emissions.

We note that when comparing the cross sections calculated in thermal
equilibrium (see Fig.5.1), the cross sections 04,4y and 04444, extracted from
the dynamical runs are 2 — 5 times larger at later times. This is because
first s had been fixed to 0.3 in Fig. 5.1 and in the cascade simulation the
running coupling is computed according to (6.2). In Fig.6.13 we depict the
ensemble averaged running coupling < o, > extracted within the central region
during the gluon evolution. By the averaging only possible collisions are taken
into account. Since gg — ggg collisions with small s are often kinematically
forbidden due to the LPM effect, the averaged running coupling for gg — ggg
process is smaller than that for elastic process. For both cases it turns out that
< s > increases almost linearly in time from 0.2 at 0.2 fm/c to 0.87 (elastic)



90 Chapter 6. Kinetic and chemical equilibration at RHIC

0-9 T T T T T T T T T T T T T T
08 ——gg—>gg
0.7L ----99->ggg ]

0.6
a 05 I
04
0.3
0.2 ]

01 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .
00 05 10 15 20 25 30 35 40
t [fm/c]

Figure 6.13: Time evolution of the averaged running coupling < a; >. The
solid and dashed curves show the results obtained by averaging gg — gg and
gg — ggg processes respectively.

or 0.45 (inelastic), respectively, at 4 fm/c, which is larger than 0.3. Second,
the screening mass is appreciably smaller in the dynamical calculation as the
gluons are not fully saturated in its occupation number. Both effects add up
to the difference.

The time evolution of m?% /as, the gluon screening mass squared over the
running coupling, is depicted in Fig.6.14 by the solid curve. Assuming that
gluons in the central region are in kinetic equilibrium, one has

2
b - =), 12 (6.8)

Qg 7

according to (5.6) with ny = 0. Using the extracted gluon fugacity (Fig.6.10)
and temperature (Fig.6.9) we depict (6.8) in Fig.6.14 to make a comparison
with the result from the cascade simulation. One expects agreement of two
curves from some time when the gluon system in the central region reaches
kinetic equilibrium. However, the figure shows that the two curves are always
parallel and the value of m? /a; is 30 per cent smaller than expected. This is
due to the assumption, given at the beginning of this section, that m% /a; is
computed by an average over a large region with a transverse radius of 6 fm.
As mentioned, this assumption underestimates m? /a,. An improvement will
be given later in section 6.4.

As seen in the previous chapter, simple rate equations can also success-
fully describe the chemical equilibration of partons in a fixed box. Therefore
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Figure 6.14: The time evolution of m%/a,. The solid curve shows the result
from the cascade simulation, while the dashed curve shows the result when
kinetic equilibrium is assumed.

it is interesting to solve rate equations for partons in a Au+Au collision at
RHIC and then to compare the chemical equilibration with our cascade re-
sults. Such calculations have been performed by Biro et al. in [BDMTW 93].
In Fig.6.15 we show the scaled collision rates versus the gluon fugacity. The
solid curves show the results extracted in the central region from the cascade
simulation for gg — gg, g9 — ggg and ggg — gg process from upper to lowest
curves. The dotted curves show the results from a similar calculation as in
[BDMTW 93]. As mentioned in Appendix D, the calculation of the cross sec-
tion 049449 in [BDMTW 93] is not absolute correct. The lower dotted curve
in Fig.6.15 depicts the exact result after corrections. There is small difference
when comparing with the original plot, Fig.2 in [BDMTW 93]. (Note that
R3 = Ryg ,490/2 in the reference.) In their calculation the mean free path of
gluon is computed by A;l = Ryg-99 = Ogg—r99 Ng and the LPM effect is modeled
by ©(k,;Af—2coshy). That is different from the modeling in our cascade simu-
lation, where we apply © (k1 Ag—coshy) and A" = Ryg g0+ Rgg 999+ Rggg-sgg-
Comparing the collision rates from the cascade simulation we realize that
Rgg 549 1s always larger than Rgg g9 + Rggg9—¢g and thus the gluon emission
is more suppressed in the analysis by Biro et al. than in our investigation.
This is the first reason for the difference between the gg — ggg collision rates.
Second, the running coupling is set to be 0.3 in [BDMTW 93|, which is smaller
than that in the cascade simulation (see Fig.6.13). Furthermore, as shown in
Fig.6.14, the screening mass calculated dynamically in the simulation is smaller
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Figure 6.15: The scaled collision rates versus the gluon fugacity. The solid
curves show the results for gg — gg, g9 — ggg and ggg — gg process (from
upper to lowest curves), extracted in the central region from the cascade sim-
ulation. The dotted curves show the results for g¢g — gg and gg — ggg
process (from upper to lower curves), obtianed from a similar calculation as in
[BDMTW 93].

than that should be due to the assumption. The three effects lead to the differ-
ences between the solid and dotted curves in Fig.6.15. It is then obvious that
the chemical equilibration will go faster in our simulation than in the analysis
by Biro et al.. Note that the initial values for the temperature and fugacity
in [BDMTW 93] are T = 0.57 GeV and Ay = 0.09 at t;5, = 0.31 fm/c and in
our calculation the temperature decreases to the value of 0.57 GeV at about
t = 0.8 fm/c and at this time the fugacity reaches a value of 0.15 (see Fig.6.9
and Fig.6.10). These values are not very different. However, when comparing
the time evolution of the gluon fugacity shown in Fig.3 in [BDMTW 93] with
the cascade result depicted in Fig.6.10, one finds a difference of a factor of 3.
This value is too large to be explained by the different collision rates alone.
The second reason is that also gg <> qq processes are included in the analysis
employing the rate equations, while quark dynamics has not been considered
in the present cascade simulations. Finally, the relation € ~ 7=%3 used in
[BDMTW 93|, which follows the assumption of one dimensional hydrodynam-
ical expansion, is only approximately established in the cascade simulation (see
Fig.6.5).
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Transverse Evolution

In the previous subsection we have seen that in the central region thermaliza-
tion is achieved during the expansion. It is therefore reasonable to expect that
thermalization would also be established within a larger transverse region be-
yond the central region and a transverse flow, as a hydrodynamical behaviour,
would be then built up at some time during the parton evolution. To give def-
inite answers for such qualitative considerations we investigate now the trans-
verse evolution of gluons in the central unit space-time rapidity n € [—0.5 : 0.5].
Results presented below are obtained from the simulations, which have already
been performed for the investigations in the previous subsection. Moreover,
until now we have assumed that in a central Au+Au collision at RHIC energy
the initial expansion of gluons is mainly longitudinal and thus the dependence
of the setups for calculating the screening mass and velocities of a moving space
element on a possible transverse flow is completely neglected in the simulations.
In this subsection we will inspect whether this assumption is justified.

Fig.6.16 shows the transverse profiles of the gluon number at different times
during the expansion by the solid curves. The dashed curves depict the results
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Figure 6.16: Transverse profile of the gluon number. The solid curves, from
that with smallest width to that with largest width, depict the results from
the simulation including both elastic and inelastic pQCD gluonic interactions
at the times 0.2, 0.5, 1.0, 2.0, 3.0 and 4.0 fm/c respectively. The dashed lines
depict the results from the simulation with only the elastic collisions at 2.0,
3.0 and 4.0 fm/c.

from the simulation with only elastic collisions. One sees that until 1 fm/c
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the transverse profile does not change very much. The system seems to be
transversely at rest in the initial stage. Thereafter the profile becomes broader
and broader with progressing time, which indicates the ongoing transverse
expansion. One can also recognize that in the simulation with only the elastic
collisions the gluon system expands stronger.

To study the collective motion of a medium, one has to first determine the
space elements, for which velocities will then be calculated. In the central unit
space-time rapidity region we divide the transverse plan into rings due to the
symmetry of the expansion: the central ring has a radius of R; = 1.5 fm and
the distance between the other neighboring rings is set to be AR =1 fm. The
transverse velocity vy in an individual ring is computed as the mean radial
velocity of gluons in the locally fixed ring. Fig.6.17 shows the time evolution
of the transverse velocities during the expansion. The lines, from the lowest
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Figure 6.17: Time evolution of the transverse velocity within the central unit
space-time rapidity. The lines, from the lowest to the uppermost, depict the
transverse velocities extracted in the central to the outermost ring, respectively.
The central ring has a radius of R; = 1.5 fm and the distance between the
other neighboring rings is set to be AR = 1 fm. The solid lines denote the
results from the simulation including both elastic and inelastic pQCD gluonic
interactions, while the dashed lines denote the results from the simulation with
only the elastic collisions.

to the uppermost, depict the transverse velocities extracted in the central
to the outermost ring respectively. The solid lines denote the results from
the simulation including both elastic and inelastic pQCD gluonic interactions,
while the dashed lines denote the results from the simulation with only the
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elastic collisions. We see that the transverse velocities, starting from zero due
to the initially random sampling for the transverse momentum of the particles,
increase during the expansion. According to the analyses in the central region
in the previous subsection, one can definitely conclude that the time evolution
of the transverse velocities in the simulation including only the elastic collisions
just results from the free streaming of the particles and cannot indicate any
hydrodynamical flow, since no pressure exists in this case. Compared to that,
the transverse expansion of gluons in the simulation with full dynamics, except
the very outer region, seems to be much ‘viscouser’, which is also observed in
Fig.6.16. It shows that if the transverse flow is being built up during the
evolution, it will take some time. Whether this behaviour really results from
the hydrodynamics needs detailed investigation via comparisons between ideal
two dimensional hydrodynamical expansion and free streaming. This is beyond
the scope of the present study. On the other hand, since the hydrodynamical
behaviour has been seen in the central region as the continuous steepening
in time of the nearly exponential py spectra, it is reasonable to believe that
hydrodynamical flow has been built up in the transverse direction. We will
confirm this consideration later. From Fig.6.17 one can also recognize that for
the transverse region with radius R < 4 fm the flow is actually not big.

To study thermalization in the transverse direction beyond the central re-
gion, one has to go to the co-moving frame of the individual ring. The number
and energy density in the rings can be formulated as Lorentz scalars according
to

n=U'N,, e=UT"U,, (6.9)

and can be calculated in any frame. N* and T"" denote, respectively, the par-
ticle four-flow and the energy-momentum tensor. U* is the four-velocity of a
ring and defined as U* = N*/{/N¥N,. Employing the expressions (F.7) in Ap-
pendix F we extract U*, N* and T"” from the simulation and then calculate n
and e. For instance, we obtain U* = (1, v7,0)/4/1 — v2 and n = /1 — vZ N/V
(N being the gluon number in the ring with a volume of V'), which one can
also receive by simple Lorentz transformation. Fig.6.18 shows the local number
and energy densities versus the position of the rings at different times during
the parton evolution. The results are obtained from the simulation with full
gluonic interactions. We see that within the radius of the gold nucleus (zr < 6
fm) the densities decrease for the progressing time due to the 3D expansion.
Comparing the number densities to the energy densities, one can recognize
that the energy densities decrease stronger than the number densities, which
indicates the dissipation done by the pressure. Beyond the radius of the nu-
cleus we see increasing number densities and also increasing energy densities
at late times as well due to the transverse expansion. When assuming that the
confinement-deconfinement transition occurs roughly at € ~ 1 GeVfm™, then
the partons out of the central region will hadronize gradually before the final
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Figure 6.18: Local number and energy densities versus the position of the rings
at the times 0.2, 0.5, 1.0, 2.0, 3.0 and 4.0 fm/c.

time 4 fm/c, as seen in the right part of Fig.6.18. Their interactions thereafter
should be hadronic. However, the phenomenon of hadronization has not been
implemented in the present study. In the simulations presented the particles
interact still via the partonic cross sections, although they are in the region
with energy density lower than 1 GeVfm 2.

In Fig.6.19 we show the collision rates extracted in the rings at different
times. Comparing the collision rates Ry, 4, for gg — gg process with the
number densities (left part of Fig.6.18), we see the almost same patterns,
which indicates that the cross section for gg — ¢g collision does not vary
much in the transverse plan. This is in fact true because m?,/a; is assumed to
be constant everywhere in the transverse plan. In contrast, the collision rates
Rgg-5499 for gg — ggg process are even larger at lower particle densities. That
is mainly due to the LPM effect taken in the calculation of the cross section
for g9 — ggg process: Where the mean free path of gluons is large or the
collision rate is small (note that Ryy,4, is the dominant part), the probability
for a gg — ggg process becomes large. The complicated pattern in the right
part of Fig.6.19 shows the nontrival, non-linear behaviour of gluon radiation
with the LPM effect.

Since, as realized in the previous subsection, the inelastic collisions are
dominant processes for thermalization, the results of the collision rates in
Fig.6.19 indicate that thermalization should be also achieved in the region
within z7 < 5 fm. In Fig.6.20 we show the momentum anisotropy (left panel)
and the gluon fugacity (right panel) versus the transverse position of the rings
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Figure 6.19: Collision rates for gg — gg and gg — ggg processes in the rings
at the times 0.2, 0.5, 1.0, 2.0, 3.0 and 4.0 fm/c.

at different times. The transverse momenta of particles in the rings are now
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Figure 6.20: Momentum anisotropy and gluon fugacity versus position of the
locally fixed rings at the times ¢ = 0.2, 0.5 (0.7 in left panel), 1.0, 2.0, 3.0 and
4.0 fm/c.

obtained by Lorentz transformation with corresponding transverse velocity.
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From the left panel of Fig.6.20 one sees that the momentum anisotropies in all
rings start with very small values at the beginning, reach maxima at about 0.7
fm/c and then decrease below 1 at the final time of 4 fm/c. It seems that at
the end kinetic equilibration is achieved even in the outermost ring at x7 =7
fm. This can not be explained intuitively by the argument via the collision
rate. We therefore inspect, and show in Fig.6.21, spectra of the transverse
momentum in the ring positioned at z7 = 5 fm, which corresponds to the edge
of the gold nucleus, and in the outermost ring at 7 = 7 fm. One can clearly

4.5 fm < X, <5.5 fm

1/N dN/p,dp dn| _, [GeV ]

Figure 6.21: Transverse momentum spectrum in the transverse rings at xp =5
fm (left panel) and at zr = 7 fm (right panel) at different times (¢ = 0.2, 0.5,
1.0, 2.0, 3.0 and 4.0 from most-upper to lowest histogram).

recognize that the spectra in the ring at xr = 5 fm resemble those shown
in Fig.6.6 for the central region, except for slight deviation from the straight
line at higher pr. This shows that kinetic equilibration is indeed achieved in
the transverse region within a radius of a gold nucleus. When viewing the left
panel of Fig.6.20 again, we realize that the anisotropies for the rings below 5 fm
(including 5 fm) possess almost the same values at each stage of the expansion,
which indicates that the large portion of the gluon matter becomes kinetically
equilibrated at the same time. The spectra in the outermost ring, however,
do not show kinetic equilibration and hydrodynamical behaviour. We clearly
see the shift of the initial spectrum at the early times (0.2, 0.5 and 1.0 fm/c)
simply due to the Lorentz boost. Particles with high pr stream out of the
ring and this leads to the further decrease of the spectrum at high py. In the
right panel of Fig.6.20 we depict the gluon fugacities versus the position of the
rings at different times. We see the same characteristic as for kinetic equili-
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bration: Chemical equilibration occurs simultaneously at about 3 fm/c within
the region of 0 < zy < 4 — 5 fm and in contrast gluons are very undersatu-
rated in the outermost region. Different from kinetic equilibration for which
the collision rates per particle is responsible, chemical equilibration depends
on the absolute net production events. Despite the decreasing profile of the
number density in Fig.6.18, the inceasing profile of Ry, 44 until 5 fm, shown
in Fig.6.19, gives the reason for the simultaneous chemical equilibration in a
large transverse region. The temperature in the rings, depicted in Fig.6.22,
shows a decreasing profile from the cental to outer region (0 < zy < 5 fm) of
the thermalized matter. This resembles the profile of the gluon number density
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Figure 6.22: Effective temperature versus position of the rings at different
times. Symbols are arranged in the same way as in the right panel of Fig.6.20.

(see Fig.6.18).

Finally, we show in Fig.6.23 the time evolution of the transverse energy per
unit momentum rapidity at midrapidity for the three cases compared also in
Fig.6.5. We see that the transverse energy decreases in the simulation includ-
ing pQCD elastic and inelastic interactions and in the simulation including
only elastic and gg — ggg scatterings. The unaltered behaviour of the trans-
verse energy in the simulation including only pQCD elastic scatterings indi-
cates again that in this case the parton evolution resembles free streaming. In
contrast to the cooling of the temperature, to which the production of gluons
also contributes, the decrease of the transverse energy within a unit rapidity
is purely due to the longitudinal work done by the pressure! This is the most
pronounced indication for nearly ideal hydrodynamical behaviour. Expected
from the Bjorken-type ideal hydrodynamics, where one assumes that the colli-
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Figure 6.23: Time evolution of the transverse energy per unit momentum
rapidity at midrapidity. The curves are arranged in the same way as in Fig.6.5.

sion rate is so high that the mean free path of gluons is much smaller than the
macroscopical scale of length, the transverse energy behaves like Fp ~ ¢=1/3.
When inspecting again the collision rates in Fig.6.19, the condition for a pos-
sible ideal hydrodynamical motion is only perfectly fulfilled at early times. At
the late stage, the collision rate becomes small and the expansion should then
be described by the viscous hydrodynamics. Therefore a smaller amount of lon-
gitudinal work is performed. This explains the slowdown of the decrease of the
transverse energy with progressing time. Moreover, as stated in [KHHET 01],
the transverse flow will lead to an enhancement of the transverse energy. This,
however, cannot be recognized straightforwardly in Fig.6.23.

Jet-Quenching

Jet-quenching is one of the most prominent suggested signatures for an exis-
tance of a deconfined partonic matter at the early stage of a heavy ion collision
[G 90]. Measurement on the py spectrum of hadrons at RHIC showed a signif-
icant suppression of the spectrum at high pr, compared with that obtained by
the adding up independent events of binary nucleon-nucleon collisions. This
indicates the formation of a medium, across which particles lose their energy
due to radiations. However, hadronization could occur within the fireball, so
that high pr hadrons might lose their energy further when acrossing the dense
hadron medium [GGX 03|. Applying the present parton cascade we can anal-
yse the particle pr suppression in the parton phase. In Fig.6.24 we present
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the pr spectra at different times within the unit central momentum rapidity
integrated over the whole transverse region. Comparing the spectra in Fig.6.24
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Figure 6.24: Transverse momentum spectrum in the unit central momentum
rapidity (y € [—0.5 : 0.5] at different times (¢ = 0.2, 0.5, 1.0, 2.0, 3.0 and 4.0
fm/c from second upper to lowest histogram). The most-upper and boldfaced
histogram with a lower cutoff at pr = 2 GeV denotes the spectrum of the
primary gluons (minijets).

with those in Fig.6.6, we see that there is no full global thermalization over
whole transverse region until 4 fm/c. Also the buildup of transverse flow should
contribute. At least for the lower momenta we see an exponential shape and
a clear steepening at the later stages. Part of the minijet spectra, of course,
survives as those gluons might escape directly from the outer region with-
out interactions and thus becomes unaltered at the later times. Fig.6.24 also
demonstrates the potential energy loss of gluons due to the Bremsstrahlung
process. The new developed parton cascade offers an alternative possibility to
investigate the phenomenon of the jet quenching in a more quantitative way
based on a full 3 + 1 dimensional treatment of the geometry. To be able to
compare the numerical results with the experimental data one has to model
the mechanism of the hadronization and include further hadronic interactions.
A detailed analysis is again one of possible future projects. However, one can
make an estimate based on the result depicted in Fig.6.24. The ratio of the
final spectrum to the primary one manifests the amount of the energy loss in
the partonic phase. From Fig.6.24 one can recognize a ratio of about 0.1 at
higher pr. When including further energy loss in the hadron gas, the ratio
will be even smaller. However, the experiments at RHIC [JQ 03] shows that
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the measured ratio of the final hadronic py spectrum to the scaled one from
a nucleon-nucleon collision is 0.2 — 0.3 at high py. The reason of the stronger
energy loss compared to the data is mainly due to the higher collision rate of
gg <> ggg processes in the simulation, especially in the outer transverse region
where pQCD interactions still exist, although the density might be so small
that the hadronization should occur there and partonic processes are no longer
valid (see Fig.6.18 and Fig.6.19). Note that the gg — gg processes contribute
only slightly to the Jet-Quenching, since the scattering angle in such processes
is always small.

6.2.3 Summary and Discussions

We now summarize the findings obtained from the first simulations for central
Au+Au collisions at RHIC energy employing the new 3+1 dimensional parton
cascade. The initial conditions are assumed to be generated by independent
minijets with pr > py = 2 GeV. With this choice it is demonstrated that
kinetic equilibration is driven mainly by the inelastic processes and is achieved
on a scale of 1 fm/c in the central space-time rapidity region and overall
within the transverse extension of the gold nucleus. The further evolution
of the expanding gluonic matter then shows almost an ideal hydrodynamical
behaviour. Our results also indicate the buildup of a hydrodynamical flow in
the transverse direction by inspecting the transverse velocity. In addition, full
chemical equilibration of the gluons follows on a longer timescale of about 3
fm/c.
There are still some uncertainties to be discussed.

1.) In the implementation of the space-time production of minijets, it is as-
sumed that partons become immediately on-shell and thus interactive when
the (semi-)hard nucleon-nucleon collisions occur. Therefore, during the head-
on-head overlapping of two nuclei produced partons with larger momentum
rapidity (or larger longitudinal velocity) are more or less stopped by partons
with smaller rapidity. The further expansion of the parton system resembles
then the Landau-type expansion in which particles are extremely stopped as
that the whole system is first at rest after the overlapping. On the other hand,
the Bjorken-type expansion is the most assumed one, in which at time ¢ each
piece of the system moves with a velocity of z/t, where z denotes the position
of the individual piece. One can introduce an additional formation time for
every minijets to model the off-shell propagation of the freed partons. This will
change the initial situation to be similar as for the Bjorken-type expansion.
Whether the inclusion of the formation time for the initial partons may affect
our main findings, will be answered in section 6.3 by comparisons between
results from numerical simulations with and without the formation time.

2.) At the beginning of this section we have assumed that there is no trans-
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verse flow for the first few fm/c of the expansion. Based on this assumption we
made computation for the screening mass within a large transverse region and
for the collision rates ignoring the transverse velocity of the considered cell.
However, as the cascade results showed, the transverse flow is actually built
up during the first 4 fm/c. The ignoring of the transverse flow leads first to
an underestimated screening mass in the central region, as verified in Fig.6.14,
and an overestimate for the outer transverse region. Therefore, the rate of the
g9 — gg process should be smaller in the central region and larger in the outer
region when compared with Fig.6.19. Second, all rates have to be amplified by
the additional transverse boost. Note that it is difficult to make an estimate
for the rate of the gg <> ggg processes due to the complicated dependence on
the LPM effect. In section 6.4 we will correct the calculation for the screening
mass and the collision rates and present results from the second run of the
cascade simulation.

3.) In the present simulation we have set the cut-off parameter for the initial
minijets to be pg = 2 GeV. This is a very conservative assumption. A smaller
value of py as used in [EKRT 00] would lead to 4 — 6 times larger initial parton
number and thus faster thermalization. In section 6.5 we will investigate in
more detail the timescales of thermalization in dependence on py applying the
second setup of the parton cascade presented in section 6.4. The final trans-
verse energy per unit rapidity will be compared with RHIC data to manifest
the appropriate value of py. In addition, we will briefly discuss thermalization
of gluons with the color glass condensate as the initial condition in section 6.6.

4.) The pQCD interactions with quarks have not been included in the present
simulation. We leave this as a future project.

6.3 Result II: inclusion of formation time

In this section we will first show results from a similar simulation as performed
in the previous section, but now including the formation time for the initial
minijets. The implementation of the formation time has already been outlined
at the end of chapter 4: The produced partons are assumed to propagate freely
without interactions within the time span Aty = coshy A7y ~ coshy - 1/pr.
Secondly, in subsection 6.3.2 we present simulations including only elastic col-
lisions with isotropic, instead of pQCD based, and large cross section. We
compare the results with those already obtained employing physically moti-
vated pQCD cross sections to demonstrate the importance of including the
inelastic gg <+ ggg interactions. Furthermore, we discuss also for this case the
differences between results from simulations with and without the formation
time for the initial partons.
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6.3.1 Simulation with pQCD motivated cross sections

In Fig.6.25 we compare the time evolutions of the gluon number density, the
energy density and the temperature for the central region, extracted from the
simulations with and without the formation time for the initial partons. The
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Figure 6.25: Time evolution of the gluon number density, the energy density
and the temperature for the central region. The solid (dotted) lines depict the
results extracted from the simulation with (without) the formation time.

latter have been already shown in Fig.6.5 and Fig.6.9 in the previous section.
Remember that the central region is defined as a cylinder with € [—0.5 : 0.5]
and zr < 1.5 fm. We have to note that the results depicted in Fig.6.25
denote the amounts for the on-shell gluons at respective time. The still off-
shell propagating gluons are not taken into account. The comparisons show
that the implementation of the formation time for the initial gluons strongly
reduces the densities at early times: n ~ 20 fm™ and € ~ 50 GeV fm™ before
0.3 fm/c. After that time the results for the number and energy density with
and without the formation time are nearly identical throughout the subsequent
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evolution. It shows that even if the densities are very high at very early times
with no formation time, interactions are not strong enough to fully stop the
gluons with high momentum rapidity. These gluons rather stream freely within
the first 0.3 — 0.4 fm/c. When including the formation time for the initial
minijets, the gluon number is highly undersaturated at early times. This,
on the other hand, leads to a much smaller screening mass and thus larger
cross sections. The results of the collision rates show finally that in the case
with the formation time we actually obtain an enhanced collision rate for the
elastic process and almost the same collision rates for gg <+ ggg processes,
when compared to those from the simulation without the formation time. It
is therefore clear that the inclusion of the formation time does not slow down
kinetic and also chemical equilibration too much. We do not show the results
for the pr spectra, the momentum anisotropy and the gluon fugacity. They
are almost identical as the results from the simulation without the formation
time, except for some differences at the very early times. These, however, do
not affect our findings for thermalization in the previous section.

6.3.2 Simulation with isotropic, large elastic cross sec-
tion

In the previous section we have already seen that elastic collisions make smaller
contribution to thermalization compared to inelastic collisions. In principle,
kinetic equilibration can be achieved by elastic scatterings alone, if ad hoc the
transport cross section is chosen sufficiently large. To demonstrate this we
carry out simulations with isotropic 2 <+ 2 collisions and a large and constant
total cross section of 99 = 30 mb. The corresponding transport cross section
is thus 20 mb. Such extreme conditions of an assumed large opacity in 2 < 2
reactions have been used in [MG 02] to study the possible buildup of elliptic
flow. We set the test particle number to be Ny, = 240 in the simulations. All
results shown below are averaged over 30 independent realizations.

Fig.6.26 depicts the momentum rapidity distribution of the gluon number
at different times from the simulations with isotropic elastic collisions and
without (left panel) and with (right panel) the formation time. One can clearly
see that in the simulation without the formation time gluons are strongly,
but not fully, stopped during the time span of the overlapping of the two
nuclei, when comparing the distribution at ¢ = 0.2 fim/c with that for the
primary minijets. This initial stopping slows down the sequent longitudinal
expansion and the energy transport outwards. The latter can be recognized by
comparing the distributions at the final time ¢ = 4.0 fm/c, obtained from the
two simulations: Without the formation time the plateau of the distribution
possesses a larger value and a smaller width. The still plateau shape of the
final distribution in the simulation without the formation time indicates that
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Figure 6.26: Gluon number distribution versus momentum rapidity at the time
t =0.2, 0.5, 1.0, 2.0, 3.0 and 4.0 fm/c. The thin solid curve in the left panel
depicts the distribution of the primary produced gluons (minijets).

despite the stopping the early situation of the minijets resembles that for a
Bjorken expansion. On the other hand, it shows that the 30 mb cross section
is still not large enough to make a condition for a perfect Landau expansion.

However, the choice of the 30 mb should be sufficient for a complete ki-
netic equilibration. Fig.6.27 shows the pr spectra in the central region at
different times. Indeed we observe fast equilibration. The spectra at 0.5 fm/c
in both cases are thermal. At the later times the distributions become more
and more steeper, which indicates the cooling down of the system due to
(quasi-)hydrodynamical expansion. Moreover, the spectrum, extracted from
the simulation with no formation time, becomes exponential already at 0.2
fm/c, and the slopes of the distributions are always smaller than those ob-
tained from the simulation with the formation time. These show that the
initial stopping makes kinetic equilibration faster and leads to a larger deposit
of energy in the local central region. The same can also be seen from the time
evolution of the temperature in the central region, depicted in Fig.6.28. In
the simulation with the formation time the exponent describing the cooling of
the temperature, a(t), is nearly constant from 1 to 3 fm/c and meets exactly
the value of the ideal Bjorken-type hydrodynamical expansion, 1/3. In the
simulation with no formation time «(t) is slightly higher. The difference is
due to the fact that earlier equilibration builds up earlier transverse flow. In
Fig.6.29 we show the time evolution of the transverse velocities of the local
rings, defined in the previous section (see Fig.6.17). Indeed the transverse flow
in the simulation without the formation time is stronger during the expansion.
Futhermore, the results depicted in Fig.6.29 are almost identical with those
shown in Fig.6.17, obtained from the simulation with pQCD elastic and in-
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Figure 6.27: Transverse momentum spectrum in the central region extracted
from the simulation with isotropic elastic scatterings and a large cross section
of 0 = 30 mb at different times (¢ = 0.2, 0.5, 1.0, 2.0, 3.0 and 4.0 fm/c from
second upper to lowest histogram). The most-upper and boldfaced histogram
with a lower cutoff at pr = 2 GeV denotes the spectrum of the primary gluons
(minijets). Left (right) panel: spectra from the simulation without (with) the
formation time.

elastic interactions. This manifests that both pathes, pQCD or isotropic and
large cross section, resemble (quasi-)hydrodynamical behaviour.

All the results shown above demonstrate that for the given extreme con-
ditions the gluon system equilibrates indeed rapidly and then expands nearly
hydrodynamically according to the ideal Bjorken scenario. However, of course,
the constant and isotropic cross section can not be further motivated. In ad-
dition, following that particular evolution, the system would stay for a rather
long time in a hot, but very dilute and undersaturated (in its gluon number)
deconfined state (see Fig. 6.26). Contrary, in the more realistic situation with
inelastic collisions included, the temperature drops much more dramatically
(compare Fig.6.9 and Fig.6.28) and the system would stay only until ¢ ~ 4
fm/c in a pure deconfined state, being then (nearly) fully saturated in the
gluonic degrees of freedom, and will then hadronize.

6.4 Result III: with new setup

Now we turn to the second point in the discussions given at the end of section
6.2. There we pointed out that it turns out from the first simulations that the
determination for an averaged screening mass over a large transverse region is
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Figure 6.28: Time evolution of the effective temperature (upper panel) and
the exponent describing the cooling of the system (lower panel) in the cen-
tral region. The solid (dashed) curves depict the results obtained from the
simulations without (with) the formation time.

a rather crude choice. One should, in principle, take the locality of the screen-
ing mass and the transverse flow into account. On the other hand, a change
in screening mass would modify the cross sections and might thus influence
the onset of thermalization. In the following we introduce improvements con-
cerning local incorporation of the screening mass and the transverse flow and
investigate again thermalization of gluons by performing new simulations.

To be specific we divide transverse plan in each Az-bin into rings: from
center to outer the first ring has a region of 0 < zy < 1.5 fm (zr being
the transverse radius), and the next rings have a width of 1 fm in transverse
radius. For instance, the second ring possesses a region of 1.5 fm < xp < 2.5
fm. The rings are regarded as local region, where, as the first improvement,
the screening mass will be evaluated, i.e., the volume V in (6.1) denotes now
the volume of a ring and the sum runs over all test particles in the ring. We
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Figure 6.29: Time evolution of the transverse velocity within the central unit
space-time rapidity. The lines are arranged as in Fig.6.17.

notice that such ring structure is based on the symmetry of central collisions
and is not valid any more for non-central collisions. The choice for the width
of rings depends on the locality on the one hand and on the required statistics
on the other hand. Secondly, since local collision rates of all channels, which
will be applied to model the LPM effect by Appy = 1/ Rayi channais I 99 <> 999
processes, are until now evaluated in individual cells, large fluctuations in
Appar arise in cells with small number of test particles. In order to reduce
this fluctuation, we take the averaged value, 1/ < Ry channais >, over all the
cells within individual rings. Moreover, transverse velocities of rings, vy, are
taken into account for calculating AT = Aty/1 — v2 — v7 in (6.3) and (6.4). In
future investigations for non-central collisions, one has to find a clever way to
calculate Ay pps locally without large numerical fluctuations.

With the new and more realistic setup we perform again simulations for
parton evolution in central Au+Au collisions at RHIC energy. Formation time
for the initial partons is included. Cell configuration is the same as for the
first simulations. The number of test particles is still set to be N;.,; = 60. All
results below are obtained by averaging over 30 independent realizations.

6.4.1 Screening mass

Fig.6.30 shows the local screening mass squared divided by the running cou-
pling, averaged in the rings within the central unit space-time rapidity region
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(n € [-0.5 : 0.5]) from the new simulation, versus the position of the rings.
Different symbols denote the times at which the quantity is extracted. We see
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Figure 6.30: Averaged screenings mass squared over the running coupling
versus the position of the transverse rings at different times. The quantity
is extracted in the rings within the central unit space-time rapidity region
(n € [-0.5:0.5]).

that there is indeed a strong variation of the screening mass in the transverse
direction. Averaging m?% /a; in Fig.6.30 over the region of 0 < zr < 6 fm gives
almost the same values as those evaluated in the first simulations, when com-
pared with Fig.6.14. From Fig.6.30 we also recognize that the time behaviour
of m% /a;, is moderate from the central to the outer region. Remember that in
kinetic equilibrium m?,/a; is proportional to \,7? (see eq. (6.8)) with overall
increasing fugacity A\, and decreasing temperature 7". Therefore, it seems that
the amplification factor of the fugacity in the outer region is larger than that
in the central region due to the initially different gluon occupations.

We compare the screening mass extracted from the simulation with the
analytical one obtained for an assumed kinetically equilibrated gluon plasma,
AgMpe, = Ageis24T?/m (see (6.8)), where T" and A, are achieved in the cor-
responding rings and will be shown later. Such comparison has been made
in Fig.6.14. Fig.6.31 depicts now the ratio of the screening mass squared to
the analytical value. In the left panel we show the time evolution of the ratio
obtained in the central region. We see that the ratio from the new simulation
(solid curve) increases to a maximum of 1.16 at 1 fm/c and then decreases
smoothly to 1.08 at the final time. The bending over at 1 fm/c implies the
onset of the kinetic equilibration. The result from the first simulation (dashed
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Figure 6.31: Left panel: time evolution of the ratio of the screening mass
squared extracted in the central region from the simulations to the analyti-
cal value when assuming a kinetically equilibrated gluon plasma. The solid
(dashed) curve shows the result from the new (first) simulation. In addition,
the dashed curve corresponds Fig.6.14. Right panel: transverse profile of the
ratio extracted within the central unit space-time rapidity interval at the final
time 4 fm/c, compared with the result obtained from the first simulation.

curve) shows almost the same pattern as the new one, but with much smaller
value than 1 due to the average over large transverse region. The transverse
profiles of the ratio within the central unit space-time rapidity interval at the
final time 4 fm/c are depicted in the right panel of Fig.6.31. For the result
from the new simulation (open triangle) the increase in the transverse direc-
tion, from 1 at the central region to 2 at the outermost region, indicates the
slowdown of the kinetic equilibration in the outer region. The power-law be-
haviour of the initial minijets gives rise to a larger final screening mass than the
thermal value, if kinetic equilibrium is not fully achieved at the end. In con-
trast, the increase of the ratio from the first simulation (solid diamond) stems
mainly from the average of the screening mass. It shows that the screening
mass at the very outer region was much overestimated in the first simulation.

6.4.2 Thermalization

The more realistic calculation of the screening mass in local region gives rise
to changes in collision rate, and hence may affect the findings about thermal-
ization of gluons in the first simulation (see section 6.2) of central Au+Au
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collision at RHIC energy.

Fig.6.32 shows the collision rates per particle, extracted in the transverse
rings within the central unit space-time rapidity region, versus the position
of the rings. Different symbols denote the results at different times during
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Figure 6.32: Collision rates per particle versus the position of the tranverse
rings at different times. Left panel: collision rate for elastic scattering. Right
panel: collision rate for inelastic gg — ggg interaction. The collision rates are
extracted in the transverse rings within the central unit space-time rapidity
region.

the expansion. Comparing the collision rates obtained in the new simulation
(Fig.6.32) with those obatined in the first simulation (Fig.6.19), one recognizes
first that Roo has a different profile. At every time stage, the collision rate Ry
in the new simulation possesses almost the same value over large transverse
region. In contrast, the profile of Rys in the first simulation decreases more
strongly in the transverse direction. This difference stems from the different
computation of the screening mass in both simulations: In the first simulation
the screening mass is assumed to be constant transversely. Thus the transverse
profile of Rys corresponds exactly to the profile of the gluon density. In the
new simulation the screening mass is calculated locally also in the transverse
region, which results in a decreasing transverse profile (see Fig.6.30). This
then leads to an increasing profile of the averaged elastic cross section, which
together with the decreasing gluon density gives the final profile shown in the
left panel of Fig.6.32. Ideally, when the system is in kinetic equilibrium, Ry
will be directly proportional to the temperature [BDMTW 93], which has a
much moderater transverse profile than the gluon density (n ~ T?). Second,
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when comparing the absolute values of Ry, in both simulations, we see that at
every time stage the two curves, which connect the values of the collision rate
in the rings and represent the transverse profiles in both simulations, cross
each other. Especially, in the central region (z7 < 1.5 fm), Ry has a smaller
value (a reduction of about 30%) in the new simulation than that in the first
simulation due to a larger screening mass.

The influence on the inelastic collision rate Ry3 due to the change of the
screening mass is complicated and not trivial, since there are two counteracting
contributions to Re3. On the one hand, like Ry, a larger (smaller) screening
mass decreases (increases) the cross section and thus Rp3 as well. On the other
hand, reduced (enhanced) collision rate (Rss is the dominant term) corresponds
to larger (smaller) mean free path of gluon and thus increases (decreases) the
cross section and Roz due to the LPM effect. Comparing Rs3 obtained in
both simulations (Fig.6.19 versus Fig.6.32), we see that Ry3 possesses a flatter
transverse profile in the new simulation than that in the first simulation. The
absolute values of Ry3 within the transverse extension of a Au nucleus are
almost the same in both simulations in the initial expansion stage before 1
fm/c. Thereafter the collision rates, obtained in the new simulation, reduce
20 — 50% at the late times, when compared with those in the first simulation.
This will obviously slow down kinetic and chemical equilibration.

Fig.6.33 depicts the momentum anisotropy (left panel) and the gluon fu-
gacity (right panel) versus the position of the transverse rings, where the quan-
tities are obtained. Different symbols denote the different times, at which the
results are extracted. Comparing the results in both simulations, Fig.6.20
versus F'ig.6.33, we recognize only a slight slowdown of kinetic equilibration
in the new simulation (compare for instance the results at 2 fm/c, open cir-
cles). We have also inspected, but not plotted here, the pr spectra in the local
rings. The same as shown in Fig.6.6 and Fig.6.21, in the central region the
pr spectrum becomes almost exponential at 1 — 2 fm/c and its slope steepens
further with progressing time, which indicates hydrodynamical behaviour of
the expanding gluon system with decreasing temperature. In the outermost
region (z7 = 7 fm), despite the decreasing momentum anisotropy, the final pr
spectrum possesses still a power-law form and implies that an onset of kineic
equilibrium does not occur in the outermost region. We conclude that in spite
of reduced collision rates of about 30% on average at late times, compared with
those obtained in the first simulation, the onset of kinetic equilibrium within
5 fm in transverse plan slows down only slightly at 1 — 2 fm/c. Furthermore,
when comparing the gluon fugacities in Fig.6.20 and Fig.6.33 it turns out that
chemical equilibration also slows down by about 15% in the new simulation.

Not only for gg — ggg process but also for the back reaction, their collision

rates reduce in the new simulation. The net gluon production, however, is
only slightly reduced within the central space-time rapidity region. This can
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Figure 6.33: Momentum anisotropy and gluon fugacity versus position of the
locally fixed rings at the times ¢ = 0.2, 0.5 (0.7 in left panel), 1.0, 2.0, 3.0 and
4.0 fm/c.

be further realized by comparing the number density of gluons in the local
rings, extracted in the first and new simulation (Fig.6.18 versus Fig.6.34, left
panels). We see that especially in the central region, the number densities in
both simulations are almost identical at late times, 2.32 fm™ (first simulation)
vs. 2.14 fm™®(new simulation) at 3 fm/c and 1.54 fm™® vs. 1.49 fm™ at 4
fm/c. Corresponding the slower chemical equilibration in the new simulation,
the effective temperature in the central region should be numerically larger
than that obtained in the first simulation at late times. In addition, this is
consistent with the fact that reduced collisions perform smaller amount of
(longitudinal) work and thus slow down the cooling. The consideration is
verified by comparison between Fig.6.22 and the right panel of Fig.6.34, 0.257
GeV vs. 0.268 GeV at 3 fm/c and 0.215 GeV vs. 0.223 GeV at 4 fm/c in
the central region. We notice that the differences are too small to be read off
from the figures. However, since the defined fugacity (see (5.17) and (5.18))
is proportional to n/T?, therefore the small differences in number density and
temperature result in a larger difference of about 15% in fugacity at the final
time.

We summarize this section: A new setup of the parton cascade has been
made for a more realistic calculation of the screening mass and also taking
the transverse expansion into account. These changes in the setup result in
reduction of the collision rates, especially in the central region, by 20 — 50%
at late times. Surprisingly, this has only slight influence on the onset of ki-
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Figure 6.34: Left panel: number density of gluons in local transverse rings
versus the position of the rings at time 0.2, 0.5, 1.0, 2.0, 3.0 and 4.0 fm/c.
Right panel: effective temperature in local rings versus the position of the
rings at different times.

netic equilibrium, compared with the results in the first simulation. Chemical
equilibration slows down by 15%. In addition, the transverse expansion of
gluons in the central space-time rapidity region, observed (not shown) in the
new simulation, is very similar as that in the first simulation.

From now we regard this new setup including formation time of initial
minijets as the default setup for the parton cascade.

6.5 Result IV: variation of the pr cutoff for
minijets

The findings for thermalization of gluons in heavy ion collisions, presented in
the previous sections for Au+Au collisions at RHIC energy, depend crucially on
the chosen initial conditions of partons. Intuitively, a denser system of gluons
may achieve faster thermalization than a dilute system. In addition, hadron
number and total energy after freezeout also depend on the initial values of
partons. Obtained from the simulation in section 6.4, the gluon number and
the total transverse energy within |y| < 0.5 are, respectively, dN,/dy|,—o = 352
and dEp/dy|y,—o = 272 GeV at the final time 4 fm/c. If the number of final
state hadrons is simply assumed to be equal to that of gluons before hadroniza-
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tion (‘parton-hadron-duality’), i.e. at 4 fm/c, then the charged-particle mul-
tiplicity will be dNg,/dyly=0 = 2/3 x dN,/dyl,—0 = 235. In contrast, the
experiments at RHIC at /s = 200 GeV obtained dN./dy|,—o = 625 £ 55
[BRAHMS 02] and dEr/dy|,—o = 620 & 33 GeV [STAR] for the 5% most cen-
tral events. The differences are factors of more than two. Remember that
in the performed simulations the initial conditions are considered as multiple
minijets with transverse momentum larger than some cutoff py which is as-
sumed to be 2 GeV until now. This has been a rather conservative assumption
for the initial minijets. ‘Soft’ partons with p;y < pg, which are produced by the
non-perturbative part of nucleus-nucleus interaction and also contribute the
entropy production, are completely neglected. These soft partons may stem
from the color glass condensate (CGC) [MV 94] and can also be included in
the transport simulation [BV 01], when they are freed from the color field.
In next section we will perform simulation with initial gluons from CGC. In
principle, one should combine the soft gluons from CGC and hard gluons from
minijets production to give a more realistic initial condition for partons after
a heavy ion collision. The final results after parton evolution with such initial
condition is thus appropriate for comparisons with the experimental data. We
leave this interesting topic for the future investigations. For the moment, p,
is a phenomenological parameter. The number and the transverse energy of
minijets increase when py decreases.

In another idea within a saturation picture of quarks and gluons in phase
space, presented by Eskola et al. [EKRT 00], the authors assumed that per-
forming the computation at a saturation momentum, py = p,q, gives an es-
timate of the effect from all momentum scales, both above and below pq;.
At RHIC energy they got pse = 1.13 GeV and dN,/dy|,—o = 1373 for corre-
sponding initial minijets, and estimated the final charged particle multiplicity
dNen/dyly=o ~ 870 and dEr/dy|,—o ~ 660 GeV by assuming immediate ther-
malization and adiabatic expansion. Compared with the experimental data,
the calculations met the value of the transverse energy, but overestimated the
final particle multiplicity by 30%. One also notices that the number of initial
gluons for |y| < 0.5 at pse is 6 — 7 times larger than that at py = 2 GeV. Im-
mediate thermalization might be a naive assumption, particularly for chemical
equilibration. However, the onset of thermalization depends essentailly on the
collision rate which is the multiplication of the number density and cross sec-
tion. The latter decreases for increasing number density due to the incerasing
screening mass. Therefore, one needs explicit verification for the quick ther-
malization at small py. This strongly motivates us to apply the developed
parton cascade to inspect the timescale of thermalization and final freezeout
values of N, and Er in dependence on the parameter py. In the following we
present results from simulations with different value of py, employing the default
setup. All results are obtained by averaging 30 independent realizations.
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In Fig.6.35 we depict the gluon numbers of the primary produced minijets
within |y| < 0.5 by solid diamonds for py = 2.0, 1.5, 1.4 and 1.3 GeV. One
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Figure 6.35: Particle number within |y| < 0.5 of initial minijets (solid dia-
monds) and of gluons at time 4 fm/c (open triangles) in simulations using
different pg, the cutoff for minijets production.

sees that the number increases for decreasing py. The computation is slightly
different than that performed by Eskola et al. in [EKRT 00], since we use
different parton distribution function and do not include any nuclear effects
(see chapter 4). However, such uncertainty will not affect the final results very
much. In Fig.6.35 we also show the gluon numbers at the final time 4 fm/c
(open triangles) after the parton expansion simulated by the cascade. The
particle enhancement indicates that even at pg = 1.3 GeV the gluons are still
undersaturated. However, the enhancement is weaker for smaller py, which
implies larger initial fugacity at smaller py. Using the simple convertation
from gluons to hardons, N., = 2/3 x N,, we achieve dN,/dy|,—0 ~ 620 at
po = 1.3 GeV. This value meets the RHIC data. We will come back to this
point when discussing the final transverse energy. A technical thing remains.
Due to the larger initial number of gluons at smaller py we vary the number
of test particles in the simulations respectively: Ny, = 40 for pg = 1.5 GeV,
Niest = 35 for pg = 1.4 GeV and N = 30 for pg = 1.3 GeV,

We now investigate the dependence of the onset of thermalization on the
scale pg. As mentioned before, the collision rate is essential for kinetic and also
chemical equilibration. In Fig.6.36 we show the collision rates per particle of
elastic and inelastic scatterings in dependence on py. The collision rates are ex-
tracted in the central region, |n| < 0.5 and z7 < 1.5 fm, at different times. We
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Figure 6.36: Collision rates in the central region at the time ¢t = 0.5, 1.0, 2.0,
3.0 and 4.0 fm/c from the simulations with different pj.

see that at every time stage, except ¢t = 0.5 fm/c, Ryy_,4, are almost the same
at different py. It is not surprising, since at kinetic equilibrium Rgy,_, 4, is pro-
portional to temperature and has very weak dependence on the gluon fugacity,
as discussed in section 6.4 to explain the almost constant behaviour of Ry, 4,
within large transverse region. Especially at the late times one recognizes that
Ryg-549 decreases with increasing pg, which indicates its dependence on tem-
perature, since the gluon system produced with smaller p; is denser and thus
hotter. At ¢t = 0.5 fm/c, especially for py = 2 GeV, the initial smaller screen-
ing mass (due to the small fugacity) leads to quite large R,y 4,- In contrast
to Ryg-g9, the dependence of Ry 44, On pg is not trival due to the complex
of the screening and LPM effect. However, as observed in Fig.6.36, Rgy_44q
possesses almost the same behaviour as Ry, 44, except for the absolute values.
For ggg — gg process the collision rate is much larger at smaller p,, especially
at initial stage of the expansion. This is due to the larger initial gluon den-
sity (or fugacity) at smaller py according to Rggg—yg9 = AgRgg—g99- The total
inelastic collision rate, which dominates the kinetic equilibration, increases for
decreasing py. Therefore, faster kinetic equilibration will be achived at smaller
po- However, the difference in the total inelastic collision rate at every time
is maximal 20%. We thus do not expect superior fast kinetic equilibration at
the smallest py. Furthermore, comparing the absolute values of Rgy 45, and
Rgg9-549 in Fig.6.36, one recognizes faster onset of chemical equilibration at
smaller py.

To find out the timescales of the onset of thermalization in the central
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region, we depict in Fig.6.37 the time evolutions of the momentum anisotropy
extracted from the simulations employing different pys. We clearly see faster
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Figure 6.37: Time evolution of the momentum anisotropy in the central region
in the simulations employing py = 2.0, 1.5, 1.4 and 1.3 GeV.

kinetic equilibration at smaller py. Quantitatively, the system achieves fully
kinetic equilibrium (when the momentum anisotropy becomes 1) at ¢t = 3.3
fm/c for py = 2.0 GeV and at ¢t ~ 2.4 fm/c for po = 1.5 — 1.3 GeV. As
realized from the first simulation in section 6.2, gluons with smaller energy
equilibrate faster than gluons with larger energy. Therefore, the timescales
given denote the averaged values. Moreover, further uncertainty also arises,
for instance, from the definition of the particular geometry for the central
region. When comparing the timescales of the onset of fully kinetic equilibrium
at pp = 2.0 GeV and py = 1.3 GeV, one recognizes a difference of 30 —
40%, which is larger than the difference of 20% in the collision rate. This
shows that including more soft minijets, between 1.3 GeV < pr < 2.0 GeV,
leads to more efficient equilibration. The difference of kinetic equilibration in
the simulations using py = 2.0 GeV and py = 1.3 GeV, which is shown in
the momentum anisotropy, should also be found consistently in pr spectra at
the central region. These are depicted in Fig.6.38 at different times. When
comparing especially the specta at ¢ = 2.0 fm/c (the boldfaced histogram) from
both simulations, one can recognize (with a ruler for instance) that for py = 2.0
GeV the slope of the spectrum varies significantly within pr < 3 GeV, while
for py = 1.3 GeV the spectrum is almost a straight line. This implies that in
the simulation employing pg = 1.3 GeV the gluons in the central region become
fully equilibrated at 2.0 fm/c, whereas at the same time the equilibration is
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Figure 6.38: pr spectrum in the central region at the time ¢ = 0.5, 1.0, 2.0,
3.0 and 4.0 fm/c (from most-upper to lowest histogram). The distributions
are extracted from the default simulations using py = 2.0 GeV (left panel) and
po = 1.3 GeV (right panel).

still going on in the simulation using py = 2.0 GeV. The finding is consistent
with the results on momentum anisotropy (see Fig.6.37).

In order to demonstrate the dependence of chemical equilibration on the
scale py, we show the time evolutions of the gluon fugacity in the central re-
gion in the left panel of Fig.6.39. We see faster chemical equilibration in the
simulation with smaller py. This is mainly due to the larger initial value of
fugacity at smaller py. For instance, it is larger than 1 at py = 1.3 GeV. How-
ever, instead of a smooth equilibration, we notice first that for smaller p, the
gluon fugacity decreases strongly at the initial stage of expansion, even for the
case that the initial fugacity is smaller than 1, and then increases smoothly to
the final value. To explain the early decrease we assume a Bjorken expansion
of an initially thermal system. We have then n ~ A\,/T3 with \,(¢)) = 1. It
is obvious that the decrease of the number density starts with n ~ 1/¢. In
contrast, the temperature has a slower decrease in a viscous expansion, when
compared with the ideal hydrodynamics, in which T decreases as ¢~ /3. There-
fore, even in this assumed ideal case the fugacity decreases at the beginning of
the expansion. How strong the decrease will be, depends on viscosity or colli-
sion rate. For instance, there is only a slight decrease in the 14 1 dimensional
(tube) calculation performed for a Bjorken initial condition in section 3.3.3 of
chapter 3 (see Fig.3.17), since there the initial collision rate is about 60 times
larger than those in the present cases (compare the upper panel of Fig.3.16
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Figure 6.39: Left panel: time evolution of the gluon fugacity. Right panel: time
evolution of the ratio of the annihilation and production rate, Rygg_95/Rgg—sgg0-
Results are obtained in the central region from default simulations employing
the different cutoffs py.

with Fig.6.36). The following particle production will then slow down the de-
crease of the number density and on the other hand make a faster decrease of
the temperature, which will lead to a smooth increase of A\, to 1. Therefore,
the behaviours of the fugacity for p, = 1.5, 1.4 and 1.3 GeV, shown in left
panel of Fig.6.39, arise from the viscous expansion of gluons. Secondly, we see
that at small py the fugacity converges at the final time to a value of 0.75,
but not 1. This is due to the particular geometrical choice of the central re-
gion (n € [-0.5:0.5] and z7 < 1.5 fm). The extension in space-time rapidity
makes the central region not exactly local. The same effect has been taken into
account for analysing the results from the simulation for a longitudinal expan-
sion with a boost-invariant and thermal initial condition in chapter 3. There
we have corrected the fugacity by a multiplication of a factor of a3/a, = 1.18
(see eq.(3.19) and the definition of the factors in eq.(3.13)-eq.(3.15)). Multi-
plying the fugacity shown in the left panel of Fig.6.39 by this factor (although
the expansion is not exactly the Bjorken-type), the convergent value at small
po is corrected to be 0.9. This is identical with the final value of the ratio
of the annihilation and production rate, Rggg—,q9/Rgg—rg99, Which is depicted
in the right panel of Fig.6.39. We note that Rggg—g9 = AgRgg—ggs is valid at
kinetic equilibrium and contrary to the extracted fugacity, Rygg— g9/ Rgg—gqg 15
insensitive to the geometry of the local region. As a conclusion, for small pq
the system is near chemical equilibrium during the whole expansion, although
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there is still 10% deficiency to reach fully chemical equilibrium at the final time
4 fm/c. The deficiency may stem from technical simplification for implement-
ing ggg — gg collisions. Remember (see subsection 6.2.1) that for sampling
gg9g9 — gg collisions we choose randomly n instead of correct n®/6 triplets (n
being the number of test particles in an individual cell), in order to reduce the
computing time. To give a quantitative prediction for this uncertainty, further
detailed analysis should be done.

Fig.6.40 shows the time evolution of number density and effective temper-
ature (T = €/3n) of gluons, extracted in the central region. One recognizes
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Figure 6.40: Time evolution of number density (left panel) and effective tem-
perature (right panel) of gluons, extracted in the central region from simula-
tions employing different cutoffs py.

that the number density of gluons in the central region is larger for smaller
po- Comparing the temperatures from the simulations with the different pys,
we see first that the decrease of the temperature slows down with decreasing
po- This is due to the weaker net production of gluons in the simulation with
smaller pg, since there the gluon fugacity is always large during the expansion
(see left panel of Fig.6.39). The exponent describing the decrease of the tem-
perature in time, 7" ~ ¢t~¢, is initially small for small pgs, o =~ 0.25 at ¢t = 0.3
fm/c, and increases most linearly in time to 0.5 at ¢ = 4 fm/c. The value of
the exponent « is around 1/3 in the time span of 1 — 2.5 fm/c, which indicates
that when the gluon system becomes thermalized, it evolves according to a
one dimensional, nearly ideal hydrodynamical expansion. The further increase
of o at the late times is due to the onset of the transverse flow. Secondly,
while the effective temperature (or energy per particle) of the initial minijets
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is smaller for smaller py, it becomes large at the late stage of the parton evo-
lution when the system is at equilibrium. This verifies the basic law of the
thermodynamics: Denser system has higher temperature according to n ~ T°3.
At the final time ¢ = 4 fm/c, we obtain n = 3.38(1.48) fm™ and T = 278(223)
MeV for py = 1.3(2.0) GeV respectively, which demonstrates that a larger life
time of the gluon plasma will be achieved in the simulation with smaller py.

Since the number of minijets increases for decreasing pg, the initial trans-
verse energy increases too, as shown for the central unit rapidity in the left
panel of Fig.6.41 by the solid diamonds. The open triangles denote the final
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Figure 6.41: Transverse energy within |y| < 0.5 of initial minijets (solid di-
amonds) and of gluons at time 4 fm/c (open triangles) in simulations using
different cutoffs py.

transverse energies at the time 4 fm/c. The decrease of the transverse energy is
due to the longitudinal work done by the pressure. We see, especially from the
right panel of Fig.6.41 depicting the normalized transverse energies, that the
decrease is stronger in the simulation using smaller py, which shows that more
longitudinal work is done at smaller p,. This is consistent with the results
that the total collision rate is always larger at smaller py, which is previously
shown in Fig.6.36 for the central region. Note that the finding about the to-
tal collision rate is also true (not plotted in figure) for the other transverse
regions. The strong decrease of the transverse energy occurs at the beginning
of the expansion. At the late stage when the collision rate becomes small,
the decrease of Fr slows down. In addition, the transverse flow which is built
up earlier in denser system may increase the transverse energy [KHHET 01].
Therefore, the results are consistent with the expectation of more and more
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slowly decreasing transverse energy. However, it is surprising that the Ep(t)
obtained in the simulations with different py go to constant almost at the same
time.

Inspecting the absolute values of Ep at the final time in the left panel of
Fig.6.41, we see that the value at py = 1.4 GeV meets the experimental data.
At the same p,y the roughly estimated final number of charged hadrons (see
Fig.6.35) is dN.p/dy|y=o &~ 2/3 % dN,/dy|,—o = 521 with a deficiency of 16% to
the experimental data. However, one should notice that at t = 4 fm/c there
is still 10% deficiency to the full chemical equilibrium (see the right panel of
Fig.6.39). Therefore, the particle production may continue in the partonic or
the hadronic phase. Moreover, the inclusion of quarks will also increase the
final particle multiplicities. The latter will be investigated in the future.

We summarize the findings obtained in this section. We have performed
simulations for parton evolution at RHIC using different py, the pp-cuttoff for
minijets production. Due to the increase of the number of initial minijets at
decreasing py the gluon system becomes denser at smaller pg. On the other
hand, in the denser system the screening mass becomes larger so that the
cross sections of gg — ¢gg and gg — ¢gg interactions become smaller. In
total, the collision rates Ryq 4 and Ry, 449 are insensitive to py. However,
the total collision rate is larger at smaller py due to more ggg — gg collisions
in denser system. This leads to rapider kinetic equilibration, 1 — 2 fm/c at
po = 1.3 — 1.5 GeV, while at those pgs the full chemical equilibration is almost
achieved after the minijets production. We have also found that the decrease of
the transverse energy per unit rapidity is much stronger at smaller py, which
indicates stronger hydrodynamical expansion. If one compares roughly the
final multiplicity and the final transverse energy per unit rapidity with the
experimental data, one finds that minijets production with py = 1.4 GeV gives
an appropriate initial condition at RHIC.

6.6 Result V: Color Glass Condensate as ini-
tial conditions

As realized from the previous sections, the forming and the lifetime of a (quark)
gluon plasma depend strongly on the initial conditions of partons produced im-
mediately after a nucleus-nucleus collision. Until now we have assumed that
minijets production are the initial conditions which are computable by the the-
ory of pQCD. A more recent, prominent suggestion of the initial condition is
the so-called ‘color glass condensate’(CGC) [MV 94], which represents a non-
perturbative solution of the Yang-Mills equation and is described by a bulk
scale ()5, the momentum scale at which gluon distributions saturate. In this
section we study thermalization of gluons which initially come from a color
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glass condensate. For the initial gluon distribution we employ an idealized
form given by Mueller [M 00]. Analysis using the recently achieved initial dis-
tributions [HN 04] will be presented in the future studies. We have to mention
that using the initial condition from [M 00] Bjoraker and Venugopalan [BV 01]
have investigated kinetic equilibration of gluons in the subsequent evolution
by means of a non-linear Landau equation. They considered only 2 — 2 small
angle scattering processes and found out that full kinetic equilibrium was not
achieved until 10 fm/c. The convergence to isotropic momentum distribu-
tions was very slow. Taking these results as guideline, we will see whether the
inclusion of 2 <+ 3 processes leads to a much rapider thermalization.

In [BV 01] the initial single particle distribution f(z,p) is given by

Cc

L s 0@ — p)., (6.10)

f(x,p) - Qg NC Tf

where N, = 3 for SU(3) and ¢ = 1.3 is a parameter. For RHIC one assumes @,
to be 1 GeV and the corresponding formation time, at which gluons become
on-shell, to be 77 = 0.4 fm/c ~ 1/Qs. We see that the initial condition
is boost-invariant, but highly anisotropic, with the produced partons having
zero longitudinal momentum p,. This is certainly an idealization based on the
CGC model of infinite thin nuclei. Integrating (6.10) gives (see also [BV 01])
the initial number density

1ay,
mR? dn

N2—-1
=c—— Q5. 6.11
() = e @ (6.11)
R denotes here the transverse radius and is set to be 6 fm. With a;, = 0.3
we obtain dNN,/dn(7;) = 830 for the initial gluons. The following evolution of
gluons is described by the default parton cascade employing N;.,; = 50. All
results presented below are averaged over 10 independent realizations.

In Fig.6.42 we depict the gluon number distribution of space-time rapidity
(left panel) and of momentum rapidity (right panel) at different times. While
the distributions dN/dn and dN/dy are quite different in the simulations ap-
plying the minijets as the initial conditions (compare Fig.6.2 and Fig.6.3),
we see that the two distributions in Fig.6.42 have similar shape at the same
times. This is due to the different initial correlations between 7 and y. In the
present case (6.10) it is n = y. Since particles are formed in the lab-frame
at tp = 7pcosh(n = y), the distributions dN/dn and dN/dy have the same
widths at the same times. On the other hand, diffusion of particles towards
higher momentum rapidity is also clearly seen in the right panel of Fig.6.42.
Moreover, we observe the decrease of the gluon number overall in the rapidity
region. In the regions of smaller |n| or |y|, where gluons are formed earlier,
the decrease is stronger. However, the decrease slows down and ceases at
sometime during the expansion. All these indicate an initially oversaturated
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Figure 6.42: Gluon number distribution of space-time rapidity (left panel) and
of momentum rapidity (right panel) at time ¢ =1, 2, 3 and 4 fm/c.

system, which is going to chemical equilibrium by annihilating particles in the

subsequent evolution. To give a verification, we calculate the initial gluon fu-

gacity. Convolving energy F to the particle distribution (6.10) and integral

over the momentum space give the initial energy density

1 dE, N2—12

() = — 23 6.12
TR2 dn (77) 4m20,N, 3 s ( )

Thus the initial effective temperature is T'(7;) = €/3n = 2/9 * ;. We obtain

then W

3
n wR27rdn . 9 &

A S i B A
Q(Tf) neq Q(NCQ _ 1)3;_;’ 43 O!chTst

(6.13)

For RHIC Ay(77) = 8. So the initial gluons are indeed ‘oversatuated’ in this
thermodynamical interpretation.

We now concentrate on the central region: || < 0.5 and z7 < 1.5 fm.
Fig.6.43 shows the time evolution of the number and energy density of gluons
by the solid lines, compared with the results from ideal hydrodynamics (dotted
lines) and from the free streaming (dashed line). Note that for the given initial
conditions the time evolutions of the number density from ideal hydrodynamics
and from the free streaming are exactly the same, ~ ¢~!, while it is different
for the energy density, i.e. ~ t %3 in the hydrodynamical limit versus ~
t~1 for the free streaming. We see that the decrease of the number density
in the simulation employing the CGC initial condition is stronger, especially
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Figure 6.43: Time evolution of number density (left panel) and energy den-
sity (right panel) in the central region. The dotted and dashed lines depict,
respectively, the results from ideal hydrodynamics with fixed intercepts at 0.5
and 2.0 fm/c and from the free streaming.

at the early times, than that from ideal hydrodynamics due to the particle
annihilations mentioned before. From 2 fm/c the line agrees well with the
ideal hydrodynamical limit, which implies the onset of full chemical equilibrium
around 2 fm/c in the central region. Inspecting the energy density, we also see
the agreement between the results from the cascade simulation and the ideal
hydrodynamics from 2 fm/c. These are strong indications for a near ideal
hydrodynamical behaviour in the following expansion. We also recognize that
at the very beginning of the evolution the energy density decreases slowly. It
seems that the viscosity at the early times is large.

The effective temperature in the central region is shown in Fig.6.44. We see
an increase at the early times until 1.0 fm/c. This is mainly due to the strong
decrease of the number density at the beginning of the expansion. We also
see that the time evolution of the temperature after 2 fm/c is again near ideal
hydrodynamical behaviour, when compared with the ideal hydrodynamical
limit with a fixed intercept at 2 fm/c.

To follow the ongoing kinetic equilibration in the central region, we depict
the transverse momentum spectrum at different times in Fig.6.45. The initial
distribution at 0.4 fm/c is at high non-equilibrium. At 1 fm/c one can still
recognize the edge at 1 GeV. The spectrum at 2 fm/c has already a thermal
shape. One also sees that the slope of spectrum at 4 fm/c is larger than that at
2 fm/c, which corresponds the cooling demonstrated in Fig.6.44. We therefore
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Figure 6.44: Time evolution of effective temperature in the central region. The
dotted line depicts the result from ideal hydrodynamics with a fixed intercept
at 2 fm/c.

expect that the system becomes full kinetic equilibrated at 1 — 2 fm/c. To
show that the momentum is getting isotropic, we extract the fraction < p% >
/2 < p? > as a function of time in the central region. The result is depicted in
the left panel of Fig.6.46. We see that the value of the anisotropy is very high
at the early times. It is initially infinite due to the highly non-isotropic initial
distribution of gluons having p, = 0. However, the decrease towards 1 is indeed
rather rapid. At 2 fm/c the momentum distribution becomes fully isotropic
and this time denotes thus the scale of the onset of full kinetic equilibrium.
We have to note that the result of the anisotropy is not insensitive to the
particular choice of the local region. Detailed analysis on the uncertainty
should be done. In contrast, chemical equilibration can be described by the
ratio of the inelastic collision rates, Rggg—sq9/Rgg—g99, Which is exactly equal
to the fugacity at kinetic equilibrium and is insensitive to the geometry of
the local region, as mentioned in the previous section. The time evolution of
the ratio is depicted in the right panel of Fig.6.46. As have been calculated,
the initial fugacity is 8 > 1. Thus there are more particle annihilations than
productions at the early times, as seen in the right panel of Fig.6.46. At 1.5
fm/c the ratio reaches 1 and stays at 1 from this time on, which demonstrates
that from 1.5 fm/c the system is in full chemical equilibrium in the central
region. Thermalization of gluons from CGC has been studied parametrically
in the ‘bottom-up’ picture [BMSS 01]. The authors found that in the limit
Qs >> Agep, thermalization occurs at 7 ~ o, 3/°Q;!. Extracting o, in
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Figure 6.45: Transverse momentum spectrum in the central region at time 0.4,
1.0, 2.0 and 4.0 fm/c.

the central region from our cascade simulation («s & 0.43 is almost constant
in time corresponding small variance of the temperature, see Fig.6.44), and
inserting it into the above formula, we obtain 7 ~ 1.8 fm/c. Our result lies
within this range. Detailed study on the ‘bottom-up’ picture will be done in
the future.

Finally, we show in Fig.6.47 the time evolution of the transverse energy
per unit momentum rapidity at midrapidity, compared with the ideal hydro-
dynamical limit with a fixed intercept at 0.5 fm/c. The decrease of Er at the
early times is slightly stronger than that from ideal hydrodynamics. Therefore
the longitudinal work done by pressure is not the only reason for the decrease
of the transverse energy. Remember that the initial gluons have zero p, in
their local frames. Thus any changes towards the isotropy of the momentum
distribution will then lead to particle diffusion to higher or lower momentum
rapidities. Since particles with smaller rapidity are formed earlier, one obtains
in total a diffusion of gluons to higher rapidities. This contributes the addi-
tional decrease of Er at the beginning of the expansion. After a time of 0.5
fm /c the diffusion seems to cease. The decrease of Er is then mainly due to the
longitudinal work, which is less performed in the subsequent evolution when
the collision rate becomes smaller. We also see that both the final (at 4 fm/c)



130 Chapter 6. Kinetic and chemical equilibration at RHIC

35 T T T T T T T 7 T T T T T T T
A
N N 3.0 . . i 6 i
\c/)_ . in the central region o in the central region
N 1 3 5|
~ 25t é
N A
& 20l 9
5 c o
2 15} 4
o 2
L2
c
c 10r 1k
05 L Il L Il L Il L Il L Il L Il L Il L 0 L Il L Il L Il L Il L Il L Il L Il L
0.0 05 10 15 20 25 30 35 4.0 00 05 10 15 20 25 30 35 40
t [fm/c] t [fm/c]

Figure 6.46: Left panel: time evolution of anisotropy < p% > /2 < p?> >
in the central region. Right panel: time evolution of ratio of collision rates
Rygg-599/ Rgg—qg9 in the central region.

and initial value of dE7/dy at midrapidity are smaller than the experimental
data at RHIC, dEr/dy|,—0 = 620 &+ 33 GeV. Therefore, CGC alone does not
give the appropriate initial conditions at RHIC. One should combine this with
the high pr minijets.

In this section we have studied thermalization of gluons with an initial
condition from color glass condensate, which was already applied in [BV 01].
Contrary to the result of large timescale of thermalization in [BV 01], we have
found that a more rapid thermalization is achieved at 1.5 — 2 fm/c when
inelastic pQCD motivated interactions among gluons are included. Analysis
with recently obtained initial gluon distributions will follow.
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Chapter 7

Summary and Outlook

We have investigated thermalization of gluons in central Au+Au collisions
at the maximum RHIC energy employing a new 3 + 1 dimensional (pQCD
inspired) relativistic transport simulation solving the kinetic on-shell Boltz-
mann equations for partons. The development of the new cascade represents
the basis for the present and future studies concerning parton evolution in
high-energy heavy ion collisions. An important feature of this cascade is that
besides binary 2 <+ 2 scatterings, inelastic 2 <+ 3 processes are implemented
for the first time. The numerical emphasis is put on the extension of the
stochastic collision algorithm for the back reaction 3 — 2, which is treated
fully consistently within this scheme. Different from any geometrical concept,
this collision algorithm is based on the handle of collision rates in the divided
spatial local regions (see chapter 2). Although the development specifically
aims at a simulation of the parton evolution in an ultrarelativistic heavy ion
collision, the presented algorithm will certainly have more potential applica-
tions beyond the scope of this study. Also the standard geometrical collision
algorithm (based on the geometrical intepretation of cross section) has been
discussed in detail. In particular, we find that for the case that the mean free
path of particles is in the same order as or comes below the interaction length,
which is always true in a very energetic (and dense) high-energy heavy ion
collision, the results from the simulations employing the geometrical method
have shown several unphysical numerical artifacts which appear only weakly in
the simulations (with the same number of test particles Ny;) employing the
stochastic method. Especially in the study of frame independence in chapter
3, we have seen that with same N results from the simulations using the
geometrical method show much stronger frame dependence than those from
the simulation using the stochastic method. The convergence of the numeri-
cal solution in the geometrical scheme for N;.;; — oo turns out to be not as
efficient as it does in the simulations when employing the stochastic method.

The operation of the newly developed cascade has been demonstrated by

133
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investigating gluon thermalization for a central Au+Au collision at RHIC en-
ergy. Interactions among gluons are described by pQCD. We have applied
the screening mass to regularize the infra-red divergence of the pQCD cross
sections. The suppression of gluon radiation with small py (and the back re-
action) due to the Landau-Pomeranchuck-Migdal (LPM) effect is taken into
account by introducing a py cutoff for the radiated gluons. To demonstrate
the correct implementations of gg <> ggg processes (and gg <> ¢ as well), we
have performed simulations in a fixed box to show the detailed balance be-
tween gluons and quarks in thermal equilibrium. The numerical results from
the simulations of parton evolution at RHIC have been presented in chapter
6. Main conclusions are listed below.

1.) Starting initially from a nonthermal system made up of minijets (with
cutoff pr > py = 2 GeV), the gluons in the expanding center equilibrate
kinetically on a timescale of 2 fin/c and evolve further according to (quasi-
Jhydrodynamics. The system cools down due to the hydrodynamical expansion
and ongoing gluon multiplication. The gluons are initially strongly undersatu-
rated. Full chemical equilibration follows on a longer timescale of about 3 — 4
fm/c. Compared with the case of free streaming, transverse flow seems to be
built up during the parton expansion at RHIC. Thermalization in the trans-
verse region slows down with increasing distance of the local region to the
center. Within a transverse radius of a gold nucleus, ~ 5 fm, the timescale of
thermalization varies only by 15%. In the outer region with z > 5 fm gluons
come mainly from the surface of the fireball and are almost non-interacting.
We have observed a decrease of the transverse energy per unit momentum ra-
pidity at midrapidity of a factor 1.7, which is definitely due to the longitudinal
work performed by the pressure and thus strongly indicates an early buildup
of pressure at RHIC.

2.) The results in 1.) do not change significantly when including a phenomeno-
logical formation time given by the uncertainty relation for the initial gluons.

3.) We have studied the contribution of the elastic and inelastic collisions to
kinetic equilibration. It turns out that the inelastic scatterings are the main
responsible processes driving the system to equilibrium. Without any inelastic
collision channel, the collective behaviour observed nowadays at RHIC can not
be generated, unless one uses an unrealistic large cross section (or equivalently
a large gluon density) to mimic a strongly interactive gluon system [MG 02].
We have also realized that the angular distribution of the gg <+ ggg processes
is almost isotropic during the expansion. This leads to larger transport cross
section compared with the elastic scatterings.

4.) With smaller pr-cutoff for the minijets production, py = 1.5 — 1.3 GeV,
simulations for parton evolution at RHIC have been performed. We obtained
moderately rapider kinetic equilibration at 1 — 2 fm/c at smaller p,, while
at those small cutoffs full chemical equilibration is almost achieved after the
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minijets production. The decrease of the transverse energy per unit rapidity is
considerably stronger at smaller py, which indicates stronger hydrodynamical
expansion. Comparing roughly the final multiplicity and the final transverse
energy per unit rapidity with the experimental data, we found that minijets

production at py = 1.4 GeV would give an appropriate initial condition at
RHIC.

5.) We have studied thermalization of gluons with an initial condition from
color glass condensate at RHIC. Contrary to the result of large timescale of
thermalization in [BV 01], where the same initial condition has been used, we
found that a rapider thermalization is achieved at 1.5 — 2 fm/c when inelastic
interactions among gluons are included.

All together, inelastic gluonic interactions can account for fast equilibration
of deconfined matter.

There are a lot of interesting investigations and numerical improvements
in plan. Some of them are already pointed out in the previous chapters. We
now discuss them in more detail.

As claimed in the introduction, the RHIC data on the elliptic flow in semi-
central Au+Au collisions showed large values. These can be explained as a
consequence of early buildup of pressure in the parton phase and a rapid ther-
malization, since the calculations applying ideal hydrodynamics at the very
beginning of the expansion fitted the experimental data. However, pQCD in-
spired transport simulations [MG 02] did not yield reasonable values of vy, un-
less one uses an unrealistic large cross section. On the other hand, in [MG 02]
only elastic gluonic collisions are considered. As argued in [SS 01], elastic scat-
terings alone cannot drive the parton system, created at RHIC, to equilibrium.
The present study showed that the inclusion of inelastic gg <> ggg makes equi-
libration more efficiently. The indication of an early thermalization and the
hydrodynamical behaviour during the subsequent expansion, which is one of
the main findings from the first study concerning RHIC physics, gives strong
motivation for exploring elliptic flow using the new kinetic parton cascade.
Can the inelastic interactions generate the seen elliptic flow v5? The study is
in progress [X 05]. Particularly, one has to find a way to calculate the local
screening mass and local mean free path for modeling the LPM effect with low
statistic fluctuations.

Our results showed that although a strongly interacting QGP might ex-
ist at RHIC, the mean free path of gluons in the evolution is still not very
much smaller than the macroscopical scale of length, like the longitudinal ex-
tension of the plasma. Therefore, if any thermal state is created, the further
expansion of the system should be rather better described by viscous than ideal
hydrodynamics. It is interesting to compare the present calculations with some
fixed and specified hydrodynamical initial conditions directly with calculations
based on wviscous relativistic hydrodynamics [M 02], either assuming Bjorken
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boost invariance within an expanding tube or for full 3+1 dimensions. Such
a comparison can tell how viscous the QGP really turns out to be at RHIC.
However, the input for the calculation applying viscous hydrodynamics, the
viscosity, has to be first extracted from the cascade simulation. One thus needs

to understand in detail how viscosity establishes in a microscopical transport
model [F 05].

Jet-quenching is one of the most prominent suggested signatures for an
existance of a deconfined partonic matter at the early stage of a heavy ion
collision. Measurement on the pr spectrum of hadrons at RHIC showed a sig-
nificant suppression of the spectrum at high py, compared with that obtained
by the adding up independent events of binary nucleon-nucleon collisions. This
indicates the formation of a medium, across which particles lose their energy
due to radiations. The phenomenon of jet quenching or electromagnetic radi-
ation can be studied systematically within the new transport scheme and has
been also observed in the present analysis (see Fig.6.24). We see that gluons
lose more energy than what is measured for hadrons at RHIC. It was discussed
in subsection 6.2.2 that the reason for the stronger jet-quenching may be due to
the still occurrence of gg <+ ggg collisions on the surface of the fireball in spite
of a lower energy density than the critical value, ~ 1 GeV fm™2. This should
be inspected in more detail. Futhermore, how do the screening and LPM effect
influence energy loss? This also has to be explored in further investigations
[Fo 05].

In heavy ion collisions at energies higher than the RHIC energy one would
expect quicker thermalization of partons, since more partons are freed in the
first moment after the collision. On the other hand, at high energies it is of-
ten assumed that the initial distribution of gluons is given by the saturation
scenario or color glass condensate [MV 94] and is described by the saturation
scale (). This initial distribution is far from thermal equilibrium. In addition,
the strong coupling a;; decreases at high energies, which would make thermal-
ization harder to achieve. In [BMSS 01] Baier et al. showed that, in the limit
Qs >> Agcp corresponding to very large nuclei and/or very high collision
energy, thermalization occurs relatively fast at 7 ~ o, '*/°Q;'. The authors
claimed the way thermalization occurs: At first large amount of soft gluons
are produced by the emission process. These soft gluons then quickly equi-
librate and form a thermal bath. The thermal bath then draws energy from
the hard gluons until full thermalization is achieved. This ‘bottom-up’ picture
and the parametrical behaviour of thermalization should be studied employing
the present parton cascade [E 05]. How likely is this picture for true coupling
constants and not parametrically small ones at RHIC and LHC?

Moreover, quarks will be included in simulations. Numerical implemen-
tations are straightfoward. We are then able to study the thermalization of
quarks and more interesting, the heavy quark production during the parton
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evolution. Also the dilepton and direct photon production can be investigated
systematically with the new parton cascade.

The newly developed parton cascade provides a powerful tool for exploring
the possibility of a rapid thermalization and an early buildup of pressure in
the parton phase considering various initial conditions. On the other hand, a
best way to prove theoretical considerations is to compare their results with the
experimental data. Therefore, it is desired to perform simulations following the
whole process, which may happen in heavy ion collisions, from initial conditions
for partons to freezeout of hadrons [ZKLL 00], in order to be able to make
comparisons with the RHIC data of hadronic constituents. It is our attempt
to develop such event generator in the future by including hadronization of
partons [W 05] and subsequent hadron cascade.

When applying the stochastic collision algorithm and the lattice-like dis-
cretization in space, the exact solution of the Boltzmann equation will be
obtained in the limit AV — 0, At — 0 and Ny — 0o. We have shown
the convergence of results from 1+1D cascade simulations in a fixed tube by
decreasing longitudinal grid size dz (or dn) and increasing the number of test
particles at the same time. The provement of convergence in the 3+1D simula-
tions for RHIC has to be done. Especially one may worry about acausal effects
due to larger signal velocity than c in cells if the mean free path of particles is
less than the grid size. It is indeed the case for the transverse propagation at
the initial stage, where the mean free path of gluons is 2 times smaller than
the constant transverse grid size do = dy = 0.5 fm. The situation is more
drastic when we use a 30 mb cross section for mimicing a strongly interacting
system. In this case the mean free path of gluons at the initial stage is 10 times
smaller than the transverse grid size. To explore whether the acausal effect
makes large numerical artifact, we carry out simulation for the extreme case
of large cross section employing half of the default transverse grid size and 4
times enhanced Ny (to keep the same statistics in cells). In Fig.7.1 we depict
the time evolutions of the number and energy density of gluons extracted in
the central region from the simulation with dx = dy = 0.25 fm and Ny = 960
by the dotted lines, compared with the results with the default settings, de-
picted by the solid lines. We do not recognize any visible difference between
the solid and dotted lines. Although the mean free path (1/no) is still smaller
than dx = dy = 0.25 fm at the initial stage, it decreases to 0.25 fm at about 2
fm/c. Therefore, if there are some effects, deviations should be seen from this
time. The fact that the results from the simulations with different transverse
grid size are identical indicates that the acausal effects seem to be not sensitive
to the grid size when the system is uniformly distributed in space. Detailed
study should be done further to confirm this consideration. In addition, we
want to understand how viscosity, heat conductivity and particle diffusion are
numerically affected by the scale of non-vanishing cell length [CH 02, F 05].
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Figure 7.1: Time evolution of the number (left panel) and energy (right panel)
density extracted in the central region from the simulation with dz = dy = 0.25
fm and Ny = 960 by the dotted lines, compared with the results with the
default settings dr = dy = 0.5 fm and N;.5; = 240, depicted by the solid lines.

Finally, the technique of the parallel programing is needed to improve the
practical operation of the cascade. With this technique quantities like the
screening mass can be calculated and incorporated more precisely and quantum

effects like the Pauli-blocking and Bose enhancement can be then implemented
straightforwardly.

Things have only get started. There is still a lot to do.



Appendix A

Collision times in the
geometrical method

Within the algorithm implementing the geometrical picture collisions occur
if the considered particles approach each other and their closest distance is
less than the interaction length W. This criterion will be inspected in
the center of mass frame of the colliding particles. Suppose that 7; = (¢;, r;),
pi = (B, pi) and 7, = (&, 1)), pi = (El,pl), i = 1,2, are the space-time
coordinates and four momenta of two particles in the lab frame and in their
c.m. frame respectively. Defining H = (73 — 71) - (p1 + p2), one has in the c.m.
frame: ¢} >t} if H < 0 and ¢} < t, if H > 0. For the case t| > t, (otherwise
we change the indices of the particles) the two particles will approach each
other if p3 [p1 - (Fo — 71)] — (D1 - Do) [P2 - (F2 — 71)] < 0. The closest distance of
the colliding particles in the c.m. frame is

2d+b2c—2abe
Art = f—f =2 Al
TS \/ f 62—Cd Y ( )
where
a = (Fo—71)-p1, b= (e —71) Do,
c = p\%a d:ﬁga ezﬁl'ﬁ2a
[ o= (fa—1). (A.2)

If Arl < y/o/m, the particles will collide at the same time ¢/, = t,, at the
closest distance in the c.m. frame. Making Lorentz transformation back to
the lab frame gives
ad—be bc—ae

tqo =t — B ———— teg =ty + E. .

cl 1 162—Cd’ c2 2 262—Cd
We call t.; and t. the collision times. Due to the spatial separation, the two
collision times have, in general, different values, t.; # t.o. This means that

(A.3)
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one of the particles reacts later within the same collision. The transformed
space coordinates at the collision times are correspondingly denoted by r.
and r.. The new momenta of the particles are sampled in the c.m. frame
according to the given differential cross section and then transformed to the
lab frame, which are denoted by p.; and p... We thus label the particles with
(tei,rei) and (Eg, pei), (i = 1,2), and keep the labels until their next respective
collisions. For example, t; denotes the time when the last collision of particle
1 occurs. It is kinematically possible that the case t; < t.4 < ty < t.o occurs.
Such a collision sequence is not causal, because at t.; when the particle 1
experiences the collision with the particle 2, the particle 2 is just on the way
to its last collision with some other particle. To forbid those collisions we add
an additional criterion: The collision times ¢.; and ¢, should be greater than ¢,
as well as to. Illustratively, the additional criterion means that during the time
interval [t; — ¢/, the particle, which will change its trajectory later (it is the
particle 2 in the example), is not considered for dynamics for that particular
interval.

In the following we are interested in the probability distribution of the
difference of collision times, At. := |t;; — te2|, in a thermal system of massless
particles. In this case we have ¢ = d = 0. If t; # t5 (e.g. t; < t3), the particle
with smaller time (¢;) can propagate freely to the larger time (t3), which does
not give any effect on the whole evolution due to the additional criterion. Thus

we obtain
Ui + U9

1—-u

Atc =T19 (A4)

712 denotes |ry—r| and u; = cos oy, @ = cos 6, where q; is the angle between p;
and ry —r; and 6 is the angle between p; and ps. Since 4 relates u; according

to 4 = \/1 —u? \/1 — u cos(¢y — ¢o) + uy uy, where ¢; is the polar angle of
p; around ry —rq, (A.4) can be now expressed by At, = ris F(uq, us, ¢) with
¢ := ¢1 — ¢o. One obtains the probability distribution of At. by the integral

1 1 2w R
P(At,) = 1 duy [ duy /0 d¢ /0 dru
X P(712,u1, Uz, §) 6(At, — r12F) O(y/o/m — Arl)

1 1 2
- / du, / duy [ dé
-1 —1 0

1
X P(r13, 1, Uz, @) |rip=ate/F F(uy, uz, 6)

O(y/o/m — Arl),(A5)

where P(rig, u1,us, ¢) is the multiple probability distribution. Note that it is
easy to realize that Ar! can also be expressed as a function of 712, u1, us and
¢. Since rig, u1, up and ¢ are independent variables, P(ria,uq, us, @) can be
factorized, P(rig,uy,us,®) = P(ria)P(ui)P(ug)P(#). For a thermal system
we have P(u;) = 1/2, P(¢) = 1/27 and P(r12) = 3r%,/ R, where R serves as a
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normalization factor and is set to be much larger than the interaction length.
We realize that the probability distribution (A.5) depends only on the size of
the total cross section. For a constant cross section we calculate the integral
in (A.5) numerically. Fig.A.1 shows the results for 0 = 10 mb and ¢ = 30 mb.
The distribution has a larger width for larger cross section. We also calculate
the mean value of At. and obtain < At, >= 0.24 fm/c for o = 10 mb and
< At, >=0.41 fm/c for o = 30 mb.

=10 mb
---- 6=30 mb

P(At)

At_[fm/c]

Figure A.1: Probability distribution of difference in ‘collision times’ within
the geometrical collision algorithm. In the calculations a thermal system is
assumed and the cross section is set to be a constant.
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Appendix B

Optimization of the computing
time within the geometrical
method

Consider a system with N particles in total. To get the next collision, N(N —
1)/2 operations have to be carried out to get all the ordering times for each
particle pair and N(N — 1)/2 — 1 comparisons have to be made to obtain the
particle pair which collides next. Then these two particular particles propagate
freely until the two respective collision times when the respective momenta will
be sampled according to the differential cross section. The same procedure
will be repeated as long as needed. Since the operation number in each step
is proportional to N2, the computing time increases strongly with increasing
particle number and increasing collision number. However, a large amount
of operations are obviously futile, because after the update of two colliding
particles only the ordering times of particle pairs which involve one of the
two updated particles are indeed needed. Therefore only 2(N — 2), but not
N(N —1)/2, operations are necessary if one, in principle, wants to save all the
ordering times from the last step. This, of course, reduce the computing time
enormously. On the other hand, however, a large storage for those ordering
times would be required. For an optimization we thus do not store all the
ordering times, but only do store for each particle the informations of its
possible next collision: the ordering time and the collision partner. We need
therefore 2NV, instead of N(N — 1)/2, memory places. The next collision will
be obtained by comparing the marked and stored ordering times. In a next
step we compute only the ordering times of the last colliding particles with the
other particles (2(N — 2) operations) and compare them with the other stored
times, respectively, to obtain the new informations of the next collision for
each particle. The ‘worst’ case then occurs when the next collision partner of a
particle is one of the last colliding particles. In this case the stored informations
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for this particle are out of use and one has to compute the ordering times of the
considered particle with all the other particles (additional N — 3 operations).
Fortunately those cases do not happen frequently in practice. We note that
our prescription is different from the optimization used by Zhang in his parton
cascade [Z 98|, which follows the fact that particles which are far away from
each other most probably do not collide as next pair. In this algorithm the
space was divided into cells and only particles from the same cell and the
neighboring cells may collide next within the geometrical method.



Appendix C

Parton-Parton scattering cross
sections

Differential pQCD parton-parton cross sections in leading order of o have
been calculated in [ORG 78]. For elastic gluon scattering the differential cross

section reads 159999 Ora?
o e’ tu su st
= fB—-=—-=- —=), (C.1)
dt 252 s 12 wu?
where s, t and u are the Mandelstam variables. —t is equal to the momentum
transfer squared

—t=q"= g(l —cos ), (C.2)

where 6 denotes the scattering angle in the c.m. frame of colliding partons.
For small angle scatterings the momentum transfer is approximately equal to
its transverse component g, . Therefore we have —t = ¢%. Since the differential
cross section (C.1) diverges at small ¢ (and also at small v due to the symmetry
of identical particles), (C.1) can be expressed approximately as

do99799 Iroy
d  ~ (¢)

We regularize the infrared sigularity in (C.3) employing the Debye mass and
obtain

E . (C.3)

do99799 Ima?
= 7 g - (C.4)
dg? (62 +mp)
The other approximate differential cross sections are achieved in the same way
and read as follows:

do 99799 2ra’

= 5 , C.5
i @ +m) (C:5)
do99791 ol

- R C.6
& " 3@ +md) (C6)
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do 1411 16ma?

= C.r
T v AT <
do1d —ad do99—91 8ma?
da? T T4 :9(2+ 212 (C.8)
¢t ¢t ¢l +mbp)
do19799 64ma? Co
dq? - 27s(¢% +m32)’ (C.9)
do9d—dd dro? 2 2
o _ Ama; +u ’ (C.10)
dt 952 (s + 4m2)?

where m?2, and mﬁ denote, respectively, the Debye mass for gluons and for
quarks. In the last expression —t is not replaced by ¢%, since ¢q¢ — ¢'7
processes do not favour small angle scatterings. Employing the fomulas (C.4)
- (C.10) the total cross sections can be obtained analytically by integration.
(C.4) - (C.10) also then dictates how to sample new momenta for particles
after an occurring collision.



Appendix D

Cross section for gg <+ ggg
processes

For the multiplication process gg — ¢ggg, the Gunion-Bertsch formula [GB 82]
is used for the matrix element squared in leading order of pQCD, and modified
by implementing the Debye screening mass. This is

M= (2 ) ()
ool =\ (@ ) il = )P+ mp])

where ¢? = 4ma,, and q, and k, are, respectively, the transverse component
of the momentum transfer and that of the momentum of radiated gluon in the
c.m. frame of the colliding gluons. In this section we will give the derivations
of the cross section 0gg_,495 and Iyge 4, defined in section 2.2 by an integral of
the scattering amplitude given in (D.1) over momentum space.

Employing usual convention, the total cross section for a gg — ggg process
is defined as

. _ 1 / ¢py &y, Db
997999 2s ) (2m)32F} (2m)32E} (27)32E}
X |M12~)1’2’3"2(27T)45(4) (pr+p2— Py —po—ps), (D2)

where p1, po, p}, py and p§ are the four momenta and all momenta are expressed
in the c.m. frame of the two colliding gluons. We assume that 3’ denotes the
radiated gluon. Integrating over d3p, gives

1 d3 Id3 !
Ogg—g99 — 2567’(’58 Ezzl Ezs |-/\/112—)1’2’3’|2 5((171 + D2 — pll - pg)Z)
1
= 25675 /dQQLdyikoLdy\M12—>1'2'3'\25(F)a (D.3)

where y; and y denote the momentum rapidity of 1’ and 3’ respectively and
F = (pi+p2—p)—ph)’°
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= s—2y/sq, coshy] — 2y/sk, coshy + 2q, k, coshy] coshy
+2q, -k, — 2q, k) sinhy]sinhy. (D.4)

Further integration over y| gives

O99—999 = 256 SrA b /dQQLdszdy|M12—>1'2'3' Z‘ (D.5)
8y1

where all the solutions of F' = 0 contribute to the sum. The corresponding
differential cross section has the form

1

dogg sq99 _ 1 \M12—>1'2’3’|2 Z

D.
d?q d?k dy  25675s (D-6)

oF
Yy

F=0

This is different than in [BDMTW 93], where the authors ignored the factor
>1/ g_ﬂF—o' However, to make the correct implementation of the detailed
balance for gg <> ggg processes, one should take the exact fomula of the cross
section. Expressing d%q, and d?k in polar coordinates and integrating one of
the two angles, one obtains

/ Pq 2k, dy — 7 / dg® dk2 dy /0 " do, (D.7)

where ¢ denotes the angle between q; and k.

We now turn to determine the integral boundaries for (D.7). At first, the
energies of the three particles in the final state can not be greater than /s/2
because of the energy conservation. (Note that the total energy is equal to /s.)
We then have the upper boundaries for ¢2 and k2: ¢? < s/4 and k% < s/4.
Secondly, k£, and y will be further constrained by ©(k, A, — cosh y) due to the
Laudau-Pomeranchuk suppression (compare section 5). This leads to a lower
cutoff for k,: k; > 1/A,. For given ¢, and k,, the constraints for coshy are

& < Vs (D.8)

!
coshy <k A, and coshy:k—?’_% }
1 1

Thus the upper boundary of y, denoted by y,,, is the smaller one among
Arcosh(kA,) and Arcosh(y/s/2k,). Finally we have

S ~/3/4dqi/s/4dki/ym dy/”dqb---. (D.9)
99999 ~ | A2 o Y

This integral actually scales with s, 04,449 = 7/5, where

1/4 1/4 Ym ™
~ dq> dk? d do - - - D.10
o~ [ dat /1/ / " dy | do (D.10)



149

with 1 = ¢3 /s, k1 = k% /s, Ay = Agy/s and m}, = m}/s. & depends on two
parameters: A, and m%. We evaluate the above integral numerically using the
Monte Carlo integration routine VEGAS [PTVF 92]. For any sampled point
(@2, k%, y, @) one has to solve ¢, for F = 0in (D.4). If there is no solution, then
the chosen point is out of the kinematic region and thus has no contribution
to the integral. Thus the equation F' = 0 serves as a further constraint for the
kinematic region of collisions.

For the annihilation process ggg — gg, the analogous quantity as 04¢—, 44,
which sums all the possible final states, is 1,444, defined via

/ d3
T499-99 = 2 / (27) 32E’ 27r)32E’ ‘M123—>1’2" (27)45(4) (p1+p2+ps _pll _pIQ) )

(D.11)
where the factor 1/2 takes the identical gluons 1’ and 2’ into account and

1
‘M123—>1'2'|2 = V—‘M1'2'—>123|25 (D-12)

9
where v, = 2 x 8 is the gluon degeneracy factor. Since Iy ,4, is invariant
under Lorentz transformations, we evaluate the integral in the rest frame of

the three incoming particles. Therefore it is p; +pe+p3 = (1/$, 0). Integrating
over dp} in (D.11) we find

1 d3
Iygg—sg9 = 167r2 = [Mags a2 6((p1 + p2 + ps — p1)?)
_ o7 /dE’ dcos 0 dp B! | Misg |2 8(5 — 24/ )
- 647r2 /_1 dcose/O dé | Mg o |2, (D.13)
where the solid angle (cos 6, ¢) defines the orientation of p| (p};, = —p/ because

of the energy-momentum conservation). We now express ¢,, k; and q; -k,
in | Mg3_,179|? with the solid angle and momenta of the incoming gluons. To
do that one has to specify the fussion process 2 — 1. There are in total 6
combinations. Each combination contributes to Iygy_,45. One of them is

123 512 = (a)23 — 2*and (b) 12" — 1’2’

and ps corresponds to (k,,y). In this particular case one can establish a coor-
dinate system in momentum space whose Z-axis coincides with the orientation
of p;. We find out (after a direct but lengthy calculation)

qL = E;sinf (D.14)

k, = E3\/1 — (siny sin @ cos ¢ + cos~y cos §)? (D.15)
q. -k, = E E3 (siny sinf cos cos ¢ — cosy sin?6),  (D.16)
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where v denotes the angle between p; and p3, and (cosf, @) is, as defined
before, the solid angle of p}. Due to the Laudau-Pomeranchuk suppression
©(k Ay — coshy) and coshy = E5/k, we obtain the kinematic region for the

ggg — gg process
E3
ki >4 /—. D.17
2y 017)
In analogy to 04y 09, lggg—sge also scales with s, I o y0e ~ I/s, where I
depends on five parameters, namely E1/+/s, E3/+/s, v, Agy/s and m% /s.



Appendix E

Monte Carlo Samplings

E.1 Monte Carlo Sampling of momentum and
position for initial particles

E.1.1 Minijets

The momenta of the minijets (partons with pr > py = 2 GeV) are sampled
according to the differential jet cross section

dO’ ab

deet 2 2
_Bjet g (21, Pl E.1
dp%dy, dys az,b:xlf (21, pr)22 fo(@2, PT) dt (E.1)

where p2., y; and y, are, respectively, the transverse momentum and the mo-
mentum rapidities of produced partons and the sum runs over all incoming
parton species. f, and f, denote the parton distribution function in the two
colliding nucleons (proton or neutron). In principle, one can employ the ‘re-
jection method’ [PTVF 92] to smaple p%, y; and yo directly. However, this
method is not convenient in this case, since the distribution (E.1) is very pro-
nounced at pr = py and y; = yo. Therefore, we at first calculate doje;/dp?
at a series of points of p2 by integrating y; and y, numerically and then sam-
ple pr using the ‘transformation method’ [PTVF 92] with interpolation. The
samplings for y; and y, with given pr are carried out employing the rejection
method. One obtains the longitudinal momentum via p, = prsinhy and ob-
tains p, = prcosf, p, = prsinf with uniformly sampled 6. Species of the
produced partons, gluon or quark with flavor, are determined according to the
corresponding contributions in the sum in (E.1).

The sampling of the space-time coordinates of partons follows the geometry
of the overlapping of the two colliding nuclei

d < Nparton >

P dz di ~na(xr, 2z —vt)na(Xr, 2z +vt), (E.2)
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where n 4 denotes the nuclear density which is parametrized using the Woods-
Saxon distribution (4.8). Analogous to the sampling of momentum, we com-
pute dNparton/dt at a series of time by integrating the space coordinates numer-
ically and then sample ¢ using the transformation method with interpolation.
Finally we sample the space coordinates at ¢ via the rejection method.

When introducing an additional formation time for every partons modeling
the off-shell propagation, the virtual partons do not interact and move with
speed of light during the individual formation time, Aty = cosh yA7 ~ coshy -

1/pT-

E.1.2 Bjorkens initial condition

The Bjorken-type boost invariant initial conditions [B 83] reads

dN _p cosh(y—n)
i iy () = [Oopm) =™ T (E3)

where 7y denotes the initial proper time. At first we sample 7 by its uniform
distribution within given region at the starting time 75. We then obtain the
time and longitudinal position of the particle

to = Tocoshn, zy = T1ysinhyn. (E.4)

The transverse positions xg and 1 are sampled uniformly. Finally we deter-
mine the initial momentum according to the thermal distribution (E.3) at 7
for given n and T'(7p).

E.2 Monte Carlo Sampling of momenta for out-
going particles

Momenta of outgoing particles are sampled in the rest frame of the incoming
particles. Their momentum in the lab frame is obtained by Lorentz transfor-
mations.

E.2.1 2 < 2 processes

In the rest frame the energy of each particle is y/s/2. The only to be sampled
quantity is the solid angle (cos 6, ¢). The scattering angle 6 is samlped accord-
ing to the differential cross section and the polar angle ¢ is sampled uniformly
within [0, 27].

Since the pQCD differential cross sections (C.4) - (C.10) can be integrated
analytically, we can perform samplings for ¢, (or cos ) using the ‘transforma-
tion method’ [PTVF 92] from a uniform probability distribution. For isotropic
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collisions we sample the scattering angle 6 according to the uniform distribu-
tion of cos#.

E.2.2 gg <+ ggg processes

As shown in Appendix D, the differential cross section for a gg — ggg process
has the form

1

2
993999 ~ 1 A >
oF

. (E5
I k2 dyds ~ (@ + ) B[k, — q.)? + ) (E5)

1 |F=0

where ¢ denotes the angle between q, and k;. We then first sample ¢, , &,
y and ¢ according to (E.5). Since the differential cross section can not be
integrated analytically, one can not make samplings by means of the transfor-

mation method, as done for 2 — 2 processes. Instead, we employ the ‘rejection
method’ [PTVF 92].

To make enough efficient samplings, we want to find out a special function
of g1, k1, y and ¢, which should be always greater than the right hand side
of (E.5) at every point set (¢i, k1, y, ¢) in the kinematic region and, more
important, can be integrated out analytically over ¢,, k,, y and ¢. Such a
function is called as a comparison function. If one has the comparison function,
one can first use the transformation method to generate the random numbers
according to the comparison function. Then one needs a further uniform sam-
pling between zero and the value of the comparison function at the particular
sampled point. If this random number is less than the value of the real dis-
tribution (right hand side of (E.5)) at the sampled point, then we accept this
sampling, if not, we reject this sampling and start a next trial. One possible
choice of the comparison function is

L 11 m, (E.6)

2 2 72 2
g1 +mp kT mp

where m denotes a constant with a sufficient large value, which is greater than
>1/ (g;; oo in (E.5) at every point in the possible kinematic region. Since,

unfortunately, one can not obtain the upper limit for >~ 1/ ‘STF,
1

, the value
. . . FZO
of m is an empirical number.

We have to note that for an individual sampling one has to solve the equa-
tion F' = 0 (D.4). Therefore one also obtains g the momentum rapidity of the
particle 1’, at the same time when ¢, k,, y and ¢ are sampled. One sampling
remains: The direction of q is sampled uniformly in the transverse plan being
perpendicular to the scattering axis. Finally we obtain the momenta of the
outgoing particles

Pl =-qL, pi, =qusinhy] (E.7)
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P;, =k, pj, =k sinhy (E.8)
P> = — (P +P3) - (E.9)

For a ggg — gg process the solid angle (cosf, ¢) is sampled again by using
the rejection method. We find

dlyg9-4q -~ 1 il
dcosf dg (¢ +mb)” k3 [(k1 —au)? +mp)
1 A, 1 1 A, 1
2 2_g 2~ 2 2 2_g 5 +(E.10)
g2 +m% E3 m%4  E%(1 —cos?0) +m% Es m%
where we have employed the constraint (D.17) and the identity (D.14) for the
particular example presented in Appendix D.

E.2.3 Isotropic 2 <> 3 processes

A 2 — 3 process, 12 — 1'2'3’, is assumed to be composed of a two-body
scattering 12 — 1'2* and a decay 2* — 2'3’, where 2* denotes an intermediate
state with an invariant mass of m* = y/E? — p2. We employ the formula for
the phase space integrations of [BK 73] and obtain the differential cross section
of an isotropic collision
dO’23 Eé

dQY dm?2dQ,y E, - FE}

where ; = (cosfy, ¢1) denotes the solid angle of p] with respect to the col-

lision axis, and 2y = (cos 0, @) denotes the solid angle of p), with respect to
P«, and

N (s,0,m?) [ dEs S(F(EY)),  (B11)

f(Ey) = B, — By — \/p? + B} — 2p,E} cos b, (E.12)
As,mi,m3) = s* — 2s(m] +m3) + (m; —m3)*. (E.13)
The integral over E in (E.11) gives

doy (s m)m. (E.14)
dQldmfdQQ (E* — P« COS 92)2

Q1, m? and €, are the to be sampled quantities. From (E.14) we realize that
the differential cross section does not depend on €2; and ¢,. Thus they are
sampled uniformly. Integral over €2; and €2, gives the probability distribution
for m2. Tt is simply proportional to s — m?. We sample m? by employing
the transformation method. For given Q; and m? the momenta of 1’ and 2*
are fully determined due to the energy-momentum conservation. Now (E.14)
just represents the probability distribution of cos 6 for a given Q; and m?2. Its
numerical sampling is straightforward.

Sampling for an isotropic 3 — 2 process is more trivial, since just one solid
angle is to be sampled and its probability distribution is uniform.



Appendix F

Relativistic Hydrodynamics

We review briefly the theory of relativistic hydrodynamics. Details can be
found in [W 72] and [GLW 80]. We consider here a perfect fluid, which is
defined as having at each point a velocity v, such that an observer moving
with this velocity sees the fluid around him as isotropic. This will be the case
if the mean free path between collisions is much smaller compared with the
scale of lengths used by the observer. Otherwise viscosity becomes important
and one has a imperfect fluid.

For a perfect fluid the energy-momentum tensor takes the form
™ = (e+p)U'U” —pg", (F.1)

where U* denotes the four-velocity of the fluid with U,U* = 1 and U* =
(1,0,0,0) in the rest frame of the fluid element. € and p are, respectively, the
energy density and pressure measured in the rest frame. The motion of the
fluid is governed by the equations of conservation of energy and momentum

0,T" =0 (F.2)

and of the particle number

OuNF =0 (F.3)
with N# = nU", the particle four-flow (n being the particle density in the rest
frame).

Assuming a one dimensional, boost-invariant expansion of the fluid with
U* = (t,0,0,z)/7 [B 83], one obtains from (F.2)
d
c__p (F.4)

P

For a perfect, ultrarelativistic fluid the equation of state reads p = €/3. There-
fore one obtains the energy density

e() = e() (%)4/3 (F.5)
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by sovling (F.4) and then the temperature and the particle density

T(r) = T() (E) v n(7) = n(r) 2 (F.6)

T T
using the thermaldynamical relations.

The macroscopic quantities like the particle density, the energy density and
the hydrodynamical velocity can be defined with the help of the distribution

function, f(z,p),

d3 d3
N¥(z) = / (%)];Ep’“‘f(x,p), T (z) = / (%)]ZE o’ fz,p) (F.7)
n=U,N", €e=UT"U,. (F.8)

f(z,p)A3xA3p gives the averaged number of particles which at the time ¢ are
situated in the volume A3z about x with momenta in A3p about p. The defi-
nition of the hydrodynamical velocity is, however, ambiguous. We choose the
Eckart’s definition U* = N#/{/NVN,. After this definition the hydrodynami-
cal velocity is the mean partilcle velocity. If the system is in equilibrium, like
in the case of the perfect fluid, the distribution function takes the form

Fa.p) = oxp (2E)

Especially for the case of the one dimensional, boost-invariant expansion one

has .
ez, p) = exp (—pT cosT (y— 77)) _

Inserting (F.9) in (F.7) and (F.8) gives, independently on the choice of the
definition of U*,

(F.9)

(F.10)

T3
n=_3, e=3nT (F.11)
when the particles in the fluid are massless.

Using the distribution function one can easily obtain the quantities like the
momentum distribution dN/d3p, the rapidity distribution dN/dy and dN/dn
at time t. For instance,

%(t) - / &z f(z,p) . (F.12)

The question now is what about the quantities at 7. In general one has to use
the Cooper-Frye formula [CF 74]

dN

where X# specifies the 3D hypersurface on which the momentum distribution
is measured. For a fixed ¢ it takes d¥* = (d3r,0,0,0) and for a fixed 7
d¥* = (7 coshn, 0,0, —7 sinh n)dnd?zr [GPZ 97].
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Deutsche Zusammenfassung

Ein Nukleon enthilt Quarks, die zu den elementaren Bausteinen der Materie
zahlen. Quarks wechselwirken mit einander iiber den Austausch von Gluonen.
Diese starke Wechselwirkung zwischen Quarks und Gluonen wird durch die
Theorie der Quantenchromodynamik (QCD) beschrieben. Auflerdem kommen
Quarks und Gluonen nicht als isolierte Teilchen in der Natur vor, sondern sind
immer in Hadronen gefangen (Confinement). Dies bedeutet zum Beispiel, dafl
in einem aus Nukleonen gebildeten Atomkern Quarks und Gluonen aus einem
Nukleon nicht in die Nachbarnukleonen wandern konnen. Ein Atomkern stellt
eine nukleare Materie dar. Andererseits sagt die Theorie der QCD fiir sehr
hohe Dichte und Temperatur einen Phaseniibergang von Kernmaterie in ein
Plasma aus Quarks und Gluonen, das sogenannte Quark Gluon Plasma (QGP)
[CP 75], voraus. Insbesondere zeigen die numerischen QCD Gitterrechnun-
gen [K 02] einen rapiden Anstieg der Energiedichte bei einer Temperatur von
T ~ 170 MeV. Dies weist auf einen Phaseniibergang hin. Die Energiedichte
bei der kritischen Temperatur ist ~ 1 GeV/fm®, was etwa 10 mal gréBer als
die in einem Atomkern ist. Nach der Urknalltheorie (Big Bang) sollte ein
QGP im jungen Universum kurz nach der Explosion entstanden haben. Im
Labor wird Kernmaterie in hochenergetischen Kern-Kern-Kollisionen erhitzt
und komprimiert, so dafl man annimmt, daf§ die benotigte hohe Energiedichte
fiir einen Phaseniibergang erreicht werden kann. In den letzten 30 Jahren wur-
den mehrere Beschleunigerexperimente der Kern-Kern-Kollisionen konstruiert
und durchgefiihrt. Die Einschuflenergie steigt kontinuierlich von einer Exper-
imentgeneration zu der nachfolgenden. Die zur Zeit hoheste Energie betragt
V8 = 200 AGeV (im Schwerpunktsystem der kollidierenden Kerne) am Rela-
tivistic Heavy Ion Collider (RHIC) [RHIC 00] in den USA, der seit Jahr 2000
im Betrieb ist. Nach einer Abschétzung, die auf der Bjorken-Formel [B 83]
beruht, soll in der Anfangsphase der Kollision am RHIC eine Energiedichte
von ca. 20 — 30 GeV/fm? erreicht werden, die hoch genug ist, um ein QGP
zu erzeugen. QCD Voraussagen iiber neue Physik unter extremen Bedingun-
gen hoher Temperatur und Dichte konnen am RHIC gepruft werden. Experi-
mentelle Daten, die bisher analysiert worden sind, zeigen aufregende neuartige
Phanomene. Eines davon, elliptischer Fluf}, wird spater in dieser Zusammen-
fassung naher diskutiert. Ferner mochten wir erwahen, dafl in dem Zukunft-
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sprojekt am Large Hadron Collider (LHC) am CERN in der Schweiz die Kol-
liderenergie eine Ordnung hoher sein wird als die RHIC-Energie. Die Voraus-
setzung fiir die Erforschung des aufgelosten (deconfined) Zustands der QCD
Materie ist noch besser gegeben am LHC.

Stellen wir uns zuerst das Geschehen schematisch dar, das in einer Kern-
Kern-Kollision stattfinden konnte. Im ersten Moment nach der Kollision wer-
den Quarks und Gluonen, die ursprunlich in den Nukleonen eingesperrt sind,
befreit. Das System von strark welselwirkenden Quarks und Gluonen wird
schnell zum thermischen Gleichgewicht gefiithrt und ein QGP entsteht. Das
erzeugte QGP expandiert dann hydrodynamisch in Raum und Zeit bis die
Energiedichte oder Temperatur zu dem kritischen Punkt fallt. Dann beginnen
Quarks und Gluonen sich zu Hadronen zu kombinieren. Es wird eine gemischte
Phase geben, die aus Quarks, Gluonen und Hadronen besteht. Nach der Voll-
endung der Hadronisierung existiert ein Hadron-Gas, das weiter expandiert,
bis das System auseinander fillt und entkoppelt. Die einzelnen Teilchen wer-
den dann im Detektor registriert. Es zeigt sich, daf} eine Kern-Kern-Kollision
ein komplexer Prozel ist und ein QGP, wenn es existieren wiirde, nur als
ein temporarer Zustand der QCD Materie in der Kollision erscheinen wird.
Deswegen mufl die Suche nach QGP durch Analyse hadronischer und elek-
tromagnetischer Signaturen wie zum Beispiel die Erhéhung der Seltsamkeit,
J /v Unterdriickung oder Jet-Quenching [M 86, S 80, MR 82, KMR, 86, MS 86,
KM 81, KLS 91, G 90] erfolgen. Diese Effekte wiirden auftreten, wenn ein
thermisches System aus Quarks und Gluonen, ein QGP, vorliegt. Auf der
anderen Seite konnen die moglichen QGP-Signaturen auch teilweise aus der
hadronischen Phase der Kollision hervorgerufen werden [MSSG 89, GCG 98,
GL 01, GGJ 88, VPKH 88, GGBCM 99, GGX 03]. Um eine eindeutige Sig-
natur eines QGP to finden, sollte man nach neuartigen Phanomenen suchen,
die in der friheren Phase der Kollision entstehen konnen. Der sogenannte
elliptische Fluf} v, ist eine solche ‘frithe Signatur’ des QGP. In der folgenden
Darstellung

dN,  dN, 1
dpr-dyde — dpkdy T

(1+2v; cosgp+2vy cos2¢ + ---),

ist vo definiert als der zweite harmonische Koeffizient der Fourier-Entwicklung
in dem Azimutwinkel der gemessenen Hadronen-Verteilung. Der Parameter v
bezeichnet das Quadrupolmoment und wird daher nicht verschwinden, wenn
eine raumliche Anisotropie in der Reaktionszone vorliegt, die in einer nicht-
zentralen Kollision realisiert wird. Der Grund dafiir, daf3 der elliptische Fluf} vy
als eine ‘frithe Signatur’ des QGP gilt, ist folgender: Wenn ein QQGP mit hohem
Druck in einem nicht-zentralen Kern-Kern-Stof} erzeugt wird, existiert ein vom
Azimutwinkel abhangiger Druckgradient. Dieser driickt die Teilchen so, dafl
die raumliche Symmetrie wieder hergestellt wird. Dabei wird die anfingliche
raumliche Asymmetrie in die Impuls-Anisotropie der Teilchen transportiert.
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Dies soll in der Impulsabhangigkeit von v, beobachtet werden. Zweitens wird
vy hauptsachlich in den frithen Zeiten, d.h. in der Quark-Gluon-Phase, erzeugt,
weil die raumliche Asymmetrie zu diesen Zeiten am grofiten ist. Fig.1.1 zeigt
die Mefidaten von vy am RHIC fiir mehrere Hadronen [PHENIX 03, STAR 04]
im Vergleich zu den theoretischen Voraussagen, die auf den hydrodynamis-
chen Modellen [KHHH 01] beruhen. Die perfekten Ubereinstimmungen unter
1.5 GeV/c deuten auf eine frithe Herstellung des Drucks und eine schnelle
Thermalisierung des Systems von Quarks und Gluonen hin. Es zeigt ferner ein
stark wechselwirkendes (mit kleiner Viskositdt) QGP. Man kann auch sehen,
daf die gemessenen v, bei hohen pr saturieren, wahrend das hydrodynamische
Modell einen weiteren Anstieg voraussagt. Dies zeigt, dal das Verhalten der
Teilchen mit hohem pr nicht hydrodynamisch beschrieben werden kann.

Trotz des Erfolges bei den Voraussagen von elliptischem Flufl durch die
hydrodynamischen Modelle ist es wichtig zu wissen, ab welcher Zeit die hydro-
dynamische Annahme gilt. Dabei fragt man nach dem Zeitpunkt, zu dem das
Quark-Gluon-System sich vollstindig im thermodynamischen Gleichgewicht
befindet, da das primare System weit von jeglichem thermodynamischen Glei-
chgewicht entfernt ist. Um diese wichtige Frage zu beantworten, wurden
zahlreiche theoretische Studien mit der Anwendung der QCD durchgefiihrt,
die entweder auf der Relaxationsndherung [B 84, HW 96, W 96, Wo 96] oder
auf den 3+ 1 dimensionalen Monte Carlo Kaskadensimulationen [GM 92, Z 98,
MG 00, BMGMN 00, BMS 03] zur Losung der Boltzmann-Gleichung basieren.
Wihrend die Relaxationsndherung nur gilt, wenn sich das System nah an
dem Gleichgewicht befindet, eignet sich eine Monte Carlo Kaskadensimula-
tion fiir alle Situationen. Auch das hydrodynamische Verhalten eines ther-
mischen Zustands kann prinzipiell damit beschrieben werden. Es ist daher es-
sentiell, Kaskadensimulationen fiir die Beschreibung einer Kern-Kern-Kollision
anzuwenden, um eine quantitative Voraussage iiber den Zeitpunkt der Herstel-
lung des thermodynamischen Gleichgewichts and auch iiber das Verhalten der
weiteren Evolution des QGP zu erzielen. In dieser Dissertation entwickeln wir
eine neue Kaskadesimulation fiir ‘on-shell’ Partonen (Quarks und Gluonen),
die partonkinetische Evolution in einer energetischen Schwerionenreaktion un-
tersucht.

Zuerst werfen wir einen Riickblick auf die von anderen Gruppen entwick-
elten Parton-Kaskade-Modelle. Die erste Parton-Kaskade, VNI [GM 92], en-
twickelt von Geiger und Miiller, beschrieb die ‘off-shell’ Dynamik der Partonen
unter der Anwedung der storungstheoretischen Wirkungsquerschnitte der QCD
(pQCD) fiir die bindren 2 <» 2 Reaktionen und Emissions- und Absorption-
sprozesse 1 <> 2. Die Partonen propagieren nicht nur in der Raum-Zeit und im
Impulsraum sondern auch in ihrer Virtualitat, die den ‘off-shell’ Charakter des
Partons beschreibt. In ihrer Simulation fiir eine zentrale Au+Au Kollision mit
der RHIC-Energie fanden sie, daf§ ein thermisches QGP nach einer Zeit von



164 Deutsche Zusammenfassung

7 & 1.8 fm/c formiert wird [G 92]. Das potentielle hydrodynamische Verhalten
in der weiteren Parton-Evolution wurde aber nicht demonstriert. Auflerdem
ist ihre konzeptionelle Formulierung der ‘off-shell’ Propagation nicht klar vom
Standpunkt der Quantenkinetik. Vor kurzem haben Molnar and Gyulassy
die Erzeugung des elliptischen Flules am RHIC [MG 02] mit der Anwendung
ihrer on-shell Parton-Kaskade, MPC [MG 00] (eine verbesserte Version von
ZPC [Z 98]), untersucht. Dabei wurden nur die bindren elastischen Reak-
tionen eingefithrt. In ihrer Analyse kann der frithe Druck nur ausgebildet
werden, wenn ein viel groflerer als pQCD motivierter Wirkungsquerschnitt be-
nutzt wird. Auflerdem ist bekannt [SS 01], daf die elastischen gg <> gg St68e
allein nicht in der Lage sein werden, das System zum thermodynamischen
Gleichgewicht zu fiihren. Dies wiirde bedeuten, daf3 das kollektive Fluiverhal-
ten, das am RHIC beobachtet wurde, nicht durch pQCD beschrieben werden
konnte. Auf der anderen Seite spielen die inelastischen Reaktionen die entschei-
dende Rolle im Bild der sogenannten ‘bottom-up’ Aquilibrierung [BMSS 01].
Es ist anschaulich klar, dafl die inelastischen Reaktionen nicht nur fiir das
chemische Gleichgewicht [BDMTW 93] verantwortlich sind, sondern auch zu
einer schnellen kinetischen Aquilibrierung [XS 94, BV 01] beitragen. Dies gibt
uns eine (aber nicht alle) wichtige Motivation, einen konsistenten Algorithmus
zur Simulation der Stofiprozesse zu entwickeln, der auch fiir die inelastischen
Reaktionen wie 2 < 3 geeignet ist.

Eine weitere Motivation fiir die Entwicklung einer neuen Parton-Kaskade
inklusive gg <> ggg Prozesse besteht darin, dafl in den meisten bisher entwick-
elten Kaskaden der Wirkungsquerschnitt der elastischen Stoe geometrisch in-
terpretiert wird, und es unheimlich schwierig ist, dieses Konzept auf die Be-
handlung eines 3 — 2 Stofles zu iibertragen. Das ist auch der Grund, warum
die Rolle der gg <+ ggg Prozesse in der thermischen Aqulhbrlerung bisher noch
nicht quantitativ untersucht werden kann. Die Entwicklung eines konsistenten
Algorithmus’ inklusive 2 <> 3 Prozesse stellt eine Herausforderung dar und
bildet den technischen Teil der vorliegenden Arbeit.

In Kapitel 2 wird ein neuer Algorithmus, insbesondere geeignet fiir die
Behandlung der 2 <+ 3 Prozesse, vorgestellt. Dieser Algorithmus wurde in
[B 89, L 93] fiir 2 — 2 StoéBe vorgeschlagen und in [DB 91, C 02] auch fiir
bestimmte, aber nicht allgemeine, 2 <+ 3 Prozesse benutzt. Anders als die
geometrische Interpretation des Wirkungsquerschnitts, bindet dieser Algorith-
mus direkt an die Reaktionsrate und beschreibt den Vorgang der St688e in einer
stochastischen Art und Weise: Man bestimmt die individuellen Reaktionen im
Subvolumen und in einem Zeitschritt durch Wiirfelung nach der entsprechen-
den Reaktionswahrscheinlichkeit. In diesem Kapitel wird dieser stochastische
Algorithmus verallgemeinert. Das funktioniert nun fiir alle Ubergangsmatrlx-
elemente ohne jegliche Naherungen. Auch der iibliche geometrische Algorith-
mus wird in diesem Kapitel zum Vergleich mit dem stochastischen Algorithmus
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prasentiert.

Eine besondere Eigenschaft der neuen Parton-Kaskade mit der Anwen-
dung des stochastischen Algorithmus’ liegt darin, daf§ der Raum in die Sub-
volumina zerlegt wird, in denen die Wiirfelungen der Stoflereignisse erfolgen.
Dieses in der Praxis nicht verschwindende Subvolumen bricht die absolute
Lorentz-Invarianz der Boltzmann-Gleichung und wird zu der méglichen Frame-
abhingigkeit der Observable fithren. In Kapitel 3 wird die Frameabhangigkeit
fiir den Fall einer eindimensionalen Bjorken-Typ Expansion eines Systems mit
hoher Dichte in einem Rohr untersucht. Man stellt fest, daf§ fiir hinreichend
kleines Subvolumen die Frameabhingigkeit der Observable minimal ist, und
die Konvergenz zur exakten Losung der Boltzmann-Gleichung viel schneller
erfolgt wird in der Simulation mit der Anwendnung des stochastischen Al-
gorithmus’ als die in der Simulation mit der Anwendnung des geometrischen
Algorithmus’. Dies zeigt, dafl der stochastische Algorithmus besonders fiir die
Beschreibung dynamischer Entwicklung des Systems mit hoher Dichte geeignet
ist.

Nach detaillierten Testen des neuen Stofi-Algorithmus’ konstruieren wir
eine neue Parton-Kaskade zur Beschreibung der Parton-Evolution am RHIC
inklusive gg <> gg und gg <> ggg Reaktionen, wobei die inelastischen pQCD
Prozesse erstmalig in die Simulation eingefiihrt wurden. Die Anfangsbedin-
gung der primaren Partonen wird durch die sogenannte ‘Minijets’-Produktion
aus semi-harten binaren Nukleon-Nukleon-Streuungen bestimmt. Details tiber
die ‘Minijets’-Produktion findet man in Kaptel 4. Als erste Anwendnung
der neuen Parton-Kaskade wird in Kapitel 5 die thermische Aquilibrieung in
einer Box simuliert. Man stellt fest, dal das chemische Gleichgewicht auch
fiir die komplizierten Bremsstrahlungsprozesse gg <> ggg mit dem Landau-
Pomeranchuck-Migdal Effekt erreicht wird. Dies zeigt die korrekte Operation
der neuen Kaskade.

Wir zeigen die numerischen Ergebnisse aus den Simulationen der Parton-
Evolution am RHIC in Kapitel 6. In der Studie wird die Dynaymik von Quarks
nicht beriicksichtigt. Die Hauptresultate sind unten kurz zusammengefafit.

1.) Mit den Minijets, deren transversaler Impuls grofler als py = 2 GeV ist,
als Anfangsbedingung, ist das primare System nicht im Gleichgewicht. Nach
einer Zeit von 2 fm/c erreicht das Gluon-System im Zentrum der Kollision
das kinetische Gleichgewicht und expandiert hydrodynamisch weiter. Da die
primaren Gluonen untersaturiert sind, sinkt die Temperatur nicht nur wegen
der hydrodynamischen Expansion sondern auch wegen der Gluonen-Emission.
Vollstandiges chemisches Gleichgewicht folgt nach einer langeren Zeit von 3 —4
fm/c. Vom Kollisionszentrum weg, in die transversale Richtung innerhalb des
Radius’ des Goldkerns werden die Aquilibrierungen bis zum 15% verlangsamt.
Auflerhalb des Radius’ des Goldkerns stammen die Gluonen meistens aus der
Oberflache des Feuerballs und sind frei von der starken Welchselwirkung. Wir
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haben gesehen, daf} die transversale Energie in der Mittelrapiditit ca. 1.7-fach
gesunken ist. Dies ist ein starker Hinweis auf eine frihe Herstellung des Drucks
am RHIC.

2.) Die einzelnen Beitrége der elastischen und inelastischen Reaktionen zur
Herstellung des kinetischen Gleichgewichts werden untersucht. Man stellt fest,
daf die inelastischen Stofle die wesentlichen verantwortlichen Prozesse sind, die
das System ins Gleichgewicht treiben. Ohne die inelastischen Kanile kann das
kollektive Verhalten am RHIC nicht erzeugt werden, auler man nimmt einen
unrealistisch grofleren Wirkungsquerschnitt an.

3.) Simulationen mit kleinerem Schnittpunkt p, fiir die Minijets-Produktion
werden durchgefiithrt. Mit sinkendem pg steigt die Anzahl der priméren Glu-
onen, so daf} ein immer dichteres System vorliegt. Man findet heraus, daf} in
der Simulation mit kleinerem py, = 1.3 — 1.5 GeV eine schnellere kinetische
Aquilibrierung nach einer Zeit von 1 — 2 fm/c stattfindet. Fiir solche kleine
pos wird das chemische Gleichgewicht fast von Anfang an herstellt. Man sieht
auch eine starkere Abnahme der transversalen Energie in der Mittelrapditat
mit kleinerem py. Dies deutet auf eine stiarkere und langere hydrodynamische
Expansion in der Simulation mit kleinerem py; hin. Wenn man den Endwert
der transversalen Energie per Rapiditat mit den experimentellen Daten vergle-
icht, findet man, dafl die Minijets-Produktion mit py = 1.4 GeV eine passende
Anfangsbedingung nach einer Au+Au Kollision am RHIC darstellt.

4.) Eine Anfangsbedingung aus sogenanntem ‘Color Glass Condensate’ am
RHIC wird angenommen. Im Vergleich mit der Rechnung in [BV 01], wo nur
elastische Stofle beriicksichtigt wurden, findet eine viel schnellere thermische
Aquilibrierung von Gluonen in unserer Simulation nach ca. 1.5 — 2 fm/c statt.

Als Ausblick nennen wir einige interessante Fragestellungen, die wir weiter
untersuchen wollen. Als erstes wollen wir die Erzeugung des elliptischen Flufes
V9 in einer semi-zentralen Kern-Kern-Kollision verstehen. Der Hinweis einer
relativ schnellen Herstellung des Gleichgewichts des Systems von Quarks und
Gluonen, was ein Hauptergebnis der vorliegenden Arbeit ist, signalisiert, dafl
das Anwachsen von v, auch durch den Einschluf} der inelastischen Reaktionen
erfolgen kann. Zweitens, wenn das Parton-System thermalisiert, entwickelt
sich dieses hydrodynamisch in Raum und Zeit. Dieses Verhalten wird im all-
gemeinen durch die Viskos-Hydrodynamik beschrieben. Es ist interessant, die
Kaskaden-Simulation mit dem Resultat aus der Viskos-Hydrodynamik zu ver-
gleichen. Dann weifl man, wie viskos das QGP am RHIC sein wird. Auflerdem
kann das Phinomen von Jet-Quenching, der Energieverlust der Partonen durch
Bremsstrahlung, mit der Anwendung der neuen Parton-Kaskade systematisch
untersucht werden. Im Bild der ‘bottom-up’ Aquilibrierung [BMSS 01] gaben
die Autoren eine parametrische Zeitskala der vollstindigen Thermalisierung
von 7 ~ a;/5Q7! an, wenn ein Color Glass Condensate als Anfangsbe-
dingung bei einer Kern-Kern-Kollision mit sehr hoher Energie angenommen
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wird. Dabei ist ()5 die Skala fiir die Gluonen-Sattigung. Es ist auch interes-
sant, dieses parametrische Verhalten der Aquilibrierung mit Hilfe der neuen
Kaskade zu iiberpriifen. Ferner konnen die Dynamik von Quarks und Hadro-
nisierungsprozesse in die Simulation einbezogen werden.
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