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Chapter 1

Introduction

Recent progress in elementary particle and high-energy nuclear physics is closely linked
to the successes of the PHENIX and STAR experiments at the Relativistic Heavy-Ion
Collider (RHIC) and the ALICE experiment at the Large Hadron Collider (LHC).
Some fundamental discoveries were made in the experiment already: a new decon-
fined state of matter of highest ever reached energy-densities has being created. The
current investigations at RHIC and LHC are devoted to the properties of deconfined
QCD matter at very high temperatures and almost zero net baryon densities. On the
other hand the CBM and PANDA at the Facility for Antiproton and Ion Research
(FAIR); NA61 at the SPS Heavy-Ion and Neutrino Experiment (SHINE); MPD at the
Nuclotron-based Ion Collider Facility (NICA) and the Beam-Energy Scan program at
RHIC will study matter at high net baryon density and moderate temperature. The
LHC is now providing collisions to all of its experiments at the unprecedented energy
of 13 TeV, opening the way to new discoveries.

The Nuclear Physics European Collaboration Committee (NuPECC) have stated
in their Long Range Plan for nuclear physics research in Europe:

“The focus of the research in the ultra-relativistic energy regime is to
study and understand how collective phenomena and macroscopic proper-
ties, involving many degrees of freedom, emerge from the microscopic laws
of elementary particle-physics. ... The most striking case of a collective
bulk phenomenon predicted by QCD is the occurrence of a phase transition
to a deconfined chirally symmetric state, the quark gluon plasma (QGP).”

A joint effort of the experimental Collaborations and theoretical groups have uncovered
some surprising properties of the produced QGP: a low viscosity, high opacity to
energetic jets and apparently a fast (local) equilibration.

Some of the observables that indicated that the deconfinement transition has been
reached in nuclear collisions at CERN and at RHIC were the jet suppression, strong
elliptic flow v2 and the suppression and regeneration pattern of the charmonia. Within
the Hadron-String Dynamics (HSD) transport approach [1], we studied the suppres-
sion pattern of charmonia at RHIC with respect to centrality and rapidity employing
various model concepts such as variants of the “comover absorption” model or the
“charmonium melting” scenario. We find that especially the ratio of the forward to
mid-rapidity nuclear modification factors of J/Ψ (Rforward

AA (J/Ψ)/Rmid
AA (J/Ψ)) cannot

1



CHAPTER 1. INTRODUCTION 2

be explained by the interactions with formed comoving mesons or by the color screen-
ing mechanism alone. Only when incorporating interactions of the c or c̄ quark with a
pre-hadronic medium is satisfactory agreement with the measurements are obtained.

While the last years have been devoted to explore the collective and transport prop-
erties of this partonic medium, the present focus lies on the electromagnetic emissivity
of the new type of matter, i.e. its emission of direct photons or dilepton pairs. Conse-
quently, our current goal has been to examine the dynamics of the QGP production and
hadronization by investigating the emitted real and virtual photons, where the latter
decay into dilepton pairs. This is done by modelling the equilibrating and hadronizing
QCD matter and simultaneously calculating the characteristic photon radiation from
it. This subject area is of high relevance, because understanding the matter in the
early stage of the collision has the potential to access such novel phenomena as gluon
condensation, influence of the strong electromagnetic fields, emergence of the dressed
quarks and gluons from the perturbative ones.

The measurements of real and virtual photons constitute essential parts of the
physics programs of most of the listed experiments. The photons interact only elec-
tromagnetically and thus escape to the detector undistorted through the dense and
strongly-interacting matter, thus the information on the properties of the initially
produced medium survives and can be observed.

The real and virtual photon spectra and elliptic flow v2 reflect the properties of
the hot QCD matter produced. Analyzing the slope of the direct photons transverse
momentum spectrum (at pT < 3 GeV), it was deduced that the temperature of the
produced matter at RHIC is the highest man-made temperature ever1. In nature, such
extreme conditions existed only for a short time approximately 6-10 milliseconds after
the Big Bang.

The low-pT direct photons probe not only the temperature [2–4] of the produced
QCD-matter, but also its (transport) properties, for instance, the shear viscosity η,
bulk viscosity ζ and electric conductivity σ0. Using the direct photon elliptic flow v2
(a measure of the azimuthal asymmetry in the photon distribution) as a viscometer
was first suggested in Refs. [2, 5–8]. The photon spectra and v2 are also sensitive to
the equation of state of the produced matter [9, 10], to the possible production of a
Glasma [11–13], to the rate of chemical equilibration in the QGP [14–16] and to the
asymmetry induced by the strong magnetic field (flash) in the very early stage of the
collision [17–19].

On the other hand, the measured photons provide a time-integrated picture of the
the heavy-ion collision dynamics and are emitted by every moving charge – partons
and hadrons. Therefore, a multitude of photon sources has to be differentiated in
order to access the signal of interest. The dominant contributions to the inclusive
photon production are the decays of mesons, mainly pions, η- and ω-mesons. The
PHENIX, STAR and ALICE Collaborations subtracted the decay photons from the
inclusive photon spectrum using cocktail calculations to obtain the direct photons.

However, theoretical understanding of the measured direct photon elliptic flow
has been challenging. The PHENIX Collaboration [3] observed large elliptic flow

1Note however that the slope parameter extracted from the photon transverse momentum spec-
trum is not in direct proportionality to the initially reached temperature and is subject to the blue
shift due to the Doppler effect.
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v2(pT ) of direct photons at pT < 3 GeV produced in minimal bias Au+Au collisions
at

√
sNN = 200 GeV, almost as large as the v2 of the produced pions, which was in

contrast to the theoretical expectations and predictions. Indeed, the photons produced
by partonic interactions in the quark-gluon plasma phase are not expected to show
considerable flow, because they are dominated by the emission in the initial phase
before the elliptic flow fully develops. The PHENIX measurement initiated broad
theoretical efforts to understand the origins of the large direct photon v2.

We contributed to clarifying this question in the present works. Using the derived
non-perturbative cross sections for photon (and dilepton) production in the strongly-
interacting QGP, we calculated the direct photon production in heavy-ion collisions.
We have studied the transverse momentum spectrum and the elliptic flow v2 of photons
from hadronic and partonic production channels in Au+Au collisions at

√
sNN =

200 GeV in Refs. [20–22].

In this respect, the preliminary data of the ALICE Collaboration [23] are of great
interest, since they also indicate a significant direct photon signal at low pT with a
large elliptic flow. This implies an agreement with the findings at the about 14 times
lower collision energy by PHENIX at RHIC. We addressed the spectra and elliptic
flow of direct photon produced in the Pb+Pb collisions at

√
sNN = 2.76 TeV within

the same model as applied at RHIC energy.

Microscopic description of the collision evolution was done using the covariant off-
shell transport Parton-Hadron-String Dynamics (PHSD) [24]. The degrees of freedom
in the partonic and hadronic phases are the strongly interacting dynamical quasi-
particles and off-shell hadrons, respectively. This approach describes the evolution of
a relativistic heavy-ion collision from the initial hard scatterings and string formation,
through the dynamical deconfinement phase transition to the quark-gluon plasma as
well as hadronization, to the subsequent interactions in the hadronic phase.

The transport properties of the QCD matter in the vicinity of the phase transition
temperature are not known with high precision from the first principles lattice QCD
calculations yet. We have studied QCD matter in the process of its equilibration by
doing the calculations in the box using the PHSD transport model. Thus we have cal-
culated the electric conductivity, sheer and bulk viscosities, and the rate of chemical
and thermal equilibration of the hot QCD matter. We have calculated the trans-
port coefficients of the QCD matter at temperatures 0.7Tc – 3 Tc by performing the
simulations within the PHSD approach in the box with periodic boundary conditions.

It was shown that the PHSD approach describes the various hadron abundances,
their longitudinal rapidity distributions, as well as transverse momentum distributions
from lower SPS to LHC energies. Also, the elliptic flow v2(pT ) is in accordance with
the experimental observations. This allowed us to explore the dynamics of rare probes
by implementing their production into the environment of the PHSD, which provides
the time evolution of a relativistic heavy-ion collision.

As sources for photon production, we have incorporated the interactions of off-shell
quarks and gluons in the strongly interacting quark-gluon plasma (sQGP) (q + q̄ →
g + γ and q(q̄) + g → q(q̄) + γ), the decays of hadrons (π → γ + γ, η → γ + γ,
ω → π + γ, η′ → ρ + γ, ϕ → η + γ, a1 → π + γ) as well as their interactions
π+π → ρ+γ, ρ+π → π+γ, meson-meson bremsstrahlung m+m→ m+m+γ from
all elastic meson-meson and meson-baryon scatterings m1 +m2 that occur during the
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heavy-ion collisions (including mi = π, η,K, K̄,K0, K∗, K̄∗, K∗0, η′, ω, ρ, ϕ, a1), meson-
baryon bremsstrahlung (m+B → m+B + γ), the two-to-two vector meson+nucleon
interactions (V +p→ γ+p/n and V +n→ γ+p/n) and the decay of the ∆-resonance
∆ → Nγ.

Dilepton radiation by the constituents of the strongly interacting QGP proceeds
mainly via following elementary processes: the Born q + q̄ → γ∗. annihilation mech-
anism, gluon Compton scattering (q + g → γ∗ + q and q̄ + g → γ∗ + q̄), and quark-
antiquark annihilation with the gluon bremsstrahlung in the final state (q+q̄ → g+γ∗).
The real photon radiation proceeds via the diagrams q+g → γ+q, q̄+g → γ+ q̄) and
q + q̄ → g + γ. In the on-shell approximation, one would use well-known perturbative
QCD cross sections for the processes listed above. However, in the strongly interact-
ing QGP the gluon and quark propagators differ significantly from the non-interacting
propagators. Early concepts of the QGP were guided by the idea of a system of par-
tons which interact weakly and relied on perturbative formulae for their interaction
cross sections. But the experimental observations at RHIC have shown that the new
medium created in ultra-relativistic Au+Au collisions was interacting stronger than
hadronic matter. Moreover, the medium showed phenomena of an almost perfect liq-
uid of partons as extracted from the strong radial expansion and elliptic flow of final
hadrons. Consequently, the concept of perturbatively interacting quarks and gluons
with almost vanishing masses as constituents of the QGP had to be given up. Rather,
the non-perturbative, dressed particle states with massive poles in the propagator and
a finite lifetime are probably the relevant degrees-of-freedom in the strongly interacting
QGP (sQGP).

In order to account for the non-perturbative effects in the photon and dilepton pro-
duction from the QGP, we calculated cross sections for dilepton production by off-shell
partons using phenomenological parametrizations for the quark and gluon propagators
as extracted from the lattice QCD (lQCD) calculation within the dynamical quasipar-
ticle model (DQPM). We have shown that the finite quark and gluon masses modify
the magnitude as well as the mass M and transverse momentum pT dependence of the
cross sections compared to the perturbative results for massless partons.

The modifications to the dilepton production are larger at lower M2 and at the
edges of the phase space. It was shown that the most prominent effect of the quark
masses on the dimuon production cross sections in the Born mechanism (q + q̄ → γ∗)
was a sharp threshold value for the invariant mass of the dilepton pair Mmin = mq1 +
mq2. We took into account the finite width of the quasiparticles by convoluting the
off-shell cross sections with phenomenological spectral functions A(mq) and A(mg) for
the quarks and gluons in the quark-gluon plasma, respectively. A finite parton width
parametrizes their interactions through multiple scatterings and decays. Of course,
the threshold was smeared out after the integration over the quark mass distributions
(spectra functions). But the suppression at M → 0 (in comparison to the leading
order pQCD result) remained.

In addition, the finite masses of the quark and antiquark produce additional higher-
twist corrections to the cross section, which decrease with increasing M2, so that the
off-shell cross sections approach the on-shell result in the limit of high dilepton masses.
We performed an analogous comparison to the leading twist results for the 2 → 2
processes q + q̄ → γ + g and q + g → γ + q. We found that for these processes the
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maximum dilepton mass shifts to a lower value as a result of producing a massive gluon
or quark in the final state. For the rest of the M values, the effect of the quark and
gluon masses was approx. 50%. Formq/g → 0, the cross section approaches the leading
twist perturbative QCD result. We have applied the method to calculate dilepton
and photon production by dynamical quasi-particles in equilibrated QGP to obtain
the emission rates at fixed temperatures. On the other hand, we have implemented
these cross sections into the PHSD transport code, which can be applied also out of
equilibrium, in particular, to the evolution of the heavy-ion collision.

Our calculations reproduced the transverse momentum spectrum of direct photons.
We have shown that the partonic channels constitute about a half of the observed
direct photon spectrum. Other theoretical calculations also identified a significant
contribution of the photons produced in the QGP to the direct photon spectrum
[2, 6, 7, 25–27]. In our work, the photons produced by partonic interactions in the
quark-gluon plasma phase were found to show small elliptic flow v2, because they
are dominated by the emission in the initial phase before the spacial asymmetry of
the non-central collision geometry fully transforms into the momentum anisotropy.
On the other hand, our calculations [20–22] reproduced the recent measurement of
the PHENIX Collaboration on elliptic flow v2(pT ) of direct photons. We attribute
the strong v2 of direct photons to hadronic channels, i.e. to mesonic and baryonic
reactions. The strong v2 of the parent hadrons, in turn, stems from the interactions
in the QGP. Accordingly, the presence of the QGP shows up indirectly in the direct
photon elliptic flow.

The photon production via bremsstrahlung in meson-meson and meson-baryon
elastic collisions was found to be a very important source to interpret the data on
the direct photon spectra and elliptic flow simultaneously [20, 21]. In view of the im-
portance of questions that can be answered by direct photon measurements, we have
further improved the implementation of the photon production in the meson+meson
bremsstrahlung channels in Ref. [22]. We departed from the assumption of the soft pho-
ton approximation. Instead, we derived and implemented the “exact” bremsstrahlung
cross sections within a covariant one-boson-exchange (OBE) chiral model. Addition-
ally, we investigated in Ref. [22] the suppression of the low-energy photons due to the
coherence of the photon emission with long wavelength (LPM effect).

Next, we investigated the centrality dependence of the thermal photon yield and
suggested that it scales with the number of participating nucleons as Npart in the power
α = 1.5. This turned out to be in a good agreement with the most recent estimate of
α = 1.48± 0.08± 0.04 by the PHENIX Collaboration.

We have also investigated the virtual photon production in relativistic A+ A col-
lisions. Measuring virtual photons decaying into the dilepton pairs is a direct way
compliment the real photon measurements. The invariant mass spectrum of the dilep-
tons dN/dM is invariant with respect to the observer’s frame of reference; it is free from
the Doppler-corrections. Another advantage of the virtual photons (measured through
the dileptons) in comparison to the real γ is the possibility to separate the different
production mechanisms by the additional degree-of-freedom: the photon virtuality, i.e.
the dilepton invariant mass squared M2. Investigating the yield of dileptons differ-
entially in the transverse momentum pT and M2 allows to dial particular production
sources and times. The early production (the Drell-Yan process) dominates spectra
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at high-M M > 4 GeV; low-M emission is dominated by hadron decays; the dilepton
yield in the vicinity of M = 770 MeV gives information on the properties of the rho
meson in medium; and the peaks at the masses of the charmonia can be used to study
their broadening, melting and reproduction in the produced matter (for a review of
the open and hidden charm production see our review). Short-lived neutral vector
mesons are promising probes of in-medium effects. The modification of the meson
spectral functions might be related to the expected dramatic changes of the QCD vac-
uum properties at high temperature and density, leading to the restoration of chiral
symmetry. The radiation from the QGP is present in the wide range of masses M,
but it is most prominent between the hadronic peaks, with the main competing source
being the semi-leptonic decays of the heavy D and B mesons.

We have calculated the spectra of di-muons produced in In + In collisions at the
incident energy 158 A GeV and compared to the NA60 data. We recall that the earlier
works of Bratkovskaya et al., Dusling et al. and Rapp et al. have shown that the NA60
dilepton data signalled the in-medium modification of the ρ meson according to the
“melting” scenario. We confirmed the result that the spectrum at invariant masses
in the vicinity of the ρ peak was better reproduced, if a broadening of its spectral
function in the medium was taken into account.

On the other hand, the spectrum at M > 1 GeV was shown to be dominated by
partonic sources. By incorporating additional multi-meson reaction channels into the
PHSD [24, 28], we have clarified the question of whether the dilepton yield at masses
above 1 GeV can be accounted for by the dilepton emission in the hadronic interac-
tions, dubbed “4π”-channels. Our conclusions within the non-equilibrium relativistic
transport approach is that the dilepton spectra at M > 1 GeV is clearly dominated
by the radiation from the QGP.

The inclusion of the partonic dilepton sources also made it possible to reproduce in
the PHSD the effective temperature or the inverse slope parameter of the transverse
momentum spectrum of dileptons in the intermediate-mass region.

Furthermore, we were among the first to point out that dileptons of low masses
(M < 0.6 GeV) have a sizable contribution from partonic processes particularly,
the quark annihilation with gluon bremsstrahlung in the final state. This provides
another possible window for probing the properties of the sQGP. This conclusion was
later shared by Rapp and collaborators.

In extension of our original study of the heavy-ion collisions at the SPS energy
Elab=158 A GeV, we addressed dilepton production in the Au+Au collisions at√
sNN = 200 GeV and in the Pb+Pb collisions at the LHC energy of

√
sNN = 2.76 TeV

within the same approach. Similar to our findings at lower energy, we found that at
the RHIC and LHC the partonic dilepton production channels are visible for the inter-
mediate dilepton massed between the ρ and J/Ψ peaks. Their contribution is about as
large as that of the correlated D-meson decays. Surprisingly, the dilepton yield from
the dynamical – equilibrating and expanding – QGP appears to be exponential in mass
from 1 to 2.5 GeV so that a tempting interpretation might appear to be the thermal
radiation. On the other hand, our studies of the infinite QCD matter equilibration
using the PHSD approach have shown that kinetic and chemical equilibrium might
not be achieved on the partonic level in heavy-ion collisions at the top RHIC energies.

Finally, we provided predictions for the dilepton measurements in the conditions
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of the STAR experiment, which happen to be in a good agreement with the recently
released data from the STAR Collaboration. The recently released PHENIX data
obtained with the Hadron-Blind-Detector are also in agreement with our dilepton
calculations at all M .
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Transport description of the
heavy-ion collisions:
Parton-Hadron-String Dynamics

The Parton-Hadron-String-Dynamics approach is a microscopic covariant transport
model that incorporates effective partonic as well as hadronic degrees-of-freedom and
involves a dynamical description of the hadronization process from partonic to hadronic
matter. Whereas the hadronic part is essentially equivalent to the conventional HSD
approach [1, 29] the partonic dynamics is based on the Dynamical Quasiparticle Model
[30–33] which describes QCD properties in terms of single-particle Green’s functions.
With the (essentially three) DQPM parameters for the temperature-dependent effec-
tive coupling (2.2) fixed by lattice QCD results – as described later in this Chapter –
the approach is fully defined in the partonic phase.

PHSD in the partonic phase gives approximately the same dynamics as the DQPM
for partonic systems in equilibrium but also contains interacting hadrons and a dy-
namical transition between hadronic and partonic degrees-of-freedom. This approach
that can also be employed for systems out of equilibrium – such as heavy-ion collisions.

One might ask whether the quasiparticle properties – fixed in thermal equilibrium
– should be appropriate also for the nonequilibrium configurations. This question
is nontrivial and can only be answered by detailed investigations e.g. on the basis
of Kadanoff-Baym equations. We recall that such studies have been summarized in
Ref. [34] for strongly interacting scalar fields that initially are far off-equilibrium and
simulate momentum distributions of colliding systems at high relative momentum. The
results for the effective parameters M and γ, which correspond to the time-dependent
pole mass and width of the propagator, indicate that the quasiparticle properties -
except for the very early off-equilibrium configuration - are close to the equilibrium
mass and width even though the phase-space distribution of the particles is far from
equilibrium (cf. Figs. 8 to 10 in Ref. [34]). Accordingly, we will adopt the equilib-
rium quasiparticle properties also for phase-space configurations out of equilibrium as
appearing in relativistic heavy-ion collisions. The reader has to keep in mind that this
approximation is well motivated, however, not fully equivalent to the exact solution.

On the hadronic side PHSD includes explicitly the baryon octet and decouplet,
the 0−- and 1−-meson nonets as well as selected higher resonances as in HSD [1, 29].

9
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Hadrons of higher masses (> 1.5 GeV in case of baryons and > 1.3 GeV in case
of mesons) are treated as ’strings’ (color-dipoles) that decay to the known (low-mass)
hadrons according to the JETSET algorithm [35]. We discard an explicit recapitulation
of the string formation and decay and refer the reader to the original work [35].

2.1 Dynamical quasiparticle model for hot QCD

Early concepts of the Quark-Gluon-Plasma (QGP) were guided by the idea of a
weakly interacting system of massless partons which might be described by pertur-
bative QCD (pQCD). However, experimental observations at RHIC indicated that the
new medium created in ultra-relativistic Au+Au collisions is interacting more strongly
than hadronic matter. It is presently widely accepted that this medium is an almost
perfect liquid of partons as extracted experimentally from the strong radial expansion
and the scaling of the elliptic flow v2(pT ) of mesons and baryons with the number of
constituent quarks and antiquarks. At vanishing quark chemical potential µq the QCD
problem can be addressed at zero and finite temperature by lattice QCD calculations
on a 3+1 dimensional torus with a suitable discretization of the QCD action on the
euclidian lattice. These calculations so far have provided valuable information on the
QCD equation of state, chiral symmetry restoration and various correlators that can
be attributed/related to transport coefficients. Due to the Fermion ’sign’-problem
lQCD calculations at finite µq are presently not robust and one has to rely on non-
perturbative - but effective - models to obtain information in the (T , µq) plane or for
systems out-off equilibrium.

A consistent dynamical approach for the description of strongly interacting systems
- also out of equilibrium - can be formulated on the basis of Kadanoff-Baym (KB)
equations or off-shell transport equations in phase-space representation, respectively.
In the KB theory the field quanta are described in terms of dressed propagators with
complex selfenergies [34]. Whereas the real part of the selfenergies can be related to
mean-field potentials (of Lorentz scalar, vector or tensor type), the imaginary parts
provide information about the lifetime and/or reaction rates of time-like ’particles’.
Once the proper (complex) selfenergies of the degrees-of-freedom are known, the time
evolution of the system is fully governed by off-shell transport equations (cf. Chapter
2). The determination/extraction of complex selfenergies for the partonic degrees-
of-freedom can be performed within the Dynamical QuasiParticle Model (DQPM)
by fitting lattice QCD calculations in thermal equilibrium. The DQPM postulates
retarded propagators of the quark and gluon degrees-of-freedom in the form

GR(ω,p) =
1

ω2 − p2 −M2 + 2iγω
(2.1)

using ω = p0. In the scope of the DQPM the running coupling (squared) is approxi-
mated by

g2(T/Tc) =
48π2

(11Nc − 2Nf ) ln[λ2(T/Tc − Ts/Tc)2]
, (2.2)

where the parameters λ ≈ 2.42 and Ts/Tc ≈ 0.56 have to be extracted from a fit
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to the lattice data. In Eq. (2.2), Nc = 3 stands for the number of colors, Tc is the
critical temperature (≈ 158 MeV), while Nf (= 3) denotes the number of flavors. The
parameter Ts is essentially important for the infrared enhancement of the coupling at
low temperature T . It has been demonstrated in Ref. [30] that this functional form for
the strong coupling αs = g2/(4π) is in accordance with the lQCD calculations of the
Bielefeld group for the long range part of the q− q̄ potential. Furthermore, it matches
the hard-thermal-loop (HTL) limit for high temperatures T .

The dynamical quasiparticle mass (for gluons and quarks) is assumed to be given
by the HTL thermal mass in the asymptotic high-momentum regime, i.e. for gluons

M2
g (T ) =

g2

6

((
Nc +

1

2
Nf

)
T 2 +

Nc

2

∑
q

µ2
q

π2

)
, (2.3)

and for quarks (antiquarks)

M2
q(q̄)(T ) =

N2
c − 1

8Nc

g2
(
T 2 +

µ2
q

π2

)
, (2.4)

but with the coupling given in Eq. (2.2). The effective quarks, antiquarks and gluons
in the DQPM have finite widths, which for µq = 0 are adopted in the form

γg(T ) =
1

3
Nc
g2T

8π
ln

(
2c

g2
+ 1

)
, γq(q̄)(T ) =

1

3

N2
c − 1

2Nc

g2T

8π
ln

(
2c

g2
+ 1

)
, (2.5)

where c = 14.4 is related to a magnetic cut-off, which is one of the parameters of the
DQPM.

The physical processes contributing to the width γg are both gg ↔ gg, gq ↔ gq
scattering as well as splitting and fusion reactions gg ↔ g, gg ↔ ggg, ggg ↔ gggg
or g ↔ qq̄ etc. On the fermion side elastic fermion-fermion scattering pp ↔ pp,
where p stands for a quark q or antiquark q̄, fermion-gluon scattering pg ↔ pg, gluon
bremsstrahlung pp ↔ pp + g or quark-antiquark fusion qq̄ ↔ g etc. emerge. Note,
however, that the explicit form of (2.5) is derived for hard two-body scatterings only.

Spectral functions

In the DQPM the parton spectral functions are no longer δ-functions in the invariant
mass squared but taken as (cf. Eq. (2.50) in Chapter 2)

ρj(ω,p) =
γj
2Ej

(
1

(ω − Ej)2 + γ2j
− 1

(ω + Ej)2 + γ2j

)
(2.6)

separately for quarks, antiquarks and gluons (j = q, q̄, g). Here E2
j (p

2) = p2+M2
j −γ2j ,

where the parameters γj,Mj from the DQPM have been described above. The spectral
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Figure 2.1: (l.h.s.) The effective gluon massMg and width γg as function of the scaled
temperature T/Tc (upper red lines). The lower blue lines show the corresponding
quantities for quarks. (r.h.s.) The scaled entropy density s(T )/T 3 (upper blue line)
and scaled energy density ϵ(T )/T 4 (lower red line) from the DQPM in comparison to
the lQCD results from the BMW group (full dots and triangles) [36]. The figures are
taken from Ref. [28].

function (2.6) is antisymmetric in ω and normalized as

∞∫
−∞

dω

2π
2ω ρj(ω,p) = 2

∞∫
0

dω

2π
2ωρj(ω,p) = 1 (2.7)

as mandatory for quantum field theory.

The actual gluon mass Mg and width γg – employed as input in the further calcu-
lations – as well as the quark mass Mq and width γq are depicted in Fig. 2.1 (l.h.s.)
as a function of T/Tc. Note that for µq = 0 the DQPM gives

Mq =
2

3
Mg, γq =

4

9
γg . (2.8)

These variations of the masses with the temperature T – that appear drastic in
Fig. 2.1 (l.h.s.) – become, however, rather smooth if viewed as a function of the scalar
parton density ρs defined (in thermal equilibrium) by

ρs(T/Tc) = dg

∫ ∞

0

dω

2π

∫
d3p

(2π)3
2
√
p2 ρg(ω,p) nB(ω/T ) Θ(p2)

+dq

∫ ∞

0

dω

2π

∫
d3p

(2π)3
2
√
p2 ρq(ω,p) nF ((ω − µq)/T ) Θ(p2)

+dq̄

∫ ∞

0

dω

2π

∫
d3p

(2π)3
2
√
p2 ρq̄(ω,p) nF ((ω + µq)/T ) Θ(p2) , (2.9)

where nB and nF denote the Bose and Fermi functions, respectively, while µq stands
for the quark chemical potential. The number of transverse gluonic degrees-of-freedom
is dg = 16 while the fermion degrees-of-freedom amount to dq = dq̄ = 2NcNf = 18
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in case of three flavors (Nf=3). The function Θ(p2) (with p2 = ω2 − p2) projects on
time-like four-momenta since only this fraction of the four-momentum distribution
can be propagated within the light cone.

Thermodynamics of QCD

With the quasiparticle properties (or propagators) chosen as described above, one
can evaluate the entropy density s(T ), the pressure P (T ) and energy density ϵ(T ) in
a straight forward manner by starting with the entropy density in the quasiparticle
limit from Baym [37],

sdqp = −dg
∫
dω

2π

d3p

(2π)3
∂nB

∂T

(
ℑ ln(−∆−1) + ℑΠℜ∆

)
−dq

∫
dω

2π

d3p

(2π)3
∂nF ((ω − µq)/T )

∂T

(
ℑ ln(−S−1

q ) + ℑΣq ℜSq

)
,

−dq̄
∫
dω

2π

d3p

(2π)3
∂nF ((ω + µq)/T )

∂T

(
ℑ ln(−S−1

q̄ ) + ℑΣq̄ ℜSq̄

)
, (2.10)

where nB(ω/T ) = (exp(ω/T ) − 1)−1 and nF ((ω − µq)/T ) = (exp((ω − µq)/T ) + 1)−1

denote the Bose and Fermi distribution functions, respectively, while ∆ = (P 2−Π)−1,
Sq = (P 2 − Σq)

−1 and Sq̄ = (P 2 − Σq̄)
−1 stand for the full (scalar) quasiparticle

propagators of gluons g, quarks q and antiquarks q̄. In Eq. (2.10) Π and Σ = Σq ≈ Σq̄

denote the (retarded) quasiparticle selfenergies. In principle, Π as well as ∆ are Lorentz
tensors and should be evaluated in a nonperturbative framework. The DQPM treats
these degrees-of-freedom as independent scalar fields with scalar selfenergies which are
assumed to be identical for quarks and antiquarks. Note that one has to treat quarks
and antiquarks separately in Eq. (2.10) as their abundance differs at finite quark
chemical potential µq.

Since the nonperturbative evaluation of the propagators and selfenergies in QCD
is a formidable task [and addressed in Dyson-Schwinger (DS) Bethe-Salpeter (BS) ap-
proaches] an alternative and practical procedure is to use physically motivated Ansätze
with Lorentzian spectral functions for quarks1 and gluons as in (2.6). With this choice
the complex selfenergies Π = M2

g − 2iωγg and Σq(q) = Mq(q)
2 − 2iγq(q) are fully

defined via (2.3), (2.4), (2.5). Note that the retarded propagator (2.1),

G−1
R = ω2 − p2 −M2 + 2iγω, (2.11)

corresponds to the propagator of a damped harmonic oscillator (with an additional p2)
and preserves microcausality also for γ > M [38], i.e. in case of overdamped motion.
Although the ’Ansatz’ for the parton propagators is not QCD we will demonstrate
that a variety of QCD observables on the lattice are compatible with this choice.

Since within the DQPM the real and imaginary parts of the propagators ∆ and S
now are fixed analytically the entropy density (2.10) can be evaluated numerically. As

1In the following the abbreviation is used that ’quarks’ denote quarks and antiquarks if not specified
explicitly.
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Figure 2.2: (l.h.s.) The interaction measure (ϵ−3P )/T 4 from the DQPM in comparison
to the lQCD results from [36]. (r.h.s.) The scalar mean-field (2.16) for quarks and
antiquarks from the DQPM as a function of the scalar parton density ρs for µq = 0.
The figures are taken from Ref. [28].

we deal with a grandcanonical ensemble the Maxwell relations give (at µq = 0),

s =
∂P

∂T
, (2.12)

such that the pressure can be obtained by integration of the entropy density s over T ,
where one tacitly identifies the ’full’ entropy density s with the quasiparticle entropy
density sdqp (2.10). The starting point for the integration in T is chosen between
100 MeV < T < 120 MeV where the entropy density is approximated by that of a
noninteracting pion, η and kaon gas.

The energy density ϵ then follows from the thermodynamical relation

ϵ = Ts− P (2.13)

(for µq = 0) and thus is also fixed by the entropy s(T ) as well as the interaction
measure

W (T ) := ϵ(T )− 3P (T ) = Ts− 4P (2.14)

that vanishes for massless and noninteracting degrees-of-freedom.

A direct comparison of the resulting entropy density s(T ) and energy density ϵ(T )
from the DQPM with lQCD results from the BMW group [36] is presented in Fig. 2.1
(r.h.s.). Both results have been divided by T 3 and T 4, respectively, to demonstrate
the scaling with temperature. The agreement is sufficiently good. A satisfactory
agreement also holds for the dimensionless ’interaction measure’, i.e. (ϵ− 3P )/T 4 (cf.
Fig. 2.2, l.h.s.).

Partonic mean-field potentials

The DQPM uniquely defines a potential energy density,

Vp(T, µq) = T 00
g−(T, µq) + T 00

q−(T, µq) + T 00
q̄−(T, µq), (2.15)
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where the different contributions T 00
j− correspond to the space-like part of the energy-

momentum tensor component T 00
j of parton j = g, q, q̄ [34]. It is found that this

quantity is practically independent on the quark chemical potential (for moderate µq)
when displayed as a function of the scalar density ρs instead of T and µq separately.
Note that the field quanta involved in (2.15) are virtual and thus correspond to partons
exchanged in interaction diagrams.

A scalar mean-field Us(ρs) for quarks and antiquarks is defined by the derivative
[34],

Us(ρs) =
dVp(ρs)

dρs
, (2.16)

which is evaluated numerically within the DQPM. The result is displayed in Fig.
2.2 (r.h.s.) as a function of the parton scalar density ρs (2.9) and shows that the
scalar mean-field is in the order of a few GeV for ρs > 10 fm−3. This mean-field
(2.16) is employed in the PHSD transport calculations and determines the force on
a quasiparticle j, i.e. ∼ Mj/Ej∇Us(x) = Mj/Ej dUs/dρs ∇ρs(x) where the scalar
density ρs(x) is determined numerically on a space-time grid (see below).

2.2 Hadronization

Whereas the dynamics of partonic as well as hadronic systems is fixed by the DQPM
or HSD, respectively, the change in the degrees-of-freedom has to be specified in line
with the lattice QCD equation of state. The hadronization, i.e. the transition from
partonic to hadronic degrees-of-freedom, has been introduced in Refs. [24, 39] and is
repeated here for completeness. The hadronization is implemented in PHSD by local
covariant transition rates e.g. for q+ q̄ fusion to a mesonic state m of four-momentum
p = (ω,p) at space-time point x = (t,x):

dNm(x, p)

d4xd4p
= TrqTrq̄ δ

4(p− pq − pq̄) δ
4

(
xq + xq̄

2
− x

)
ωq ρq(pq) ωq̄ ρq̄(pq̄)

×|vqq̄|2 Wm(xq − xq̄, (pq − pq̄)/2) Nq(xq, pq) Nq̄(xq̄, pq̄) δ(flavor, color). (2.17)

In Eq. (2.17) we have introduced the shorthand notation,

Trj =
∑
j

∫
d4xj

∫
d4pj
(2π)4

, (2.18)

where
∑

j denotes a summation over discrete quantum numbers (spin, flavor, color);
Nj(x, p) is the phase-space density of parton j at space-time position x and four-
momentum p. In Eq. (2.17) δ(flavor, color) stands symbolically for the conservation
of flavor quantum numbers as well as color neutrality of the formed hadronic state
m which can be viewed as a color-dipole or ’pre-hadron’. Furthermore, vqq̄(ρp) is the
effective quark-antiquark interaction from the DQPM (displayed in Fig. 10 of Ref.
[33]) as a function of the local parton (q + q̄ + g) density ρp (or energy density).
Furthermore, Wm(x, p) is the dimensionless phase-space distribution of the formed
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’pre-hadron’, i.e.

Wm(ξ, pξ) = exp

(
ξ2

2b2

)
exp

(
2b2(p2ξ − (Mq −Mq̄)

2/4)
)

(2.19)

with ξ = x1 − x2 = xq − xq̄ and pξ = (p1 − p2)/2 = (pq − pq̄)/2 (which had been
previously introduced in Eq. (2.14) of Ref. [40]). The width parameter b is fixed by√
⟨r2⟩ = b = 0.66 fm (in the rest frame) which corresponds to an average rms radius

of mesons. We note that the expression (2.19) corresponds to the limit of independent
harmonic oscillator states and that the final hadron-formation rates are approximately
independent of the parameter b within reasonable variations. By construction the
quantity (2.19) is Lorentz invariant; in the limit of instantaneous ’hadron formation’,
i.e. ξ0 = 0, it provides a Gaussian dropping in the relative distance squared (r1− r2)

2.
The four-momentum dependence reads explicitly (except for a factor 1/2)

(E1 − E2)
2 − (p1 − p2)

2 − (M1 −M2)
2 ≤ 0 (2.20)

and leads to a negative argument of the second exponential in Ed. (2.19) favoring the
fusion of partons with low relative momenta pq − pq̄ = p1 − p2.

Related transition rates (2.17) are defined for the fusion of three off-shell quarks
(q1 + q2 + q3 ↔ B) to a color neutral baryonic (B or B̄) resonances of finite width
(or strings) fulfilling energy and momentum conservation as well as flavor current
conservation (cf. Section 2.3 in Ref. [24]). In contrast to the familiar coalescence
models this hadronization scheme solves the problem of simultaneously fulfilling all
conservation laws and the constraint of entropy production. For further details we
refer the reader to Refs. [24, 39].

2.3 Initial conditions

The initial conditions for the parton/hadron dynamical system have to be specified
additionally. In order to describe relativistic heavy-ion reactions we start with two nu-
clei in their ’semi-classical’ groundstate, boosted towards each other with a velocity β
(in z-direction), fixed by the bombarding energy. The initial phase-space distributions
of the projectile and target nuclei are determined in the local Thomas-Fermi limit as
in the HSD transport approach [1, 29] or the UrQMD model [41, 42]. We recall that
at relativistic energies the initial interactions of two nucleons are well described by
the excitation of two color-neutral strings which decay in time to the known hadrons
(mesons, baryons, antibaryons) [35]. Initial hard processes - i.e. the short-range high-
momentum transfer reactions that can be well described by perturbative QCD - are
treated in PHSD (as in HSD) via PYTHIA 5.7 [43]. The novel element in PHSD
(relative to HSD) is the ’string melting concept’ as also used in the AMPT model
[44] in a similar context. However, in PHSD the strings (or possibly formed hadrons)
are only allowed to ’melt’ if the local energy density ϵ(x) (in the local rest frame) is
above the transition energy density ϵc which in the present DQPM version is ϵc ≈ 0.5
GeV/fm3. The mesonic strings then decay to quark-antiquark pairs according to an
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Figure 2.3: The time-dependent mass distributions for quarks (+ antiquarks) (l.h.s.)
and gluons (r.h.s.) for a central Au+Au collision at

√
s = 200 GeV and b=1 fm at

midrapidity (|y| ≤ 1). The figures are taken from Ref. [28].

intrinsic quark momentum distribution,

F (q) ∼ exp(−2b2q2) , (2.21)

in the meson rest-frame (cf. Eq. (2.17) for the inverse process). The parton final four-
momenta are selected randomly according to the momentum distribution (2.21) (with
b= 0.66 fm), and the parton-energy distribution is fixed by the DQPM at given energy
density ϵ(ρs) in the local cell with scalar parton density ρs. The flavor content of the
qq̄ pair is fully determined by the flavor content of the initial string. By construction
the ’string melting’ to massive partons conserves energy and momentum as well as the
flavor content. In contrast to Ref. [44] the partons are of finite mass – in line with
their local spectral function – and obtain a random color c = (1, 2, 3) or (r, b, g) in
addition. Of course, the color appointment is color neutral, i.e. when selecting a color
c for the quark randomly the color for the antiquark is fixed by −c. The baryonic
strings melt analogously into a quark and a diquark while the diquark, furthermore,
decays to two quarks.

2.4 Relativistic dynamics of many-body systems

and off-shell transport

The dynamical evolution of the system is entirely described by the transport dynamics
in PHSD incorporating the off-shell propagation of the partonic quasiparticles accord-
ing to Refs. [34, 45] as well as the transition to resonant hadronic states (or ’strings’)
via Eq. (2.17).

Relativistic formulations of the many-body problem are essentially described within
covariant field theory. Since the fields themselves are distributions in space-time x =
(t,x) one uses the Heisenberg picture for convenience. In the Heisenberg picture the
time evolution of the system is described by time-dependent operators that are evolved
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with the help of the time-evolution operator Û(t, t′) which follows

i
∂Û(t, t0)

∂t
= Ĥ(t)Û(t, t0), (2.22)

with Ĥ(t) denoting the Hamilton operator of the system at time t. Eq. (2.22) is
formally solved by

Û(t, t0) = T

(
exp

[
−i
∫ t

t0

dz Ĥ(z)

])
=

∞∑
n=0

T [−i
∫ t

t0
dz Ĥ(z)]n

n!
, (2.23)

where T denotes the time-ordering operator, which is also denoted as Dyson series.
Let’s assume that the initial state is given by some density matrix ρ̂, which may be
a pure or mixed state, then the time evolution of any operator Ô in the Heisenberg
picture from time t0 to t is given by

O(t) = ⟨ÔH(t)⟩ = Tr
(
ρ̂ ÔH(t)

)
= Tr

(
ρ̂ Û(t0, t)Ô Û(t, t0)

)
= Tr

(
ρ̂ Û †(t, t0)Ô Û(t, t0)

)
.

(2.24)
Eq. (2.24) implies that first the system is evolved from t0 to t and then backward from
t to t0. This may be expressed as a time integral along the (Keldysh-)contour shown
in Fig. 2.4.

Figure 2.4: The Keldysh-contour for the time integration in the Heisenberg picture.

Two-point functions

Now Green functions on the Keldysh-contour may have time arguments on the same
branch of the contour or on opposite branches. This gives four possibilities for the
Green functions defined – in case of a field theory with only scalar fields ϕ(x) (for sake
of illustration) – by

iGc(x, y) = iG++(x, y) = ⟨ T̂ c(ϕ(x)ϕ(y)) ⟩ (2.25)

iG<(x, y) = iG+−(x, y) = ⟨ϕ(y)ϕ(x)⟩ (2.26)

iG>(x, y) = iG−+(x, y) = ⟨ϕ(x)ϕ(y)⟩ (2.27)

iGa(x, y) = iG−−(x, y) = ⟨ T̂ a(ϕ(x)ϕ(y)) ⟩ , (2.28)

which are not independent! Here x = (x0,x) and y = (y0,y). Time-ordering has to
be fulfilled if both time arguments are on the same axis. The causal time-ordering
operator T c places fields at later times to the left while the anticausal operator T a
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places fields at later times to the right. The Green functions G> and G< are denoted
as Wightman functions and will play the essential role in the dynamical description
of the system. One may also write the Green function on the Keldysh-contour in terms
of a 2x2 matrix

G(x, y) =

( + −
+ Gc(x, y) G<(x, y)
− G>(x, y) Ga(x, y)

)
. (2.29)

Note that the Green functions defined in Eqs. (2.25) to (2.28) are two-point functions,
i.e. they correspond to a single-particle degree-of-freedom!

The further derivation starts with the Dyson equation for G(x, y),

G(x, y) = G0(x, y) + [G0ΣG](x, y), (2.30)

with G0(x, y) denoting the bare Green function. The selfenergy Σ(x, y) has the mean-
ing of a one-body mean-field potential and in lowest order for fermions is given by
the Hartree-Fock potential (×2M) since in the relativistic case Σ has the dimension
[energy]2.

The relation to the one-body density matrix ρ - as employed in density-matrix
theory [46] - is given by

ρ(x,x′; t) = iG<(x,x′; t, t), (2.31)

since the time diagonal Green function can be identified with an integral over the
energy variable ω using

G<(x,x′;ω, t) =

∫ ∞

−∞
d(τ − τ ′) exp(iω(τ − τ ′)) G<(x,x′; τ, τ ′) (2.32)

(for t = (τ + τ ′)/2), i.e.

G<(x,x′; t) =

∫ ∞

−∞

dω

2π
G<(x,x′;ω, t). (2.33)

Two-point functions F on the closed-time-path (CTP) generally can be expressed by
retarded and advanced components as

FR(x, y) = F c(x, y)− F<(x, y) = F>(x, y)− F a(x, y), (2.34)

FA(x, y) = F c(x, y)− F>(x, y) = F<(x, y)− F a(x, y)

giving in particular the relation

FR(x, y)− FA(x, y) = F>(x, y)− F<(x, y). (2.35)

Note that the advanced and retarded components of the Green functions only contain
spectral and no statistical information,

GR/A(x, y) = G0(x, y) δ(t1 − t2)±Θ(±(t1 − t2)) [G
>(x, y)−G<(x, y)]. (2.36)
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The Dyson-Schwinger equation

The Dyson-Schwinger equation (2.30) on the closed-time path reads in matrix form:(
Gc(x, y) G<(x, y)
G>(x, y) Ga(x, y)

)
=

(
Gc

0(x, y) G<
0 (x, y)

G>
0 (x, y) Ga

0(x, y)

)
+

(
Gc

0(x, x
′) G<

0 (x, x
′)

G>
0 (x, x

′) Ga
0(x, x

′)

)
⊙
(

Σc(x′, y′) −Σ<(x′, y′)
−Σ>(x′, y′) Σa(x′, y′)

)
⊙
(

Gc(y′, y) G<(y′, y)
G>(y′, y) Ga(y′, y)

)
,

(2.37)
where the symbol⊙ stands for an intermediate integration over space-time on the CTP,
i.e. x′ or y′. The selfenergy Σ on the CPT is defined along Eq. (2.34) and incorporates
interactions of higher order. In lowest order Σ/2M is given by the Hartree or Hartree-
Fock mean-field in the non-relativistic limit (in case of fermions) but it follows a
nonperturbative expansion [47].

2.4.1 Kadanoff-Baym equations

To derive the Kadanoff-Baym equations one multiplies Eq. (2.37) with the inverse
free Green function (operator) G−1

0x = −(∂xµ∂
µ
x + m2) from the left. This gives four

equations which can be cast into the form:

−(∂xµ∂
µ
x +m2)GR/A(x, y) = δ(x− y) + ΣR/A(x, x′)⊙GR/A(x′, y), (2.38)

−(∂xµ∂
µ
x +m2)G<(x, y) = ΣR(x, x′)⊙G<(x′, y) + Σ<(x, x′)⊙GA(x′, y), (2.39)

−(∂xµ∂
µ
x +m2)G>(x, y) = ΣR(x, x′)⊙G>(x′, y) + Σ>(x, x′)⊙GA(x′, y). (2.40)

The propagation of the Green functions in the variable y is defined by the adjoint
equations:

−(∂yµ∂
µ
y +m2)GR/A(x, y) = δ(x− y) +GR/A(x, x′)⊙ ΣR/A(x′, y), (2.41)

−(∂yµ∂
µ
y +m2)G<(x, y) = GR(x, x′)⊙ Σ<(x′, y) +G<(x, x′)⊙ ΣA(x′, y), (2.42)

−(∂yµ∂
µ
y +m2)G>(x, y) = GR(x, x′)⊙ Σ>(x′, y) +G>(x, x′)⊙ ΣA(x′, y). (2.43)

Note again that the evolution of the retarded/advanced Green functions only depends
on retarded/advanced quantities.

Definition of selfenergies

For the solution of the KB equations the computation/fixing of the (two-point) self-
energies Σ is mandatory. In the context of field theory the latter is extracted from the
effective action

Γ[G] = Γ0[G0] +
i

2
[ln(1−G0Σ) +GΣ] + Φ[G] (2.44)

assuming a vanishing vacuum expectation value ⟨0|ϕ(x)|0⟩. Here Γ0[G0] only depends
on the free Green function G0 and can be considered as constant in the following.
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Note that all internal and external integrations in (2.44) have to be performed over the
CTP. In Φ[G] all closed two-particle irreducible (2PI) diagrams are included in lowest
(nontrivial) order. We recall that 2PI diagrams are those that cannot be separated in
two disjunct diagrams by cutting two propagator lines; formally this implies that after
second order differentiation with respect to G no separate diagrams survive.

For the derivation of selfenergies one now considers the variation of the action Γ[G]
with respect to G requiring δΓ = 0,

δΓ = 0 =
i

2
Σ δG− i

2

G0

1−G0 Σ
δΣ +

i

2
GδΣ + δΦ

=
i

2
Σ δG− i

2

1

G−1
0 − Σ︸ ︷︷ ︸
=G

δΣ +
i

2
GδΣ + δΦ =

i

2
Σ δG+ δΦ. (2.45)

⇒ Σ = 2i
δΦ

δG
. (2.46)

The selfenergies thus are obtained by opening of a propagator-line in the irreducible
diagrams Φ. Note that this definition of the selfenergy preserves all conservation laws of
the theory (as well as causality) and does not introduce additional conserved currents.
In principle the Φ-functional includes irreducible diagrams up to infinite order, but
here we will consider only the contributions up to second order in the coupling (2PI).
For our present purpose this approximation is sufficient since we include the leading
mean-field effects as well as the leading order scattering processes that pave the way
to thermalization.

Spectral function

The spectral function of the fields ϕ is of particular interest since it follows from the
field commutator at unequal times and reflects the quantization of the theory. For
scalar, symmetric fields ϕ it is given by

A(x, y) = ⟨ [ϕ(x), ϕ(y)]− ⟩ = i[G>(x, y)−G<(x, y)] = i[GR(x, y)−GA(x, y)]. (2.47)

For homogenous systems in space we have in momentum-time representation

A(p, t1, t2) = i[G>(p, t1, t2)−G<(p, t1, t2)] = i [−[G<(p, t1, t2)]
∗ −G<(p, t1, t2)] .

(2.48)
The quantity (2.48) was evaluated numerically as a function of ∆t = t1 − t2 and
t = (t1 + t2)/2 for a low lying momentum mode in case of the ϕ4-theory for strong
coupling λ in Ref. [45]. We observe a damped oscillation in ∆t (for ∆t ≥ 0) in all cases
with characteristic time scale 1/γ which practically does not depend on the average
time t. This pattern is very similar for all momentum modes (cf. Ref. [45]).

The spectral function in energy-momentum representation is obtained by Fourier
transformation with respect to the time difference ∆t = (t1− t2) for each average time
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t:

A(p, p0, t) =

∫ ∞

−∞
d∆t exp(i∆t p0)A(p, t1 = t+∆t/2, t2 = t−∆t/2). (2.49)

Since the spectral function essentially shows a damped oscillation in t1−t2, this implies
that the Fourier transform (2.49) is of relativistic Breit-Wigner shape with a width
γ that describes the decay in the relative time ∆t. The spectral shape can be well
approximated by

A(p0,p) =
γ

2Ẽ

(
1

(p0 − Ẽ)2 + γ2
− 1

(p0 + Ẽ)2 + γ2

)
=

2p0γ

(p20 − p2 −M2)2 + 4γ2p20
(2.50)

with Ẽ2 = p2 +M2 − γ2 where M denotes the mass of the degrees-of-freedom. We
recall that this functional form is used in the DQPM model, too.

In this context it is illustrative to consider the case [38] of a massive scalar field
coupled to an external fermion field ( ∼ ∂µΦ(x)Ψ̄(x)γµΨ(x) with a vanishing three-
current, i.e. the field equation(

∂2

∂t2
−△+M2 + 2γ

∂

∂t

)
Φ(x) = 0, (2.51)

where γ stands for the strength of the coupling (e.g. gs < Ψ†Ψ > /2). (2.51) has the
algebraic solution

G̃(p) =
−1

ω2 − p2 −M2 + 2iγω
, (2.52)

which leads to the retarded Green-function Gret obeying

Gret(x− y) = 0 for x0 − y0 < 0 (2.53)

by a 4-dimensional Fourier transformation of (2.52),

Gret(x) =

∫
d4p̃

(2π)4
G̃(p̃) exp(−ip̃x). (2.54)

We point out that ℑG̃(p̃) is given by the spectral function

A(ω,p) =
γ

2Ẽ

(
1

(ω − Ẽ)2 + γ2
− 1

(ω + Ẽ)2 + γ2

)

=
2ωγ

(ω2 − p2 −M2)2 + 4γ2ω2
. (2.55)

We recall, furthermore, that solutions of the Kadanoff-Baym equations [48] for Φ4-
theory in 2+1 dimensions [45] have lead to spectral functions that are very close to
(2.55) also for strong coupling.
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The equilibrium distribution

Now we introduce the energy and momentum-dependent distribution functionN(p, p0, t̄)
at any system time t̄ in case of scalar bosons by the definition

i G<(p, p0, t̄) = A(p, p0, t̄) N(p, p0, t̄) ,

i G>(p, p0, t̄) = A(p, p0, t̄) [N(p, p0, t̄) + 1 ] , (2.56)

since G<(p, p0, t̄) and G>(p, p0, t̄) are known from the integration of the Kadanoff-
Baym equations as well as A(p, p0, t̄). In equilibrium (at temperature T ) the Green
functions obey the Kubo-Martin-Schwinger relation (KMS) for all momenta p,

G>
eq(p, p0) = ep0/T G<

eq(p, p0) ∀ p . (2.57)

If there exists a conserved quantum number in the theory we have, furthermore, a
contribution of the corresponding chemical potential in the exponential function which
leads to a shift of arguments: p0/T → (p0−µ)/T . In case of ϕ4-theory, however, there
is no conserved quantum number and thus the equilibrium state has µ = 0.

From the KMS condition of the Green functions (2.57) the equilibrium form of the
distribution function (2.56) at temperature T is obtained as

Neq(p, p0) = Neq(p0) =
1

ep0/T − 1
= Nbose(p0/T ) , (2.58)

from
G<

G>
= e−p0/T =

Neq

Neq + 1
,

which is the well-known Bose distribution. As is obvious from Eq. (2.58) the equi-
librium distribution can only be a function of energy p0 and not of the momentum
variable p in addition [45].

2.4.2 Derivation of the off-shell relativistic transport theory

Formal derivations of off-shell transport equations have been presented more than 50
years ago by Kadanoff and Baym [48] but actual solutions have barely been addressed
[49, 50]. This Section is devoted to a brief derivation of generalized transport equations
in first order gradient expansion including a generalized test-particle ansatz for the
solution of the off-shell transport equation following Ref. [51].

The derivation of generalized transport equations starts by rewriting the Kadanoff-
Baym equation for the Wightman functions in coordinate space (x1 = (t1,x1), x2 =
(t2,x2)) (2.39) as

[ ∂µx1
∂x1
µ +m2 + Σδ(x1) ] iG

><(x1, x2) = i I>
<
1 (x1, x2), (2.59)

where the collision terms on the r.h.s. of Eq. (2.59) are given in D = d + 1 space-
time dimensions by convolution integrals over coordinate-space selfenergies and Green



CHAPTER 2. PARTON-HADRON-STRING DYNAMICS 24

functions:

I>
<
1 (x1, x2) = −

∫ t1

t0

dDz [Σ>(x1, z)− Σ<(x1, z)]G
><(z, x2)

+

∫ t2

t0

dDzΣ>
<
(x1, z) [G

>(z, x2)−G<(z, x2)] . (2.60)

In the general case of an arbitrary (scalar) quantum field theory Σδ is the local (non-

dissipative tadpole) part of the path self-energy while Σ>
<

resemble the non-local col-
lisional self-energy contributions. In the representation (2.60) the integration bound-
aries are exclusively given for the time coordinates, while the integration over the
spatial coordinates extends over the whole spatial volume from −∞ to +∞ in d di-
mensions.

Since transport theories are formulated in phase-space one changes to the Wigner
representation via Fourier transformation with respect to the rapidly varying (’intrin-
sic’) relative coordinate ∆x = x1 − x2 and treats the system evolution in terms of the
(’macroscopic’) mean space-time coordinate x = (x1 + x2)/2 and the four-momentum
p = (p0,p). The functions in Wigner space are obtained as

F̄ (p, x) =

∫ ∞

−∞
dD∆x e+i∆xµ pµ F (x1 = x+∆x/2, x2 = x−∆x/2) . (2.61)

For the formulation of transport theory in the Wigner representation we have to
focus not only on the transformation properties of ordinary two-point functions as
given in Eq. (2.61), but also of convolution integrals as appearing in Eq. (2.60). A
convolution integral in D dimensions (for arbitrary functions F,G),

H(x1, x2) =

∫ ∞

−∞
dDz F (x1, z) G(z, x2) (2.62)

transforms as

H̄(p, x) =

∫ ∞

−∞
dD∆x e+i∆xµ pµ H(x1, x2)

=

∫ ∞

−∞
dD∆x e+i∆xµ pµ

∫ ∞

−∞
dDz F (x1, z) G(z, x2)

= e
+i 1

2
(∂µ

p
· ∂x′

µ − ∂µ

x
· ∂p′

µ ) [
F̄ (p, x) Ḡ(p′, x′)

]∣∣∣∣
x′=x, p′=p

. (2.63)

In accordance with the standard assumption of transport theory we assume that all
functions only smoothly evolve in the mean space-time coordinates and thus restrict to
first order derivatives. All terms proportional to second or higher order derivatives in
the mean space-time coordinates (also mixed ones) will be dropped. Thus the Wigner
transformed convolution integrals (2.62) are given in first order gradient approximation
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by,

H̄(p, x) = F̄ (p, x) Ḡ(p, x) + i
1

2
{ F̄ (p, x) , Ḡ(p, x) } + O(∂2x) , (2.64)

using the relativistic generalization of the Poisson bracket

{ F̄ (p, x) , Ḡ(p, x) } := ∂pµ F̄ (p, x) · ∂µx Ḡ(p, x) − ∂µx F̄ (p, x) · ∂pµ Ḡ(p, x) . (2.65)

In order to obtain the dynamics for the spectral functions within the approximate
(first order gradient) scheme we start with the Dyson-Schwinger equations for the
retarded and advanced Green functions in coordinate space (2.38). – Note that the
convolution integrals in (2.38) extend over the whole space and time range in contrast
to the equations of motion for the Wightman functions given in Eqs. (2.39) and (2.40)!
– The further procedure consists in the following steps:

i) First we transform the above equations into the Wigner representation and apply
the first order gradient approximation. In this limit the convolution integrals yield
the product terms and the general Poisson bracket of the selfenergies and the Green
functions {ΣR/A, GR/A }. We, further on, represent both equations in terms of real
quantities by the decomposition of the retarded and advanced Green functions and
selfenergies as

ḠR/A = ℜ ḠR ± iℑ ḠR = ℜ ḠR ∓ i Ā/2 , Ā = ∓ 2ℑ ḠR/A ,

Σ̄R/A = ℜ Σ̄R ± iℑ Σ̄R = ℜ Σ̄R ∓ i Γ̄/2 , Γ̄ = ∓ 2ℑ Σ̄R/A .
(2.66)

We find that in Wigner space the real parts of the retarded and advanced Green func-
tions and selfenergies are equal, while the imaginary parts have opposite sign and are
proportional to the spectral function Ā and the width Γ̄, respectively. The next step
consists in

ii) the separation of the real part and the imaginary part of the two equations for
the retarded and advanced Green functions, that have to be fulfilled independently.
Thus we obtain four real-valued equations for the self-consistent retarded and advanced
Green functions. In the last step

iii) we get simple relations by linear combination of these equations, i.e. by
adding/subtracting the relevant equations.

This finally leads to two algebraic relations for the spectral function Ā and the real
part of the retarded Green function Re ḠR in terms of the width Γ̄ and the real part
of the retarded self-energy Re Σ̄R as [51]:

[ p20 − p 2 −m2 − Σ̄δ + ℜ Σ̄R ] ℜ ḠR = 1 +
1

4
Γ̄ Ā , (2.67)

[ p20 − p 2 −m2 − Σ̄δ + ℜ Σ̄R ] Ā = Γ̄ ℜ ḠR . (2.68)

Note that all terms with first order gradients have disappeared in Eqs. (2.67) and
(2.68). A first consequence of (2.68) is a direct relation between the real and the
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imaginary parts of the retarded/advanced Green function, which reads (for Γ̄ ̸= 0):

ℜ ḠR =
p20 − p 2 −m2 − Σ̄δ −ℜ Σ̄R

Γ̄
Ā . (2.69)

Inserting Eq. (2.69) in Eq. (2.67) we end up with the following result for the spectral
function and the real part of the retarded Green function

Ā =
Γ̄

[ p20 − p 2 −m2 − Σ̄δ −ℜ Σ̄R ]2 + Γ̄2/4
=

Γ̄

M̄2 + Γ̄2/4
, (2.70)

ℜ ḠR =
[ p20 − p 2 −m2 − Σ̄δ −ℜ Σ̄R ]

[ p20 − p 2 −m2 − Σ̄δ −ℜ Σ̄R ]2 + Γ̄2/4
=

M̄

M̄2 + Γ̄2/4
, (2.71)

where we have introduced the mass-function M̄(p, x) in Wigner space:

M̄(p, x) = p20 − p 2 −m2 − Σ̄δ(x)−ℜ Σ̄R(p, x) . (2.72)

The spectral function (2.70) shows a typical Breit-Wigner shape with energy- and
momentum-dependent self-energy terms. Although the above equations are purely
algebraic solutions and contain no derivative terms, they are valid up to the first order
in the gradients!

In addition, subtraction of the real parts and adding up the imaginary parts lead
to the time evolution equations

pµ ∂xµ Ā =
1

2
{ Σ̄δ + ℜ Σ̄R , Ā } +

1

2
{ Γ̄ , ℜ ḠR } , (2.73)

pµ ∂xµ ℜ ḠR =
1

2
{ Σ̄δ + ℜ Σ̄R , ℜ ḠR } − 1

8
{ Γ̄ , Ā } . (2.74)

The Poisson bracket containing the mass-function M̄ leads to the well-known drift
operator pµ ∂xµ F̄ (for an arbitrary function F̄ ), i.e.

{ M̄ , F̄ } = { p20 − p 2 −m2 − Σ̄δ −ℜ Σ̄R , F̄ }
= 2 pµ ∂xµ F̄ − { Σ̄δ + ℜ Σ̄R , F̄ } , (2.75)

such that the first order equations (2.73) and (2.74) can be written in a more compre-
hensive form as

{ M̄ , Ā } = { Γ̄ , ℜ ḠR } , (2.76)

{ M̄ , ℜ ḠR } = − 1

4
{ Γ̄ , Ā } . (2.77)

When inserting (2.70) and (2.71) we find that these first order time evolution equations
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are solved by the algebraic expressions. In this case the following relations hold [51]:

{ M̄ , Ā } = { Γ̄ , ℜ ḠR } = { M̄ , Γ̄ } M̄2 − Γ̄2/4

[ M̄2 + Γ̄2/4 ]2
, (2.78)

{ M̄ , ℜ ḠR } = − 1

4
{ Γ̄ , Ā } = { M̄ , Γ̄ } M̄ Γ̄/2

[ M̄2 + Γ̄2/4 ]2
. (2.79)

Thus we have derived the proper structure of the spectral function (2.70) within the
first-order gradient (or semiclassical) approximation. Together with the explicit form
for the real part of the retarded Green function (2.71) we now have fixed the dynamics
of the spectral properties, which is consistent up to first order in the gradients.

As a next step we rewrite the memory terms in the collision integrals (2.60) such
that the time integrations extend from −∞ to +∞. In this respect we consider the
initial time t0 = −∞ whereas the upper time boundaries t1, t2 are taken into account
by Θ-functions, i.e.

I>
<
1 (x1, x2) = −

∫ ∞

−∞
dDx′ Θ(t1 − t′) [ Σ>(x1, x

′)− Σ<(x1, x
′) ] G>

<
(x′, x2)

+

∫ ∞

−∞
dDx′ Σ>

<
(x1, x

′) Θ(t2 − t′) [G>(x′, x2)−G<(x′, x2) ]

= −
∫ ∞

−∞
dDx′ ΣR(x1, x

′) G>
<
(x′, x2) + Σ>

<
(x1, x

′) GA(x′, x2) . (2.80)

We now perform the analogous steps as invoked before for the retarded and advanced
Dyson-Schwinger equations. We start with a first order gradient expansion of the
Wigner transformed Kadanoff-Baym equation using (2.80) for the memory integrals.
Again we separate the real and the imaginary parts in the resulting equation, which
have to be satisfied independently. At the end of this procedure we obtain a generalized
transport equation:

2 pµ ∂xµ iḠ
>< − { Σ̄δ+ℜ Σ̄R, iḠ>

<
}︸ ︷︷ ︸ −{ iΣ̄>

<
, ℜ ḠR } = iΣ̄< iḠ> − iΣ̄> iḠ<

{ M̄ , iḠ>
<
} − { iΣ̄>

<
, ℜ ḠR } = iΣ̄< iḠ> − iΣ̄> iḠ< (2.81)

as well as a generalized mass-shell equation

[ p2 −m2 − Σ̄δ −ℜ Σ̄R ]︸ ︷︷ ︸
M̄

iḠ>
<

= iΣ̄>
<

ℜ ḠR +
1

4
{ iΣ̄>, iḠ< } − 1

4
{ iΣ̄<, iḠ> } (2.82)

with the mass-function M̄ specified in Eq. (2.72). Since the Green function G>
<
(x1, x2)

consists of an antisymmetric real part and a symmetric imaginary part with respect
to the relative coordinate x1 − x2, the Wigner transform of this function is purely
imaginary. It is thus convenient to represent the Wightman functions in Wigner space

by the real-valued quantities iḠ>
<
(p, x). Since the collisional selfenergies obey the same
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symmetry relations in coordinate space and in phase-space, they will be kept also as

iΣ̄>
<
(p, x) further on.

In the transport equation (2.81) one recognizes on the l.h.s. the drift term pµ∂xµ iḠ
><,

as well as the Vlasov term with the local self-energy Σ̄δ and the real part of the
retarded self-energy Re Σ̄R. On the other hand the r.h.s. represents the collision term
with its typical ‘gain and loss’ structure. The loss term iΣ̄> iḠ< (proportional to
the Green function itself) describes the scattering out of a respective phase-space cell,
whereas the gain term iΣ̄< iḠ> takes into account scatterings into the actual cell.

The last term on the l.h.s. { iΣ̄>
<
,ℜ ḠR } is very peculiar since it does not contain

directly the distribution function iḠ<. This second Poisson bracket vanishes in the
quasiparticle approximation and thus does not appear in the on-shell Boltzmann limit.

As demonstrated in detail in Refs. [45, 48] the second Poisson bracket { iΣ̄>
<
,ℜ ḠR }

governs the evolution of the off-shell dynamics for nonequilibrium systems.

Although the generalized transport equation (2.81) and the generalized mass-shell
equation (2.82) have been derived from the same Kadanoff-Baym equation in a first
order gradient expansion, both equations are not exactly equivalent [45, 52]. Instead,
they deviate from each other by contributions of second gradient order, which are

hidden in the term { iΣ̄>
<
,ℜ ḠR }. A consistency, however, can be achieved by rewrit-

ing the self-energy Σ̄< by Ḡ< · Γ̄/Ā in the Poisson bracket term {Σ̄<,ℜ ḠR}. The
generalized transport equation (2.81) then can be written in short-hand notation

1

2
Ā Γ̄

[
{ M̄ , iḠ< } − 1

Γ̄
{ Γ̄ , M̄ · iḠ< }

]
= iΣ̄< iḠ> − iΣ̄> iḠ< (2.83)

with the mass-function M̄ (2.72). The transport equation (2.83) within the Botermans-
Malfliet (BM) form resolves the discrepancy between the generalized mass-shell equa-
tion (2.82) and the generalized transport equation in its original Kadanoff-Baym form
(2.81).

2.4.3 Test-particle representation and numerical solution

The generalized transport equation (2.83) allows to extend the traditional on-shell
transport approaches for which efficient numerical recipes have been set up. In order
to obtain a practical solution to the transport equation (2.83) we use a test-particle
ansatz for the Green function G<, more specifically for the real and positive semi-
definite quantity (using Ḡ = G, Σ̄ = Σ, Γ̄ = Γ),

F (x, p) = i G<(x, p) ∼
N∑
i=1

δ(3)(x − Xi(t)) δ(3)(p − Pi(t)) δ(p0 − ϵi(t)) , (2.84)

where the sum over i describes the sum over all (properly normalized) testparticles.
In the most general case (where the self energies depend on four-momentum P , time
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t and the spatial coordinates X) the equations of motion for the test-particles i read

dX⃗i

dt
=

1

1− C(i)

1

2ϵi

[
2 P⃗i + ∇⃗Pi

ℜΣR
(i) +

ϵ2i − P⃗ 2
i −M2

0 −ℜΣR
(i)

Γ(i)

∇⃗Pi
Γ(i)

]
, (2.85)

dP⃗i

dt
= − 1

1− C(i)

1

2ϵi

[
∇⃗Xi

ℜΣR
i +

ϵ2i − P⃗ 2
i −M2

0 −ℜΣR
(i)

Γ(i)

∇⃗Xi
Γ(i)

]
, (2.86)

dϵi
dt

=
1

1− C(i)

1

2ϵi

[
∂ℜΣR

(i)

∂t
+

ϵ2i − P⃗ 2
i −M2

0 −ReΣR
(i)

Γ(i)

∂Γ(i)

∂t

]
, (2.87)

where the notation F(i) implies that the function is taken at the coordinates of the
test-particle, i.e. F(i) ≡ F (t,Xi(t),Pi(t), ϵi(t)).

In Eqs. (2.85-2.87), a common multiplication factor (1 − C(i))
−1 appears, which

contains the energy derivatives of the retarded self energy

C(i) =
1

2ϵi

[
∂

∂ϵi
ℜΣR

(i) +
ϵ2i − P⃗ 2

i −M2
0 −ReΣR

(i)

Γ(i)

∂

∂ϵi
Γ(i)

]
. (2.88)

It yields a shift of the system time t to the ’eigentime’ of particle i defined by t̃i =
t/(1 − C(i)). As the reader immediately verifies, the derivatives with respect to the
’eigentime’, i.e. dXi/dt̃i, dPi/dt̃i and dϵi/dt̃i then emerge without this renormalization
factor for each test-particle i when neglecting higher order time derivatives in line
with the semiclassical approximation scheme. Note that the test-particle equations
of motion (presented above) should not be applied for arbitrary selfenergies ΣR and
width Γ since the theory must obey micro-causality. This leads to severe constraints
for the selfenergies [38, 53, 54].

Some limiting cases should be mentioned explicitly: In case of a momentum-
independent ’width’ Γ(x) we takeM2 = P 2−ReΣR as an independent variable instead
of P0, which then fixes the energy (for given P and M2) to

p20 = p2 + M2 + ℜΣ(x,p,M2)R . (2.89)

Eq. (2.87) then turns to (∆M2
i =M2

i −M2
0 )

d∆M2
i

dt
=

∆M2
i

Γ(i)

dΓ(i)

dt
↔ d

dt
ln

(
∆M2

i

Γ(i)

)
= 0 (2.90)

for the time evolution of the test-particle i in the invariant mass squared. In case
of Γ = const. the familiar equations of motion for test-particles in on-shell transport
approaches are regained. We mention in passing that in the Parton-Hadron-String Dy-
namics (PHSD) transport approach [24, 28] the width of partonic degrees-of-freedom
(so far) is taken as momentum independent such that the simple limit (2.90) applies
(see below).

The time integration for the test-particle-equations of motion (cf. Eqs. (2.85),
(2.86), (2.87)) is performed in the same way as in case of hadronic off-shell transport,
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where (in view of the presently momentum-independent width γ) the simple relation
(2.90) is employed. For the collisions of partons two variants are at our disposal: i)
geometrical collision criteria as used in standard hadronic transport, ii) the in-cell
method developed in Ref. [55]. The latter can easily be extended to describe 2 ↔ 3 or
1 ↔ 3 processes etc. in a covariant way [56] and is the better choice at high particle
densities (cf. Refs. [57–59]). The hadronization is performed by integrating the rate
equations (e.g. (2.17)) in space and time which are discretized on a four-dimensional
grid by ∆t and ∆V (t) = ∆x(t)∆y(t)∆z(t). In beam direction we use an initial grid size
∆z = 1/γcm fm with γcm denoting the Lorentz-γ factor in the nucleon-nucleon center-
of-mass system while in the transverse direction we use ∆x = ∆y = 1 fm. The grid
size is increased dynamically during the transport calculation such that all particles
are included on the actual grid. This practically implies that the grid boundary in
beam direction approximately moves with the velocity of light. In each time step ∆t
and cell ∆V the integrals in (2.17) and the respective integrals for baryon (antibaryon)
formation are evaluated by a sum over all (time-like) test-particles using (e.g. for the
quark density)

1

∆V

∫
∆V

d3x

∫ ∞

−∞

dωq

2π
2ωq

∫ ∞

−∞

d3pq
(2π)3

ρq(ωq, pq) Ñq(x, pq)

=
1

∆V

∑
Jq in ∆V

1 = ρq(∆V ) , (2.91)

where the sum over Jq implies a sum over all test-particles of type q (here quarks) in the
local volume ∆V in each parallel run. In Eq. (2.91) Ñ denotes the occupation number
in phase space which in thermal equilibrium is given by Bose- or Fermi-functions,
respectively. In case of other operators like the scalar density, energy density etc. the
number 1 in Eq. (2.91) has to be replaced by

√
P 2
J/ωJ , ωJ etc. In order to obtain lower

numerical fluctuations the integrals are averaged over the parallel runs (typically 50 at
RHIC energies). For each individual test-particle (i.e. xq and pq fixed) the additional
integrations in Eq. (2.17) give a probability for a hadronization process to happen;
the actual event then is selected by a Monte Carlo algorithm. Energy-momentum
conservation fixes the four-momentum p of the hadron produced and its space-time
position x is determined by (2.17). The final state is either a hadron with flavor
content fixed by the fusing quarks (and/or antiquarks) or by a string of invariant mass√
s (with the same flavor), if

√
s is above 1.3 GeV for mesonic or above 1.5 GeV for

baryonic quark content.

On the partonic side the following elastic and inelastic interactions are included
in PHSD qq ↔ qq, q̄q̄ ↔ q̄q̄, gg ↔ gg, gg ↔ g, qq̄ ↔ g exploiting ’detailed-balance’
with interaction rates again from the DQPM [24, 33]. Numerical tests of the parton
dynamics with respect to conservation laws, interaction rates in and out-off equilibrium
in a finite box with periodic boundary conditions have been presented in Ref. [15]. In
fact, in Ref. [15] it was shown that the PHSD calculations ’in the box’ give practically
the same results in equilibrium as the DQPM.

For illustration of the parton dynamics we display the time evolution of the quark
and gluon distributions in mass for a central Au + Au collision at

√
sNN = 200 GeV

in Fig. 2.3 which shows the number of ’particles’ as a function of invariant mass M
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and time t at midrapidity (|y| ≤ 1). Note that by integration over M one obtains
the number of quarks (+ antiquarks) Nq(t) and gluons Ng(t) in the rapidity interval
|y| ≤ 1 while dividing by Nq(t) and Ng(t), respectively, an estimate for the particle
spectral functions is obtained. Note that the mass distributions displayed here are the
product of the spectral functions and the occupation numbers in a restricted phase
space. Due to a moderate variation of the partons pole mass and width with the scalar
density ρs the shapes of the partonic mass distributions do not change very much in
time. The average quark mass is about 0.5 GeV while the average gluon mass is only
slightly less than 1 GeV. Note, however, that the width of the mass function - which
reflects the actual interaction rate per parton - remains significant for all times up to
hadronization.

2.5 Transport properties of the hot QCD matter

Apart from proton-proton, proton-nucleus or nucleus-nucleus collisions the PHSD ap-
proach can also be employed to study the properties of the interacting hadron/parton
system in a finite box with periodic boundary conditions. To this aim the system is
initialized by a homogeneous distribution of test-particles in a finite box with a mo-
mentum distribution close to a thermal one. Note that in PHSD the system cannot
directly be initialized by a temperature and chemical potential since these ’Lagrange
parameters’ can only be determined when the system has reached a thermal and chem-
ical equilibrium, i.e. when all forward and backward reaction rates have become equal.

The evaluation of transport coefficients can be performed in different ways and
is usually performed by evaluating the temporal decay of correlators in the Kubo
formalism [60, 61]. However, the results do not differ very much from those in the
relaxation time approximation (RTA) which is easier to work out. We will thus focus
on the latter approximation in this review for brevity.

2.5.1 Shear and bulk viscosities

The starting hypothesis of the relaxation time approximation is that the collision
integral can be approximated (linearized) by

C[f ] = −f − f eq

τ
=: −γ(f − f eq), (2.92)

where τ is the relaxation time and f eq the equilibrium distribution. In this approach
it has been shown that the shear and bulk viscosities (without mean-field or potential
effects) can be written as (e.g. in Ref. [62]):

η =
1

15T

∑
a

∫
d3p

(2π)3
|p|4

E2
a

τa(Ea)f
eq
a (Ea/T ), (2.93)

ζ =
1

9T

∑
a

∫
d3p

(2π)3
τa(Ea)

E2
a

[
(1− 3v2s)E

2
a −M2

a

]
f eq
a (Ea/T ), (2.94)
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Figure 2.5: The shear viscosity to entropy density ratio η/s as a function of temper-
ature of the system obtained by the PHSD simulations using different methods: the
relaxation time approximation (red line+diamonds) and the Kubo formalism (blue
line+dots). The other symbols denote lattice QCD data for pure SUc(3) gauge theory
from different sources. The orange dashed line demonstrates the Kovtun-Son-Starinets
bound (η/s)KSS = 1/(4π). For comparison, the results in the virial expansion approach
(solid green line) [63] are shown as a function of temperature. The figure is taken from
Ref. [16].

where the sum is over particles of different type a (in our case, a = q, q̄, g). In the
PHSD transport approach the relaxation time can be expressed in the following way:

τa = γ−1
a , (2.95)

where γa is the width of particles of type a = q, q̄, g, defined by Eq. (2.5). In our
numerical simulation the volume V averaged shear and bulk viscosities assume the
following expressions:

η =
1

15TV

N∑
i=1

|pi|4

E2
i

γ−1
i , ζ =

1

9TV

N∑
i=1

γ−1
i

E2
i

[
(1− 3v2s)E

2
i −M2

i

]2
, (2.96)

where the speed of sound vs = vs(T ) is taken from the DQPM using

v2s =
∂P

∂ϵ
. (2.97)

In Fig. 2.5 we present the shear viscosity to entropy density ratio η/s as a function
of the temperature of the system extracted from the PHSD simulations in the box
employing different methods: the relaxation time approximation (red line+diamonds)
and the Kubo formalism (blue line+dots). For comparison, the results from the virial
expansion approach (green line) [63] and lattice QCD data for pure SUc(3) gauge
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Figure 2.6: (l.h.s.) The bulk viscosity to entropy density ratio ζ/s as a function of
temperature of the system extracted from the PHSD simulations in the box using
the relaxation time approximation including mean-field effects (red line+diamonds)
and without potential effects (blue line+open triangles). The other symbols show
the available lattice QCD data from different sources (r.h.s.). The bulk to shear
viscosity ratio as a function of temperature as obtained by the PHSD simulations in
the box employing the relaxation time approximation including mean-field effects (red
line+diamonds) and without potential effects (blue line+circles). Figures taken from
Ref. [16].

theory are shown as a function of temperature, too.

In the absence of the chemical potential there should be no consideration of vector
or tensor fields, only scalar fields. This affects the bulk viscosity, but not the shear
viscosity. The expression for the bulk viscosity with potential effects is [62]

ζ =
1

T

∑
a

∫
d3p

(2π)3
τa(Ea)

E2
a

f eq
a (Ea/T )

[(1
3
− v2s

)
|p|2 − v2s

(
M2

a − T 2d(M
2
a )

d(T 2)

)]2
.(2.98)

In the numerical simulation the volume averaged bulk viscosity with mean-field effects
is calculated as

ζ =
1

TV

N∑
i=1

γ−1
i

E2
i

[(1
3
− v2s

)
|p|2 − v2s

(
M2

i − T 2d(M
2
i )

d(T 2)

)]2
. (2.99)

Using the DQPM expressions for masses of quarks and gluons (2.3) and (2.4), we can
calculate the derivative d(M2)/d(T 2) as well as v2s according to Eq. (2.97). For the
actual results we refer the reader to Fig. 2.6 (l.h.s.), where the bulk viscosity to entropy
density ratio ζ/s is presented as a function of temperature of the system extracted from
the PHSD simulations in the box using the relaxation time approximation including
mean-field effects (red line+diamonds) and without potential effects (blue line+open
triangles). The r.h.s. of Fig. 2.6 shows the bulk to shear viscosity ratio as a function
of temperature. Let us stress that contrary to η/s, the ratio ζ/s has a maximum close
to Tc.
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Figure 2.7: The dimensionless ratio of electric conductivity over temperature σ0/T
(2.102) as a function of the scaled temperature T/Tc for µq = 0 in comparison to
recent lattice QCD results. The figure is taken from Ref. [64].

2.5.2 Electric conductivity

Whereas shear and bulk viscosities of hot QCD matter at finite temperature T
presently are roughly known, the electric conductivity σ0(T, µq) is a further macro-
scopic quantity of interest since it controls the electromagnetic emissivity of the plasma.
First results from lattice calculations on the electromagnetic correlator have provided
results that varied by more than an order of magnitude. Furthermore, the conduc-
tivity dependence on the temperature T (for T>Tc) is widely unknown, too, as well
as its dependence on µq. The electric conductivity σ0 is also important for the cre-
ation of electromagnetic fields in ultra-relativistic nucleus-nucleus collisions from par-
tonic degrees-of-freedom, since σ0 specifies the imaginary part of the electromagnetic
(retarded) propagator and leads to an exponential decay of the propagator in time
∼exp(−σ0(t− t′)/(~c)).

In order to include the effects from an external electric field E or magnetic field B
on the charged degrees-of-freedom, the propagation of each charged test-particle j in
the PHSD is performed with the additional Lorentz force in the equation of motion:

d

dt
pj = qje(E+

pj

Ej
×B), (2.100)

where qj denotes the fractional charge of the test-particle (±1/3,±2/3) and Ej its
energy. We recall that the external electric field will lead to an acceleration of posi-
tively and negatively charged particles in opposite directions while the particle scat-
terings/interactions will damp this acceleration and eventually lead to an equilibrium
current if the external field is of moderate strength. The electric current density jz(t)
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(for an external electric field in z-direction) is calculated by

jz(t) =
1

V N

N∑
k=1

Nk(t)∑
j=1

eqj
pjz(t)

Ej(t)
. (2.101)

The summation in (2.101) is carried out over N ensemble members k = 1 . . . N while
Nk(t) denotes the time-dependent number of ’physical’ (u, d, s) quarks and antiquarks
that varies with time t due to the processes q+ q̄ ↔ g ↔ q′ + q̄′ in a single member of
the ensemble (run). The number of runs N is typically taken as a few hundred which
gives a current jz(t) practically independent on the number of ensemble members
N . We recall that (without external fields) each run of the ensemble is a micro-
canonical simulation of the dynamics as inherent in the PHSD transport approach
which strictly conserves the total four-momentum as well as all discrete conservation
laws (e.g. net fermion number for each flavor etc.). A note of caution has to be given,
since due to an external field we deal with an open system with increasing energy
density (temperature) in time. Therefore we employ sufficiently small external fields
eEz, such that the energy increase during the computation time (in each run) stays
below 2% and the increase in temperature below 1 MeV. For the details we refer the
reader to Refs. [64, 65].

We find that for constant electric fields up to eEz = 50 MeV/fm a stable electric
current jeq emerges that is ∼ Ez. Accordingly, we obtain the conductivity σ0(T, µq)
from the ratio of the stationary current density jeq and the electric field strength as

σ0(T, µq)

T
=
jeq(T, µq)

EzT
. (2.102)

The results for the dimensionless ratio (2.102) at µq = 0 are displayed in Fig. 2.7
by the full dots as a function of the scaled temperature T/Tc in comparison to recent
lattice QCD results and suggest a minimum in the ratio σ0(T, µq = 0)/T close to the
critical temperature Tc followed by an approximate linear rise up to 2 Tc. The recent
lQCD results are roughly compatible with the PHSD predictions.

Within PHSD (or the DQPM) also the dependence of the electrical conductivity
on the quark chemical potential can be evaluated [65]. The numerical result could be
fitted by a quadratic correction

σ0(T, µq)

T
=
σ0(T, µq = 0)

T

(
1 + a(T )µ2

q

)
(2.103)

with a(T ) ≈ 11.6 GeV−2 for T = 0.2 GeV. This result comes about as follows: We
recall that the electric conductivity of gases, liquids and solid states is described in
the relaxation time approach by the Drude formula,

σ0 =
e2neτ

m∗
e

, (2.104)

where ne denotes the density of non-localized charges, τ is the relaxation time of the
charge carriers in the medium and m∗

e their effective mass. This expression can be
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directly computed for partonic degrees-of-freedom within the DQPM, which matches
the quasiparticles properties to lattice QCD results in equilibrium. In the DQPM,
the relaxation time for quarks/antiquarks is given by τ = 1/γq(T, µq), where γq(T, µq)
is the width of the quasiparticle spectral function (2.5). Furthermore, the spectral
distribution for the mass of the quasiparticle has a finite pole mass Mq(T, µq) that is
also fixed in the DQPM (2.4) as well as the density of (u, ū, d, d̄, s, s̄) quarks/antiquarks
as a function of temperature T and chemical potential µq. The latter is given by an

expression similar to the scalar density ρs in (2.9) but
√
p2 replaced by ω. Thus, we

obtain for the dimensionless ratio (2.102) the expression

σ0(T, µq)

T
≈ 2

9

e2nq+q̄(T, µq)

Mq(T, µq)γq(T, µq)T
, (2.105)

where nq+q̄(T, µq) denotes the total density of quarks and antiquarks and the pre-factor
2/9 reflects the flavor averaged fractional quark charge squared (

∑
f q

2
f )/3. As found

in Ref. [65] the DQPM results match well with the explicit PHSD calculations in the
box also for finite µq since PHSD in equilibrium is a suitable transport realization
of the DQPM. In the DQPM we have γq(T, µq) ≈ γq(T, µq = 0) and Mq(T, µq) ≈
Mq(T, µq = 0) for µq ≤ 100 MeV, however,

nq+q̄(T, µq) ≈ nq+q̄(T, µq = 0)
(
1 + a(T )µ2

q

)
(2.106)

with the same coefficient a(T ) as in Eq. (2.103).
The temperature dependence of the expansion coefficient a(T ) is found to be ∼

1/T 2 such that the ratio σ0/T can be approximated by

σ0(T, µq)

T
≈ σ0(T, µq = 0)

T

(
1 + cσ0

µ2
q

T 2

)
. (2.107)

A fit to the coefficient cσ0 in the temperature range 170 MeV≤ T ≤ 250 MeV gives
cσ0 ≈ 0.46. This completes our study on the stationary electric conductivity σ0 which
can be well understood in its variation with T and µq within the DQPM or PHSD,
respectively. We note that the conductivity σ0 controls the electromagnetic emissivity
of systems in thermal equilibrium at low photon momentum (see Section 5.3).



Chapter 3

Some of the evidence for the QGP
production

3.1 Transverse momentum and rapidity spectra of

hadrons

In this Section we employ the PHSD and HSD approaches to nucleus-nucleus collisions
from

√
sNN = 5.5 GeV to 2.76 TeV. Note that at RHIC or more specifically LHC

energies other initial conditions (e.g. a color-glass condensate (CGC) [66, 67]) might
be necessary. In the present work we discard such alternative initial conditions and
explore to what extent the present initial conditions (described in Section 2.3) are
compatible with differential measurements by the various collaborations at the SPS,
RHIC or LHC. A more detailed comparison to results from CGC initial conditions in
Pb-Pb collisions at

√
sNN = 2.76 TeV may be found in Ref. [68].

Since PHSD is essentially fixed by lQCD data at µq = 0 in thermal equilibrium in
the partonic phase and by HSD in the hadronic phase, it is of interest how the PHSD
approach compares to the HSD model (without explicit interacting partonic degrees-of-
freedom) as well as to experimental data from the SPS, RHIC or LHC collaborations.
We start with proton rapidity distributions at the SPS that demonstrate the amount
of initial baryon stopping and thus control the energy transfer in relativistic nucleus-
nucleus collisions. Since we find the HSD results for the proton rapidity distribution
dN/dy to be identical with the PHSD results (within statistics) we will only compare
PHSD calculations to data of the NA49 Collaboration. Accordingly, in Fig. 3.1 the
proton rapidity distributions from PHSD are compared to the data from Ref. [69]
for 7% central Pb+Pb collisions at 40 and 80 A·GeV (l.h.s.). The r.h.s. of Fig.
3.1 shows the net-proton dN/dy from PHSD for 158 A·GeV Pb+Pb collisions for
different centrality bins (bin 0 – 0-5%; bin 1 – 5-12%; bin 2 – 12.5-23.5%; bin 3 –
23.5-33.5%; bin 4 – 33.5-43.5% and bin 5 – 43.5-78.5% central events) in comparison
to the experimental data from Ref. [70]. In fact, the PHSD results demonstrate that
the baryon stopping is reasonably reproduced in Pb+Pb collisions as a function of
bombarding energy and centrality of the reaction at the SPS energies.

Since the energy is dominantly transferred to mesons, which asymptotically appear
mostly as pions and kaons, we continue with pion and K± rapidity distributions for

37
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Figure 3.1: The proton rapidity distributions for central (7%) Pb+Pb collisions at 40
and 80 (l.h.s.) in comparison to the data from Ref. [69]. The r.h.s. of the figure
presents the net-proton rapidity distribution at 158 A·GeV for different centrality bins
(bin 0 – 0-5%; bin 1 – 5-12%; bin 2 – 12.5-23.5%; bin 3 – 23.5-33.5%; bin 4 – 33.5-43.5%
and bin 5 – 43.5-78.5% central events) from PHSD (solid lines) in comparison to the
experimental data from the NA49 Collaboration [70]. The figures are taken from Ref.
[24].
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Figure 3.2: The rapidity distribution of π− (upper part), K+ (middle part) and K−

(lower part) for 7% or 5% central Pb+Pb collisions at 40, 80 and 158 A·GeV from
PHSD (solid blue lines) in comparison to the distribution from HSD (dashed red lines)
and the experimental data from the NA49 Collaboration [71, 72]. The figures are taken
from Ref. [24].
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Figure 3.3: The π−, K+ and K− transverse mass spectra for central Pb+Pb colli-
sions at 40, 80 and 158 A·GeV from PHSD (thick solid lines) in comparison to the
distributions from HSD (thin solid lines) and the experimental data from the NA49
Collaboration [71]. The figures are taken from Ref. [24].

7% central Pb+Pb collisions at 40 and 80 A·GeV and 5% central collisions at 158
A·GeV since here rather complete data sets are available from the experimental side
[71]. The results from PHSD (solid blue lines) are compared in Fig. 3.2 with the
corresponding results from HSD (dashed red lines) and the experimental data for the
same centralities in comparison to the rapidity spectrum from HSD (dashed red lines)
and the experimental data from the NA49 Collaboration [71]. The actual deviations
between the PHSD and HSD spectra are very moderate; the π− rapidity distribution
is slightly squeezed in width (in PHSD) and shows a more pronounced peak at midra-
pidity (at 158 A·GeV) more in line with the data. Nevertheless, it becomes clear from
Fig. 3.2 that the energy transfer - reflected in the light meson spectra - is rather well
described by PHSD, which thus passes another test. Fig. 3.2 demonstrates that the
longitudinal motion is rather well understood within the transport approaches and
dominated by initial string formation and decay. Actually, there is no sizeable sensi-
tivity of the rapidity spectra to an intermediate partonic phase. But what about the
transverse degrees-of-freedom?

The answer to this question is offered in Fig. 3.3 where we show the transverse
mass spectra of π−, K+ and K− mesons for 7% central Pb+Pb collisions at 40 and
80 A·GeV and 5% central collisions at 158 A·GeV in comparison to the data of the
NA49 Collaboration [71]. Here the slope of the π− spectra is only slightly enhanced
in PHSD (thick solid lines) relative to HSD (thin solid lines) which demonstrates
that the pion transverse mass spectra also show no sizeable sensitivity to the partonic
phase. However, the K± transverse mass spectra are substantially hardened with
respect to the HSD calculations at all bombarding energies - i.e. PHSD is more in
line with the data - and thus suggest that partonic effects are better visible in the
strangeness degrees-of-freedom. The hardening of the kaon spectra can be traced back
to parton-parton scattering as well as a larger collective acceleration of the partons in
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Figure 3.4: The rapidity distribution of π+ (upper part, l.h.s.), K+ (lower part, l.h.s.),
π− (upper part, r.h.s.) and K− (lower part, r.h.s.) for 5% central Au+Au collisions at√
s = 200 GeV from PHSD (solid lines) in comparison to the distribution from HSD

(dashed lines) and the experimental data from the RHIC Collaborations [73, 74]. The
figure is taken from Ref. [28].

the transverse direction due to the presence of repulsive fields for the partons. The
enhancement of the spectral slope for kaons and anti-kaons in PHSD (due to collective
partonic flow) shows up much clearer for the kaons due to their significantly larger
mass (relative to pions). We recall that in Refs. [75, 76] the underestimation of
the K± slope by HSD (and also UrQMD) had been suggested to be a signature for
missing partonic degrees-of-freedom. In fact, the PHSD calculations support this early
suggestion.

We continue with rapidity spectra from PHSD (solid red lines) for charged pions
and kaons in 5% central Au+Au collisions at

√
sNN = 200 GeV which are compared in

Fig. 3.4 to the data from the RHIC Collaborations [73, 74] as well as to results from
HSD (dashed blue lines). We find the rapidity distributions of the charged mesons
to be slightly narrower than those from HSD and actually closer to the experimental
data. Also note that there is slightly more production of K± mesons in PHSD than
in HSD while the number of charged pions is slightly lower. The actual deviations
between the PHSD and HSD spectra are not dramatic but more clearly visible than
at SPS energies (cf. Figs. 8,9). Nevertheless, it becomes clear from Fig. 3.4 that
the energy transfer in the nucleus-nucleus collision from initial nucleons to produced
hadrons - reflected dominantly in the light meson spectra - is rather well described by
PHSD also at the top RHIC energy.

Independent information on the active degrees-of-freedom is provided again by
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transverse mass spectra of the hadrons especially in central collisions. The PHSD
results for the top RHIC energy are displayed in Fig. 3.5 where we show the transverse
mass spectra of π−, K+ and K− mesons for 5% central Au+Au collisions at

√
s =

200 GeV in comparison to the data of the RHIC Collaborations [73, 74]. Here the
slope of the π− spectra is slightly enhanced in PHSD (solid red lines) relative to HSD
(dashed blue lines) which demonstrates that the pion transverse mass spectra also
show some sensitivity to the partonic phase (contrary to the SPS energy regime).
The K± transverse mass spectra are substantially hardened with respect to the HSD
calculations - i.e. PHSD is more in line with the data - and thus suggest that partonic
effects are better visible in the strangeness degrees-of-freedom. The hardening of the
kaon spectra can be traced back also to parton-parton scattering as well as a larger
collective acceleration of the partons in the transverse direction due to the presence of
the repulsive scalar mean-field for the partons.

We, finally, come to the presently highest laboratory energies for Pb+Pb collisions
at the LHC, however, recall that the PHSD approach had to be properly upgraded to
LHC energies with respect to a more recent PYTHIA 6.4 implementation [79]. The
transition between the different PYTHIA regions in energy is smooth with respect to√
sNN of the individual collisions such that PHSD preserves all results at lower bom-

barding energies where PYTHIA 6.4 does not work sufficiently well. In PYTHIA 6.4
we use the Innsbruck pp tune (390) which allows to describe reasonably the p-p colli-
sions at

√
sNN = 7 TeV in the framework of the PHSD transport approach (cf. Fig. 1

in Ref. [79]). The overall agreement with LHC experimental data for the distribution
in the charged particle multiplicity Nch, the charged particle pseudorapidity distri-
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bution, the transverse momentum pT spectra and the correlation of the average pT
with the number of charged particles Nch is satisfactory. Also a variety of observables
from p-Pb collisions at

√
sNN = 5.02 TeV compare quite well with the experimental

observations [79].

One might ask whether the PHSD approach still works at LHC energies for nucleus-
nucleus (Pb+Pb) collisions although the invariant energy is higher by about a factor
of 13.8 compared to the top RHIC energy. In Fig. 3.6 (l.h.s.) we compare the average
pT (at midrapidity) as a function of charged multiplicity Nch in p+p reactions at√
sNN = 7 TeV, p+Pb collisions at

√
sNN = 5.02 TeV and Pb+Pb collisions at

√
sNN =

2.76 TeV from the PHSD to the experimental data from Ref. [77]. Note that for
low multiplicities (Nch < 5) the mean pT is almost independent on energy (see also
Ref. [77]) which in PHSD can be traced back to the fact that (for the acceptance |η| ≤
0.3, 0.15 ≤ pT ≤ 10 GeV/c) only events with one or two binary collisions Nbin are
selected for all systems. Actually, the correlation < pT > (Nch) only weakly depends
on

√
sNN for pp reactions at these LHC energies, however, when plotting pT (Nch) on

an event-by-event basis, large fluctuations in pT or Nch are obtained within PHSD. The
same holds true for p+Pb and Pb+Pb reactions where a fixed Nch can be obtained
by reactions with a varying number of binary collisions Nbin. Each of these binary
reactions then has a low Nch and < pT >, respectively. The ensemble average finally
leads to the average correlation shown in Fig. 3.6 (l.h.s.). Nevertheless, the agreement
between data and calculations (within the statistical accuracy) is encouraging. Note
again that only very peripheral Pb+Pb collisions are probed for Nch < 100.

In order to shed some light on the centrality dependence of charged particle pro-
duction we display in Fig. 3.6 (r.h.s.) the results for the pseudo-rapidity distribution
dNc/dη at midrapidity from the default PHSD calculations in comparison to the AL-
ICE data as a function of the number of participants Npart that has been determined
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PHSD for pT ≤ 2 GeV/c in comparison to the results of the ALICE Collaboration
[80–82] for pions and kaons. The figures are taken from Ref. [68].

dynamically in the PHSD calculations. A quite acceptable agreement is seen, sug-
gesting that the bulk parton dynamics is not much different at top RHIC and LHC
energies.

We continue with the transverse momentum spectra for central Pb+Pb reactions
at

√
sNN = 2.76 TeV (0-5% centrality) which are compared in Fig. 3.7 with results

from the ALICE Collaboration for all charged particles [80, 81] (PHSD: black solid
line) as well as for charged pions [82] (PHSD: dashed blue line). Note that except
for the upgrade in the PYTHIA version no additional parameters or changes have
been introduced in the PHSD. In this respect the approximate reproduction of the
midrapidity pT spectra for central collisions over 7 orders of magnitude in Fig. 3.7
(l.h.s.) is quite remarkable. A closer look at the low momentum spectra is offered in
Fig. 3.7 (r.h.s.) where the PHSD spectra for pions and kaons are compared to results
of the ALICE Collaboration [80–82] (symbols).

In summarizing, the partonic phase in PHSD at the top RHIC energy and at
LHC leads to a narrowing of the longitudinal momentum distribution, a reduction of
pion production, a slight enhancement of kaon production and to a hardening of their
transverse mass spectra relative to HSD (closer to the data). These effects are clearly
visible especially in the transverse degrees-of-freedom and are more pronounced than
at SPS energies due to the larger space-time region of the partonic phase.

3.2 Collective flow of hadrons

Of additional interest are the collective properties of the strongly interacting system
which are explored experimentally by the azimuthal momentum distribution of parti-
cles in a fixed rapidity interval. The azimuthal momentum distribution of the emitted
particles is commonly expressed in the form of a Fourier series as

E
d3N

d3p
=

d2N

2πpTdpTdy

(
1+

∞∑
n=1

2vn(pT ) cos[n(ψ −Ψn)]

)
, (3.1)
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where vn is the magnitude of the n′th order harmonic term relative to the angle of
the initial-state spatial plane of symmetry Ψn and p = (E, p⃗) is the four-momentum
of the particle under consideration. We here focus on the coefficients v2, v3 and v4
which implies that we have to perform event-by-event calculations in order to catch
the initial fluctuations in the shape of the interaction zone and the event plane ΨEP ;
e. g., we calculate the triangular flow v3 with respect to Ψ3 as v3{Ψ3} = ⟨cos(3[ψ −
Ψ3])⟩/Res(Ψ3). The event plane angle Ψ3 and its resolution Res(Ψ3) are evaluated as
described in Ref. [86] via the two-sub-events method [87, 88].

We here briefly summarize the main results. Fig. 3.8 (l.h.s.) shows the final
hadron v2 versus the transverse momentum pT for different particle species at the
top RHIC energy in comparison to the data from the STAR [83, 84] and PHENIX
Collaborations [85]. We observe a mass separation in pT as well as a separation in
mesons and baryons for pT > 2 GeV roughly in line with data. The elliptic flow of
mesons is slightly underestimated for pT > 2 GeV in PHSD which is opposite to ideal
hydrodynamics which overestimates v2 at high transverse momenta. On the other
hand, the proton (and antiproton) elliptic flow is slightly overestimated at low pT <
1.5 GeV. We note in passing that also the momentum integrated results for v2 as a
function of the number of participating nucleons Npart from PHSD compare well to
the data from Ref. [89]. In contrast, the HSD results clearly underestimate the elliptic
flow as pointed out before [90]. The relative enhancement of v2 in PHSD with respect
to HSD can be traced back to the high interaction rate in the partonic phase and to
the repulsive scalar mean-field for partons; the PHSD calculations without mean-fields
only give a small enhancement for the elliptic flow relative to HSD.

Stepping up in energy of the collision to
√
sNN = 2.76 TeV reached at the LHC, the

PHSD results for the flow coefficients v2, v3, v4 and v5 of all charged particles are shown
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in Fig. 3.8 as a function of pT for the centralities 30-40% in Pb+Pb collisions (r.h.s.)
in comparison to the ALICE data from Ref. [78]. The PHSD results for v2(pT ), v3(pT )
and v4(pT ) describe the data reasonably up to about 3.5 GeV/c, whereas at higher
transverse momenta the statistics of the present calculations is insufficient to draw
robust conclusions. This also holds for the flow coefficient v5 which still is in line
with the data within error bars. It is quite remarkable that the collective behavior is
reproduced in the PHSD approach not only for the semi-central collisions (30− 40 %)
but also for 0−5% central collisions, which are sensitive to the initial state fluctuations
(see Ref. [68]).

These tests indicate that the ’soft’ physics at LHC in central A-A reactions is very
similar to the top RHIC energy regime although the invariant energy is higher by
more than an order of magnitude. Furthermore, the PHSD approach seems to work
from lower SPS energies up to LHC energies for p-p, p-A as well as A-A collisions, i.e.
over a range of more than two orders in

√
sNN . Note that for even lower bombarding

energies the PHSD approach merges to the HSD model which has been successfully
tested from the SIS to the SPS energy regime in the past [1, 91, 92]. Since the bulk
dynamics is well described in PHSD in comparison to experimental data in a wide
dynamical range we may continue with the electromagnetic emissivity of the reactions
which (in principle) does not employ any new parameter.

3.3 Energy-density evolution in heavy-ion colli-

sions

The HSD approach [1] provides the space-time geometry of nucleus-nucleus reactions
and a rather reliable estimate for the local energy densities achieved, since the produc-
tion of secondary particles with light and a single strange quark/antiquark is described
well from SIS to RHIC energies [93, 94] (see also Section 5). In the transport approach
the local energy density is calculated from the energy-momentum tensor Tµν(x) for all
space-time points x in the local rest frame: ε(x) = T loc

00 (x), where T
loc
00 (x) is calculated

from Tµν(x) by a Lorentz boost to the local rest frame. In order to exclude contri-
butions to Tµν from noninteracting nucleons in the initial phase all nucleons without
prior interactions are discarded in the rapidity intervals [ytar − 0.4, ytar + 0.4] and
[ypro − 0.4, ypro +0.4] where ytar and ypro denote projectile and target rapidity, respec-
tively. Note that the initial rapidity distributions of projectile and target nucleons are
smeared out due to Fermi motion by about ∆y ≈ ±0.4. Some comments on the choice
of the grid in space-time are in order here: In the actual calculation (for Au+Au colli-
sions) the initial grid has a dimension of 1 fm × 1 fm × 1/γcm fm, where γcm denotes
the Lorentz γ-factor in the nucleon-nucleon center-of-mass system. After the time of
maximum overlap tm of the nuclei the grid-size in beam direction ∆z0 = 1/γcm [fm] is
increased linearly in time as ∆z = ∆z0+a(t− tm), where the parameter a is chosen in
a way to keep the particle number in the local cells of volume ∆V (t) = ∆x∆y∆z(t)
roughly constant during the longitudinal expansion of the system. In this way local
fluctuations of the energy density ε(x) due to fluctuations in the particle number are
kept low. Furthermore, the time-step is taken as ∆t = 0.2∆z(t) and increases in time
in analogy to ∆z(t). This choice provides a high resolution in space and time for the
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Figure 3.9: The energy density ε(x, y = 0, z; t) from HSD for a Pb+Pb collision at
160 A·GeV and impact parameter b = 1 fm in terms of contour lines (0.01, 1, 2, 3, 4
GeV/fm3) for times of 1, 2, 3 and 5 fm/c (from contact). Note that noninteracting
nucleons have been discarded in the actual calculation of the energy-momentum tensor.
The figure is taken from Ref. [95].

initial phase and keeps track of the relevant dynamics throughout the entire collision
history.

SPS energies

As a first example we display in Fig. 3.9 the energy density ε(x, y = 0, z; t) for a
Pb+Pb collision at 160 A·GeV and impact parameter b = 1 fm in terms of contour
lines for times of 1, 2, 3 and 5 fm/c (from contact). It is clearly seen that energy
densities above 4 GeV/fm3 are reached in the early overlap phase of the reaction and
that ε(x) drops within a few fm/c below 1 GeV/fm3 in the center of the grid. On the
other hand the energy density in the region of the leading particles - moving almost
with the velocity of light - stays above 1 GeV/fm3 due to Lorentz time dilatation since
the time t here is measured in the nucleon-nucleon center-of-mass system. Note that
in the local rest frame of the leading particles the eigentime τ is roughly given by
τ ≈ t/γcm with γcm ≈ 9.3 (at 160 A·GeV).

Another view of the space time evolution of the energy density is given in Fig. 3.10
where we display ε(x = 0, y = 0, z; t) for the same system as in Fig. 3.9 on a linear
scale. The contact time of the two Pb nuclei here is 2 fm/c and the overlap phase
of the Lorentz contracted nuclei is identified by a sharp peak in space-time which is
essentially given by the diameter of the nuclei divided by γcm. As noted before, the
energy density in the center of the reaction volume (z ≈ 0) drops fast below 1 GeV/fm3



47 3.3. ENERGY-DENSITY EVOLUTION IN HEAVY-ION COLLISIONS

0
5

10

15

1

2

3

4

5

-10
-5

0
5

10

Pb+Pb, 160 A GeV
b=1 fm

(0
,0

,z
) 

[G
eV

/f
m

3
]

z [
fm

]time [fm/c]
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whereas the ridges close to the light-cone basically stem from the leading ends of the
strings formed in the early nucleon-nucleon collisions. In these space-time regions all
reaction rates are reduced by the factor ∼ 1/γcm such that the transport calculations
have to be carried out to large times of several hundred fm/c in order to catch the
dynamics and decays in these regions. In the central regime, however, all interaction
rates vanish after about 15 fm/c. Since the c, c̄ pairs are produced dominantly at
midrapidity with a small spread in rapidity (σy ≈ 0.8 at 160 A·GeV) it is the central
region that is of primary interest for this study.

RHIC energies

The energy density ε(r; t) becomes very high in a central Au+Au collision at
√
s =

200 GeV as shown in Fig. 3.11 (in analogy to Fig. 3.10 for the top SPS energies).
Fig. 3.11 shows the space-time evolution of the energy density ε(x = 0, y = 0, z; t) for
a Au+Au collision at 21300 AGeV or

√
s = 200 GeV. It is clearly seen that energy

densities above 16 GeV/fm3 are reached in the early overlap phase of the reaction and
that ε(x) drops after about 6 fm/c (starting from contact) below 1 GeV/fm3 in the
center of the grid. On the other hand the energy density in the region of the leading
particles - moving almost with the velocity of light - stays above 1 GeV/fm3 due to
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Figure 3.11: The energy density ε(x = 0, y = 0, z; t) from HSD for a central Au+Au
collision at

√
s = 200 GeV. The time t is given in the nucleon-nucleon center-of-mass

system. The figure is taken from Ref. [96].

Lorentz time dilatation since the time t in the transport calculation is measured in the
nucleon-nucleon center-of-mass system. As seen from Fig. 3.11, the energy density in
the local rest frame is a rapidly changing function of time in nucleus-nucleus collisions.
For orientation let us quote the relevant time scales (in the cms reference frame):

– The cc̄ formation time τc ≈ 1/M⊥ is about 0.05 fm/c for a transverse mass
of 4 GeV; the transient time for a central Au+Au collision at

√
s = 200 GeV is

tr ≈ 2RA/γcm ≈ 0.13 fm/c. According to standard assumptions, the cc̄ pairs are
produced in the initial hard NN collisions dominantly by gluon fusion in the time
period tr. In fact, the formation time τc is significantly smaller than tr, which implies
that the c or c̄ quarks may interact with the impinging nucleons of the projectile or
target for times t ≤ tr.

– Using the Bjorken estimate for the energy density and employing the time-scale
tr = 0.13 fm/c, the energy density – after the nuclei have punched through each other
– amounts to about 5/0.13 > 30 GeV/fm3 (as quoted also in the HSD calculations
in Refs. [96, 97]). Even when adding the cc̄ formation time, this gives an energy
density ∼ 5/0.18 ≈ 28 GeV/fm3. So the numbers in Fig. 3.11 agree with transparent
and simple estimates and illustrate the high initial densities after cc̄ production from
primary interactions.

The energy densities quoted above are considerably different from the estimate

τ · ϵBj =
< ET >

dN
dη

πR2
T

, (3.2)

where < ET > is the average transverse energy per particle, dN/dη the number of
particles per unit of pseudorapidity, and τ a formation time parameter often used
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as τ = 1 fm/c. Furthermore, πR2
T denotes the overlap area for the corresponding

centrality. Is is important to point out that the estimate (3.2) is only well defined for
the product τ · ϵBj! The question naturally arises, if the transport calculations follow
the corresponding experimental constraints.

To this aim we show dET/dη (divided by half the number of participants Npart)
from HSD in Fig. 3.12 (l.h.s.) in comparison to the measurements by PHENIX [98].
Accordingly, the Bjorken energy density ϵBj – multiplied by the time-scale τ (3.2)–
from HSD is shown additionally in the r.h.s. of Fig. 3.12 in comparison to the
PHENIX data as a function of Npart. The similarity between the calculated quantities
and the experimental data demonstrates that the space-time evolution of the energy-
momentum tensor Tµν in HSD is sufficiently well under control also at RHIC energies.

3.4 Open and hidden charm production

An investigation of the formation and suppression dynamics of J/Ψ, χc and Ψ′ mesons
opens the possibility to address fundamental questions about the properties of the state
of matter at high temperature and density. Up to date, a simultaneous description
of the seemingly energy-independent suppression of J/Ψ together with its narrow
rapidity distribution and a strong elliptic flow v2 of charmed hadrons - as found at
the Relativistic-Heavy-Ion-Collider (RHIC) - has presented a challenge to microscopic
theories. The large discrepancies of present studies are striking in view of the success
of the hadron-string transport theories in describing charmonium data at SPS energies.
This has lead to the conjecture that the sizeable difference between the measured yields
and transport predictions is due to a neglect of the transition from hadronic to partonic
matter, e.g. a strongly-coupled Quark-Gluon-Plasma (sQGP). In the present work,
we report new results on the charmonium nuclear modification factor RAA, rapidity
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distribution, the elliptic flow v2 of D mesons, the ratios ⟨J/Ψ⟩/⟨π⟩ and Ψ′/(J/Ψ) for
energies from about 20 A·GeV - relevant for the future Facility-for-Antiproton-and-
Ion-Research (FAIR) - up to top RHIC energies.

We recall that in the early stage of the nucleus-nucleus collisions the dissociation
and the regeneration of J/Ψ by fundamentally different mechanisms are possible: The
cc̄ pairs produced early in the reaction - by gluon-gluon fusion in primary nucleon-
nucleon interactions - might be completely dissociated in the dense medium and not
be formed as bound states due to color screening. In this model scenario charmonia
have to be recreated by some mechanism to yield a finite production cross section of
J/Ψ and Ψ′. The cc̄ pairs might also be formed in some pre-hadronic resonance (color-
dipole) state that will further develop to the charmonium eigenstates in vacuum. Such
resonance states can be dissociated in the medium due to interactions with other de-
grees of freedom but also be recreated by the inverse reaction channels. Independently,
charmonia might also be generated in a statistical fashion at the phase boundary be-
tween the QGP and an interacting hadron gas such that their abundance would appear
in statistical (chemical) equilibrium with the light and strange hadrons [99, 100]. In
the latter model the charmonium spectra carry no information on a possible preced-
ing partonic phase. Indeed, in Ref. [101] a success of the statistical hadronization
model [102, 103] has been put forward. Another alternative is the model for coales-
cence of charmonium in the sQGP [104]. For further variants or model concepts for
charmonium suppression/enhancement we refer the reader to the reviews [105, 106].
In this work our aim is to shed some light on various model concepts by exploiting
relativistic microscopic transport theory.

The Hadron-String-Dynamics (HSD) approach [1] provides the space-time geom-
etry of nucleus-nucleus reactions and a rather reliable estimate for the local energy
densities achieved, since the production of secondary particles with light and single
strange quarks/antquarks is described well from SIS to RHIC energies [93]. As we
have discussed in the previous section, the high energy-densities reached in Au + Au
collisions at RHIC clearly indicate that a strongly interacting QGP (sQGP) has been
created for a couple of fm/c in the central overlap volume. Charmonia are a promising
probe that is sensitive to the properties of the early stage of the collision and that can
possibly differentiate between hadronic and partonic medium.

In the systematic study summarized in Ref. [107], we describe the implementation
of charmonium production in p + p, d + A, and A + A reactions in the HSD trans-
port approach. We observed that the interactions of J/Ψ’s with mesons in the late
stages of the collision (when the energy density falls below a critical value of about
1 GeV/fm3 corresponding roughly to the critical energy density for a parton/hadron
phase transition) gives a sizable contribution to its anomalous suppression at all beam
energies as demonstrated in Refs. [76, 90, 108–110]. Accordingly, this hadronic con-
tribution has to be incorporated when comparing possible models for QGP-induced
charmonium suppression to experimental data. On the other hand, as known from our
studies in Refs. [108, 109] charmonium interactions with the purely hadronic medium
alone (which is modeled rather precisely by HSD) are not sufficient to describe the
J/Ψ suppression pattern at RHIC in detail.

Based on the microscopic HSD transport theory, we investigate in particular the
following scenarios for the anomalous absorption of charmonia:
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Figure 3.13: J/Ψ production cross section in d+Au collisions relative to that in p+ p
collisions (see text for the definition of RdA) in HSD (red stars) as compared to the
PHENIX data [116] (full dots).

(1) the ‘threshold melting’ mechanism;
(2) a dissociation by the scattering on hadron-like correlators, i.e. the ‘comover’ sce-
nario;
(3) additional scattering of charm with pre-hadrons which might be considered as color
neutral precursors of hadronic states (cf. Refs. [111–114]).

These scenarios will be described briefly below. We will present in particular the
effect of the interactions of charm quarks in the pre-hadronic medium on RAA(y) of
J/Ψ by comparing our calculations to RHIC data. Furthermore, by studying the J/Ψ
to π ratio as a function of the number of participating nucleons Npart, we will test
the assumption of charmonium production by statistical hadronization as advocated
in Refs. [100, 101, 115].

3.4.1 Cold nuclear absorption of charmonia

The yield of J/Ψ in p + A and A + A reactions is modified compared to that in
p + p scaled with the number of initial binary scatterings Ncoll [117, 118]. Indeed,
the produced cc̄ can be dissociated or absorbed on either the residual nucleus of the
projectile or target or on light co-moving particles (usually on mesons or, at high
energy, on partons) produced in the very early phase. The latter reactions are only
important in nucleus-nucleus collisions and not in p + A or d + A as the number
of ‘comovers’ created in proton- or deuteron-induced processes is small. In contrast,
charmonium absorption on baryons is the leading suppression mechanism in d + A
(p+A) scattering and is an important base-line for the study of the absorption in the
hot and dense medium created in A+ A reactions.

In order to study the effect of charmonium rescattering on projectile/target nu-
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cleons, we adopt in HSD the following dissociation cross sections of charmonia with
baryons independent of the energy:

σcc̄B = 4.18 mb; (3.3)

σJ/ΨB = 4.18 mb; σχcB = 4.18 mb; σΨ′B = 7.6 mb.

In (3.3) the cross section σcc̄B stands for a (color dipole) pre-resonance (cc̄) - baryon
cross section, since the cc̄ pair produced initially cannot be identified with a particular
charmonium due to the uncertainty relation in energy and time. For the life-time of
the pre-resonance cc̄ pair (in it’s rest frame) a value of τcc̄ = 0.3 fm/c is assumed
following Ref. [119]. This time scale corresponds to the mass difference of the Ψ′ and
J/Ψ.

The values for the cross sections σJ/ΨN , σcc̄N at RHIC energies are currently debated
in the literature. On one side, all the data on the J/Ψ production in p+A at energies√
s ≤ 40 GeV were found to be consistent with an energy-independent cross section

of the order of 4 − 7 mb [117, 120–123]. On the other hand, the corresponding cross
sections at the much higher energy of

√
s = 200 GeV, e.g. at RHIC, are expected to

be smaller [124], since part of the suppression might be attributed to other (initial-
state) cold-matter effects, such as gluon shadowing [125–127], radiative gluon energy
loss in the initial state or multiple gluon rescattering. We recall that ‘shadowing’ is
a depletion of low-momentum partons in a nucleon embedded in a nucleus compared
to the population in a free nucleon, which leads to a lowering in the charmonium
production cross section. The reasons for depletion, though, are numerous, and models
of shadowing vary accordingly. There is, therefore, a considerable (about a factor of
3) uncertainty in the amount of shadowing predicted at RHIC [125–129]. In the
analysis of the d + Au data at

√
s = 200 GeV, in which the maximum estimate

for the effect of the shadowing was made [124, 127], the additional absorption on
baryons allowed by the data was found to lead to σJ/ΨN = 1− 3 mb or higher, if some
contribution of anti-shadowing is present. The authors of [127] advocate σJ/ΨN = 3 mb
in order to preserve the agreement with the data of the Fermilab experiment E866. The
PHENIX Collaboration [116] finds a breakup cross section of 2.8+1.7

−1.4 mb (using EKS
shadowing) which still overlaps with the CERN value of 4.18 mb (though with large
error bars). However, the theoretical uncertainty is still large, since in the works above
only an approximate model for baryonic absorption was applied and not a microscopic
transport approach that e.g. also includes secondary production channels of charm
pairs as described in Section 3.

Within HSD we have found the baryoninc absorption cross sections (3.3) to agree
with the data at SPS energies [108]. In Fig. 3.13 we compare the HSD result (employing
the same cross sections (3.3) for baryonic absorption and neglecting shadowing) for
the J/Ψ production in d + Au collisions at

√
s = 200 GeV to the inclusive PHENIX

data [116]. The quantity plotted is the nuclear modification factor defined as

RdA ≡
dNdAu

J/Ψ/dy

⟨Ncoll⟩ · dNpp
J/Ψ/dy

, (3.4)

where dNdAu
J/Ψ/dy is the J/Ψ invariant yield in d + A collisions, dNpp

J/Ψ/dy is the J/Ψ
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Figure 3.14: The ratio RdA (3.4) for backward, central and forward rapidity bins as
a function of the number of binary collisions Ncoll for d + Au at

√
s = 200 GeV. The

experimental data have been taken from Ref. [116]. The HSD results (stars connected
by red dashed lines) show calculations without including low-x gluon shadowing and
slightly overestimate RdA in the forward interval 1.2 < y < 2.2. The theoretical error
bars are due to the finite statistics of the calculation.

invariant yield in p+ p collisions; ⟨Ncoll⟩ is the average number of binary collisions for
the same rapidity bin. In our analysis we have used ⟨Ncoll⟩ = 7.6 ± 0.3 according to
the PHENIX estimate [116].

It is seen from Fig. 3.13 that the calculations follow approximately the decrease in
RdA with rapidity, however, with a tendency to overshoot at forward rapidity. Within
error bars we find the values of σcc̄B from (3.3) to be compatible with the inclusive
RHIC measurement as well as with the lower energy data [121]. This finding is also
in line with the analysis of the PHENIX Collaboration in Ref. [116]

In order to shed some further light on the role of shadowing, we compare our
calculations for RdA in different rapidity bins as a function of the centrality of the d+Au
collision, which in Fig. 3.14 is represented by the number of binary collisions Ncoll.
The latter number is directly taken from the number of binary hard NN collisions in
the transport calculation while the comparison with experiment is based on a Glauber
model analysis of the data similar to that performed in Ref. [130]. The actual results
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displayed in Fig. 3.14 (stars connected by dashed lines) and the PHENIX data from
Ref. [116] are roughly compatible for the rapidity intervals -2.2 < y < -1.2 and |y| <
0.35, but demonstrate that the suppression at forward rapidity (1.2 < y <2.2) is
underestimated in the color-dipole dissociation model with a constant cross section of
4.18 mb. This clearly points to the presence of shadowing effects at least at forward
rapidities which is not so pronounced in the inclusive data set in Fig. 3.13. A more
serious question is a quantification of the shadowing due to the limited statistics of both
the experimental data and the calculations. Here we do not attempt to attribute a fixed
number for the shadowing effect but merely point out that independent high statistics
data will be necessary to fix this unsatisfactory situation from the experimental side.

Nevertheless, some note of caution is appropriate for the further analysis of char-
monium suppression in Au + Au collisions: There are ‘cold nuclear matter effects’
such as ‘gluon shadowing’ beyond those incorporated in the transport calculations,
and especially quantitative statements about any ‘agreement with data’ might have
to be reconsidered. In case of Au+Au reactions the shadowing from projectile/target
will show up symmetrically around y = 0 and in part contribute to the stronger J/Ψ
suppression at forward/backward rapidities. Nevertheless, following Granier de Cas-
sagnac [130], an anomalous suppression of J/Ψ beyond ‘cold nuclear matter effects’ is
clearly present in the Au+ Au data to be investigated below.

It is well known that the baryonic (normal) absorption alone cannot explain the
suppression of charmonia in heavy-ion collisions with increasing centrality [105]. We
have implemented in HSD several different mechanism for the additional (anomalous)
suppression of charmonia which will be explained in the following Subsections. By
comparing the results from these scenarios to each other and to the available data the
mechanism of charmonium interactions with the medium can be probed.

3.4.2 ‘Comover’ suppression (and recombination)

First of all let us stress that the interactions with ‘comoving’ mesons lead not only to
the dissociation of charmonia, but also to their recreation via the inverse recombination
process D + D̄ → cc̄ +m, where m = {π, ρ, ω,K, ...}. As already pointed out before,
the J/Ψ, χc,Ψ

′ formation cross sections by open charm mesons or the inverse ‘comover’
dissociation cross sections are not well known and the significance of these channels is
discussed controversely in the literature [102, 104, 131–135]. We here follow the concept
of Refs. [76, 90] and introduce a simple 2-body transition model with a single parameter
|M0|2, that allows to implement the backward reactions uniquely by employing detailed
balance for each individual channel.

Since the charmonium-meson dissociation and backward reactions typically occur
with low relative momenta (‘comovers’), it is legitimate to write the cross section for
the process 1 + 2 → 3 + 4 as

σ1+2→3+4(s) = 24
E1E2E3E4

s
|M̃i|2

(
m3 +m4√

s

)6
pf
pi
, (3.5)

where Ek denotes the energy of hadron k (k = 1, 2, 3, 4), respectively. The initial and
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final momenta for fixed invariant energy
√
s are given by

p2i =
(s− (m1 +m2)

2)(s− (m1 −m2)
2)

4s
,

p2f =
(s− (m3 +m4)

2)(s− (m3 −m4)
2)

4s
, (3.6)

where mk denotes the mass of hadron k. In (3.5) |M̃i|2 (i = χc, J/Ψ,Ψ
′) stands for

the effective matrix element squared, which for the different 2-body channels is taken
of the form

|M̃i|2 = |Mi|2 for (π, ρ) + (cc̄)i → D + D̄ (3.7)

|M̃i|2 = 3|Mi|2 for (π, ρ) + (cc̄)i → D∗ + D̄, D + D̄∗, D∗ + D̄∗

|M̃i|2 =
1

3
|Mi|2 for (K,K∗) + (cc̄)i → Ds + D̄, D̄s +D

|M̃i|2 = |Mi|2 for (K,K∗) + (cc̄)i → Ds + D̄∗, D̄s +D∗, D∗
s + D̄,

D̄∗
s +D, D̄∗

s +D∗

The relative factors of 3 in (3.7) are guided by the sum rule studies in [136] which
suggest that the cross section is increased whenever a vector meson D∗ or D̄∗ appears
in the final channel while another factor of 1/3 is introduced for each s or s̄ quark

involved. The factor ((m3 +m4)/
√
s)

6
in (3.5) accounts for the suppression of binary

channels with increasing
√
s and has been fitted to the experimental data for the

reactions π +N → ρ+N,ω +N, ϕ+N,K+ + Λ in Ref. [137].

We use the same matrix elements for the dissociation of all charmonium states i
(i = χc, J/Ψ,Ψ

′) with mesons:

|MJ/Ψ|2 = |Mχc |2 = |MΨ′ |2 = |M0|2. (3.8)

We note for completeness that in Ref. [90] the parameter |M0|2 was fixed by comparison
to the J/Ψ suppression data from the NA38 and NA50 Collaborations for S+U and
Pb+Pb collisions at 200 and 158 AGeV, respectively. In a later study [108], however,
this parameter has been readjusted in accordance with the updated value of the cross
section (3.3) of charmonium dissociation on baryons (following the latest NA50 and
NA60 analysis [117, 120]). The best fit is obtained for |M0|2 = 0.18 fm2/GeV2; this
value will be employed in our following studies, too.

The advantage of the model introduced in [76, 90] is that detailed balance for the
binary reactions can be employed strictly for each individual channel, i.e.

σ3+4→1+2(s) = σ1+2→3+4(s)
(2S1 + 1)(2S2 + 1)

(2S3 + 1)(2S4 + 1)

p2i
p2f
, (3.9)

and the role of the backward reactions ((cc̄)i+meson formation by D + D̄ flavor ex-
change) can be explored without introducing any additional parameter once |M0|2 is
fixed. In Eq. (3.9) the quantities Sj denote the spins of the particles, while p2i and
p2f denote the cms momentum squared in the initial and final channels, respectively.
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The uncertainty in the cross sections (3.9) is of the same order of magnitude as that
in Lagrangian approaches using e.g. SU(4)flavor symmetry [138, 139], since the form
factors at the vertices are essentially unknown [136]. It should be pointed out that the
‘comover’ dissociation channels for charmonia are described in HSD with the proper
individual thresholds for each channel in contrast to the more schematic ‘comover’
absorption model in Refs. [129, 140].

The regeneration of charmonia by recombination of D (D∗) mesons in the hadronic
phase was first studied by C.M. Ko and collaborators in [135]. The conclusion at that
time was that this process is unlikely at RHIC energies [132, 135, 141]. On the other
hand, it has been shown within HSD [90] that the contribution of the D+ D̄ annihila-
tion to the produced J/Ψ at RHIC is considerable. Moreover, the equilibrium in the
reaction J/Ψ + m ↔ DD̄ is reached (i.e. the charmonium recreation is comparable
with the dissociation by ‘comoving’ mesons). The reason for such differences is that
the pioneering study [135] within the hadron gas model was confined to J/Ψ reactions
with π’s into two particular DD̄ channels (D+ D̄∗ and D∗ + D̄∗). On the contrary, in
Ref. [90] the interactions with all mesons into all possible combinations of DD̄ states
have been taken into account. Note that the ρ-meson density at RHIC is large such
that the channel with the most abundant ρ-meson resonance is dominant. Further-
more, in Ref. [90] the feed down from χc and Ψ′ decays has been considered. The
results of [90] are in accordance with independent studies in Refs. [142–145]. Later
work within the HSD approach [109] has supported the conclusions of Ref. [90] and
stressed the importance for DD̄ annihilation in the late (purely hadronic) stages of
the collisions.

3.4.3 ‘Threshold melting’

This scenario is based on the idea of sequential dissociation of charmonia with in-
creasing temperature [146–149], i.e. of charmonium melting in the QGP due to color
screening as soon as the fireball temperature reaches the dissociation temperatures of
(≈ 2Tc for J/Ψ, ≈ Tc for excited states, where Tc stands for the critical temperature
of the deconfinement phase transition). In the early approaches the temperature of
the fireball has been estimated using e.g. the Bjorken formula (3.2). We modify the
standard sequential dissociation model in two aspects: (i) the energy density is calcu-
lated locally and microscopically instead of using schematic estimates; (ii) the model
incorporates a charmonium regeneration mechanism (by DD̄ annihilation processes).

The ‘threshold scenario’ for charmonium dissociation now is implemented in a
straight forward way: whenever the local energy density ε(x) is above a threshold
value εj, where the index j stands for J/Ψ, χc,Ψ

′, the charmonium is fully dissociated
to c+ c̄. The default threshold energy densities adopted are

εJ/Ψ = 16 GeV/fm3 , εχc = 2 GeV/fm3, and εΨ′ = 2 GeV/fm3. (3.10)

The dissociation of charmonia is widely studied using lattice QCD (lQCD) [150–
154] in order to determine the dissociation temperature (or energy density) via the
maximum entropy method. On the other hand one may use potential models - repro-
ducing the charmonium excitation spectrum in vacuum - to calculate Mott transition
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temperatures in a hot medium. Both approaches have their limitations and the quan-
titative agreement between the different groups is still unsatisfactory:

• (A) Potential models employ the static heavy quark-antiquark pair free energy
- calculated on the lattice - to obtain the charmonium spectral functions. This
leads to the dissociation temperatures [155]

Tmelt(J/Ψ) ≤ 1.2Tc, Tmelt(χc) ≤ Tc, Tmelt(Ψ
′) ≤ Tc.

• (B) The maximum entropy method is used to relate the Euclidean thermal cor-
relators of charmonia - calculated on the lattice - to the corresponding spectral
functions and yields higher dissociation temperatures [150]

Tmelt(J/Ψ) = 1.7−2Tc, Tmelt(χc) = 1.1−1.2Tc

or [151]
Tmelt(J/Ψ) ≥ 1.5Tc, Tmelt(χc) = 1.1Tc.

Our earlier analysis of experimental data at the SPS in the ‘threshold melting’ ap-
proach [108] lead us to conclude from the observation of a considerable amount of J/Ψ
in the most central Pb + Pb collisions that the assumption of a melting of J/Ψ close
to Tc contradicts the data. Therefore, the values (3.10) are applied also in the current
study.

3.4.4 Interaction with pre-hadrons

Two more scenarios are implemented in our present HSD simulations that are closely
related to the ‘comover suppression’ and the ‘threshold melting’ scenarios outlined
in the previous sub-sections. The essential difference is that the comoving hadrons
(including the D-mesons) exist only at energy densities below some energy density
εcut, which is a free parameter. We employ εcut = εc ≈ 1 GeV/fm3, which is equal to
the critical energy density εc for the parton/hadron phase transition. This scenario
clearly separates ‘formed hadrons’ from possible pre-hadronic states at higher energy
densities. Indeed, it is currently not clear whether D- or D∗-mesons survive at energy
densities above εc but hadronic correlators with the quantum numbers of the hadronic
states are likely to persist above the phase transition [156]. One may speculate that
similar correlations (pre-hadrons) survive also in the light quark sector above Tc such
that ‘hadronic comovers’ – with modified spectral functions – might show up also at
energy densities above εc.

We recall that the concept of (color neutral) pre-hadrons - explained in more detail
in Refs. [111, 113] - has been also used in the hadron electroproduction studies off
nuclei in Refs. [111, 112] as well as for high pT hadron suppression [113] or jet suppres-
sion at RHIC energies [114]. It has been found that the pre-hadron concept works well
for hadron attenuation in nuclei at HERMES energies [111, 112] but underestimates
the high pT hadron suppression [113] as well as the jet attenuation at RHIC energies
[114]. Nevertheless, the amount of attenuation due to such pre-hadronic interactions
emerged to be about 50% of the experimentally observed suppression at RHIC such
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that their effect might not simply be discarded. It should be stressed that the concept
of pre-hadrons refers to the string breaking mechanism as described in Refs. [111, 113]
and is independent on the energy density. A detailed study on the space-time evolution
of pre-hadrons and their formation to hadrons for pp collisions has been performed by
Gallmeister and Falter in Ref. [157].

In line with the investigations in Refs. [113, 114] we also study J/Ψ production
and absorption in Au + Au collisions at

√
s = 200 AGeV assuming the absorption

of charmonia on pre-hadrons as well as their regeneration by pre-hadrons. This adds
additional interactions of the particles with charm quarks (antiquarks) in the very
early phase of the nucleus-nucleus collisions as compared to the default HSD approach.
Since these pre-hadronic (color-dipole) states represent some new degrees-of-freedom,
the interactions of charmed states with these objects have to be specified separately.

For notation we define a pre-hadronic state consisting of a quark-antiquark pair
as pre-meson m̃ and a state consisting of a diquark-quark pair as pre-baryon B̃. The
dissociation cross section of a cc̄ color dipole state with a pre-baryon is taken to be of
the same order as with a formed baryon,

σdiss
cc̄B̃

= 5.8 mb, (3.11)

whereas the cross section with a pre-meson follows from the additive quark model as
[111, 112]

σdiss
cc̄m̃ =

2

3
σdiss
cc̄B̃

. (3.12)

Elastic cross sections are taken as

σel
cc̄B̃

= 1.9 mb, σel
cc̄m̃ =

2

3
σel
cc̄B̃
. (3.13)

Furthermore, elastic interactions of a charm quark (antiquark) are modeled by the
scattering of an unformed D or D∗ meson on pre-hadrons with only light quarks as

σel
DB̃

= 3.9 mb, σel
Dm̃ =

2

3
σel
DB̃
. (3.14)

In this way we may incorporate in HSD some dynamics of quark-antiquark pairs with
a medium that has not yet formed the ordinary hadrons. However, it has to be
stressed that further explicit partonic degrees of freedom, i.e. gluons and their mutual
interactions as well as gluon interactions with quarks and antiquarks, are not taken
into account in the present HSD approach. Therefore, we do not expect to reproduce
any details of the measured J/Ψ yield. The study of this particular model situation
is motivated first of all by the possibility to assess the conceptual influence of charm
scattering on pre-hadrons (in the early reaction phase) on the final rapidity distribution
of the J/Ψ’s (see below).
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Figure 3.15: The J/Ψ nuclear modification factor RAA (3.15) for Au+Au collisions at√
s = 200 AGeV as a function of the number of participants Npart in comparison to

the data from [118] for midrapidity (full circles) and forward rapidity (full triangles).
The HSD results for the purely hadronic ‘comover’ scenario are displayed in terms
of the lower (green solid) line with open circles for midrapidity J/Ψ′s (|y| ≤ 0.35)
and in terms of the upper (red dashed) line with open triangles for forward rapidity
(1.2 ≤ |y| ≤ 2.2).

3.4.5 Discriminating hadronic and partonic phases

In the transport approach we calculate the J/Ψ survival probability SJ/Ψ and the
nuclear modification factor RAA as

SJ/Ψ =
N

J/Ψ
fin

N
J/Ψ
BB

, RAA =
dN

J/Ψ
AA /dy

Ncoll · dNJ/Ψ
pp /dy

, (3.15)

where N
J/Ψ
fin and N

J/Ψ
BB denote the final number of J/Ψ mesons and the number of

J/Ψ’s produced initially by BB reactions, respectively. Note that N
J/Ψ
fin includes the

decays from the final χc. In (3.15), dN
J/Ψ
AA /dy denotes the final yield of J/Ψ in AA

collisions, dN
J/Ψ
pp /dy is the yield in elementary pp reactions while Ncoll is the number

of initial binary collisions.

The suppression of charmonia by the ‘comover’ dissociation channels within the
model described in [108] for a matrix element squared |M0|2 = 0.18 fm2/GeV2 has
been presented already in Ref. [109] as well as the results for the ‘threshold melting
scenario’ employing the thresholds εJ/Ψ = 16 GeV/fm3, εχc = εΨ′ = 2 GeV/fm3. Note
that the charmonium reformation channels by D+ D̄ channels had been incorporated,
too (cf. Ref. [90]). Since the PHENIX Collaboration has released a new data set we
compare our calculations with the most recent PHENIX data [118] in Fig. 3.15 for the
J/Ψ nuclear modification factor RAA (3.15) for Au+Au collisions at

√
s = 200 AGeV as

a function of the number of participants Npart for midrapidity (full circles) and forward
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Figure 3.16: The ratio of the nuclear modification factors RAA at mid-rapidity
(|y| < 0.35) and at forward rapidity (1.2 < |y| < 2.2) vs centrality in Au + Au
collisions at

√
s = 200 GeV. The HSD results in the purely hadronic scenario (‘co-

mover absorption’) are displayed in terms of the blue dashed line (with open circles)
and in case of the ‘threshold melting’ scenario in terms of the violet dot-dashed line
(with open squares). The lower full green dots represent the data of the PHENIX Col-
laboration [118]. The lower solid (red) line with stars gives the result for the ’comover
absorption’ scenario when including additional pre-hadronic interactions with charm
(see text).

rapidity (full triangles). The HSD results for the purely hadronic ‘comover’ scenario
are displayed in terms of the lower (blue solid) line with open circles for midrapidity
J/Ψ′s (|y| ≤ 0.35) and in terms of the upper (red dashed) line with open triangles
for forward rapidity (1.2 ≤ |y| ≤ 2.2). The numerical results appear acceptable at
midrapidity (|y| ≤ 0.35) but the even larger suppression at forward rapidity (seen
experimentally) is fully missed (cf. Ref. [109]).

The failure of the traditional ’comover absorption’ model as well as ’threshold melt-
ing’ scenario at the top RHIC energy is most clearly seen in the centrality dependence
of the ratio of the nuclear modification factorsRAA at forward rapidity (1.2 < |y| < 2.2)
and at mid-rapidity (|y| < 0.35) as shown in Fig. 3.16. The HSD results in the purely
hadronic scenario (‘comover absorption’) are displayed in terms of the blue dashed
line (with open circles) and in case of the ‘threshold melting’ scenario in terms of the
dot-dashed violet line (with open squares). The error bars on the theoretical results
indicate the statistical uncertainty due to the finite number of Monte-Carlo events in
the calculations. The lower full green dots in Fig. 3.16 represent the corresponding
data of the PHENIX Collaboration [118] which show a fully different pattern as a
function of centrality (here given in terms of the number of participants Npart). The
failure of these ’standard’ suppression models at RHIC has lead to the conclusion in
Ref. [109] that the hadronic ’comover absorption and recombination’ model is falsified
by the PHENIX data and that strong interactions in the pre-hadronic (or partonic)
phase should be necessary to explain the large suppression at forward rapidities.

In this work we follow up the latter idea and incorporate in the ’comover scenario’



61 3.4. OPEN AND HIDDEN CHARM PRODUCTION

0 100 200 300 400
0.0

0.5

1.0

 Au+Au, s1/2=200 GeV
Prehadron interactions

PHENIX
 |y|<0.35
 1.2<|y|<2.2

 N
part

HSD
 |y|<0.35
 1.2<|y|<2.2

 R
A

A
(J

/ ΨΨ ΨΨ
)

Figure 3.17: The J/Ψ nuclear modification factor RAA (3.15) for Au+Au collisions at√
s = 200 AGeV as a function of the number of participants Npart in comparison to the

data from [118] for midrapidity (full circles) and forward rapidity (full triangles). The
HSD results for the hadronic ‘comover’ scenario including additionally pre-hadronic
interactions of charm are displayed in terms of the upper (green solid) line with open
circles for midrapidity J/Ψ′s (|y| ≤ 0.35) and in terms of the lower (orange dashed)
line with open triangles for forward rapidity (1.2 ≤ |y| ≤ 2.2).

the additional pre-hadronic cross sections (3.11) - (3.14) for the early charm interac-
tions to have a first glance at the dominant effects. The J/Ψ suppression pattern in
this case is shown in Fig. 3.17 in comparison to the same data as in Fig. 3.15. Now,
indeed, the suppression pattern for central and forward rapidities becomes rather sim-
ilar to the data within the statistical accuracy of the calculations. Indeed, the ratio of
RAA at forward rapidity to midrapidity now follows closely the experimental trend as
seen in Fig. 3.16 by the lower red solid line.

Some further information may be gained from the J/Ψ rapidity distributions in
Au+Au collisions at RHIC. The latter distribution is shown in Fig. 3.18 in comparison
to the PHENIX data for central collisions (upper l.h.s.), semi-central (upper r.h.s.),
semi-peripheral (lower l.h.s.) and peripheral reactions (lower r.h.s.) for the standard
’comover’ scenario (dashed blue lines) and the ’comover’ model including addition-
ally pre-hadronic interactions of charm according to (3.11) - (3.14) (solid red lines).
Whereas for peripheral reactions these additional early interactions practically play no
role, the latter lead to a narrowing of the J/Ψ rapidity distribution with the centrality
of the collision (roughly in line with the data). In the standard ’comover’ model an op-
posite trend is seen: here the interactions of charmonia with formed hadrons produce
a dip in the rapidity distribution at y ≈ 0 which increases with centrality since the
density of formed hadrons increases accordingly around midrapidity. Since the total
number of produced cc̄ pairs is the same (for the respective centrality class) and de-
tailed balance is incorporated in the reaction rates we find an surplus of J/Ψ at more
forward rapidities. The net result is a broadening of the J/Ψ rapidity distribution
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Figure 3.18: The rapidity distribution dNJ/Ψ/dy for different centralities from the
standard ‘comover’ model (dashed blue lines) and the ’comover’ model with additional
pre-hadronic interactions of charm according to (3.11) - (3.14) (solid red lines). The full
dots show the respective data from the PHENIX Collaboration [118]. The calculated
lines have been smoothed by a spline algorithm. The reactions are Au+Au at

√
s =

200 GeV.

with centrality opposite to the trend observed in experiment.

Summarizing the results displayed in Figs. 7 - 10 we like to point out that the
hadronic ’comover’ dynamics for charmonium dissociation and recreation - as well as
the standard charmonium ’melting’ scenario - do not match the general dependences
of the J/Ψ in rapidity and centrality as seen by the PHENIX Collaboration. In fact, a
narrowing of the J/Ψ rapidity distribution cannot be achieved by comover interactions
with formed hadrons since the latter appear too late in the collision dynamics. Only
when including early pre-hadronic interactions with charm a dynamical narrowing
of the charmonium rapidity distribution with centrality can be achieved as demon-
strated more schematically within our pre-hadronic interaction model. Consequently,
the PHENIX data on J/Ψ suppression demonstrate the presence and important im-
pact of pre-hadronic or partonic interactions in the early charm dynamics. This finding
is line with earlier studies in Refs. [90, 113, 114] demonstrating the necessity of non-
hadronic degrees of freedom in the early reaction phase for the elliptic flow v2, the
suppression of hadrons at high transverse momentum pT and far-side jet suppression
in central Au+Au collisions at RHIC energies.

As pointed in Ref. [108], an independent measurement of Ψ′ will provide further
information on the charm reaction dynamics and final charmonium formation. For
instance, a leveling off of the Ψ′ to J/Ψ ratio with increasing centrality would be
a signal for charm chemical equilibration in the medium [101–103]. Additionally, it
provides a very clear distinction between the ‘threshold melting’ scenario and the
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Figure 3.19: Ratio of the averaged J/Ψ to π multiplicity for Pb+Pb at the SPS beam
energy of 158 A·GeV at mid-rapidity (l.h.s.) and in full 4π acceptance (r.h.s.) as a
function of the number of binary collisions Ncoll for the different suppression scenarios
implemented in HSD - the ‘comover’ model (dashed blue line with open circles) and the
‘threshold melting’ scenario (green dot-dashed line with open triangles) - in comparison
to the statistical model by Gorenstein and Gazdzicki [100] (r.h.s.; straight orange line)
and the statistical hadronization model by Andronic et al. [101] (l.h.s.; solid black
line).

‘comover’ approach. Detailed predictions for the Ψ′ to J/Ψ ratio as a function of
centrality have already been presented in Ref. [107] for FAIR, SPS and RHIC energies.

Testing the assumption of statistical hadronization

The assumption of statistical hadronization – i.e. of J/Ψ’s being dominantly produced
at hadronization in a purely statistically fashion according to available phase space and
the number of available c and c̄ quarks – leads to a scaling of the ⟨J/Ψ⟩/⟨h⟩ ratio with
the system size [100], where ⟨h⟩ is the average hadron multiplicity. Since ⟨h⟩ ∼ ⟨π⟩,
we calculate the ratio ⟨J/Ψ⟩/⟨π⟩ in HSD in the different scenarios for charmonium
suppression:

• ‘threshold melting’ + recombination via DD̄ → cc̄ +m including the backward
reactions cc̄+m→ DD̄,

• hadronic (‘comover’) absorption: DD̄ → cc̄ + m and the backward reactions
cc̄+m→ DD̄;

• ‘prehadron interactions’: DD̄ → cc̄+m and the backward reactions cc̄+m→ DD̄
as well as early pre-hadronic charm interactions as described in Section 6.

The results of our calculations are shown in Fig. 3.19 together with the prediction
of the statistical model of Gorenstein and Gazdzicki [100] for the full phase space
(straight orange line; r.h.s.) and the statistical hadronization model by Andronic et
al. [101, 158] for mid-rapidity (solid black line; l.h.s.) for Pb+Pb at 158 A·GeV. The
centrality dependence here is given by the number of initial binary collisions Ncoll.
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Figure 3.20: Same as Fig. 3.19 but for Au+Au at the top RHIC energy of
√
s = 200

GeV. The red solid line shows additionally the result of the ’comover’ model including
the pre-hadronic charm interactions (see text).

The actual comparison in Fig. 3.20 indicates that the statistical model by Andronic
et al. [101] predicts a sizeably larger J/Ψ to π ratio at midrapidity for peripheral and
semi-peripheral reactions than the microscopic HSD results for the different scenarios.
For central reactions - where an approximate equilibrium is achieved - all scenarios
give roughly the same ratio. In full 4π phase space the HSD results indicate also a
slightly higher J/Ψ to π ratio in the ’comover’ model relative to the ’melting’ scenario
but both ratios only weakly depend on centrality roughly in line with the statistical
model of Gorenstein and Gazdzicki [100] (orange straight line). Consequently, only
peripheral reactions of heavy nuclei might be used to disentangle the different scenarios
at top SPS energies at midrapidity (or in full phase space).

The situation is different for Au+Au collisions at the top RHIC energy as may be
extracted from Fig. 3.20 where the J/Ψ to pion ratio (l.h.s.: at midrapidity; r.h.s.: for
4π acceptance) is shown again as a function of Ncoll. The standard ’comover’ model
(dashed blue lines) is only shown for reference but is unrealistic according to the anal-
ysis in Section 6. We find that the ’comover’ model with early pre-hadronic charm
interactions (solid red line with stars, l.h.s.) is very close to the statistical hadroniza-
tion model [101] (solid black line) at midrapidity except for very peripheral collisions.
The ’threshold melting’ scenario follows the trend in centrality but is down by about
30%. Thus at midrapidity there is no essential extra potential in differentiating the
scenarios. Considering the full 4π acceptance (r.h.s.) we find a practically constant
J/Ψ to pion ratio for Ncoll > 200 from the HSD calculations as expected from the
statistical model, however, the early model of Gorenstein and Gazdzicki [100] is down
by about a factor of ∼ 10 (and may be ruled out by present data).

Elliptic flow of charm

The elliptic flow of particles defined as

v2(y, pT ) =

⟨
p2x − p2y
p2T

⟩
y,pT

(3.16)
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Figure 3.21: Elliptic flow v2 of J/Ψ’s produced in central and peripheral In+ In colli-
sions at 158 A·GeV beam energy in the hadronic ‘comover’ mode of HSD (open circle
and open triangle) compared to the NA60 data [159] represented by black diamonds.

(with p2T = p2x + p2y) provides additional information on the collective currents and
pressure evolution in the early phase of the complex reaction [160] since it is driven by

different pressure gradients in case of nonvanishing spatial anisotropy ϵ2 =<
y2−x2

y2+x2 >.
Since ϵ2 decreases fast during the expansion of a noncentral reaction the magnitude
of v2 gives information about the interaction strength or interaction rate of the early
medium.

In Fig. 3.21 we test the HSD result for v2(J/Ψ) at SPS in the purely hadronic
’comover’ scenario in comparison to the data for v2 of the NA60 collaboration for In+In
collisions [159]. In central collisions the elliptic flow is practically zero both in the
calculation as well as in the experiment whereas in peripheral reactions a nonzero flow
emerges. The agreement (within error bars) between the theory and the data indicates
that in line with the reproduction of the J/Ψ suppression data [108] the low amount
of v2 does not point towards additional strong partonic interactions. Consequently,
the present measurements of J/Ψ elliptic flow at SPS energies do not provide further
constraints on the model assumptions.

The situation, however, is different for the collective flow of D-mesons at top RHIC
energies. In Fig. 3.22 we show the elliptic flow of D-mesons produced in Au + Au
collisions at

√
s = 200 GeV as a function of the transverse momentum pT in HSD

(solid blue line with open circles) compared to the PHENIX data [161] on v2 of non-
photonic electrons. Here the elliptic flow of D-mesons is clearly underestimated in
the standard HSD model (cf. Ref. [162]). Only when including pre-hadronic charm
interactions - as described in Section 6 - the elliptic flow increases (red line with open
stars) but still stays clearly below the PHENIX data for pT < 2 GeV/c. We thus
have to conclude that the modeling of charm interactions by pre-hadronic interactions
- as described in Section 6 - does not provide enough interaction strength in the early
phase of the collision. Quite remarkably this finding is again fully in line with the
underestimation of high pT hadron suppression [113] as well as far-side jet suppression
[114] in the pre-hadronic interaction model. Independently, also the charm collective
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Figure 3.22: Elliptic flow ofD-mesons produced in Au+Au collisions at
√
s = 200 GeV

as a function of pT from HSD (solid blue line with open circles) in comparison to the
PHENIX data [161] on v2 of non-photonic electrons. The red line with open stars shows
the HSD result for the v2 of D-mesons when including additionally pre-hadronic charm
interactions as described in Section 6.

flow points towards strong partonic interactions in the early reaction phase beyond
the pre-hadronic scattering incorporated so far.

Since a large fraction of J/Ψ’s in central Au+Au collisions at RHIC are created by
D − D̄ recombination, the elliptic flow of J/Ψ’s obtained from HSD in the comover
(purely hadronic) case is comparatively small, too, and should not be in accord with
future experimental data. We consequently discard an explicit representation of the
J/Ψ elliptic flow at RHIC energies since the calculations show the v2 of charmonium
to be very close to the D-meson flow within error bars.

The described here study essentially completed the investigations of charm produc-
tion, propagation and chemical reactions within the HSD transport approach initiated
more than a decade ago [163, 164]. The present systematic investigation extends ear-
lier work to RHIC energies and clearly shows - as advocated before [109] - that the
traditional concepts of ‘charmonium melting’ in a QGP state as well as the hadronic
‘comover absorption and recreation model’ are in severe conflict with the data from
the PHENIX Collaboration at RHIC energies whereas both model assumptions work
reasonably well at top SPS energies [108]. The essential result of this work was that
(at top RHIC energies) we observed evidence for strong interactions of charm with the
pre-hadronic medium from comparison to recent data from the PHENIX Collabora-
tion [118]. In particular, pre-hadronic interactions (of unformed hadrons) with charm
lead to dramatically different rapidity distributions for J/Ψ’s and consequently to a
substantially modified ratio Rforward

AA (J/Ψ) to Rmid
AA (J/Ψ) compared to earlier calcula-

tions/predictions.
Further results of the present microscopic transport study may be stated as follows:

• The J/Ψ suppression in d+Au collisions at
√
s = 200 GeV is only roughly com-



67 3.4. OPEN AND HIDDEN CHARM PRODUCTION

patible with the charmonium absorption on nuclei as observed at SPS energies
in p + A reactions. We find a clear indication for shadowing effects at forward
rapidity, but a conclusive answer about the size of this effect is not possible due
to the statistical error bars in both the experimental data and the calculations.
A proper answer can only be given by future high statistics data that allow to
fix the scale of shadowing in a model independent way.

• The Ψ′ to J/Ψ ratio is found to be crucial in disentangling the different char-
monium absorption scenarios. This result essentially emerges from the early
dissociation of Ψ′ above the critical energy density ϵc ≈ 1 GeV/fm3 in the ‘QGP
melting scenario’ whereas the Ψ′ in the ‘comover model’ survives to higher energy
densities.

• A comparison of the transport calculations to the statistical model of Gorenstein
and Gazdzicki [100] (in 4π acceptance) or the statistical hadronization model of
Andronic et al. [101] (at midrapidity) shows differences in the energy as well
as centrality dependence of the J/Ψ to pion ratio, which might be exploited
experimentally to discriminate the different concepts.

• The collective flow of charm in the HSD transport appears compatible with the
data at SPS energies, but the data are substantially underestimated at top RHIC
energies (cf. Fig. 16). This not only holds for the standard hadronic comover
scenario, but also when including interactions of charm with pre-hadronic states
(unformed hadrons). Consequently the large elliptic flow v2 of charm seen ex-
perimentally has to be attributed to early interactions of non-hadronic degrees
of freedom.

The open problem - and future challenge - is to incorporate explicit partonic de-
grees of freedom in the description of relativistic nucleus-nucleus collisions and their
transition to hadronic states in a microscopic transport approach. On the experi-
mental side, further differential spectra of charmonia and open charm mesons then
will constrain the transport properties of charm in the early non-hadronic phase of
nucleus-nucleus collisions at RHIC (and possibly at SPS or even FAIR energies).
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Chapter 4

Implementation of photon and
dilepton production in the PHSD
transport approach

4.1 Photon sources in heavy-ion collisions

The inclusive photon yield as produced in p+ p, p+A and A+A collisions is divided
into “decay photons” and “direct photons”. The decay photons – which constitute
the major part of the inclusive photon spectrum – stem from the photonic decays of
hadrons (mesons and baryons) that are produced in the reaction. These decays occur
predominantly at later times and outside of the active reaction zone and therefore carry
limited information on the initial high-energy state. Consequently, it is attempted to
separate the decay photons from the inclusive yield (preferably by experimental meth-
ods) and to study the remaining “direct photons”. One usually uses the “cocktail”
method to estimate the contribution of the photon decays to the spectra and to the
elliptic flow v2, which relies (among others) on the mT -scaling assumption and on
the photon emission only by the finally produced hadrons with momentum distribu-
tions of the final states. Depending on the particular experimental set-up, different
definitions of the decay photons are applied by the various collaborations: all groups
subtract the decays of π0- and η-mesons, however, some groups also subtract the de-
cays of the less abundant and short-living particles η′, ω, ϕ, a1 and the ∆-resonance.
Indeed, the determination of the latter contributions (in particular from a1 and ∆)
by experimental methods is questionable, because of the photon emission during the
multiple absorption and regeneration in the initial interaction phase. Therefore, a the-
oretical understanding of the decay photon contributions to the inclusive spectrum is
important. Especially for analyzing simultaneously various measurements at different
energies and within different experimental settings a theoretical analysis is mandatory
which accounts for the different experimental acceptance cuts (from various collab-
orations) and allows for comparing spectra at different centralities and bombarding
energies, ultimately bridging the gap from p-p to central heavy-ion collisions.

Within the PHSD we calculate the photon production from the following hadronic
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decays:

π0 → γ+γ, η → γ+γ, η′ → ρ+γ, ω → π0+γ, ϕ→ η+γ, a1 → π+γ, ∆ → γ+N,

where the parent hadrons may be produced in baryon-baryon (BB), meson-baryon
(mB) or meson-meson (mm) collisions in the course of the heavy-ion collision or may
stem from hadronization. The decay probabilities are calculated according to the
corresponding branching ratios taken from the latest compilation by the Particle Data
Group [165]. The broad resonances – including the a1, ρ, ω mesons – in the initial or
final state are treated in PHSD in line with their (in-medium) spectral functions and
the differential photon or dilepton yield is integrated in time (see below).

Let us briefly describe the evaluation of the photon production in the decays of the
∆-resonance as an important example. The ∆ → Nγ width depends on the resonance
mass M∆, which is distributed according to the ∆ spectral function. Starting from
the pioneering work of Jones and Scadron [166], a series of models [167–169] provided
the mass-dependent electromagnetic decay width of the ∆-resonance in relation to the
total width of the baryon. We employ the model of Ref. [168] in the present calculations
where the spectral function of the ∆-resonance is assumed to be of relativistic Breit-
Wigner form. Furthermore, we adopt the ”Moniz” parametrization [170] for the shape
of the ∆-spectral function, i.e. the dependence of the width on the mass Γtot(M∆).

The direct photons are obtained by subtraction of the decay-photon contributions
from the inclusive (total) spectra measured experimentally. So far, the following con-
tributions to the direct photons have been identified:

• The photons at large transverse momentum pT , so called prompt or pQCD pho-
tons, are produced in the initial hard N + N collisions and stem from jet frag-
mentation; these contributions are well described by perturbative QCD (pQCD).
The latter, however, might be modified in A+A contrary to p+ p reactions due
to a modification of the parton distributions (initial state effect) or the parton
energy loss in the medium (final state effect). In A+A collisions at large pT there
may also arise contributions from the induced jet-γ-conversion in the QGP and
the jet-medium photons from the scattering of hard partons with thermalized
partons qhard + q(g)QGP → γ + q(g); however, these contributions are negligi-
ble. As noted above the prompt photons are well modeled by perturbative QCD
calculations.

• After the subtraction of the prompt photons from the direct photon spectra,
there is a significant remaining photon yield for pT < 3 GeV, which is denoted
as thermal photons. These low-pT photons can be emitted by various partonic
and hadronic sources as listed below:

1. Photons that are radiated by quarks in the interaction with antiquarks and
gluons,

q + q̄ → g + γ, q/q̄ + g → q/q̄ + γ.

In addition, photon production in the bremsstrahlung reactions q + q/g →
q+ q/g+ γ is possible [171]. The implementation of the photon production
by the quark and gluon interactions in the PHSD is based on the off-shell
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cross sections for the interaction of the massive dynamical quasi-particles
as described in Ref. [20, 172]. The photon production rates in a thermal
medium – calculated within the DQPM effective model for QCD – are
within a factor of 2 similar to the rates obtained by the resummed pQCD
approach from Ref. [173] (see Section 4.3.4). Since the quark-gluon-plasma
produced in the heavy-ion collisions is strongly-interacting, the Landau-
Migdal-Pomeranchuk (LPM) coherence effect can be important, too (cf.
Section 4.3.5).

2. All colliding hadronic charges (meson, baryons) can also radiate photons
by the bremsstrahlung processes:

m+m→ m+m+ γ m+B → m+B + γ.

These processes have been studied within the HSD/PHSD in Refs. [20–
22, 174] in continuation of earlier work at lower energies [175, 176]. The
implementation of photon bremsstrahlung from hadronic reactions in trans-
port approaches has been based until recently in the ’soft photon’ approx-
imation (SPA). The soft-photon approximation [177–179] relies on the as-
sumption that the radiation from internal lines is negligible and the strong
interaction vertex is on-shell which is valid only at low energy (and pT ) of
the produced photon. Since the relatively high transverse momenta of the
direct photons (pT = 0.5 − 1.5 GeV) are most important for a potential
understanding of the “direct photon puzzle” we have departed from the
SPA in the PHSD [22]. The PHSD results presented in this review have
been obtained employing microscopic one-boson-exchange (OBE) calcula-
tions instead (cf. Section 4.4.1).

3. Additionally, the photons can be produced in binary meson+meson and
meson+baryon collisions. We consider within the PHSD the direct photon
production in the following 2 → 2 scattering processes:

π + π → ρ+ γ, π + ρ→ π + γ, V +N → γ +N,

where V = ρ, ϕ, ω, and N = n, p,

accounting for all possible charge combinations (cf. section 4.4.2).

4.2 Dilepton sources in relativistic heavy-ion colli-

sions

Dileptons (e+e−, µ+µ− pairs or virtual photons) can be emitted from all stages of the
heavy-ion reactions as well as real photons. One of the advantages of dileptons – com-
pared to photons – is an additional ’degree-of-freedom’: the invariant mass M which
allows to disentangle various sources. There are the following production sources of
dileptons in p+ p, p+ A and A+ A collisions:
1) Hadronic sources:
(i) at low invariant masses (M < 1 GeVc) – the Dalitz decays of mesons and
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baryons (π0, η,∆, ...) and the direct decay of vector mesons (ρ, ω, ϕ) as well as hadronic
bremsstrahlung [174];
(ii) at intermediate masses (1 GeV< M < 3 GeV) – leptons from correlated D + D̄
pairs [180], radiation from multi-meson reactions (π+π, π+ρ, π+ω, ρ+ρ, π+a1, ...)
denoted by “4π” contributions [181–184];
(iii) at high invariant masses (M > 3 GeV) – the direct decay of vector mesons
(J/Ψ,Ψ′) [185] and initial ’hard’ Drell-Yan annihilation to dileptons (q+ q̄ → l+ + l−,
where l = e, µ) [186].
2) ’thermal’ QGP dileptons radiated from the partonic interactions in heavy-ion col-
lisions that contribute dominantly to the intermediate masses. The leading processes
are the ’thermal’ qq̄ annihilation (q+ q̄ → l++ l−, q+ q̄ → g+ l++ l−) and Compton
scattering (q(q̄) + g → q(q̄) + l+ + l−) in the QGP [187].

The dilepton production by a (baryonic or mesonic) resonance R decay can be
schematically presented in the following way:

BB → RX (4.1)

mB → RX (4.2)

R → e+e−X, (4.3)

R → mX, m→ e+e−X, (4.4)

R → R′X, R′ → e+e−X, (4.5)

i.e. in a first step a resonance R might be produced in baryon-baryon (BB) or meson-
baryon (mB) collisions (4.1), (4.2). Then this resonance can couple to dileptons di-
rectly (4.3) (e.g., Dalitz decay of the ∆ resonance: ∆ → e+e−N) or decays to a meson
m (+ baryon) or in (4.4) produce dileptons via direct decays (ρ, ω) or Dalitz decays
(π0, η, ω). The resonance R might also decay into another resonance R′ (4.5) which
later produces dileptons via Dalitz decay.

The electromagnetic part of all conventional dilepton sources – π0, η, ω Dalitz de-
cays, direct decay of vector mesons ρ, ω and ϕ – are described in detail in Ref. [188] –
where dilepton production in pp and pd reactions has been studied. Actual modifica-
tions – relative to Ref. [188] – are related to the Dalitz decay of baryonic resonances
and especially the strength of the pp and pn bremsstrahlung since calculations by
Kaptari and Kämpfer in 2006 [189] indicated that the latter channels might have been
severely underestimated in previous studies on dilepton production at SIS energies.
For the results reported here we adopt the parametrizations from Ernst et al. [190]
(Eqs. (9) to (13)) for the Dalitz decays of the baryonic resonances which are also in-
corporated in the PLUTO simulation program of the HADES Collaboration. For the
bremsstrahlung channels in pp and pn reactions we adopt the results from the OBE
model calculations by Kaptari and Kämpfer in Ref. [189].
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4.3 Electromagnetic emission from the strongly in-

teracting QGP

We address the dilepton production by the constituents of the strongly interacting
quark-gluon plasma (sQGP). In order to make quantitative predictions for dilepton
rates at experimentally relevant low dilepton mass (O(1 GeV)) and strong coupling
(αS∼0.5÷1), we take into account non-perturbative spectral functions and self-energies
of the quarks, anti-quarks and gluons. For this purpose, we use parametrizations of the
quark and gluon propagators provided by the dynamical quasi-particle model (DQPM)
matched to reproduce lattice QCD data. The DQPM describes QCD properties in
terms of single-particle Green’s functions and leads to the notion of the constituents
of the sQGP being effective quasiparticles, which are massive and have broad spectral
functions (due to large interaction rates). By “dressing” the quark and gluon lines with
the effective propagators, we derive the off-shell cross sections for dilepton production
in the reactions q+ q̄ → l+l− (Born mechanism), q+ q̄ → g+ l+l− (quark annihilation
with the gluon Bremsstrahlung in the final state), q(q̄) + g → q(q̄) + l+l− (gluon
Compton scattering), g → q+ q̄+ l+l− and q(q̄) → q(q̄)+g+ l+l− (virtual gluon decay,
virtual quark decay). In contrast to previous calculations of these cross sections, we
account for virtualities of all the quarks and gluons. We find that finite masses of the
effective quasiparticles not only screen the singularities typical to the perturbative cross
sections with massless quarks, but also modify the shape of the dilepton production
cross sections, especially at low dilepton mass Q and at the edges of the phase space.
Finally, we use the calculated mass-dependent cross sections to identify the dependence
of the dilepton rates on the spectral function widths of the initial and final quarks
and gluons, which has not been estimated so far. The results demonstrate that the
multiple partonic scatterings encoded in the broad spectral functions of the dynamical
quasiparticles have considerable effect on the dilepton rates.

Since many years the transition between the hadronic phase and the quark-gluon
plasma (QGP) as well as the nonperturbative properties of the QGP motivate a large
community and justify large-scale experiments, in which heavy nuclei are collided at
relativistic energies in order to achieve the high energy densities necessary for the
transition to the deconfined state of matter. Electromagnetic probes (i.e. dileptons
and photons) are powerful tools to explore the early (hot and dense) stage of the
heavy-ion collision, since, unaffected by the final state interaction, they carry to the
detector information about the conditions and properties of the environment at the
time of their production – encoded in their mass and momentum distributions, – thus
providing a glimpse deep into the bulk of the strongly interacting matter [191, 192].
In 1978, E. Shuryak proposed to use dileptons as probes of QGP, after the suggestion
was made that the dilepton and photon yields reflect the properties of the medium
created in hadron-hadron collisions (see the pioneering works [193–197]).

Real and virtual photons, i.e. dileptons, are emitted over the entire space-time
evolution of the heavy-ion collision, from the initial nucleon-nucleon collisions through
the hot and dense phase and to the hadron decays after freeze-out. This is both a
challenge and advantage of electromagnetic probes. Fortunately, lepton pairs possess
an additional degree of freedom (the invariant mass Q2), which allows to separate
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different “physics” by observing the dilepton radiation in different mass ranges. The
low mass (Q < 1 GeV) spectrum of dileptons – generated in heavy ion collisions – is
dominated by the vector meson decays, the production of lepton pairs of high mass
(Q > 3 GeV) is governed by the perturbative quantum chromodynamics (pQCD),
while the dilepton yield in the intermediate mass range (1 < Q < 3 GeV) is sensitive
to the possible formation of a QGP [198].

Dilepton measurements have possibly provided a signal of the deconfined matter at
SPS energies. The NA60 Collaboration [199–201] has recently found that the effective
temperature of the dileptons in the intermediate mass range is lower than the Teff of
dileptons at lower masses, which are of hadronic origin. This can be explained, if one
assumes that the spectrum at the invariant masses above 1 GeV is dominated by the
partonic channels in the QGP [185, 202, 203]. In this case, the softening of the trans-
verse mass spectrum with growing invariant mass implies that the partonic channels
occur dominantly before the collective radial flow has developed. The assumption that
the dilepton spectrum at masses above 1 GeV could be dominated by QGP radiation
was supported by the studies within the Hadron-String-Dynamics (HSD) transport
approach [1]. While it was shown [204] that the measured dilepton yield at low masses
(Q ≤ 1 GeV) can be explained by the dilepton production in the hadron interaction
and decay, there is a discrepancy between the HSD results and the data in the mass
range above 1 GeV. This access seen at Q > 1 GeV is not accounted for by hadronic
sources in HSD – in-medium or free – and might be seen as a signal of partonic matter,
manifest already at 158 AGeV incident energy.

Recently, the PHENIX Collaboration has presented first dilepton data from pp
and Au + Au collisions at Relativistic Heavy Ion Collider (RHIC) energies of

√
s =

200 GeV [205–208]. The data show a large enhancement over hadronic sources [209]
in Au + Au reactions in the invariant mass regime from 0.15 to 0.6 GeV and from 1
to 3 GeV, which could not be explained in the scope of the HSD approach neither by
meson decays – in-medium or free – nor by hadronic Bremsstrahlung [204]. It is of
interest, whether the excess at RHIC is due to the dominance of sources in the QGP.

First concepts of the QGP were guided by the idea of a system of partons which
interact weakly, with pQCD cross sections. Consequently, early predictions of the
dilepton emission from QGP relied on perturbative formulae for the cross sections
of the virtual photon production in q + q̄ and q + g collisions [194, 210, 211]. Due
to large running coupling, the next-to-leading order (NLO) gluon-quark interactions
contribute considerably in addition to the leading order (Born) mechanism of quark-
quark annihilation (qq̄ → l+l−) to the QGP radiation spectrum [212]. While the
effect of multiple scattering of the quark in the plasma (Landau-Pomeranchuk-Migdal
effect [213–215]) on the rate of qq̄ → γ∗ was stressed in [216].

Not long ago, a first attempt was made to calculate directly on the lattice the
production of dileptons in the QGP [217]. The suppression at small Q2 observed on
the lattice has attracted a lot of interest, because it is not what one would expect
from perturbation theory: The finite thermal masses would indeed produce a drop
of the Born term q + q̄ → γ∗ because of the threshold effect – as predicted [218]
in relation to the cut-off in the momentum distribution of quarks and confirmed in
effective perturbation theory in the works [33, 219, 220], – but there are higher order
processes (qq̄ → γ∗g, qg → γ∗q) that have no threshold and would fill the spectrum at
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small Q2. Also, the rescattering effects can lead to the disappearance of the threshold
behavior in the Born (qq̄ → γ∗) rate [216].

Recent theoretical and experimental works have shown that the QGP as produced
in heavy-ion collisions is a strongly interacting many-body system. Indeed, most the-
oretical estimates of the temperatures, which are reasonably expected to be currently
achieved in heavy-ion collisions are not extremely large compared to the QCD scale
ΛQCD [221]. In agreement with this expectation, experimental observations at RHIC
indicated that the new medium created in ultra-relativistic Au+Au collisions was inter-
acting strongly – even stronger than hadronic matter. Moreover, in line with theoreti-
cal studies in Refs. [30, 222, 223] the medium showed phenomena of an almost perfect
liquid of partons [224–227] as extracted from the strong radial expansion and elliptic
flow of hadrons [224–227]. Studies performed in the framework of lattice QCD [228]
have also shown that the high temperature plasma phase is a medium of interacting
partons which are strongly screened and influenced by nonperturbative effects even
at temperatures as high as 10Tc. Consequently, the concept of perturbatively inter-
acting quarks and gluons as constituents of the QGP had to be reconsidered. Thus
one is forced to go beyond pQCD in calculating dilepton production in the strongly
interacting QGP.

To some degree a solution can be found in reordering perturbation theory: by
expanding correlation functions in terms of effective propagators and vertices instead
of bare ones [187]. A powerful resummation technique was developed by Braaten,
Pisarsky [229] and Wong [230]. The production of dileptons was calculated at leading
order in the effective perturbation expansion in [229], using as the effective propagators
the bare ones plus one loop corrections evaluated in the high-temperature limit [231–
234]. In this approach the singularity of the production cross section – that dominates
the dilepton rate – is regularized by the thermal masses of quarks mth and gluons
mg, which are in turn determined by the one-loop leading order result in the thermal
perturbation theory (HTL). The approach has been extended to the dilepton radiation
from non-equilibrium plasmas in [235, 236].

On the other hand, the nonperturbative nature of the sQGP constituents manifests
itself in their strong coupling, multiple scattering and modified spectral densities and
self energies. In order to take all these phenomena into account in the calculation
of dilepton production from the QGP, we refrain from a fixed order thermal loop
calculation relying on perturbative self-energies (calculated in the limit of infinite
temperature) to fix the in-medium masses of the quarks and gluons and pursue instead
a phenomenological approach. Indeed, since virtual photon rates need to be evaluated
at temperatures that are not very large compared to Tc, it is advisable to adopt values
formth,mg not from the HTL approximation. Possible alternative strategies are: (i) to
treat the thermal masses in the calculation of the dilepton rates as phenomenological
parameters as in [220] or (ii) to obtain them from fits of the lattice QCD entropy by an
equation of state corresponding to a gas of quasiparticles (massive quarks and gluons)
as in Refs. [237, 238] or (iii) dynamical quasi-particles (massive and broad quarks and
gluons) as in Refs. [33, 219].

In the latter approach – followed here, – the (multiple) strong interactions of quarks
and gluons in the sQGP are encoded in their effective broad spectral functions. The
effective propagators, which are understood as resummed propagators in a hot QCD
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(a) (b) (c) (d)

Figure 4.1: Perturbative QCD diagrams contributing to the dilepton production up to
the order O(αS): (a) Drell-Yan mechanism, (b) gluon Compton scattering (GCS), (c)
vertex correction, (d) quark annihilation with gluon Bremsstrahlung. Virtual photons
(wavy lines) split into lepton pairs, spiral lines denote gluons, arrows denote quarks.
In each diagram, the time runs from left to right.

environment, have been extracted from lattice data in the scope of the Dynamical
QuasiParticle Model (DQPM) in Ref. [32]. The DQPM describes QCD properties in
terms of single-particle Green’s functions (in the sense of a two-particle irreducible
(2PI) approach) and leads to a quasi-particle equation of state, which reproduces the
QCD equation of state extracted from Lattice QCD calculations. According to the
DQPM, the constituents of the sQGP are strongly interacting massive partonic quasi-
particles with broad spectral functions.

Let us note that we will study the dilepton production in the interaction of quarks
and gluons in the sQGP, while explicitly taking into account their finite widths. The
non-zero width of quark spectral functions reflects their strong interaction, which is
manifest in the elastic scattering as well as in the virtual gluon emission. By dressing
the external partonic lines in the dilepton production processes (q+ q̄ → l+l−, q+ q̄ →
g+ l+l−, q+ g → q+ l+l−) with spectral functions we study the effect of the partonic
interactions in the plasma on its dilepton radiation, especially in the interesting region
of low Q2. Certain aspects of the dilepton production by partons with finite masses
have been studied in earlier works [186, 220, 239–241], but here we will extend these
studies by assigning finite masses to all parton lines and, more importantly, by going
beyond the zero width approximation for initial and finite partons. Thus we will
be able to test to what extend the properties of the quark and gluon quasi-particles
can be seen in the dilepton rates, e.g. due to large phase-space corrections, broad
spectral function widths as well as a different dependance of the strong coupling on
the temperature T of the medium.

For this purpose we first derive the off-shell cross sections of q+ q̄ → l+l−, q+ q̄ →
g+ l+l−, q+ g → q+ l+l− (q̄+ g → q̄+ l+l−), q → q+ g+ l+l− (q̄ → q̄+ g+ l+l−) and
g → q+q̄+l+l− by calculating them for the arbitrary virtualities of external quarks and
gluons, while dressing the internal lines with effective self energies. Consequently, we
take into account the non-zero widths of initial and final state partons by convoluting
the obtained cross sections with the effective spectral functions. Using the DQPM
parametrizations for the quark(gluon) self-energies, spectral functions and interaction
strength, we calculate the dilepton production from partonic interactions in the sQGP
in the first order of electromagnetic coupling, i.e. incorporating only a single photon
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Figure 4.2: Diagrams contributing to the dilepton production by virtual quasi-particles
in addition to the ones presented in Fig. 4.1. Lhs: the decay of a virtual quark; Rhs:
the decay of a virtual gluon. Virtual photons (wavy lines) split into lepton pairs, spiral
lines denote gluons, arrows denote quarks.

line. Verification of Ward identities in general for parton interaction within the DQPM
model is beyond the scope of this publication and will be addressed elsewhere. For the
current study, we check the gauge invariance of the final dilepton rates numerically,
by varying the gauge parameter.

In the context of the hot QGP the perturbative diagrams for the dilepton produc-
tion at order up to O(αS) are illustrated in Fig. 4.1. Let us briefly summarize the
differences of our phenomenological approach from the standard pQCD:

• (a) we take into account full off-shell kinematics, in particular the transverse
motion and virtualities (masses) of the partons,

• (b) quark and gluon lines are dressed with nonperturbative spectral functions:
the cross sections derived for arbitrary masses of all external parton lines
are integrated over these virtualities weighted with spectral functions (see e.g.
Refs [174, 186] for an introduction to the method); the internal lines are dressed
with the real parts of the DQPM self energies,

• (c) vertices are modified compared to pQCD by replacing the perturbative cou-
pling (that runs with the momentum transfer) with the full running coupling αS

that depends on the temperature T according to lattice data parametrization
by [32], while the temperature is related to the local energy density ϵ by the
lQCD equation of state. Note that close to Tc the full coupling increases with
decreasing temperature much faster than the pQCD prediction.

• (d) Due to the broad width for quarks and gluons in the sQGP [33] – which is the
consequence of their high interaction rate,– there are non-vanishing contributions
also from the processes of the decays of virtual quarks (q → q + g + l+l−) and
gluons (g → q + q̄ + l+l−), which are forbidden kinematically in pQCD (see
Fig. 4.2).

This section is organized as follows. The analysis of the off-shell kinematics and the
calculations of the off-shell cross sections (i.e. elementary cross sections for arbitrary
values of quark and gluon off-shellness) are calculated in the subsection 4.3.2 for each
of the gluon bremsstrahlung processes separately. On the other hand, in the limit
of a high hard scale Q2, the off-shell cross sections should approach the perturbative
ones [242, 243]. In this spirit the off-shell cross sections will be compared to the
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perturbative ones throughout the subsection 4.3.2. Accordingly, we first recapitulate
the corresponding pQCD results first in the subsection 4.3.1.

In the Subsection 4.3.3 we will calculate the dilepton radiation rates in the (ther-
malized) sQGP to give a simple example for an application of the derived off-shell
cross sections and to illustrate the relative importance of the different processes. We
point out, however, that the considerations in the thermal medium will probably be
not realistic enough to allow for a proper description of the hot and dense early phase
of relativistic heavy-ion collisions, where the sQGP is formed. A quantitative com-
parison to the experimental data and reliable conclusions on the relative contribution
of various sources to the experimentally observed thermal dilepton spectrum [199–
201, 205–208] requires to account for the non-equilibrium dynamics of the heavy-ion
collision in its full complexity by use of microscopic transport models, which will be
done in the following chapters of this thesis. The main purpose of the current section is
to present an effective approach for the off-shell photon and dilepton production in the
interactions of dynamical quasi-particles as constituents of the sQGP. The qualitative
analysis of the relative importance of different processes in section 4.3.3 should be un-
derstood as an illustration of the present results rather than a quantitative prediction
for the dilepton yield from heavy-ion collisions.

Section 4.3.3 is devoted to analyzing the effect of finite quark and gluon widths on
the dilepton rate explicitly. In the end of the Section, we summarize the results and
their possible implications.

4.3.1 Dilepton and photon production by perturbative par-
tons

In the present Section, we remind the cross sections and kinematics of the following
partonic mechanisms for dilepton production in the standard pQCD:

1. Born mechanism of quark annihilation (q + q̄ → γ∗),

2. quark + anti-quark annihilation with gluon Bremsstrahlung in the final state
(q + q̄ → g + γ∗),

3. Gluon Compton scattering (q + g → γ∗ + q and q̄ + g → γ∗ + q̄).

Born term

The leading order pQCD mechanism for the dilepton production in the partonic
phase is the same as for the well known Drell-Yan (DY) process [244]: quark and
antiquark annihilate into a lepton pair (qq̄ → l+l−), as presented by the diagram (a)
in Fig 4.1. The leading order leading twist pQCD result for the cross section of DY
dilepton production is(

d3σ̂(qq̄ → l+l−)

dQ2dxFdq2T

)DY

on-shell

=
4πα2e2q
9Q4

x1x2
x1 + x2

(1− x1x2)

×δ(q2T )δ
(
Q2 − x1x2SNN

)
δ

(
xF − x2 − x1

1− x1x2

)
, (4.6)
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where α is the electromagnetic fine structure constant, eq the fractional quark charge,
the lepton pair has invariant mass Q2 and transverse momentum qT . The formula
(1) is written in the collinear approximation. Generalizations to the final intrinsic
transverse momentum are possible (see [186] and references therein).

In collinear pQCD, the off-shellness, mass and transverse momentum of the an-
nihilating quark and antiquark are neglected, and, therefore, the incoming parton
momenta are simply related to the momenta of colliding nuclei as pq(q̄) = xiPA/A. In
this case, the parton momentum fractions x1 and x2 are related to the virtuality and
xF of the produced photon as (cf. delta-functions in (4.6)):

Q2 = s = x1x2SNN ; (4.7)

xF = (x2 − x1)/(1− x1x2); (4.8)

s denotes the invariant energy for the partonic process; SNN – for the hadronic one;
xF = qz/(qz)max; qz > 0, if x2 > x1. The denominator of the xF definition in (4.8) is
omitted in some works, where an approximate definition xF ≈ 2qz/

√
SNN is used.

The kinematical limits for this process are

SNN ≥ Q2, |xF | ≤ 1, s = Q2. (4.9)

Note that in pQCD – both collinear and ‘intrinsic kT ’ approach – partons are bound
by the on-shell condition

p2q = E2
q − p⃗2q = 0

(where the current quark mass is negligible). In Section 3 we will depart from the
on-shellness and will consider quarks and gluons as dynamical quasi-particles that can
assume arbitrary values of virtualities p2, distributed according to phenomenological
spectral functions.

Gluon Bremsstrahlung

The pQCD cross section of the gluon Bremsstrahlung process q̄q → g + µ+µ−

is [245, 246] (
d2σ̂(qq̄ → gl+l−)

dQ2d cosΘ

)gBr

on-shell

=
8α2e2qαS

27Q2

s−Q2

s2 sin2 Θ

×
(
1 + cos2Θ+ 4

Q2s

(ŝ−Q2)2

)
, (4.10)

where s is the total energy squared of the colliding partons, and Θ is the scattering
angle of the outgoing lepton pair with respect to the incoming quark momentum in the
quark center-of-mass system (CMS). Note that the cross section (4.10) can be written
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in terms of the Mandelstam variables s, t and u as [210](
d2σ̂(qq̄ → gl+l−)

dQ2dt

)gBr

on-shell

=
8α2e2qαS

27Q2

(t−Q2)2 + (u−Q2)2

s2tu

× δ
(
s+ t+ u−Q2

)
(4.11)

=
8α2e2qαS

27Q2s2

(
t

u
+
u

t
+

2sQ2

tu

)
× δ

(
s+ t+ u−Q2

)
, (4.12)

which coincides with the QED cross section for the virtual Compton scattering up to
the color factor and the crossing transformation [247]. Here we denote the momenta
of the incoming quark and antiquark as p1 and p2, the momenta of the outgoing gluon
and virtual photon as k and q, s = (p1 + p2)

2, t = (p1 − q)2, u = (p2 − q)2. The
δ-function δ(s+ u+ t−Q2) reflects the on-shell condition for the partons:

p21 + p22 + k2 = 0. (4.13)

The collinear divergence of the gluon Bremsstrahlung cross section for t → 0 and
u → 0 (i.e. cosΘ → ±1) is obvious; a cut-off Λ2 on | cosΘ| can be used in order to
regularize it. Another divergence in the perturbative expression (4.11) is the infrared
(IR) divergence for the energy of the gluon k0 → 0 due to the vanishing quark and
gluon masses. Indeed, if all the partonic masses are neglected, we have in the CMS:

t = k0(−
√
s+

√
s cosΘ2) → 0 at k0 → 0. (4.14)

These divergences (the soft and collinear ones) can be remedied by introducing a small
finite gluon mass µcut (cf. the plasmon mass in [221]). Indeed, the gluon thermal mass
µ plays the role of a natural cut-off in the sQGP (cf. section 4.3.2).

At this point, a note on the soft gluon resummation is due. In standard pQCD
calculations real gluon emission leads to large logarithms logQ2/q2T when qT is small.
Therefore, fixed order perturbation theory breaks down and the logarithms must be
resummed. In the approximation of collinear soft gluons with strongly ordered trans-
verse momenta the resummation leads to the Sudakov factor. However, the strongly
kT -ordered phase space, which ignores overall transverse momentum conservation, is
not the dominant configuration at small qT . A correct resummation of logarithms can
be achieved in b-space [248]. On the other hand, if the gluons have a finite thermal
mass, as is realized in the DQPM model, the resummation is not necessary, since the
divergence at qT → 0 is regularized.

Gluon Compton scattering

In QED, the Compton process refers to elastic scattering of a photon off a charged
object, and has proven to be very important as it provided early evidence that the
electromagnetic wave is quantized [249, 250]. In QCD, the corresponding process is
the gluon Compton scattering g+ q(q̄) → q(q̄) + γ∗. The cross section in leading twist
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of pQCD [245] is given by:(
d2σ̂(g + q)

dQ2d cosΘ

)GCS

on-shell

=
α2e2qαS

18Q2

s−Q2

s2(1 + cosΘ)
×{

2s

s−Q2
+
s−Q2

2s
(1 + cosΘ)2 − 2Q2

s
(1− cosΘ)

}
. (4.15)

In terms of Mandelstam variables [210] it reads:(
dσ̂(g + q)

dQ2dt

)GCS

on-shell

=
e2qα

2αS

9Q2

s2 + t2 + 2Q2u

−s3t
δ
(
s+ t+ u−Q2

)
, (4.16)

which is obviously related by crossing transformation to (4.12).

4.3.2 Cross sections for dilepton production by off-shell quasi-
particles.

Let us now proceed to the calculation of the dilepton production by effective strongly
interacting partonic quasiparticles with broad spectral functions. Dilepton radiation
by the dynamical quasiparticles proceeds via the elementary processes illustrated in
Figs. 4.1 and 2: the basic Born q + q̄ annihilation mechanism, Gluon Compton scat-
tering (q + g → γ∗ + q and q̄ + g → γ∗ + q̄), quark + anti-quark annihilation with
gluon bremsstrahlung in the final state (q + q̄ → g + γ∗); virtual quark and virtual
gluon decays. We recall that, in leading order the ‘dressed propagators’ and strong
coupling lead to substantial phase-space corrections; furthermore, the relative contri-
bution of different channels is expected to change significantly as a function of Q2 due
to different kinematical thresholds.

Ultimately, we are interested in the dilepton yield of the strongly coupled quark-
gluon plasma. Due to the factorization property proven in Ref. [221], the dilepton
emission from the QGP – created in a heavy-ion collision – is given by the convolution
of the elementary sub-process cross sections (describing quark/gluon interactions with
the emission of dileptons) with the structure functions that characterize the properties
and evolution of the plasma (encoded in the distribution of the quarks and gluons with
different momenta and virtualities):

d3σQGP

dQ2dxFdq2T
=

∑
abc

∫
dŝ

∫ ∞

0

dmi
1

∫ ∞

0

dmi
2

∫ ∞

0

dµf Fab(ŝ,m
i
1,m

i
2)

×Ac(µ
f )
d3σ̂abc(ŝ,m

i
1,m

i
2, µ

f )

dQ2dxFdq2T
, (4.17)

where mi
1 and mi

2 are the off-shellnesses (i.e. virtualities) of the incoming partons, µf

is the off-shellness of the outgoing parton, while the indices a, b, c denote quark, anti-
quark or gluon so that all the considered mechanisms are covered. The cross sections
σ̂abc(ŝ,m

i1,mi2, µf ) for the different processes for arbitrary values of parton virtualities
will be calculated in the current Section. Consequently – in Sections 4 and 5 – we will
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integrate the elementary cross sections according to (4.17) over the motion of partons
and over parton virtualities by employing phenomenological structure functions Fab

and spectral functions Ac(µ
f ).

Off-shell q + q̄ in the Born mechanism

Let us first consider the general ‘off-shell’ kinematics, when the participating quarks
are massive, with the masses distributed according to the spectral functions. We
denote the masses of the quark and the anti-quark as m1 and m2. Just as in the ‘on-
shell’ case, the mass of the produced dilepton pair is fixed to the invariant energy of
the quark-antiquark collision: s = Q2. However, the kinematical limit for the minimal
dilepton mass is now higher than in the massless on-shell case:

Q2
0 ≡ s0 = (m1 +m2 + 2mlept)

2 > 4m2
lept, (4.18)

where mlept is the mass of an electron or muon. Also, the incident current changes:

J =
1

2

√
(k1 ·k2)2−m2

1m
2
2 =

1

2

√
(s−m2

1 −m2
2)

2−4m2
1m

2
2,

compared to J = s/2 in the on-shell approximation.
In addition to the kinematics, the matrix element corresponding to the diagram

(a) in Fig. 4.1 is modified in the general off-shell cases compared to the matrix element
for the annihilation of massless quarks. The off-shell cross section was first addressed
in [186] and reads:(

d3σ̂(m1,m2, p⃗1, p⃗2)

dQ2dxFdq2T

)DY

off−shell

=
πα2e2q

3Q4Nc

√
(p1 · p2)2 −m2

1m
2
2

×
[
2Q4 −Q2

(
m2

1 − 6m1m2 +m2
2

)
−
(
m2

1 −m2
2

)2]
×δ
(
Q2 −m2

1 −m2
2 − 2(p1 · p2)

)
×δ
(
xF −

√
sNN

sNN −Q2
(p2z − p1z)

)
×δ
(
q2T − (p⃗1⊥ + p⃗2⊥)

2) . (4.19)

In (4.19), Nc is the number of colors, eq(−eq) is the fractional charge of the quark
(antiquark), pi are the 4-momenta of the annihilating quark and antiquark. For Q2 ≫
m2

1,m
2
2 the expression (4.19) reduces to the leading twist pQCD formula (the ’on-shell’

approximation).
The approximation m1 = m2 → 0 in Eq. (4.19) is equivalent to restricting oneself

to the leading term in the twist expansion, that is, in the case of the unpolarized
Drell-Yan process, an expansion in powers of 1/Q. One can see that in this limit (and
additionally using the collinear kinematics p⃗1⊥ = p⃗2⊥ = 0) we recover the standard
pQCD result (4.6).

The strong interaction of partons (reflected in the self-energies) leads to higher-
twist corrections to the standard pQCD cross sections [186]. The higher twists by
definition are vanishing in the limit of infinite invariant mass of the lepton pair [243].
However, the power-Q2 suppressed contributions may be large at realistic energies. For
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Figure 4.3: (color online) Dimuon production cross sections in the Drell-Yan channel
(q+ q̄ → µ++µ−). (a) The cross section is presented versus the mass of the muon pair
Q. The short dashes (black) line shows the on-shell, i.e. the standard perturbative
result. The other lines show the off-shell cross section, in which the annihilating quark
and antiquark have finite masses m1 and m2 with different values: m1 = 0.3 GeV,
m2 = 0.15 GeV (solid magenta line), m1 = 0.3 GeV, m2 = 0.3 GeV (dash-dotted red
line), m1 = 0.3 GeV, m2 = 0.6 GeV (dashed blue line), m1 = 0.6 GeV, m2 = 0.6 GeV
(dash-dot-dot green line). (b) The ratio of the off-shell cross section to the on-shell
result for the different values of quark and antiquark masses is plotted versus Q−Q0,
where Q0 is the threshold value for the lepton pair mass. Line coding as in the figure
(a).

instance, quark off-shellness – arising due to the non-perturbative interaction between
the partons – have an effect on the transverse momentum distribution of Drell-Yan
lepton pairs in p+ p̄ collisions [186, 241, 251].

The off-shell cross sections are quantitatively compared to the leading twist results
in Fig. 4.3. The dimuon production cross sections in the Drell-Yan mechanism are
plotted in Fig. 4.3 (a) versus the mass of the muon pair Q =

√
s. The short dashes

(black) line shows the on-shell, i.e. the standard perturbative result. The other lines
show the off-shell cross section, in which the annihilating quark and antiquark have
finite masses m1 and m2 with different values: m1 = 0.3 GeV, m2 = 0.15 GeV (solid
magenta line), m1 = 0.3 GeV, m2 = 0.3 GeV (dash-dotted red line), m1 = 0.3 GeV,
m2 = 0.6 GeV (dashed blue line), m1 = 0.6 GeV, m2 = 0.6 GeV (dash-dot-dot green
line).

The importance of finite mass corrections in the Drell-Yan process is illustrated
by the ratio of the integrated cross section σ(Q) in Fig. 4.3 (b). The ratio of the off-
shell cross section to the on-shell result for the different values of quark and antiquark
masses is plotted versus Q − Q0, where Q0 is the threshold value for the lepton pair
mass. The line coding is the same as in the previous figure. With increasing Q2, the
off-shell cross sections approach the leading twist – on-shell – result.

The observed deviations of the derived cross sections from the massless limit at low
Q2 should be seen in the dilepton rates from the sQGP created in heavy-ion collisions
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at relatively low dilepton masses. This question can be addressed by convoluting
the off-shell cross section (4.19) with effective spectral functions A(mi) for quarks in
plasma and with a model for the momentum distribution of quarks in plasma. We will
return to this issue in Sections IV and V.

Off-shell gluon Bremsstrahlung qq̄ → gl+l−

We start this section by stating the off-shell kinematics of the qq̄ → gl+l− process.
The dilepton mass range is 4m2

lept<Q
2< (

√
s − µ)2, while the kinematical limits for

the momentum transfer t are

tmax
min = −s

2
(C1 ± C2), (4.20)

where

C1 = 1− (β1 + β2 + β3 + β4) + (β1 − β2)(β3 − β4),

C2 =
√
(1− β1 − β2)2 − 4β1β2

×
√
(1− β3 − β4)2 − 4β3β4 (4.21)

with
β1 = m2

1/s, β2 = m2
2/s, β3 = Q2/s, β4 = µ2/s. (4.22)

Additionally, we note that there is a threshold in the CMS energy
√
s for the q + q̄

interaction:
s ≥ max{(m1 +m2)

2, (µ+Q)2}. (4.23)

The off-shell cross section for the qq̄ annihilation with gluon Bremsstrahlung in the
final state has been calculated in Ref. [172]. We provide here a short description of its
evaluation.

Starting from the formula for the unpolarized cross section

dσ =
¯Σ|Mi→f |2ε1ε2Π d3pf

(2π)3√
(p1p2)2 −m2

1m
2
2

(2π)4δ(p1 + p2 − Σpf ), (4.24)

where the incoming quark and antiquark momenta are p1 and p2 and their masses m1

and m2, respectively; pf are the momenta of the outgoing particles, i.e. of the electron
(muon) and positron (anti-muon) and gluon. We note that the dilepton production
cross section can be easily obtained from the cross section for the production of virtual
photons as

dσ(l+l−)

dQ2dt
=

α

3πQ2

dσ(γ∗)

dt
FF (Q2, Q2

0) (4.25)

with

FF (Q2, Q2
0) =

√
1− Q2

0

Q2

(
1 +

Q2
0

2Q2

)
, (4.26)

where Q2
0 = 4m2

lept and mlept is the lepton mass.

Furthermore, we define the momenta of the internal quark exchanged in the two
relevant diagrams (see Fig. 1) as p3 ≡ p1 − q, p̄3 ≡ p1 − p2 − p3 and its mass as m3.
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The final gluon momentum is k and its mass is µ. Then the matrix element of the
process q + q̄ → g + γ∗ is

M =Ma +Mb, (4.27)

where

Ma = −eqegsT l
ij

ϵν(q)ϵσl(k)

p23 −m2
3

ui(p1,m1) [γ
ν(p̂3 +m3)γ

σ] vj(p2,m2) (4.28)

and

Mb = −eqegsT l
ij

ϵσl(k)ϵν(q)

p̄32 −m2
3

ui(p1,m1)
[
γη( ˆ̄p3 +m3)γ

ν
]
vj(p2,m2), (4.29)

e is the electron charge while eq is the quark fractional charge; T l
ij is the generator of

the SU(3) color group (that will yield the color factor in the cross section); ϵν(q) is the
polarization vector for the virtual photon with momentum q; ϵσl(k) is the polarization
vector for the gluon of momentum k and color l; ui(p,m) is a Dirac spinor for the quark
with momentum p, mass m and color i; and vi(p,m) is the spinor for the anti-quark.

The squared – and summed over spin polarizations as well as over color degrees of
freedom – matrix element can be decomposed in the following summands:∑

|M |2 =
∑

M∗
aMa +

∑
M∗

bMb +
∑

M∗
aMb +

∑
M∗

bMb, (4.30)

where the star denotes the complex conjugation.

The spinors for quark states with mass mi contribute to the expression for the
spin-averaged matrix element only in the combinations

∑
ū(p,mi)u(p,mi) = (p̂+mi)

(cf [252]) and the correlation functions between the states with different masses does
not enter |M |2. Thus we find:

∑
M∗

aMb=−
e2qe

2g2sTr{T 2}
(p23 −m2

3)(p̄3
2 −m2

3)

×
[
Tr
{
(p̂2 −m2)γσ(p̂3 +m3)γν(p̂1 +m1)γ

σ( ˆ̄p3 +m3)γ
ν
}

− 1

Q2
Tr
{
(p̂2 −m2)γσ(p̂3 +m3)q̂(p̂1 +m1)γ

σ( ˆ̄p3 +m3)q̂
}

−A

k2
Tr
{
(p̂2 −m2)k̂(p̂3 +m3)γν(p̂1 +m1)k̂( ˆ̄p3 +m3)γ

ν
}

+
A

k2Q2
Tr
{
(p̂2 −m2)k̂(p̂3 +m3)q̂(p̂1 +m1)k̂( ˆ̄p3 +m3)q̂

}]
, (4.31)
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∑
|Ma|2=−

e2qe
2g2sTr{T 2}

(p23 −m2
3)

2

× [Tr {γσ(p̂3 +m3)γν(p̂1 +m1)γ
ν(p̂3 +m3)γ

σ(p̂2 −m2)}

− 1

Q2
Tr {γσ(p̂3 +m3)q̂(p̂1 +m1)q̂(p̂3 +m3)γ

σ(p̂2 −m2)}

−A

k2
Tr
{
k̂(p̂3 +m3)γν(p̂1 +m1)γ

ν(p̂3 +m3)k̂(p̂2 −m2)
}

+
A

k2Q2
Tr
{
k̂(p̂3 +m3)q̂(p̂1 +m1)q̂(p̂3 +m3)k̂(p̂2 −m2)

}]
. (4.32)

Note that we can readily obtain
∑
M∗

bMa from
∑
M∗

aMb and
∑

|Mb|2 from∑
|Ma|2 by the transformation {p3 → p̄3, p1 → p2, p2 → p1,m1 → −m2,m2 → −m1}.

In equations (4.31) and (4.32), A sets the gauge and we will discuss the dependance on
A later on. We used the feynpar.m [253] package of the Mathematica program [254]
to evaluate the traces of the products of the gamma matrices.

The resulting cross section has been shown explicitly in Ref. [172]. It is too bulky
to present here. One can check that the expression for mi → 0 approaches the leading
twist pQCD result, where µcut = µ. We illustrate this in Fig. 4.4 where the off-shell
cross sections for the quark annihilation with gluon bremsstrahlung at various values of
quark and gluon off-shellnesses (masses) are compared to the on-shell (pQCD) result.
The dashed black line shows the on-shell cross section for µcut = 0.206 GeV, the red
solid line presents the off-shell cross section for the gluon mass fixed to µ = 0.8 GeV
and on-shell quark and anti-quark (m1 = m2 = m3 = 0). The blue dash-dotted line
gives the off-shell result for µ = 0.8 GeV,m1 = m2 = m3 = mq = 0.6 GeV. One readily
notices the shift of the maximum pair mass to a lower value (in order to produce a
massive gluon in the final state). For the rest of the Q values, the effect of the quark
and gluon off-shellness reaches at most 50% as seen in the ratios of the cross sections,
plotted in Fig. 4.4 (b).

Next we compare the double differential off-shell and on-shell cross sections. The
results for the transverse momentum distributions of the dileptons are presented in
Fig. 4.5. The solid black line shows the differential on-shell cross section with µcut =
0.206 GeV, the blue dashed line presents the off-shell cross section for the gluon mass
fixed to µ = 0.8 GeV and on-shell quark and anti-quark (m1 = m2 = m3 = 0). The
red dash-dotted line gives the off-shell result for µ = 0.8 GeV, m1 = m2 = m3 =
mq = 0.6 GeV. Again, we find the largest effect at the edge of the phase space, at the
minimal qT .

Off-shell gluon Compton scattering gq → ql+l−

Kinematic limits for s, t, Q2 in the off-shell GCS process are analogous to the q+ q̄
case. In the off-shell case, the dilepton mass range is 4m2

lept<Q
2< (

√
s−m2)

2, while
the kinematical limits on the momentum transfer t are given by the Eqs. (4.20)-(4.21)
with

β1 = m2
1/s, β2 = µ2/s, β3 = Q2/s, β4 = m2

2/s, (4.33)

while
s ≥ max{(m1 + µ)2, (m2 +Q)2},
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Figure 4.4: (color online) Comparison of off-shell and on-shell gluon Bremsstrahlung
q + q̄ → g + µ+µ− cross sections at

√
s = 4 GeV. (a) The dashed black line shows

the on-shell cross section with µcut = 0.206 GeV, the blue dash-dotted line presents
the off-shell cross section for the gluon mass fixed to µ = 0.8 GeV and on-shell quark
and anti-quark (m1 = m2 = m3 = 0). The red solid line gives the off-shell result for
µ = 0.8 GeV, m1 = m2 = m3 = mq = 0.6 GeV. (b) The ratio of off-shell to on-shell
cross sections using the same line coding is as in (a).
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Figure 4.5: (color online) Comparison of the transverse momentum distributions of
muon pairs produced in the gluon Bremsstrahlung q+ q̄ → g+µ+µ− channel in the off-
shell and on-shell cases. (a) The dashed black line shows the differential on-shell cross
section with µcut = 0.206 GeV, the blue dash-dotted line presents the off-shell cross
section for the gluon mass fixed to µ = 0.8 GeV and on-shell quark and anti-quark
(m1 = m2 = m3 = 0). The red solid line gives the off-shell result for µ = 0.8 GeV,
m1 = m2 = m3 = mq = 0.6 GeV. (b) The ratio of off-shell to on-shell cross sections
using the same line coding.
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where m1 (m2) is the mass of the incoming (outgoing) quark and µ is the mass of the
gluon.

The cross sections for g + q → q + l+ + l− and g + q̄ → q̄ + l+ + l− are readily
obtained from gluon bremsstrahlung cross section by the crossing transformation.

Virtual gluon decay g → qq̄l+l− and virtual quark decay q →
gql+l−

Although the process of real gluon decay g → q + q̄ + l+l− is forbidden kinemat-
ically for perturbative particles, it has a finite region of phase space, if the gluon is
off-shell due to its broad with and finite pole mass. Analogously, the virtual quark
decay is also possible in the off-shell case. We present the Feynman diagrams for the
corresponding processes in Fig. 4.2. The off-shell cross sections for these processes can
straightforwardly be obtained from the gluon bremsstrahlung by the crossing relation.
For example, the cross section for q → gql+l− is obtained from q→̄gl+l− by changing
p2 → −p2.

Note that, in order to obtain the dilepton rates, the elementary cross sections
have to be consequently convoluted with the effective spectral functions for quarks
and gluons. The magnitude and shape of the contributions of the virtual decays to
the dilepton rates is very sensitive to the final choice of the spectral function. In the
DQPM the contribution from gluon decay is higher than that from virtual quark decay,
since the gluonic quasi-particles are more massive and broader than the quarks [33],
and thus the kinematically allowed region is larger for the virtual gluon than for the
virtual quark decay.

On the other hand, within the DQPM parametrizations for the partonic spectral
functions, both processes presented by the diagrams in Fig. 4.2 generate little dilepton
yield anywhere except for extremely low masses: Q ≈ 2mmuon. Therefore, we refrain
from plotting here the contributions explicitly and also do not consider them in the
next section dedicated to a comparison of the yields from different mechanisms.

4.3.3 Dilepton rates from the sQGP

In the following we are going to model the contributions of the different processes to
the dilepton yield of the strongly coupled quark-gluon plasma. Using the factorization
formula (4.17), we calculate the dilepton emission from the QGP by the convolu-
tion of the elementary sub-process cross sections with the distribution of the quarks
and gluons with different momenta and virtualities. The elementary cross sections
σ̂abc(ŝ,m

i1,mi2, µf ) for the different processes have been presented in the previous
Section.

In Eq. (4.17) we integrate over the motion of partons, but also over their virtualities
by employing phenomenological structure functions Fab that depend on the invariant
energy ŝ of the partonic sub-process as well as on the virtualities of the incoming
partons and the spectral function A(µf ) for the parton in the final state. Here, in
principle, should be a two particle correlator, but we work in the 2PI approximation
so that the parton in the sQGP can be characterized by a single-particle distribution.
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We, therefore, we assume that the plasma structure function can be approximated by

Fab(ŝ,m1,m2) = Aa(m1)Ab(m2)
dNab

ds
. (4.34)

In this context, the quantity dNqq̄/ds has the meaning of the number of q+ q̄ collisions
in the plasma as a function of the invariant energy of these collisions

√
s. Analogously,

dNgq/ds denotes the number of g + q collisions.

In order to address the relative importance of the different mechanisms for the
dilepton production in the sQGP, we need a quantitative model for the number of
q + q̄ and g + q (g + q̄) collisions as functions of

√
s of these collisions. On possibility

is to use thermal distributions of quarks and gluons in order to estimate the number
of parton collisions. We come back to this approach in the end of the present section.

Another possibility it to use dN/ds distributions from the PHSD calculations that
occur in a realistic simulation of the heavy-ion collisions at the SPS energy. The
maximum of dN(q+ q̄)/d

√
s is at

√
s≈0.5 GeV and the maximum of dN(g+q)/d

√
s is

at a higher value of
√
s≈1.2 GeV, reflecting the fact that the threshold

√
s0 = ma+mb

is higher for gq than for qq collisions. Indeed, the gluonic quasi-particles are expected
to be more massive than the quark ones [33]. The functional form for dN/d

√
s is taken

as
dNab

d
√
s
= Kab s

1/4
[
(
√
s− Pab)

2 +Wab

]−3.5
(4.35)

with (Pqq = 0.5, Wqq = 1.2) for qq̄ collisions and (Pgq = 1.2, Wgq = 0.6) for gq
collisions.

In Fig. 4.6 we plot the dilepton spectrum calculated using Eq. (4.17) and the
cross sections given in Section 4.3.2 assuming αS = 0.41. One observes that after the
convolution with the distribution of possible

√
s for the q + q̄ annihilation in sQGP,

the yield of lepton pairs produced in the Bremsstrahlung process is below the leading
order Born contribution. Thus, the Born rate is higher in magnitude than that of the
gluon Bremsstrahlung process despite the fact that the former one contributes only to
lepton pairs with a mass equal to the

√
s.

On the other hand, one notices from Fig. 4.6 that the GCS mechanism is sub-
leading, unless the gluonic content of the plasma is orders of magnitude above the
quark content, which is achieved neither at SPS nor at RHIC energies. A very high
gluon content might be found at LHC; in this case the GCS process would give a
considerable contribution to the dilepton yield.

Let us remind that the running coupling αS depends on the local energy density
ε. The DQPM [32] provides a good parametrization of the QCD running coupling as
a function of temperature in the non-perturbative regime for temperatures close to Tc
(cf. Fig. 1 in Ref. [32]). Note that close to Tc the full coupling calculated on the lattice
increases with the decreasing temperature much faster than the pQCD prediction.

The energy density as a function of temperature has also been calculated on the
lattice [255] (cf. Fig. 4.7). A rather simple parametrization for the QCD energy density

1The absolute magnitudes of the dilepton rates presented in Figs.10,14,15 and 16 should not be
directly compared to experimental data. The analysis of the relative yields serves as an illustration
of an application of the off-shell cross sections.
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Figure 4.6: (color online) Dimuon rates dN/dQ from QGP calculated using the cross
sections in the on-shell approximation, αS = 0.4. Black solid line shows the contri-
bution of the Drell-Yan channel (q + q̄ → µ+µ−), red dash-dotted line represents the
contribution of the channel q+ q̄ → g+µ−µ+, blue dashed line shows the contribution
of the channel q + g → q + µ+µ−.
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Figure 4.7: (color online) L.h.s. QCD energy density versus temperature from lattice
QCD (square symbols) [255], the DQPM approach (red solid line) [33] and the ‘A-Bag’
model (blue dashed line) [256]. The grey dash-dotted line shows the Stefan-Boltzmann
limit. The arrow indicates the critical temperature. R.h.s. Temperature as a function
of the energy density from lattice QCD (square symbols) [255], the DQPM approach
(red solid line) [33] and the ‘A-Bag’ model (blue dashed line) [256].
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Figure 4.8: (color online) Non-perturbative running coupling as a function of the local
energy density ε. The shadowed area indicates the energy densities reached in heavy
ion collisions at SPS and RHIC. The arrow shows the critical energy-density.
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Figure 4.9: (color online) Dimuon rates dN/dQ from the QGP calculated using the
cross sections in the on-shell approximation, αS = 0.8. Black solid line shows the con-
tribution of the Drell-Yan channel (q+ q̄ → µ+µ−), the red dash-dotted line represents
the contribution of the channel q + q̄ → g + µ−µ+, the blue dashed line shows the
contribution of the channel q + g → q + µ+µ−.
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Figure 4.10: (color online) Dimuon rates from the QGP dN/dy beyond the on-shell
approximation, αS = 0.8. dN/dQ calculated using the cross sections for quarks and
gluons as massive quasi-particles, quark mass parameter being set to mq = 0.3 GeV
and gluon mass parameter to µ = 0.8 GeV. The black solid line shows the contribution
of the Drell-Yan channel (q + q̄ → µ+µ−), the red dash-dotted line represents the
contribution of the channel q+ q̄ → g+µ−µ+, blue dashed line shows the contribution
of the channel q + g → q + µ+µ−.

– the “A-Bag model” – is proposed in Ref. [256] and provides a good fit of the SU(3)
lattice data above Tc; we extend this model to 3-flavors and also compare to lattice
data from Ref. [255] in Fig 4.7. On the other hand, the DQPM model describes the
QCD energy density at temperatures even as low as T ∼ Tc [33]. In Fig 4.7 we invert
the relation and present the temperature as a function of the energy density.

Using this relation, we obtain the running coupling as a function of the energy den-
sity ε instead of T/Tc; we present αS vs. ε in Fig. 4.8. On the other hand, simulations
in transport theory [107] have shown that the local energy densities achieved in the
course of heavy-ion collisions at SPS and RHIC energies reach at most 20 GeV/fm3;
this region is high-lighted in Fig. 4.8 by a shadowed area. One observes that αS at the
energy densities of interest is on average 0.8. Using this value for αS, we compare the
rates in Fig. 4.9. In this case, the contribution of the O(αS) diagrams (gluon-Compton
scattering qg → qγ∗ and gluon Bremsstrahlung qq̄ → gγ∗) is no more non-leading to
the Born q + q̄ annihilation mechanism!

Next, we plot the dilepton rates – within our approximation for the number of
parton collisions in the plasma – for the case of massive quarks and gluons in Fig. 4.10.
The rates are calculated by convoluting the off-shell cross sections obtained in the
previous Section with our model dN/d

√
s. Quarks and gluons are massive quasi-

particles, quark masses being set to mq = 0.3 GeV and gluon mass µ = 0.8 GeV.
The black solid line shows the contribution of the channel q + q̄ → µ+µ−, the red
dash-dotted line represents the contribution of the channel q + q̄ → g + µ−µ+, blue
dashed line shows the contribution of the channel q+ g → q+µ+µ−. The rates in the
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Figure 4.11: (color online) Dimuon rates from the QGP dN/dy beyond the on-shell
approximation, αS = 0.8. The distribution dN/dQ calculated in the fully off-shell
case of massive and broad dynamical quasi-particles. The rates are calculated using
the off-shell cross sections convoluted with effective spectral functions of the Breit-
Wigner type. The parameters of the spectral functions are: the peak of the quark
spectral function is located at 0.3 GeV, the width is Γ = 0.3 GeV, the peak of the
gluon spectral function is at 0.8 GeV, the width to Γ = 0.3 GeV.

three channels are modified compared to the massless case (cf. Fig. 4.9). In particular,
we point the clear threshold behavior of the Born term as noted also by the authors
of Refs. [33, 219, 220].

Effect of the finite quark and gluon widths on the QGP
radiation

Finally, we calculate the QGP dilepton rate, taking into account not only the finite
masses of the partons, but also their broad spectral functions, i.e. finite widths. For
this purpose, we convolute the off-shell cross sections obtained in section 4.3.2 with
dN/d

√
s and with the spectral functions A(m) in line with the equation (4.17).

The partonic spectral functions are related to the imaginary part of the trace of
the effective propagator Dµ

µ and to the partonic self-energies Σ as follows:

A(p) =
1

π
ℑDµ

µ(p) = − 1

π

ℑΣ(p)
[p2 −m2

current −ReΣ(p)]2 + [ℑΣ(p)]2
. (4.36)

For the current analysis, we use the approximation of constant real and imaginary
parts of the self-energy, which corresponds to constant finite average masses for quarks
(< mq >) and gluons (µ) and a constant widths for given temperature T . Within
these approximations the spectral function has a Breit-Wigner form. The DQPM fit
to lattice data suggests that the partonic widths at temperatures around 1.5 − 2 Tc
are of the order of 300 MeV [33].

The results of the numeric convolution of the off-shell cross sections with the spec-
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Figure 4.12: (color online) Rates of dileptons created in q + q̄ and π + π annihilations
within a thermalized gas of quarks with temperature TQGP and pions with temperature
Tπ. (a) TQGP = 250 MeV, Tπ = 150 MeV; (b) TQGP = Tπ = 190 MeV.

tral functions and with the dN/d
√
s distribution are shown in Fig. 4.11 for realistic

values of the spectral function parameters: the peak of the quark spectral function is
located at 0.3 GeV, the width is Γ = 0.3 GeV, the peak of the gluon spectral function
is at 0.8 GeV, the width Γ = 0.3 GeV. The rate from the Drell-Yan mechanism is
shown by the solid black line, while the Q(αS) 2 → 2 processes are displayed by the
dashed blue and dash-dotted red lines. We have checked numerically that the rates
for different values of the gauge parameter lie on top of each other.

By dressing the quark and gluon lines with effective spectral functions we model
the effect of the quasi-particle interaction, including their multiple scattering. One
observes by direct comparison of the Fig. 4.10 and Fig. 4.11 that the effect of parton
spectral function width on the dilepton rates is quite dramatic. In particular, the
threshold of the Drell-Yan contribution is “washed-out”. In this observation we confirm
the results of [216]. On the other hand, the effect of the partonic width and/or of
multiple scattering on the 2 → 2 processes has not been known so far. Wether the
predicted shape of the dilepton spectrum in Fig. 4.11 is realized remains to be answered
in a forthcoming comparison to experimental data [257].

The cross sections obtained in this study will form the basis of a consistent calcu-
lation of the dilepton production in heavy-ion collisions at SPS and RHIC energies by
implementing the partonic processes into the transport approach PHSD.

Dilepton rates in thermal equilibrium

Before proceeding to the results of the transport calculations and the comparison to
data, we dedicate this subsection to a study of the dilepton spectrum qualitatively in
a thermal model. In Fig. 4.12, the dilepton production rates in thermal equilibrium
are presented. We assume here that the system evolves through a thermalized system
of quark in the hot initial stage of the heavy-ion collision and through the state of a
high-density hadron gas in the later phase of the collision.
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The main elementary process of dilepton production in a hadron gas is the pion
annihilation into dileptons, mediated through vector meson dominance by the rho
meson (π + π → ρ→ γ∗ → l+ + l−) and controlled by the pole at the rho mass of the
pion electromagnetic form factor. For the pion annihilation, we use the standard cross
section as, e.g., in Ref. [181] and the Breit-Wigner form factor with the pole mass and
width of the ρ meson.

In the partonic sector, the main sources of the dileptons are the reactions of quark-
antiquark annihilation with the production of the virtual photon. Considering the
temperatures and baryon densities relevant for the SPS energies, we expect in PHSD
the contribution of the processes involving gluons to be small compared to the leading
q + q̄ mechanism of dilepton production (note, however, that at higher energies, such
as those of RHIC and LHC, gluons can play an important role in the dilepton pro-
duction [211]). For the calculation of the QGP yield in the qualitative analysis of this
section, the most simple perturbative QCD cross sections are used for the processes
q + q̄ → l+l− and q + q̄ → g + l+l−, assuming αS = 0.8.

Thus we plot the dilepton yields from the reactions π + π and q + q̄, where the
pions and quarks have in general different temperatures Tπ and TQGP . The space-time
volumes of the two phases are assumed to be approximately equal. In Fig. 4.12(a), the
gas of pions is assumed to have the temperature Tπ = 150 MeV, while the gas of quarks
the temperature TQGP = 250 MeV. In Fig. 4.12(b), we have TQGP = Tπ = 190 MeV.

It has been originally suggested that a ‘window’ for observing dileptons from the
plasma exists in the invariant mass region between the ϕ and J/Ψ peaks [194]. This is
supported by the results shown in both Figs. 4.12(a) and 4.12(b). However, we see in
Fig. 4.12(a) another region, i.e. M < 0.5 GeV, in which the q+ q̄ annihilation is com-
patible or even larger than the radiation from the π+π annihilation; the contribution
of the two-to-two process q + q̄ → g + l+l− is especially important. The dominance of
the thermal yield from quark interactions at masses below ≈ 0.5 GeV is in agreement
with the conclusions of [258, 259]. The transport model results of the next section will
clarify which of the equilibrium scenarios presented in Fig. 4.12 – (a) or (b) – gives a
closer resemblance to the channel decomposition of the dilepton production within a
microscopic simulation.

Of course, the observation of the QGP channels at low mass is possible only after
the dilepton yield from the π-, η- and ω-Dalitz decays is removed. Another word of
caution is in place here, because in Figs. 4.12 the vacuum properties of the ρ-meson
have been used in plotting the π+π contribution, whereas the ρ-meson properties are
expected to be modified in medium. The modification of the ρ will change the size of
the new, low mass window of the QGP observation.

4.3.4 Photon production by dynamical quasiparticles

We proceed to the description of real photon production in the interactions of quarks
and gluons in the quark-gluon plasma, which dominantly proceeds through the quark-
antiquark annihilation and the gluon Compton scattering processes:

q + q̄ → g + γ q(q̄) + g → q(q̄) + γ,
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Figure 4.13: Feynman diagrams for the leading partonic sources of thermal photons
(q(q̄) + g → q(q̄) + γ and q + q̄ → g + γ) included in the PHSD calculations. The
propagators and strong coupling are employed from the DQPM.

that are diagrammatically presented in Fig. 4.13. The evaluation of the cross sec-
tions for dilepton production by off-shell partons, taking into account finite masses for
quarks, antiquarks (with generally mq ̸= mq̄) and gluons mg as well as their finite
spectral width (by integrating over the mass distributions) has been carried out in
Refs. [172, 241] and presented in the previous section. In order to obtain the cross
sections for the real photon production, we use the relation between the real photon
production cross section and the cross section for dilepton production [260]:

dσ(γ)

dt
= lim

M→0

3π

α

M2

L(M)

d2σ(e+e−)

dM2dt
, (4.37)

where M2 is the invariant mass squared of the lepton pair (virtual photon), while the
kinematical factor L(M) is given by

L(M) =

√
1− 4m2

e

M2
(1 +

2m2
e

M2
) (4.38)

with me denoting the lepton mass.
We take d2σ(e+e−)/dM2dt from Ref. [172] and use relation (4.37) to implement the

real photon production in the off-shell quark and gluon interactions into the PHSD
transport approach. In each interaction of q + q̄ or q/q̄ + g the photon production
probability and the elliptic flow of the produced photon are recorded differentially in
transverse momentum pT , rapidity y and interaction time t. Let us briefly summarize
the differences of our ’effective’ approach from the standard pQCD:

• We take into account full off-shell kinematics, i.e. the transverse motion and
virtuality of the partons,

• quark and gluon lines in the diagrams in Fig. 4.13 and in the leading-order
diagram q + q̄ → γ∗ (which is relevant only for dilepton production) are dressed
with non-perturbative spectral functions and self-energies: the cross sections
are derived for arbitrary masses of all external parton lines and integrated over
these virtualities weighted with spectral functions (see e.g. Refs [174, 241] for
an introduction to the method); the internal lines are dressed with self energies.

• Strong vertices are modified compared to pQCD by replacing the perturbative
coupling (that runs with the momentum transfer) with the running coupling
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αS(T ) that depends on the temperature T of the medium according to the
parametrization of lattice data in Ref. [32], while the temperature T is related
to the local energy density ϵ(r; t) by the lQCD equation of state. Note that close
to Tc the effective coupling αS(T ) increases with decreasing temperature much
faster than the pQCD prediction.

• Due to the broad widths of quarks and gluons in the sQGP [33] – which is the
consequence of their high interaction rate – there are non-vanishing contributions
also from the decays of virtual quarks (q → q + g + l+l−) and gluons (g →
q+ q̄+ l+l−), which are forbidden kinematically in pQCD. However, we presently
discard these processes in PHSD.

4.3.5 Thermal photon rates and the LPM effect

Using the cross sections for photon radiation by dressed quarks and gluons in the
processes qq̄ → gγ and qg → qγ from Ref. [172] we can calculate the differential
rate of photons from a thermalized strongly interacting QGP. Fig. 4.14 presents the
invariant rate of photons produced from a QGP at the temperature T = 200 MeV (red
solid line) in comparison to the leading-order Log-resummed perturbative QCD rate
(blue solid line) from Arnold, Moore and Yaffe (AMY rate, taken from Ref. [173]). One
observes a qualitative agreement between the results of both approaches although the
degrees-of-freedom and their couplings are different. We mention that photon rates
calculated recently at the NLO in perturbative QCD [261–263] also are approximately
in line with those presented in Fig. 4.14 (l.h.s.).

The radiation of photons by charged particles is modified in the medium compared
to the vacuum. One of such medium effects is caused by the absence of well-defined
incoming and outgoing asymptotic states due to the multiple scattering of particles
in a strongly interacting environment. If the subsequent scatterings occur within the
time necessary for photon radiation τγ ∼ 1/q0, then the amplitudes for the emis-
sion of photons before and after the charged particle scattering have to be summed
coherently. The effect of this destructive interference on the photon spectrum by elec-
trons transversing a dense medium was first studied by Landau and Pomeranchuk
in Ref. [213, 214] and Migdal in Ref. [215]. Accordingly, the Landau-Pomeranchuk-
Migdal (LPM) effect modifies the spectrum of photons produced in the medium in
comparison to the incoherent sum of emissions in quasi-free scatterings, leading espe-
cially to a suppression of the low energy photons because the formation time of the
photon τγ is proportional to the inverse photon energy 1/q0. In particular, the LPM
effect regularizes the 1/q0 divergence of the quasi-free bremsstrahlung spectra. The
LPM suppression and the induced thermal mass of the medium quanta (the dielectric
effect) together ensure that the photon spectrum is finite in the limit q0 → 0.

The importance of the LPM effect for the case of dilepton and photon production
from QCD systems was shown in Refs. [264–267] long ago. The magnitude of the LPM
suppression is governed by the average time between the collisions τ , which in turn is
given by the inverse scattering length a or by the inverse average spectral width of the
particles γ:

τ =
1

a
∼ 1

γ
. (4.39)
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Figure 4.14: (l.h.s.) Invariant rate of photons produced from the strongly-interacting
quark-gluon plasma (at temperature T= 200 MeV) consisting of massive broad quasi-
particle quarks and gluons (red solid line). The leading-order pQCD rate (blue dashed
line) from Ref. [173] (AMY-rate) is shown for comparison. (r.h.s.) Incoherent invariant
photon production rate from the strongly-interacting quark-gluon plasma (at temper-
ature T= 190 MeV) consisting of massive broad quasi-particle quarks and gluons (red
solid line) scaled by 8π3/(3T 2) in order to match the electric conductivity for q0 → 0
(cf. (4.43)). The blue dashed line and the magenta dotted line show the coherent
rates for two assumptions on the average time between the collisions τ , i.e. from the
DQPM model (upper, dashed line) and from the AdS/CFT correspondence as a lower
limit (dotted line). The figures are taken from Ref. [22].

The LPM suppression is more pronounced in case of small τ , i.e. for high reaction rates
γ. Thus we expect it to be important for the emission of photons from the strongly-
interacting quark-gluon plasma (sQGP) as created in the early phase of the heavy-ion
collision. Indeed, it was shown in Refs. [28, 64] in the scope of the DQPM that the
average collision time of partons is as short as τ ≈ 2− 3 fm/c for temperatures in the
range T =1−2 Tc, where Tc ≈ 158 MeV is the deconfinement transition temperature.
In comparison, the average time between pion collisions in a thermalized pion gas at
temperatures T < Tc is above 10 fm/c [264, 265].

Let us now quantify the magnitude of the LPM effect on the spectrum of pho-
tons radiated from the QGP as calculated within the PHSD. The coherent photon
production rate - taking into account the LPM effect - differs from the incoherent
cross section by a suppression factor, which generally depends on the photon energy,
temperature and the interaction strength of the constituents. The coherent photon
emission rate has been derived in Ref. [264, 265] for an elastically interacting pion gas
in the soft photon approximation for the photon radiation amplitudes. The authors
of Ref. [264, 265] used the same method for the calculation of the photon emission
over the whole trajectory of the charged particle as adopted in the original work by
Migdal in Ref. [215]. After averaging over the times between collisions τ , assuming an
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exponential distribution,
dW

dτ
= ae−τa, (4.40)

the coherent photon emission rate was found to be

dR

dq3
= N

2α
EM

(2π)2

⟨
v2

(1− cos2Θ)

a2 + q20(1− v cosΘ)2

⟩
, (4.41)

where the brackets < . > stand for an average over the velocities after the scatter-
ing (v, cosΘ), while N is the number of scatterings and αEM ≈ 1/137. A realistic
parametrization of the data was used for the pion elastic scattering cross section (cf.
Section 4.4.1) but the scattering was assumed to be isotropic. We recall that the
incoherent rate is obtained from Eq. (4.41) in the limit a = 0.

An analytical form of the coherence factor was obtained in Ref. [267] in the model
of hard scattering centers, using a quantum mechanical approach to coherently sum
the photon amplitudes from all the scatterings. In the thermal medium the spacial
distribution of the scattering centers is assumed random. Consequently, the function
(4.40) naturally arises in this model for the distribution of times between collisions by
a direct calculation of the two-particle correlation function. The quenching factor in
the dipole limit (q⃗ = 0) was found to be

(G(q0τ))
2 =

(
(q0τ)

2

1 + (q0τ)2

)2

. (4.42)

Although formula (4.42) was obtained in a simple model, it is useful because it cor-
rectly captures the dependence of the LPM suppression on the average strength of the
interaction given solely by the mean-free-time between collisions τ in the assumption
of isotropic collisions.

We recall that the perturbative interaction of quarks and gluons is dominated by
small angle scattering due to the massless particle exchange in the t-channel diagrams.
In this case the coherence factor for the quark system in the limit of small scattering
angles was obtained in Ref. [266]. However, the elastic scattering of dressed quarks in
the PHSD is not dominated by the t → 0 pole as in the perturbative case since the
gluon mass (of order 1 GeV) acts as a regulator in the amplitude. Accordingly, the
angular distribution for quark-quark scattering is closer to an isotropic distribution
for low or moderate

√
s in accordance with the model assumptions of Ref. [267] such

that the expression (4.42) should apply as an estimate of the LPM suppression for the
photon emission within the PHSD.

In Fig. 4.14 (r.h.s.) we show the photon emission rate in a QGP at the tem-
perature T=190 MeV as calculated in the PHSD as an incoherent sum of the photon
emission in quark and gluon scatterings (red solid line) which diverges for q0 → 0. The
blue dashed line gives the same rate with the quenching factor (4.42) applied using
τ(T ) = 1/Γ(T ) ≈ 3.3 fm/c from the DQPM (for T= 190 MeV). We observe that the
suppression – in comparison to the incoherent rate – is visible only for photon energies
q0 < 0.4 GeV. For an estimate of the upper limit on the LPM suppression we employ
the relaxation time approximation for the ratio of the shear viscosity over entropy
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density η/s which gives η/s ≈0.14 at T=190 MeV in the DQPM [15, 16]. The lowest
bound as conjectured within the AdS/CFT correspondence is η/s = 1/(4π) ≈ 0.08. In
the relaxation time approximation this corresponds to a lower value of τ ≈ 1.9 fm/c.
The coherent photon rate in this case is given by the (lowest) magenta dotted line and
even shows a peak in the photon rate for q0 ≈ 0.2 GeV.

In order to further clarify the strength of the LPM suppression of the photon
emission in the sQGP, we use the knowledge of the electric conductivity σ0(T ) of the
sQGP from the DQPM [64] which is roughly in line with more recent results from
lattice QCD (cf. Fig. 6, r.h.s.). We recall that the photon emission rate from a
thermal medium is controlled by σ0 via the relation [268],

σ0
T

=
8π3

3T 2
lim
q0→0

(
q0
dR

d3q

)
, (4.43)

where T is the temperature of the system, q0 is the photon energy and q⃗ is the photon
momentum. Using the number for σ0/T from the PHSD at the temperature of T =
190 MeV from Ref. [64] (or Fig. 6, r.h.s.), we obtain a limiting value for the scaled
photon emission rate of 0.04 for q0 → 0 according to formula (4.43) (green short
dashed line in Fig. 4.14, r.h.s.). The blue dashed line in Fig. 4.14 – the estimate
of the rate based on formula (4.42) and the DQPM average spectral width of the
quarks/antiquarks – indeed approaches the limiting value of 0.04 as given by the
kinetic calculations of the electric conductivity.

Taking into account some uncertainty in the determination of τ and the expression
(4.42), we conclude from Fig. 4.14 (r.h.s.) and analogous calculations at different
temperatures that the LPM effect influences the photon production from the QGP for
photon energies below q0 ≈ 0.4 GeV, but is negligible for higher photon energies. We
note in passing that the suppression of the photon spectrum in the hadronic phase is
much smaller due to the lower interaction rate, i.e. a longer interaction time τ and
thus a lower LPM suppression factor at the same photon energy.

4.4 Cross sections and rates for electromagnetic

emission from the hadronic phase

4.4.1 Bremsstrahlung m + m → m + m + γ beyond the soft-
photon approximation

We briefly sketch the description of the photon bremsstrahlung in meson+meson scat-
tering beyond the soft-photon approximation [269]. Since pions are the dominant
meson species in the heavy-ion collisions [20], we concentrate here on the description
of the bremsstrahlung photon production in pion+pion collisions. In order to calcu-
late the differential cross sections for the photon production in the processes of the
type π + π → π + π + γ we use the one-boson exchange (OBE) model as originally
applied in Ref. [270] to the dilepton bremsstrahlung in pion+pion collisions, later on
in Ref. [271] to the low-energy photon bremsstrahlung in pion+pion and kaon+kaon
collisions. The calculations are based on a covariant microscopic effective theory with
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the interaction Lagrangian,

Lint = gσσ∂µπ⃗∂
µπ⃗ + gρρ⃗

µ · (π⃗ × ∂µπ⃗) + gffµν∂
µπ⃗ · ∂ν π⃗, (4.44)

as suggested in Refs. [171, 270]. Within this model the interaction of pions is described
by the exchange of scalar, vector and tensor resonances: σ, ρ and f2(1270), respectively.
Additionally, form factors are incorporated in the vertices in the t- and u-channels to
account for the composite structure of the mesons and thus to effectively suppress the
high momentum transfers,

hα(k
2) =

m2
α −m2

π

m2
α − k2

, (4.45)

where mα = mσ or mρ or mf is the mass of the exchanged meson and k2 is the
momentum transfer squared.

The cross section for elastic π + π → π + π scattering is given by

dσel(s)

dt
=

|Mel|2

16πs(s− 4m2
π)
, (4.46)

where the matrix element |M |2 is calculated by coherently summing up the Born
diagrams of the σ-, ρ- and f2-meson exchange in t, s and u channels (the u-channel
diagrams are needed only in case of identical pions),

|Mel|2 = |M s(σ)+M t(σ)+Mu(σ) +M s(ρ)

+M t(ρ)+Mu(ρ)+M s(f)+M t(f)+Mu(f)|2. (4.47)

Let us define the four-momenta of the incoming pions as pa = (Ea, p⃗a) and pb =
(Eb, p⃗b), the momenta of the outgoing pions as p1 = (E1, p⃗1) and p2 = (E2, p⃗2) and
the four-momentum of the exchanged resonance (σ, ρ or f2) as k. The propagators of
the massive and broad scalar and vector particles are used to describe the exchange
of the σ and ρ mesons (see e.g. Ref. [270]). The resonance f2 is a spin-2 particle, for
which the full momentum-dependent propagator has been derived in Ref. [272]. The
polarization sum is

Pµναβ =
1

2
(gµαgνβ + gµβgνα − gµνgαβ)− 1

2
(gµα

kνkβ
m2

f

+ gµβ
kνkα
m2

f

+ gνα
kµkβ
m2

f

+ gνβ
kµkα
m2

f

)

+
2

3
(
1

2
gµν +

kµkν
m2

f

)(
1

2
gαβ +

kαkβ
m2

f

). (4.48)

Following the example of the dilepton production study in Ref. [270], we use the same
propagator for the f2 resonance while additionally accounting for its finite width by
adding an imaginary part to the self-energy in accordance with its lifetime.

As a result, the following expressions are obtained for the matrix elements in case
of elastic π+π scattering diagrams (we give here explicitly the t- and s-channel results,
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the u-channels can be easily obtained by the crossing relations):

M t(σ) =
−g2σh2σ(t) (2m2

π − t)
2

t−m2
σ + imσΓσ

, M s(σ) =
−g2σ (s− 2m2

π)
2

s−m2
σ + imσΓσ

,

M t(ρ) =
−g2ρh2ρ(t) (s− u)2

t−m2
ρ + imρΓρ

, M s(ρ) =
g2ρ (u− t)2

s−m2
ρ + imρΓρ

, (4.49)

M t(f) =
g2fh

2
f (t)

t−m2
f + imfΓf

1

2

(
2

3
(2m2

π − t)2 − (s− 2m2
π)

2 − (2mπ2 − u)2
)
,

M s(f) =
g2f

s−m2
f + imfΓf

1

2

(
2

3
(s− 2m2

π)
2 − (2m2

π − t)2 − (2mπ2 − u)2
)
,

where the Mandelstamm variables are defined as s = (pa + pb)
2 = (p1 + pb)

2, t =
(pa − p1)

2 = (pb − p2)
2, u = (pa − p2)

2 = (pb − p1)
2. We point out that the formulae

(4.49) are compact, because the masses of all pions were assumed to be equal tomπ and
the energy-momentum conservation pa+ pb = p1+ p2 has been used. These conditions
are not satisfied for the off-shell π+ π → π+ π subprocess, which we encounter in the
subsequent calculation of the bremsstrahlung photon production π + π → π + π + γ.
For the actual calculation we obtained the off-shell generalizations M(pa, pb, p1, p2) of
the formulae (4.49), which are too lengthy to be presented here explicitly.

A reduced version of the model with the exchange of only two resonances – the
scalar σ and the vector ρ meson – was used by the authors of Ref. [271] to calculate
the rate of the photon production from the π+π → π+π+γ process at low transverse
momenta of the photons (pT < 0.4 GeV). This approximation is suitable at low pT
because the photon rate in this kinematical region is dominated by pion collisions of
low center-of-mass energy

√
s, for which the contribution of the f2-exchange is small.

However, relatively high transverse momenta of photons pT = 1−2 GeV are of interest
for our goal of clarifying the “puzzling” high elliptic flow of direct photons. Therefore,
we use the OBE model with three mesons as interaction carriers (including the tensor
particle f2(1270)) in the PHSD calculations.

Phenomenological coupling constants, masses and widths of the three interaction-
carriers – entering the Lagrangian (4.44) – have to be fixed to the integrated energy-
dependent cross section for pion+pion elastic scattering σel(

√
s), which is known ex-

perimentally as a function of
√
s). We present in Fig. 4.15 (l.h.s.) the integrated cross

section for π+ π elastic scattering in two versions of the OBE model described above:
taking into account the 2 resonances σ, ρ (dashed blue line) and taking into account the
3 resonances σ, ρ and f2 (solid red line). Fitting the parameters of both variants of the
OBE model (with two- or three-resonance exchange) to the data from Refs. [273, 274]
we find the best-fit parameters: gσmσ = 2.0, mσ = 0.525 GeV, Γσ = 0.100 GeV,
gρ = 6.15, mρ = 0.775 GeV, Γρ = 0.15 GeV, gfmf = 8.0, mf = 1.274 GeV,
Γf = 0.18 GeV. The values of the masses and widths suggest an identification of
the ρ-resonance to the ρ-meson and of the particle f2 to the f2(1270) in the particle
data book [165]. One sees in Fig. 4.15 (l.h.s.) that the tensor particle f2 is important
for the description of the pion interaction at higher collision energies

√
s > 1 GeV.
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Figure 4.15: (l.h.s.) Cross section for pion+pion elastic scattering within the OBE
effective models in comparison to the experimental data from Refs. [273, 274]: the
exchange of two mesonic resonances, scalar σ and vector ρ (blue dashed line), and the
exchange of three resonances σ, ρ and the tensor resonance f2(1270) of the particle
data booklet [165] (red solid line). The green dashed line shows the constant and
isotropic σel = 10 mb for orientation. (r.h.s.) Cross section for the production of a
photon with energy q0 = 0.005 GeV in the process π + π− > π + π + γ within the
following models: the exact OBE cross section within the effective model taking into
account scalar, vector and tensor interactions via the exchange of σ, ρ and f2(1270)-
mesons (red line with star symbols), the soft photon approximation to this model (blue
dotted line); the OBE result within the model taking into account only the scalar and
vector interactions via the exchange of σ and ρ mesons (blue dashed line), and the
soft photon approximation to this model (cyan dash-dot-dotted line). The figures are
taken from Ref. [22].

Neglecting the contribution of the f2 leads to an underestimation of the π + π elastic
scattering cross section by an order of magnitude around

√
s = 1.2 − 1.3 GeV. Later

data on the π + π interaction at
√
s above 1 GeV – extracted in Ref. [275] from the

measurement of the K + p→ Λ+ π+ π reaction – also point to the importance of the
tensor interaction in the resonance region of the f2(1270).

Within the OBE model for the covariant interactions of pions (described above), we
can also calculate the emission of photons from the colliding pions by gauge coupling
to the external hadron lines. The Feynman diagrams for the photon production in the
process π+π → π+π+γ are shown in Fig. 4.16. For identical pions, e.g. π++π+, the
u-channel diagrams have to be added, which are obtained from the t-channel diagrams
by exchanging the outgoing pions. The applicability of this method is not limited to
low photon energies but is restricted only by the applicability of the effective model
to the description of the pion-pion (elastic) scattering.

Let us again denote the four-momenta of the incoming pions by pa and pb, the
momenta of the outgoing pions by p1 and p2, and the photon momentum by q = (q0, q⃗).
The cross section for photon production in the process

π(pa) + π(pb) → π(p1) + π(p2) + γ(q) (4.50)
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then is given by

dσγ =
1

2
√
s(s− 4m2

π)
|M(γ)|2dR3, (4.51)

where dR3 is the three-particle phase space, which depends on the momenta of the
outgoing pions and of the photon,

dR3 =
d3p1

(2π)32E1

d3p2
(2π)32E2

d3q

(2π)32q0
(2π)4δ4 (pa + pb − p1 − p2 − q) . (4.52)

The cross section (4.51) will be integrated over the final pion momenta to obtain the
differential photon spectrum dσ/d3q. The δ-function allows to perform four integra-
tions analytically and the remaining two are done numerically.

The matrix element M in (4.51) is a coherent sum of the diagrams presented in
Fig. 4.16 – i.e. of the photon attached to each pion line πa, πb, π1 and π2 – and of
contact terms, which account for the emission from the vertices and the internal lines:

|M(γ)|2 =M∗
µ(γ)M

µ(γ) = |Mµ
a +Mµ

b +Mµ
1 +Mµ

2 +Mµ
c |

2 . (4.53)

The complex matrix elements for the photon emission from each of the pion lines Mµ
i

are calculated as sums of the three meson exchanges (σ, ρ, f2). For instance:

Mµ
1 = eJµ

1

[
M s

el(pa, pb, p1 + q, p2) +M t
el(pa, pb, p1 + q, p2) +Mu

el(pa, pb, p1 + q, p2)
]
(4.54)

with

Jµ
a,b = −Qa,b

(2pa,b − q)µ

2pa,b · q
, Jµ

1,2 = Q1,2
(2p1,2 − q)µ

2p1,2 · q
, (4.55)

where Qi are the charges of the pions in terms of the electron charge e. The matrix
elements for the pion elastic subprocess Mel(pa, pb, p1 + q, p2) are the off-shell general-
izations of the formulae (4.49).

The contact term Mµ
c is taken from Ref. [271], Eq. (14), where it was derived

by demanding the gauge invariance of the resulting cross section. Indeed, the gauge
invariance of the result has to be restored [276] in calculations within effective models.
In the present work, we have used the contact terms in order to cancel the gauge-
dependent parts in the matrix element as in Ref. [271]. Alternatively, one can take
into account additional diagrams with the emission of photons from the internal lines
(see Refs [270]) but this method does not always eliminate the need for contact terms
(see Ref. [276]). We have verified that qµM

µ(γ) = 0 in our calculations and thus the
resulting cross sections are gauge invariant.

The soft photon approximation is based on the first-order expansion in the Low
theorem [269] and is valid at low photon energy and low

√
smm of the meson+meson

collision, as has been studied in detail for the production of dileptons in Ref. [270]. In
this case the strong interaction part and the electromagnetic part can be separated,
i.e. the soft-photon cross section for the reaction m1 + m2 → m1 + m2 + γ can be
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Figure 4.16: Feynman diagrams for photon production in the reaction π+π → π+π+γ
in the one-boson exchange (OBE) model. The time goes from left to right. For identical
pions, e.g. π+ + π+, the u-channel diagrams have to be added.

written as

q0
dσγ(s)

d3q
=
α

EM

4π2

0∫
−λ(s,m2

a,m
2
b)/s

|ϵ · J(q, t)|2dσel(s)
dt

dt, (4.56)

where α
EM

is the fine structure constant, t is the momentum transfer squared in the
π + π → π + π subprocess and ϵ is the photon polarization. In (4.56) Jµ is the
electromagnetic current

Jµ = −Qa
pµa

(pa · q)
−Qb

pµb
(pb · q)

+Q1
pµ1

(p1 · q)
+Q2

pµ2
(p2 · q)

.

The polarization sum

|ϵ · J |2 =

{∑
pol λ

J · ϵλJ · ϵλ

}
(4.57)

depends on the photon momentum q, the charges of the pions Qi as well as on the
invariant kinematic variables, including t. For the case of equal-mass particle scattering
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(ma = mb = m1 = m2 = mπ) one obtains [171]:

|ϵ · J |2 =
1

q20

{
−(Q2

a +Q2
b +Q2

1 +Q2
2)− 2(QaQb+Q1Q2)

s− 2m2
π√

s(s− 4m2
π)

× ln

(√
s+

√
s− 4m2

π√
s−

√
s− 4m2

π

)

+2(QaQ1+QbQ2)
2m2

π − t√
t(t− 4m2

π)
ln

(√
−t+ 4m2

π +
√
−t√

−t+ 4m2
π −

√
−t

)

+2(QaQ2+QbQ3)
s− 2m2

π + t√
(s+ t)(s+ t− 4m2

π)
ln

(√
s+ t+

√
s+ t− 4m2

π√
s+ t−

√
s+ t− 4m2

π

)}
. (4.58)

In Eq. (4.56), dσel(s)/dt is the on-shell differential elastic π + π cross section, which
is a function of the invariant energy

√
s and the pion scattering angle via the four-

momentum transfer squared t.

The expression (4.56) is considerably simpler in comparison to the “full” OBE
formula (4.51) due to the factorization of the diagrams from Fig. 4.16 into an electro-
magnetic part and an elastic π+ π → π+ π subprocess, for the cross section of which
the photon q-dependence is omitted. This corresponds to neglecting the off-shellness
of the pion emitting the photon, e.g. for the pion a:

pa − q ≈ pa. (4.59)

Consequently, the sub-process invariant energy
√
s2 is also approximated by the total

invariant energy
√
s of the process π + π → π + π + γ:

s2 ≡ (pa + pb − q)2 ≈ (pa + pb)
2 = s, (4.60)

and the limits of integration over t are also taken as for the on-shell case, i.e. from
−λ(s,m2

a,m
2
b)/s to 0, while the actual integration over the full 3-particle phase space

R3 in the exact treatment (4.51) involves different limits for t.

In Fig. 4.15 (r.h.s.) we show the resulting cross sections for the photon production
in the process π + π → π + π + γ within the following models: the “full” OBE
taking into account scalar, vector and tensor interactions via the exchange of σ, ρ and
f2(1270)-mesons (red line with star symbols), the soft photon approximation (4.56) to
this model (blue dotted line); the OBE result employing only the scalar and vector
interactions via the exchange of σ and ρ mesons (blue dashed line), and the soft photon
approximation to this model (cyan dash-dot-dotted line). For the very low energy of
the photon of q0 = 5 MeV the SPA agrees with the “exact” cross section very well
in the region of

√
s < 0.9 GeV (see Fig. 4.15, r.h.s.). However, the discrepancy to

the OBE result is increasing rapidly with growing
√
s; the calculations for the higher

photon energy of q0 = 0.5 GeV show an even larger discrepancy between the SPA and
the exact OBE result (cf. Ref. [22]).

Using the cross section for the π+π → π+π+γ reaction according to Eq. (4.56) as a
function of the photon energy q0 and the collision energy

√
s, the yield dN/d3q and the
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Figure 4.17: (l.h.s.) Invariant rate of the bremsstrahlung-photon production from an
equilibrated pion gas at a temperature of T = 200 MeV and pion chemical potential
µπ = 0 as calculated in the OBE model with three resonance exchange within the
soft-photon approximation (red dashed line). The black solid line from Ref. [277] is
shown for comparison and validation of our calculations. (r.h.s.) Invariant rate of
bremsstrahlung photons produced from an equilibrated pion gas at T = 150 MeV and
µπ = 40 MeV versus the photon energy q0. The in-let shows the same quantity for the
range of photon energies q0 = 0.1 − 0.4 GeV. The calculations have been performed
within the following models: (1) OBE model beyond the soft-photon approximation
(red solid line with star symbols); (2) OBEmodel within the soft photon approximation
(blue dotted line); (3) OBE model within the improved soft photon approximation
(black short-dashed line) – the invariant energy

√
s2 of the on-shell π + π elastic

process is not equal to the total invariant energy of the process
√
s: s2 = s − q0

√
s;

(4) the soft photon approximation with the constant isotropic elastic cross section of
σel = 10. The cyan solid line from Liu and Rapp [271] is shown for comparison. The
figures are taken from Ref. [22].
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invariant rate q0dR/d
3q for bremsstrahlung photon production from an equilibrated

pion gas can be evaluated in a straight forward manner. Within kinetic theory, the
rate of photon production in the collisions of particles a and b in a thermalized medium
(number of photons produced per unit space-time volume d4x) is an integral over the
three-momenta of the incoming particles (in the classical limit):

q0
dN

dx4d3q
= g

∫
ds

∫
d3pa
(2π)3

∫
d3pb
(2π)3

e−(Ea+Eb)/T vrel q0
dσγ

d3q
δ(s− (pa + pb)

2), (4.61)

where T is the temperature, vrel is the relative velocity given by

vrel =

√
(pa · pb)2 −m2

am
2
b

EaEb

, (4.62)

and g = (2sa + 1)(2sb + 1) is the spin degeneracy factor. Integrating the expression
(4.61) over the particle momenta one obtains [171]:

q0
dN

d4xd3q
=

T 6g

16π4

∞∫
zmin

dz
λ(z2T 2,m2

a,m
2
b)

T 4
K1(z)q0

dσγ

d3q
, (4.63)

where zmin = (ma +mb)/T , z =
√
s/T , and K1(z) is the modified Bessel function.

The expression (4.61) can be generalized to account for quantum effects such as
Bose enhancement or Pauli blocking (depending on the particle type) by integrating
additionally over the momenta of the final particles and changing the Boltzmann
distributions to Fermi or Bose distribution functions fi(T ):

q0
dN

dx4d3q
= g

∫
ds

∫
d3pa
(2π)3

∫
d3pb
(2π)3

∫
d3p1
(2π)3

∫
d3p1
(2π)3

fa(T )fb(T )(1± f1(T ))(1± f2(T ))

×vrel q0
dσγ

d3q
δ(s−(pa + pb)

2),(4.64)

where the (-) sign has to be used in case of fermions. In the current section we calculate
the thermal rates according to formula (4.61). However, within the PHSD transport
approach for the heavy-ion collisions in Section 6 the effects of the quantum statistics
will be taken into account (although of subleading importance).

In Fig. 4.17 (l.h.s.) the rates are presented for a temperature T = 200 MeV and
pion chemical potential µπ = 0 for the OBE model with three resonance exchanges
adopting the soft-photon approximation (red dashed line). We confirm the results
from Haglin [277] (black solid line) calculated within the same assumptions (SPA,
three resonances) but with a slightly different parameter set of the Lagrangian. It is,
however, questionable that the SPA is applicable at high photon energies.

We note that the accuracy of the SPA approximation can be significantly improved
and the region of its applicability can be extended by slightly modifying the formula
(4.56) – i.e. by evaluating the on-shell elastic cross section at the invariant energy

√
s2
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of the sub-process. The latter is kinematically fixed to

s2 = s− q0
√
s ̸= s. (4.65)

Thus the modified SPA formula is

q0
dσγ(s)

d3q
=
α

EM

4π

0∫
−λ(s2,m2

a,m
2
b)/s2

|ϵ · J(q, t)|2dσel(s2)
dt

dt. (4.66)

In the following, we will denote the approximation (4.66) as “improved SPA” and will
show below that it provides a fairly good description of the exact photon production
rates.

It is instructive to compare the photon production rates beyond the soft photon
approximation for the π + π → π + π + γ reaction to the rates from the exact OBE
expression (4.51). We present the calculated invariant rate q0dR/dq

3 of bremsstrahlung
photons produced from an equilibrated pion gas at T = 150 MeV and µπ = 40 MeV
in Fig. 4.17 (r.h.s.). The results of the following models are compared:

• model 1 (red solid line): exact rates within the one-boson exchange model (OBE)
beyond the soft-photon approximation – i.e. using the formula (4.51) for the
photon production cross section q0 dσ

γ/d3q;

• model 2 (blue dotted line): result within the soft photon approximation – i.e.
using the formula (4.56) – while using the elastic π + π cross section calculated
within the OBE model as given by equations (4.46)-(4.49);

• model 3 (black short-dashed line): results of the improved soft photon approx-
imation – i.e. using the formula (4.66) in stead of (4.56) – and the same pion
elastic scattering cross section as in the model 2;

• model 4 (upper green dashed line): soft photon approximation using a constant
isotropic elastic cross section of σel = 10 mb and assuming for the pion charges
Qa = Q1 = 1, Qb = Q2 = 0. In this case the elastic cross section does not
depend on

√
s and thus there is no difference between the SPA and improved

SPA.

The rate of bremsstrahlung photons at low transverse momenta pT < 0.4 GeV has been
calculated before by Liu and Rapp in Ref. [271] within the one-boson exchange model
with the exchange of two resonances for the same system. This previous result is shown
for comparison by the cyan dashed line and is confirmed by our present calculations.
The agreement is expected, since our calculations differ only in the inclusion of the
f2-meson exchange, which is important for larger

√
s and does not play an important

role for the production of low transverse momentum photons, which is dominated by
low

√
s of the π + π collisions.

On the other hand, the SPA (model 2) deviates from the exact OBE result (model
1) even at low q0 because the former directly follows the

√
s dependence of the elastic

π − π cross section. Since the formula (4.56) does not account for the off-shellness of
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the emitting pion, it overestimates the high-
√
s regime of the elastic cross section in

line with the findings of Refs. [171, 270]. We note that the OBE model presented here
is constrained by the pion scattering data only up to

√
sππ = 1.4 GeV and generally

cannot be extended to larger
√
s. Thus the SPA scenario ”model 2” is not reliable for

large q0 (approximately for q0 > 0.8 GeV). This is not the case for the improved SPA
(model 3).

One can see in Fig. 4.17 (r.h.s.) that the improved SPA (4.66) gives a very good
approximation to the exact result at higher photon energies of up to q0 ≈ 2 GeV. This
is because the

√
s2 of the subprocess is always below

√
s, and the OBE model for the

elastic cross section is sufficiently realistic in this region of
√
s2. In comparison, the

constant cross-section approximation overestimates the exact rates for q0 > 1 GeV
and underestimates for q0 < 0.4 GeV. This model corresponds to the approximation
used previously in the transport calculations in Refs. [20, 21, 174] for an estimate of
the photon bremsstrahlung in meson+meson collisions. In the following we will report
on results based on the exact OBE cross section dσγ/d3q for π + π bremsstrahlung.
The bremsstrahlung photon production in collisions of other meson types is treated in
analogy to the π + π collisions by means of mass-scaled cross sections.

We note that another important source of photons is the bremsstrahlung in me-
son+ baryon collisions. As we have shown above, the SPA gives a good approximation
to the exact rates, if we use the correct invariant energy in the hadronic subprocess
s2 = s− q0

√
s and a realistic model for the differential cross section of the subprocess,

i.e. for the elastic scattering of mesons on baryons. The cross sections for the me-
son+baryon elastic scatterings (implemented within the PHSD transport approach)
have been previously adjusted to the data differentially in energy and angular distri-
bution. Thus we evaluate the photon production in the processes m+B → m+B+γ
in the PHSD by using realistic elastic scattering cross sections taken at the correct
invariant energy

√
s2 in the scope of the improved SPA.

4.4.2 Binary meson+meson and meson+nucleon reactions

We calculate the cross sections for the processes ππ → ργ, πρ→ πγ as in Ref. [174], i.e.
the total cross section σππ→ργ(s, ρN) is obtained by folding the vacuum cross section
σ0
ππ→ργ(s,M) with the (in-medium) spectral function of the ρ meson:

σππ→ργ(s, ρN) =

Mmax∫
Mmin

dM σ0
ππ→ργ(s,M) A(M,ρN) P (s). (4.67)

Here A(M,ρN) denotes the meson spectral function for given total width Γ∗
V :

AV (M,ρN) = C1
2

π

M2 Γ∗
V (M,ρN)

(M2 −M∗2
0 (ρN))2 + (MΓ∗

V (M,ρN))2
, (4.68)

with the normalization condition for any ρN ,
∫Mlim

Mmin
AV (M,ρN) dM = 1, whereMlim =

2 GeV is chosen as an upper limit for the numerical integration while the lower limit
of the vacuum ρ spectral function corresponds to the 2π decay threshold Mmin = 2mπ
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in vacuum and 2me in medium. M∗
0 is the pole mass of the vector meson spectral

function which is M∗
0 (ρN = 0) = M0 in vacuum, however, might be shifted in the

medium (e.g. for the dropping mass scenario). Furthermore, the vector meson width
is the sum of the vacuum total decay width and collisional width:

Γ∗
V (M,ρN) = ΓV (M) + Γcoll(M,ρN). (4.69)

In Eq. (4.67) the function P (S) accounts for the fraction of the available part of the
full spectral function A(M,ρN) at given energy

√
s, integrated over the mass M up to

Mmax =
√
s, with respect to the total phase space.

The cross section σ0
ππ→ργ(s,M) is taken in line with the model by Kapusta et al.

[187] with the ρ-meson mass considered as a dynamical variable, i.e mρ →M :

dσ

dt

(
π±π0 → ρ±γ

)
=

−
αg2ρ

16sp2CM

[
(s− 2M2)(t−m2

π)
2

M2(s−M2)2
+
m2

π

M2
− 9

2
+

(s− 6M2)(t−m2
π)

M2(s−M2)

+
4(M2 − 4m2

π)s

(s−M2)2
+
4(M2 − 4m2

π)

t−m2
π

(
s

s−M2
+

m2
π

t−m2
π

)]
. (4.70)

The photon production in the π+ρ interaction is calculated analogously (cf. Ref. [174]
for details).

We recall that the PHSD and HSD are off-shell transport approaches and thus
allow to study the effect of the modification of the vector-meson spectral functions
in the medium. In particular the photon production in secondary meson interac-
tions is sensitive to the properties of the vector mesons at finite density and tempera-
ture [174, 181, 278]. In this respect, we stress here that the yields and the in-medium
spectral functions of vector mesons in PHSD have been independently constrained by
the comparison to the data on dilepton mass-spectra (see Refs. [180, 204, 279] and
Chapter 7, respectively).

We have incorporated into the PHSD approach additionally the 2 → 2 processes
V + N → N + γ, where V stands for a vector meson while N denotes a proton or
neutron [22]. These processes are the baryonic counterparts to the mesonic 2 → 2
reactions π + ρ/π → γ + π/ρ. We consider the interaction of nucleons with the
mesons V = ρ, ϕ, ω, taking into account the various possible charge combinations,
e.g. ρ0 + p → γ + p, ρ− + p → γ + n, ρ+ + n → γ + p, etc. In order to evaluate the
probabilities for photon production in the collisions of vector mesons with nucleons, we
use the inverse photoproduction processes γ +N → ρ+N , γ +N → ϕ+N , γ +N →
ω+N (controlled by data) and employ detailed balance to obtain the differential cross
sections for the processes ρ+N → γ +N , ϕ+N → γ +N , ω +N → γ +N , i.e.

σ(NV → γN) =
gγ
gV

p∗2Nγ

p∗2NV

σ(γN → NV ), (4.71)

where gγ = 2 and gV = 3 are the spin degeneracy factors of the photon and the vector
meson V . In Eq. (4.71) p∗Nγ is the center-of-mass momentum in the N +γ system and
p∗NV is the center-of-mass momentum in the N + V system.
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The cross sections for the exclusive photo-production of ρ, ϕ and ω vector mesons
on the nucleon have been measured by the Aachen-Berlin-Bonn-Hamburg-Heidelberg-
Munich (ABBHHM) Collaboration and published in Ref. [280]. In the same work also
parametrizations for these cross section have been given that are based on the vector-
meson-dominance model with a non-relativistic Breit-Wigner (BW) spectral function
for the ρ-meson. Later, the fits have been updated in Ref. [281] using relativistic BW
spectral functions for ρ, ω and ϕ mesons. The total cross sections – fitted in Ref. [281]
to the data from Ref. [280] – are given by

σ(γN → V N) =
1

p∗Nγs

∫
dµ|MV |2p∗NVAV (µ), (4.72)

where the mass µ of the vector meson is distributed according to the spectral function
AV (µ):

AV (µ) =
2

π

µ2Γ(µ)

(µ2 −M2
i )

2 + µ2Γ2(µ)
, (4.73)

with Mi denoting the pole mass of the meson. The matrix elements for the reactions
γ +N → V +N are parametrized as

|Mρ|2 = 0.16 mb GeV2,

|Mω|2 =
0.08 p∗2V N

2(
√
s− 1.73 GeV)2 + p∗2V N

mb GeV2,

|Mϕ|2 = 0.004 mb GeV2. (4.74)

The cross sections (4.72) with the parameters (4.74) are consistent with the dynamics
of vector mesons in the PHSD/HSD, where also relativistic BW spectral functions for
vector mesons are used and propagated off-shell.

For the angular distribution of the ρ-meson production in the process γ + N →
N + ρ, we follow the suggestion of Ref. [281],

dσ

dt
∼ exp(Bt), (4.75)

with the photon-energy dependent parameter B (fitted to the data): B = 5.7 for
q0 ≤ 1.8 GeV, B = 5.43 for 1.8 < q0 ≤ 2.5 GeV, B = 6.92 for 2.5 < q0 ≤ 3.5 GeV,
B = 8.1 for 3.5 < q0 ≤ 4.5 GeV, B = 7.9 for q0 > 4.5 GeV. The data in Ref. [281]
have shown that the cross section is dominated by the t ≈ 0 region in line with the
vector dominance model (VDM) where the process γ + N → V + N is described by
the incident photon coupling to the vector meson of helicity ±1, which consequently
is scattered elastically by the nucleon.

4.4.3 Vector-meson spectral functions

In order to explore the influence of in-medium effects on the vector-meson spectral
functions we incorporate the effect of collisional broadening (as in Refs. [282–284]),
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i.e. the vector meson width has been implemented as:

Γ∗
V (M, |p⃗|, ρN) = ΓV (M) + Γcoll(M, |p⃗|, ρN). (4.76)

Here ΓV (M) is the total width of the vector mesons (V = ρ, ω) in the vacuum. For
the ρ meson we use

Γρ(M) ≃ Γρ→ππ(M) = Γ0

(
M0

M

)2(
q

q0

)3

F (M), (4.77)

q =
(M2 − 4m2

π)
1/2

2
, q0 =

(M2
0 − 4m2

π)
1/2

2
.

In Eqs. (4.77) M0 is the vacuum pole mass of the vector meson spectral function,
F (M) is a formfactor taken from Ref. [285] as

F (M) =

(
2Λ2 +M2

0

2Λ2 +M2

)2

(4.78)

with a cut-off parameter Λ = 3.1 GeV. This formfactor was introduced in Ref. [285] in
order to describe the e+e− experimental data with better accuracy. For the ω meson a
constant total vacuum width is used: Γω ≡ Γω(M0), since the ω is a narrow resonance
in vacuum.

The collisional width in Eq. (4.76) is approximated as

Γcoll(M, |p⃗|, ρN) = γ ρN < v σtot
V N >≈ αcoll

ρN
ρ0
.. (4.79)

Here v = |p⃗|/E; p⃗, E are the velocity, 3-momentum and energy of the vector meson
in the rest frame of the nucleon current and γ2 = 1/(1− v2). Furthermore, ρN is the
nuclear density and σtot

V N the meson-nucleon total cross section. The parameter αcoll is
determined dynamically within the transport calculation by recording the ρ collision
rate as a function of the baryon density ρN .

In order to explore the observable consequences of vector-meson mass shifts at finite
nuclear density – as suggested by the CBELSA-TAPS data [286] for the ω meson –
the in-medium vector meson pole masses are modeled (optionally) according to the
Hatsuda and Lee [287] or Brown/Rho scaling [288, 289] as

M∗
0 (ρN) =

M0

(1 + αρN/ρ0)
, (4.80)

where ρN is the nuclear density at the resonance decay position r⃗; ρ0 = 0.16 fm−3 is
the normal nuclear density and α ≃ 0.16 for the ρ and α ≃ 0.12 for the ω meson [290].
The parametrization (4.80) may be employed also at much higher collision energies
(e.g. FAIR and SPS) and one does not have to introduce a cut-off density in order to
avoid negative pole masses. Note that the effective mass (4.80) is uniquely fixed by
the ’customary’ expression M∗

0 (ρN) ≈M0(1− αρN/ρ0) in the low density regime.

The resulting spectral functions for the ρ and ω meson are displayed in Fig. 4.18
for the case of ’collisional broadening’ (upper part) as well as for the ’dropping mass
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Figure 4.18: The spectral functions for the ρ and ω meson in the case of the ’collisional
broadening’ scenario (upper part) and the ’dropping mass + collisional broadening’
scenario (lower part) for nuclear densities of 0,1,2,3,5×ρ0 as employed in the transport
calculations (see text for details). The figures are taken from Ref. [291].

+ collisional broadening’ scenario (lower part) for densities of 0,1,2,3,5 ×ρ0. Note
that in vacuum the hadronic widths vanish for the ρ below the two-pion mass and
for the ω below the three-pion mass. With increasing nuclear density ρN elastic and
inleastic interactions of the vector mesons shift strength to low invariant masses. In the
’collisional broadening’ scenario we find a dominant enhancement of strength below the
pole mass for the ρ meson while the ω meson spectral function is drastically enhanced
in the low- and high-mass region with density (on expense of the pole-mass regime). In
the ’dropping mass + collisional broadening’ scenario both vector mesons dominantly
show a shift of strength to low invariant masses with increasing ρN . Qualitatively
similar pictures are obtained for the ϕ meson but quantitatively smaller effects are
seen due to the lower effect of mass shifts and a substantially reduced ϕN cross section
which is a consequence of the ss̄ substructure of the ϕ meson. Since the ϕ dynamics
turn out to be of minor importance for the dilepton spectra to be discussed below we
discard an explicit representation. The ’family’ of spectral functions shown in Fig.
4.18 allows for a sufficient flexibility with respect to the possible scenarios outlined
above. A comparison to dilepton data is expected to provide further constraints on
the possible realizations.
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Figure 4.19: Time evolution of the mass distribution of ρ (upper part) and ω (lower
part) mesons for central C+C collisions (b=1 fm) at 2 A GeV for the dropping mass +
collisional broadening scenario. The l.h.s. of Fig. 4.19 correspond to the calculations
with on-shell dynamics whereas the r.h.s. show the off-shell results. The figures are
taken from Ref. [291].

4.5 Off-shell propagation

The propagation of broad resonances in the off-shell transport approach has been
described in Section 2.7 above. In order to demonstrate the importance of off-shell
transport dynamics we present in Fig. 4.19 the time evolution of the mass distribution
of ρ (upper part) and ω (lower part) mesons for central C+C collisions (b=1 fm) at 2
A GeV for the dropping mass + collisional broadening scenario (as an example). The
l.h.s. of Fig. 4.19 corresponds to the calculations with on-shell propagation whereas
the r.h.s. show the results for the off-shell dynamics. As seen from Fig. 4.19 the
initial ρ and ω mass distributions are quite broad even for a small system such as
C +C where, however, the baryon density at 2 A GeV may reach (in some local cells)
up to 2ρ0. The number of vector mesons decreases with time due to their decays
and the absorption by baryons (ρN → πN or ρN → ππN). Most of the ρ mesons
decay/disappear already inside the “fireball” for density ρN > 0. Due to the “fireball”
expansion the baryon density drops quite fast, so some amount of ρ (and ω) mesons
reach the very low density zone or even the ’vacuum’. Since for the off-shell case (r.h.s.
of Fig. 4.19) the ρ and ω spectral functions change dynamically by propagation in
the dense medium according to Eqs. (2.85) and (2.86) they regain the vacuum shape
for ρN → 0. This does not happen for the on-shell treatment (l.h.s. of Fig. 4.19);
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the ρ spectral function does not change its shape by propagation but only by explicit
collisions with other particles. Indeed, there is a number of ρ’s which survive the decay
or absorption and leave the “fireball” with masses below 2mπ.

Accordingly, the approximate on-shell propagation leads to the appearance of ρ
mesons in the vacuum with M ≤ 2mπ, which can not decay to two pions; thus they
live practically ’forever’ since the probability to decay to other channels is very small.
Indeed, such ρ’s will continuously shine low mass dileptons which leads to an apparent
’enhancement/divergence’ of the dilepton yield at low masses (note, that the dilepton
yield is additionally enhanced by a factor ∼ 1/M3). The same statements are valid
for the ω mesons (cf. lower part of Fig. 4.19): since the ω meson is a long living
resonance, a larger amount of ω’s survives with an in-medium like spectral function
in the vacuum (in case of on-shell dynamics). Such ω’s with M < 3mπ can decay
only to πγ or electromagnetically (if M < mπ). Since such phenomena appearing
in on-shell transport descriptions (including an explicit vector-meson propagation)
contradict basic physical principles, an off-shell treatment is mandatory.

4.6 Time integration method

Since the dilepton production is a very rare process (e.g. the branching ratio for
the vector meson decay is ∼ 10−5), a perturbative method is used in the transport
calculation in order to increase statistics. In the PHSD approach (in this report as
well as in earlier investigations [180, 185, 204, 291–293]) we use the time integration
(or ’shining’) method first introduced by Li and Ko in Ref. [294]. The main idea of
this method is that dileptons can be emitted during the full lifetime of the resonance
R before its strong decay into hadrons or absorption by the surrounding medium.
For example, the ρ0 decay (with invariant mass M) to e+e− during the propagation
through the medium from the production time t = 0 up to the final (“death”) time
tF – which might correspond to an absorption by baryons or to reactions with other
hadrons as well as the strong decay into two pions – is calculated as

dNρ→e+e−

dM
=

tF∑
t=0

Γρ0→e+e−(M) · ∆t

γ(~c)
· 1

∆M
(4.81)

in the mass bin ∆M and time step ∆t (in fm/c). In (4.81) γ is the Lorentz factor of
the ρ-meson with respect to the calculational frame. The electromagnetic decay width
is defined as

Γρ0→e+e−(M) = Cρ
M∗

0
4

M3
, (4.82)

where Cρ = Γρ→e+e−(M0)/M0. HereM0 is the vacuum pole mass,M∗
0 is the in-medium

pole mass which is equal to the vacuum pole mass for the collisional broadening sce-
nario, however, is shifted for the dropping mass scenario according to Eq. (4.80). The
time integration method allows to account for the full in-medium dynamics of vector
mesons from production (“birth”) up to their “death”. In case of the ρ propagation
in the vacuum only the 2 pion-decay channel contributes and the default results are
regained after time integration.



Chapter 5

Comparison of our calculations to
data on dilepton production in
heavy-ion collisions

5.1 SPS energies

We compare calculation results with experimental data for dileptons from In+In col-
lisions at 160 A GeV measured by the NA60 Collaboration. In Fig. 5.1 we present
PHSD results for the dilepton excess over the known hadronic sources as produced in
In+In reactions at 158 A GeV compared to the acceptance corrected data. We find
here that the spectrum at invariant masses in the vicinity of the ρ-meson peak is well
reproduced by the ρ meson yield, if a broadening of the meson spectral function in the
medium is assumed, while the partonic sources account for the yield at high masses.
Our analysis shows that the contributions of the “4π” processes (shown by the lines
with symbols) – as first noted by the authors of Ref. [181] – are very much suppressed.

One concludes from Fig. 5.1 that the measured spectrum for M > 1 GeV is domi-
nated by the partonic sources. Indeed, the dominance of the radiation from the QGP
over the hadronic sources in PHSD is related to a rather long – of the order or 3
fm/c – evolution in the partonic phase (in co-existence with the space-time separated
hadronic phase) on one hand (cf. Fig. 10 of Ref. [24]) and the rather high initial energy
densities created in the collision on the other hand (cf. Fig. 6 of Ref. [107]). In addi-
tion, we find from Fig. 5.1 that in PHSD the partonic sources also have a considerable
contribution to the dilepton yield for M < 0.6 GeV. The yield from the two-to-two
process q+ q̄ → g+ l+l− is especially important close to the threshold (≈ 0.211 GeV).
This conclusion from the microscopic calculation is in qualitative agreement with the
findings of an early (more schematic) investigation in Ref. [299]. For related results
from alternative models we refer the reader to the right panel of Fig. 5.1.

The comparison of the mass dependence of the slope parameter evolution in PHSD
and the data from NA60 is shown explicitly in Fig. 5.2. Including the partonic dilepton
sources allows to reproduce in PHSD the mT -spectra as well as the finding of the
NA60 Collaboration [117, 295–298] that the effective temperature of the dileptons
(slope parameters) in the intermediate mass range is lower than that of the dileptons
in the mass bin 0.6 < M < 1 GeV, which is dominated by hadronic sources (cf.

117
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Figure 5.1: ( l.h.s.) Acceptance corrected mass spectra of excess dimuons from In+In
at 158 A GeV integrated over pT in 0.2 < pT < 2.4 GeV from PHSD compared to the
data of NA60 [295]. The dash-dotted line shows the dilepton yield from the in-medium
ρ with a broadened spectral function, the dashed line presents the yield from the q+ q̄
annihilation, the dash-dot-dot line gives the contribution of the gluon Bremsstrahlung
process (qq̄ → gl+l−), while the solid line is the sum of all contributions. For the
description of the other lines, which correspond to the non-dominant channels, we
refer to the figure legend. The figure is taken from Ref. [180]. ( r.h.s.) Acceptance-
corrected invariant mass spectrum of excess dimuons in In+In collisions at 158 A GeV
in comparison to model results from Renk and Ruppert, van Hees and Rapp as well
as Dusling and Zahed. The figure is taken from Refs. [117, 295–298].
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Figure 5.2: The inverse slope parameter Teff of the dimuon yield from In+In at 158
A GeV as a function of the dimuon invariant mass M in PHSD (solid line with full
dots) compared to the data of the NA60 Collaboration [117, 295–298]. The figure is
taken from Ref. [180].
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Figure 5.3: (l.h.s.) The PHSD results for the invariant mass spectra of inclusive dilep-
tons in Au+Au collisions at

√
sNN = 200 GeV within the PHENIX acceptance cuts in

comparison to the data from the PHENIX Collaboration [205–207, 260] based on the
data from 2004. The different lines indicate the contributions from different channels
as specified in the figure, which is taken from Ref. [279]. (r.h.s.) New data of the
PHENIX Collaboration measured in 2010 with the Hadron-Blind Detector compared
to the cocktail of hadron decays. The figure is taken from Ref. [300].

Fig. 5.2). The softening of the transverse mass spectrum with growing invariant mass
implies that the partonic channels occur dominantly before the collective radial flow
has developed. Also, the fact that the slope in the lowest mass bin and the highest
one are approximately similar – both in the data and in the PHSD – can be traced
back to the two windows of the mass spectrum that in our picture are influenced by
the radiation from the sQGP: M = 2Mµ− 0.6 GeV and M > 1 GeV. For more details
we refer the reader to Ref. [180].

5.2 RHIC energies

Now we are coming to the top RHIC energy of
√
sNN = 200 GeV and present the

most important findings from the PHSD study in Ref. [279]. In the left part of
Fig. 5.3 we show the PHSD results for the invariant mass spectra of inclusive dileptons
in Au+Au collisions for the acceptance cuts on single electron transverse momenta
peT , pseudorapidities ηe, azimuthal angle ϕe, and dilepton pair rapidity y: peT >
0.2 GeV, |ηe| < 0.35, −3π/16 < ϕe < 5π/16, 11π/16 < ϕe < 19π/16, |y| < 0.35.

In the low mass region M = 0 − 1.2 GeV, the dilepton yield in the PHSD is
dominated by hadronic sources and roughly coincides with the earlier HSD result in
Ref. [204]. Note that the collisional broadening scenario for the modification of the
ρ-meson was used in the calculations presented in Fig. 5.3 that underestimates the
PHENIX data from the run 2004 in the mass range from 0.2 to 0.7 GeV substantially.
In contrast, the partonic radiation as well as the yield from correlated D-meson decays
dominate and saturate the mass regionM = 1−3 GeV as seen in Fig. 5.3 (left panel),
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Figure 5.4: The PHSD results for the invariant mass spectra of dileptons in Au+Au
collisions at

√
sNN = 200 GeV for M=0−1.2 GeV (left panel) and for M=0− 4 GeV

(right panel) for 0 - 10 % or 0 - 80% centrality within the cuts of the STAR experiment.
The data of the STAR Collaboration are adopted from Ref. [301]. The figures are
taken from Ref. [279].

i.e. between the ϕ and J/Ψ peaks. The dileptons generated by the quark-antiquark
annihilation in the sQGP from PHSD constitute about half of the observed yield in
this intermediate-mass range. ForM > 2.5 GeV the partonic yield is even higher than
the D-meson contribution. Thus, the inclusion of the partonic radiation in the PHSD
fills up the gap between the hadronic model results [204] and the data of the PHENIX
Collaboration for M > 1 GeV. However, the early expectation of a strong partonic
signal in the low mass dilepton spectrum is not substantiated by the microscopic PHSD
calculations.

In order to investigate the “low-mass dilepton problem”, the PHENIX Collabora-
tion has performed a new measurement in 2010 with a different magnetic field setting,
addition of the Hadron-Blind Detector, and modified analysis. The results of this ex-
perimental effort (very recently presented in Ref. [300]) are shown in the right hand
side of Fig. 5.3. The new measurements suggest that the dilepton yield in the low-mass
region from 0.2 to 0.7 GeV does no longer show such a strong enhancement over the
cocktail of hadronic decay sources as assumed based on the earlier PHENIX analysis
in Ref. [205–207, 260]. In fact, the new PHENIX data are in agreement with the
theoretical expectations from the PHSD calculations.

In order to shed some further light on the “PHENIX puzzle”, we compare the
PHSD predictions with the data independently measured for Au+Au collisions at√
sNN = 200 GeV by the STAR Collaboration. The calculations are performed for

the same model assumptions and parameters as those used for the comparison to
the PHENIX data, only the different acceptance cuts on single electron transverse
momenta peT , single electron pseudorapidities ηe and the dilepton pair rapidity y, i.e.
0.2 < peT < 5 GeV, |ηe| < 1, |y| < 1. The PHSD predictions for the dilepton yield
within these cuts are shown in Fig. 5.4 for 0-80%. One can observe generally a good
agreement with the data from the STAR Collaboration [301] in the whole mass regime.
Notably, our calculations are also roughly in line with the low mass dilepton spectrum
from STAR in case of the most central collisions, whereas the PHSD results severely
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Figure 5.5: Centrality dependence of the midrapidity dilepton yields (left) and its
ratios (right) to the ’cocktail’ for 0-10%, 10-40%, 40-80%, 0-80% central Au+Au col-
lisions at

√
s = 200 GeV: comparison of STAR data with theoretical predictions from

the PHSD (’PHSD’ - dashed lines) and the expanding fireball model (’Rapp’ - solid
lines). The figures are taken from Ref. [302].

underestimated the PHENIX data from the Run 2004 analysis for central collisions.
The observed dilepton yield from STAR can be accounted for by the known hadronic
sources, i.e. the decays of the π0, η, η

′, ω, ρ, ϕ and a1 mesons, of the ∆ particle and
the semi-leptonic decays of the D and D̄ mesons, where the collisional broadening of
the ρ-meson is taken into account.

More recently, the STAR Collaboration has released information on the explicit
centrality dependence of the dilepton spectra. Fig. 5.5 shows the comparison of the
STAR data of midrapidity dilepton yields (l.h.s.) and its ratios (r.h.s.) to the ’cocktail’
for 0-10%, 10-40%, 40-80%, 0-80% central Au+Au collisions at

√
sNN = 200 GeV in

comparison to the predictions from the PHSD approach and the expanding fireball
model of Rapp and collaborators. As seen from Fig. 5.5 the excess of the dilepton
yield over the expected cocktail is larger for very central collisions and consistent with
the model predictions including the collisional broadening of the ρ-meson spectral
function at low invariant mass and QGP dominated radiations at intermediate masses.
Accordingly, the tension between the PHENIX and STAR dilepton data (as well as
PHSD predictions) no longer persists.

Moreover, the recent STAR dilepton data for Au+Au collisions from the Beam
Energy Scan (BES) program for

√
sNN = 19.6, 27, 39 and 62.4 GeV [302, 303] are

also in line with the PHSD (as well as the expanding fireball model) predictions with
a ρ-meson collisional broadening. According to the PHSD calculations the excess is
increasing with decreasing energy due to a longer ρ-meson propagation in the high-
baryon density phase (see Fig. 3 in Ref. [303]).
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Figure 5.6: (l.h.s.) midrapidity dilepton yields for Pb+Pb at
√
sNN = 2.76 TeV for

a lepton pT cut of 1 GeV/c. The channel decomposition is explained in the legend.
(r.h.s.) Same as for the l.h.s. but for a lepton pT cut of 0.15 GeV/c for a ’free’
ρ spectral function (dashed line) and the collisional broadening scenario (solid line).
The figures are taken from Ref. [304].

5.3 LHC energies

On the other hand, the upcoming ALICE data [305] for heavy-ion dileptons for Pb+Pb
at

√
s = 2.76 TeV might give a further access to the dileptons emitted from the QGP

[304, 306]. In Fig. 5.6 (l.h.s.) we present the PHSD predictions for central Pb+Pb
collisions [304] in the low mass sector for a lepton pT cut of 1 GeV/c. It is clearly seen
that the QGP sources and the contribution from correlated DD̄ pairs are non-leading
in the low mass regime where we find the conventional hadronic sources. For a lepton
pT cut of 1 GeV/c (l.h.s.) one practically cannot identify an effect of the ρ-meson
collisional broadening in the dilepton spectra in the PHSD calculations. Only when
applying a low pT cut of 0.15 GeV/c a small enhancement of the dilepton yield from
0.3 to 0.7 GeV becomes visible (r.h.s. of Fig. 5.6). This low sensitivity to hadronic
in-medium effects at LHC energies from the PHSD is due to the fact that the hadrons
appear late (after hadronization) in central Pb+Pb collisions and are boosted to high
velocities due to the high pressure in the early partonic phase.

In the end, we mention that promising perspectives with dileptons have been sug-
gested in Ref. [307] to measure the flow anisotropy coefficients vn (n = 2, 3) similar to
photons. The calculations with the viscous (3+1)d MUSIC hydro for central Au+Au
collisions at RHIC energies show that the flow coefficients v2, v3 are sensitive to the
dilepton sources and to the EoS and η/s ratio. The main advantage of measuring
flow coefficients vn with dileptons compared to photons is the fact that the extra
degree-of-freedom M might allow to disentangle the sources additionally.



Chapter 6

Comparison of our calculations to
the data on photon production in
A + A collisions

Direct photons are expected to provide a powerful probe of the quark-gluon plasma
(QGP) as created in ultra-relativistic nuclear collisions. The photons interact only
electromagnetically and thus escape to the detector almost undistorted through the
dense and strongly interacting medium. Thus the photon transverse-momentum spec-
tra and their azimuthal asymmetry carry information on the properties of the matter
under extreme conditions, existing in the first few fm/c of the collisional evolution. On
the other hand, the measured photons provide a time-integrated picture of the heavy-
ion collision dynamics and are emitted from every moving electric charge – partons or
hadrons. Therefore, a multitude of photon sources has to be differentiated in order to
access the signal of interest. The dominant contributions to the inclusive photon pro-
duction are the decays of mesons, dominantly pions, η- and ω-mesons. Experimental
collaborations subtract the “decay photons” from the inclusive photon spectrum using
a cocktail calculation [3, 4] and obtain the “direct” photons.

In particular the direct photons at transverse momenta pT < 3 GeV/c are ex-
pected to be dominated by ”thermal” sources, i.e. the radiation from the strongly
interacting Quark-Gluon-Plasma (sQGP) [194, 310] and the secondary meson+meson
and meson+baryon interactions in the hadronic phase [181, 182]. These partonic
and hadronic channels have been studied within PHSD in detail in Refs. [20, 21] at
Relativistic-Heavy-Ion-Collider energies and it was found that the partonic channels
constitute up to half of the observed direct photon spectrum for central collisions.
Other theoretical calculations also find a significant or even dominant contribution of
the photons produced in the QGP to the direct photon spectrum [2, 6, 7, 25–27].

The low-pT direct photons probe not only the temperature [2–4] of the produced
QCD-matter, but also its (transport) properties, for instance, the shear viscosity η
(cf. Section 4.4). Using the direct photon elliptic flow v2 (a measure of the azimuthal
asymmetry in the photon distribution) as a viscosimeter was first suggested by Dusling
in Ref. [5]; this idea was later supported by the calculations in Refs. [2, 6–8]. It was
also suggested that the photon spectra and v2 are sensitive to the collective directed
flow of the system [10, 311], to the equation of state [9, 10], to the possible production
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Figure 6.1: (l.h.s.) Comparison of the PHSD/HSD calculations for inclusive photons
for p+Pb collisions at 160 GeV to the data of the WA98 Collaboration from Refs. [308,
309]. See legend for the contribution from the individual channels. (r.h.s.) Comparison
of the PHSD calculations for direct photons from Pb+Pb at 158 A GeV collisions to
the data of the WA98 Collaboration from Refs. [308, 309]. In comparison to the
original HSD study [174]: (i) the meson+baryon bremsstrahlung (blue dash-dotted
line), ∆ decays (black short-dashed line) and the photons from QGP (green line with
round symbols) are added (ii) and the meson+meson bremsstrahlung is now calculated
beyond the SPA (magenta dashed line). The black line with diamond symbols labeled
as “other” includes: ω, η′, ϕ an d a1-meson decays, binary channels π+ρ/π → π/ρ+γ
and N + V → N + γ. The figures are taken from Refs. [22, 174].

of a Glasma [11–13], to the rate of chemical equilibration in the QGP [14–16] and to
the asymmetry induced by the strong magnetic field (flash) in the very early stage of
the heavy-ion collision [17–19].

However, the observation by the PHENIX Collaboration [3] that the elliptic flow
v2(pT ) of direct photons produced in minimum bias Au+Au collisions at

√
sNN =

200 GeV is comparable to that of the produced pions was a surprise and in contrast
to the theoretical expectations and predictions. Indeed, the photons produced by
partonic interactions in the quark-gluon plasma phase have not been expected to show
considerable flow because they are dominated by the emission in the initial phase before
the elliptic flow fully develops. We here report about the studies within the PHSD
approach on this issue and compare to other models in context of the available data
from the different collaborations.

6.1 Direct photon spectra from SPS to LHC ener-

gies

We start with the system p+Pb at 160 GeV, i.e. at the top SPS energy. Fig. 6.1
(l.h.s.) shows the comparison of the HSD/PHSD calculations to the data of the WA98
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Figure 6.2: ( l.h.s.) PHSD results for the spectrum of direct photons produced in 0-40%
most central Au+Au collisions at

√
sNN = 200 GeV as a function of the transverse

momentum pT at midrapidity |y| < 0.35. The data of the PHENIX Collaboration are
adopted from Refs. [23, 312]. For the individual lines see the legend in the figure. The
figure is taken from Ref. [22]. ( r.h.s.) A compilation of various predictions for the
direct photon yield in hydrodynamical models (see legend) in comparison to the data
of the PHENIX collaboration. The figure is taken from Ref. [313].

Collaboration from Ref. [308, 309] in the pseudorapidity interval 2.3 < η < 3.0. In
this case almost the entire photon spectrum is described by the contribution from
pion and η decays while the contribution from the heavier mesons is not leading. The
successful description of these data by PHSD is dominantly due to the fact that the
meson production itself is described very well in p+A reactions [174].

We continue with Pb+Pb collisions at
√
sNN = 17.3 GeV. Fig. 6.1 (r.h.s.) shows

the comparison of the PHSD calculations [22] for the direct photon pT -spectrum to
the data of the WA98 Collaboration from Ref. [308, 309] for 10% centrality in the
pseudorapidity interval 2.35 < η < 2.95. In addition to the sources, which had been
incorporated in the original HSD study in 2008, the meson+baryon bremsstrahlung,
V N → Nγ, ∆ → Nγ decay and the QGP channels are added. Compared to the earlier
results of Ref. [174], the description of the data is further improved and the conclusions
remain unchanged: the bremsstrahlung contributions are essential for describing the
data at low pT . This interpretation is shared by the authors of Refs. [271, 277, 314], who
also stressed the importance of the meson+meson bremsstrahlung in view of the WA98
data using hydrodynamical or fireball models. Note that the photon contribution from
the QGP is practically negligible at this bombarding energy for low pT and reaches at
most 25% at pT > 0.5 GeV.

We now step on to the top RHIC energy of
√
sNN = 200 GeV and report on PHSD

results for the differential photon spectra for the system Au+Au. The direct photon
spectrum – as a sum of partonic as well as hadronic sources – in 0-40% central Au+Au
collisions is presented in Fig. 6.2 (l.h.s.) as a function of the transverse momentum
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Figure 6.3: ( l.h.s.) Direct photon spectra from the model of van Hees et al. [10]
at RHIC when adding ω → π0 + γ decays at thermal freeze-out to a scenario with
amplified rates at temperatures close to the pseudo-critical transition temperature Tc
(dash-dotted line), compared to the amplified rate (dashed line) and default-rate (solid
line) scenarios. The figure is taken from Ref.[10]. ( r.h.s.) Calculated photon spectra
in the viscous hydrodynamical model from Shen et al. [2] in comparison to the data
from the PHENIX Collaboration [312].

pT at midrapidity |y| < 0.35. While the ’hard’ pT spectra are dominated by the
’prompt’ (pQCD) photons, the ’soft’ spectra are filled by the ’thermal’ sources: the
QGP gives up to 50% of the direct photon yield below 2 GeV/c, a sizeable contribution
stems from hadronic sources such as meson-meson (mm) and meson-Baryon (mB)
bremsstrahlung while the contribution from binary mm reactions is of subleading
order. Thus, according to the PHSD results the mm and mB bremsstrahlung turn
out to be an important source of direct photons also at the top RHIC energy. We
note, that the bremsstrahlung channels are not included in the mm binary ’HG’ rate
by Turbide et al. in Ref. [315] used in the hydro calculations addressed above. We
stress that mm and mB bremsstrahlung can not be subtracted experimentally from
the photon spectra and have to be included in theoretical models.

The right panel of Fig. 6.2 shows a compilation of various predictions for the direct
photon yield in hydrodynamical models (see legend) in comparison to the data of the
PHENIX collaboration from Ref. [313]. The NLO pQCD calculations for the prompt
photon production from Vogelsang have been added to the thermal photon spectra.
The actual results for the direct photon spectra depend on the initial temperature
T0 (varying by about a factor of 2) and the hydro starting time τ0 which are fitted
differently to final hadronic spectra, respectively. All these models only give a very
low elliptic flow for the direct photons.

As an example for more recent calculations we show in Fig. 6.3 (l.h.s.) the results
from the model of van Hees et al. [10] which is describing the PHENIX data [312] with
a good accuracy. The calculations of Ref. [10] are based on a hydrodynamical model
for the “fireball” evolution with the hypothesis that the rates of photon production
are amplified for temperatures close to the hadronization transition and adding to the
thermal spectra (calculated with the amplified rates) the photon contribution from
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Figure 6.4: (l.h.s) Centrality dependence of the direct photon pT -spectra for 0-20%, 20-
40%, 40-60%, 60-92% central Au+Au collisions at

√
s = 200 GeV: model predictions

vs. the PHENIX data [23]. The PHSD predictions are denoted by ’Linnyk et al.’
(solid lines). The figure is taken from Ref. [316]. (r.h.s) The scaling of the integrated
thermal photon yield from PHSD as a function of the number of participating nucleons
in Au+Au collisions at

√
sNN = 200 GeV for the hadronic channels (upper symbols)

and partonic channels (lower symbols). The figure is taken from Ref. [21].

final-state ω-mesons at thermal freeze-out. The spectra presented on the right hand
side of Fig. 6.3 have been calculated by Shen et al. [2] using a viscous hydrodynamical
evolution and taking into account viscous effects in the photon rates. In this approach
– that reproduces the final hadron spectra and hadron v2 – the data are underestimated
considerably. The discrepancy becomes enhanced when an alternative scenario of a
gluon-dominated initial state is considered since the gluons do not carry electric charge.

Photon sources: QGP vs. HG

The question: ”what dominates the photon spectra - QGP radiation or hadronic con-
tributions” can be addressed experimentally by investigating the centrality dependence
of the photon yield since the QGP contribution is expected to decrease when going
from central to peripheral collisions where the hadronic channels are dominant. Fig.
6.4 (l.h.s.) shows the centrality dependence of the direct photon pT -spectra for 0-
20%, 20-40%, 40-60%, 60-92% central Au+Au collisions at

√
s = 200 GeV. The solid

dots stand for the recent PHENIX data [23, 316] whereas the lines indicate the model
predictions: solid line - PHSD (denoted as ’Linnyk et al.’) [20–22], dashed and dashed-
dotted lines (’Shen et al. (KLN)’ and ’Shen et al.’ (MCGib)’) are the results from
viscous (2+1)D VISH2+1 [311] and (3+1)D MUSIC [6, 7] hydro models whereas the
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Figure 6.5: (l.h.s.) Photon yield with a transverse momentum pT = 0.5 GeV/c at
midrapidity produced in 0-20 % most central Au + Au collisions as a function of
the approximate local “temperature” (the fourth-root of the energy density) from
the PHSD from meson-meson bremsstrahlung (dash-dotted lines) and gluon Compton
scattering (solid lines). (r.h.s.) Same as in the left panel for photons with a transverse
momentum pT = 1.5 GeV/c. The figures are taken from Ref. [22].

dotted line (’vHees et al.’) stands for the results of the expanding fireball model [317].
As seen from Fig. 6.4 (l.h.s.) for the central collisions the models deviate up to a
factor of 2 from the data and each other due to the different dynamics and sources
included (as discussed above); for the (semi-)peripheral collisions the PHSD results -
dominated by mm and mB bremsstrahlung - are consistent with the data which favor
these hadronic sources. Presently, no results from the other models for peripheral
reactions are known.

The centrality dependence of the direct photon yield, integrated over different pT
ranges, has been measured by the PHENIX Collaboration, too [23, 316]. It has been
found that the midrapidity ’thermal’ photon yield scales with the number of partici-
pants as dN/dy ∼ Nα

part with α = 1.48 ± 0.08 and only very slightly depends on the
selected pT range (which is still in the ’soft’ sector, i.e. < 1.4 GeV/c). Note that the
’prompt’ photon contribution (which scales as the pp ’prompt’ yield times the number
of binary collisions in A+A) has been subtracted from the data. The PHSD predictions
[20–22] for the minimum bias Au+Au collisions give α(total) ≈ 1.5 (cf. Fig. 6.4, r.h.s.)
which is dominated by hadronic contributions while the QGP channels scale with
α(QGP ) ∼ 1.75. A similar finding has been obtained by the viscous (2+1)D VISH2+1
and (3+1)D MUSIC hydro models [2]: α(HG) ∼ 1.46, α(QGP ) ∼ 2, α(total) ∼ 1.7.
Thus, the QGP photons show a centrality dependence significantly stronger than that
of hadron gas (HG) photons.

Next, let us investigate the photon production across the phase transition in the
heavy-ion collision to check whether the observed yield of direct photons is produced
dominantly in some particular region of the energy-density or in some particular phase
of matter. Fig. 6.5 shows the yield of photons produced at midrapidity in 0-20 % most
central Au+Au collisions at

√
sNN = 200 GeV as functions of the approximate local

“temperature” (i.e. the fourth-root of the energy density) from the PHSD. The left
panel of Fig. 6.5 presents the calculations for photons with a transverse momentum
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Figure 6.6: ( l.h.s.) The yield of direct photons at midrapidity in Pb+Pb collisions
at the invariant energy

√
sNN = 2.76 TeV for 0-40% centrality as predicted within

the PHSD in comparison to the preliminary data from the ALICE Collaboration [4].
The figure is taken from Ref. [22]. ( r.h.s., upper panel:) Photon spectra in 0−40%
centrality Pb+Pb collisions at the LHC as calculated within the viscous hydrodynamics
by Shen et al. [8]. The Pb+Pb data are from the ALICE Collaboration [4]. The figure
is taken from Ref. [8]. ( r.h.s., lower panel:) The same observable as calculated in
the upper panel with an ideal hydrodynamical evolution and amplified photon rates
around the transition temperature by van Hees et al. [10]. The figure is taken from
Ref. [10].

pT = 0.5 GeV/c, while the right panel corresponds to photons with a transverse
momentum pT = 1.5 GeV/c. We observe that the early, hot state does not dominate
the photon production in the QGP contrary to expectations of the static thermal
fireball model, where photon production is roughly proportional to a power of the
temperature (∼ T 4). The integration over the dynamical evolution of the heavy-ion
collision leads to roughly the same contribution of the different energy density regions
since the rate decreases but the space-time volume increases. The photon production
in the hadronic phase is dominated by the lower energies/temperatures because of the
very long times over which the produced hadrons continue to interact elastically, which
is accompanied by the photon bremsstrahlung in case of charged hadrons.

We now increase the invariant collision energy
√
sNN by a factor of 13.8. In Fig. 6.6

(l.h.s.) we show the direct photon yield from PHSD in Pb+Pb collisions at the invariant
energy

√
sNN = 2.76 TeV for 0-40% centrality in comparison to the preliminary data of

the ALICE Collaboration from Ref. [4]. We find a rather good overall agreement with
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Figure 6.7: Centrality dependence of the direct photon pT -spectra for 0-20%, 20-40%,
40-80% central Pb+Pb collisions at

√
sNN=2.76 TeV: model predictions vs. the ALICE

data [318]. The PHSD predictions are denoted by ’Linnyk et al.’ (dotted lines). The
figure is taken from Ref. [318].

the data within about a factor of 2 in the range of transverse momenta pT from 1 to 4
GeV. On the other hand, the calculations tend to underestimate the preliminary data
in the low-pT region [319]. However, the significance of the comparison is not robust
until the final data will be available. We, furthermore, present in Fig. 6.6 (r.h.s.) the
photon spectra for 0−40% centrality Pb+Pb collisions at the LHC as calculated within
the viscous hydrodynamics by Shen et al. [8] in comparison to the Pb+Pb data from
the ALICE Collaboration [4] (upper right panel). In the right bottom panel we show
the same observable as calculated in the ideal hydrodynamical model with amplified
photon rates around the transition temperature by van Hees et al. [10]. Similar to
RHIC energies the viscous hydro calculations [8] underestimate the measured photon
yield for pT < 2 GeV/c while the model of van Hees et al. [10] with amplified rates at
Tc performs better.

An actual overview on the current situation with respect to the direct photon yields
at different centralities has been provided by the ALICE Collaboration in Ref. [318]
and is displayed in Fig. 6.7. The figure shows the centrality dependence of the direct
photon pT -spectra for 0-20%, 20-40%, 40-80% central Pb+Pb collisions at

√
sNN=2.76

TeV in comparison to various model predictions. The PHSD predictions are denoted
by ’Linnyk et al.’ (dotted lines) and are compatible with the measurements within the
error bars. This roughly holds also for the other models.
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In conclusion, we have found that from SPS to LHC energies the radiation from the
sQGP constitutes less than half of the observed number of direct photons for central
reactions in the PHSD. The hydrodynamical and fireball models predict a larger frac-
tion of the QGP photons to the total yield and are substantially lower in the hadronic
contributions. The radiation from hadrons and their interaction – which are not mea-
sured separately so far – give a considerable contribution in the PHSD especially at
low transverse momentum. The dominant hadronic sources are the meson decays, the
meson-meson bremsstrahlung and the meson-baryon bremsstrahlung. While the first
(e.g. the decays of ω, η’, ϕ and a1 mesons) can be subtracted from the photon spectra
once the mesonic yields are determined independently by experiment, the reactions
π+ρ→ π+γ, π+π → ρ+γ, V +N → N+γ, ∆ → N+γ as well as the meson-meson
and meson-baryon bremsstrahlung can be ’separated’ from the partonic sources only
with the assistance of theoretical models (and corresponding uncertainties).

6.2 Elliptic flow of direct photons

We recall that the azimuthal momentum distribution of the photons is expressed in
the form of a Fourier series as,

E
d3N

d3p
=

d2N

2πpTdpTdy

(
1+

∞∑
n=1

2vn(pT ) cos[n(ψ −Ψn)]

)
, (6.1)

where vn is the magnitude of the n′th order harmonic term relative to the angle of
the initial-state fluctuating spatial plane of symmetry Ψn and p = (E, p⃗) is the four-
momentum of the photon. We here focus on the coefficients v2 and v3 which implies
that we have to perform event by event calculations in order to catch the initial
fluctuations in the shape of the interaction zone and the event plane ΨEP . We calculate
the triangular flow v3 with respect to Ψ3 as v3{Ψ3} = ⟨cos(3[ψ −Ψ3])⟩/Res(Ψ3). The
event plane angle Ψ3 and its resolution Res(Ψ3) are evaluated as described in Ref. [86]
via hadron-hadron correlations by the two-sub-events method [87, 88].

We note again that the second flow coefficient v2 carries information on the inter-
action strength in the system – and thus on the state of matter and its properties – at
the space-time point, from which the measured particles are emitted. The elliptic flow
v2 reflects the azimuthal asymmetry in the momentum distribution of the produced
particles (px vs py), which is correlated with the geometrical azimuthal asymmetry of
the initial reaction region. If the produced system is a weakly-interacting gas, then the
initial spatial asymmetry is not effectively transferred into the final distribution of the
momenta. On the other hand, if the produced matter has the properties of a liquid,
then the initial geometrical configuration is reflected in the final particle momentum
distribution.

More than a decade ago, the WA98 Collaboration has measured the elliptic
flow v2 of photons produced in Pb + Pb collisions at the beam energy of Ebeam =
158 AGeV [320], and it was found that the v2(γ

incl) of the low-transverse-momentum
inclusive photons was about equal to the v2(π) of pions within the experimental uncer-
tainties. This observation lead to the conclusion that either (Scenario a:) the contribu-
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Figure 6.8: Comparison of direct photon (prompt + thermal (QGP+HG)) elliptic flow
from event-by-event viscous hydrodynamics with recent experimental data from (a) 0-
20% and (b) 20-40% central Au+Au collisions at RHIC [3] and (c) from 0-40% central
Pb+Pb collisions at the LHC [321]. The solid black (dashed red) lines correspond to
MCGlb (MCKLN) initial conditions evolved with a shear viscosity η/s=0.08 (0.2),
respectively. The figure is taken from Ref. [8].

tion of the direct photons to the inclusive ones is negligible in comparison to the decay
photons, i.e. dominantly the π0 decay products, or (Scenario 2:) the elliptic flow of the
direct photons is comparable in magnitude to the v2(γ

incl), v2(γ
decay) and v2(π). How-

ever, in view of the direct photon spectrum from WA98, which we described in Section
6.1, there is a significant finite yield of direct photons at low transverse momentum.
Thus the scenario 1 can be ruled out. Furthermore, the observed direct photons of low
pT must have a significant elliptic anisotropy v2 of the same order of magnitude as the
hadronic flow since they dominantly stem from hadronic sources. Thus the interpre-
tation [174, 271] of the low-pT direct photon yield measured by WA98 – as dominantly
produced by the bremsstrahlung process in the mesonic collisions π + π → π + π + γ
– is in accord also with the data on the photon elliptic flow v2(γ

incl) at the top SPS
energy.

Let us note that the same conclusions apply also to the most recent studies of
the photon elliptic flow at RHIC and LHC. The PHENIX and ALICE Collaborations
have measured the inclusive photon v2 and found that at low transverse momenta it is
comparable to the v2(pT ) of decay photons as calculated in cocktail simulations based
on the known mesonic v2(pT ). Therefore, either (a) the yield of the direct photons to
the inclusive ones is not statistically significant in comparison to the decay photons or
(b) the elliptic flow of the direct photons must be as large as v2(γ

decay) and v2(γ
incl).

The direct photon v2 “puzzle”

The recent observation by the PHENIX Collaboration [3] that the elliptic flow v2(pT )
of direct photons produced in minimum bias Au+Au collisions at

√
sNN = 200 GeV

is comparable to that of the produced pions was a surprise and in contrast to the
theoretical expectations and predictions [6, 7, 25–27]. Indeed, the photons produced
by partonic interactions in the quark-gluon plasma phase have not been expected to
show a considerable flow because - in a hydrodynamical picture - they are dominated
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by the emission at high temperatures, i.e. in the initial phase before the elliptic flow
fully develops. Since the direct photon v2(γ

dir) is a ’weighted average’ (wi) of the
elliptic flow of individual contributions i,

v2(γ
dir) =

∑
i

v2(γ
i)wi(pT ) =

∑
i v2(γ

i)Ni(pT )∑
iNi(pT )

, (6.2)

a large QGP contribution gives a smaller v2(γ
dir).

A sizable photon v2 has been observed also by the ALICE Collaboration [4, 321]
at the LHC. None of the theoretical models could describe simultaneously the photon
spectra and v2 which may be noted as a “puzzle” for theory (cf. Fig. 6.8 in case of
viscuous hydro calculations by Shen et al. in Ref. [8]). Moreover, the PHENIX and
ALICE Collaborations have reported recently the observation of non-zero triangular
flow v3 (see Refs. [303, 322]). Thus, the consistent description of the photon experi-
mental data remains a challenge for theory and has stimulated a couple of new ideas
and developments that are briefly outlined in the following.

Developments in hydrodynamical models

The following developments in the hydrodynamical modeling of the heavy-ion collision
evolution and the photon rates were stimulated by the puzzling disagreement between
the models and the photon data (cf. Fig. 6.8).

I.) The first hydrodynamical calculations on photon spectra were based on ideal
hydrodynamics with smooth Glauber-type initial conditions (cf. Ref. [260]). The
influence of event-by-event (e-b-e) fluctuating initial conditions on the photon observ-
ables was investigated within the (2+1)D Jyväskylä ideal hydro model [27] which
includes the equilibrated QGP and Hadron Gas (HG) fluids. It has been shown that
’bumpy’ initial conditions based on the Monte-Carlo Glauber model lead to a slight
increase at high pT (> 3 GeV/c) for the yield and v2 which is, however, not sufficient
to explain the experimental data – see the comparison of model calculations with the
PHENIX data in Figs. 7,8 of Ref. [27] and with the ALICE data in Figs. 9,10 of Ref.
[27].

II.) The influence of viscous corrections on photon spectra and anisotropic flow
coefficients vn has been investigated in two independent viscous hydro models: 1)
(3+1)D MUSIC [6, 7] which is based on “bumpy” e-b-e fluctuating initial conditions
from IP-Glasma and includes viscous QGP (with lQCD EoS) and HG fluids; 2) (2+1)D
VISH2+1 [311] with ’bumpy’ e-b-e fluctuating initial conditions from the Monte-Carlo
Glauber model and viscous QGP (with lQCD EoS) and HG fluids. The photon rate
has been modified in Refs. [6, 7, 311] in order to account for first order non-equilibrium
(viscous) corrections to the standard equilibrium rates (i.e. the thermal QGP [173]
and HG [315] rates). It has been found that the viscous corrections only slightly
increase the high pT spectra compared to the ideal hydro calculations while they have
a large effect on the anisotropic flow coefficients vn. Interesting to note that the viscous
suppression of hydrodynamic flow for photons is much stronger than for hadrons. Also
the photon vn coefficients are more sensitive to the QGP shear viscosity which might
serve the photon flow observables as a QGP viscometer as suggested in Ref. [311].
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Figure 6.9: Inclusive (left) and direct (middle) photon elliptic flow coefficient v2(pT )
from the PHSD approach in comparison to the PHENIX data [3] for midrapidity
minimum bias Au+Au collisions at

√
s = 200 GeV. The figures are taken from Ref. [20–

22]. ( r.h.s.) Direct photon spectra v2 from the fireball model at RHIC when adding
ω → π0 + γ decays at thermal freeze-out to the scenario with amplified rates (dash-
dotted line), compared to the amplified-rate (dashed line) and default-rate (solid line)
scenarios. The figure is taken from Ref.[10].

It is important to stress that the state-of-art hydro models discussed above repro-
duce well the hadronic ’bulk’ observables (e.g. rapidity distributions, pT spectra and
v2, v3 of hadrons). However, in spite of definite improvements of the general dynamics
by including the fluctuating initial conditions (IP-Glasma or MC-Glauber type) and
viscous effects, the hydro models underestimate the spectra and v2 of photons at RHIC
and LHC energies.

III.) Another idea, which has been checked recently within the (2+1)D VISH2+1
viscous hydro model by Shen et al. [311], corresponds to the generation of ’pre-
equilibrium’ flow (see Ref. [323]). The idea of ’initial’ flow has been suggested in Ref.
[317] and modeled as a rapid increase of bulk v2 in the expanding fireball model which
leads to a substantial enhancement of photon v2. In a viscous hydro model [323] the
generation of pre-equilibrium flow has been realized using a free-streaming model to
evolve the partons to 0.6 fm/c where the Landau matching takes over to switch to
viscous hydro. Such a scenario leads to a quick development of momentum anisotropy
with saturation near the critical temperature Tc. Although the pre-equilibrium flow
effect increases the photon v2 slightly this is not sufficient to reproduce the ALICE
data (the same holds for the PHENIX data at RHIC energies). Note, that the actual
strength of such an effect depends on the way of its modeling (cf. Ref. [317]). More-
over, the physical origin of such ’initial’ (pre-equilibrium) flow has to be justified/found
first before robust conclusions can be drown.

One may speculate about the possible effects on photon observables from further
improvements of hydro models such as an inclusion of the finite bulk viscosity as well
as other transport coefficients and their temperature dependence etc. However, the
failure of the state-of-art viscous hydro models to describe the photon observables is
striking although the hadronic ’bulk’ dynamics is well reproduced.
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Figure 6.10: Centrality dependence of the direct photon v2 for Au+Au collisions at√
sNN = 200 GeV for different centralities (see legend); the data from the PHENIX

Collaboration [23, 324] are compared to the earlier PHSD predictions from Ref. [21].

Photons from non-equilibrium transport

In order to shed some light on the photon v2 puzzle outlined above, we consider
the influence of non-equilibrium dynamics on the photon production in the following.
As a ’laboratory’ for that we will employ the microscopic PHSD transport approach
that has been derived and described in Sections 2-4, while the implementation of
photon production by the various partonic and hadronic channels has been explained
in Chapter 5. Since the elliptic flow of pions (or charged hadrons) is under control in
PHSD in comparison to the data from the PHENIX, STAR and ALICE Collaborations
(cf. Refs. [3, 20, 68, 325, 326]); also the spectrum of their decay photons is predicted
reliably by the approach. This allows for a solid computation of the direct photon
yield at all energies from SPS to LHC.

In the PHSD the direct photon v2(γ
dir) is calculating by building the weighted sum

of the channels, which are not subtracted by the data-driven methods, as follows: the
photons from the quark-gluon plasma, from the initial hard parton collisions (pQCD
photons), from the decays of short-living resonances (a1-meson, ϕ-meson, ∆-baryon),
from the binary meson+meson and meson+baryon channels (π+ ρ→ π+ γ, π+ π →
ρ+ γ, V + p/n→ n/p+ γ), and from the bremsstrahlung in the elastic meson+meson
and meson+baryon collisions (m + m → m + m + γ, m + B → m + B + γ). The
direct photon v2 is extracted by summing up the elliptic flow of the individual channels
contributing to the direct photons, using their contributions to the spectrum as the
relative pT -dependent weights, wi(pT ), cf. Eq. 6.2.

The results for the elliptic flow v2(pT ) of direct photons produced in Au + Au
collisions at the top RHIC energy are shown in the middle panel of Fig. 6.9 while the
elliptic flow in the left panel in comparison to the PHENIX data [3]. Since the inclusive
photons dominantly stem from π0 decay the left panel of Fig. 6.9 demonstrates again
that the pion v2 is under control in PHSD while HSD calculations (dashed line) fail
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Figure 6.11: ( l.h.s.) Elliptic flow v2 versus transverse momentum pT for the inclusive
photons produced in 0-40% central Pb+Pb collisions at

√
sNN = 2.76 TeV as calcu-

lated by the PHSD (solid red line); the blue error band reflects the finite statistics
and the uncertainty in the modeling of the cross sections for the individual channels. (
r.h.s.) Elliptic flow v2 versus transverse momentum pT for the direct photons produced
in 0-40% central Pb+Pb collisions at

√
sNN = 2.76 TeV as predicted by the PHSD

(solid red line); the blue error band is dominated by the uncertainty in the modeling of
the cross sections for the individual channels. The data from the ALICE Collaboration
are taken from Ref. [327].

substantially. According to the PHSD calculations for the direct photon spectra almost
half of the direct photons measured by PHENIX (in central collisions) stems from the
collisions of quarks and gluons in the deconfined medium created in the initial phase of
the collision. The photons produced in the QGP carry a very small v2 and lead to an
overall direct photon v2 about a factor of 2 below the pion v2(π) even though the other
channels in the sum (6.2) have large elliptic flow coefficients v2 of the order of v2(π)
(cf. Fig. 7 of Ref. [20]). This leads to a final elliptic flow for direct photons which is
about half of the measured v2 in PHSD. The right panel of Fig. 6.9 shows the photon
v2 from the fireball model of van Hees et al. [10] for different scenarios: the solid
line corresponds to the ’default scenario’, which is comparable to the PHSD results
for v2 (middle panel). The dashed line is obtained when amplifying the production
rate close to Tc while the dash-dotted line additionally includes the photons from ω-
decay at freeze-out. We note that in PHSD we do not find an enhanced photon rate
close to Tc (cf. Fig. 27) and the ω-decay contributions are included by default. In
summary, we conclude that the PHSD results lead to a direct photon v2 at RHIC
which is substantially larger that that from hydro calculations (cf. Fig. 29) but still
underestimates the PHENIX data at RHIC.

The PHSD results are readily understood as follows: the partonic collisions –
producing photons in the QGP – take place throughout the evolution of the collision
but the collision rate falls rapidly with time in PHSD and thus the production of
photons from the QGP is dominated by the early times. As a consequence, the elliptic
flow ‘picked up’ by the photons from the parent parton collisions saturates after about
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Figure 6.12: (l.h.s.) Preliminary data of the ALICE Collaboration for the direct photon
elliptic flow v2 in comparison to theoretical calculations from Refs. [8, 328, 329]. The
figure is taken from Ref. [327]. (r.h.s.) Predictions for the elliptic flow v2 of direct
photons from PHSD versus transverse momentum pT produced in Pb+Pb collisions
at

√
sNN = 2.76 TeV for different centrality classes (see legend).

5 fm/c and reaches a relatively low value of about 0.02, only. We note that a delayed
production of charges from the strong gluon fields (‘glasma’ [330–333]) might shift
the QGP photon production to somewhat later times when the elliptic flow is built
up more but this also decreases the amount of QGP photons! However, we cannot
quantitatively answer whether the additional evolution in the pre-plasma state could
generate considerable additional v2 while reproducing the photon spectra.

A preliminary summary of the current situation is displayed in Fig. 6.10 where the
photon elliptic flow from PHENIX is compared to the PHSD predictions for different
centrality classes 0-20% (a), 20-40% (b) and 40-60% (c). Whereas the elliptic flow is
roughly described in the most central class there is an increasing tendency to under-
estimate in the PHSD the strong elliptic flow especially for peripheral collisions where
some additional source might be present. Thus the observed centrality dependence of
the elliptic flow is roughly in agreement with the interpretation that a large fraction of
the direct photons is of hadronic origin (in particular from the bremsstrahlung in me-
son+meson and meson+baryon collisions); the latter contribution becomes stronger or
even dominant in more peripheral collisions. But more precise data will be mandatory
for a robust conclusion.

We finally present the PHSD predictions/calculations for the elliptic flow of in-
clusive and direct photons produced in Pb + Pb collisions at the energy of

√
sNN =

2.76 TeV at the LHC within the acceptance of the ALICE detector. Since the pion v2
is described well within the PHSD at

√
sNN = 2.76 TeV this is expected also for the

inclusive photon v2 due to the dominance of photons from π0 decay. The left panel
of Fig. 6.11 presents predictions/calculations for the elliptic flow v2 versus transverse
momentum pT for the inclusive photons produced in 0-40% central Pb+Pb collisions



CHAPTER 6. COMPARISON TO PHOTON MEASUREMENTS 138

at
√
sNN = 2.76 TeV (solid red line) with the blue error band reflecting the finite

statistics and the theoretical uncertainty in the modeling of the cross sections for the
individual channels. The elliptic flow v2(pT ) of direct photons produced in 0-40% cen-
tral Pb+Pb collisions at

√
sNN = 2.76 TeV as predicted by the PHSD (solid red line)

is shown in the right panel of Fig. 6.11, the blue error band is dominated by the un-
certainty in the modeling of the cross sections for the individual channels. As in case
of the PHENIX data at RHIC the preliminary data of the ALICE Collaboration for
the direct photon elliptic flow v2 for the same centrality are slightly higher than the
PHSD predictions (although compatible within error bars). The different lines in Fig.
6.12 (l.h.s.) show the direct photon v2(pT ) from the theoretical calculations in Refs.
[8, 328, 329] (see legend) which are similar to the PHSD predictions or even below.
The situation at the LHC energy of

√
sNN = 2.76 TeV is thus comparable to the one

at the top RHIC energy and the v2 puzzle remains.

We, furthermore, provide predictions for the centrality dependence of the direct
photon v2(pT ) in Pb+Pb collisions at

√
sNN = 2.76 TeV in the centrality classes 0-

20%, 20-40% and 40-80% which are of relevance for the upcoming measurements by
the ALICE Collaboration at the LHC. The actual results from PHSD are displayed in
Fig. 6.12 (r.h.s.) and show a very similar centrality dependence as in case of Au+Au
collisions at the top RHIC energy.

We note that there are other scenarios towards the solution of the direct photon
v2 puzzle proposed during the ’Quark Matter-2014 Conference’: early-time magnetic
field effects [334, 335], Glasma effects [11], or non-perturbative effects of a ’semi-QGP’
[336]. We discard an explicit discussion of these suggestions.

6.3 Triangular flow of direct photons

We have seen in the previous Chapters that the measured spectra of direct photons
could be reproduced by the PHSD calculations at least within a factor of 2 (which
is comparable with the current accuracy of the measurements). Also, the inclusive
photon v2 was well described and the elliptic flow of direct photons was qualitatively
in line with the data and attributed essentially to hadronic sources although still
underestimating the data.

On the other hand, there exists an alternative interpretation of the strong elliptic
flow of direct photons, in which the azimuthal asymmetry of the photons is due to
the initial strong magnetic field essentially produced by spectator charges (protons).
Indeed, the magnetic field strength in the very early reaction stage reaches up to
eBy ≈ 5m2

π in semi-peripheral Au + Au collisions at
√
sNN = 200 GeV (see the

calculations within the PHSD in Ref. [338]; comparable estimates have been obtained
also in Refs. [18, 19, 339]). These strong magnetic fields might influence the photon
production via the polarization of the medium, e.g. by influencing the motion of
charged quarks in the QGP, or by directly inducing a real photon radiation via the
virtual photon (B⃗-field) coupling to a quark loop and (multiple) gluons; the photons
are then produced azimuthal asymmetrically with positive v2.

The photon production under the influence of magnetic fields has been calculated
in Refs. [11, 17–19, 334, 340]. The observed spectra and elliptic flow of direct photons
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Figure 6.13: (Color on-line) Triangular flow v3 versus transverse momentum pT for the
direct photons produced in Au+Au collisions at

√
sNN = 200 GeV in three centrality

classes (see legends). The PHSD results are shown by the solid red lines in comparison
to the data of the PHENIX Collaboration (black symbols) taken from Ref. [324, 337].

could be explained using suitable assumptions on the conductivity, bulk viscosity or
degree of chemical equilibration in the early produced matter. The common feature
of these calculations was that the triangular flow coefficient v3 of the direct photons
was expected to be very small. Indeed, the magnetic field may lead to an azimuthal
asymmetry v2 but not to a triangular mode v3.

Consequently, it is of interest to measure experimentally the third flow coefficient
v3(pT ) and to compare it to the calculations in the different classes of models: (a)
those attributing the large elliptic flow and strong yield of direct photons dominantly
to hadronic sources, e.g. the PHSD transport approach; (b) the models suggesting the
large azimuthal asymmetry and additional yield of direct photons to be caused by the
early magnetic fields; (c) the models assuming that the yield of direct photons at low
pT is dominated by partonic channels.

In Fig. 6.13 we present our results for the triangular flow v3 versus transverse mo-
mentum pT for the direct photons produced in Au+Au collisions at

√
sNN = 200 GeV

from the PHSD (solid red lines) for 0-20% (a), 20-40% (b) and 40-60% (c) central-
ity. The PHSD gives a positive non-zero triangular flow of direct photons up to 6%
with very little centrality dependence on the level of the present accuracy (∼ 25%).
The PHSD results are in agreement with the data of the PHENIX Collaboration from
Refs. [303, 316, 337] which suggests that the scenario (a) is at least compatible with
the measurements.

The preliminary data of the ALICE Collaboration for the v3 of inclusive photons in
Fig. 6.14 (l.h.s.) do not seem to point towards an interpretation of the direct photons
being dominantly produced in the early stage under the influence of the magnetic field
(b), because the v3 of these photons is expected to be close to zero. Of course, the
photon production in the magnetic fields occurs on top of other channels, which may
carry finite triangular flow v3. But the weighted sum of all the channels including the
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Figure 6.14: (l.h.s.) Preliminary data of the ALICE Collaboration for the inclusive
photon v3(pT ). The lines represent contributions of decay photons with added the-
oretical calculations from Refs. [8, 328, 329]. The figure is taken from Ref. [341].
(r.h.s.) Predictions for the triangular flow v3 versus transverse momentum pT for
the direct photons produced in different centrality classes for Pb+Pb collisions at√
sNN = 2.76 TeV from the PHSD (see legend); the blue band reflects the uncertainty

in the modeling of the cross sections for the individual channels and give a measure of
the present level of accuracy. The figure is taken from Ref. [22].

magnetic-field-induced photons will give a smaller v3 ̸= 0 than the sum without this
channel. The scenario (c) has been studied by other groups within a hydrodynamic
modeling of the collision in Refs. [8, 342]. The triangular flow v3(pT ) of direct photons
from Refs. [8, 342] is about a factor of 2 smaller than that obtained in the PHSD
approach.

In Fig. 6.14 (r.h.s.) we present predictions for the triangular flow v3 versus trans-
verse momentum pT for the direct photons produced in different centrality classes for
Pb+Pb collisions at

√
sNN = 2.76 TeV from the PHSD (see legend); the blue band

reflects the uncertainty in the modeling of the cross sections for the individual chan-
nels and give a measure of the present level of accuracy. The centrality dependence
of v3(pT ) turns out to be low and is practically constant within the accuracy of the
present PHSD calculations. An experimental confirmation of this expectation could
further affirm the notion of large hadronic contributions to the direct photons and in
particular the photon production via the bremsstrahlung in meson and baryon colli-
sions. It should be possible to differentiate between the scenarios in the future, when
data of higher accuracy and information on the centrality dependence of direct photons
(especially on v2 and v3) will become available.



Chapter 7

Summary

In this thesis we have addressed the dynamics of relativistic heavy-ion reactions and in
particular the information obtained from electromagnetic probes that stem from the
partonic and hadronic phases. While the out-of-equilibrium description of strongly
interacting relativistic fields has been based on the theory of Kadanoff and Baym,
the description of QCD in equilibrium has been performed within an effective dy-
namical quasiparticle model (DQPM). The width of the dynamical quasiparticles is
controlled by transport coefficients in equilibrium that can be compared to the same
quantities from lattice QCD. The resulting off-shell transport approach is denoted by
Parton-Hadron-String Dynamics (PHSD) and reproduces the equation of state, the
sound velocity squared c2s(T ) as well as the relevant transport coefficients such as the
shear viscosity η, the bulk viscosity ζ and the electrical conductivity σ0 in the par-
tonic phase from lattice QCD. Furthermore, it includes dynamical transition rates for
hadronization, i.e. for the change of colored partonic to colo-neutral hadronic degrees-
of-freedom, that satisfy all conservation laws and do not violate the second law of
thermodynamics. It has been shown that the PHSD captures the bulk dynamics of
heavy-ion collisions from lower SPS to LHC energies and thus provides a solid ground
for the evaluation of the electromagnetic emissivity on the basis of the same dynamical
propagators in the partonic phase that are employed for the dynamical evolution of the
partonic system. The PHSD ’tests’ indicate that the ’soft’ physics at LHC in central
A-A reactions is very similar to the top RHIC energy regime although the invariant
energy is higher by more than an order of magnitude.

The main messages from the photon studies can be summarize briefly as:

• the photons provide a critical test for the theoretical models: the standard dy-
namical models - constructed to reproduce the ’hadronic world’ - fail to explain
the photon experimental data;

• the details of the hydro models (fluctuating initial conditions, viscosity, pre-
equilibrium flow) have a small impact on the photon observables;

• as suggested by the PHSD transport model calculations, the role of such back-
ground sources as mm and mB bremsstrahlung has been underestimated in the
past and was found to be dominant at low photon pT ;

141
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• the dynamics of the initial phases of the reaction might turn out to be important
(pre-equilibrium /’initial’ flow, Glasma effect etc.).

Finally, one must conclude that the photons are one of the most sensitive probes
for the dynamics of heavy-ion collisions and for the role of the partonic phase. We
also mention that in an initial ’Glasma’ phase the photon/dilepton production is sup-
pressed by about an order of magnitude since the gluon fields do not carry electric
charge. In this case the direct photons would practically stem for the hadronic stages
and carry the full hadronic elliptic flow v2.

The main messages from the dilepton studies in are:

• at low masses (M = 0.2−0.6 GeV/c2) the dilepton spectra show sizable changes
due to hadronic in-medium effects, i.e. multiple hadronic resonance formation
or a modification of the properties of vector mesons (such as collisional broaden-
ing) in the hot and dense hadronic medium (partially related to chiral symmetry
restoration); these effects can be observed at all energies from SIS to LHC but
are most pronounced in the FAIR/NICA energy regime;

• at intermediate masses the QGP (qq̄ thermal radiation) dominates for M > 1.2
GeV/c2. The fraction of QGP sources grows with increasing energy and becomes
dominant at the LHC energies.

• The tension between the PHENIX and STAR dilepton data at the top RHIC
energy (as well as PHSD predictions) no longer persists.

Finally, the dilepton measurements within the future experimental energy and
system scan (pp, pA,AA) from low to top RHIC energies as well as new ALICE data
at LHC energies will extend our knowledge on the properties of hadronic and partonic
matter via its electromagnetic radiation and show if the very initial degrees-of-freedom
in relativistic heavy-ion collisions are electrically charged (quarks and antiquarks) or
not (gluons).
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041901.

[98] S. S. Adler, et al., Phys. Rev. C71 (2005) 034908.

[99] P. Braun-Munzinger, D. Miskowiec, A. Drees, C. Lourenco, Eur. Phys. J. C1
(1998) 123.

[100] M. Gazdzicki, M. I. Gorenstein, Phys. Rev. Lett. 83 (1999) 4009–4012.

[101] A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Phys. Lett. B652
(2007) 259–261.

[102] P. Braun-Munzinger, J. Stachel, Phys. Lett. B490 (2000) 196.

[103] P. Braun-Munzinger, J. Stachel, Nucl. Phys. A690 (2001) 119–126.

[104] R. L. Thews, M. Schroedter, J. Rafelski, Phys. Rev. C63 (2001) 054905.

[105] C. Lourenco, H. Wohri, Phys. Rept. 433 (2006) 127.

[106] B. Brambilla, et al., CERN Yellow Report, CERN-2005-005 (2005).

[107] O. Linnyk, E. L. Bratkovskaya, W. Cassing, Int. J. Mod. Phys. E17 (2008) 1367.

[108] O. Linnyk, E. L. Bratkovskaya, W. Cassing, H. Stöcker, Nucl. Phys. A786 (2007)
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