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1 Introduction

In the last years there has been a large interest in the description of hadronic prop-
erties in a strongly interacting medium. This interest is induced by the fact that
various experiments give indications for modifications of the mass and the width of
hadrons when put into the medium. The changes of hadron masses in a medium
are probably related to the restoration of chiral symmetry as one of the fundamen-
tal symmetries of QCD which is spontaneously broken in the vacuum (for further
discussion see [RW00]).

The ρ-meson is an ideal probe for in-medium studies because it decays into dilep-
tons. They can travel nearly undisturbed through the medium making it possible
to measure the in-medium properties. The in-medium effects are particularly strong
for ρ-mesons at rest as could be shown by Post et al. [PLM01] and Würfel [Wür04].
Especially in a nucleon dominated medium (nuclear matter) scattering of such low
energetic ρ-mesons with nucleons will create the N∗(1520) resonance, making it es-
pecially important for the in-medium properties of the ρ-meson. A coupled channel
in-medium calculation involving the N∗(1520) and several other baryon resonances
and in the meson sector ρ, π and η has been performed by Post et al. [PLM04].
Typically due to the complexity of the problem a number of approximations are
involved in such calculations.

Especially the selfenergies of the considered particles are either calculated non-rel-
ativistically [PLM04] or at least a simplified spin structure is assumed [PLM01]. As
a prelude to a more complete treatment it is important to understand the vacuum
case in its full relativistic structure which can serve as a starting point for more
involved in-medium computations.

In a previous relativistic calculation of Post et al. [PLM01] on the in-medium
properties of the ρ-meson it could be shown that for a resonance with negative
parity the mentioned approximation leads to a wrong sign for the imaginary part of
the selfenergy of the resonance. This in turn leads to a negative cross section. By
changing the propagator by hand it was possible to overcome this short coming. This
shows that the relativistic effects can be non-trivial. A correct and fully relativistic
description of the N∗(1520) in the vacuum is therefore desirable.

A study of the correct description of higher spin particles is also of interest due to
the non-trivial character of their interactions. Though field theoretical descriptions
for higher spin particles were already introduced and discussed in the 40s of the
last century by Fierz and Pauli [FP39] and Rarita and Schwinger [RS41], the ques-
tion how to introduce couplings is still open. When electromagnetic interactions
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1 Introduction

are introduced via minimal coupling acausal propagations [VZ69] and non positive
definite anticommutation relations [JS61] arise. In [Cox89] it was shown that both
inconsistencies appear because the interaction violates the proper number of degrees
of freedom (DOF) of the free theory.

A first analysis for hadronic interactions was done in the 70s. A still widely used
coupling for N∆π was proposed in [NEK71]. Though the authors claim in this paper
that the above mentioned inconsistencies do not enter for a special choice of param-
eters, Hagen [Hag71] and Singh [Sin73] proved them wrong. Many general forms of
interactions were ruled out on this ground. But still fully relativistic calculations
were performed with these ”inconsistent” couplings leading to reasonable descrip-
tion of experimental data [Kor97]. At the same time an idea was proposed how to
introduce ”consistent” couplings [PT99]. It is based on the finding that interactions
which have the same symmetries as the massless free theory will not violate the
DOF of the theory. The mass term will be introduced to break the symmetry and
rises the number of DOF to the correct value. Because the interaction does not
introduce further DOF the mass term which breaks the symmetry correctly in the
free case will do it also in the interacting case. Such an approach always leads to a
consistent interaction.

So far these calculations were performed only for the ∆(1232) isobar. The cor-
responding calculation for the N∗(1520) is a non trivial extension for two reasons.
First, it is a particle with negative parity leading to the above mentioned compli-
cations. Second, the N∗(1520) decays also into unstable particles leading to a more
complicated structure of the selfenergy.

In this work we will investigate the ∆(1232) and N∗(1520) by calculating the full
relativistic structure of the propagator. This will be done in a framework proposed
by Pascalutsa and Timmermans [PT99]. The aim is to find out whether it is feasi-
ble to calculate fully relativistic propagators in the Pascalutsa framework. One
interesting finding will be that the selfenergies are actually simpler compared to the
conventional approach.

For a further understanding of higher spin particles comparison with the experi-
ment will be important. For a description of baryonic resonances formed e.g. in πN
collisions a coupled-channel approach is needed including also background terms
from t-channels etc. Typically such calculations do not consider the full selfenergy
structure of the baryon resonances. To give an example, in K-matrix calculations
[PM02] only the on-shell part of the involved two-particle propagators is taken into
account. In this way analyticity is violated to some extent. The present work
aims at a fully relativistic calculation of baryon resonance properties respecting all
constraints of a local field theory like analyticity and unitarity. (Note that also a
K-matrix calculation is unitary by construction.) On the other hand, as compared
to coupled-channel calculations, the present work is more modest by concentrat-
ing mainly on the N∗(1520) and the ∆(1232). Therefore a detailed description of
scattering data is beyond the scope of the present work.
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The work is structured in the following way:
Chapter 2 is an introduction to the field theoretical description of massive higher

spin fields. Especially the Proca [Pro36] and Rarita-Schwinger [RS41] equa-
tions will be derived. Possible free Lagrangians leading to these equations of
motion will be introduced. The free propagator will be given for spin 1 and spin 3/2
particles. Interactions of spin 3/2 resonances will be discussed and the Pascalutsa
formalism introduced as a possibility to overcome inconsistencies. This chapter gives
a foundation for the calculation of the selfenergies which will be performed in chapter
3. First the selfenergy of the ρ-meson will be calculated and discussed giving a good
example of the treatment of higher spin fields. Afterwards the calculation of the
selfenergy for spin 3/2 particles in the Pascalutsa framework will be introduced.

In chapter 4 the spectral function will be motivated using the Källen-Lehmann
representation. The dressed propagator is calculated by the Dyson-Schwinger
equation. With the dressed propagator an analytical form for the spectral functions
can be found. The spectral function of the ρ-meson is calculated explicitly and
discussed as an easy example of a higher spin spectral function. The width and the
mass of a resonance will be defined by comparing the spectral function to a Breit-
Wigner form. Later the spectral functions for spin 1/2 and spin 3/2 particles are
presented and the width and the mass of fermionic resonances will be discussed.

In chapter 5 the couplings for the three main channels of the N∗(1520) are in-
troduced and their selfenergies calculated. This will be presented in a somewhat
more general way by including not only the N∗(1520) resonance but also particles
with positive parity and different isospin. To give a better understanding of the
results the non-relativistic limit of the widths will be calculated and compared to
non-relativistic calculations.

The specific results for the ∆(1232) and N∗(1520) will be presented in chapter 6.
In the beginning the parameters used for the calculations are presented. Next the
selfenergies are depicted and discussed for different cut-off parameters. The widths
are discussed next followed by the spectral functions. They will be discussed for
different parameters and compared to simplified versions.

In chapter 7 a summary of the main findings will be given.
In the appendices we present some details about how to calculate the number of

DOF for a theory with constraints.
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2 Massive Higher Spin Fields

In this chapter we will introduce the fields and equations of motion for massive par-
ticles with arbitrary spin and especially for particles with spin 1 and spin 3/2, these
are the massive vector and the Rarita-Schwinger fields. We will introduce suit-
able Lagrangians for the free theory and check whether they include the correct
number of degrees of freedom (DOF) using the method introduced in appendix A.
Interactions for the vector mesons will be introduced in a way preserving the DOF of
the free theory. In the case of the spin 3/2 particles we will discuss problems which
occur when interactions are included. As an example of a consistent interaction for
spin 3/2 particles the Pascalusa formalism will be discussed. In this formalism
the interaction is introduced without spoiling the number of DOF of the free theory.
The correspondence between the Pascalutsa and the conventional couplings will
be investigated.

2.1 Fields and Equations of Motion

We will construct fields obeying the Dirac equation for massive particles with
higher spin. The starting point will be rather general but later it will be specified
to the case of spin 1 and spin 3/2 particles. This derivation is based on [Gre87].

In the rest frame of the particle the solutions of the free Dirac equation are given
as

ψr = ωr(0)e−iεrmt r = 1 . . . 4

εr =

{
+1 r = 1, 2

−1 r = 3, 4

ωr
i (0) = δir i = 1 . . . 4.

Here r labels the different solutions and i the components of the spinor.
Without loss of generality we can take the positive energy solutions and call them
ω(+). It is possible to construct a tensor product

ω̃a1a2...a2s = ω(+)
a1

(0) . . . ω(+)
a2s

(0)

= δa1r1 . . . δa2sr2s .
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2 Massive Higher Spin Fields

We have constructed the product in such a way leading to 2s indices. Now we
search for the totally symmetric part of the above tensor product. There are 2s+ 1
possibilities to do this

ωa1...a2s(0, i = 0) = δa11δa21 . . . δa2s1

ωa1...a2s(0, i = 1) = δa12δa21δa31 . . . δa2s1 + δa11δa22δa31 . . . δa2s1 + . . .+

+ δa11δa21δa31 . . . δa2s2

...

ωa1...a2s(0, i = 2s) = δa12δa22 . . . δa2s2.

All ψr(x) are also eigen-functions of the total spin operator

Σ3
a1a′1

=

(
σ3 0
0 σ3

)

where σ3 is the third Pauli matrix defined as

σ3 =

(
1 0
0 1

)
.

Then the totally symmetric spinor as constructed above is also an eigen-vector of
the totally symmetric spin operator. It can be constructed in this way

1

2
~Σ3

a1a′1a2a′2...a2sa′2s
=

1

2
~Σ3

a1a′1
δa2a′2 . . . δa2sa′2s

+
1

2
~Σ3

a2a′2
δa1a′1 . . . δa2sa′2s

+ . . .+

+ . . .+
1

2
~Σ3

a2sa′2s
δa1a′1 . . . δa2s−1a′2s−1

.

When calculating the eigen-functions for each symmetric tensor product the solu-
tions are

1

2
~Σ3ω(+)(0, j) = ~(s− j)ω(+)(0, j).

Because j = 0, . . . , 2s the total number of eigen-vectors are 2s + 1 and the eigen-
solutions are s, s − 1, . . . ,−s + 1,−s. This shows that the symmetric multispinors
defined above are the correct fields to describe a particle with spin s where the z
component can take 2s+ 1 different values.

Fields for particles with negative energy can be constructed analogously.
Now it is possible to boost the spinor to get the general fields

ψ(+)
a1...as

(x, p, i) = ω
(+)
a1...2s(p, i)e

−ip·x,

ψ(−)
a1...as

(x, p, i) = ω
(−)
a1...2s(p, i)e

+ip·x.
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2.2 The Proca Equation

The total field is the superposition of these fields. They are the solutions of the
Dirac equation for every index, the so called Bargmann-Wigner equations
[BW48]:

(iγ · ∂ −m)a1a′1ψa′1a2...a2s
(x) = 0,

...

(iγ · ∂ −m)a2sa′2s
ψa1a2...a′2s

(x) = 0.

(2.1)

Because each component is a solution of the Dirac equation it is also a solution of
the Klein-Gordon equation

(
∂µ∂

µ +m2
)
ψa1a2...a2s(x) = 0. (2.2)

The ψa1a2...a2s(x) represent particles with mass m and spin s. This can be concluded
because it has (2s+1) linear independent components where each of them is an eigen-
function of the total spin operator. Additionally all components obey equation (2.1)
and (2.2).

2.2 The Proca Equation

From the general consideration above we want to calculate the equations of motion
for vector fields. Vector particles have spin 1, which means that the Bargmann-
Wigner fields have two indices. The two Dirac equations of the symmetric matrix
ψab are of the form of equation (2.1)

(iγ · ∂ −m)aa′ψa′b(x) = 0,

(iγ · ∂ −m)bb′ψab′(x) = 0.

Because ψab is a symmetric 4×4 spinor it can be expanded in the Clifford algebra
D of the form

ψab = (1)ab s+ (γµ)abvµ + (σµν)abtµν + (γ5)abp+ (γ5γ
µ)abwµ,

where σµν is defined as:

σµν =
1

2
[γµ, γν ] . (2.3)

ψ is symmetric which means that ψT = ψ. This would transpose the elements of the
Clifford algebra, which will give constraints on the coefficients. But it is not an
easy calculation. Because the charge conjugation operator C = iγ0γ2 can be used to
transpose Dirac gamma matrices, CγµC = (γµ)T , it is more convenient to expand
ψ in elements of DC. This leads to

ψab = (C)abs+ (γµC)abvµ + (σµνC)abtµν + (γ5C)abp+ (γ5γ
µC)abwµ.

7



2 Massive Higher Spin Fields

Some basic properties of C are

C = iγ2γ0 = −C−1 = −C† = −CT

⇒ C2 = −C−1C = −1

⇒ CTC = 1

Now we can calculate the symmetry property of each of the elements of DC.

CT = −C ⇒ antisymmetric

(γµC)T = CT (γµ)T = CTCγµC = γµC ⇒ symmetric

(σµνC)T =
1

2
(γµγνC − γνγµC)T

=
1

2

(
CTCγνCCγνC − CTCγµCCγνC

)
= −σνµC = σµνC ⇒ symmetric

(γ5C)T = CT (γ5)T = −Cγ5 = −γ5C ⇒ antisymmetric

(γµγ5C)T = CT (γ5)T (γµ)T = γ5γµC = −γµγ5C ⇒ antisymmetric

Because ψ is totally symmetric, only the symmetric quantities of DC can have non
vanishing values. ψ has then the form

Ψab = (γµC)abvµ + (σµνC)abtµν

with vµ as a vector and tµν an antisymmetric covariant tensor. From the Barg-
mann-Wigner equation it follows that

(iγ · ∂ −m)aa′ ((γ
µC)a′bvµ(x) + (σµνC)a′btµν(x)) = 0,

(iγ · ∂ −m)bb′ ((γ
µC)ab′vµ(x) + (σµνC)ab′tµν(x)) = 0.

One sees that the coefficients vµ and tµν do not take part in the matrix multiplication.
As a consequence it is possible to take them out to the right of all γ matrices. Using
the relation CγT

µ = −γµC also C can be taken to the right. This leads to the
equations

(iγαγµ∂αvµ −mγµvµ + i∂αγ
ασµνtµν −mσµνtµν)C = 0,

(−iγµγα∂αvµ −mγµvµ − i∂ασ
µνγαtµν −mσµνtµν)C = 0.

Adding both equations leads to

σαµC (∂αvµ − ∂µvα − 2mtαµ)− 2γµC (2∂αtαµ +mvµ) = 0.

Because the matrices σαµC and γµC are linearly independent each term has to be
zero separately. Introducing F µν = 2tµν and Aµ = 1

m
vµ the equation given above

8



2.2 The Proca Equation

leads to the Proca equation [Pro36]:

F µν = ∂µAν − ∂νAµ, (2.4)

∂µF
µν +m2Aµ = 0. (2.5)

Contracting equation (2.5) with ∂µ leads to a constraint

m2∂µA
µ = 0.

Using this constraint the equation of motion can be written as

(¤ +m2)Aµ = 0,

∂µA
µ = 0

(2.6)

giving it a similar form as for a scalar field. Alternative derivation and further
information on the vector fields can be found in standard textbooks e.g. [Gas66]
[Wei95][Ryd96].

2.2.1 The Lagrangian

For the equation of motion a Lagrangian can be constructed of the form

L = −1

4
FµνF

µν +
1

2
m2AµA

µ. (2.7)

We use Dirac’s formalism for counting degrees of freedom (DOF) explained in ap-
pendix A and especially theorem 7 presented there to derive the number of DOF for
a massive and for a massless vector field.

The generalized momentum derived from the Lagrangian (2.7) is

Πµ =
∂L

∂(∂0Aµ)
= F µ0.

One sees immediately the first primary constraint arising due to the antisymmetric
structure of the field strength F µν . The primary constraint is

Π0 ≈ 0 = φ1.

We can write the Hamiltonian as stated in equation (A.1)

H = Πµ∂0Aµ − L
= F r0∂0Ar +

1

4
F rsFrs +

1

2
F r0Fr0 − 1

2
m2AµA

µ

=
1

4
F rsFrs − 1

2
F r0Fr0 + F r0∂rA0 − 1

2
m2AµA

µ

=
1

4
F rsFrs +

1

2
ΠrΠr − A0∂rΠ

r − 1

2
m2A0A0 +

1

2
m2ArAr.
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2 Massive Higher Spin Fields

Now we need to work out the consistency check explained in section A.2.1

0 ≈ [Π0,H].

When expanding the Poisson bracket one gets

[Π0,H] =
∂Π0

∂Aµ

∂H
∂Πµ

− ∂Π0

∂Πµ

∂H
∂Aµ

= ∂rΠ
r +m2A0 = 0.

The above equation is of the form of category 2 in section A.2.1. This leads to the
secondary constraints

φ2 = ∂rΠ
r +m2A0.

Now we have to perform a consistency check for this constraint again:

0 ≈ [φ2,H] + u1[φ2, φ1].

Calculating the first term one gets

[φ2,H] =
∂φ2

∂Aµ

∂H
∂Πµ

− ∂φ2

∂Πµ

∂H
∂Aµ

= −m2∂rA
r.

The second term gives

[φ1, φ2] = [Π0, ∂rΠ
r +m2A0]

=
∂Π0

∂Aµ

∂φ2

∂Πµ
− ∂Π0

∂Πµ

∂φ2

∂Aµ

= −m2.

(2.8)

When comparing these solutions with definition 1, in Appendix A, one finds that φ1

and φ2 are first class constraints for m = 0 and second class constraints for m 6= 0.
The mass plays a crucial role for the number of DOF in this theory.

Now we discuss further the case of massless particles. As long as category 1 or 3
is not fulfilled, one has to impose the consistency checks on each constraint. This
has to be done until category 1 or 3 in section A.2.1 is fulfilled. It is trivially fulfilled
for m = 0. For m = 0 the primary constraint φ1 and secondary constraint φ2 are
first class constraints and the consistency conditions reduce to 0 = 0. This means
we have found all constraints and the extended Hamiltonian of equation A.15 is
fully known as

HE = H + v1φ1 + v2φ2.
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2.2 The Proca Equation

The v’s are arbritrary functions leading to a gauge symmetry of the theory. Because
we have found all constraints it is possible to count the degrees of freedom. The fields
are real four-vectors which leads to eight DOF. We have two primary and secondary
constraints reducing the DOF to six. Both constraints are first class constraints
reducing the DOF further to four. Which leads to 2 + 2 DOF as it should be for
a massless spin 1 vector field e.g. the photon. (Note that we count separately field
amplitude and its time derivative. This corresponds to position and velocity in a
mechanical system.)

For the case of a massive vector field equation (2.8) does not reduce to zero leading
to a consistency equation of category 3. This gives a solution for u1 = ∂rA

r. No
furher constraints arise so we can write the extended Hamiltonian as

HE = H + u1φ1.

In contrast to the massless case u1 is not an arbritrary function anymore. The
massive vector field possesses no gauge symmetry. Because there are no first class
constraints in the theory the number of DOF raises to 3 + 3 as it should be for a
massive spin 1 vector field.

2.2.2 The Propagator

Using the Lagrangian of equation (2.7) the free propagator of the vector field
[PLM04] can be derived. The mass m which appears in the Lagrangian is the
bare mass of the particle. The bare mass is in general not equal to the physical
mass. To separate both masses the bare mass will be called m0 and the physical
mass mR. Using this convention the undressed propagator has the form:

Dµν
0 =

1

q2 −m2
0 + iε

P µν
T (q)− 1

m2
0

P µν
L (q),

P T
µν(q) = gµν − qµqν

q2
,

PL
µν(q) =

qµqν
q2

,

with P T
µν(q) as the transverse and PL

µν(q) as the longitudinal projector. These pro-
jectors satisfy

PL + P T = 1,

(PL)2 = PL,

(P T )2 = P T ,

PLP T = P TPL = 0,

qµP T
µν(q) = qνP T

µν(q) = 0.

11



2 Massive Higher Spin Fields

2.2.3 Interactions

In section 2.2 a formalism for a massive vector field was introduced to describe a
particle with spin 1 leading to an equation of motion and a constraint in (2.6). The
constraint is needed because the field has 2× 4 DOF whereas the physical massive
and massless vector field have 2× 3 and 2× 2 internal DOF, respectively. In section
2.2.1 we showed that the free Lagrangian (2.7) has the correct number of DOF for
the massive and massless case. Furthermore it was shown that the massless case is
invariant under a gauge transformation. The mass term breaks this gauge invariance
changing all first class constraints to second class constraint. This rises the number
of DOF to the right value.

For the free case this is fine but what will happen when interactions are intro-
duced? These interactions can violate the constraints leading to unphysical DOF.
It is desirable to have a formalism which starts from a correct free theory and in-
troduces interactions correctly.

An interesting point to start with is the gauge invariance of the massless case. It
is interesting because theorem 7 in appendix A says that gauge transformations with
the same number of parameters and time-derivatives acting on these parameters will
always lead to the same number of constraints. Thus by introducing an interaction
term which possesses the same gauge transformations as the free massless theory
one will have the same number of constraints.

For example couplings for photons can be introduced in this way. The field tensor
F µν is invariant under the gauge transformation Aµ → Aµ + ∂µε. A coupling of the
form

igAµj
µ

with matter fields entering j will transform as

igAµj
µ → ig(Aµj

µ + ∂µεj
µ) = ig(Aµj

µ − ε∂µj
µ).

Requiring that the interaction should also be gauge invariant under these transfor-
mation leads to the condition ∂µj

µ = 0 which is just current conservation.
Introducing a mass will break the gauge symmetry and change all first class con-

straints to second class constraints. But because the interaction has not introduced
further constraints a mass term which rises the number of DOF to the correct num-
ber in the free case will also give the correct number of DOF in the interacting case.
The presented scheme can be used generally for particles with spin ≥ 1.

2.3 The Rarita Schwinger Equation

Now we work out the fields for spin 3/2 particles. First we will calculate the equa-
tions of motion for spin 3/2 particles. In this case the Bargmann-Wigner mul-
tispinor has 2s = 3 indices and equations. The Bargmann-Wigner equations

12



2.3 The Rarita Schwinger Equation

are:

(iγ · ∂ −m)aa′Ψa′bc(x) = 0,

(iγ · ∂ −m)bb′Ψab′c(x) = 0,

(iγ · ∂ −m)cc′Ψabc′(x) = 0.

Ψabc(x) is a totally symmetric Dirac quantity and can be expanded in the Clif-
ford algebra D. As discussed for the case of the vector meson it is more convenient
to expand Ψ in DC. Because Ψ is totally symmetric, only the symmetric quantities
of DC will give nonvanishing values. Because Ψ has now three indices it is possible
to expand it in two different ways. First

Ψabc = (γµC)abvµc + (σµνC)abtµνc,

this guarantees symmetry of the indices a and b with vµ as a vector spinor and tµν

an antisymmetric covariant tensor spinor but also

Ψ′
abc = (γµC)acvµb + (σµνC)actµνb,

which guarantees symmetry of the indices a and c. When both equations are equal
then Ψ is totally symmetric with respect to its indices. To explore further constraints
we contract both equations with an element of the Clifford algebra Γbc ∈ D

ΨabcΓbc = (γµC)abΓbc(vµ)c + (σµνC)abΓbc(tµν)c,

Ψ′
abcΓbc = (γµC)acΓbc(vµ)b + (σµνC)acΓbc(tµν)b

± (γµC)acΓcb(vµ)b ± (σµνC)acΓcb(tµν)b

= ±ΨabcΓbc.

The plus sign occurs when Γbc is symmetric. Then everything is alright because due
to the symmetric structure Ψabc = Ψ′

abc. But when Γbc is antisymmetric then

ΨabcΓbc = 0.

Because there are three linear independent antisymmetric quantities in the Clif-
ford algebra we get three constraints. For simplicity we choose Γbc ∈ CTD. Then
the three constraints are

γµvµ + σµνtµν = 0, (2.9)

γµγ5vµ + σµνγ5tµν = 0, (2.10)

γµγ5γ
αvµ + σµνγ5γ

αtµν = 0. (2.11)

Multiplication of the first equation with γ5 from the left and substraction and ad-
dition with (2.10) leads to equivalent equations:

γµv
µ = 0, (2.12)

σµνt
µν = 0. (2.13)

13



2 Massive Higher Spin Fields

Using equations (2.12) and (2.13) we want to investigate equation (2.11). First
we multiply this equation with γ5. To use equations (2.12) and (2.13) we need to
commute the γµ matrices and the σµν matrices. The (anti)commutation relations
are

{γµ, γν} = 2gµν , (2.14)

[γα, σµν ] = 2(gαµγν − gανγµ). (2.15)

Then (2.11) reduces to

vµ − 2γνt
νµ = 0.

This equation already contains (2.13) since when we contract it with γµ and use
(2.12) we obtain (2.13). To summerize we find:

γµv
µ = 0, (2.16)

vµ = 2γνt
νµ. (2.17)

These are 4 + 16 = 20 linear equation for the 16 + 24 = 40 components of vµ and
tµν , which is the correct number of components for a total symmetric tensor of rank
three in a four-dimensional vector space.

With these representations for Ψ we can try to get some information out of
the Bargmann-Wigner equations. The first Bargmann-Wigner equation con-
tracted with the first component of Ψ leads to

[(iγα∂α −m)γµC)]ab v
µ
c + [(iγα∂α −m)σµνC]ab t

µν
c = 0.

Contracting the second Bargmann-Wigner equation the second component of Ψ
will transpose the Dirac matrices

[(i(γα∂α −m)γµC)]Tab v
µ
c + [(iγα∂α −m)σµνC]Tab t

µν
c = 0

⇔ [(iγµ(γα∂α −m)C)]ab v
µ
c + [σµν(iγα∂α −m)C]ab t

µν
c = 0.

Subtracting these two equations and using the commutation relations leads to two
equation

−2itµν =
1

m
(∂µvν − ∂νvµ) ,

−2∂µit
µν = −mvµ.

We define ψµν = −2itµν and ψµ = 1
m
vµ. The above equation can be written in a

more convenient way

ψµν = ∂µψν − ∂νψµ, (2.18)

∂µψ
µν = −m2ψµν . (2.19)

14



2.3 The Rarita Schwinger Equation

Because of the antisymmetry of ψµν we find ∂µψ
µ = 0. This leads to the usual

Klein-Gordon equation

¤ψµ +m2ψµ = 0.

Now it is possible to use equation (2.17) to get a first order equation of motion for
ψµ:

mψµ = iγνψ
νµ = iγν(∂

νψµ − ∂µψν) = iγ · ∂ψµ.

In the last two steps we used equation (2.18) and (2.16). This equation is just the
Dirac equation for every Lorentz component.

So a spin 3/2 particle can be described as a vector spinor field where all Lorentz
components fulfill the Dirac equation

(iγ · ∂ −m)ψµ = 0

and four constraints

γµψ
µ = 0.

All other constraints can be derived from these two equations. These equations are
the Rarita-Schwinger equations [RS41] for spin 3/2 particles.

2.3.1 The Langrangian

There are different ways to find a Lagrangian for the Rarita-Schwinger fields.
Allready in [RS41] a possible Lagrangian was proposed. The first Lagrangians
for massive particles with arbritrary higher non-integer spin were introduced in
[SH74]. Later also proposals for massless fields arose [FF78].

Already in the first paper of Rarita and Schwinger [RS41] a gauge invariance
of the massless fields was pointed out. Later in [Cur79] it was shown that starting
with a Dirac field with j Lorentz indices where each component obeys the Dirac
equation, unique Lagrangians can be found for massless higher spin particles when
requiring invariance with respect to a local gauge transformation of the form

δΨµ1..µj
= (1/j)[∂µ1εµ2...µj

+ ...+ ∂µj
εµ1...µj−1

]. (2.20)

When looking for the most general free Lagrangian one arbritrary parameter
shows up which is fixed when requiring above gauge transformation. This is meant
when talking about ”unique” Lagrangians. These Lagrangians describe parti-
cles of spin s = j + 1/2.

As an example we want to show how this local transformation leads to the correct
DOF for the case of spin 3/2 fields.
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2 Massive Higher Spin Fields

The spin 3/2 Rarita-Schwinger field has 16 complex components. Four from
the Dirac structure on which a Lorentz structure is introduced. For the case of
spin 3/2 fields equation (2.20) can be written

ψµ → ψµ + ∂µε. (2.21)

With theorem 7 in appendix A it is easy to calculate the DOF for this theory. For
a massless field we expect 2 components. Each component is complex-valued and
has therefore 2 DOF. The number of independent components can be calculated as

2×Ncomp − 2×NI −NII

and should yield 2 × 2. Here Ncomp is the number of complex components of the
field. NI is the number of first class constraint and NII the number of second class
constraints.

From theorem 7 we can calculate NI . The components of the parameters of the
local transformation is equal to the components of ε. Because ε is a Dirac quantity
it has n = 4 components. The highest order in the time derivative of the local
transformation is d = 1 so

NI = n× (d+ 1) = 4× (1 + 1) = 8.

The total number of second class constraints is according to theorem 7:

NII = Ncomp − n = 16− 4 = 12.

Keeping in mind that every first class constraint reduced two DOF and every second
class constraints one DOF the total number of DOF is then

2× 16− 2× 8− 12 = 4.

Thus a Lagrangian of the field ψµ invariant with respect to the gauge transfor-
mation (2.21) leads to the correct number of DOF.
A suitable Langrangian leading to the correct equation of motion and constraints is

L =
1

2
ψ̄µ{σµν , (i∂/)}ψν

where σµν is defined in (2.3). The invariance is readily checked by the identity:

{σµν , γα} = εµναλγ
λγ5. (2.22)

The massive case can be introduced by breaking the gauge symmetry. This will
be generated by the mass term. Such an explicit breaking of the symmetry turns
all first class constraints into second class constraints. This has to be done in such
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2.3 The Rarita Schwinger Equation

a way that the total number of DOF is 2× (2s+1), in our case of spin 3/2 particles
8. Introducing the mass term by replacing the derivative in the Lagrangian by

∂µ → ∂µ +
1

4
iMγµ

leads to the correct number of DOF [PT99]. This leads to a Lagrangian of the
form

L =
1

2
ψ̄µ{σµν , (i∂/−M)}ψν . (2.23)

When starting with the requirement that each component of the field obeys the
Dirac equation and that the massless case is invariant under a gauge transformation
of the form (2.21) leads to the correct Lagrangian with respect to the DOF of the
theory.

2.3.2 The Propagator

From the Lagrangian of the free Rarita-Schwinger field derived in section 2.3.1
we can extract the propagator as the Green’s function of the equation [dJM92]

{σµν , (p/−M)} Gντ
0 = gµ

τ . (2.24)

The free Rarita-Schwinger propagator can be expanded in the basis of the pro-
jection operators of the spin states. The definition used here is taken from [dJM92]
apart from a misprint there. The projection operators are given by

P 3/2 =gµν − 1

3
γµγν − 1

3p2
(p/γµpν + pµγνp/),

P
1/2
11 =

1

3
γµγν − pµpν

p2
+

1

3p2
(p/γµpν + pµγνp/),

P
1/2
22 =

pµpν

p2
.

For a complete system one also needs

P
1/2
12 =

1√
3p2

(pµpν − p/γµpν),

P
1/2
21 =

1√
3p2

(p/pµγν − pµpν).

This set of projection operators satisfies the orthonormality and completeness con-
ditions [VN81]

(P I
ij)µν(P

J
kl)

νδ =δIJδjk(P
J
il )µ

δ, (2.25)

P 3/2 + P
1/2
11 + P

1/2
22 =gµν . (2.26)

17



2 Massive Higher Spin Fields

Expanding the propagator in these projection operators reads

Gµν
0 = AP 3/2 +B P

1/2
11 + C P

1/2
22 +DP

1/2
12 + E P

1/2
21

where the indices of the projection operators are omitted.
Also the operator in equation (2.24) can be written in this basis leading to an

equation for the propagator of the form

[
(p/−M)P 3/2 − 2(p/−M)P

1/2
11 +

√
3MP

1/2
12 +

√
3MP

1/2
21

]
Gµν

0 = P 3/2+P
1/2
11 +P

1/2
22 .

On the right hand side we used equation (2.26) the completeness of these projection
operators. Using also the orthonormality conditions (2.25) it is possible to extract
the solutions

A =
p/+M

p2 −M2
,

B = 0,

C = − 2

3M2
(p/+M),

D =
1√
3M

,

E = D,

leading to the free propagator of the form

Gµν
0 =

p/+M

p2 −M2
P 3/2 − 2

3M2
(p/+M)P

1/2
22 +

1√
3M

(P
1/2
12 + P

1/2
12 ). (2.27)

When inserting the projection operators the propagator can be written in a form
often found in the literature [Kor97][PT99]

Gµν
0 =

p/+M

p2 −M2

[
gµν − 1

3
γµγνν − 2

3M2
pµpµ +

1

3M
pµγν − pνγµ

]
.

An interesting observation is that only the part of the propagator proportional to
the spin 3/2 state has a pole structure (first term in equation (2.27)). Thus, on-shell
the propagator only propagates spin 3/2 fields.

2.3.3 Interacting Spin 3/2 Particles

For the case of spin 3/2 particles problems arise when the Rarita-Schwinger fields
are coupled to photons via minimal coupling. Johnson and Sudarshan [JS61] showed
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2.3 The Rarita Schwinger Equation

that such a coupling leads to a non-positive definite anticommutation relation. A
few years later Velo and Zwanziger [VZ69] showed that the propagation becomes
acausal. Later it was shown that both problems have the same origin [KT87][Jen74].
They arise due to the above mentioned violation of the constraints by the interaction
[Cox89]. This leads to unphysical extra DOF which manifest themselves as a lower
spin background.

A coupling of spin 3/2 fields to a nucleon and a pion was introduced 1971 in
[NEK71] as the most general Lagrangian containing only a first-order derivative.
With h.c. as the hermitian conjugate it reads

Lint =
fRNπ

mπ

ψ̄µΘµνΨ∂µφ+ h.c., (2.28)

Θµν = gµν +

(
−Z − 1

2

)
γµγν .

This coupling is still widely used for hadronic interactions and often referred to as
the conventional coupling to spin 3/2 fields. Z in the Lagrangian is a parameter.
The authors claimed in the original paper that when requiring that the interaction
obeys the correct (anti)commutation relations Z has to take the value 1

2
.

As a reaction to this paper Hagen [Hag71] showed that this claim is incorrect
because the anticommutation relations are non-positive definite. Later Singh [Sin73]
showed that this coupling also propagates particles in an acausal way.

In 2.2.3 a possible solution was already discussed. Here we want to apply it to
the case of spin 3/2 particles.

2.3.4 The Pascalutsa Formalism

In 2.2.3 a possible scheme to introduce consistent couplings was described. In section
2.3.1 it was shown that the free massless Rarita-Schwinger field is invariant
under a gauge transformation of the form ψµ → ψµ + ∂µε. In the same section it
was shown that the free massless field possesses the right number of DOF and a
possible mass term was introduced that breaks the gauge invariance and rises the
number of DOF to the correct value of 2 × (2s + 1). An interaction Lagrangian
posessing the same gauge invariance as the free massless theory will not introduce
further constraints. The mass term that breaks the symmetry in the correct way for
the free case will do so also in the interacting case.

Note that the gauge invariance discussed here has nothing to do with the gauge
invariance of the standard model. It is only needed as a tool to construct the correct
interaction. Because it is explicitly broken by the mass term no physical symmetries
arise.

As an example we will work out possible interactions for the easiest hadronic case,
the N∆π coupling. The lowest in derivative and explicitly gauge invariant πN∆
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Figure 2.1: Feynman ∆-exchange graph.

interaction can be written as [Pas98]

Lint = gΨ̄σµν(∂µψν)φ+ h.c. (2.29)

This Lagrangian is gauge invariant under the transformation introduced in equa-
tion (2.21). The change after applying the gauge transformation is

δLint = gΨ̄σµν(∂µ∂νε)φ+ h.c. = 0.

It is zero because ∂µ∂ν is symmetric under exchange of indices but σµν is antisym-
metric.

However this interaction is trivial because it couples to ∂ · ψ and γ · ψ, the spin
1/2 sector of the ∆. One sees it explicitly when writing σµν = −gµν + γµγν . The
Lagrangian (2.29) can be transformed as:

Lint = gΨ̄(−gµν + γµγν)(∂µψν)φ+ h.c.

= gΨ̄(−∂ · ψ + ∂ · γ γ · ψ)φ+ h.c.

Calculating the scattering amplitude with the above Lagrangian will lead to a van-
ishing contribution. The amplitude corresponding to a tree-level Feynman graph,
depicted in figure 2.1, for the πN scattering via a virtual ∆ is

M(p) = Γα(p)Gαβ(p)Γβ(p) = 0.

The explicit calculation is straightforward: The vertex functions are given by

Γα(p) ∼ pµσµα.

Due to the product of symmetric and antisymmetric quantities the contraction of
the vertex function with momentum is zero:

pαΓα(p) = 0.
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Then the only parts of the Rarita-Schwinger propagator which could have non-
zero contributions are

Gαβ
eff =

1

p/−M + iε
(gαβ − 1

3
γαγβ)

=
p/+M

p2 −M2 + iε
(gαβ − 1

3
γαγβ).

Now it is possible to calculate M

M(p) = Γα(p)Gαβ
eff (p)Γβ(p)

= Γα(p)
p/+M

p2 −M2 + iε
(gαβ − 1

3
γαγβ)Γβ(p).

Using equation (2.15) one can calculate

[Γα, p/] = −2
(
p2γα − pαp/

)
.

Commutating Γα with p/ in the numerator of Gαβ
eff gives

M = M1 +M2

with

M1(p) =
p/+M

p2 −M2 + iε
Γα(p)(gαβ − 1

3
γαγβ)Γβ(p)

∼ pµσµα(gαβ − 1

3
γαγβ)σνβp

ν

= pµσµαg
αβσνβp

ν + pµσµα(−1

3
γαγβ)σνβp

ν

= −8pµγµγνp
ν − 4pµgµνpν + 12pµγµγνp

ν

= −12p2 + 12p2 = 0

and

M2(p) = −2
(
p2γα − pαp/

) (
gαβ − 1

3
γαγβ

)
Γβ

∼ p2γβΓβ − p/pβΓβ − 1

3
p2γαγ

αγβΓβ +
1

3
p2γβΓβ.

Because pβΓβ = 0 and γαγ
α = 4 above calculation reduces to

M2(p) ∼ p2γβΓβ − 4

3
p2γβΓβ +

1

3
p2γβΓβ = 0.
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Because the total scattering amplitude is the sum of both quantities it is also zero.
This already shows that the basic idea is reasonable because the spin 1/2 parts
of the Rarita-Schwinger fields are ”invisible” and do not have contributions to
physical quantities and processes.

The next lowest in derivatives gauge invariant interaction can be written as [Pas98]

L = fεµναβΨ̄γ5γα(∂µψν)∂βφ+ h.c. (2.30)

Let us check the gauge invariance: The change in the Lagrangian is

δL = fεµναβΨ̄γ5γα(∂µ∂νε)∂βφ+ h.c. = 0.

Also here the coupling of a symmetric quantity ∂µ∂ν to the antisymmetric εµναβ

guarantees that this Lagrangian is invariant under the gauge transformation. The
Lagrangian defined in equation (2.30) can be written in a manifestly gauge in-
variant way as known from the electromagnetic case

L = fΨ̄γ5γµG̃
µν∂νφ+ h.c. ,

Gµν = ∂µψν − ∂νψµ,

G̃µν =
1

2
εµν%σG%σ.

The expression for the vertex reads

Γµ(k, p) = i g εµναβpνγ5γαkβ.

Now the Feynman amplitude for figure 2.1 does not vanish leading to

M(k′, k; p) = Γα(k′, p)Gαβ(p)Γβ(k, p)

=
f 2

p/−m
p2P

3/2
αβ (p)k′αkβ.

In the second step the Levi-Cevita tensor is exchanged by Dirac matrices using
identity (2.22). P

3/2
αβ (p) is the spin 3/2 projection operator defined above. This

operator has the well-known property of projecting on the spin 3/2 states and is a
clear signature of spin 3/2 components. This amplitude is independent of the spin
1/2 sector of the Rarita-Schwinger field.

Here the vertex function also vanishes when contracted with the momentum of
the Rarita-Schwinger field. This is a general feature of particles with gauge
symmetries and known in electrodynamics under the name Ward identity [PS95].
When looking at it on a technical basis the Rarita-Schwinger field ψµ always
couples via a derivative. The change after a gauge transformation is then always
a symmetric quantity ∂αψβ → ∂αψβ + ∂α∂βε. Thus there will be an antisymmetric
part in the Lagrangian to make the gauge transformed part zero, let us call it
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Aµβ. Because on the Feynman graph level all derivatives will become momenta of
the particle ∂αψβ → pαψβ the vertex function will be

Γµ ∼ pβA
µβ.

Contraction with momentum will give a similar result as the gauge transformation

pµΓµ ∼ pµpβA
µβ = 0.

When looking at the projection operators for the spin states defined above one
sees that only the projection operator on the spin 3/2 states have parts which are
independent of p, so on the Feynman graph level the spin 1/2 states will decouple
and the effective propagator will read

Gµν
0 eff =

1

p/−M + iε
P 3/2.

With the same arguments as given above also couplings to other hadrons can be
constructed as will be done in section 5.3 and 5.4.

2.3.5 Correspondence of Conventional and Pascalutsa
Interactions

After establishing the Pascalutsa formalism as a tool to get consistent interac-
tions one needs to study the connections between conventional and Pascalutsa
couplings. It is possible to establish a correspondence theorem between two La-
grangians, when taking the perspective that two Lagrangians leading to the
same observables are equivalent. In the language of scattering theory this is true
when different Lagrangians lead to the same on-shell S-matrix. Note that to
some extent we have to change our point of view: So far we have first introduced
the free field theory for a spin 3/2 state and then its interaction with other parti-
cles. In other words, the spin 3/2 state was the central object. However, discussing
S-matrix theory one start from the asymptotic states. The spin 3/2 state, e.g. the
∆, is an intermediate state formed by the asymptotic ones, e.g. N and π. Therfore
when talking about correspondence of different interactions, one means different
interactions of the asymptotic states.

By taking this point of view Pascalutsa showed explicitly in [Pas01] that an ”in-
consistent” interaction of massive spin 3/2 fields can be related on the S-matrix level
to a consistent one by a redefinition of the spin 3/2 fields.

Such redefinitions of fields can be done generally as was shown in [KOS61] and
[CWZ69]. An interaction Lagrangian with a set of variables φ can be written as

L[φ] = L0[φ] + L1[φ]

23



2 Massive Higher Spin Fields

where L0[φ] is the Lagrangian of the free field and L1[φ] the interaction La-
grangian. A further set of variables χ can be introduced which expresses φ as a
nonlinear local function of the form

φ = χF [χ], F [0] = 1. (2.31)

It is possible to separate the resulting Lagrangian also in a free and an interacting
part of the form

L[χF [χ]] = L0[χ] + L2[χ].

The on-mass-shell S matrix of L[φ] and

L′[φ] = L0[φ] + L2[φ]

is identical if F [φ] is a local power series in the fields φ and L[φ] is a local power
series in the fields φ and their derivatives.

As shown in [Pas01] a conventional interaction Lagrangian of N, π and ∆
is equivalent to a consistent interaction Lagrangian plus an additional πNπN
contact interaction. On the S-matrix level both approaches can be seen as equivalent
because they yield the same observables.

But from a physical point of view where it is desirable to understand the reactions
taking place it is more appropriate to use the Pascalutsa coupling to separate
between resonances which are formed in the reactions and 4-point interactions.

We have demonstrated that the Pascalutsa framework is sufficient to provide
consistent interactions for higher spin states. We note, however, that the gauge
invariance (2.21) might not be a necessary requirement but only a sufficient one.
Here further answers will be given by ongoing researches in effective field theories
(see e.g. [HWGS05]).

In the following we use the Pascalutsa framework to construct consistent ha-
dronic interactions.
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The selfenergy is introduced in quantum field theory textbooks as part of the renor-
malization procedere [PS95]. More generally it is defined as the one-particle irre-
ducible function.

The importance of the selfenergy in hadronic field theories is that it is used in
the Dyson-Schwinger formalism to dress the propagator as will be introduced in
section 4.2.

In this chapter we will introduce the selfenergy of the ρ-meson. It is needed for
further calculations. Later we will give a short introduction how to calculate the
selfenergy for spin 3/2 states in the Pascalutsa framework. At the end we will
discuss how to calculate selfenergies for a baryon-baryon-meson system.

3.1 Selfenergy of the ρ-Meson

To calculate the selfenergy of the ρ-meson a coupling to pions is needed. A possible
coupling is [HFN93]:

Lρπ = (Dµπ)∗(Dµπ)−m2
ππ

∗π − 1

4
ρµνρ

µν +
1

2
m2

V ρµρ
µ,

Dµ = ∂µ + igρρµ.
(3.1)

With this Lagrangian and the propagator introduced in section 2.2.2 one can
calculate the selfenergy for a vector meson. The selfenergy is depicted as Feynman
graphs in figure 3.1 to one-loop accuracy [HFN93]. Both graphs are needed in the

Figure 3.1: The two contributing graphs for the lowest order calculation of the self-
energy of the ρ-meson.
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lowest order calculation to preserve transversality, i.e. qµΣµν = 0 (for further dis-
cussion see [PLM04]). Note that this is the gauge invariance requirement discussed
in section 2.2.3. The selfenergy is:

−iΣ̃µν(q) =− g2
ρ

∫
d4k

(2π)4

2gµν

k2 −m2
π + iε

+ g2
ρ

∫
d4k

(2π)4

(2k − q)µ(2k − q)ν

(k2 −m2
π + iε)((k − q)2 −m2

π + iε)
.

(3.2)

The first term is independent of the energy and real. The second term is energy
dependent and complex giving the ρ-meson its width.

This selfenergy Σ̃µν is divergent. The denominator of the second integrand is a
polynomial of rank 4, while the numerator has rank 2. This means that for high
energies the theory does not describe the physics anymore. This is expected because
at high energies the ρ-meson is not a pointlike particle but consist of quarks which
will be ”seen”. But when restricting ourselves to low energies the Lagrangian will
be sufficient to describe the physics.

If one wants to preserve the transversality of the selfenergy a regularization via
a cut-off on the vertices is not possible. Similar to [HFN93] we choose a Pauli-
Villars regularization scheme [PS95]. An alternative method by subtracted dis-
persion relations is proposed by [KKW96]. The latter, however, does not yield a
normalized spectral function.

Before we regularize the selfenergy it is possible to learn more about its structure.
As stated above it is transverse which means

qµΣµν(k) = qνΣ
µν(k) = 0.

As shown in [BD67] this means that Σµν is a tensor of rank two which always can
be written as

Σµν(q) =

[
−gµν +

qµqν

q2

]
Σ(q)

= −P µν
T Σ(q)

with

Σ = −1

3
gµνΣ

µν

and PT defined in section 2.2.2.
Using this information the dressed propagator can be derived before calculat-

ing the selfenergy explicitly. This is done by calculating the Schwinger-Dyson
equation:

Dµν
ρ = D0µν

ρ +D0µα
ρ ΣαβDβν

ρ . (3.3)
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3.1 Selfenergy of the ρ-Meson

Using the tensor structure of Σ and inserting it into the Schwinger-Dyson equa-
tion the result for the dressed propagator is:

Dµν
ρ (q) =

1

q2 −m2
0 − Σ

P µν
T (q) +

1

m2
0

P µν
L (q).

Since the selfenergy is transverse it is not surprising that the selfenergy appears only
in the transverse part of the propagator and qµD

µν
ρ = qµD

µν
0 due to the properties

of the projection operators.

The idea of the Pauli-Villars regularization scheme is that the divergences can
be eliminated when adding to the original πρ Lagrangian (3.1) additional interaction
terms where fictitious particles with higher masses Λi are coupled to the ρ-meson.
The description for regularization of the selfenergy will be

Σµν(q) = Σ̃µν(q,mπ)−
∑

i

BiΣ̃
µν(q,Λi)

where the number of substractions depends on the rank of the divergences.

The coefficients Bi will be determined by requiring that the selfenergy is finite.
Λi will be fixed later. Since Λi are large the integrands in (3.2) are unaffected for
small q but cut off smoothly when q ≥ Λi.

Since the first term of equation (3.2) is quadratically divergent two substractions
are needed. The finite result for the selfenergy’s first term is:

Σ1 = 2ig2
ρ

∫
d4k

(2π)4

[
1

k2 −m2
π + iε

−
∑
i=1,2

Bi

k2 − Λ2
i + iε

]
.

The integral converges for

B1 =
Λ2

2 −m2
π

Λ2
2 − Λ2

1

, B2 =
Λ2

1 −m2
π

Λ2
1 − Λ2

2

,

with the solution [PS95]

Σ1 = − gρ

(2π)2

∑
i=1,2

BiΛ
2
i ln

(
Λi

mπ

)
.

Working this out also for the second term one gets for the real and imaginary part
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3 Selfenergies

of the selfenergy a fully analytical form. Taking s = q2 it can be written as:

Re Σ2(s) =− g2
ρ

24π2
s

[
G(s,mπ)−

∑
i=1,2

BiG(s,Λi) + ln

(
ΛB1

1 ΛB2
2

mπ

)]

+
g2

ρ

(2π)2

∑
i=1,2

BiΛ
2
i ln

(
Λi

mπ

)
,

Im Σ2(s) =− g2
ρ

48π
s

[
Θ(s− 4m2

π)

(
1− 4m2

π

s

)3/2

−
∑
i=1,2

BiΘ(s− 4Λ2
i )

(
1− 4Λ2

i

s

)3/2
]
.

The function G is defined as

G(s,m) :=





(
4m2

s
− 1

)3/2

arctan

((√
4m2

s
− 1

)−1
)

0 < s < 4m2,

−1
2

(
1− 4m2

s

)3/2

ln

∣∣∣∣
q

1− 4m2

s
+1q

1− 4m2

s
−1

∣∣∣∣ 4m2 < s, s < 0.

The total selfenergy is the sum of both parts Σ1 and Σ2. Because the most divergent
parts cancel it is possible to take the limit Λ2 → ∞. Only one cut-off parameter
remains Λ = Λ1. The limit yields:

Re Σ(s) =− g2
ρ

24π2
s

[
G(s,mπ)− G(s,Λ)

+ 4
Λ2 −m2

π

s
+ ln

(
Λ

mπ

)]
,

Im Σ(s) =− g2
ρ

48π
s

[
Θ(s− 4m2

π)

(
1− 4m2

π

s

)3/2

− Θ(s− 4Λ2)

(
1− 4Λ2

s

)3/2
]
.

The effect of the Pauli-Villars regularization scheme can be observed in the
imaginary part of the selfenergy. There two identical functions with different mass
terms are subtracted. Taking s → ∞ leads to a constant term which can be seen
when Taylor expanding the brackets:

Im Σ(s) = − g
2
ρ

8π
(Λ2 −m2

π) for s→∞.
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Figure 3.2: Imaginary part of the selfenergy for the ρ-meson in vacuum.

In contrast, without the Pauli-Villars term Im Σ would rise linearly with s for
large s.

The effect of the regularization can be seen in figure 3.2 where the imaginary
part of the selfenergy is depicted. The selfenergy rises for larger

√
s until a value of

approx. 4 GeV where it starts to reach asymptotically a constant value.
The parameter Λ is fixed to 1 GeV. This cut-off region is motivated by the fact

that for hadronic models the quark and gluon degrees freeze out, which is guaranteed
at soft processes much below 1 GeV.

There are two free parameters in the theory. The bare mass of the ρ-meson m0

entering the propagator and the coupling constant gρ. The parameters are fitted in
[HFN93] to the values gρ = 6.05 and mρ = 875MeV . The fit was done by adjusting
the position and the height of the peak in the pion electromagnetic form factor.

3.2 Selfenergy of a Spin 3/2 Particle in the
Pascalutsa Framework

The selfenergy has the same structure as the propagator leading to a Dirac struc-
ture for fermionic selfenergies and for the case of the spin 3/2 particle also to a
Lorentz structure.

Due to the completeness of the spin 3/2 projection operators defined in section
2.3.2, the selfenergy can be written as

Σµν = P 3/2a+ P
1/2
11 b+ P

1/2
22 c+ P

1/2
12 d+ P

1/2
21 e

with the Dirac matrices

a = as(p
2) + p/av(p

2)
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3 Selfenergies

and the corresponding decomposition for b-e.

The gauge invariant structure of the interaction leads to a transverse selfenergy

pµΣµν(p) = pνΣ
µν(p) = 0.

This can be written as

(P
1/2
22 )µνΣ

µν = Σµν(P
1/2
22 )µν = 0.

Then some of the terms given above drop out. Since

(P
1/2
22 )(P

1/2
21 ) = (P

1/2
21 )

and

(P
1/2
12 )(P

1/2
22 ) = (P

1/2
12 )

we find

P
1/2
22 c+ P

1/2
21 e = 0,

P
1/2
22 c+ P

1/2
12 d = 0.

Contracting the upper (lower) equation with P
1/2
11 from right (left) leads to e = 0

and d = 0 since

(P
1/2
21 )(P

1/2
11 ) = (P

1/2
21 )

and

(P
1/2
11 )(P

1/2
12 ) = (P

1/2
12 ).

Then also c = 0 and the number of coefficients reduces to two

Σµν = P 3/2(a1 + p/a2) + P
1/2
11 (a3 + p/a4). (3.4)

We define for later purposes

Σ =
1

2
P 3/2

µν Σµν

= a

= Σs + p/Σv. (3.5)

30



3.3 Calculation of the Selfenergy for a Resonance-Baryon-Meson System

Figure 3.3: Feynman graph for a resonance selfenergy. The double line denotes the
resonance, the full line the nucleon and the dashed line the pion.

If Σµν is known the coefficients ai can be determined via traces over Σµν :

a1 =
1

8
Tr

(
Σµ

µ − 1

3
γνγµΣµν

)
,

a2 =
1

8p2
Tr

(
p/Σµ

µ − 1

3
p/γνγµΣµν

)
,

a3 =
1

12
Tr

(
γνγµΣµν

)
,

a4 =
1

12
Tr

(
p/γνγµΣµν

)
.

This is a striking result because in the conventional approach all ten coefficients are
needed [Kor97]. We can conclude already here that it is not only feasible to work
in the Pascalutsa framework but much easier.

3.3 Calculation of the Selfenergy for a
Resonance-Baryon-Meson System

Different approaches are possible when calculating the imaginary part of the self-
energy. The most common way is via the optical theorem [PS95]. We will use
an equivalent approach [PLM04][SSW+89]. Indices and derivatives will be omit-
ted for simplicity and it is understood that derivatives in the Lagrangian will be
substituted by momenta in the selfenergy.

For a given Lagrangian of the form

LRBφ = gΨ̄RΓaΨBΓbφ+ cφ∗Γb′Ψ̄BΓa′ΨR

the selfenergy in one-loop accuracy can be calculated using the Feynman graph
depicted in figure 3.3:

Σ(p) = g2i

∫
d4q

(2π)4
Γb′Γa′D(p− q)G(q)ΓaΓb
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3 Selfenergies

with D(k) and G(k) as the propagator of the meson and the baryon, respectively.
The imaginary part is then given as [PLM04][SSW+89]:

Im Σ(p) = −g2

∫
d4q

8π2
Γb′Γa′A(p− q)ρ(q)ΓaΓbΘ(p0 − q0)Θ(q0) (3.6)

with A(k) and ρ(k) as the spectral function of the meson and baryon, respectively.
The spectral function will be defined and discussed in the next chapter. For a stable
scalar particle one gets

A(k)Θ(k0) = δ(k2 −m2)Θ(k0) =

{
1

2k0
δ(k0 −

√
k2 +m2)

1
2|k|δ(|k| −

√
k2

0 −m2)
. (3.7)

For the calculation (3.6) it is convenient to use p = 0 and p0 =
√
s. The presence

of two stable particles allows a complete analytical evaluation of the integral.
The real part Re Σ is calculated via a dispersion relation [PLM04][SSW+89].
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4 The Propagator and its
Representations

Two major components of field theory are the fields and their propagators. In this
chapter we will discuss the propagators of a vector meson and a spin 3/2 baryon. We
start with the spectral representation which defines the spectral function. Then we
will introduce the dressed propagator from which the analytical form of the spectral
function can be deduced. The bare mass and the width of the particles will be
defined by comparing the spectral function to a Breit-Wigner form. This will be
done first for the bosonic case as a simple example and later for the case of spin 3/2
baryons.

4.1 The Källen-Lehmann Representation

The propagator, or more precisely the Feynman propagator of an arbitrary field
φ is defined as the two-point correlation function or two-point Green’s function
[PS95]

D(x, y) = −i〈Ω|Tφ(x)φ(y)|Ω〉. (4.1)

Here Ω is understood as the vacuum of the theory which in general will differ for
interacting and non-interacting theories.
For a non-interacting scalar field of mass m there are analytic solutions of the fields
φ(x). Then it is possible to calculate the two-point function in (4.1) and its Fourier
transform:

D0(q
2) = −i

∫
d4xeiqx〈0|Tφ(x)φ(0)|0〉

=
1

q2 −m2 + iε
.

In an interacting theory there are in general no analytical solutions of φ. The
propagator will not only have a single pole with strength one but several poles can
arise due to bound states as well as branch cuts starting at the threshold energy of
the formation of multi-particle states. But some general features can be deduced.
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4 The Propagator and its Representations

Assuming that the theory has asymptotic free states |n〉 and is invariant under
translation, the momentum and coordinate dependence can be extracted:

〈n|φ(x)|m〉 = 〈n|eiQ·xφ(0)e−iQ·x|m〉
= ei(qn−qm)·x〈n|φ(0)|m〉.

When inserting a total set of eigenstates into the Feynman propagator, it can be
written as

D(x, y) = −i
∑

n

〈Ω|φ(0)|n〉〈n|φ(0)|Ω〉

× (
Θ(y0 − x0)e

−iqn(x−y) −Θ(x0 − y0)e
iqn(x−y)

)

= D(x− y).

Introducing

1 =

∫
d4k δ4(qn − k),

one can define a spectral amplitude

%(q) = (2π)3
∑

n

δ4(qn − k) |〈Ω|φ(0)|n〉|2

with which the propagator will be

D(x, y) =
−i

(2π)3

∫
d4k%(k)

(
Θ(y0 − x0)e

−ik(x−y) −Θ(x0 − y0)e
ik(x−y)

)
.

%(k) is positive semidefinite and only non-zero for k2 ≥ 0 and for k0 ≥ 0 since all
eigenstates satisfy qn ≥ 0 and q0

n ≥ 0. Because %(k) is invariant under Lorentz
transformations one can write

%(k) = ρ(k2)Θ(k0).

The propagator is given as [BD67]

D(x− y) =
−i

(2π)3

∫
d4k %(k)

(
Θ(y0 − x0)e

−ik(x−y) −Θ(x0 − y0)e
ik(x−y)

)

=

∫ ∞

0

dσ2ρ(σ2)D0(x− y)

where D0(x − y) takes the mass σ. In momentum space the propagator can be
written as

D(q2) =

∫ ∞

0

dσ2ρ(σ2)
1

q2 − σ2 + iε
. (4.2)
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4.1 The Källen-Lehmann Representation

To fulfill particle number conservation a normalization condition can be derived
from the quantization condition of the fields [Pos03]

∫ ∞

q2
min

dq2ρ(q2) = 1 (4.3)

where
√
q2
min is the minimal energy to create the boson.

This representation was introduced by Källen and Lehmann [Käl52][Leh54] and
can be found in textbooks as the Källen-Lehmann representation [PS95] or spec-
tral representation [BD67] for fields. The function ρ(q2) is usually called the spectral
function of the field φ.

For the case of a non-interacting spin 1/2 field the Feynman propagator has the
form [PS95]

G0(p) =
1

p/−M + iε
. (4.4)

The Källen-Lehmann representation of the fermionic propagator must be a sum
of elements of the Clifford algebra:

ραβ(p) = ρ(p)gαβ + ρµ(p)γµ
αβ + ρµν(p)σ

µν
αβ + ρ̃(p)γ5

αβ + ρ̃µ(γµγ5)αβ.

After incorporating invariance under Lorentz transformations and invariance un-
der parity only a two terms survive [BD67]

ραβ(p) = ρv(p
2)p/αβ + ρs(p

2)δαβ.

The spectral representation of the Feynman propagater of fermionic particles can
be written as

G(p2) =

∫ ∞

0

dk2[p/ρv(k
2) + ρs(k

2)]
1

p2 − k2 + iε
. (4.5)

ρv and ρs are scalar functions and have some fundamental properties:

ρv(p
2) and ρs(p

2) are both real, (4.6)

ρv(p
2) ≥ 0, (4.7)√

p2ρv(p
2)− ρs(p

2) ≥ 0. (4.8)

As in the scalar case it is possible to derive a normalization condition for ρv [Pos03]
∫ ∞

p2
min

dp2ρv(p
2) = 1. (4.9)

For the case of spin 3/2 fields it is a delicate task to perform a general spectral
representation [Kor97][dJM92]. But in the Pascalutsa framework the effective
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4 The Propagator and its Representations

propagator of the spin 3/2 fields has a similar structure as the spin 1/2 fields (see
section 2.3.4). The effective spectral representation of spin 3/2 fields in the Pasca-
lutsa formalism can then be written as

Gµν
eff (p2) =

∫ ∞

0

dk2[p/ρv(k
2) + ρs(k

2)]
1

p2 − k2 + iε
P 3/2(p2).

This means that in the Pascalutsa framework the spectral functions for spin 1/2
and spin 3/2 particles basically have the same structure which is a great simplifica-
tion.

4.2 The Dressed Propagator

To calculate a propagator for an interacting theory a resummation is appropriate.
This can be done consistently using the Schwinger-Dyson equation (3.3):

D(q2) = D0(q
2) +D0(q

2)Σ(q2)D(q2). (4.10)

where D0 is the bare or non-interacting propagator.

Σ(q2) is the selfenergy of the particle including all possible decay channels. In the
case of a scalar field the geometric series of (4.10) can be summed up. To highlight
the character of the mass as a bare mass we rewrite m → m0. Then the result of
the resummation reads:

D(q2) =
D0(q

2)

1−D0(q2)Σ(q2)

=
1

q2 −m2
0 − Σ(q2)

.

(4.11)

For a fermionic field (4.4) the resummation leads to

G(p) =
1

p/−M0 − Σ(p)
, (4.12)

where M is substituted with M0. The structure of this propagator has the form

G(p) =
Fs + p/Fv

(s̃− M̃2)2 + Z2
(4.13)
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4.3 The Spectral Function

with the quantities (s = p2):

s̃ = s
[
(1− Re Σv)

2 − (Im Σv)
2] , (4.14)

M̃2 = (M0 + Re Σs)
2 − (Im Σs)

2 , (4.15)

Z = 2 [s (1− Re Σv) Im Σv + (M0 + Re Σs) Im Σs] , (4.16)

ReFs = (M0 + Re Σs)
(
s̃− M̃2

)
− Im ΣsZ, (4.17)

ImFs = Im Σs

(
s̃− M̃2

)
+ (M0 + Re Σs)Z, (4.18)

ReFv = (1− Re Σv)
(
s̃− M̃2

)
+ Im ΣvZ, (4.19)

ImFv = −Im Σv

(
s̃− M̃2

)
+ (1− Re Σv)Z. (4.20)

Resummation of the propagator for the Rarita-Schwinger field is also possible.
The free propagator is derived in section 2.3.2:

Gµν
0 (p) =

1

p/−M0 + iε
P 3/2 − 2

3M2
0

(p/+M0)P
1/2
22 +

1√
3M0

(P
1/2
12 + P

1/2
21 ).

After resummation by the Schwinger-Dyson equation the full propagator reads

Gµν(p) =
1

p/−M0 − Σ
P 3/2 +

1

3M2
0

(−2(p/+M0)− b̃)P
1/2
22 +

1√
3M0

(P
1/2
12 + P

1/2
21 )

with Σ and b̃ = a3 − p/a4 taken from equation (3.5) and equation (3.4).
The effective propagator of the spin 3/2 field in the Pascalutsa formalism is

then given as

Gµν
eff =

1

p/−M0 − Σ
P 3/2 = GP 3/2 (4.21)

where in the last step we used equation (4.12). This means that the effective prop-
agator of the spin 3/2 fields can be written as the propagator of the spin 1/2 field
multiplied by the projection operator P 3/2.

4.3 The Spectral Function

Having calculated the dressed propagator the analytic structure of the spectral func-
tion can be easily derived. This will be done for the bosonic and the fermionic case
separately and a summary of the constraints derived in section 4.1 will be given. As
an easy example for a spectral function we calculate it explicitly for the ρ-meson
and discuss its properties.
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4 The Propagator and its Representations

4.3.1 Bosonic Properties

For stable bosons one sees immediately from equation (4.2) that the spectral function
is given as

ρ(q2) = δ(q2 −m2).

For unstable particles the spectral function can be calculated using the property

Im
1

q2 − σ2 + iε
= −πδ(q2 − σ2). (4.22)

Taking the imaginary part of the Feynman propagator leads to

Im D(q2) =

∫ ∞

0

dσ2ρ(σ2)Im
1

q2 − σ2 + iε

since ρ(q2) is a real quantity. Using equation (4.22) one gets

ρ(q2) = − 1

π
Im DF (q2).

With the representation (4.11) of the dressed propagator the bosonic spectral func-
tion can be obtained as:

ρ(q2) = − 1

π
Im D(q) = − 1

π

Im Σ

(q2 −m2
0 − Re Σ)2 + Im Σ2

. (4.23)

ρ is normalized as stated in equation (4.3)

∫ ∞

q2
min

dq2ρ(q2) = 1.

4.3.2 The Spectral Function of the ρ-Meson

Using the selfenergy calculated in section 3.1 the propagator is fully determined.
The spectral function for bosons was introduced in the last section. Due to the
transversity of the coupling the effective propagator of the ρ-meson can be written
as for the scalar case multiplied by the transverse projection operator P T

µν defined
in section 2.2.2. This means that the important structure of the spectral function
is given by equation (4.23).

The result is plotted in figure 4.1 with q2 = s. On the right hand side of the
figure one can see, that the Källen-Lehmann normalization condition introduced
in equation (4.3) is fulfilled. There we have plotted

normρ(s) =

∫ s

4m2

ds′ρ(s′). (4.24)
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Figure 4.1: Left:Spectral function of the ρ-meson in vacuum (full line) as compared
to a simpler Breit-Wigner form (dotted). Right: Normalization func-
tion of the spectral function as defined in (4.24).

One sees that norm(sρ) → 1 for large s.
The calculated selfenergy or the spectral function fully describes the resonance.

From them all measurable quantities can be calculated, e.g. phase shifts. On the
other hand, selfenergies and spectral functions are not directly measurable quanti-
ties. For example, with a reparametrization (2.31) the spectral function of a res-
onance might change without changing any observable. Therefore one introduces
simpler quantities to characterize a resonance which are closer to theory than phase
shifts and closer to experiment than spectral functions. These quantities, the mass
mR of the resonance and its (on-shell) width Γ, are only two numbers instead of a
full spectral shape. The price to pay for such an oversimplification is an ambiguity
how to define mass and width. In the following we will define these quantities by
comparing our spectral function (4.23) to a relativistic Breit-Wigner form [Eea04]

S =
1

π

√
sΓ

(s−m2
R)2 + sΓ2

(4.25)

where Γ is the width and mR the physical mass of the resonance. Note that this is
not the only possibility. We could have taken as well e.g. the peak position of ρ to
define the mass. In turn this means that for complicated selfenergies it should not
be too surprising if the mass as we defined it deviates to some extent from the peak
position.

A direct comparison of the Breit-Wigner form and the spectral function in
equation (4.23) is not possible due to the more complicated structure of the spectral
function. On the other hand, it is convenient to define the particle’s mass and width
at the point where the real part of the inverse propagator, i.e. s − m2

0 − Re Σ(s)
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4 The Propagator and its Representations

vanishes. Then we can expand the denominator of ρ around this point, which is the
physical mass mR = mρ of the ρ-meson:

s−m2
0 − Re Σ ∼ 1

c
(s−m2

ρ) +O((s−m2
ρ)

2). (4.26)

The coefficient c can then be extracted as the first derivative of s −m2
0 − Re Σ on

the mass-shell:

1

c
=

d

ds
(s−m2

0 − Re Σ)

∣∣∣∣
s=mρ

= 1− d

ds
ReΣ

∣∣∣∣
s=mρ

.

Then the spectral function has the form

ρ(s) = − 1

π

Im Σ

(s−m2
0 − Re Σ)2 + Im Σ2

∼ − 1

π

c2Im Σ

(s−m2
ρ)

2 + c2Im Σ2

= − c
π

cIm Σ

(s−m2
ρ)

2 + (cIm Σ)2
. (4.27)

Now the physical mass mρ and the width Γρ can be extracted. This is achieved for
the mass by putting (4.26) on the mass-shell

m2
ρ − (m0)

2 − Re Σ(m2
ρ) = 0.

One can interpret this relation such that the bare mass of the ρ-meson is shifted by
the real part of the selfenergy leading to the physical mass mρ.

Also the width can be read off by comparing (4.27) to the Breit-Wigner form
(4.25). One can read off the width of the ρ-meson from the denominator or numer-
ator leading to the same quantity

Γρ = − c(s)√
s
ImΣ(s)

∣∣∣∣
s=m2

ρ

. (4.28)

Note that without the additional c in front of the Breit-Wigner type form in
(4.27) the spectral function would be normalized incorrectly. The appearance of c
in (4.28) leads to a squeezed or an enlarged width, depending whether c is larger
or smaller than one. Or looking at the definition of c the spectral function will
be squeezed (enlarged) if the derivative of the real part of the selfenergy is larger
(smaller) than zero. This is clear because then the real part of the selfenergy will
increase (decrease).

A further interesting observation is the fact that the width is proportional to
Im Σ/

√
s. As shown in section 3.1 Im Σ reaches a constant value for large s. Be-

cause the width is proportional to Im Σ/
√
s it will reaches zero for large s. This
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4.3 The Spectral Function

Figure 4.2: ρ-meson (double line) decaying into two pions (dashed lines).

is an effect of the Pauli-Villars regularization scheme applied to Im Σ. Without
regularization Im Σ would rise linearly with s and the width with

√
s for large s.

Such a width would spoil the normalization of the spectral function.

Now we can compare the width of the ρ-meson with the general property that
close to threshold the energy dependence of the width is determined by the orbital
angular momentum l

Γ(
√
s ≈ √

sthr) ∼ q2l+1

with q as the center of mass momentum of the decay products. Away from threshold
further powers of the momenta can occur due to relativistic effects. Around threshold
the kinetic energies are small compared to the mass of the particles because most
of the energy was used to create the particles. Because the ρ-meson has negative
parity and the pion also has negative parity the angular momentum has to be at
least l = 1. Around threshold the width has the form

Γρ(
√
s ≈ √

sthr) ∼ q3. (4.29)

Because the width is proportional to the imaginary part of the selfenergy cal-
culated in section 3.1 we can write its analytical form for small kinetic energies
as

Γρ = − c√
s
ImΣ ∼ s√

s

(
1− 4m2

π

s

)3/2

=
1

s
(s− 4m2

π)3/2

∼ 1

4m2
π

(s− 4mπ)3/2.

(4.30)

This equation can be understood when looking at the decay process of the ρ-meson.
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4 The Propagator and its Representations

It decays into two pions as shown in figure 4.2. In the rest frame of the ρ-meson the
kinematic quantities are

p = (
√
s, 0), p2 = s,

q = (q0,q), q2
0 = q2 +m2

π,

k = (k0,−q), k2
0 = q2 +m2

π = q2
0.

The momenta of the decay products can be calculated as

s = p2 = (q + k)2

= (q0 + k0)
2 = 4q2

0 = 4(q2 +m2
π)

⇒ q2 =
1

4
(s− 4m2

π).

Comparing this result with (4.30) one finds the expected result in (4.29).

By taking the structure of the spectral function and the width one could proceed
the other way and introduce a ”pseudo-relativistic” spectral function in a Breit-
Wigner form

Apseudo =
1

N

√
sΓpseudo

(s−m2
ρ)

2 + sΓ2
pseudo

. (4.31)

with N as a normalization factor requiring

1 =

∫ ∞

4m2
π

dsApseudo(s).

The width is motivated by equation (4.29)

Γpseudo = aq3 =
a

8
(s− 4m2

π)3/2 (4.32)

and a is determined by the requirement that on the mass-shell this width is equal
to the value given in [Eea04]. The result is plotted in figure 4.1. The shape of
the spectral function is reproduced but the peak differs. One can understand this
when comparing the guessed width (4.32) and the microscopically determined width
(4.30). The latter width has an extra factor of 1

s
which suppresses the spectral func-

tion for higher
√
s. Because both functions are normalized this suppression will shift

spectral strength to lower
√
s leading to a higher peak. This means that imposing

a normalization condition and a width which behaves correctly near threshold is
in general not sufficient to generate a spectral function that agrees with the full
calculation.
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4.3 The Spectral Function

4.3.3 Fermionic Properties

For stable spin 1/2 particles the spectral functions can be read off immediately from
equation (4.5) as

ρv(p
2) = δ(p2 −M2),

ρs(p
2) =

√
p2δ(p2 −M2).

Generally the spectral functions can be calculated using equation (4.22). Because
the spectral function is defined as the imaginary part of the propagator one needs
to clarify what the imaginary part of a Dirac quantity is. The imaginary part is
defined via the hermitian rather than the complex conjugate [BD67][PLM04][Frö01]:

Re G(p) =
1

2
(G(p) + γ0G†γ0) , Im G(p) =

1

2i
(G(p)− γ0G†γ0).

This definition treats p/ as a real quantity.

Now it is possible to calculate the imaginary part of a propagator in the Källen-
Lehmann representation

Im G(p2) =

∫ ∞

0

dk2
[
p/ρv(k

2) + ρs(k
2)

]
Im

1

p2 − k2 − iε

=

∫ ∞

0

dk2
[
p/ρv(k

2) + ρs(k
2)

] (−πδ(p2 − k2)
)

= −π [
p/ρv(p

2) + ρs(p
2)

]
.

The spectral functions can be extracted as specific traces over the imaginary part
of the Feynman propagator (4.5) or (4.13):

ρv(p
2) = − 1

4πp2
Tr[p/ Im G(p2)],

ρs(p
2) = − 1

4π
Tr[Im G(p2)].

Finally we repeat equations (4.6)-(4.9):

ρv(p
2) and ρs(p

2) are both real,

ρv(p
2) ≥ 0,√

p2ρv(p
2)− ρs(p

2) ≥ 0, (4.33)∫ ∞

p2
min

dp2ρv(p
2) = 1.

43



4 The Propagator and its Representations

These properties also hold for spin 3/2 particles where the spectral functions are
given as:

ρv(p
2) = − 1

8πp2
Tr[p/ Im Gµν

eff (p2)P 3/2
µν ]

= − 1

4πp2
Tr[p/ Im G(p2)],

ρs(p
2) = − 1

8π
Tr[Im Gµν

eff (p2)P 3/2
µν ]

= − 1

4π
Tr[Im G(p2)]

where Gµν
eff is the dressed effective spin 3/2 propagator (4.21) and G is the dressed

spin 1/2 propagator (4.12). Which means that in the Pascalutsa framework the
spectral functions of a spin 1/2 and a spin 3/2 particle are equal.

4.3.4 The Spectral Functions of Spin 1/2 and Spin 3/2 Particles

As we have seen in section 4.2 the propagator of a spin 1/2 and spin 3/2 particle
can be calculated via the selfenergy of the particle. In this way, one obtains the
spectral function in equation (4.13) directly in an analytical form

Im G =
Im Fs + p/Im Fv

(s̃− M̃2)2 + Z2

= −π(p/ρv(s) + ρs(s)).

The analytical form of the ρs are

ρv(s) = − 1

π

Im Fv

(s̃− M̃2)2 + Z2
, (4.34)

ρs(s) = − 1

π

Im Fs

(s̃− M̃2)2 + Z2
. (4.35)

Because ρv (ρs) and Im Fv (Im Fs) are proportional to each other the relations
(4.6)-(4.8) also hold for −Im Fs and −Im Fv:

Im Fv(s) and Im Fs(s) are both real,

−Im Fv(s) ≥ 0, (4.36)

Im Fs(s)−
√
sIm Fv(s) ≥ 0.

For later use we define the Bjorken-Drell function as:

BD(s) = Im Fv(s)−
√
sImFv(s). (4.37)
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4.3 The Spectral Function

Note that this function must not get negative.
As for the bosonic case an extraction of the mass and the width of the fermionic

resonance is desirable. This is not needed to describe the resonance, because the
resonance is fully characterized by selfenergy or spectral functions, but to compare
the results of this work with other results. We recall the discussion in section 4.3.2
that there are several possibilities to define mass and width. Because the ansatz with
the Breit-Wigner form (4.25) worked well for the bosonic case we also want to use
it for the fermionic case. This will be more complicated because the denominator
of the spectral function is much more involved and not only one spectral function
exists but two.

To put the spectral functions in a more convenient form for comparing to the
Breit-Wigner form we expand the first term of the denominator in (4.34) and
(4.35) around the physical mass MR of the resonance:

s̃− M̃2 ∼ 1

c
(s−M2

R) +O((s−M2
R)2).

The physical mass MR is defined such that for
√
s = MR:

s̃(M2
R)− M̃2(M2

R) = 0. (4.38)

We recall that using this definition the physical mass MR in general cannot be read
off as the peak of a spectral function.

The bare mass can be extracted when inserting the definitions for M̃ from equation
(4.15):

M0 =
√
s̃(M2

R) + ImΣs(M2
R)2 −ReΣs(M

2
R). (4.39)

The coefficient c of the Taylor expansion is given by the first derivative of s̃− M̃2:

c =

[
d

ds

(
s̃(s, Im Σv(s),Re Σv(s))− M̃2(s, Im Σs(s),Re Σs(s))

)]−1

s=M2
R

.

The spectral functions ρv (4.34) and ρs (4.35) can be approximated around
√
s ≈MR

by

ρv ≈ − c
π

c Im Fv

(s−M2
R)2 + c2Z2

,

ρs ≈ − c
π

c Im Fs

(s−M2
R)2 + c2Z2

.

As in the bosonic case the width can be read off by comparison with the Breit-
Wigner form defined in equation (4.25). Due to the complicated structure of the
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4 The Propagator and its Representations

spectral functions not only one possible definition of a width exists but three:

ΓZ(s) = − c√
s
Z(s),

ΓV (s) = − c√
s
Im Fv(s),

ΓS(s) = − c√
sM0

Im Fs(s).

ΓZ is read off from the denominator, whereas ΓV and ΓS are read off from the
numerator of ρv and ρs, respectively. In the bosonic case discussed in section 4.3.2
such an ambiguity was not present.

The factor 1
M0

in the case of ΓS is motivated by the fact that a width has energy
as the proper unit. When neglecting the real parts of the selfenergy and quadratic
terms one can write these widths as:

ΓZ = − c√
s
2 [s (1− Re Σv) Im Σv + (M0 + Re Σs) Im Σs]

≈ − 2c√
s

[sIm Σv +M0Im Σs] ,

ΓV = − c√
s

[
−Im Σv(s̃− M̃2) + (1− Re Σv)Z

]

≈ − c√
s

[
−Im Σv(s̃− M̃2) + Z

]

=
c√
s
Im Σv(s̃− M̃2) + ΓZ ,

ΓS = − c√
sM0

[
−Im Σs(s̃− M̃2) + (M0 − Re Σs)Z

]

≈ − c√
sM0

[
−Im Σs(s̃− M̃2) +M0Z

]

=
c√
sM0

Im Σs(s̃− M̃2) + ΓZ .

For Re Σ → 0 and
√
s = MR

ΓZ = ΓV = ΓS

because on the mass-shell s̃ − M̃2 = 0. But for large real parts of the selfenergy
and away from the mass-shell deviations occur. Examples for all three widths will
be given in chapter 6.

For the plots and fits of this work ΓV has been chosen as a reasonable definition
for the width. This choice is motivated from the fact that it is a positive definite
quantity which follows from the fact that −Im Fv is positive definite according to
(4.36).
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4.3 The Spectral Function

Further difficulties arise when considering partial widths of a particle. When a
particle has more than one decay channel the total selfenergy will be the sum of the
selfenergies of each channel. Then the total width of the particle can be extracted
by calculating the propagator with the total selfenergy. Because the selfenergies
enter the width non-linearly a partial width cannot be defined as the width where
one channel is calculated independently neglecting all the other channels. Such
a definition leads to a different bare mass for each channel and the sum of the
partial widths would differ from the total width calculated using the full selfenergy.
Therefore the partial widths are calculated using the total selfenergy for the real
parts of the selfenergy and nonlinear terms in ImFv and Z (see section 4.2). The
partial selfenergies are used for the linear terms only. The sum of all partial widths
will be equal to the total width. M0 is calculated using the total selfenergy.
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5 Couplings and Selfenergies of a
Spin 3/2 Resonance to Nπ, Nρ
and ∆π

In this chapter interaction Lagrangians for a spin 3/2 resonance to Nπ, Nρ and
∆π are introduced. All three interactions are constructed in the Pascalutsa frame-
work. Using these interactions the selfenergy for each channel is calculated using
the method described in section 3.3. For the case of the Nρ and ∆π channel also
the selfenergies for the unstable ρ and ∆ are calculated.

This full calculation is compared to commonly used simplifications where the
widths of the particles are approximated by phase space considerations. For the case
of the Nπ coupling the width is also compared to a calculation using conventional
coupling.

5.1 Form Factor

Due to the non-renormalizable character of the Lagrangians used in this work
a form factor has to be imposed. This is a reasonable approach because we are
only interested in the kinematical regime of small energies. The form factor chosen
throughout this work is [Kor97]:

FF (s) = exp

[
−s− sthreshold

Λ2

]
. (5.1)

It is chosen in such a way to be 1 at threshold energy and suppresses the selfenergies
by one over e for

√
s =

√
sthreshold + Λ2.

5.2 Selfenergy of a Spin 3/2 Baryon Nπ System

We present here the results for a spin 3/2 baryon decaying into Nπ. The La-
grangian for such a state is given by the following formula, the top (botton) line
for particles with positive (negative) parity:

LRNπ = gRNπ
˜̄ψµν
R γµ

{
i
γ5

}
ΨN∂νπ + h.c.
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5 Couplings and Selfenergies of a Spin 3/2 Resonance to Nπ, Nρ and ∆π

where ψµν is the field strength tensor of the spin 3/2 baryon field and is defined in
analogy to the electromagnetic case as

ψµν = ∂µψν − ∂νψµ

and its dual

ψ̃µν =
1

2
εµν%σψ%σ.

The imaginary part of the selfenergy can be determined by four coefficients ai. They
were defined in section 3.2 and are only nonzero for s > (MN +mπ)2. All have the
following form:

Im ai(s) =
NI

8π
g2

RNπFF (s)2 q∗√
s
bi(s).

NI is 1 (3) for a resonance of isospin 3/2 (1/2). Furthermore we introduce the
notation:

q2
∗ =

1

4s

[
(M2

N −m2
π − s)2 − 4sm2

π

]
, (5.2)

k0∗ = s+M2
N −m2

π. (5.3)

For the functions bi(s) we obtain

b1(s) = −1

3
P q2

∗ sMN ,

b2(s) = −1

6
q2
∗k0∗,

b3(s) = 4 b1(s),

b4(s) = 4 b2(s).

P is +1 (−1) for particles with positive (negative) parity. The real part is calculated
numerically using the dispersion relation

Re ai(s) =
P
π

∫ ∞

(MN+mπ)2
dσ

Im ai(σ)

σ − s
.

The physical meaning of equation (5.2) and (5.3) can be seen when exploring the
kinematics of the decaying process depicted in figure 5.1. p, k and q are the four-
momenta of the resonance, nucleon and pion, respectively. In the rest frame of the
resonance these quantities can be written as

p = (
√
s, 0), p2 = s,

q = (q0,q), q2
0 = q2 +m2

π, (5.4)

k = (k0,−q), k2
0 = q2 +M2

N . (5.5)
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5.2 Selfenergy of a Spin 3/2 Baryon Nπ System

Figure 5.1: Two-body decay.

Using momentum conservation it is possible to calculate q because

s = p2 = (q + k)2 = (q0 + k0)
2

= q2
0 + k2

0 + 2q0k0

= 2q2 +m2
π +M2

N + 2
√

q2 +m2
π

√
q2 +M2

N

⇔ (s− 2q2 −m2
π −M2

N)2 = 4(q2 +m2
π)(q2 +M2

N)

⇔ 4q2s = (s−m2
π −M2

N)2 − 4m2
πM

2
N

⇒ q2 =
1

4s

[
(s−m2

π −M2
N)2 − 4m2

πM
2
N

]

=
1

4s

[
(s+m2

π −M2
N)2 − 4sm2

π

]
(5.6)

=
1

4s

[
(s−m2

π +M2
N)2 − 4sM2

N

]
. (5.7)

Comparing equation (5.2) with (5.6) shows that q∗ = |q| is the momentum of the
pion in the rest frame of the resonance. Equation (5.3) becomes clear when calcu-
lating the energy of the pion and nucleon using equation (5.4), (5.5) and (5.6),(5.7):

k2
0 = q2 +M2

N =
1

4s

[
(s−m2

π +M2
N)2

]
,

q2
0 = q2 +m2

π =
1

4s

[
(s+m2

π −M2
N)2

]
.

The quantity in (5.3) is proportional to the energy of the nucleon in the rest frame
of the resonance.

On the mass shell the conventional and the Pascalutsa coupling are the same
[Pas01]. The relation between the Pascalutsa coupling gRNπ and conventional
coupling fRNπ defined in (2.28 is given by

gRNπ =
fRNπ

mπMR

.
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5 Couplings and Selfenergies of a Spin 3/2 Resonance to Nπ, Nρ and ∆π

Next we analyse the phase space of the obtained width. As shown in section 4.3.4,
when neglecting the real parts and quadratic terms the width near the on-shell point
is:

Γ = − 2c√
s

(sIm Σv +M0Im Σs) .

When neglecting the real parts the bare mass M0 is equal to the physical mass MR.
Inserting the selfenergy calculated in this section the width can be written as

Γ = − 2c√
s

(sIm a2 +M0 Im a1)

= − 2c√
s

NI

8π
g2

RNπ

q∗√
s
(sb2 +MR b1)

= c
NI

12π
g2

RNπ q
3
∗
s√
s
(

1

2
√
s
k0∗ + P MN

MR√
s

).

As shown above k0 = 1
2
√

s
k0∗ is the energy of the nucleon and q∗ is the momentum

of the pion. Inserting the conventional coupling the width reads

Γ = c
NI

12πm2
π

f 2
RNπ q

3
∗
s

M2
R

k0 + P MN
MR√

s√
s

. (5.8)

For c=1 and on the mass-shell this width agrees with the width calculated in [PM02].
Now we can compare this result with the fact [PLM04] that around the threshold

the energy dependence of the width is determined by the orbital angular momentum
l:

Γ(
√
s ≈ √

sthr) ∼ k2l+1 (5.9)

with k as the center of mass momentum of the decay products. For small kinetic
energies we can expand the energy in the non-relativistic limit with

k0 =
√

q2 +M2
N ∼MN +

q2

2MN

.

The width (5.8) is proportional to

Γ(s) ∼ q3(k0 + PMN) = q3

(
MN(1 + P ) +

q2

2MN

)

∼
{

q3 for positive parity P = +1

q5 for negative parity P = −1
.

The angular momentum can be read off using equation (5.9): l = 1 for a particle
with positive parity and l = 2 for negative parity. The Lagrangian in this section
will describe for positive parity a P-wave and for negative parity a D-wave resonance
decaying into Nπ.
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5.3 Selfenergy of a Spin 3/2 Baryon Nρ System

5.3 Selfenergy of a Spin 3/2 Baryon Nρ System

Because the ρ-meson is not a stable particle the spectral function is not trivially
given as a δ-function. A lot of work have been devoted to the ρ-meson and its
properties (e.g. [KKW96] [HFN93]). In this work we took the selfenergies calculated
in [HFN93] and presented in section 3.1. They come in a full analytical form and
preserve unitarity. Using this selfenergies the spectral function ρ of the ρ-meson can
be derived directly as shown in section 4.3.2.

We construct a relativistic gauge invariant Lagrangian of the form

L =
gRNρ

2
ψ̄µν

{
iγ5

1

}
Ψρµν + h.c.

with top (bottom) line for particles with positive (negative) parity. ψµν and ρµν are
the field strength tensors of the spin 3/2 baryon and ρ-meson, respectively. The
imaginary parts of the coefficients ai are only nonzero for s > (MN + 2mπ)2 and all
have the form:

Im ai(s) = − NI

4π2
g2

RNρFF (s)2

∫ z∗(s)

MN

dk0 bi(s, k0)

×
√
k2

0 −M2
N ρ

(√
s− 2

√
sk0 +M2

N

)
.

(5.10)

The lower limit of the integral is introduced by one of the Θ-functions in 3.6. The
upper limit comes because the spectral function of the ρ-meson is zero (ρ(q2) = 0)
for q2 < 4m2

π with

z2
∗ =

1

4s
(s+M2

N − 4m2
π)2.

The integral is evaluated numerically. The functions bi(s, k0) are obtained as:

b1(s, k0) = − s

3MN

P
(
M4

N + 2(s− 3k0

√
s+ k2

0)M
2
N + sk2

0

)
,

b2(s, k0) = −
√
sk0

3M2
N

(
M4

N + 2(s− 3k0

√
s+ k2

0)M
2
N + sk2

0

)
,

b3(s, k0) = b1(s, k0),

b4(s, k0) = b2(s, k0).

The real part is given by the numerical integration of

Re ai(s) =
P
π

∫ ∞

(MN+2 mπ)2
dσ
Imai(σ)

σ − s
.
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5 Couplings and Selfenergies of a Spin 3/2 Resonance to Nπ, Nρ and ∆π

Figure 5.2: Three-body decay of a resonance into Nππ via a virtual ρ-meson.

The quantity z2
∗ can be understood when exploring the three-body kinematics of this

process in figure 5.2. In the rest frame of the resonance the two pions have the same
momentum when the nucleon has maximum energy. The kinematical quantities are
then:

p = (
√
s, 0), p2 = s,

q1 = q2 = (q0,q), q2
0 =

k2

4
+m2

π,

k = (k0,k), k2
0 = k2 +M2

N .

Using momentum conservation the energy of the nucleon can be calculated

s = p2 = (q1 + q2 + k)2

= (2q0 + k0)
2

= 2k2
0 −M2

N + 4m2
π + 4q0k0

⇔ (s− 4m2
π +M2

N − 2k2
0)

2 = 16q2
0k

2
0

⇒ 4sk2
0 = (s− 4m2

π +M2
N)2

⇒ k2
0 =

1

4s
(s+M2

N − 4m2
π)2 = z2

∗ .

Now the limits of the integration become clear. The lower limit is the energy where
the nucleon is at rest and the upper limit is the energy where the nucleon has
maximum energy and the ρ-meson is at rest. Because the ρ-meson is not a stable
particle k0 can take all possible values between these two limits. In this picture ρ
serves as the probability to find a ρ-meson with energy k0.

Taking the ρ-meson as a stable particle with mass mρ the integration in equation
(5.10) can be carried out. Then the coefficients ai are nonzero for s > (MN +mρ)

2

and one obtains

Im ai(s) = − NI

8π2
g2

RNρFF (s)2 k∗√
s
bi(s, k0∗).
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5.4 Selfenergy of a Spin 3/2 Baryon ∆π System

With the notations

k2
0∗ =

1

4s
(s+M2

N −m2
ρ)

2,

k2
∗ = k2

0∗ −M2
N .

Equivalent to the last section k0 = k0∗ is the energy and k2 = k2
∗ the momentum

of the nucleon. Inserting this notation the coefficients bi(s, k0∗) can be calculated
further leading to

b1(s) = −P s

3MN

B(s),

b2(s) =

√
sk0∗

3M2
N

B(s),

B(s) =
(
(2M2

N + s)k2
∗ + 3m2

ρM
2
N

)
.

The nonrelativistic limit of the width is calculated only for stable ρ-mesons. The
approach is equal to the previous section:

ΓNρ ∼
√

k2(s b2 +MR b1)

∼
√

k2B(s)(k0 − P MN).

Expanding k0 and B(s) in the non-relativistic limit will give in leading order:

k0 =
√

k2 +M2
N ∼MN +

k2

2MN

,

B(s) ∼ 3m2
ρM

2
N .

The width is proportional to

ΓNρ ∼
√

k2(k2 +MN − PMN)

leading to a P-wave for a resonance with positive parity and an S-wave for a reso-
nance with negative parity.

5.4 Selfenergy of a Spin 3/2 Baryon ∆π System

Due to the unstable character of the ∆ its spectral function ρ is not trivial anymore.
The ∆ on its own is a spin 3/2 particle, so the Langrangian must be invari-

ant under a simultaneous gauge transformation of both spin 3/2 particles. A La-
grangian satisfying allsymmetries has the form

L =
gR∆π

2
ψ̄µνγα

{
iγ5

1

}
∆µν∂

απ + h.c.

55



5 Couplings and Selfenergies of a Spin 3/2 Resonance to Nπ, Nρ and ∆π

The imaginary parts of the coefficients ai are only non-zero for s > (MN + 2mπ)2

and have the form:

Im ai(s) = NI
3

2π3
g2

R∆πFF
2

∫ √
s−mπ

ka0(s)

dk0qvec ρ
(
m2

π + 2
√
sk0 − s

)
bi(s, k0) (5.11)

with ρ = ρs for i = 1, 3 and ρ = ρv for i = 2, 4. ρs and ρv are the scalar and vectorial
parts of the ∆ spectral function (section 4.3).

The upper limit of the integral comes from (3.7). If the ∆ would get more energy
there would be no energy left to create a pion. The lower limit is introduced when
demanding that ρ(k2) = 0 for k2 < (MN +mπ)2. This is the minimal energy needed
to create a unstable ∆. The integral is evaluated numerically.

We introduce the notation

ka0(s) =
1

2
√
s
(M2

N + 2MNmπ + s),

q2
vec(s, k0) = (k0 −

√
s)2 −m2

π,

where ka0(s) is the least energy needed to create a ∆ in the rest frame of the decaying
resonance. qvec is the momentum of the pion in the same frame.

For the functions bi we obtain:

b1(s, k0) = −1

9
P s

[
2M4

N + (7k2
0 − 8

√
sk0 + 2s)M2

N + k2
0(7s− 10k0

√
s)

]
,

b2(s, k0) =

√
s

9

[
4(k0 −

√
s)M4

N + k0(5k
2
0 − 14

√
sk0 + 4s)M2

N + 5k3
0s

]
,

b3(s, k0) = −2

9
P s

[
M4

N + (k2
0 + 2

√
sk0 + s)M2

N − k2
0(2
√
sk0 + s)

]
,

b4(s, k0) = −2
√
s

9

[
(k0 + 2

√
s)M4

N + 2k0(k
2
0 + 2

√
sk0 − s)M2

N + k3
0s

]
.

The real part is given by the numerical integration of

Re ai(s) =
P
π

∫ ∞

(MN+2 mπ)2
dσ

Im ai(σ)

σ − s
.

Taking the ∆-resonance as a stable particle with mass M∆ one can carry out the
integration in equation (5.11) leading to

Im ai(s) = −NI
1

4π
g2

R∆πFF (s)2 kvec bi(s)

with kvec as the momentum of the ∆ which is, in the rest frame of the resonance,
given by

k2
vec(s) =

1

4s

(
(s−m2

π +M2
∆)2 − 4sM2

∆

)
.

56



5.4 Selfenergy of a Spin 3/2 Baryon ∆π System

The functions bi are similar to the unstable case. b1 has to be multiplied by M∆,
MN → M∆ and k0 is not a free parameter anymore because the ∆ can only be on
the mass-shell with the condition k2

0 = k2
vec +M2

∆. In the rest frame of the resonance
it is given by

k2
0(s) =

1

4s
(s−m2

π +M2
∆)2.

Before we calculate the non-relativistic limit for the width as was done in the pre-
vious sections we want to rearrange b1 and b2 in a more convenient form using the
on-shell condition leading to:

b1 = −s
9
M∆ P

[
(M2

∆ + s)(9M2
∆ + 7k2

vec)− 2
√
sk0(9M

2
∆ − 5k2

vec)
]
,

b2 =
1

9

[√
sk0(M

2
∆ + s)(9M2

∆ + 5k2
vec)− 2sM2

∆(9M2
∆ + 7k2

vec)
]
.

The on-shell width, in first order of kvec, is proportional to

Γ∆π ∼ kvec(MRb2 + b1)

= kvec

(
M2

R

9

[
(M2

∆ +M2
R)(k0 − P M∆)9M2

∆ − 2MRM∆(M∆ − P k0)9M
2
∆

])

= kvec

(
M2

RM
2
∆(k0 − P M∆)(M∆ + PMR)2

)
.

In the non-relativistic limit k0 →M∆ + k2
vec

2M∆
the width is proportional to

Γ∆π ∼ kvec

(
M∆(1− P ) + k2

vec)
)
.

This channel is an S-wave (P-wave) for a resonance with negative (positive) parity
which is the correct description.
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6 Results for P33 (1232) and
D13 (1520)

In this chapter the results for the P33 (1232) and D13 (1520) resonances will be
presented. We will introduce the parameters and discuss the off-shell width of the
particles, their selfenergies and spectral functions.

The calculations were done using the following parameters: bare mass M0 and
for each decay channel i a coupling gi and a cut-off Λi. For simplicity all Λi are
chosen to be the same. We will study, however, how the results change when Λ
is varied. The best way to obtain the values of the parameters would be a fit to
experimental data (e.g. phase shifts). But this approach would go far beyond the
scope of this work. The emphasis of this work is to find out whether it is feasible
to calculate propagators for spin 3/2 particles in a fully relativistic framework for
different channels. The priority is set to the implementation of the full relativistic
structure of the propagator. Calculating experimental data, as for example cross
sections and phase shifts, from the derived selfenergies and spectral functions is not
a trivial task involving also background terms etc. (cf. the corresponding discussion
in the introduction chapter). Therefore the parameters were fitted only to the
partial widths and the mass of the resonance taken from [Eea04]. This leads to
some complications because mass and width are not directly measurable observables
leaving an ambiguity how to define them as discussed in section 4.3.

Further problems arise because the parametersM0 and g are coupled to each other.
To calculate M0 from equation (4.39) the full knowledge of the selfenergy is needed
which will only be possible when the couplings are known. They can be extracted
by demanding that the respective partial width of the resonance on the mass-shell
is equal to the partial width published in [Eea04]. But for the calculation of the
widths M0 is needed. In the case where only one channel exists this problem can
be solved by inserting equation (4.39) into the propagator. In the case of different
channels M0 needs to be calculated with the sum of all selfenergies as discussed in
section 4.3.4. Variation of the coupling in each channel will influence every other
channel making fine tuning a difficult task.

Obviously It is impossible to fit the three parameters MR, g and Λ, using only
two input parameters. This leaves one parameter, the cut-off Λ, open which leads to
an ambiguity on the results because the selfenergy depends largely on Λ. Although
it is not possible to pin down Λ exactly it will be possible to give arguments for a
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6 Results for P33 (1232) and D13 (1520)

reasonable range of values which resolves the ambiguity. The reasonable range of Λ
is around Λ = 1 GeV. When not stated differently all plots depicted in this chapter
are calculated using such a value for Λ.

The form factor (5.1) used in this work is 1 at threshold and decreases exponen-
tially afterwards. This means that the value of the coupling g is given at threshold
energy and not on the mass-shell. In the literature (e.g. [PLM04]) the form factors
are often chosen in such a way to be 1 on the mass-shell of the particles. The given
values of the coupling constants are hence the values on the mass-shell. To make
it easier to compare the values in this work with other works also the effective cou-
pling constant on the mass-shell geff will be listed. The effective coupling constant
is defined as

geff = g ∗ FF (M2
R).

6.1 Parameters of the ∆ P33 (1232)

Much work has already been devoted to the complete relativistic structure of the
∆ in conventional [Kor97] and Pascalutsa [AKS02] coupling. We present these
results for completeness and as a good example for the structure of a relativistic
spin 3/2 propagator. In addition, the spectral functions of the ∆ are needed as an
imput for the decay channel N∗(1520) → ∆π.

The calculations are done using three parameters, bare mass M0, coupling g∆Nπ

and cut-off Λ. For given Λ the parameters M0 and g∆Nπ are chosen such that MR in
equation (4.39) takes the physical value 1.232 GeV and the width on the mass-shell
is

ΓV (MR) = Γexp = 120 MeV.

The ∆ is a particle with isospin 3/2 so NI = 1, and positive parity P = +1. The
remaining parameters for different cut-offs and the effective coupling are listed in
table 6.1.

In view of these parameters a motivation for the above mentioned value of Λ =
1 GeV can be given. For small Λ the effective coupling deviates largely from the cou-
pling at threshold energy. This is not desirable because in the physical meaningful
region from threshold energy to approximately 1 GeV above threshold the coupling
should not deviate too much. Consistently small values of Λ can be excluded. For
large values of Λ the bare mass is shifted to a very high value. It is not likely that
the selfenergy of the P33 changes its own mass so dramatically. There will be a fur-
ther argument why large values of Λ lead to undesired features when discussing the
normalization function of the P33 . All this arguments raise strong indications for a
reasonable cut-off parameter at around 1 GeV.
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6.2 Parameters of the N∗ D13 (1520)

Λ [GeV] M0 [GeV] g∆Nπ [GeV−2] geff
∆Nπ [GeV−2]

0.6 1.237 34.8 12.80
1.0 1.334 22.5 13.05
2.0 2.303 17.0 15.08

Table 6.1: Parameter for the P33 resonance
.

6.2 Parameters of the N∗ D13 (1520)

There are three major decay channels for the D13 (1520), which are Nπ, Nρ and
∆π. We calculate the selfenergy of each channel separately. The total selfenergy is
then given as the sum of each individual channel.

The D13 (1520) has negative parity and is an isospin 1/2 hadron. This fixes
P = −1. NI = 3 for the channels Nπ and Nρ and NI = 12 for the channel ∆π.

The coupling constants are fitted via the partial width of each channel in such a
way that the contribution to the total width on the mass-shell of the Nπ channel
is 55% as proposed in [Eea04]. The contribution of the Nρ channel is chosen to be
10 MeV or 26 MeV. The results in this work are calculated with this two values
because it is hard to extract the coupling of the ρ-meson to the D13 resonance.
Information on the coupling of baryon resonances to the Nρ channel originates
mainly from an analysis of the reaction πN → ππN . This is a formidable task
because the N+(1520) is nominally subthreshold to a ρN final state. In other words,
only the low-energy tail of the ρ-meson contributes at the N∗ mass shell. Analysis
of the experimental data by Manley [MAGT84][MS92] lead to the value of ΓNρ = 26
MeV. This value is also similar to the partial width given by the particle data group
(PDG) [Eea04]. A somewhat different approach was taken by Leupold and Post
[LP05] where the coupling was extracted in a QCD sum rule analysis of in-medium
modifications of the ρ-meson. This analysis leads to the smaller value of ΓNρ = 10
MeV. A similar value ΓNρ = 12 MeV was deduced by Vrana [VDL00] in an analysis
of the experimental data similar to Manley. In the present work both partial widths
will be used to see how much the spectral function of the D13 depends on the value
of the coupling to Nρ. The ∆π channel is adjusted such that one always gets a total
width of Γ = 120 MeV.

Because the definition for the partial width discussed in section 4.3.4 leads to
coupled equations the couplings are fitted such that the above requirements are
fulfilled as good as possible.

In table 6.2 the parameters for different Λ’s and ΓNρ = 10 MeV can be found.
In table 6.3 the couplings are fitted to give a contribution for the Nρ channel of 26
MeV.
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6 Results for P33 (1232) and D13 (1520)

Λ [GeV] M0 [GeV] gN∗Nπ geff
N∗Nπ gN∗Nρ geff

N∗Nρ gN∗∆π geff
N∗∆π

0.6 1.27 153.6 6.3 40.3 3.9 8.85 0.86
1.0 1.55 22.2 7.0 9.6 4.1 2.1 0.91
2.0 3.98 9.7 7.3 5.2 4.2 1.16 0.94

Table 6.2: Parameter for the D13 resonance with a partial width of ΓρN = 10 MeV.
The sum of all partial widths is 120 MeV and the cut-off parameter for
the ∆ resonance is set to 1 GeV. The units of the couplings are [GeV−2]
for the Nπ and Nρ channels and [GeV−3] for the ∆π channel.

Λ [GeV] M0 [GeV] gN∗Nπ geff
N∗Nπ gN∗Nρ geff

N∗Nρ gN∗∆π geff
N∗∆π

0.6 1.35 154.6 6.3 65.6 6.4 7.1 0.65
1.0 1.65 22.3 7.0 15.9 6.9 1.68 0.72
2.0 5.77 9.8 7.3 8.4 6.9 0.98 0.79

Table 6.3: As figure 6.2 but using ΓNρ = 26 MeV.

6.3 Selfenergies

The selfenergies of the P33 are depicted in figure 6.1. The imaginary part does not
change sign and goes to zero for large

√
s due to the form factor applied to it. For

the P33 both imaginary parts of the selfenergy are negative which is characteristic
for a particle with positive parity in this channel.

The real parts are small compared to the mass of the P33 but compared to the
imaginary parts equally large on the mass-shell. This is only the case for the cut-off
parameter chosen for the plots which is Λ = 1 GeV. Choosing different values for the
cut-off leads to a large variation of the real part, depicted in figure 6.2. One sees that
for large values of the cut-off Λ the real parts get very large and do not change the
sign anymore. As discussed above such high values of Λ are not reasonable. When
taking smaller values of Λ the real parts become small on the mass-shell. But for
too low values of Λ the variation of the coupling is strong and also the suppression
in the physical meaningful energy region is high.

For the case of the D13 the selfenergies are depicted in figure 6.3. The imaginary
parts do not change sign, as for the case of the P33 , but the sign is opposite for Σv

and Σs. The energy dependence of the selfenergy is much stronger for the case of
the D13 leading to a larger shoulder in the spectral function which will be discussed
later.

The real parts of the D13 are small around the mass-shell of the resonance and
change its sign. This is, as for the case of the P33 , only true for the cut-off parameter
around Λ = 1 GeV. For lower Λ the on-shell value of the real parts can become large
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Figure 6.1: The selfenergy of the P33(1232) resonance as defined in equation (3.5).
Left: Scalar part. Right: Vector part.
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Figure 6.2: Real part of the P33(1232) resonance selfenergies with different form
factor Λ as defined in equation (5.1). Left: Scalar part. Right: Vector
part.
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Figure 6.3: The selfenergy of the D13(1520) resonance as defined in equation 3.5.
Left: Scalar part. Right: Vector Part.
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Figure 6.4: Real parts of the D13 resonance selfenergies plotted for different cut-off
parameter Λ. The corresponding form factor is defined in section 5.1.
Left: Scalar part. Right: Vector part.
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6.4 The Width
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Figure 6.5: Left: ΓZ , ΓV and ΓS. Right: ΓZ , ΓV and ΓS zoomed.

as depicted in figure 6.4. A difference to the P33 case can be seen because there for
lower Λ the real parts became smaller which means that this is not generally true
but differ from case to case. When Λ is large the real parts do not change sign
anymore and become large on the mass-shell.

6.4 The Width

As discussed in section 4.3.4 there is an ambiguity concerning which function is to
call the width when going off-shell. In figure 6.5 all three candidates are depicted
for the case of the P33 . They have large energy dependences with a maximum above
the mass-shell energy. This means that spectral strength will be concentrated above
mass-shell energies.

In the case of the P33 all three widths are similar over the whole energy range.
All three widths become equal and cross each other slightly above the mass-shell
energy. This is the case because the real parts of the selfenergies become zero and
change sign also above the mass-shell energy as can be seen in figure 6.1. Because
the values of the real parts are small, compared to the mass, the deviations are
small. ΓZ , ΓV and ΓS are positive definite which is not in general the case because
only for ΓV such a constraint exists (cf. the discussion in section 4.3.4). But it is
not surprising that all widths are positive definite in the case of the P33 resonance
because the width is approximately proportional to

Γ ∼ −(sImΣv +M0Im Σs)
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Figure 6.6: Width of the P33(1232). The dashed line is the width calculated by
Penner [PM02]. The dotted line is a simple non-relativistic width.

as was shown in section 4.3.4. The imaginary parts of the selfenergy are both
negative when the resonance has positive parity as was discussed in the last section.
Then Γ will not become negative. This is in general not the case as was shown for
the D13 where the imaginary parts of the selfenergy have opposite signs. There, ΓZ

and ΓS will become negative leaving ΓV as the only good candidate for a definition
of the width. In the case of the P33 all three candidates are good choices.

It is possible to compare the width of the P33 with a calculation where the real
parts of the selfenergy are neglected and conventional coupling is used, published in
[PM02]. We have discussed this width in section 5.2 equation (5.8). Both widths
agree well from threshold to slightly above the mass-shell region as depicted in figure
6.6. The similarity near the threshold region is induced by the fact that both widths
have to reach the same non-relativistic limit. This can be seen when comparing both
widths with a simple non-relativistic width of the form

Γnon−rel.(s) = fq3FF (s)2 = f

[
1

4s

[
(s−m2

π −M2
N)2 − 4m2

πM
2
N

]]3/2

FF (s)2 (6.1)

which is discussed in section 5.2 and also depicted in figure 6.6. The quantity q is
the center of mass momentum of the decay products. The constant f is fitted such
that on the mass-shell the width is equal to 120 MeV.

Near the mass-shell the full width and the approximation by Penner [PM02] are
equal when the real parts of the selfenergy proceeds zero as was shown in section
5.2. Because the real parts are small for the cut-off parameter chosen both widths
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Figure 6.7: Left: Solid line is the width of the D13(1520) with ΓNρ = 10 MeV. The
dashed lines are the partial widths of the various channels. Right: Same
as left but with ΓNρ = 26 MeV.

agree well on the mass-shell. This two constraint, at threshold energy and at the
mass-shell region, keeps both widths close together. Above this energy region no
further constraint occurs and both functions start to differ. The difference is small,
leading to the conclusion that the approximations are reasonable.

The non-relativistic width gives a good description of the width for the P33 until
the region of its on-shell mass. Similar as above this can be understood because
the full width will give the correct non-relativistic limit for small

√
s and on the

mass-shell both widths are fitted to be equal. Above the on-shell mass region the
description is not reasonable indicating that the more involved character of the width
plays a role in this region where relativistic effects cannot be neglected.

The width of the D13 is depicted in figure 6.7. On the left the width and the
partial widths are depicted for a partial width of the Nρ channel ΓNρ = 10 MeV
and on the right for ΓNρ = 26 MeV. One sees that the widths in both cases are
highly energy dependent and have their maximum above the mass-shell region.

The dashed curves in the plot of the D13 are the partial widths of each channel.
For high energies the coupling to Nρ dominates. This can be understood because
the nominal threshold region of this channel lays at MN + mρ ≈ 1.7 GeV, so only
the tail of the mass spectrum of the ρ-meson contributes at the D13 mass shell. Even
though the partial width of this channel is comparably small, due to the subthreshold
nature, the coupling must be large to gain such a width. This can be seen when the
phase space opens up and the Nρ channel dominates the total width.

For the larger value of the partial width of the Nρ channel the energy dependence
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Figure 6.8: Left: Different definitions for the width ΓZ , ΓV and ΓS, Right: ΓZ , ΓV

and ΓS zoomed at on-shell energy.

is even stronger leading to a three times higher maximum value of the width. In the
spectral function a transfer of spectral strength to higher energies is expected.

The alternative widths are depicted in figure 6.8. They clearly differ as expected.
For small

√
s the quantities ΓZ and ΓS become negative making them a bad choice

for a width. When the real parts of the selfenergies are small, which is the case on
the mass-shell, all quantities are about the same. Because for the cut-off parameter
chosen the real parts are small it is not surprising that all three widths are nearly
equal on the mass-shell as shown in figure 6.8.

Because the real parts are small on the mass-shell there is no ambiguity choosing
a width in this energy region. Going off-shell it is preferable to take ΓV because it
is always a positive definite quantity as shown in section 4.3.4.

In the case of the D13 an easy comparison to a non-relativistic width is not possible
due to the unstable character of the decay products. To calculate the momentum
of the stable particles, a complicated analysis of three-body kinematics would be
needed. Even taking the decay products of the D13 resonance as stable particles
does not solve the problem because the threshold energy of the Nρ channel would
be above the on-shell mass region of the D13 making it impossible to fit the non-
relativistic partial width.
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Figure 6.9: Left: Spectral function of the P33 resonance compared with a sim-
ple Breit-Wigner approximation. Right: Spectral function of the
P33 resonance with and without real parts.

6.5 The Spectral Function

Examining the properties of the fermionic spectral representation in section 4.3.3
one sees that the resonance is not described by one but two spectral functions. But
only one of them ρv is normalized and positive definite making it the proper choice
for the spectral information of a particle. In the following only the results for ρv will
be discussed and depicted.

The spectral function of the P33 shown in figure 6.9 has the expected asymmetric
form. It rises quickly and decreases with a rather large tail. The large tail is
induced because the width of the P33 has its maximum in this region. The form
of the spectral function is typical for Breit-Wigner type quantities. Comparing
the spectral function with a ”pseudo-relativistic” spectralfunction, deduced from a
Breit-Wigner form, as discussed in section 4.3.2 and especially equation (4.31),
makes its similarity clear. For the width in (4.31) equation (6.1) is used and fitted
to the correct width of 120 MeV on the mass-shell. N of equation (4.31) is deduced
by demanding that the ”pseudo-relativistic” spectral function is normalized to one.
Comparing the full spectral function of the P33 with this very simple Breit-Wigner
approximation, depicted in figure 6.9, shows that only for small

√
s both quantities

agree. The ”pseudo-relativistic” spectral function shifts too much spectral strength
to lower energies. This is the case because at higher

√
s relativistic effects take place

which are not accounted for in the approximation. This means that such a simple
approximation already fails for the easiest spin 3/2 resonance.

As already discussed in section 4.3.4 the mass of the resonance cannot be read off
as the energy at the peak of the spectral function. This is possible when the width
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Figure 6.10: Right: Normalization of the P33 for different cut-off parameters, without
real part of the selfenergy.

is a constant then

d

ds
ρv(s)

∣∣∣∣
s=M2

R

= 0.

Taking the width as an s dependent function will shift the peak away from the
mass-shell. This is already true for the simple Breit-Wigner form depicted at the
right hand side of figure 6.9. The mass of the resonance is defined as the solution
of equation (4.38).

Beside the Breit-Wigner form it is possible to approximate the spectral func-
tion by neglecting the real parts. Because the real parts are calculated through a
dispersion relation their calculation includes some numerical effort. The real parts
are small indicating that the changes will not be dominant. Neglecting the real parts
gives a better approximation than the ”pseudo-relativistic” spectral function. It un-
derpredicts the values for large

√
s but around the mass-shell both agree well. The

real parts play a dominant role in rising the tail as can be seen in figure 6.9, right
hand side. This is needed because by neglecting the real part of the selfenergies the
normalization of the spectral function is violated as depicted in figure 6.10. There
a similar normalization function as in equation (4.24) is depicted. It is defined as

norm(s) =

∫ s

(MN+mπ)2
ds′ρv(s

′). (6.2)

The violation depends on the cut-off parameter and is approx 20% in the case of
Λ = 1 GeV.

A third approximation was proposed by Post et al. in [PLM01] using a simplified
propagator. The full relativistic structure of the fermionic propagator as introduced
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Figure 6.11: Left: Comparison of the full spectral function of the P33 resonance with

simplified version proposed by Post et al. [PLM01]. Right: Bjorken-
Drell function (4.37) for the P33 resonance.

in section 4.2 is quite involved. The complication arises due to the Dirac structure
of the selfenergy appearing in the denominator of the dressed propagator. When
taking an averaged scalar selfenergy motivated as an averaging over the spins

〈Σ(p)〉 =
1

2

∑
s

ūs(p)Σ(p)us(p)

=
1

2
Tr

[
(p/+

√
k2Σ(k)

]

one can define a simplified propagator:

G(p) =
p/+M

p/−M − 〈Σ〉 .

But as shown in [PLM01] inconsistencies with the Bjorken-Drell relation (4.8)
arise. In turn, this even leads to negative cross sections, see [PLM01] for details.
Therefore it is an important consistency requirement to insist on the validity of
(4.8). When computing ρs and ρv one finds

Mρv(p)− ρs(p) = 0.

For
√
p2 > M equation (4.8) is violated. To solve this problem it was suggested in

[PLM01] to change M2 →
√
p2 in the numerator. This leads to an equation for the

ρ’s of the form

√
p2ρv(p)− ρs(p) = 0
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Figure 6.12: Left: Spectral function of the P33 resonance with different values of the
cut-off parameter Λ. Right: Normalization function for P33 for different
cut-off parmeters Λ.

which is in agreement with the Bjorken-Drell relation (4.8). When comparing
this to the full results one sees that in the full calculation the Bjorken-Drell
relation is fulfilled but the Bjorken-Drell function (4.37) is not necessarily zero.
Deviations in the spectral functions are expected when for given p the Bjorken-
Drell function (4.37) is larger than zero. This can be seen for the spectral function
of the P33 (1232) resonance depicted on the left hand side of figure 6.11 where the
deviations are very small. This was expected because the Bjorken-Drell function
is always small for all p, depicted on the right hand side of figure 6.11.

To summarize, the P33 resonance has only one major decay channel giving it a
less involved structure than for the D13 . Even for such a simple spectral function a
”pseudo-relativistic” approach will lead to bad agreements already in the mass-shell
region. Neglecting the real parts of the selfenergy gives a good approximation from
threshold energy to the mass-shell region but spoils the normalization condition. A
very good approximation is given by the simplified propagator of Post et al. [PLM01]
leading to good agreements for all

√
s without spoiling normalization.

As discussed above, the cut-off parameter is not fitted to experimental data. The
spectral function of the P33 resonance depends largely on this parameter as can be
seen in figure 6.12. The shape of all three functions is different. Small values of Λ
lead to a broadening of the spectral function around the peak by decreasing the tail.
This can be understood when looking at the normalization functions for different
Λ as depicted in figure 6.12. For small Λ unity is reached earlier. For large Λ the
normalization function reaches unity at

√
s −MP33 = 4 GeV leading to a strongly

compressed spectral function with a long tail. Because the energy region where
unity is reached is far beyond the physical energy region modeled here such large Λs
should be excluded. From the discussion in the beginning also small Λs are physically
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Figure 6.13: Left: Spectral function of the D13 resonance with both widths of the
Nρ channel. Right: Spectral function of the D13 resonance when the
decay into the ρ-meson is ignored.

unreasonable. From this consideration it can be concluded that reasonable cut-off
parameters will be found in the region of 1 GeV.

The spectral function of the D13 compared to the case of the P33 is more symmetric
around the peak with a shoulder arising in the region of the invariant mass of the Nρ
channel as can be seen in figure 6.13. This shoulder is larger when taking a larger
partial width for the Nρ channel. When using this value for the width of the Nρ
channel structures arise in the region of the Nρ threshold due to the opening phase
space for this reaction. In the last section it was shown that the width becomes
heavily larger in this energy region when taking the higher partial width for the Nρ
channel. This means that spectral strength is transfered to higher energies leading
to the higher shoulder.

The shoulder vanishes when the Nρ channel is ignored as depicted in figure 6.13.
Spectral strength is transfered to lower energies leading to a broadening of the
spectral function. These changes indicate the importance of the ρ-meson in this
energy region.

In the discussion of the selfenergy the strong energy dependence of the real parts
indicated a shoulder for the spectral function. This claim can be approved when
neglecting the real parts which are depicted in figure 6.14. There one sees that the
shoulder decreases when the real parts are switched off, showing that the shoulder
is induced by the real parts of the selfenergy. This is needed to fulfill the normal-
ization condition given in section 4.1. Without the real parts of the selfenergy the
normalization is spoiled as shown in figure 6.15.

Because the normalization condition is spoiled when neglecting the real parts
of the selfenergy this is not a good approximation for the spectral function. A
”pseudo-relativistic” approximation was already unsatisfactory in the simple case
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Figure 6.14: Spectral function of the D13 resonance with and without real parts.
Left: Width of the Nρ channel is 10 MeV. Right: Width of the Nρ
channel is 26 MeV.
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Figure 6.16: Spectral function of the full calculation for the D13 resonance compared
with the simplified calculation of [PLM01]. Left: Width of the Nρ
channel is 10 MeV. Right: Width of the Nρ channel is 26 MeV.

of the P33 . In addition it is difficult to construct non-relativistic widths due to the
off threshold behavior of the Nρ channel. This means that a comparison with a
”pseudo-relativistic” spectral function is not possible. But the spectral function of
the D13 can be simplified using the method of Post et al. as discussed in the case of
the P33 . The results are depicted in figure 6.16. Spectral strength is transfered to
higher energies by the approximation and the peak is shifted towards the mass-shell
region. This shift takes place because the denominator in the approximation is much
simpler than in the full case. But still the results are in good agreement for both
widths of the Nρ channel. The deviations for the D13 case are larger than for the
P33 case because also the Bjorken-Drell function defined in equation (4.37) has
larger values than in the P33 case as depicted in figure 6.17. In the simplified version
the Bjorken-Drell function is always zero. The Bjorken-Drell function (4.37)
can be seen as a measure of the quality for such an approximation for a given particle.

The spectral function of the D13 depends strongly on the cut-off parameter Λ
as depicted in figure 6.18. Similar to the P33 case this comes due too different
distribution of the spectral strength over different energies. The distribution can be
seen when comparing the normalization functions for different cut-off parameters,
depicted in figure 6.15. Larger cut-off parameters distribute the strength in a larger
region and into the high energy parts of the spectrum. As in the case of the P33 such
a broad distribution of spectral strength outside the physical meaningful energy
region is disturbing. This excludes large values of Λ as a reasonable choice.

A smaller cut-off parameter surpresses strongly already in the physical meaningful
region and large portions of spectral strength can be found at energies much below
the mass-shell leading to a large tail for small energies. This tail is induced by the
larg energy dependence of the real parts in this energy region. Already in the begin-
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Figure 6.17: Same as figure 6.11, r.h.s., but for D13 .
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Figure 6.18: Spectral function of the D13 resonance with different values of the cut-
off parameter Λ. Left: Partial width ΓNρ = 10 MeV. Right: Partial
width ΓNρ = 26 MeV.
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Figure 6.19: Left: Partial and total width of D13 when considering the ρ-meson as
a stable particle. Right: Spectral function of D13 for the case of an
unstable or stable ρ-meson.

ning of this chapter we have argued that small values of Λ are unreasonable when
looking at the variation of the coupling in the physically meaningful region. Taking
all arguments together supplies strong indications that small cut-off parameters will
not give a correct physical description of the resonance. We conclude that also for
the D13 resonance a physically meaningful value for the cut-off parameter will be
around Λ = 1 GeV.

6.6 Influence of Unstable Particle

One of the major difficulties when calculating the selfenergy and the spectral func-
tion of the D13 resonance compared to the P33 resonance is the fact that the D13 de-
cays into unstable particles. The complications arise because when going from a
stable to an unstable particle a δ-function in the selfenergy has to be exchanged by
a spectral function (see section 3.3). This leads to a higher numerical effort because
the integrations cannot be solved analytically anymore. If the unstable particle is a
baryon as in the case of the ∆π channel the spectral function will even have a more
complicated structure leading again to much higher numerical effort.

Assuming the particles to be stable would be a large simplification especially for
the ∆π channel. Because in this work the full propagator is available it is interesting
to compare the results of the full spectral function to a simplified one where one
particle is assumed to be stable.

77



6 Results for P33 (1232) and D13 (1520)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4�!!!
s -MD13 @GeVD

0.05

0.1

0.15

0.2

0.25

0.3

0.35

G
V

@GeVD

GV D stable

GV full

-0.1 0 0.1 0.2 0.3 0.4 0.5�!!!
s -MD13 @GeVD

0.5

1

1.5

2

Ρ v
@GeV-

2
D

Ρv D stable

Ρv D13

Figure 6.20: Left: Total width of D13 when considering the ∆ resonance as an unsta-
ble (full line) and stable (dashed line) particle. Right: Spectral function
of D13 for the case of an unstable or stable ∆.

When inserting the ρ-meson as a stable particle its threshold value will be higher
than the mass shell of the D13 . So it is not possible anymore to fit the coupling
constant via the partial width. In figure 6.19 the partial widths and the spectral
function are depicted taking the same input as for the unstable case. The partial
width of the ρ-meson opens up dramatically reaching nearly seven times the value
than in the unstable case. Due to this dramatic increase of the width atound the
threshold energy of Nρ, large amount of spectral strength is transfered above this
threshold creating a new peak. The total shape of the spectral function changes
leading to the conclusion that this simplification is not a good approximation.

When considering the ∆ as a stable particle it is possible to refit the coupling
constants of the ∆π channel. Taking the value of the width of the Nρ channel to
ΓNρ = 10 MeV the coupling is gN∗∆π = 2.05 GeV−3 as compared to 2.1 GeV−3 in
the unstable case. This means that the coupling strength remains the same.

The differences between a calculation using a stable or an unstable ∆ will be
mainly induced by the shift of the threshold for the width of this channel. Because
the spectral function is normalized spectral strength has to be transfered to higher
energies leading to an increased width for energies higher than the threshold region
of ∆π. This can be seen in the left plot in figure 6.20 where the width of the D13 is
plotted for the full case and taking the ∆ as a stable particle. On the right hand side
of figure 6.20 the spectral function is compared with the result of the full calculation.
One sees the shift of spectral strength to higher energies leading to a lowered start,
highered peak and a slightly larger shoulder. The effect can be seen but is still
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considerably small.
Taking the ∆ as a stable particle is a huge simplification for the calculation due

to the complicated structure of its spectral function. Comparing the effect of this
simplification on the spectral function of the D13 and the possible simplification
of the calculation leads to the conclusion that it is a good approximation when
computing power is restricted.

It was possible to make the simplification where the ∆ is taken as a stable particle
because the mass-shell of the D13 is above the energy threshold to create a ∆. The
effect by taking the ∆ as a stable particle only shifts some spectral strength due to
the shifted threshold of the partial width which is comparably small. Aditionally
the coupling of the D13 to the ∆ is not too strong so only a small amount of spectral
strength is transfered to higher energies. This leads to rather small changes in the
spectral function making it a considerable simplification.

In the case of the ρ such a simplification changes the whole structure of the
spectral function. This can be understood because the on-shell energy of the D13 is
less than the threshold energy to create Nρ. Due to the strong coupling of the
ρ-meson to the D13 a considerably large partial width has to be taken into account
even at these energies. Aditionally the mass of the ρ-meson is quite high leading to
a large energy gap between the threshold energy of the unstable ρ-meson and the
stable one. Taking the ρ-meson as a stable particle pushes all this spectral strength
above threshold where it has a predominant impact on the shape of the spectral
function.
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7 Summary and Outlook

In this work interactions of spin 3/2 resonances in hadron physics are investigated.
Such interactions are not trivial and lead to many problems concerning the consis-
tencies of the couplings. It was shown that it is feasible to calculate fully relativistic
propagators for spin 3/2 resonances in the Pascalutsa framework. These con-
siderations can serve as a prelude to more complicated treatments for in-medium
calculations of hadronic properties.

Further specific calculations were performed for the case of the P33 and D13 reso-
nances which are needed to overcome complications that occured in simplifications.
Such complications (violation of the Bjorken-Drell relation (4.33) accompanied
by negative cross sections) vanish when the full relativistic structure is incorporated.

First we started in chapter 2 introducing the Rarita-Schwinger fields as a
field theoretical description of spin 3/2 particles. A free Lagrangian was introduced
and checked for giving the correct number of DOF. Using this Lagrangian the free
propagator was calculated.

In the same chapter the introduction of interactions was discussed. The conven-
tional coupling of spin 3/2 resonances to Nπ introduced by Nath et al. [NEK71] is
inconsistent because it leads to acausal propagation [Sin73] and non positive definite
anti-commutation relations [Hag71]. This inconsistencies arise because the interac-
tion violates the number of DOF of the free theory [Cox89]. To overcome these
inconsistencies the Pascalutsa framework was introduced. A scheme was given
how to introduce consistent interactions by exploring the gauge invariance of the
free massless Lagrangian. The interacting Lagrangian is introduced with the
same gauge invariance as the free massless theory. This does not lead to further
DOF. The mass term is introduced like in the free case to break the symmetry and
rises the number of DOF to the correct value for massive higher spin fields. In an
example for the case of the ∆Nπ coupling this was shown explicitly. There one
could see that in the Pascalutsa framework the spin 1/2 and spin 3/2 parts of the
interaction are clearly separated. In chapter 5 we derived for the first time consistent
couplings of spin 3/2 particles to ρN and ∆π using the Pascalutsa method.

At the end of chapter 2 we discussed the correspondence between conventional
and Pascalutsa coupling showing that on the S-matrix level they lead to the
same observables because both approaches are equivalent up to some contact term.
On the level of understanding the underlying physics the Pascalutsa method is
preferable because it separates spin 1/2 and spin 3/2 components of the interaction.
Although it could be shown that the Pascalutsa framework is sufficient to provide
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consistent interactions for higher spin states it might not be a necessary requirement
as ongoing research in effective field theories indicates [HWGS05].

On the basis of the Pascalutsa framework the selfenergies of spin 3/2 resonances
are introduced in chapter 3.

In chapter 4 we calculated the full relativistic structure of the dressed propagator
for spin 3/2 resonances in an analytical form. With this starting point it was possible
to calculate the analytical form of the spectral function for spin 3/2 resonances. It
could be shown that in the Pascalutsa framework the spectral function for spin
3/2 resonances has basically the same structure as spin 1/2 states. This is a major
simplification and means that it is not only feasible to calculate spin 3/2 resonances
in the Pascalutsa framework but also easier than in the conventional approach.

The selfenergy and the spectral function describes fully a resonance. But be-
cause they are not measurable quantities the width and the mass of a resonance
were introduced. They are closer to theory than experimental data and closer to
experiment than spectral functions. But as pure numbers they can not represent the
whole spectral shape. This leaves an ambiguity how to define them. In this work the
width and the mass are defined by comparing the spectral function to a relativistic
Breit-Wigner form. In the case of a spin 3/2 resonance there are three possible
candidates for a width from which only one is a generally positive definite quantity.

To achieve the goal to calculate the spectral function of the D13 resonance the
selfenergies of the major decay channels are needed. These are Nπ, Nρ and ∆π
and calculated in chapter 5. For Nπ Pascalutsa proposed a consistent coupling
which was used. For the Nρ and ∆π channel no couplings were previously available.
Using the method proposed by Pascalutsa they were derived. To check the results
they are expanded for the non-relativistic limit by assuming stable particles, leading
to the correct phase space behavior of the width. The Nπ channel leads to a P-
wave and D-wave for a particle with positive and negative parity, respectively. The
Nρ and ∆π channels lead to P-wave (S-wave) for particles with positive (negative)
parity. The selfenergies were calculated in a general way making it possible to
use them for all spin 3/2 resonances decaying into these three channels. Because
the P33 resonance decays into Nπ it was possible to calculate the properties of this
resonance. It was also needed as a part of the D13 selfenergy in the ∆π channel
because the unstable character of the ∆ must be taken into account. The selfenergy
of this channel contains an integration over the spectral function of the ∆ making
it a complicated and numerically involved quantity.

For theNρ and ∆π channel also the selfenergies for stable ρ and ∆ were calculated.
The results were compared to the non-relativistic limit yielding the correct behaviour
as expected by phase space considerations.

The results for the P33 and D13 resonances were discussed in chapter 6. The spec-
tral functions automatically fulfill all Bjorken-Drell conditions summarized in
section 4.3.3. In detail this means that ρs and ρv are real quantities. ρv is pos-
itive definite and normalized.

√
sρv − ρs ≥ 0 for all

√
s. These conditions were
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derived generally for spin 1/2 and spin 3/2 resonances. All spectral functions of
these resonances have to fulfill them. In some simplifications as proposed by Post
et al. [PLM01] the propagator had to be changed by hand to fulfill these conditions.
It could be shown in this work, that by taking the full propagator such problems do
not arise.

The spectral function of the P33 resonance has a typical Breit-Wigner form. It
is asymmetric with a quick rise and a long tail. The D13 resonance on the other hand
has a long shoulder for high energies due to the strong coupling of the ρ-meson. This
shoulder vanishes when the ρ-meson is neglected and more structure arise when the
partial width is increased from ΓNρ = 10 MeV to ΓNρ = 26 MeV. These changes
indicate the importance of the Nρ channel for the whole structure of the D13 spectral
function.

For the widths of the resonances it could be shown that for the P33 all three
candidates for a width are proper choices. All three are positive definite and are
similar over the whole energy range. In the case of the D13 the three candidates for
a width differ largely and only one is positive definite making it the only choice for
an off-shell width.

To investigate the dependence of the spectral function on the cut-off parameter,
the latter was varied. The shape of the spectral function changes dramatically for
both resonances. Because the parameters were only fitted to two quantities it was
not possible to fit Λ precisely leaving an ambiguity which value is the correct one.
Altough it was not possible to pin down the number exactly it could be shown that
only values of around 1 GeV give physically meaningful results. This resolves the
ambiguity and gives some constraints for further fits when all three couplings are
fitted to experimental data.

The full spectral function was compared with various simplifications to rate the
quality of these simplifications. First, we compared the results of the P33 spectral
function with a simple Breit-Wigner approach where the width is taken in a
non-relativistic form. It could be shown that such a simple approach does not give
a reasonable approximation for energies higher than the mass-shell. It is not an
unexpected result because such a ”pseudo-relativistic” approach will not work for
higher energies where relativistic effects are not negligible.

Next it could be shown that neglecting the real parts spoils the normalization
conditions for ρv. It has mainly an effect on the tails and shoulders of the spectral
functions which are reduced.

Comparison of the full calculation with the approximation proposed by Post et
al. [PLM01] shows that this is a reasonable approximation. The difference is mainly a
slightly shifted peak and some spectral strength is transfered to higher energies. This
effect is much smaller for the P33 than for the D13 case. Looking at the Bjorken-
Drell function (4.37) one sees that for the P33 case it is nearly zero. Because in
the Post et al. approach it is always zero, deviations from zero in the Bjorken-
Drell function will also lead to deviations in the spectral functions. For the D13 the
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7 Summary and Outlook

deviation from zero are larger leading to larger deviations.
Taking the ∆ and the ρ as stable particles lead to different conclusions. Taking the

ρ as a stable particle has a major impact on the structure of the spectral function.
Such an approximation is not reasonable. On the other hand, assuming the ∆ as a
stable particle has only marginal influence on the structure of the spectral function.
Due to the large numerical effort needed when implementing the ∆ as an unstable
particle such a simplification is reasonable.

Using the results for the selfenergies it is possible to calculate the widths and
spectral functions of all spin 3/2 resonances decaying into Nπ, Nρ, ∆π. As an
outlook we print out that with the explicit results for the D13 resonance it is possible
to calculate reactions going over theD13 into dilepton or two pions as an end product,
e.g.

Nπ → D13 → Nρ→ Ne+e−,

Nπ → D13 → Nρ→ Nππ,

Nπ → D13 → N∆ → Nππ.

Furthermore it is possible to rate the quality of approximations of spectral functions
by comparing them to the results of the full calculation as was done in this work for
some approximations. To pin down the input parameters more precise it is desirable
to fit them to experimental data.

84



A Degrees of Freedom

To count the degrees of freedom (DOF) for a theory can be trivial when no con-
straints are imposed on the variables of the theory. But in general this is not the
case.
For example the Rarita-Schwinger fields of spin s = j + 1/2 are introduced
as a symmetric Lorentz tensor-spinor ψα

µ1...µj
of rank j, which is a convenient

way to introduce higher spin fields in a Lorentz covariant form. But such a
tensor-spinor has Cj = 4(j + 1)(j + 2)(j + 3)/6 complex components. On the other
hand a physical massive particle with spin s has 2 × (2s + 1) DOF and clearly
2 × (2s + 1) = 2 × (2(j + 1)) < 2 × Cj for all js. One cannot avoid to introduce
constraints eliminating the extra DOF. To understand the connection between con-
straints and DOF a detailed discussion is needed. The method used here is due to
Dirac [Dir64]. It was introduced to quantize systems with constraints and is based
on a Hamiltonian formalism.

A.1 Introduction to the Hamiltonian Formalism

The Hamiltonian formalism is a standard textbook formalism for classical me-
chanics [Kuy97]. Its advantage compared to the Lagrangian formalism is the fact
that an easy scheme for quantization exists [Mes99]. Nowadays this advantage has
decreased because Feynman introduced with the path integrals a scheme to quan-
tize a system given in the Lagrangian formalism [Mos04]. But it is not an easy
task to introduce constraints in this formalism.

The main emphasis of this introduction is to go straight forward to the most rele-
vant theorems for this work and not to give a detailed analysis of the Hamiltonian
formalism. There will also be no discussion about how to quantize a system with
constraints.

A.1.1 The Lagrangian

The action is defined as

S =

∫
Ldt
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A Degrees of Freedom

with L = L(qn, q̇n) as the Lagrangian. This action has 2N degrees of freedom:

qn with n = 1 . . . N,

q̇n with n = 1 . . . N.

The equations of motion are derived via the Euler-Lagrange equation

d

dt

(
∂L

∂q̇n

)
=
∂L

∂qn
.

A.1.2 The Hamiltonian

The Hamiltonian is introduced by defining the generalized momenta pn as the
partial derivatives of the Lagrangian with respect to the velocities

pn =
∂L

∂q̇n
.

Until now we have assumed that the momenta and the coordinates are independent
variables which form the phase space of the particles leading to 2N degrees of free-
dom. But this will not be the general case because it is possible that the momenta
and the coordinates are not independent variables but have a dependence of the
form

φm(qn, pn) = 0, m = 1 . . .M.

These functions are the M primary constraints of the Hamiltonian formalism.
The Hamiltonian is introduced via a Legendre transformation

L(qn, q̇n) −→ H(qn, pn) = pnq̇n − L.

But this will not lead to a unique Hamiltonian. An equally valid Hamiltonian
can be introduced by adding a linear combination of the constraints:

H∗ = H + umφm (A.1)

with until now arbritrary coefficients um.
Such a sum does not change the Hamiltonian because the constraints φm are zero
for all p’s and q’s. So far this is trivial but variations of H∗ lead to different equations
of motion:

q̇n =
∂H

∂pn

+ um
∂φm

∂pn

,

ṗn = −∂H
∂qn

− um
∂φm

∂qn
.

with M coefficients um.
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A.2 General Equations of Motion

A.1.3 The Poisson Brackets

To explore these coefficients um we introduce the Poisson brackets

[f, g] =
∂f

∂qn

∂g

∂pn

− ∂f

∂pn

∂g

∂qn
(A.2)

with the properties

[f, g] = −[g, f ] antisymmetric (A.3)

[f1 + f2, g] = [f1, g] + [f2, g] linear (A.4)

[f1f2, g] = f1[f2, g] + [f1, g]f2 product rule (A.5)

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0 Jacobian identity (A.6)

The equation of motion in this formalism is given by

ġ = [g,H] + um[g, φm] (A.7)

The Poisson bracket is only defined for quantities that are functions of q and p.
But it is possible to generalize the definition.

Theorem 1. When the Poisson brackets are generalized in such a way using only
the equations (A.3) - (A.6) one can write equation (A.7) as

ġ = [g,H + umφm]

Proof. ġ = [g,H + umφm] = [g,H] + [g, umφm] using equation (A.4).
From (A.5) one conclude ġ = [g,H] + [g, um]φm + um[g, φm]
While [g, um] is not defined this is not disturbing because it is multiplied by a zero,
the constraints.

It is important to notice that the constraints φm must not be used before working
out a Poisson bracket. The equations are written as weak equations, using ”≈”
instead of ”=”. Then the equations of motion for g(q, p) can be written as

ġ ≈ [g,H∗] (A.8)

A.2 General Equations of Motion

An equation of motion in the form of equation (A.8) has not much practical use
because the ums are unknown coefficients. It is desirable to derive general equations
of motion for a system with constraints. Then it would be possible to quantize such a
system by demanding that the Poisson brackets become the commutation relation
of the theory. To derive such general equations of motion we need information about
the values of um. This will be achieved by classifying the constraints.
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A Degrees of Freedom

A.2.1 Consistency Conditions

The quantities φm are zero for all times. Hence their derivative must vanish. Insert-
ing φm in (A.7) leads to M consistency conditions

0 ≈ [φm, H] + um′ [φm, φm′ ]. (A.9)

These conditions have to be examined. It is possible that they lead to inconsistencies
e.g. 1=0. If this happens the original Lagrangian has to be changed until all
inconsistencies are eliminated. Then it is possible to sort these M equations into
three categories:

1. Equation (A.9) reduces to 0 = 0. Then these conditions are satisfied by the
primary constraints φm.

2. Equation (A.9) reduces to another equation independent of the um. This
equation is then independent of the first one.

This leads to new constraints, the secondary constraints

χn(p, q) ≈ 0

. They also raise some consistency conditions of the form

0 ≈ [χm, H] + um′ [χm, χm′ ]

which again can be sorted into one of the three conditions listed here.
Then the theory has K secondary constraints and the total number of con-
straints adds up to

φj ≈ 0 with j = 1 . . .M,M + 1 . . .M +K = J.

3. Equation (A.9) does not reduce to either way. This imposes a condition on
the ums. They give a number of non-homogenous linear equations

um = Um(p, q).

Because we have ruled out an inconsistent Lagrangian, these equations will
be solvable. But the solutions will be in general not unique because if we know
one solution we can add any solution Vm(q, p) of the equation with

Vm[φj, φm] = 0 (A.10)

which will lead to another solution because

[φj, H] + (um + Vm)[φj, φm] ≈ 0.
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A.2 General Equations of Motion

The most general solution can be written as a linear combination of all inde-
pendent solutions

Vam(q, p) with a = 1 . . . A

as

um = Um + vaVam

with arbritrary coefficients va.

Then the total Hamiltonian reads

HT = H ′ + vaφa, (A.11)

H ′ = H + Umφm, (A.12)

φa = Vamφm. (A.13)

This introduces some arbitrariness into the Hamiltonian. The vas can be chosen
as functions of time without changing the physics of the theory. These arbritrary
functions must mean that we are using a mathematical framework containing arbri-
trary elements, for example a coordinate system or gauges. To study the behavior
of these functions we introduce some new definitions.

A.2.2 First and Second Class Constraints

Definition 1. We call φj a first class constraint if for any dynamical variable R(q, p)
the equation

[R, φj] ≈ 0 with j = 1 . . . J

holds. Otherwise we call it second class.

Now we can introduce a useful theorem

Theorem 2. The Poisson bracket of two first class quantities is also a first class
quantity.

With this theorem one can deduce two other theorems:

Theorem 3. The Hamiltonian H ′ given in (A.12) is a fist class quantity.

Proof. Interchanging um with Um in equation (A.9) gives the proof.

Theorem 4. The φas are also first class quantities.
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A Degrees of Freedom

Proof. When using the Poisson bracket with φa and φj one gets

[φa, φj]
(A.13)
= Vam[φm, φj]

(A.5)
= Vam[φm, φj] + [Vam, φj]φm

(A.10)
= 0

because the second term is vanishing weakly. Due to the arbitrariness of the j the
proposition is shown.

So the total Hamiltonian can be written by first class quantities namely the H ′

and some first class φs.

Conclusion 1. The number of independent arbitrary functions occurring in the
general solution of the equations of motion is equal to the number of values which
takes on an ”a” as an index.
They are equal to the number of independent primary first class constraints, because
all the independent primary fist class constraints are included in the sum of equation
(A.11).

The initial physical state of a system is determined only by the ps and qs and not
by the vas. How does then a state evolves in time for diverent vas when for given
initial ps, qs at t = 0 it is g0?

Theorem 5. The difference between gs of two different vas after the time δt is equal
to

∆g(δt) = εa[g, φa].

Proof.

g(δt) = g0 + ġδt

= g0 + [g,HT ]δt

= g0 + δt ([g,H ′] + va[g, φa]) .

The vas are compleatly arbitrary. Suppose we take different value va′ that gives a
different g(δt). Then

∆g(δt) = δt (va − va′ [g, φa]) = εa[g, φa].

Theorem 6. When theorem 5 is applied twice with two different infinitesimal coeffi-
cients εa and γa′ the difference of the solutions depending on the sequence of applying
theorem 5 is given as

∆g(δt) = εaγa′ [g, [φa, φa′ ]] . (A.14)
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A.2 General Equations of Motion

The φas are primary first class constraints. φb = [φa, φa′ ] can also be a secondary
first class constraint, but due to theorem 2 it is still a first class constraint.

Conclusion 2. The φas and the φbs, as the primary and secondary first class con-
straints, act as a generator of infinitesimal contact transformations (A.14). They
lead to changes in the qs and ps that do not affect the physical state.

So it is convenient to introduce a more general equation of motion

ġ = [g,HE] with HE = HT + v′aφ
′
a (A.15)

with the v′as as secondary first class constraints which were not introduced yet in
HT . Now that we have derived this general equation of motion we can count the
DOF of the theory. Which are:

Conclusion 3. • 2N from the qs and ps.

• Every primary and secondary constraint reduces one DOF.

• Every primary and secondary first class constraint reduces an additional DOF
due to the arbitrary functions va (or as a generator of the contact transforma-
tions).

The connection to a local transformation is given by

Theorem 7 ([PT99]). A Lagrangian theory invariant under a local transfor-
mation with n independent parameters has n primary first class constraints [GT90].
The total number of first class constraints is (d+1)×n, where d is the highest order
of the time-derivative operator acting on the parameters of the transformation.
Tho total number of second-class constraints is equal to the number of components
of the system reduced by n.
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B Deutsche Zusammenfassung

In letzter Zeit hat sich ein großes Interesse daran entwickelt, wie sich hadronis-
che Eigenschaften in einem stark wechselwirkenden Medium verändern. Bei den
entsprechenden theoretischen Beschreibungen wird entweder nicht-relativistisch ge-
rechnet [PLM04] oder zumindest eine vereinfachte Struktur der Selbstenergie [PLM01]
angenommen. Bevor ausführlichere Rechnungen im Medium vorgenommen werden
können, ist es nötig, die Struktur von Spin-3/2-Teilchen im Vakuum zu verstehen.
Dafür ist eine vollständig relativistische Behandlung nötig. Die Einführung von
Wechselwirkungen mit Spin-3/2-Resonanzen ist allerdings nicht trivial und kann zu
Inkonsistenzen im Formalismus führen. Dies ist beispielsweise bei der konventionell-
en Kopplung von Spin-3/2-Resonanzen an Nπ der Fall, die von Nath et al. [NEK71]
eingeführt wurde. Eine Möglichkeit, konsistente Kopplungen einzuführen, wurde
von Pascalutsa und Timmermans [PT99] vorgeschlagen. Es wurde allerdings noch
nicht untersucht, wie aufwändig eine vollständig relativistische Beschreibung von
beliebigen Spin-3/2-Resonanzen im Pascalutsa-Formalismus ist. In dieser Arbeit
wird eine relativistische Beschreibung am Beispiel derN∗(1520)-Resonanz vorgestellt.
Es zeigt sich, dass eine Beschreibung der Wechselwirkung von Spin-3/2-Resonanzen
im Pascalutsa-Formalismus nicht nur machbar sondern wesentlich einfacher als
im konventionellen Zugang ist.

Im vereinfachten Ansatz von Post et al. [PLM01] musste der Propagator von Hand
korrigiert werden, um Komplikationen zu vermeiden. Probleme treten insbesondere
bei Teilchen mit negativer Parität auf. Das macht eine Untersuchung des N∗(1520)
als Resonanz mit negativer Parität interessant. In der vorliegenden Arbeit wird
gezeigt, dass diese Komplikationen in einer vollständig relativistischen Rechnung
nicht mehr auftreten.

In Kapitel 2 werden die Rarita-Schwinger-Felder als feldtheoretische Grund-
lage für die weitere Diskussion eingeführt. Die Lagrange-Funktion für freie Teil-
chen wird eingeführt und auf die korrekte Anzahl der Freiheitsgrade hin überprüft.
Anhand dieser Lagrange-Funktion wird der freie Propagator berechnet.

Anschließend wird diskutiert, wie Wechselwirkungen eingeführt werden können.
Die von Nath et al. [NEK71] eingeführte Kopplung ist inkonsistent, da sie zu einer
nicht-kausalen Propagation [Sin73] und zu nicht-positiv definiten (Anti)Kommuta-
tionsrelationen [Hag71] führt. Diese Inkonsistenzen entstehen, da die Anzahl der
Freiheitsgrade der freien Theorie durch die Wechselwirkung verändert wird. Der
Pascalutsa-Formalismus umgeht das Problem, indem die Wechselwirkung in einer
eichinvarianten Form eingeführt wird. Zwei Lagrange-Funktionen mit der gle-
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B Deutsche Zusammenfassung

ichen Eichbinvarianz besitzen dieselbe Anzahl von Freiheitsgraden. Die freie La-
grange-Funktion für masselose Spin-3/2-Resonanzen besitzt diese Eichbedingung.
Eine Wechselwirkung mit derselben Eichinvarianz führt keine neuen Freiheitsgrade
ein. Ein Massenterm bricht die Eichinvarianz und erhöht die Anzahl der Freiheits-
grade auf den richtigen Wert. Das geschieht analog zur freien Theorie. An der
∆Nπ-Kopplung wird dieser Vorgang beispielhaft demonstriert. Es wird gezeigt,
dass die Spin-1/2- und Spin-3/2-Anteile der Wechselwirkung tatsächlich voneinan-
der separiert werden. In Kapitel 5 werden mittels dieser Methode neue Kopplungen
für Spin-3/2-Resonanzen an ρN und ∆π entwickelt.

Am Ende des 2. Kapitels wird der Zusammenhang zwischen Pascalutsa-Forma-
lismus und konventioneller Kopplung diskutiert. Wenn nur die Observablen der
asymptotischen Zustände von Interesse sind, führt die Pascalutsa-Kopplung plus
Kontaktterme einerseits und die konventionelle Kopplung andererseits zu den gle-
ichen Ergebnissen. Diese Betrachtungsweise entspricht allerdings nicht dem Ansatz
dieser Arbeit. Hier werden die Resonanz selbst und nicht die asymptotischen Zu-
stände untersucht. Um die Resonanz zu verstehen, ist es angemessener die Pasca-
lutsa-Kopplung zu verwenden, da sich dann die Spin-1/2- und Spin-3/2-Anteile
trennen lassen. Trotz der Vorteile ist noch nicht endgültig geklärt, ob der Pas-
calutsa-Formalismus nur hinreichend oder auch notwendig ist, um wechselwirk-
ende Spin-3/2-Resonanzen konsistent zu beschreiben. Diese Frage kann nur weitere
Forschung im Bereich der effektiven Feldtheorien beantworten. Erste Ansätze finden
sich in [HWGS05].

In Kapitel 3 werden Selbstenergien im Pascalutsa-Formalismus diskutiert. Da-
bei ergibt sich das interessante Ergebnis, dass die vollständig relativistische Selbsten-
ergie mit Hilfe von zwei Koeffizienten bestimmt werden kann. Im konventionellem
Ansatz sind zehn Koeffizienten nötig.

Im 4. Kapitel wird der volle relativistische Propagator von Spin-3/2-Resonanzen
in analytischer Form hergeleitet. Es wird gezeigt, dass die Struktur der Spektral-
funktion von Spin-3/2-Resonanzen derjenigen von Spin-1/2-Resonanzen entspricht.
Dies erleichtert die folgenden Untersuchungen. Die relativistische Struktur von Spin-
1/2-Resonanzen wurde bereits untersucht, z.B. in [Frö01].

Selbstenergie und Spektralfunktion beschreiben die Eigenschaften eines Teilchens
vollständig. Diese Größen sind aber nicht messbar und lassen sich nur schwer mit
experimentellen Daten vergleichen. Es ist daher üblich, zwei Größen einzuführen,
die experimentelle Daten und Rechnungen verbinden. Es handelt sich dabei um
Masse und Breite einer Resonanz. Die vollständige Stuktur der Selbstenergie oder
der Spektralfunktion können diese Werte allerdings nicht ersetzen. Dies führt dazu,
dass die Definition von Masse und Breite einer gewissen Mehrdeutigkeit unterliegen.
In dieser Arbeit werden beide Größen aus einer relativistischen Breit-Wigner-
Form abgeleitet. Die Spektralfunktion für Spin-3/2-Teilchen ist allerdings wesentlich
komplizierter als die Breit-Wigner-Form. Daher ergeben sich drei Möglichkeiten,
eine Breite zu definieren.
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Im Falle der P33 -Resonanz sind alle drei Möglichkeiten Kandidaten für eine phy-
sikalisch sinnvolle Breite. Alle drei sind positiv definit und fast identisch. Beim
D13 trifft das nicht zu. Die Unterschiede der möglichen Definitionen sind recht groß
und nur eine davon ist positiv definit. Deshalb gibt es nur eine einzige sinnvolle
Wahl einer s-abhängige Breite.

Um die D13 -Resonanz beschreiben zu können, müssen die Selbstenergien aller
relevanten Zerfallskanäle (Nπ, Nρ und ∆π) berechnet werden. In Kapitel 5 werden
die Kopplungen für diese Kanäle eingeführt und die Ergebnisse der Selbstenergien
vorgestellt. Diese können anhand der daraus abgeleiteten Breite überprüft werden.
Der nicht-relativistische Limes dieser Breite zeigt das korrekte Phasenraumverhal-
ten.

Die Selbstenergien und Spektralfunktionen der P33 - und D13 -Resonanzen wer-
den in Kapitel 6 diskutiert. Im Gegensatz zu vielen Vereinfachungen erfüllen die
vollständigen Spektralfunktionen (ρs, ρv) automatisch alle Bjorken-Drell-Bedin-
gungen, die in Kapitel 4.3.3 zusammengefasst sind. Im Einzelnen heißt das, dass ρs

und ρv reelle Größen sind, ρv positiv definit und normiert ist und dass
√
sρv−ρs ≥ 0

für alle
√
s erfüllt ist. Alle Spektralfunktionen von Spin-1/2- und Spin-3/2-Teilchen

müssen diese Bedingungen erfüllen.
Die P33 -Resonanz weist eine typische Breit-Wigner-Form auf. Sie ist asym-

metrisch, steigt schnell an und fällt mit einem langen Ausläufer ab. Die D13 -
Resonanz dagegen besitzt eine symmetrischere Struktur die bei hohen Energien in
eine lange Schulter übergeht. Diese entsteht durch die starke Kopplung an das ρ-
Meson. Die Schulter verschwindet, wenn das ρ-Meson vernachlässigt wird. Das
Umgekehrte passiert, wenn die Kopplung an das ρ-Meson verstärkt wird. Da-
raus lässt sich auf den wichtigen Beitrag des ρ-Mesons zur Gesamtstruktur des
D13 schließen.

Damit die Selbstenergien bei großen Energien endlich bleiben, wurde ein Dämp-
fungsparameter Λ eingeführt. Eine genaue Bestimmung dieses Parameters ist im
Rahmen dieser Arbeit nicht möglich. Es wird jedoch gezeigt, dass Λ bei etwa 1 GeV
liegen muss, um physikalisch sinnvolle Werte zu erhalten.

Die vollständig relativistische Spektralfunktion wird mit verschiedenen Verein-
fachungen verglichen, um deren Qualität zu beurteilen. Zuerst wird das Ergebnis
für die P33 -Resonanz mit einem einfacheren Breit-Wigner-Ansatz verglichen. Es
zeigt sich, dass dieser einfache Ansatz für Energien über der Massenschale keine gute
Näherung für die volle Spektralfunktion darstellt.

Als nächstes wird untersucht, inwieweit die Spektralfunktion ρv durch Vernach-
lässigung der Realteile der Selbstenergie vereinfacht werden kann. Dieser Ansatz
scheitert daran, dass ρv nicht mehr noriert ist und damit seine Bedeutung verliert.

Die von Post et al. [PLM01] vorgeschlagene Näherung liefert eine gute Überein-
stimmung mit der vollen Rechnung. Im Falle der P33 -Resonanz ist die Überein-
stimmung fast perfekt. Bei der D13 -Resonanz ist das Maximum leicht verrückt
und es wird zuviel spektrale Stärke hin zu höheren Energien verschoben. Diese
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Abweichungen können anhand der Bjorken-Drell-Funktion (4.37) charakterisiert
werden.

Unter der Annahme, dass ∆- und ρ-Resonanz stabile Teilchen sind, verändern
sich Breite und Spektralfunktion der Teilchen. Diese Annahme ist reizvoll, da sie
den numerischen Aufwand erheblich verringert. Fr̈ die Berechnung der Selbsten-
ergie können die Spektralfunktionen der Teilchen dann durch δ-Funktionen ersetzt
werden. Besonders im Falle des ∆ ist der eingesparte Aufwand enorm, da die Spek-
tralfunktion des ∆ eine komplizierte Struktur besitzt. Nimmt man das ρ-Meson
als stabil an, verändert sich die Spektralfunktion drastisch. Sie wird wesentlich
schmaler und bei sehr hohen Energien entstehen neue Strukturen. Diese Näherung
ist daher nicht physikalisch sinnvoll. Nimmt man dagegen die ∆-Resonanz als sta-
bil an, verändert sich die Spektralfunktion nur marginal. Im Vergleich zum nu-
merischen Aufwand, der dadurch eingespart wird, ist das im Bedarfsfall eine akzept-
able Näherung.

Mit den in der vorliegenden Arbeit präsentierten Selbstenergien lassen sich alle
Spektralfunktionen von Spin-3/2-Teilchen berechnen, die in Nπ, Nρ oder ∆π zer-
fallen.

Die expliziten Ergebnisse für die D13 -Resonanz können benutzt werden, um Reak-
tionen von D13 -Resonanzen in Dileptonen oder zwei Pionen zu bestimmen, zum
Beispiel:

Nπ → D13 → Nρ→ Ne+e−,

Nπ → D13 → Nρ→ Nππ,

Nπ → D13 → N∆ → Nππ.

Zusätzlich besteht die Möglichkeit, Vereinfachungen der Spektralfunktion quali-
tativ zu beurteilen, indem sie mit der vollständigen Rechnung verglichen werden.
Das wird in dieser Arbeit für einige Vereinfachungen am Beispiel der D13 -Resonanz
vorgeführt.

Um alle Parameter festzulegen, wäre ist wünschenswert, diese direkt aus experi-
mentellen Daten zu bestimmen.
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Zusätzlich möchte ich mich für die gründliche Durchsicht meines Manuskriptes
bedanken. Er hat sich geduldig durch meine ”Satzkatastrophen” hindurchgear-
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Zuletzt möchte ich mich besonders bei meiner Frau Sonja bedanken. Die Zeiten
mit Ihr sind wunderschön und boten mir einen perfekten Ausgleich zur Arbeit im
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