
The Influence of In-Medium
Modifications on Quasi-Elastic

Electron and Neutrino Scattering
on Nuclei

David F. Kalok

Giessen den 13.06.2007

Diplomarbeit

Justus-Liebig-Universität Gießen

Institut für Theoretische Physik





There is a theory which states that if anybody ever discovers exactly
what the Universe is for and why it is here, it will instantly disappear
and be replaced by something even more bizarre and inexplicable.
There is another theory which states that this has already happened.

Douglas Adams: The Hitchhiker’s Guide to the Galaxy
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1 Introduction

Since the 1950’s electron-nucleus scattering experiments have been performed
that opened up a new era of nuclear structure investigations [BGPR96]. In 1955,
Hofstadter and Mc Allister observed the finite size of a proton by deviations from
the Rosenbluth cross section for elastic electron scattering. The intrinsic structure
of the neutron was first probed by Havens et al. and Fermi and Marshall in the
year 1947. It was shown by Foldy in the years 1951-1952 that the anomalous
magnetic moment, suggested by Pauli in 1941, plays a role in electron neutron
interaction.

More than 50 years of electron nucleus scattering experiments have shown
that it is probably the best method to investigate nuclei and their constituents
[BGPR96]. For light nuclei and high energy electrons the Born approximation, i.e.
one photon exchange between electron and target, is a very good approximation
[DF83].

The electron-nucleon interaction can be divided into a vertex which includes
only electrons and a photon and a second vertex which couples the photon to the
nuclear current. The first vertex is well understood by Quantum Electrodynamics
(QED). However, the second vertex involving the nuclear current is much more
difficult to calculate due to the dynamical structure of the nucleons and their
interactions.

For these reasons, one often makes the assumption that the nuclear current is
given by the sum of the currents of the individual nucleons, treated as free par-
ticles, the so called impulse approximation. This assumption is reasonable when
the wavelength is smaller than the typical nucleon-nucleon distances within the
nucleus. Moreover calculations of inclusive quasi elastic electron scattering, using
the impulse approximation, usually predict the magnitude of the experimental
cross section [DF83].

On the other hand one knows that this approximation must break down when
going to larger wavelength. Experiments on oxygen have shown a decrease in
the quasi elastic peak at beam energies of 700 MeV [A+96]. Calculations from
Benhar et al. can describe the reduction of the quasi elastic peak using a ”state
of the art” nucleon spectral function [BFN+05]. This leads to the conclusion that
”free” particles are not a good approximation in this energy region and nucleon-
nucleon correlations become important. Furthermore, neutrino experiments at
MiniBooNE [Min] have seen a deficit in the cross section at forward angles that
recent models cannot describe.

The GiBUU transport model from Giessen [GiB] uses a Fermi gas model with
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1 Introduction

a momentum dependent mean field and Pauli blocking in the elementary nucleon
reaction. The model can describe the electron data [A+96] for beam energies
higher than 700 MeV. Furthermore, above the quasi elastic dominated region
the model works even for the beam energy 700 MeV [BARLM07].

In this work, we will extend the GiBUU model by implementing short-range
nucleon-nucleon correlations. We will examine the influence on quasi elastic pro-
cesses of electron-nucleus scattering and neutrino-nucleus scattering. Further-
more, we will improve the initial state by replacing the Fermi gas by a more
realistic momentum distribution that includes off shell particles in the nuclei.

This work is divided into three main parts. In chapter 2 we derive the in-
medium spectral function for protons and neutrons that includes short-range
nucleon-nucleon correlations using a self-consistent calculation.

The second part is devoted to the implementation of the in-medium modifi-
cations into the GiBUU code. Chapter 3 gives an overview of the mean field
interaction used in the GiBUU model and chapter 4 deals with the numerical
implementation of the spectral function with a finite width in the GiBUU code.

The final part of this work shows the modifications of the elementary cross
section for electron and neutrino induced processes in chapter 5. Furthermore,
we compare our calculation with the electron data from [A+96] and neutrino
induced calculations from Benhar et al. [BFN+05]. Chapter 6 gives a summary
of this work. A German summary can be found in appendix D.2.
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2 Spectral Function in Nuclear
Matter

As we know the nucleus consists out of many interacting nucleons. An accurate
description of such a system requires the N-body wave function in configuration
space containing all possible information, but a direct solution of the Schrödinger
equation is not possible. Therefore, we use the Green’s function method. Further-
more, this method simplifies the description of many identical particles [FW71].

The Green’s function method allows us to concentrate on few matrix elements
of interest. Moreover, the Green’s function contains the most important physical
quantities such as the energy and the lifetime of excited states. However, the
exact Green’s function is not easier to determine than the original wave function.
Therefore we evaluate the Green’s function in perturbation theory. It is possible
to formulate an integral equation (Dyson equation) that yield the in-medium
Green’s function containing the interaction with the medium in the so called self-
energy. The iteration of this process yield the self-consistently calculated width
that will be used in the calculation of the electron and neutrino induced inclusive
quasi-elastic cross sections of chapter 5.

2.1 Green’s Functions

The in-medium spectral function can be calculated using the Green’s function
method. In this section we will get the major tools to deal with a many body
system. Green’s functions are described in many books on quantum field theory
([AGD63], [PS], [Bro],[Dic05],[KB62] ) and are one of the basic concepts in mod-
ern many-body physics. A good overview of the self-consistent Green’s function
method can be found in [DB04].

2.1.1 Introduction to Green’s functions

In quantum field theory the one-particle Green’s function is one of the most im-
portant quantities characterizing the microscopic properties of a system [AGD63]:

gαβ(x, x
′) = −i〈0|T (ψα(x)ψ

†
β(x

′)|0〉) , (2.1)

with the four vector x = (t, ~x), the spin indices α, β and the time-ordering
operator T ,
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2 Spectral Function in Nuclear Matter

T (ψ(x)ψ†(y)) ≡

{
ψ(x)ψ†(y) for x0 > y0

−ψ†(y)ψ(x) for y0 > x0 .

The particle number density and the particle current density can be expressed in
terms of Green’s functions [AGD63]

n(x) = i lim
~x′→~x
t′→t+0

gαα(x, x
′) (2.2)

j(x) = i lim
~x′→~x
t′→t+0

(∇~r −∇~r ′)gαα(x, x
′) . (2.3)

In general one can calculate the expectation value of one-particle operators
using the Green’s function method [AGD63]

F̄ = i

∫
d3r lim

~x′→~x
t′→t+0

fαβ(x)gαβ(x, x
′) . (2.4)

In the following we will show that the poles of the Fourier transform of the Green’s
function determines the spectrum of the excitations. Moreover, we will see that
the Green’s function can be calculated using the diagram technique which has
some advantages over the ordinary form of perturbation theory.

In this chapter we examine the general properties of the Green’s function. Since
we are interested in many-body physics we look at the example of a free Fermi
gas. For simplicity the spin indices are dropped.

In the absence of an external field the Green’s function depends only on the
spacetime difference of the arguments and we can represent the Green’s function
as a Fourier integral [AGD63]

g(x− x′) =

∫
d4p

(2π)4
g(ω, ~p)ei[~p·(~r−~r

′)−ω(t−t′)] . (2.5)

In the case of a non-interacting Fermi gas all states are filled up to the Fermi
momentum pf . Using the definition

ψ(~r, t) =
1√
V

∑
~p

a~p e
i[~p·~r−ε0(~p)t] (2.6)

in equation (2.1), we obtain for the Green’s function

g0(x) = − i

V

∑
~p

ei[~p·~r−ε0(~p)t]

{
1− n~p for t > 0

−n~p for t < 0
(2.7)
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2.1 Green’s Functions

where the number density is defined as

n~p =< a†~p a~p >=

{
1 for |~p| < pf

0 for |~p| > pf
. (2.8)

The Fourier transform of (2.7) is given by the relation

g0(ω, ~p) = −i
{
θ(|~p| − pf )

∫ ∞

0

dt ei[ωt−ε0(~p)t] − θ(pf − |~p|)
∫ ∞

0

dt e−i[ωt−ε0(~p)t]

}
.(2.9)

This expression contains two integrals of the form

∫ ∞

0

eistdt . (2.10)

Since the integral is a Lebesgue integral the limit can be interchanged with the
integration ∫ ∞

0

eistdt =

∫ ∞

0

lim
δ→+0

eist−δtdt = lim
δ→+0

∫ ∞

0

eist−δtdt . (2.11)

Thus the integrand vanishes for t → ∞ and we can evaluate the integral very
easily:

lim
δ→+0

∫ ∞

0

eist−δtdt = i lim
δ→+0

1

s+ iδ
, (2.12)

here iδ determines the way we bypass the pole at s = 0. Using the relation
[KB62] ∫

ds F (s)
1

s+ iδ
= P

∫
ds

F (s)

s
− iπ F (0) (2.13)

we can write

1

s+ iδ
=
P

s
− iπδ(s) . (2.14)

Using equation (2.12) the Green’s function (2.9) can be brought into the form
[AGD63]

g0(ω, ~p) =
θ(|~p| − pf )

ω − ε0(~p) + iδ
+

θ(pf − |~p|)
ω − ε0(~p)− iδ

.

The only difference between the terms for |~p| < pf and |~p| > pf is the sign of δ.
Thus, we can write the Green’s function as

g0(ω, ~p) =
1

ω − ε0(~p) + iδ sgn (|~p| − pf )
. (2.15)
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2 Spectral Function in Nuclear Matter

2.1.2 Analytic Properties

We want to examine the analytic properties of the Green’s function. Moreover
we allow even Green’s function for an interacting system. Consider a Fermionic
system in the Schrödinger representation. For t > t′ the Green’s function is given
by [AGD63]

g(~r − ~r ′, t− t′)|t>t′
= −i〈0|eiĤtψ(~r)e−iĤ(t−t′)ψ†(~r ′)e−iĤt

′|0〉 . (2.16)

Inserting unity 1 =
∑

n |n〉〈n| in equation (2.16) yields

g(~r − ~r ′, t− t′)|t>t′
= −i

∑
n

〈0|eiĤtψ(~r)e−iHt|n〉〈n|eiHt′ψ†(~r ′)e−iĤt
′|0〉

= −i
∑
n

eiE0t 〈0|ψ(~r)|n〉︸ ︷︷ ︸
ψ0n

e−iEnt eiEnt′ 〈n|ψ†(~r ′)|0〉︸ ︷︷ ︸
ψ†n0

e−iE0t′

= −i
∑
n

ψ0n(~r)ψ
†
n0(~r

′)e−i(En−E0)(t−t′) .

Analogue the Green’s function can be calculated for t < t′. Thus, we obtain

g(~r − ~r ′, t− t′) =

{
−i
∑

n ψ0n(~r)ψ
†
n0(~r

′)e−i(En−E0)(t−t′) for t > t′

i
∑

n′ ψ
†
0n′(~r

′)ψn′0(~r)e
i(En′−E0)(t−t′) for t < t′

.(2.17)

For a homogeneous system the coordinate dependence is given by plane waves

ψnm(~r) = ψ(0)e−i~pnm·~r

ψ†nm(~r) = ψ†(0)e−i~pnm·~r ,

where ~pnm ≡ ~pn − ~pm and ~pn is the momentum of the state n1.
For ~pm = 0 one obtains [AGD63]

g(~r − ~r ′, t− t′) =


−i
∑

n |ψ(0)|2ei~pn·(~r−~r ′)e−i(En−E0)(t−t′) for t > t′

i
∑

n′ |ψ(0)|2e−i~pn′ ·(~r−~r ′)ei(En′−E0)(t−t′) for t < t′
.

(2.18)

The operator ψ†(0) increases the number of particles and ψ(0) lowers the num-
ber of particles. Hence for t > t′ the summation with respect to n will be over
states with particle number N +1, if the ground state has the particle number N

1One has to be careful with the indices (ψnm(~r))† = ψ†
mn(~r) .
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2.1 Green’s Functions

(see equation 2.17 ). For t < t′ the summation over n′ is over states with particle
number N − 1. We choose a convenient notation [AGD63]

En(N + 1)− E0(N) = εn + µ , (2.19)

with

εn ≡ En(N + 1)− E0(N + 1) (2.20)

µ ≡ E0(N + 1)− E0(N) , (2.21)

where εn is the excitation energy (which is positive by definition) and µ is the
chemical potential at zero temperature T = 0. For N − 1 we can write

En′(N − 1)− E0(N) = En′(N − 1)− E0(N − 1)− [E0(N)− E0(N − 1)]

= εn′ − µ′ .

For large N we assume that εn = εn′ and µ = µ′, which leads to an error of order
1
N

.
The Fourier transform of (2.18) is given by

g(~p, ω) = −i
∫
d3x

∫ ∞

0

dt
∑
n

|ψ(0)|2ei(~pn−~p)·~xei(ω−εn−µ)t

+i

∫
d3x

∫ ∞

0

dt
∑
n′

|ψ(0)|2e−i(~pn′+~p)·~xe−i(ω+εn′−µ)t . (2.22)

Using equation (2.12) yields

g(~p, ω) =

∫
d3x

∑
n

|ψ(0)|2ei(~pn−~p)·~x 1

ω − εn − µ+ iδ

+

∫
d3x

∑
n′

|ψ(0)|2e−i(~pn′+~p)·~x 1

ω + εn − µ− iδ
. (2.23)

The integration over d3x gives

g(~p, ω) = (2π)3
∑
n

|ψ(0)|2δ(~p− ~pn)
1

ω − εn − µ+ iδ

+(2π)3
∑
n′

|ψ(0)|2δ(~p+ ~pn)
1

ω + εn − µ− iδ
. (2.24)

We can eliminate the sumation over n and n′ by introducing the functions
[AGD63]

A(~p, E)dE = (2π)3
∑
n

|ψ(0)|2δ(~p− ~pn) for E < εn < E + dE (2.25)

B(~p, E)dE = (2π)3
∑
n′

|ψ(0)|2δ(~p+ ~pn′) for E < εn′ < E + dE . (2.26)
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2 Spectral Function in Nuclear Matter

These functions were first obtained by Lehman [Leh57] in a paper on quantum
field theory. With these two functions we can collect all momenta that are on
the same energy shell. Next, we sum up all energy shells, i.e. we integrate over
the energy. Thus, we obtain

g(~p, ω) =

∫ ∞

0

[
A(~p, E)

ω − E − µ+ iδ
+

B(~p, E)

ω + E − µ− iδ

]
dE . (2.27)

Separating the real and the imaginary part of the Green’s function using∫ ∞

0

A(~p, E)

ω − E − µ+ iδ
dE =

∫ ∞

0

A(~p, E)(ω − E − µ− iδ)

(ω − E − µ)2 + δ2
dE

and

Re

∫ ∞

0

A(~p, E)

ω − E − µ+ iδ
dE =

∫ ∞

0

A(~p, E)(ω − E − µ)

(ω − E − µ)2 + δ2
= P

∫ ∞

0

A(~p, E)

ω − E − µ
dE ,

Im

∫ ∞

0

A(~p, E)

ω − E − µ+ iδ
dE = −

∫ ∞

0

A(~p, E)δ

(ω − E − µ)2 + δ2
dE =

∫ ∞

ω−µ

A(~p, z)δ

z2 + δ2
dz

= −πA(~p, ω − µ) for ω > µ ,

we obtain [AGD63]

Re g(~p, ω) = P

∫ ∞

0

[
A(~p, E)

ω − E − µ
+

B(~p, E)

ω + E − µ

]
dE

Im g(~p, ω) =

{
−πA(~p, ω − µ) for ω > µ

−πB(~p, µ− ω) for ω < µ
.

Comparing the real and the imaginary part yields the relation [AGD63]

Re g(~p, ω) =
P

π

∫ ∞

−∞

Im G(~p, ω′) sgn (ω′ − ω)

ω′ − ω
dω . (2.28)

For the following calculation it is useful to take a closer look at the analytic
behavior of the Green’s function. In equation (2.28) we can see that the Green’s
function is not analytic because of the factor sgn (ω′−ω)) which has no continuous
derivative. However, it can be composed out of two analytic functions, the so
called retarded Green’s function gR and the advanced Green’s function gA that
are defined as [AGD63]

Re g = Re gR = Re gA
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2.1 Green’s Functions

and

Im gR = Im g sgn (ω − µ) (2.29)

Im gA = −Im g sgn (ω − µ) . (2.30)

Comparing equations (2.30) and (2.28) we can write for the retarded and ad-
vanced Green’s functions

gR(~p, ω) =

{
g(~p, ω) for ω > µ

g∗(~p, ω) for ω < µ

gA(~p, ω) =

{
g∗(~p, ω) for ω > µ

g(~p, ω) for ω < µ
.

In the Heisenberg representation the Green’s functions g, gR and gA are defined
as follows,

g(~x1, t1, ~x2, t2) ≡
〈
T [Ψ(~x1, t1)Ψ

†(~x2, t2)]
〉

gR(~x1, t1, ~x2, t2) ≡

{
−i
〈{

Ψ(x1, t1),Ψ
†(x2, t2)

}〉
for t1 > t2

0 for t1 < t2

gA(~x1, t1, ~x2, t2) ≡

{
0 for t1 > t2

i
〈{

Ψ†(x1, t1),Ψ(x2, t2)
}〉

for t1 < t2
,

with

T [A(t1)B(t2)] ≡

{
A(t1)B(t2) for t1 > t2

−B(t2)A(t1) for t2 > t1
.

In our calculations we will use the one-particle Green’s functions [KB62]

g>(~x1, t1, ~x2, t2) ≡ −i
〈
Ψ(~x1, t1)Ψ

†(~x2, t2)
〉

(2.31)

g<(~x1, t1, ~x2, t2) ≡ i
〈
Ψ†(~x1, t1)Ψ(~x2, t2)

〉
. (2.32)

These two Green’s functions have the advantage that we do not have to take care
of the time ordering or the sign of t1 − t2.

Using the definitions (2.31) and (2.32) one can show the following relations
[Leh03]

(g<(1, 2))∗ = −g<(1, 2)

(g>(1, 2))∗ = −g>(1, 2)

Im gR(1, 2) = −i1
2
[gR(1, 2)− gA(1, 2)]

= −1

2
[g>(1, 2)− g<(1, 2)]

where (1, 2) ≡ (~x1, t1, ~x2, t2).
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2 Spectral Function in Nuclear Matter

2.1.3 Physical Meaning of g< and g>

One advantage of g< and g> is their physical interpretation. Considering ~x1 = ~x2

and t1 = t2, it follows from equation (2.31) and (2.32) that

g<(~x, t) = i
〈
Ψ†(~x, t)Ψ(~x, t)

〉
is the number density of particles and

g>(~x, t) = −i
〈
Ψ(~x, t)Ψ†(~x, t)

〉
is the number density of holes.

The arguments of Green’s function coordinates can be split up into the relative
coordinates rrel = ( r0

rel, ~rrel) = (t1−t2, ~x1−~x2) and the center of mass coordinates
rcm = ( r0

cm, ~rcm) = ( (t1+t2)/2, (~x1+~x2)/2). The Fourier transform in the relative
coordinates yields the Wigner transform [Leh03]

g<(ω, ~p, rcm) =

∫
d4rrel e

i(ωr0rel−~p·~rrel)g<(rrel, rcm) .

In a homogeneous and infinite system, the rcm dependence vanishes and the
Green’s function depends only on |~p|. The total particle density can be calculated
by integrating over −ig<

ρ = −i
∫

d4p

(2π)4
g<(p) (2.33)

with p = (ω, ~p) .

2.2 Spectral Function of a Free Fermi Gas

The spectral function is the central element of our approach. It is the function
that will replace the on shell condition of the nucleon in the GiBUU calculation.
With the spectral function we will determine the momentum distribution. This
way, we take into account in-medium effects of protons and neutrons.

The spectral function is defined as [KB62]

A(ω, ~p) = i[g>(ω, ~p)− g<(ω, ~p)] = −2Im gR(ω, ~p) , (2.34)

and includes the spectral information of the whole system. For a fixed momentum
the spectral function is normalized to∫ ∞

−∞

dω

2π
A(ω, p) = 1 . (2.35)
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2.3 Self Energy

The Green’s functions g≷ can be expressed in terms of the spectral function

−ig<(ω, p) = A(ω, p)n(ω, p) , (2.36)

ig>(ω, p) = A(ω, p)(1− n(ω, p)) (2.37)

where n(ω, p) is the Fermi distribution function, i.e. the probability that the state
with momentum p and energy ω is occupied. In the case of a non interacting
Fermi gas at zero temperature T = 0, all states up to the Fermi energy ωF are
filled and the Fermi distribution is a step function. Inserting the step function in
(2.36) and (2.37) yields

−ig<(ω, p) = A(ω, p)θ(ωf − ω) , (2.38)

ig>(ω, p) = A(ω, p)θ(ω − ωf ) . (2.39)

For free particles the spectral function is a δ -function. Using equation (2.38)
with (2.33) leads to the relation

ρ =

∫
d3pdω

(2π)4
θ(ωf − ω)2πδ(ω − p2

2m
)

=
4π

(2π)3

∫ ∞

0

dp p2 =
p3
f

6π2
(2.40)

with the Fermi momentum pf =
√

2mωf . This leads to the famous Thomas-
Fermi relation

pf = (6π2ρ)
1
3 . (2.41)

2.3 Self Energy

The Green’s function describes the propagation of the particle. In the free case
there are no collisions between two particles. This is different in an interacting
medium. During the propagation of the particle it can interact with a different
particle. This can lead to a shift in the energy because both particle attract each
other or to a finite lifetime of the particle because of collisions. We will see that
these effects will be taken into account by the so called self-energy that we will
derive in this section.

We take into account only nucleon-nucleon interactions. The non relativistic
Hamiltonian is given by [Dan84]

Ĥ =

∫
d3x ψ†(~x)

(
−∇

2

2m

)
ψ(~x) +

1

2

∫
d3x

∫
d3y ψ†(~x)ψ†(~y)v(~x− ~y)ψ(~y)ψ(~x) ,

(2.42)

with the nucleon-nucleon potential

v(~x1 − ~y2) . (2.43)
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2 Spectral Function in Nuclear Matter

Note, the interaction between the particles is not quantized in the Hamiltonian.
The Green’s function can be ordered in powers of interactions [Dic05] as shown
in figure 2.1.

+ + +

+++

+ ...++

Figure 2.1: Self interaction with a two-point scalar potential in the Feynman di-
agram picture

We can reduce the number of diagrams by redefining the Green’s function

g(1, 1′) = g0(1, 1′) +

∫
d4r2 d

4r3 g
0(1, 2)Σ(2, 3)g(3, 1′) , (2.44)

where g0(1, 1′) is the Green’s function of the free particle. Equation (2.44) is
called Dyson equation. The self energy Σ contains the sum of all irreducible
diagrams, i.e. all diagrams that cannot be separated into two or more diagrams
of lower order. Dyson equation and self energy are illustrated in figure 2.2 and
2.3. We will solve the Dyson equation in section 2.4.

+=

Figure 2.2: Diagrammatical representation of the Dyson equation

= + + +

Figure 2.3: Diagrammatical representation of the self energy up to second order
in perturbation theory
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2.3 Self Energy

2.3.1 Hartree-Fock Self-Energy

1 1 1’

2

1’
+

Figure 2.4: Hartree-Fock diagrams for the nucleon-nucleon interaction. Since the
potential is local in time and the potential interacts directly with the
incoming and outgoing particles one obtains an overall δ-function in
time.

Figure 2.4 shows the lowest order contribution of the self energy. Using Feyn-
man rules we obtain the analytic expression [Dan84]

ΣHF (1, 1′) = [δ(~r1 − ~r1′)
∫
d3r2 v(~r1 − ~r2)(−i)g0(~r2, t1, ~r2, t1)

+v(~r1 − ~r1′)ig0(~r1, t1, ~r1′ , t1′)]δ(t1 − t1′) (2.45)

These diagrams are called Hartree-Fock or mean-field self-energy. Since the po-
tential is local in time and the potential interacts directly with the incoming and
outgoing particles we obtain an overall δ-function in time. We are interested
in the Wigner transform of equation 2.45). Due to the δ-function in time the
integral can be evaluated very easily

ΣHF (ω) ∝ eiω·0 .

Hence, the Wigner transform has no energy dependence. Since the self-energy is
an analytic function we can use the following relations:

Re f(ω) =
1

π
P

∫ ∞

−∞
dω′

Im f(ω′)

ω′ − ω
+ C∞ (2.46)

Im f(ω) = − 1

π
P

∫ ∞

−∞
dω′

Re f(ω′)

ω′ − ω
+ C ′

∞ , (2.47)

where f(ω) is an analytic function. We already used these relations in equation
(2.13). Since the Wigner transform is energy independent the imaginary part
does not gain a dispersive part:

Im ΣHF = − 1

π
Re ΣHF P

∫ ∞

−∞
dω′

1

ω′ − ω︸ ︷︷ ︸
=0

+C ′
∞

= C ′
∞ .
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2 Spectral Function in Nuclear Matter

Hence, a constant in the real part does not generate an energy dependence in the
imaginary part and vice versa.

The Green’s function g0(1, 1′) of the free particle and the nucleon-nucleon po-
tential v(~r1 − ~r2) depend only on |~r1 − ~r1′|, due to Galilei invariance and rota-
tional invariance. Furthermore, (−i)g0(~r2, t1, ~r2, t1) is a real function, so that the
Hartree-Fock part in coordinate space has the following properties:

ΣHF (1, 1′) = ΣHF (1′, 1) = (ΣHF (1′, 1))∗ .

The Wigner transform of the Hartree-Fock self-energy is given by

ΣHF (ω, p) =

∫
d4rrel e

i(ωr0rel−~p·~rrel)ΣHF (r0
rel, ~rrel) (2.48)

=

∫
d4rrel e

−i(ωr0rel−~p·~rrel)ΣHF (−r0
rel,−~rrel) (2.49)

=

∫
d4rrel e

−i(ωr0rel−~p·~rrel)ΣHF (r0
rel, ~rrel)

∗ (2.50)

= Σ∗
HF (ω, p) (2.51)

Thus, the Hartree-Fock part is energy independent and a real function:

ΣHF (ω, |~p|) = ΣHF (|~p|) = Σ∗
HF (|~p|) . (2.52)

2.3.2 Collision Term

Let us proceed to the second order self-energy diagrams. The diagrams are called
Born diagrams. In figure 2.5 we obtain

2 2’

1 1’

+

2’

1 2

1’

Figure 2.5: Born diagrams, left direct, right exchange term; Since there is no
direct connection between the incoming and the outgoing particle
through the potential, the Wigner transform of this diagram is en-
ergy dependent. Thus, we obtain a dispersive contribution to the
imaginary part of the self-energy.

ΣB(1, 1′) = ΣBd(1, 1
′) + ΣBe(1, 1

′)
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2.3 Self Energy

with

ΣBd(1, 1
′) =

∫
d3r2 d

3r3 v(~r1 − ~r2)v(~r2′ − ~r1′)[g0(1, 1′)g0(2, 2′)g0(2′, 2)]t2=t1;t2′=t1′

ΣBe(1, 1
′) = −

∫
d3r2 d

3r3 v(~r1 − ~r2)v(~r2′ − ~r1′)[g0(1, 2)g0(2, 2′)g0(2′, 1′)]t2=t1;t2′=t1′
.

In analogy to g> and g< we introduce the self-energies Σ≷,

Σ(1, 2) = θ(t1 − t2)Σ
>(1, 2) + θ(t2 − t1)Σ

<(1, 2) . (2.53)

After some algebra we get

Σ≷
Bd(1, 1

′) =

∫
d3r2 d

3r3 v(~r1 − ~r2)v(~r2′ − ~r1′)

×[g≷(1, 1′)g≷(2, 2′)g≶(2′, 2)]t2=t1;t2′=t1′
(2.54)

and

Σ≷
Be(1, 1

′) = −
∫
d3r2 d

3r3 v(~r1 − ~r2)v(~r2′ − ~r1′)

×[g≷(1, 2)g≶(2, 2′)g≷(2′, 1′)]t2=t1;t2′=t1′
. (2.55)

+q q

p−qp p p p−q

k

p−k p

q p−q−k
k+q

k

Figure 2.6: Σ> in momentum representation

In momentum representation we find in figure 2.6 for Σ> [KB62]

Σ>(ω, ~p) =

∫
dωqd

3q

(2π)4

dωkd
3k

(2π)4
v(q)2g>(p− q)g>(k + q)g<(k)

−
∫
dωqd

3q

(2π)4

dωkd
3k

(2π)4
v(q)v(k)g>(p− q)g>(p− k)g<(p− q − k)
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2 Spectral Function in Nuclear Matter

(2.56)

Substituting k′ = p− q − k in the second term yields

Σ>(ω, ~p) =

∫
dωqd

3q

(2π)4

dωkd
3k

(2π)4

[
v(q)2 − v(q)v(p− q − k)

]
×g>(p− q)g>(k + q)g<(k) (2.57)

and we get

Σ>(ω, ~p) =

∫
dωqd

3q

(2π)4

dωkd
3k

(2π)4
|M|2 g>(p− q)g>(k + q)g<(q)

(2.58)

with

|M|2 =
1

2
[v(q)− v(p− q − k)]2 . (2.59)

We can calculate Σ< in the same way

Σ<(ω, ~p) =

∫
dωqd

3q

(2π)4

dωkd
3k

(2π)4
|M|2 g<(p− q)g<(k + q)g>(q) . (2.60)

We can see in (2.58) and (2.60) that the Born diagrams are non-local in time
and in space. Thus, we will get an energy dependence. As we seen in subsection
2.3.1 a constant in the real part cannot generate a energy dependence in the
imaginary part and vice versa for an analytic function. Hence, we obtain a non-
zero energy dependent real and imaginary part of the self energy that leads to a
shift of the pole and a broadening of the spectral function,

Im ΣB 6= 0 .

The real part and the imaginary part of the self-energy are related by the Kramers-
Kroening relation [KB62]

Re ΣR
B(ω, ~p) = −P

∫
dω′

π

Im ΣR
B(ω′, ~p)

ω − ω′
,

which is the dispersive part of equation (2.47). We define the width, that will be
used later in the spectral function, as

Γ = −2Im ΣR . (2.61)
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2.3 Self Energy

2.3.3 Meaning of Σ≷

We can express equations (2.58) and (2.60) in terms of [Leh03]

Σ>(ω, ~p) =

∫
dω2d

3p2

(2π)4

dω3d
3p3

(2π)4

dω4d
3p4

(2π)4

×(2π)4δ(~p+ ~p2 − ~p3 − ~p4)δ(ω + ω2 − ω3 − ω4)

×|M|2 g<(ω2, ~p2)g
>(ω3, ~p3)g

>(ω4, ~p4) (2.62)

and

Σ<(ω, ~p) =

∫
dω2d

3p2

(2π)4

dω3d
3p3

(2π)4

dω4d
3p4

(2π)4

×(2π)4δ(~p+ ~p2 − ~p3 − ~p4)δ(ω + ω2 − ω3 − ω4)

×|M|2 g>(ω2, ~p2)g
<(ω3, ~p3)g

<(ω4, ~p4) (2.63)

From section 2.1 we know that −ig<(ω, p) is the number density of the occupied
states and −ig>(ω, p) is the number density of the unoccupied states. Therefore,
Σ>(ω, ~p) can be identified with the total collision rate out of the state (ω, ~p)
(See figure 2.7). A particle with momentum p and energy ω and a particle with
momentum p2 and energy ω2 collide and populate the two unoccupied states
(ω3, p3) and (ω4, p4). Since we are interested in the total collision rate of the
state (ω, ~p), we integrate over p2, p3 and p4, and ω2, ω3, ω4.

p2

p3(ω, p)

p4

Figure 2.7: Physical interpretation of Σ>: Σ>(ω, ~p) can be identified with the
total collision rate out of the state (ω, ~p)

Σ<(ω, ~p) can be identified with the total production rate of the state (ω, ~p)
(See figure 2.8). The particles (ω, p) and (ω2, p2) are produced in the collision of
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2 Spectral Function in Nuclear Matter

the two particles (ω3, p3) and (ω4, p4). In order to get the total production rate
we integrate over p2, p3 and p4, and ω2, ω3, ω4.

p3

p4 p2

(ω, p)

Figure 2.8: Physical interpretation of Σ<: Σ<(ω, ~p) can be identified with the
total production rate of the state (ω, ~p)

2.4 Green’s Function and the Spectral Function in
Infinite Matter

We want to solve the Dyson equation (2.44). First, we note that the Green’s
function g(1, 1′) depends only on the difference (x1−x1′) between the two points

with x1 = (t1, ~x1) and x1′ = (t1′ , ~x1′) . We multiply (2.44) with (i ∂
∂t1

+
∇2

1

2m
)

(i
∂

∂t1
+
∇2

1

2m
)g(x1 − x′1) = δ4(x1 − x1′) +

∫
d4r Σ(x1 − r)g(r − x1′)

= δ4(x1 − x1′) +

∫
d4y Σ(x1 − x1′ − y)g(y) .

The Fourier transform is 2∫
d4z (i

∂

∂t1
+
∇2

1

2m
)g(z)e−i(ωz

0−~p·~z) = 1 +

∫
d4zd4y Σ(z − y)g(y)e−i(ωz

0−~p·~z)

(ω − p2

2m
)g(ω, p) = 1 + Σ(ω, p)g(ω, p)

with z = (t1 − t1′ , ~x1 − ~x1′).
From the Fourier transform, we obtain the in-medium Green’s function

g(ω, ~p) =
1

ω − ~p2

2m
− Σ(ω, ~p)

. (2.64)

2We use the convolution theorem F [f ∗ g] = Ff · Fg with [f ∗ g](t) =
∫
dτ f(t− τ)g(τ)
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2.5 Numerical Details

Inserting the Green’s function in the definition of the spectral function (2.34)
yields

A(ω, ~p) = −i

(
1

ω − ~p
2m
− Re ΣR(ω, ~p)− iIm ΣR(ω, ~p)

)∗

+i
1

ω − ~p
2m
− Re ΣR(ω, ~p)− iIm ΣR(ω, ~p)

= −i
(ω − ~p

2m
− Re ΣR(ω, ~p))− iIm ΣR(ω, ~p)

(ω − ~p2

2m
− Re ΣR(ω, ~p))2 + Im ΣR(ω, ~p)2

+i
(ω − ~p

2m
− Re ΣR(ω, ~p)) + i Im ΣR(ω, ~p)

(ω − ~p2

2m
− Re ΣR(ω, ~p))2 + Im ΣR(ω, ~p)2

A(ω, ~p) =
−2Im ΣR(ω, ~p)

(ω − ~p2

2m
− Re ΣR(ω, ~p))2 + Im ΣR(ω, ~p)2

(2.65)

In the Hartree-Fock approximation the self energy is real and shifts the pole
of the spectral function. Since Im ΣHF (ω, ~p) = 0, the spectral function is still a
δ-function [Leh03],

AHF (ω, ~p) = 2π δ

(
ω − ~p2

2m
− Re ΣHF (|~p|)

)
. (2.66)

In second order, the imaginary part of the self energy is not zero. Hence, we
obtain a Breit-Wigner form for the spectral function [Leh03],

A(ω, ~p) =
Γ(ω, ~p)

(ω − ~p2

2m
− Re Σ(ω, ~p))2 + Γ(ω,~p)2

4

(2.67)

with

Re Σ(ω, ~p) = ΣHF (|~p|) + P

∫
dω

2π

Γ(ω, ~p)

ω − ω′
(2.68)

Γ(ω, ~p) = −2 Im ΣB(ω, ~p) . (2.69)

2.5 Numerical Details

To find the second order self-energy we have to evaluate equations (2.62) and
(2.63). Choosing a constant matrix element, i.e. a pointlike interaction in co-
ordinate space, simplifies the self energy calculation. The equations (2.62) and
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(2.63) turn into

Σ>(ω, ~p) = |M|2
∫
dω2d

3p2

(2π)4

dω3d
3p3

(2π)4

dω4d
3p4

(2π)4

×(2π)4δ(~p+ ~p2 − ~p3 − ~p4)δ(ω + ω2 − ω3 − ω4)

× g<(ω2, ~p2)g
>(ω3, ~p3)g

>(ω4, ~p4) (2.70)

and

Σ<(ω, ~p) = |M|2
∫
dω2d

3p2

(2π)4

dω3d
3p3

(2π)4

dω4d
3p4

(2π)4

×(2π)4δ(~p+ ~p2 − ~p3 − ~p4)δ(ω + ω2 − ω3 − ω4)

× g>(ω2, ~p2)g
<(ω3, ~p3)g

<(ω4, ~p4) . (2.71)

Evaluating the delta-function in the equations (2.70) and (2.71) yields

Σ<(ω, ~p) = +i
|M|2

(2π)6

∫
dω2

∫
dω3

∫
dp3 p

2
3

∫
dp2 p

2
2

d cos θ2

ptotp3

×A(ω2, p2)f(ω2, p2)A(ω3, p3)(1− f(ω3, p3))

×
∫
dp4p4A(ω4, p4)(1− f(ω4, p4)) , (2.72)

and

Σ>(ω, ~p) = −i |M|2

(2π)6

∫
dω2

∫
dω3

∫
dp3 p

2
3

∫
dp2 p

2
2

d cos θ2

ptotp3

×A(ω2, p2)(1− f(ω2, p2))A(ω3, p3)f(ω3, p3)

×
∫
dp4p4A(ω4, p4)f(ω4, p4) , (2.73)

with ptot = |~p+ ~p2| and ω4 = ω + ω2 − ω3.
Calculations from J. Lehr [Leh03], P. Konrad [KLM05],[Kon04] and F. Frömel

[Fro01] have shown that for short-range effects one obtains results with constant
matrix elements that are comparable with the results of the sophisticated many-
body calculations of Benhar et al. [BFF89]. Since we use the same Skyrme
parameters as in [KLM05] we use the averaged matrix element

|M| = 350 MeVfm3 . (2.74)

This value is in the region that is derived by Landau-Migdal parameters (|M| =
341 MeVfm3 ) [KLM05] and comparisons with Benhar et al. [BFF89] (|M| =
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320 MeVfm3 ) [KLM05]. Further comparisons with Benhar have shown that one
obtains even better results for the chosen matrix element of |M| = 350 MeVfm3 .
Since we will use the spectral function in GiBUU for oxygen 16

8 O we calculate the
spectral function for isospin symmetric matter. For our calculations we choose a
grid in the energy and momentum plane with the limits−0.5 GeV ≤ ω ≤ 0.5 GeV
and p ≤ 1.25 GeV/c. The spacing is in both directions 5.0 MeV. The finite size
of the grid leads to a cutoff in energy and momentum at the boundaries. This
leads to a lack of information on the behavior of the spectral function at energies
outside the grid limits. In order to calculate the real part of the self-energy by
the dispersion relation (2.68), the imaginary part is extrapolated into the regions
of large energies by assuming a Gaussian tail.

We calculate the spectral function self-consistently. Therefore we estimate a
starting width and calculate the self-energy numerically from equations (2.72)
and (2.73). With this result we calculate a new spectral function that is the
input of the next iteration:

Γ(ω, ~p) → A(ω, ~p) → Σ(ω, ~p) → Γ(ω, ~p),Re Σ → . . .

In our calculation we take into account the dispersive part of the self-energy.
After some iterations (3 to 5 iterations) the spectral function does not change
anymore. In the picture of Feynman diagrams, our self-consistent calculation
corresponds to a resummation of the Born diagrams to all orders.

The integration over the quasi-particle peak of the spectral is not trivial. The
on-shell peaks of the spectral function are narrow structures compared to the full
integration volume. The integration routine is explained in appendix C.

The mean field effects are taken into account by the effective potential and the
effective mass. The parameters are taken from the Skyrme SLy230a [CMB+97]
interaction. By executing the variation of the energy density functional with
respect to the kinetic energy density τq and the nucleon density ρq, where q = n, p,
one obtains for the effective mass and for the effective potential [KLM05]:

mq

m∗
q

= 1 +
2mq

~2

(
1

8
[t1(2 + x1) + t2(2 + x2)]ρ+

1

8
[t2(2x2 + 1)− t1(2x1 + 1)]ρq

)
,

(2.75)

U eff
q =

1

4
t0[2(2 + x0)ρ− 2(2x0 + 1)ρq]

+
1

24
t3ρ

σ[2(2 + x3)ρ− 2(2x3 + 1)ρq]

+
1

24
σt3ρ

σ−1[(2 + x3)ρ
2 − (2x3 + 1)(ρ2

q + ρ2
n)]

+
1

8
[t1(2 + x1) + t2(2 + x2)]τ

+
1

8
[t2(2x2 + 1)− t1(2x1 + 1)]τq , (2.76)
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t0 ( MeVfm3) -2490.23
t1 ( MeVfm5) 489.53
t2 ( MeVfm5) -566.58

t3 ( MeVfm2+3σ) 13803.0
x0 1.1318
x1 -0.8426
x2 -1.0
x3 -1.9219
σ 1/6

Table 2.1: Parameters of the Skyrme SLy230a [CMB+97] interaction.

where ρ is the total and τ the total kinetic density. The Skyrme parameters x0,
x1, x2, x3, t0, t1, t2, t3 and σ are given in table 2.1. The Feri energy at the
saturation density ρ0 = −0.16 fm−3 is ωF = −16 MeV. For further details see
[Kon04] and [KLM05].

2.6 Results for the Spectral Function

Figure 2.9 shows the spectral function and the corresponding width as functions
of the energy at the saturation density ρ0 = 0.16fm−3. The momentum p =
0.1667 GeV/c is chosen to be below the Fermi momentum pF = 0.27 GeV/c.
The quasi particle peak is located below the Fermi energy at E~p = −0.041 GeV.
In the mean field approximation this peak would be a delta function. Due to
the short-range correlations coming from the second order diagrams discussed in
section 2.3.2, we observe a broadening of the quasi elastic peak. The spectral
function as well as the width drops to zero at the Fermi energy. Furthermore the
spectral function has some strength located above the Fermi energy because of
the non-zero width above the Fermi energy. Due to the dispersion relation (2.68)
the spectral function is normalized to one for on-shell peaks below the upper
boundary of the energy. For higher energies the normalization is not possible
anymore due to the finite size of the grid.

Since the states at the Fermi energy are stable, due to kinematical constraints,
it is not possible to scatter into or out of those states and thus the width is
zero. Below the Fermi energy the width is dominated by two-particle one-hole
excitations, i.e. Σ< and above the Fermi energy the width is dominated by one-
particle two-hole excitations, i.e. Σ> (More details can be found in appendix D).
At low energies the width starts almost constant at Γ = 0.016 GeV. It reaches a
local maximum of Γ = 0.029 GeV at −0.1 GeV; after that it drops into the valley
around the Fermi energy. Above the Fermi energy the width rises rapidly. At the
grid boundary it has the value Γ = 0.162 GeV. With higher energy the phase
space of the excited particles in Σ> increases because one has more possibilities
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to distribute the energy. Thus, the width increases.
In figure 2.10 we show the spectral function and the corresponding width as

functions of the energy at the saturation density. The momentum p = 0.3333 GeV/c
is chosen to be above the Fermi momentum. We see that the quasi elastic peak is
located above the Fermi energy. Here we find strength below pF that would not
be there in a pure mean-field approximation. Since the width below the Fermi
energy is smaller than the width above the Fermi energy, the tail of the spectral
function below the Fermi energy is smaller than the tail in figure 2.9.

Since most of the strength of the spectral function is located around the on-shell
peak the on-shell width has a strong influence on integrations over the spectral
function. Figure 2.11 shows the on-shell width Γon(E) = Γ(E, p(E)) as a function
of E − EF , where EF is the Fermi energy and p(E) = (2m∗(E − Ueff ))

1/2. The
solid black line shows the result of the on-shell width of our calculation, the
dashed line shows the result of Benhar et al. [BFF89], [BFF92], the dotted line
shows the result of Baldo et al. [BBG+92] and the dash dotted line shows the
result of Froemel [FLM03]. It can be seen that our result is in between the
calculation of Benhar and Baldo, and Froemel.

Figure 2.12 shows the self-consistently calculated width as a function of the
momentum at fixed energy E = −33 MeV that is below the Fermi energy. Since
the energy is below the Fermi energy the width is dominated by Σ<. Below
p = 0.18 GeV/c the width is almost constant (Γ ≈ 0.006 GeV). Between p =
0.18 GeV/c and p = 0.8 GeV/c the width drops to zero. This drop is due to the
fact that for higher momenta the overlap between the particle excitations and the
hole excitations become smaller such that Σ< decreases. For more information
see appendix D. The plateau below p = 0.18 GeV/c comes from Pauli-blocking
that limits the volume of the phase space.

Figure 2.13 shows the self-consistently calculated width as a function of the
momentum at fixed energy E = 83 MeV that is above the Fermi energy. Since
the energy is above the Fermi energy the width is dominated by Σ> and thus the
width is bigger compared to figure 2.12. The drop is due to the fact that for higher
momenta the overlap between the particle excitations and the hole excitations
becomes smaller such that Σ< decreases. For more information see appendix D.
The plateau below p = 0.18 GeV/c comes from Pauli-blocking that limits the
volume of the phase space and separates the particle and hole excitations so that
the overlap of the spectral functions cannot increase.

In order to use the nuclear matter results for a real nucleus we have to calculate
the width for different densities. Figure 2.14 shows the self-consistently calculated
width for different densities as a function of the energy for the fixed momentum
p = 0.01667 GeV/c. We can see that the width scales approximately with a
constant factor for low densities. For higher densities, we observe a saturation of
the width above the Fermi energy. Furthermore, a constant scaling factor cannot
be determined anymore.

For low densities we expect that the width rises linearly in density. That is
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Figure 2.9: Cut through the spectral function, including the dispersive part of
the self-energy, and the corresponding width for isospin symmetric
matter at fixed momentum below pf = 0.27 GeV/c.
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Figure 2.10: Cut through the spectral function, including the dispersive part of
the self-energy, and the corresponding width for isospin symmetric
matter at fixed momentum above pf = 0.27 GeV/c.
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Figure 2.11: The on-shell width Γon(E) as a function of E − EF with the Fermi
energy EF for the nuclear matter density ρ = ρ0. The solid black
line shows the result of our calculation, the dashed line the result of
Benhar et al. [BFF89], [BFF92], the dotted line the result of Baldo
et al. [BBG+92] and the dash dotted line the result of Froemel
[FLM03] .
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Figure 2.12: Self-consistently calculated width, including the dispersive part of
the self-energy, as a function of the momentum at fixed energy E =
−0.033 GeV and at the saturation density ρ0 = 0.16 fm−3.
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Figure 2.13: Self-consistently calculated width, including the dispersive part of
the self-energy, as a function of the momentum at fixed energy E =
−0.033 GeV and at the saturation density ρ0 = 0.16 fm−3.
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2 Spectral Function in Nuclear Matter

due to the fact that for low densities the width is determined by the number of
particles. For higher densities Pauli blocking becomes important such that parti-
cles far below the Fermi energy does not contribute to the collision width. Figure
2.15 shows the self-consistently calculated width for fixed energy and momentum
(E = 0.2083 GeV ,p = 0.1667 GeV/c) as a function of the density. We see that a
linear scaling can be applied up to ρ = 0.8 fm−3. For higher densities we observe
the mentioned saturation.

Figure 2.16 shows the on-shell width Γon as a function of the density for fixed
energies. The black solid line shows the result of our calculation for the energy
E = 83 MeV that is always above the Fermi energy and not in the vicinity of
the valley around the Fermi energy. The dashed line shows the result for the
energy E = −58 MeV that is below the Fermi energy and not in the vicinity of
the valley around the Fermi energy. For both energies we observe a linear density
dependence. However, the slope is bigger for the energy above the Fermi energy.
The linear dependence can be applied up to densities between 0.7 fm−3 and
0.8 fm−3 that we also observed for the width with fixed energy and momentum
in figure 2.15.
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Figure 2.14: Self-consistently calculated width as a function of the energy E for
fixed momentum p = 0.1667 GeV/c for different densities.
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Figure 2.15: Self-consistently calculated width, including the dispersive part of
the self-energy, at fixed energy E = 0.2083 GeV and fixed momen-
tum p = 0.1667 GeV/c as a function of the density.
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Figure 2.16: The on-shell width Γon(E) as a function of the density at fixed en-
ergy. The solid black line shows the result of our calculation for the
energy E = 83 MeV that is above the Fermi energy for all densities
and not in the vicinity of the valley around the Fermi energy, the
dashed line for the energy E = −58 MeV below the Fermi energy
and not in the vicinity of the valley around the Fermi energy.
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2 Spectral Function in Nuclear Matter

2.7 Momentum Distribution

The momentum distribution yields the probability to find a particle with a given
momentum. At zero temperature, the states of the spectral function are filled up
to the Fermi energy ωF . Thus we can calculate the momentum distribution from
[Dic05]

n(~p) =
1

2π

∫ ωF

−∞
dω A(~p, ω) . (2.77)

Assuming a constant width in equation (2.77) yields

n(~p) =

∫ ωF

−∞
dω

Γ

(ω − ω~p)2 + Γ2

4

=
1

π

∫ 2
ωF−ω~p

Γ

−∞
dξ

1

ξ2 + 1

=
1

π
arctan

(
2
ωF − ω~p

Γ

)
+

1

2

The function arctan(x) has values between −π
2

and π
2
. At x = 0 the function is

zero. For negative x the function is negative and reaches −π
2

very fast. For posi-
tive x the function is positive and reaches π

2
very fast. Hence ωF −ω~p determines

the sign of the function and Γ determines the size of the transition region. In the
limit Γ → 0 the function has the value π

2
for ω~p < ωF and −π

2
for ω~p > ωF such

that we obtain the step function known from the free Fermi gas.
The dashed curve in figure 2.17 shows the distribution function calculated with

a constant width of 6 MeV at ρ = 0.16 fm−3. We see that the states below the
Fermi momentum are filled to 98%. The transition region around the Fermi
momentum is about p = 0.21 GeV/c and p = 0.30 GeV/c.

Now we take a look at the distribution function coming from the self-consistent
calculation. The solid line in figure 2.17 shows the momentum distribution using
the self-consistently calculated width from section 2.6 at ρ = 0.16 fm−3, includ-
ing the real part of the self-energy. Below the Fermi momentum the distribution
function is almost constant at about 0.89 and lower than the distribution function
with the constant width. We see that there is a sharp drop at the Fermi momen-
tum. This is due to the fact that the width is zero at the quasi particle peak for
ω~p = ωF . The wiggles and the kink at ω = ωF of the self-consistent calculation
are due to the numerical integration over the sharp quasi-elastic peak near ωF .
Above the Fermi momentum we see that there are more states populated in the
case of the constant width.

The momentum distribution of the self-consistent calculation has a unique
shape. It cannot be reproduced by a simple constant width. For the population

38



2.7 Momentum Distribution

of the high momentum tail one needs a rather big width but for the sharp drop
near the Fermi momentum one needs a small width. So even if a constant width
was reasonable for scattering processes it is not be suitable for the momentum
distribution and therefore it is not be suitable for the initialization of the nucleus.

Next we want to know the density of the system. The density can be calculated
from the momentum distribution: We consider the integral

I(p) = g

∫
d3p′ n(p′)|p′<p

= g
1

2π2

∫ p

0

dp′ p′2n(p′) , (2.78)

where g is the degeneracy of the state. In our calculation the degeneracy is four
(spin× isospin). The density is given by

ρ = I(∞) .

Figure 2.17 shows the function (2.78) as a function of the momentum. The black
solid line shows the result of the calculation performed with the self-consistently
calculated width from section 2.6 at ρ = 0.16 fm−3. Below the Fermi momentum
pF = 0.27 GeV/c the function increases proportional to the momentum cubed
because the momentum distribution is almost constant below the Fermi momen-
tum. At the Fermi momentum it reaches the value I(pF ) = 0.145fm−3. Above the
Fermi momentum the functions grows slowly, at the momentum p = 0.8 GeV/c
the function has the value I(0.8 GeV/c) = 0.184fm−3 and at the momentum
p = 1.2 GeV/c the function has the value I(1.2 GeV/c) = 0.187 fm−3 and satu-
rates in this region.

The dashed line shows the result of the calculation performed with the constant
width of Γ = 6 MeV. Again we observe an increase proportional to the momen-
tum cubed below the Fermi momentum. As we see in figure 2.17 the momentum
distribution of the calculation performed with the constant width is higher below
the Fermi momentum. Therefore, the value of I(p) is higher at the Fermi momen-
tum than for the calculation performed with the self-consistent width. However,
the difference between the two results at the Fermi momentum is not as big as
one would expect naively (∆I(pF ) ≈ 0.05fm−3). This is due to the weight p2,
coming from the integral in equation 2.78, so that higher momenta have a big-
ger influence than lower momenta. The increase above the Fermi momentum is
lower than in the case of the self-consistent result. The two curves intersect at
about p = 0.479 GeV/c. The calculation for the constant width has the value
0.177 fm−3 at the momentum p = 0.8 GeV and is below the result performed
with the self-consistent width (I = 0.184 fm−3).

In both results we observe that the calculated density is above the initial den-
sity. The Fermi momentum was determined assuming quasi-particles, i.e. a step
function as momentum distribution. Including the collision terms from section
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2 Spectral Function in Nuclear Matter

2.3.2 into the self-energy yields a momentum distribution that differs from the
step function (See figure 2.17). However, the Fermi momentum and the cor-
responding Fermi energy is still the same as in the mean-field approximation.
Therefore, the new density differs from the initial one. Furthermore, the Skyrme
potential is calculated using the mean-field approximation , i.e. the step function
as momentum distribution, and using the initial density. The increase of the den-
sity can be explained physically. We start with the ground state of the mean-field
approximation. Including the collision terms the states broaden in the energy di-
rection so that we can lower the total energy per nucleon if we fill up all states up
to the Fermi energy regardless of their momenta. As we see in figure 2.17 we can
put more particles into the ground state than in the pure mean-field approxima-
tion such that the density increases and the total energy per nucleon decreases.
In other words we do not fix the density but the Fermi energy. However, it would
be better to fix the density. To do this, we have to determine numerically the
Fermi momentum and the Fermi energy after each iteration. Furthermore, the
potential parameters are fitted assuming the mean-field potential. Therefore, one
has to consider how the Skyrme parametrization should be modified.

Up to now we have considered only the width, i.e. the imaginary part of the
self-energy. Usually, the imaginary part of the self-energy determines the shape of
the spectral function and the real part determines the location of the quasi elastic
peak. At momenta near the Fermi momentum we have to consider the real part of
the self-energy because the width near the quasi particle peak is small compared
to the real part of the self-energy. Figure 2.19 shows cuts through the calculated
width at fixed momenta. The chosen momenta are around pF . The calculation
has been performed for the density ρ0 = 0.16 fm−3. We see that the width has its
minimum at ωF . In fact, the width at ωF is zero at zero temperature. It has to be
zero by definition because the ground state is stable. Thus, we can parametrize
the width around pF and ωF with

Γ ≈ a(|~p|) (ω − ωF )2 . (2.79)

Figure 2.20 shows a cut through the corresponding real part of the self-energy
without the mean field part at p = 0.23 GeV/c. Near ωF we can approximate
the real part of the self-energy with

Re Σ(ω, ~p) ≈ −b(~p)(ω − ωF ) . (2.80)

Using equations (2.79) and (2.80) in the spectral function for p = pF yield

A(pF , ω) =
aξ2

((1 + b)ξ)2 + a2ξ4

4

A(pF , ω) =
a

(1 + b)2 + +a2

4
ξ2

, (2.81)
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Figure 2.17: Comparison between the momentum distribution calculated with a
constant width of Γ = 6 MeV and the momentum distribution cal-
culated with Re Σ and Im Σ from a self-consistent calculation at
ρ = 0.16fm−3
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Figure 2.18: Integration of the momentum distribution as a function of the upper
limit p ( function (2.78)). The solid black line shows the result of the
calculation using the self-consistently calculated width for the initial
density ρ = 0.16 fm−3, the dotted line the result of the calculation
using the constant width of 6 MeV.
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Figure 2.19: Self-consistently calculated width near pf as a function of the energy

at the density ρ = 0.16fm−3. The dashed line shows the width at
fixed momentum p = 0.21 GeV/c, the black solid line the width at
fixed momentum p = 0.23 GeV/c, the dashed line the width at fixed
momentum p = 0.27 GeV/c.

with ξ = ω − ωF . We see that even when the width goes to zero the spectral
functions remains finite due to the dispersive real part of the self-energy. Using
expression (2.81) we can calculate the momentum distribution function at the
Fermi momentum

n(pF ) =
1

2

1

1 + b
. (2.82)

We can see that the momentum distribution at p = pF is determined by the
slope of the real part of the self-energy. Since b > 0, it reduces the value at the
Fermi momentum. Hence, a calculation without the real part of the self-energy
overestimates the momentum distribution around the Fermi momentum.
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Figure 2.20: Re Σ near pf and ωF without ΣHF as a function of the energy at
fixed momentum p = 0.23 GeV/c.
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3 BUU Model

In classical statistical dynamics transport processes are described by the Boltz-
mann equation. Nordheim, Uehling and Uhlenbeck derived a quantum mechan-
ical extension that can be used for fermionic systems, the ”Boltzman-Uehling-
Uhlenbeck equation” (BUU).

In the late 80’s the theory group at the JLU Giessen started to use the BUU
model to describe heavy-ion collisions and later on also photon, pion, electron and
neutrino induced processes. The present work is based upon the model version
described at the project homepage [GiB].

3.1 Mean Field Potential

The pole of the spectral function is determined by the real part of the self energy.
Within GiBUU the mean field self-energy is parametrized by a density dependent
Skyrme part and an additional momentum dependent part ([WPKG88],[GWP+90]):

U(~r, ~p) = A
ρ(~r)

ρ0

+B

(
ρ(~r)

ρ0

)τ
+

2C

ρ0

g

∫
d3p′

(2π)3

n(~r, ~p ′)

1 + ( ~p−~p
′

Λ
)2
. (3.1)

However, this potential differs from the potential in chapter 2. We will solve this
problem in chapter 4.

The ground state of our model is given by

n(~r, ~p) = θ(pf (~r)− |~p|) . (3.2)

Using equation (3.2) we can calculate the integral in (3.1) analytically

2C

ρ0

g

∫
d3p′

(2π)3

n(~r, ~p′)

1 + ( ~p−~p
′

Λ
)2

=

=
Λ3

8π2

[
p2
f (~r) + Λ2 − p2

2pΛ
ln

(
(p+ pf (~r))

2 + Λ2

(p− pf (~r))2 + Λ2

)
+

2pf (~r)

Λ

−2

(
arctan

(
p+ pf (~r)

Λ

)
− arctan

(
p− pf (~r)

Λ

))]
.

(3.3)

The parameters A,B,C, τ,Λ are fitted to nuclear matter data. For further
information see [Tei99].
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3 BUU Model

K[ MeV] A[ MeV] B[ MeV] C[ MeV] τ Λ[fm−1]
290 −29.3 57.2 -63.5 1.76 2.13

Table 3.1: Mean field parameters from [Tei99]

With the energy density we can calculate the equation of state (EOS), the
binding energy per nucleon. The parameters are fixed such that the binding
energy per nucleon has its minimum at ρ0 [Tei99],

∂

∂ρ

E

A |ρ=ρ0

= 0

E

A |ρ=ρ0

= −16 MeV .

The compressibility K of the EOS is the curvature of the EOS with respect to
the density

9ρ
∂2

∂ρ2

E

A |ρ=ρ0

= K .

For the density dependent part we require ([WPKG88],[GWP+90])

U(p = 0, ρ0) = −75 MeV

U(p = 800 MeV, ρ0) = 0

U(p = ∞, ρ0) = 30.5 MeV .

In the following calculations we use the medium momentum dependent depen-
dent EOS [Tei99]. Table 3.1 shows the parameters for the medium momentum
dependent equation of state.

Figure 3.1 shows the potential U for different scenarios of ρ
ρ0

as a function of

|~p| .

3.2 Scalar Potential

The relativistic Hamiltonian in GiBUU has within the local rest frame the form

H =
√

(mN + US)2 + ~p2 + V0(~r, ~p) , (3.4)

with the potential zeroth component of the vector potential V0(~r, ~p) and the scalar
potential US. The spatial parts of the vector potential are zero in the local rest
frame.

Due to numerical reasons we use only a scalar potential so that we do not have
to boost the mean field potential in the particular calculation frame. Therefore
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3.2 Scalar Potential

we set V0(~r, ~p) to zero and include the mean field potential in the scalar potential.
The scalar potential is given by

US =

√
(
√
m2
N + ~p2

LRF + U(ρ, ~pLRF))2 − ~p2
LRF −mN , (3.5)

and we obtain effective mass of the nucleon by

meff = mN + US . (3.6)

For off-shell particles we replace the bare mass mN with the off-shell mass µ in
equation (3.4) and (3.5).
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Figure 3.1: Momentum dependent potential (3.1), in ρ and in p direction
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4 Numerical Realization

4.1 Initialization of the Nucleus

4.1.1 Local Density Approximation

Until now we assumed nuclear matter, i.e. an infinite medium. The real nucleus
has a finite size. Therefore surface effects and other boundary conditions have
influence on its properties.

We take this into account by applying the local density approximation (LDA).
We assume that we can locally approximate the nucleus by nuclear matter. The
momentum distribution function for the nucleus is given by

nA(p) =

∫
d3r n(~r, ~p) ,

where n(~r, ~p) is the momentum distribution calculated for nuclear matter for the
local density at ~r. We use a parametrization for the local momentum distribution
function [Leh03]. For ρ = ρ0 = 0.168 fm−3 the momentum distribution is given
by

n(p, ρ0) =

{
v1 for p < pF

v2
exp(−A p)

p2
for p > pF

(4.1)

with the Fermi momentum

pF (ρ(~r)) =

(
6π2

4
ρ

) 1
3

.

Table 4.1 shows parameters for ρ = ρ0. They are fitted to the momentum distri-
bution in [Leh03] of nucleons in nuclei.

ρ v1 v2 A [1/ GeV]
0.168 0.85 0.15 2.3

Table 4.1: Parameters for the parametrized momentum distribution function
(4.1). The parameters are fitted to the momentum distribution used
in [Leh03].
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4 Numerical Realization

v1 v2 A [1/ GeV] a b
0.83 0.24 3.67 −0.03 0.27

Table 4.2: Parameters for the parametrized momentum distribution function
(4.1) and (4.2) . The parameters are fitted to the momentum dis-
tribution used in chapter 2.

The step in the momentum distribution is always at the Fermi momentum.
Thus the step is a function of the density. Replacing the momentum with

p̃ ≡ p

(
ρ

ρ0

) 1
3

.

yields a density independent Fermi momentum. With the new momentum scale
we can use the parametrized density dependent momentum distribution

n(p̃, ρ) = n(p̃, ρ0)

{
( ρ
ρ0

)a for p̃ < pF (ρ0)

( ρ
ρ0

)b for p̃ > pF (ρ0)
. (4.2)

The parameters are fitted at p2f(p̃) for different densities [Leh03]: a = −0.04
b = 0.34. We see that the bulk part, i.e. the momentum distribution below the
Fermi momentum, is almost constant. However the high momentum tail above
the Fermi momentum increases for higher densities.

Since the momentum distribution of Lehr [Leh03] differs from the momentum
distribution in chapter 2 we fit the parameters on the momentum distribution of
chapter 2. The parameters are shown in table 4.2. We see that we almost obtain
the same result for the bulk part as in the parametrization on the Lehr results.
The tail is higher but the decreasing is faster. Furthermore we observe a smaller
density dependence. In section 5.6 we will see that the difference between these
two parametrizations has almost no influence on the inclusive cross sections, i.e.
the results are almost the same for both parametrizations. The most calculations
are done with the parametrization of the momentum distribution of Lehr. How-
ever this can change if one uses the spectral function for the initialization of the
nuclei and not only the momentum distribution.

4.1.2 Density Profile

In order to get a real nucleus we have to distribute the nucleons in coordinate
space. Later we use the local density approximation (LDA) for the momentum
distribution.

For light nuclei up toO18 we use a harmonic oscillator type density parametriza-
tion

ρA≤18(~r) = ρ0

(
1 + a

( r
R

)2
)

exp
(
− r

R

)
. (4.3)
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4.1 Initialization of the Nucleus

Nucleus Rp,e [fm] ap,e [fm] Rn,e [fm] an,e [fm]
16
8 O 1.833 1.544 1.815 1.529

Table 4.3: Proton and neutron matter density parameters for the density profile
(4.3) taken from [NOGR93]

The parameters for the proton densities are based on the compilation of [NOGR93]
from electron scattering. The neutron densities are provided by Hartree-Fock
calculations. Table 4.3 shows proton and neutron matter density parameters for
16
8 O.

4.1.3 Mass and Energy Determination

After we have determined the momentum of the nucleon, we have to determine
its energy. As we know from section 2.7, the momentum distribution function
can be calculated from the spectral function1 in nuclear matter

n(p) =
1

2π

∫ ωF

−∞
dω A(ω, ~p) .

For |~p| < pF the pole of the spectral function is located within the integration
limits. Thus, most of the baryons below pF are peaked around the on-shell peak
of the spectral function. Moreover, we have seen in chapter 2 that the width
below the Fermi energy is small and thus the on-shell peak is high and narrow .
Therefore we treat particles below pF as on-shell particles.

The situation changes for |~p| > pF . Since the states above pF are only filled up
to ωF the highest energy of any bound state is ωF . Hence, there are no on-shell
particles in the high momentum tail. As an approximation we assign the energy
ωF to all particles with momenta p > pF . The Fermi energy is chosen to be the
binding energy per nucleon and therefore the total energy of the nucleus is in the
desired region. This method has the numerical advantage that we do not have to
distribute the particles in energy direction that would require the inverse of the
spectral function for the numerical routines.

Taking into account off-shell particles and a momentum dependent mean field
we have to determine the masses of the particles. To do so we have to solve the
following equation for m:

p0 =
√
~p2
LRF +m2 + U(~pLRF , ρ(~x))

where U(~pLRF , ρ(~x)) is the mean field potential (3.1).

1Here we use the relativistic energy. Usually the Fermi energy does not include the mass of
the particle. Therefore we have to shift the energy ω → ω+m. The integral stays the same.
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4 Numerical Realization

It can happen that the mass squared becomes negative, i.e. the particle is
faster than light. Since we have off-shell particles the energy and the momentum
are not strictly related. So we can have states with a momentum that is greater
than the energy and thus a negative squared mass. In quantum mechanics or
special relativity particles that are faster than light are not forbidden. But those
particles are a problem for our semi-classical model. Therefore, we introduce
a spatial momentum cutoff. This is reasonable because the potentials and our
assumptions cannot be extended to any momentum scale.

Figures 4.1 and 4.2 show the momentum and the mass distribution for 16
8 O

in arbitrary units. The calculation has been performed with a momentum cutoff
at 0.8 GeV/c. In figure 4.1 we see a smooth drop in the momentum distribution
instead of the sharp step that we have in nuclear matter. Due to the approxima-
tions described above, the mass distribution includes only off-shell masses coming
from the high momentum tail so that we obtain only masses below the bare mass
of m = 0.938 GeV. Through the momentum cutoff we neglect particles that have
masses below 0.4 GeV.
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Figure 4.1: Momentum distribution for 16
8 O with momentum cutoff at p =

0.8 GeV/c (in arbitrary units).

52



4.2 Spectral Function

��� ��� ��� ��	 ��
 ��� ������	
����
����
����
����
����
���
�

�

�
	�




���


��
���

���

��

���
��

����
�	

��
� �

Figure 4.2: Mass distribution for 16
8 O with momentum cutoff at p = 0.8 GeV/c

(in arbitrary units).

4.2 Spectral Function

The spectral function used in the GiBUU code is given by

A(|p|) =
1

π

|p| Γ

(p2 −M2)2 + p2Γ2

with the invariant mass

|p| =
√
pµpµ .

In order to use the self-consistently calculated width from chapter 2 in the
GiBUU model the width is calculated and stored on a grid in energy, momentum
and density. The interpolation between grid points in the energy momentum
plane can be done with the usual interpolation routines. However, a simple
interpolation between two density grid points would give a wrong value:

In figure 4.3 we see the self-consistently calculated width as a function of the
energy for different densities. The densities between ρ = 0.10 fm−3 and ρ =
0.20 fm−3 are omitted because the Fermi energy has its minimum at the saturation
density ρ0 = 0.16 fm−3 so the change of the Fermi energy in density is small
aroung ρ0. The effect for low densities can be seen in figure 4.4 for the densities
ρ = 0.16 fm−3 and ρ = 0.03 fm−3. We see that the width is always zero at the
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Fermi energy. The Fermi energy is a function of the density so that the null
moves as a function of the density.

Let us consider the interpolation of the width at the Fermi energy. The two
neighboring grid points in energy are not zero because the Fermi energy of their
corresponding density differs from the interpolated one. Hence, the interpolated
width at the Fermi energy is not zero.

We want to ensure that the width is zero at the Fermi energy because the
ground state is stable and therefore the states at the surface has to be stable.
Hence, the particle at the Fermi surface have to be stable. To do so, we introduce
the shifted width

Γ̃(ω, p) ≡ Γ(ω + ωF (ρ), p) . (4.4)

Using this shifted width means that the important quantity is the difference
between the particular energy and the Fermi energy. Thus, the root of Γ̃(ω, p) is
at ω = 0 for all densities and therefore the known interpolation routines can be
applied to the shifted width.

A problem can occur if one uses a self-consistently calculated width that is cal-
culated with a different mean field than used in the GiBUU model. In particular,
the self-consistently calculated width of chapter 2 is calculated with a different
mean field. The Fermi energies of the two systems are not the same. Therefore
we shift the energy by the difference of the Fermi energy ωF of the GiBUU model
and the Fermi energy of the calculated width ω′F :

Γ(ω, p) → Γ(ω − (ωF − ω′F ), p) .

After that we use the interpolation routine explained above. With this routine
it is possible to use widths that were not particularly calculated for the GiBUU
model. Thus, we can profit of the work of many people and can compare the
effect of our model. In the future it is planned to do the calculation with the
same mean field as in GiBUU and it will be interesting to see how good this shift
routine works.
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Figure 4.3: Self-consistently calculated width for different densities above ρ0 for
fixed momentum p = 0.3125 GeV/c:
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Figure 4.4: Self-consistently calculated width for densities below below ρ0 for the
fixed momentum p = 0.3125 GeV/c: The black solid line is the width
for the density ρ0 = 0.16 fm−3 the red dashed line is the width for
the density ρ = 0.03 fm−3
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5 In Medium Cross Sections

In this chapter we will show how we modify the elementary cross sections for
electron and neutrino induced reactions so that they take into account in-medium
effects.

5.1 Impulse Approximation

For large enough energy transfer the nucleus is seen by the lepton as a collection
of individual nucleons. Therefore we can write the cross section of the nucleus as
the sum of all scatterings on the nucleons that are distributed according to the
nucleon distribution function n(~r, ~p)

dσA
dEl′dΩ

=

∫
d3r n(~r, ~p)

dσnucleon

dEl′dΩ
.

5.2 In Medium Modifications of the Cross Section

In the nucleus, protons and neutrons are no free particles anymore. They in-
teract with each other and have different properties than in vacuum. Therefore
we carefully account for the collision broadening and the change of the nucleon
dispersion relation.

Consider the lepton-nucleon collision (see figure 5.1)

l(k) +N(p) → l′(k′) +N ′(p′) , (5.1)

with the initial state momenta pµ = (E, ~p), kµ = (El, ~k) and the final state

momenta p′µ = (E ′, ~p ′), k′µ = (El′ , ~k
′). The double differential cross section is

given by

d2σlN
dQ2dEl′

=

∫
dφ

1

64π2

1

|k · p|
1

El
δ(p′2 −M ′2) |M̄|2

with Q2 = −(p′ − p)2 = −t, the azimuthal angle φ ∈ [0, 2π) and the invariant
mass of the outgoing nucleon

M ′2 = E ′2 − ~p′2 .

The delta-function comes from the on-shell condition of the outgoing nucleon.
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l l′

p′p

J
µ
QE

q

Figure 5.1: Quasi elastic lepton nucleon scattering: l is the four momenta of the
incoming lepton, l′ of the outgoing lepton, p of the incoming nucleon,
p′ of the outgoing nucleon.

For a resonance this is not true anymore. Due to a finite life time, energy and
momentum can differ from the on-shell condition. The invariant mass

W 2 ≡ p′µp
′µ

is not fixed. Therefore we have to replace the delta function with the spectral
function

δ(p′2 −M ′2) → A(W ) =
1

π

W Γ

(W 2 −M2)2 +W 2Γ2
.

We have shown in chapter 2 how we calculate the spectral function. However,
the spectral function of chapter 2 is not calculated with the mean-field used in
GiBUU. Therefore, we shift the width which has been obtained in chapter 2
according to the method presented in section 4.2. In the future it is planned to
use a self-consistently calculated width, which fits to the mean field potential of
the GiBUU model.

Further in-medium modifications that enter the GiBUU model are the density
and momentum dependent mean field, Fermi motion and Pauli blocking.

5.3 Elementary Lepton Nucleon Reaction

We proceed with the calculation of the matrix element squared |M̄|2 for the
general process defined in equation (5.1). The matrix element squared is given
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by

|M̄|2 = c LαβH
αβ , (5.2)

with the coupling c, the leptonic tensor Lαβ and the hadronic tensor Hαβ. The
coupling c depends on the particular process. We are interested in neutrino
induced charged current (CC) reactions and in electron induced electromagnetic
interactions (EM):

cCC =
G2
F cosθC

2
(5.3)

cEM =
e2

q4
. (5.4)

The leptonic tensor is given by

Lαβ =
1

ns
Tr [(/k +ml)γα(1− aγ5)(/k

′
+ml′)γβ(1− aγ5)] (5.5)

where ml is the mass of the incoming lepton, and ml′ the mass of the outgoing
lepton. For electromagnetic interactions a is set to zero, for charged current
interactions one sets a = 1. The factor ns denotes the number of possible initial
state spins, i.e. ns = 1 for neutrinos and ns = 2 for electrons.

In this work, we concentrate on quasi-elastic processes, i.e. νn → l−p for
neutrino induced reactions. Due to charge conservation there is no quasi elastic
process with neutrinos on protons. For electron induced reactions we have the
possible reactions ep → ep and en → en. However, there are also contributions
from resonance production and background.

5.4 Quasi Elastic Scattering

In view of the fact that current QCD calculations cannot produce hadronic ver-
tices, we have to use an explicit parametrization for the hadronic current of the
quasi elastic reaction based on general assumptions.

The hadronic current can be expressed as

JQEα = 〈N ′|JQEα (0)|N〉

= ū(p′)Aαu(p) (5.6)

with

Aα = (γα −
/qqα

q2
)F V

1 +
i

2MN

σαβq
βF V

2 + γαγ5FA +
qα
MN

γ5FP . (5.7)
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with MN being the nucleon mass, F V
1,2 the vector form factors, FA and FP the

axial and pseudo scalar form factors which are zero in the case of EM scattering.
The term /qqα

q2
takes care that the vector part of the current is conserved even for

non-equal masses of the incoming and outgoing nucleon that are possible due to
the momentum dependent mean field and momentum dependent mass. In our
model, we use a charge averaged nucleon bare mass MN = 0.938 GeV.

The vector form factors are given by

EM: F V
1,2 = F p

1,2

for e p→ e p ,

F V
1,2 = F n

1,2

for e n→ e n,

CC: F V
1,2 = F p

1,2 − F n
1,2 .

The Pauli form factor F n,p
1 and the Dirac form factor F n,p

2 can be expressed in
terms of the charge and magnetic moments of the proton and the neutron

F n,p
1 (Q2) =

[
Gp,n
E +

Q2

4M2
N

Gp
M

] [
1 +

Q2

4M2
N

]−1

, (5.8)

F n,p
2 (Q2) = [Gp,n

M −Gp,n
E ]

[
1 +

Q2

4M2
N

]−1

, (5.9)

with the so called Sachs form factors Gp,n
E and Gp,n

M . We will use the so called
BBBA05 parametrization [BBBA06]

The hadronic tensor for quasi elastic scattering is given by

Hαβ
QE =

1

2
Tr [(/p+M)Ãα(/p

′ +M ′)Aβ] (5.10)

with

Ãα = γ0A
†
αγ0 . (5.11)

For neutrino scattering, we, in addition, need the axial form factor. Assuming
pion pole dominance, we can use the partially conserved axial current hypothesis
(PCAC) to relate FA and FP

FP (Q2) =
2MN

Q2 +m2
π

FA(Q2) .

The axial form factor is given by the standard dipole form

FA(Q2) = gA

(
1 +

Q2

M2
A

)−2

(5.12)

with gA = −1.267 obtained from β decay and the axial mass MA = 1.00 GeV
[BBA03].
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5.5 Results for Electron Scattering

We shall now apply our model to electron induced QE scattering and compare
our calculation to existing measurements.

Figure 5.2 shows a comparison of different calculations and data obtained by
Anghinolfi et al. [A+96] at a beam energy of 700 MeV and θ = 32◦ for the double
differential cross section as a function of the energy transfer ν = El − El′ . In
vacuum, the quasi-elastic peak is at

νQE =
Q2

2M
≈ E2

l

M
(1− cosθlab) ,

with El the beam energy and θlab the scattering angle of the outgoing electron.
With the above kinematics this gives EQE

γ = 79 MeV.
The dashed curve shows the result of the calculation performed with a sharp

particle (Γ = 1 MeV for numerical reasons) as outgoing nucleon and with a Fermi
step function in nuclear matter, but using the local density approximation (LDA).
We see that this calculation overestimates the quasi-elastic peak. The peak is
at about 90 nb/(sr MeV) but the data has the peak at about 60 nb/(sr MeV).
Furthermore the measured cross section is broader than the calculated one and,
in particular, peaks at a lower ν.

The dash-dotted line shows the calculation performed with the self-consistently
calculated width in chapter 2 and a local Fermi step function for the LDA. We see
that the width reduces the height and broadens the peak. This shows that at low
momentum transfer (QQE(700 MeV) ≈ 385 MeV) short-range nucleon-nucleon
correlations have an influence on the inclusive double differential quasi-elastic
cross section. Hence, the two-particle one-hole excitations and the one-particle
two-hole excitations that are included in the self-consistently calculated width
improve the description of the nucleons in our model.

The dotted curve shows the result of the calculation using the low-density
parametrization, used in [BLARM07], of the collision width

Γ =

∫
n(p) σ(E, ~p, ~p ′) ρ vrel PPB d3p′ , (5.13)

where n(p) is the momentum distribution of the nucleons in the Fermi sea,
σ(E, ~p, ~p′) the total cross section for the scattering of the outgoing nucleon with a
nucleon of momentum ~p ′ in the vacuum, vrel the relative velocity of the particle
and the nucleon, and PPB the Pauli blocking factor for the final state particles
[BLARM07]. The total cross sections are chosen according to the GiBUU colli-
sion term [GiB] (Further details of the collision term can be found in [Leh03]).
Additionally, the calculation uses locally a Fermi step function for the LDA. We
see that we obtain a result that is lower than for the self-consistently calculated
width (dash-dotted line).
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The solid curve shows the result of the calculation performed with the self-
consistent width calculated in chapter 2 and the modification of the initial nucleon
from chapter 4. We see that the inclusion of the high momentum tail further re-
duces the height and broadens the peak. We see that we obtain almost the same
result as for the result performed with the low-density parametrization (dotted
line). This shows that at low momentum transfer (Q2(700 MeV) ≈ 0.145 GeV2

at the vacuum QE peak) short-range nucleon-nucleon correlations and the mo-
mentum distribution of the nucleus have an influence on the inclusive double
differential quasi-elastic cross section.

Since the cross section is for low momentum transfer sensitive to Fermi motion
we conclude that the remaining discrepancy of the lowest energy (wrong peak
position) must be due to the momentum distribution of the nuclei and not to the
spectral function.

Figures 5.3 and 5.4 show that the calculations performed with the sharp outgo-
ing nucleon is slightly above the data for higher energies. However, the difference
between this calculation and the data is smaller than for the beam energy of
700 MeV. That is due to the fact that the quasi-elastic peak is at higher momen-
tum transfer so that the elementary cross section is not so sensitive to in-medium
effects anymore. We see that the calculations using the low density approxima-
tion (dotted line) and the calculation using the self-consistently calculated width
(dash-dotted line) give almost the same result. In particular, for the beam energy
of 880 MeV both calculations have the same peak value. Additionally, these two
calculations are closer to data than the other calculations. The calculation us-
ing the self-consistently calculated width of chapter 2 and the parametrization of
the momentum distribution of chapter 4 is below the data near the quasi-elastic
peak for higher energies, in particular for the beam energies of 1200 MeV and
1500 MeV. Furthermore, we see that for higher beam energies at energy transfers
above the quasi-elastic peak more processes play a major role.

Since the results of the calculation using the collision width and the calculation
using the self-consistently width are at all beam energies almost the same, we take
a closer look at these widths. In figure 5.5 we see the on-shell width as a function
of the momentum for the density ρ = 0.14fm−3. The dashed line shows the on-
shell width for the low-density width parametrization (5.13), using the GiBUU
collision term. We see that the function is zero up to the Fermi momentum
at about p = 0.25 GeV/c. Between p = 0.25 GeV/c and p = 0.48 GeV/c the
width increases rapidly. Above p = 0.48 GeV/c the increase is smaller. At
p = 0.8 GeV/c the width has the value of Γ = 0.041 GeV.

The solid line shows the on-shell width for the self-consistently calculated width
of chapter 2. The width starts at zero momentum at the value of Γ = 0.018 GeV.
At about p = 0.25 GeV/c we find the minimum of the width at the Fermi mo-
mentum. Above the Fermi momentum the width increases and is almost the
same like the low-density parametrization but below it. With increasing energy
the slope of the width decreases. At about p = 0.61 GeV/c the both widths in-
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tersect and above this energy the self-consistently calculated width is above the
low-density parametrization. At p = 0.8 GeV/c it has the value Γ = 0.050 GeV.
The wiggles in both curves are due to the interpolation routines.

Between about p = 0.20 GeV/c and about p = 0.60 GeV/c both widths are
nearly the same. Therefore, we conclude that the results for the double differen-
tial cross-sections using the low-density parametrization and the self-consistently
calculated width are almost the same due to the comparable widths (see figures
5.2, 5.3 and 5.4).
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Figure 5.2: Electron induced inclusive double differential cross section for e− +
16
8 O → e− + X as a function of the energy transfer ν at fixed out-
going electron angle of θ = 32◦. The dashed line shows the result
using a sharp particle for the outgoing nucleon (Γ = 1 MeV for
numerical reasons) and a Fermi step function in the LDA, the dot-
ted curve the result of the calculation performed with the low den-
sity width parametrization (5.13) and a Fermi step function in the
LDA, the dash-dotted line the result of the calculation using the self-
consistently calculated width of chapter 2 and a Fermi step function
in the LDA, the black solid line the result of the calculation using the
self-consistently calculated width of chapter 2 and the parametriza-
tion of the momentum distribution of chapter 4, the black squares the
experimental data measured on oxygen at the ADONE storage ring
[A+96].

63



5 In Medium Cross Sections

��� ��� ��� ��� ����

��

��

��

��

�

�
���

����
���

� ��
���	

��
����

���

�

�


�	���


���������
��������

��� ��� ��� ����

�

��

��

��
�
�

���
����

���
� 


����
�


����
���

��
�	

�
�
	�

�
�����
���������
	

Figure 5.3: Same as figure 5.2 for 880 MeV and 1080 MeV beam energies
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Figure 5.4: Same as figure 5.2 for 1200 MeV and 1500 MeV beam energies
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Figure 5.5: Comparison of the on-shell width as a function of the momentum

for the density ρ = −0.16 fm−3: The dashed line shows the on-shell
width for the low-density width parametrization (5.13), the solid line
the on-shell width for the self-consistently calculated width of chapter
2.
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5.6 Results for Neutrino Induced Quasi Elastic
Scattering

Now we want to calculate neutrino induced scattering processes. We are inter-
ested in the inclusive cross section for neutrino scattering on nuclei. Figure 5.6
shows the quasi elastic contribution to the inclusive cross section per nucleon of
the process

νµ + 16
8 O → µ− +X

as a function of the muon energy Eµ at fixed incoming neutrino energy of 0.7 GeV
and fixed outgoing muon angle of θ = 20◦. Since the electron data that we used
for the electron induces reaction was measured on 16

8 O we use the same target
for the neutrino induced reactions. We have performed several calculations on
different levels of optimization. The first calculation (dashed line) is done with a
Fermi step function in nuclear matter, but using the local density approximation
(LDA), and a sharp particle (Γ = 1 MeV for numerical reasons) as outgoing
nucleon. The quasi-elastic peak is at about Eµ = 0.66 GeV with an amplitude
of 10.25 · 10−38 cm2/ GeV which, using the electron data in section 5.5 as a
benchmark, is considered to be too high.

The dotted line shows the calculation performed with the low density approx-
imation (5.13) and with a Fermi step function in nuclear matter, but with LDA.
We observe a decrease of the quasi elastic peak to 9.29 · 10−38 cm2/ GeV. Fur-
thermore, we observe an increase in the cross section between Eµ = 0.45 GeV
and Eµ = 0.6 GeV compared to the previous result (dashed line). This is due to
the fact that the collision width (5.13) includes nucleon-nucleon collisions.

The next calculation (dash-dotted line) was done with the self-consistently
calculated width in chapter 2 and with a Fermi step function in nuclear matter,
but with LDA. We see that the quasi elastic peak further decreases. Furthermore,
we observe an increase in the cross section between Eµ = 0.45 GeV and Eµ =
0.6 GeV compared to the two previous calculations (dashed line and dotted line).
This is due to the fact that the self-consistently calculated width includes in
second order short range nucleon-nucleon interactions, e.g. two-particle one-hole
excitations or one-particle two-hole excitations, so that the calculation includes
collisions with more than one nucleon.

The final calculation (solid line) was performed with the modification of the
initial nucleon from section 4.1.1 and the width from chapter 2 . We see that the
quasi elastic peak decreases to 8.45 · 10−38 cm2/ GeV. The broadening between
Eµ = 0.45 GeV and Eµ = 0.6 GeV is higher than in the case of a step function
(dash-dotted line). However, the difference can become bigger if one initializes
the particles according to the spectral function because that would increase the
number of off-shell particles in the initial nucleus.
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In chapter 4 we introduced two parametrizations. One is fitted to the momen-
tum distribution of Lehr [Leh03] the other is fitted to the momentum distribution
of our self-consistent calculation. Figure 5.7 shows the inclusive cross section
for the same process as before The dashed line shows the result of the calcula-
tion performed with the self-consistently calculated width of chapter 2 and the
parametrization of the momentum distribution of chapter 4, using the parameters
fitted to the momentum distribution by Lehr [Leh03]. The red dotted line shows
the result of the calculation performed with the self-consistently calculated width
of chapter 2 and the parametrization of the momentum distribution of section
4.1.1 using the parameters for our momentum distribution of chapter 3. We see
that the difference between these two parametrization is very small. Except this
calculations all calculations are performed with the parameters fitted to Lehr.
However, the difference can become bigger if one initialize the nucleus with the
full spectral function.

Since there are no neutrino data available we compare our calculations with so-
phisticated theoretical calculations from Benhar et al. [BM06]. We use the calcu-
lations of Benhar as reference because their nuclear many-body theory (NMBT)
calculation of the spectral function. This allows us to examine how good our
”simple” model is.

Figure 5.8 shows the total inclusive cross section for

νe + 16
8 O → e− +X

as a function of the neutrino energy from Eν = 0 GeV to 1.4 GeV. The dash-
dot-dotted curve shows eight times the vacuum process, the reaction happens
only on neutrons due to charge conservation. The cross section starts at zero
at zero neutrino energy because we need at least 0.511 MeV in order to create
an electron. The function rises at energies from 0.1 GeV to 1.0 GeV before it
reaches its saturation value of σ = 0.55 · 10−38 cm2.

The dashed curve shows the calculation from Benhar et al. [BM06] for a rela-
tivistic Fermi gas model without Pauli blocking (RFGM-NoPB). This calculations
assumes a delta-functions for the nucleons. We see that the total cross section
decreases. For saturation the total cross section is σ = 0.53 · 10−38 cm2.

The dotted curve shows the calculation from Benhar with the NMBT spectral
function but without Pauli blocking (SF-NoPB). The total cross section is further
reduced, in particular in the rising region between Eν = 0− 0.8 GeV.

The lower dash dotted curve shows the calculation with the spectral function
and with Pauli blocking (SF-PB) from Benhar. We can see that Pauli blocking
has no big effect in the rising region but it reduces the saturation value of the
total cross section to σ = 0.48 · 10−38 cm2.

Let us now consider the self-consistently calculated width from chapter 2. The
solid black line shows the GiBUU calculation including the self-consistently calcu-
lated width, Pauli blocking, the momentum dependent mean field and the mod-
ification of the nucleon momentum distribution of chapter 4. We see that the
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Figure 5.6: Inclusive cross section of the process νµ + 16
8 O → µ− +X at fixed in-

coming neutrino energy of 0.7 GeV and fixed outgoing muon angle of
θ = 20◦. The dashed line shows the result calculated with a constant
width of 1 MeV and a Fermi step function in the LDA, the dotted
line shows the result using the low density parametrization (5.13) and
a Fermi step function in the LDA, the dash-dotted line shows the re-
sult using the self-consistently calculated width of chapter 2 and a
Fermi step function in the LDA and the black solid line shows the
result using the self-consistently calculated width of chapter 2 and
the parametrization of the momentum distribution of chapter 4.
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Figure 5.7: Same as figure 5.6. The black dashed line shows the result of the
calculation performed with the self-consistently calculated width of
chapter 2 and the parametrization of the momentum distribution of
chapter 4, using the parameters fitted to the momentum distribution
of Lehr [Leh03]. The dotted line shows the result of the calculation
performed with the parameters for the momentum distribution of
chapter 3.
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5.6 Results for Neutrino Induced Quasi Elastic Scattering

result corresponds to the results of the most realistic calculation from Benhar et
al. [BM06] (lower dash dotted curve). We conclude that our model describes the
nucleon-nucleon correlations as good as the more sophisticated model of Benhar
et al. Since all information of the energy and momentum distribution of the out-
going particle are ”integrated out” in the total cross section it will be interesting
to calculate exclusive cross section in the future.
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Figure 5.8: A comparison of our results for the total quasi elastic cross section for
the process νe+

16
8 O → e−+X as a function of the incoming neutrino

energy Eν to calculations from Benhar et al. [BM06]: The black
solid line shows the result of our calculation performed with the self-
consistently calculated width of chapter 2 and the parametrization of
the momentum distribution of chapter 4, the dash-dot-dotted curve
eight times the vacuum process, the dashed curve the calculation
from Benhar for a relativistic Fermi gas model without Pauli blocking
(RFGM-NoPB), the dotted curve the calculation from Benhar with
the spectral function but without Pauli blocking (SF-NoPB), dash
dotted curve the calculation with the spectral function and with Pauli
blocking (SF-PB) from Benhar.
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6 Summary and Outlook

In this work we have examined the influence of in-medium modifications on
the quasi-elastic scattering of electrons and neutrinos on nuclei. Motivated by
electron-nucleus scattering experiments [A+96] and sophisticated calculations
performed by Benhar et al. [BFN+05] we have implemented short-range nucleon-
nucleon correlations in the GiBUU model. Moreover, we have improved the
ground state of the nucleus by replacing the Fermi gas by a more realistic dis-
tribution. The calculations have shown that the results with our improvements
match the data of [A+96] for low momentum transfer better than the calculations
without these modifications. Moreover, our calculations for the neutrino-nucleus
total cross section correspond to the nuclear many-body theory (NMBT) calcu-
lations from Benhar et al. [BM06].

We have seen that the mean field approximation acts like an external potential.
Hence, the particles can still be treated like free particles. Including the second
order collision terms in the self-consistently calculated self-energy yields an imag-
inary part for the self-energy such that the quasi-particle peak is broadened to a
resonance with a finite lifetime. With a constant matrix element, i.e. a pointlike
interaction in coordinate space, the collision terms take into account short-range
nucleon-nucleon correlations. Thus, we obtain a momentum distribution that
contains occupied states above the Fermi momentum. Due to the smaller phase
space, the width below the Fermi energy is much smaller than the width above
the Fermi energy. Moreover, we have observed a linear density dependence of the
self-consistently calculated width for densities up to ρ = 0.8 fm−3. For higher
densities, we have observed a saturation of the width above the Fermi energy.
Thus, a constant scaling factor for the width cannot be applied anymore.

We have improved the initialization of the nucleons in the nuclei of the GiBUU
model by including the high-momentum tail of the momentum distribution. Fur-
thermore, we have shown how the width between two density grid points can be
interpolated such that the width is always zero at the local Fermi energy.

Using the self-consistently calculated width, which includes short-range nucleon-
nucleon correlations, reduces the height of the quasi-elastic peak of the electron-
nucleus scattering and broadens it. Hence, at low momentum transfer short-range
nucleon-nucleon correlations have an influence on the inclusive double differential
quasi-elastic cross section. Thus, the two-particle one-hole excitations and the
one-particle two-hole excitations that are included in the self-consistently calcu-
lated width improve the description of the nucleons in our model. In particular,
the calculations with short-range correlations match the electron scattering data
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6 Summary and Outlook

on oxygen [A+96] at low energy transfer better than the calculations without
these modifications. Furthermore, we have seen that the influence of the high-
momentum tail, that comes from the broadening of the spectral function and
populates states with higher momenta than the Fermi momentum, on the results
is of the same order as the implementation of the self-consistently calculated
width for the outgoing particle in the elementary cross section. For higher beam
energies we have seen that the short-range correlations play a minor role because
of the higher energy transfer at the quasi-elastic peak.

Using the low-density approximation for the width in our model yields almost
the same results as using the self-consistently calculated width. We can con-
clude that the inclusive cross section is not sensitive to the particular shape of
the spectral function but is sensitive to the reduction of the strength inside the
kinematical integration limits.

For the neutrino-nucleus scattering, our results with the self-consistently cal-
culated width correspond to the ”state of the art” calculation from Benhar et al.
[BM06]. We can conclude that our simpler model describes the nucleon-nucleon
correlations as well as the approach of Benhar et al.

In further examinations it will be crucial to check in exclusive reactions whether
a calculation using the spectral functions can describe experimental data or not.
To do so we have to propagate off shell nucleons through nuclei. For that purpose
we should determine the width in a self-consistent calculation with the same mean
field as in the GiBUU model. Moreover, we could improve the self-consistent
calculation by introducing a density dependent matrix element.

The recent results are encouraging that this simple model can indeed describe
the short-range nucleon-nucleon correlation effects for low momentum transfer.
For the future it will be interesting to see how good this model works for other
reactions and cross sections.
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A Convention

A.1 Natural Units

In this thesis we used the so called natural units with

~ = c = 1 . (A.1)

For all masses and energies we use GeV as standard unit. In general GeV is
also used for the momentum but to distinguish between the spacial momentum
and the energy we indicate the momentum with GeV/c. The dimension of mass,
length and time are:

[M ] = [L]−1 = [T ]−1 . (A.2)

For the conversion into SI-units we use the formula

~c = 0.197 GeVfm . (A.3)

A.2 Dirac Matrices

Throughout this thesis we use the conventions from [BD]. The metric tensor is
given by

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.4)

For the Dirac matrices we use the following representation:

γµ = (γ0, ~γ)

γ0 = γ0 =

(
1 0
0 −1

)
,

~γ =

(
0 ~σ
−~σ 0

)
,
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with the 2× 2 unit matrix 1 and the Pauli spin matrices

~σ = (σ1, σ2, σ3) ,

σ1 =

(
0 1
1 0

)
,

σ2 =

(
0 −i
i 0

)
,

σ3 =

(
1 0
0 −1

)
.

Furthermore we need the following combinations of those matrices:

γ5 = γ5 = iγ0γ1γ2γ3 =

(
0 1

1 0

)
,

σµν =
i

2
[γµ, γν ] .

We use the totally antisymmetric tensor εαβγδ with the convention ε0123 = 1.
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B Mandelstam Variables

The differential cross section for a scattering process with two particles in the
initial state and n particles in the finals state is given by

dσ =
(2π)4|M|2

4
√

(p1 · p2)−m2
1m

2
2

× dΦn(p1 + p2; p3, . . . , pn+2) , (B.1)

where dΦn is an element of the n-body phase space given by

dΦn(p1 + p2; p3, . . . , pn + 2) = δ4(p1 + p2 −
n+2∑
i=2

pi)
n+2∏
i=3

d4pi
(2π)4

δ(p2 −M2
i ) . (B.2)

For two-body reactions we use the Lorentz-invariant Mandelstam variables shown
s, t, u. The variable s is the square of the center of mass energy, the Mandelstam
variable t is the square of the transfered momentum and u only appears for
identical particles in the final state (see figure B.1)

s = (p1 + p2)
2 = (p3 + p4)

2

= m2
1 + 2E1E2 − 2~p1 · ~p2 +m2

2

t = (p1 − p3)
2 = (p2 − p4)

2

= m2
1 − 2E1E3 − 2~p1 · ~p3 +m2

3

u = (p1 − p4)
2 = (p2 − p3)

2

= m2
1 − 2E1E4 − 2~p1 · ~p4 +m2

4 .

They satisfy the equation

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 .

The Mandelstam variables are physical quantities and therefore it is useful to
express the cross sections through these quantities. Consider a two-particle col-
lision with identical particles in the final state. At tree level where there are no
virtual momenta loops, we have three kinematic scenarios (see figure B.1).

With the Mandelstam variables we can write the two-body cross section as

dσ

dt
=

1

64πs

1

|p1cm|2
|M|2 .
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Figure B.1: physical interpretation of the Mandelstam variables.
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C Substitution

In some cases we have to integrate over the on-shell peak of the spectral function.
Since this peak is narrow compared to the integration volume we ”reshape”’ the
spectral function. Let us consider the integral

I(ω) =

∫ pmax

pmin

dpp2A(ω, p)f(ω, p) =

∫ p2max

p2min

dp2p

2
A(ω, p)f(ω, p) , (C.1)

with A(ω, p) the spectral function

A(ω, ~p) =
Γ(ω, ~p)

(ω − p2

2m
− U)2 + Γ(ω,~p)2

4

(C.2)

and am arbitrary function f(ω, p). The on-shell condition is given by

ω − p2

2m
− U = 0 . (C.3)

A substitution p2 → y should either spread out the on-shell region, so that the
numerical integration is possible, or generate a factor dp2

dy
that compensates the

peak structure of the spectral function. The substitution

y(ω) = 2 arctan

(
2

Γ
(ω − p2

2m
− U)

)
(C.4)

has both features. It is inspired by the denominator of the spectral function and
d arctan(x)

dx
= (1 + x2)−1. The derivative is

dy

dp2
=
−Γ

2m

1

(ω − p2

2m
− U)2 + Γ2

4

. (C.5)

Inserting (C.5) in (C.1) cancels the denominator (exactly for a constant width)
of the spectral function:

I(ω) =
1

2

∫ y(ω,pmax)

y(ω,pmin)

dy
dp2

dy
p(y)A(ω, p(y))f(ω, p(y))

= −m
∫ y(ω,pmax)

y(ω,pmin)

dy p(y)f(ω, p(y)) . (C.6)
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In our calculations we are dealing with an energy and momentum dependent
width and potential. However, the width and the potential do not change as fast
as the spectral function at the on-shell peak. Therefore, we can use the width of
the on-shell peak and the corresponding potential, including the real part of the
self energy, in the substitution (C.5). Thus, the on-shell peak is broadened and
can be integrated numerically.
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D Properties of Σ< and Σ>

D.1 Energy Properties

Replacing the Green’s functions in (2.62) and (2.63) by the distribution function
and the spectral function yields

Σ>(ω, ~p) =

∫
. . . δ(~p+ ~p2 − ~p3 − ~p4)δ(ω + ω2 − ω3 − ω4)

× A(ω2, ~p2)A(ω3, ~p3)A(ω4, ~p4)n(ω2, ~p2)[1− n(ω3, ~p3)][1− n(ω4, ~p4)] ,
(D.1)

and

Σ<(ω, ~p) =

∫
. . . δ(~p+ ~p2 − ~p3 − ~p4)δ(ω + ω2 − ω3 − ω4)

×A(ω2, ~p2)A(ω3, ~p3)A(ω4, ~p4)[1− n(ω2, ~p2)]n(ω3, ~p3)n(ω4, ~p4) .
(D.2)

The functions n(ωi, ~pi) ensure that only states contribute that are occupied, while
the [1−n(ωi, ~pi)] functions ensure that final states are unoccupied. The δ-function
demands

ω + ω2 = ω3 + ω4 .

We assume that the Fermi distribution is a step function. For Σ>(ω, p) 6= 0 we
need ω2 < ωF , ω3 > ωF and ω4 > ωF . These constraints lead to the lower limit

ω = ω3 + ω4 − ω2 > 2ωF − ωF = ωF .

An energy of at least 2ωF is required for the two unoccupied states. Since ω2 is
determined by n(ω2, p2) we cannot have an energy above ωF . Hence, ω has to be
at least ωF .

For Σ<(ω, p) 6= 0 we have the opposite constraints. These lead to

ω = ω3 + ω4 − ω2 < 2ωF − ωF = ωF .

The total energy of the two occupied states is lower than 2ωF . The energy of ω2

has to be at least ωF . Thus, the energy ω cannot be above ωF .
If the distribution function is not a step function these constraints will not be

strict. However, the dominance of Σ< below the Fermi energy and the dominance
Σ> above the Fermi energy remain.
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D.2 Momentum Properties

For the momentum properties we have to take a closer look at the equations
(D.1) and (D.2). We see that these equations measure the overlap of the spec-
tral functions A(ω2, ~p2), A(ω3, ~p3) and A(ω4, ~p4) in their integration limits. The
momentum δ-function demands

~p = ~p3 + ~p4 − ~p2 .

We assume again that the Fermi distribution is a step function. For Σ<(ω, p) the
momenta are restricted to |~p2| > pF , |~p3| < pF and |~p4| < pF . The momenta ~p2,
~p3 and ~p4 determine the poles of the spectral functions. Hence, the overlap of
the spectral functions is big for momenta that are close together. Furthermore,
the phase space of the equations (D.1) and (D.2) reaches its maximum for equal
distributed momenta. The momentum ~p3 + ~p4 has its maximum for parallel
momenta and |~p3| = |~p4| = pF . Therefore, a high momentum ~p, compared to the
Fermi momentum, has to be compensated by the momentum ~p2. Thus, the pole
of A(ω2, ~p2) is far away from the spectral functions A(ω3, ~p3) and A(ω4, ~p4) so
that the overlap decreases and Σ<(ω, p) decreases for high momenta.

For Σ>(ω, p) the momenta are restricted to |~p2| < pF , |~p3| > pF and |~p4| > pF .
In this case |~p2| < pF and therefore Σ>(ω, p) decreases for high momenta too.
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Zusammenfassung

Mehr als 50 Jahre Elektron-Nukleon-Streuexperimente haben gezeigt, dass diese
Methode wahrscheinlich die ist Kern- und Nukleoneneigenschaften zu untersuchen.
Im Jahr 1955 entdeckten Hofstadter und Mc Allister die endliche Protonaus-
dehnung auf Grund von Abweichungen von der Rosenbluth Formel bei elastischer
Elektronenstreuung. Die interne Struktur des Neutrons wurde zuerst von Havens
et al. und Fermi und Marshall im Jahr 1947 untersucht. In den Jahren 1951-1952
wurde von Foldy gezeigt, dass das anomale magnetische Moment, postuliert von
Pauli im Jahr 1941, eine Rolle bei Elektron-Neutron-Streuung spielt.

Für leichte Kerne und hohe Elektronenenergien kann die Bornnäherung, d.h.
Ein-Photon-Austausch zwischen Elektron und Target, angewendet werden [DF83].
Die Elektron-Nukleon-Wechselwirkung kann unterteilt werden in einen Vertex,
der das Elektron und das Photon enthält, und in einen Vertex, der das Pho-
ton an den nuklearen Strom koppelt. Der erste Vertex ist gut verstanden und
ausrechenbar durch die Quantenelektrodynamik (QED). Dagegen ist der zweite
Vertex, der den nuklearen Strom enthält, wegen der dynamischen Struktur des
Nukleonen und deren Wechselwirkung viel schwieriger zu berechnen.

Deshalb nähert man den nuklearen Strom durch die Summe der Ströme der
Nukleonen an, die sogenannte Stoßnäherung. Diese Näherung kann angewendet
werden, wenn die Wellenlängen kleiner sind als die typischen Nukleon-Nukleon-
Abstände. Rechnungen, die die Stoßnäherung benutzen, beschreiben normaler-
weise auch die experimentellen Daten für inklusive elastische Elektronstreuung
[DF83].

Wir wissen jedoch, dass die Stoßnäherung für größere Wellenlängen zusam-
menbrechen muss. Streuexperimente an Sauerstoff zeigen einen Abfall des quasi-
elastischen Peaks bei einer Elektronenstrahlenergie von 700 MeV [A+96]. Rech-
nungen von Benhar et al., die eine aus der NMBT (nuclear many-body the-
ory) berechneten Spektralfunktion enthalten, können diese Reduktion des quasi-
elastischen Peaks beschreiben [BFN+05]. Dies zeigt, dass das ”freie” Teilchen-
modell nicht mehr funktioniert, und dass Nukleon-Nukleon-Korrelationen mit
einbezogen werden müssen. Desweiteren haben Neutrino-Experimente an Mini-
Boone [Min] ein Defizit in Vorwärtsrichtung gemessen, das heutige Modelle nicht
beschreiben können.

Am Anfang der vorliegenden Arbeit enthielt das GiBUU [GiB] Transport-
modell als In-Medium-Modifikationen ein Fermigasmodell, ein impulsabhängiges
Mittelfeld und Pauliblocking in der elementaren Nukleonenreaktion. Das Mod-
ell konnte die Elektronstreudaten [A+96] für Strahlenergien höher als 700 MeV
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beschreiben. Auch für Energieüberträge oberhalb des quasi-elastischen Peaks
beschrieb das Modell die experimentellen Daten, auch bei 700 MeV Strahlen-
ergie.

Motiviert durch die Elektronstreudaten [A+96] und die Berechnungen von Ben-
har et al. [BFN+05] wurden in der vorliegenden Arbeit in das GiBUU Mod-
ell kurzreichweitige Nukleon-Nukleon-Korrelationen implementiert. Außerdem
wurde der Grundzustand verbessert indem das Fermigas durch eine realistis-
chere Distribution ersetzt wurde. Die Berechnungen mit diesen Verbesserungen
beschreiben die experimentellen Daten [A+96] besser als bisher. Darüber hinaus
stimmt die Berechnung für den totalen Neutrino-Nukleus Streuquerschnitt mit
der NMBT-Rechnung von Benhar et al. überein.

Die Mittelfeld-Näherung wirkt auf die Teilchen wie ein externes Potential, so
dass die Teilchen immer noch als ”freie” Teilchen behandelt werden können. Wer-
den jedoch in der selbst-konsistenten Berechnung der Selbstenergien in zweiter
Ordnung die Kollisionsterme mit einbezogen, verbreitert sich die Spektralfunktion
durch eine endliche Breite. Durch ein konstantes Matrixelement im Impulsraum,
das einer Punktwechselwirkung im Ortsraum entspricht, werden kurzreichweitige
Nukleon-Nukleon-Korrelationen mit einbezogen. Des Weiteren führt die Verbre-
iterung der Spektralfunktion zu besetzen Zuständen oberhalb des Fermiimpulses.

Wegen des kleineren Phasenraums sind die Breiten unterhalb der Fermienergie
kleiner als oberhalb. Außerdem kann man einen linearen Anstieg der Breite mit
der Dichte bis ρ = 0.8fm−3 beobachten. Bei höheren Dichten kann man oberhalb
der Fermienergien eine Sättigung erkennen.

Die selbst-konsistenten Breiten reduzieren die Höhe und verbreitern den quasi-
elastischen Peak bei den elektroninduzierten inklusiven Streuquerschnitten. Da-
raus folgt, dass zwei-Teilchen ein-Loch Anregungen und ein-Teilchen zwei-Loch
Anregungen, die in der selbst-konsistent berechneten Breite enthalten sind, eine
Rolle bei inklusiven Querschnitten bei kleinen Energien spielen. Insbesonders die
Rechnungen mit selbstkonsistenter Breite liegen näher an den experimentellen
Daten [A+96] als die Rechnungen ohne Berücksichtigung der Breite. Bei höheren
Strahlenergien spielen diese Effekte eine kleinere Rolle, da der Energie- und Im-
pulsübertrag am quasi-elastischem Peak größer ist als bei kleineren Strahlen-
ergien. Berechnungen mit der Niedrig-Dichtenäherung [BLARM07] für die Breite
ergeben annähernd die selben Resultate wie die Berechnungen mit der selbst-
konsistenten Breite.

Die Resultate für den totalen Streuquerschnitt bei der Neutrino-Nukleus-Streuung
sind vergleichbar mit den NMBT Berechnungen von Benhar et al. Man kann da-
raus schließen, dass das Modell den Einfluss der Nukleon-Nukleon-Korrelationen
auf die inklusiven quasi-elastischen Streuquerschnitte vergleichbar gut beschreibt
wie das anspruchsvollere Modell von Benhar.

In der Zukunft wird es interessant sein zu sehen, ob Rechnungen mit der selbst-
konsistenten Breite auch exklusive Reaktionen beschreiben können. Um das zu
tun, müssen off-shell Nukleonen durch den Nukleus propagiert werden. Dafür

88



sollte die selbst-konsistent berechnete Breite mit dem selben Mittelfeld berech-
net werden, das in dem GiBUU Modell benutzt wird. Auch der Vergleich in-
wieweit Rechnungen mit der Niedrig-Dichte-Näherung und Rechnungen mit der
selbst-konsistenten Breite bei exklusiven Reaktionen übereinstimmen, wird von
Interesse sein. Des Weiteren kann die selbst-konsistente Rechnung durch ein
dichteabhängiges Matrixelement verbessert werden.

Die jetzigen Resultate machen zuversichtlich, dass dieses einfache Modell die
Nukleon-Nukleon-Korrelationseffekte bei kleinem Impulsübertrag beschreiben kann.
In Zukunft wird es interessant sein, inwieweit dieses Modell für andere Prozesse
und Streuquerschnitte funktioniert.
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