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Chapter 1

Introduction

“Just now nuclear physicists are writing a great deal about hypothetical par-
ticles called neutrinos supposed to account for certain peculiar facts observed
in β-ray disintegration. . . . I am not much impressed by the neutrino theory.
In an ordinary way I might say that I do not believe in neutrinos. . . . But I
have to reflect that a physicist may be an artist, and you never know where
you are with artists. . . . Whatever I may think, I am not going to be lured
into a wager against the skill of experimenters under the impression that it is
a wager against the truth of a theory. If they succeed in making neutrinos,
perhaps even in developing industrial applications of them, I suppose I shall
have to believe − though I may feel that they have not been playing quite fair.”

Sir Arthur Stanley Eddington, The Philosophy of Physical Science (1939).

Even though, more than eighty years after the proposal of extremely weakly interacting
particles by Wolfgang Pauli and more than fifty years after their experimental discovery
[RC53], the existence of neutrinos is beyond doubt, our knowledge about these particles
is still incomplete. The weak interaction, that couples neutrinos to matter and, due to its
lack of strength, makes experimental analyses very demanding, has been shown to greatly
resemble the electromagnetic force. As a consequence, modern descriptions regard the
neutrino observed in β-decay as a partner particle of the electron, both belonging to the
group of leptons.

With the electromagnetic interaction being well understood and all properties of the
electron determined with high precision, the electron has in many experiments served as a
probe for the analysis of more complex systems, yet not subject to consistent theoretical
descriptions, e.g., the nucleus or the nucleon. As the neutrinos couple to additional degrees
of freedom, scattering neutrinos on these systems can be a valuable source of information
that cannot be obtained from electron-scattering experiments.

In our opinion, the paths of gaining new insight in the fields of neutrino, nuclear
and particle physics are intertwined. At certain passages in this work, we will explain
how information obtained from neutrino-scattering experiments resolve questions posed
by other experiments, how electron-scattering experiments motivate model building for
the description of complex systems and why such models are an indispensable tool for
the analysis of experiments that aim to determine fundamental neutrino properties. The
ambition of this thesis is to shed light on the connections between the aforementioned
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Chapter 1. Introduction

fields of physics and investigate how progress in the theoretical understanding of lepton-
nucleus scattering can be made.

1.1 Motivation

Neutrino physics

To understand why neutrino physics is receiving much attention at the present time, it
is necessary to review the status of particle physics two decades ago: With electroweak
theory successfully describing lepton-hadron and lepton-lepton interactions and quantum
chromodynamics (QCD) describing many aspects of the hadron sector, the standard model
of particle physics stood as a framework of unchallenged predictive power. Within this
model the neutrino was assumed to be a massless, point-like uncharged particle of spin
1/2, only participating in weak reactions and coming in three flavors, corresponding to
the three flavors of the charged leptons, e, µ, τ . Much attention was drawn to the Higgs
boson, which was believed to be the last building block of the theory, not yet assessed
experimentally.

The fact that the standard-model calculations of the neutrino flux from the sun signifi-
cantly overestimated the experimentally observed flux was a long-standing puzzle pointing
towards physics beyond the standard model. It was hence a startling discovery when the
SNO experiment [AAA+01] confirmed neutrino oscillations to be the cause of the observed
discrepancy, implying that, contrary to previous beliefs, neutrinos do have a non-vanishing
mass and its flavors are mixed by the weak interaction.

Aiming at extending the standard model so that it incorporates neutrino oscillations,
one thus has to introduce new input parameters to the theory, namely the masses of
the three neutrino mass eigenstates and the three mixing angles θ12, θ23 and θ13. While
neutrino-oscillation experiments are sensitive to the mixing angles and differences of the
squared masses, the precise measurement of the kinematics of the β decay, e.g., with the
KATRIN experiment [W+02], offers a possibility to determine upper limits for the absolute
mass value, the current limit being mνe < 2.3 eV [K+05]. Whether neutrino mixing
involves a CP-violating phase, δ, similar to the quark mixing, is also a yet unanswered
question1.

To find reliable answers to these questions, various experiments around the world are
being installed or have already taken data. A promising approach are long-baseline exper-
iments [K2K, Mina, MINb, T2K, OPE], aiming at the precise determination of neutrino-
oscillation parameters by measuring the interaction of neutrinos with a nuclear target at
a long distance from the accelerator, that created the initial neutrino beam. As security
reasons do not permit to perform scattering experiments on large hydrogen or deuterium
targets, experimentalists aiming to determine neutrino properties are nevertheless forced
to employ nuclear targets, having thus to deal with both the uncertain neutrino-nucleon
and neutrino-nucleus responses.

1It is important to note that the current research goes beyond this minimal extension of the standard
model, e.g., by discussing the question if the neutrino mass eigenstates are Dirac or Majorana particles,
leading to experimental investigations whether neutrinoless double-beta decay is possible. In this work
however, we focus on oscillation-related problems.
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1.1. Motivation

Nuclear physics

With the nucleus being a complex system composed of interacting nucleons, that them-
selves are systems of interacting particles, the correct description of the nuclear ground
state is a highly demanding task. Phenomenological parameterizations of ground-state
properties, such as the semi-empirical mass formula derived from the liquid-drop model,
were among the first successful descriptions of the nuclear ground state. Later, these
parameterizations were refined by quantum mechanical shell models, and certain nuclear
properties were addressed in quantum-field theory based approaches.

To this day, different properties of the nucleus are handled with very different, partly
contradicting models. Nuclear binding energies are, e.g., well described by quantum-
mechanical many-body theory, while for scattering reactions it is useful to regard the
nucleons as quasifree within the nucleus. Many intrinsic nuclear properties, as the mo-
mentum distribution, can up to this day not be directly extracted from experimental
data, while their knowledge would be helpful for model building and model validation.
And even though electron-scattering experiments were among the first to shed light on
the nucleus, some properties of the response in electron scattering experiments, as the
non-resonant pion background or the excess of transverse strength are still puzzling.

Nucleon physics

Great progress has been made in the description of the hadronic sector, when, based on the
results of electron-scattering experiments, the nucleon was described as consisting of three
basic building blocks, the so called constituent quarks, subject to the laws of quantum
chromodynamics. The explicit form of the response, however, can up to this day not be
calculated from these principles and has been parametrized into form factors. Since data
for pure neutrino-nucleon scattering are very scarce, and, due to security reasons, hard
to reproduce in future experiments, the neutrino-nucleon form factors constitute a major
uncertainty for all neutrino-scattering experiments.

Nevertheless neutrino scattering has been a valuable source of information in addi-
tion to electron scattering in the field of hadron physics. It is, e.g., possible to deter-
mine the charge of the up and down quark by comparing the form factors obtained from
electron- and neutrino-nucleon scattering. As understanding of the nuclear part of the
interaction will hopefully increase, we are confident that the data gathered in upcom-
ing neutrino-scattering experiments will also contribute to a better understanding of the
nucleon structure.

To conclude, we state that the fields of neutrino, particle and nuclear physics are inter-
twined, with the combined output having a fundamental impact on our picture of nature
at the smallest length scales. With this work, we hope to contribute to the theoretical
understanding of the relations between nuclear and neutrino physics, and, more precisely,
to derive techniques how the description of lepton-nucleus scattering experiments can be
improved.

9



Chapter 1. Introduction

1.2 Survey

In order to describe the nuclear response to electron scattering, different models have
been developed. While at low energy transfers collective modes, like the giant dipole
resonance, play a role, for medium energy transfers the interaction is often treated in
impulse approximation, i.e., the scattering partner of the electron is assumed to be a quasi-
free nucleon. From these considerations the Fermi-gas model [dFW66] was developed, its
relativistic formulation and successful application to electron scattering [MSW+71] has
inspired the analysis of neutrino scattering in an analogous model [SM72]. Through the
use of refined spectral functions and momentum distributions [BPP93], effects beyond the
simple Fermi-gas picture were explained and the impact on neutrino-scattering reactions
has been studied [BFN+05]. Other treatments have included direct contributions from
many-body terms, e.g., 2p-2h meson-exchange currents [DPNA+04], as a refinement to
the impulse approximation picture.

On the experimental side, the main focus resides on the inclusive cross section. With
the appearance of more data sets, other quantities, e.g., the longitudinal and transverse
response [ACD+80] could be extracted, leading to the development of more refined the-
ories. Recently the superscaling analysis, by means of which the responses of different
targets at different scattering kinematics can be directly related [DS99], has emerged as
a powerful analysis tool. This approach can also be used to predict neutrino-scattering
cross sections from electron-scattering data [ABC+05].

In this work we will present a model, based on the impulse approximation and a
refined relativistic Fermi gas, that also includes additional nuclear effects, e.g., spectral
functions and a hadronic potential. We will show that our model is able to describe
electron-nucleus scattering reactions at incoming electron energies of a few GeV. In the
following, we will also compare predictions for the longitudinal and transverse responses
to experimental data. Finally, we argue that our model is apt to predict the neutrino-
nucleus response and also point out uncertainties inherent in any description dealing with
neutrino interactions.

1.3 Outline

This work is organized as follows. It is our aim to guide the reader from the fundamental
formalism forming the basis of our investigation, presented in Chapters 2, 3 and 4, to the
actual implementation of our model in Chapter 5 and its application to current fields of
research in Chapter 6.

In Chapter 2, we begin by describing the fundamental interactions on the lepton quark
and lepton-nucleon level. Passing to the more complex system of the nucleus, in Chapter
3 we consider important aspects of model building. Most of these ideas are taken up
in Chapter 4, where they serve as a motivation for the development of different scaling
and superscaling approaches. In Chapter 5, we present our model for the description of
lepton-nucleus scattering, which is then applied to current fields of research in Chapter
6. Finally, we draw conclusions from our work in Chapter 7 and also consider ways
to further extend this line of research. In addition, the interested reader may find the
technical details of our work, e.g., nomenclature and programming related issues, in the
appendix.
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Chapter 2

Elementary lepton-nucleon
interactions

In this chapter we will present different aspects of lepton-nucleon scattering. Starting out
with the explanation of the underlying microscopic dynamics in the first section, we then
develop a formalism for expressing inclusive cross sections and, in the last three sections,
shed light on the most important contributions.

2.1 Electroweak interaction

The interplay between leptons and quarks is governed by the electroweak interaction.
Thus, the standard model of particle physics describing the interaction’s various param-
eters is the theoretical basis of most of this work. In this section, we will outline these
underlying connections, whereas an explanation of the notations can be found in Ap-
pendix A. For a more complete treatment, the reader might consult the literature on this
topic, e.g., Refs. [HM08], [PS95] and [Mos99].

2.1.1 Cross sections and Lagrange formalism

A basic connection is made between theories describing hadronic degrees of freedom and
particle-accelerator experiments by comparing predicted cross sections with measured
ones. While for the experimentalist the cross section is geometrically motivated and, in
the most simple case, related to the detector setup and signal by

(number of measured reactions)

(number of incoming particles)
=

(number of target particles × σ)

(area of target zone)
, (2.1)

for the theorist the cross section, σ, has the probabilistic interpretation

σ =
|Tfi|2
TV

(number of final states)

(initial flux)
. (2.2)

Here, |Tfi|2 denotes the quantum mechanical transition probability from the initial state,
|i〉, to the final state, |f〉, T the time interval of interaction and V a reference volume,
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Chapter 2. Elementary lepton-nucleon interactions

while the other parameters depend on the specific process and will be discussed in more
detail within the next section.

Assuming minor depletion of the initial state, one can make the first-order perturbation
theory ansatz

Tfi = −i

∫

d4x φ∗
f(x)Vint(x)φi(x), (2.3)

where φi(f) stands for the initial-(final-)state wave functions, while Vint(x) represents the
interaction potential. Carrying out the integration for the incoming I1, . . . , IN and the
outgoing O1, . . . , OM particles will, in general, always yield

Tfi = −iNI1 . . . NINNO1
. . . NOM

(2π)4δ(4)(pO1
+ . . .+ pOM

− pI1 − . . .− pIN )M. (2.4)

While NI and NO represent normalization factors and the δ-distribution ensures con-
servation of four-momentum, the interesting physics is contained within the invariant
matrix element, M. It can be directly related to Feynman diagrams of current-current
interactions mediated through virtual bosons and fermions. The rules for translating the
Feynman diagrams to mathematical expressions can be derived, as shown in Ref. [Sre07],
by means of path integrals from the Lagrangian density, L, which represents the action
measure of the system.

Though Eq. (2.2) shows a first-order approximation, by performing a series expansion
of the weight factor, exp(

∫
d4xL), associated with each path, one is able to derive ex-

pressions for arbitrary orders. These expressions can be interpreted physically through
representation as Feynman diagrams. Knowing the complete Lagrangian of the system
thus means knowing the structure of all contributions to a certain transition and even
though the explicit calculations become more and more intricate with higher orders, im-
pressive agreement of theoretical predictions with high-precision experiments, e.g., the
measurement of the anomalous magnetic dipole moment of the electron, gives a proof of
concept.

Keeping in mind that the Lagrangian approach is one valid description amongst dif-
ferent ones, we will take it as our starting point, since it is manifestly covariant and easily
incorporates the principles of gauge invariance and spontaneous symmetry breaking to
motivate the introduction of interacting massive boson fields.

2.1.2 Interaction Lagrangian

Within today’s standard model of electroweak interactions the main focus lies on leptons,
quarks and their interactions. The lepton family consists of the charged particles e, µ, τ
and the uncharged neutrinos νe, νµ, ντ , while quarks come in the flavors u, d, s, c, t and b.
As a starting point each fermion is assigned a spinor, f , and the free Lagrangian density

L0 = if̄(γµ∂
µ −mf14×4)f. (2.5)

By assuming local SU(2) × U(1) gauge invariance, one is led to the introduction of the
gauge fields Wµ and Bµ, which are initially massless. Their self-interactions and kinetic
energies read

LSU(2)×U(1) = −1

4
WµνW

µν − 1

4
BµνB

µν . (2.6)

12



2.1. Electroweak interaction

To transform them into the observed massless photon field, A, and the massive exchange
bosons, W±, Z0, one introduces the Higgs field. This SU(2)×U(1)Y doublet of 2 complex
fields generates the masses of both, bosons and, as a side effect, fermions, through sponta-
neous symmetry breaking. By then rotating through the Weinberg angle, θW , one obtains
the observed field degrees of freedom. The interaction Lagrangian, which will allow us to
calculate all contributions except for the self-coupling of the gauge fields, then reads1

Lint = −eJµEMAµ −
g

2
√

2
(JµCCW

†
µ + h.c.) − g

2 cos θW
JµNCZµ. (2.7)

2.1.3 Electroweak currents

Provided with expressions for the electromagnetic current, JµEM , the weak charged current,
JµCC , and the weak neutral current, JµNC , one can directly extract the most important
processes from the above equation. In order to keep the example simple, we will restrict
the lepton sector to the electron and its SU(2)-partner and the quark sector to the u and
d quarks, which carry the charge fractions Qu = 2

3
and Qd = −1

3
.

The photon field, A, only couples to electrically charged particles. Hence, the electro-
magnetic current reads

JµEM = Quq̄uγ
µqu +Qdq̄dγ

µqd +Qeēγ
µe =

2

3
q̄uγ

µqu −
1

3
q̄dγ

µqd − ēγµe. (2.8)

Apart from mixing the flavors, as will be described in the next subsection, the charged
W± bosons maximally violate parity since they couple to left-handed currents only. This
is manifest in the use of the (1 − γ5) projection operator for the charged current,

JµCC = q̄uγ
µ(1 − γ5)q′d + ν̄ ′eγ

µ(1 − γ5)e. (2.9)

One speaks of the current having a “V - A” structure, as the vector component, γµ, enters
with a positive and the axial vector component, γµγ5, with a negative sign2.

Parity is also violated by the neutral current through the operator (cfV − cfA)γ5. The
axial-vector couplings are given by cfA = T 3

f and cfV = T 3
f − 2 sin2 θWQf , with respect to

the fermion charge and third component of the weak isospin, T 3
f . They yield maximal

violation only for the neutrinos as can be seen in the expression for the neutral current

JµNC = q̄uγ
µ

(
1

2
− 4

3
sin2 θW − 1

2
γ5
)

qu + q̄dγ
µ

(

−1

2
+

2

3
sin2 θW +

1

2
γ5
)

qd

+ ēγµ
(

−1

2
+ 2 sin2 θW +

1

2
γ5
)

e + ν̄eγ
µ

(
1

2
− 1

2
γ5
)

νe.

(2.10)

In order to describe current-current scattering, it suffices to insert one of both currents
directly into Eq. (2.7) while the other current is plugged in as the source of the potential.
The first-order contributions can thus be directly read out. In Fig. 2.1 we depict the most
important processes: electromagnetically charged fermions can scatter with each other
by exchanging a virtual photon, all fermions can transform into their SU(2)-partner by
exchanging a W± boson, all fermions can scatter with other fermions by exchanging a Z0

boson.
1The coupling constant, g, is defined in Appendix A.
2This ansatz will be used throughout the following sections for more involved electroweak currents.
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l−l− l−

q q

γ

(a) Electromagnetic scattering

νl l−

q q′

W+

(b) Charged-current scattering

ν ν

q q

Z0

(c) Neutral-current scattering

Figure 2.1: First-order electroweak interactions.
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2.1. Electroweak interaction

2.1.4 Mixing matrices and neutrino oscillations

Apart from giving masses to the gauge bosons, an especially beautiful aspect of the Higgs
mechanism is the inclusion of fermion masses. This is actually a necessity, since the
simple mass term in the free Lagrangian from Eq. (2.5) is not gauge invariant under
chiral SU(2) rotations which act on left-handed components of the spinors only. The new
gauge-invariant mass terms read

Lmass = −mf f̄f

(

1 +
h

v

)

(2.11)

where mf are the experimentally found masses of the fermions and are thus input pa-
rameters to the theory. Note that experimental evidence for the second term containing
a coupling to the Higgs field, h, is still missing, which might be due to the large value
of the vacuum expectation value of the Higgs field after spontaneous symmetry breaking,
v/

√
2 = 246/

√
2 GeV.

For reasons not yet understood, the W -boson does not couple directly to the mass
eigenstates, but to a mixture thereof. Established convention reduces the mixing to
the d, s, b-quarks and the neutrinos. Mixing of the quarks is accomplished through the
Cabibbo-Kobayashi-Maskawa matrix UCKM, by means of which u′d from Eq. (2.9) is ex-
pressed as

q′d = UCKM
di qi | i ∈ {d, s, b}. (2.12)

Similarly, the leptons are transformed by the Pontecorvo-Maki-Nakagawa-Sakata matrix,
UPMNS, in the following way

ν ′e = UPMNS
ei νi | i ∈ {1, 2, 3}. (2.13)

Whereas the three rotation angles and the CP-violating complex phase parameterizing
the CKM-matrix are experimentally assessed with more and more precision, the values in
the PNMS-matrix are still subject to uncertainties (cf., e.g., the overview of recent data in
Ref. [STV08]), leaving room for different theoretical models. Its existence is, nevertheless,
widely accepted since it offers the most simple way for explaining the observed oscillations
of neutrino flavor eigenstates. Still, the formally correct description of these oscillations
is a controversial issue to this day, as discussed in Ref. [AK10]. Here, we shall restrict
ourselves to a brief example (cf. Sec. 5.1.1 of Ref. [MP04]) of how mixing between the
electron and the muon neutrino can be detected, when initially only a muon neutrino has
been produced.

We describe the mixture of mass eigenstates, νi, i ∈ {1, 2}, associated with a flavor
eigenstate, νf , f ∈ {e, µ}, by a rotation through an angle φ, i.e.,

(
νe
νµ

)

= U

(
ν1
ν2

)

=

(
cos φ sin φ
− sinφ cosφ

)(
ν1
ν2

)

. (2.14)

Thus, the muon-flavor state created at the beginning of the experiment is given by

|νµ〉 = − sin φ|ν1〉 + cosφ|ν2〉. (2.15)

Since the wave functions of the free massive neutrinos satisfy the Dirac equation, it is
natural to assume propagation by means of plane waves,

|νi(t, x)〉 = exp [−i(Eνt− px)] |νi(0, 0)〉. (2.16)
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Chapter 2. Elementary lepton-nucleon interactions

One can simplify the exponent by assuming light speed for the neutrinos and passing to
the ultra-relativistic limit

Eν =
√

m2
ν + p2 ≈ |p| +

m2
ν

2|p| ≡ E +
m2
ν

2E
, (2.17)

where the notation E ≡ |p| has been introduced since the difference between E and
Eν becomes visible in the oscillation pattern but not in the experimental estimation of
the beam-energy, E. The wave function of the propagated muon-flavor eigenstate in a
distance L from the point of creation and after flight time L then reads

|νµ(L, L)〉 =
∑

i=1,2

exp

(

−i
m2
iL

2E

)

|νi(0, 0)〉 =
∑

i=1,2

exp

(

−i
m2
iL

2E

)

U2i|νi〉. (2.18)

On the other hand, the electron neutrino flavor eigenstate is given by

|νe〉 =
∑

j=1,2

U1j |νj〉 (2.19)

with orthogonal mass eigenstates, νj . Consequently the probability of finding a neutrino
of electron flavor in L is given by the transition matrix element,

Pνµ→νe(L) =
∣
∣〈νfe |νfµ(L, L)〉

∣
∣
2

=

∣
∣
∣
∣
∣

∑

i=1,2

U∗
1iU2i exp

(

−i
m2
iL

2E

)
∣
∣
∣
∣
∣

2

= sin2(2φ) sin2

(
∆m2L

4E

)

,

(2.20)
where ∆m2 = |m2

ν1
− m2

ν2
| denotes the squared-mass difference. Fig. 2.2 shows this

transition probability as a function of L. From the above equation one also sees that
such experiments are only sensitive to relative mass differences, but not to absolute mass
scales.

2.2 General properties of the lepton-nucleon interac-

tion

As many of the nucleon’s properties are not yet well-understood in the fundamental quark-
picture, hadronic models, like ours, treat the nucleon as an elementary fermion. The rich
variety of responses of the nucleon in leptonic scattering reactions has been grouped into
different reaction channels, that have then been parametrized. Whereas an overview of
the most prominent reaction channels is given in this section, some details concerning
the parameterizations are exposed within the following sections. For a discussion of other
effects we refer the reader to the dissertations of T. Leitner [Lei09] and O. Buss [Bus08].

2.2.1 Reaction channels of the nucleon

The elementary interactions of leptons and nucleons can be treated in a similar formalism
as those of leptons and quarks, described in Sec. 2.1.3. Again, we consider reactions that
are triggered by the exchange of one gauge boson. The resulting variety of final states of
the nucleon can be classified into different reaction channels:
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Figure 2.2: Appearance probability P of an electron neutrino after creation of a muon neutrino
at origin as a function of the distance L (solid curve) and probability for finding no appearance 1−
P (dashed curve). For the amplitude of the oscillation, sin2(2φ12), an experimentally motivated
value of 0.84 was chosen. The wavelength of the oscillation, 2πc·4E/∆m2, is sensible to both the
mass-squared difference, ∆m2

12 (chosen to be 7.65 · 10−5 eV), and the (reconstructed) neutrino
energy, E.

• The nucleon can pick up the transferred four-momentum as a whole (cf. Fig. 2.3a).
Depending on whether this occurs in an electromagnetic or a charged-current driven
process, one calls this scenario elastic or quasielastic scattering. By writing QE we
will refer to either both processes or the one that suits the reaction being discussed.

• A different possibility is the pickup of energy by the nucleon’s inner degrees of free-
dom, constituent-quark spin and flavor. This leads to the production of a hadronic
resonance (RES), which, after a certain life-time, τ , will decay back into a nucleon
by emitting mesons or real photons3. An example is depicted in Fig. 2.3b.

• The same final state, πN , can also be reached by pion creation without an inter-
mediate resonance (cf. Fig. 2.3c), e.g., by direct interaction with the quark-gluon
field inside the nucleon. Usually this reaction channel is referred to as non-resonant
background (BG).

• The total momentum transfer can be picked up by just one quark, which then
exits the nucleon creating a shower of hadronic byproducts due to the principle of
confinement (cf. Fig. 2.3d)). This process of deep inelastic scattering (DIS), of
considerable impact at large energy transfers, allows for a variety of hadronic final
states.

3This holds true for the vacuum case, while for the in-medium case, treated in the next chapter, the
produced resonances can rescatter inside the nucleus and form other final states.
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γ,W±, Z0

l l′

N N ′

(a) Elastic (respectively quasielastic)
scattering

γ,W±, Z0

l l′

N
R

π±,0

N ′

(b) Resonant pion production through
resonance excitation and subsequent
decay

γ,W±, Z0

l l′

N N ′

π±,0

(c) Non-resonant pion production

γ,W±, Z0

l l′

N X

(d) Deep inelastic scattering

Figure 2.3: Different reaction channels in lepton-nucleon scattering.
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Figure 2.4: An example of the nucleon response in an e-p-scattering experiment. Shown is the
double-differential inclusive cross section vs. the energy transfer, ω, with data taken from Ref.
[BDK+68]. Energy regions are labeled according to relevant reaction channels.

2.2.2 Magnitudes of the contributions

As one can see for inclusive electron-nucleon scattering in Fig. 2.4, QE scattering is by
far the most dominant contribution, being energetically separated from the second pro-
nounced peak, associated with production of the ∆ resonance. Other resonance excitations
and the DIS part, governing the energy regimes above the ∆ peak, cannot be disentangled
that easily.

Since in our further analysis invariant masses above 2 GeV will not be considered,
contributions from deep inelastic scattering play no role. Nevertheless, we wish to stress
the deep connection between Bjorken’s x-scaling description of the DIS response, derived
in Ref. [BP69] from the idea of one nucleon constituent taking up the entire energy
transfer, and the concept of superscaling, that will be explained in Sec. 4.4.

The role of the non-resonant background cannot be estimated from Fig. 2.4, and one
has to resort to model calculations and comparisons with predicted pion-production cross
sections, as done in [DY57], to motivate its introduction. In Sec. 2.5 we will follow the
approach from Ref. [BDW67], where introducing a phenomenological Lagrangian has led
to a parameterization of the hadronic vertex function.

Satisfactory accordance between the sum of the three contributions described so far
and the data leads us to neglect other conceivable contributions (e.g., 2π non-resonant
background) as well as interference between these effects. Consequently, we write the
cross section as

dσ = dσQE +
∑

Resonances

dσR + dσBG. (2.21)
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qµ = (ω,q)

kµ = (
√

k2 +m2
l ,k) k′µ = kµ − qµ

pµ = (
√

p2 +m2
N ,p) p′µ = pµ + qµ

N

l l′

N ′

Figure 2.5: Kinematics of QE processes

2.2.3 Kinematics of the lepton-nucleon interaction

In Fig. 2.5, we show a more detailed description of the QE scattering process,

l(k) +N(p) → l(k′) +N(p′), (2.22)

already depicted in Fig. 2.3a. Throughout this work, we let the incoming lepton define
the z-axis. The direction of the outgoing lepton is then given by

k′ = (|k′| sin θ cos φ, |k′| sin θ sinφ, |k′| cos θ). (2.23)

Please note that for the rest of this work we will assume one-boson exchange approxi-
mation and, due to reasons that will become evident in Sec. 4.4, we stick to the following
unusual nomenclature for the virtual photon’s four-momentum,

qµ = p′
µ − pµ = kµ − k′

µ
= (ω,q)

q = |q|,

which consists of energy loss, ω, and three-momentum transfer, q. Only if qµ is given with
a Greek index, the four-momentum transfer is to be understood, in other cases q stands
for the absolute value of the three-momentum transfer. Consequently, q2 = qiqi is not to
be mistaken for qµq

µ = −Q2, which is also an important quantity and can be expressed
as4.

Q2 = −qµqµ

= −k′2 − k2 + 2kk′

= −m2
l −m2

l′ + 2k0k′
0 − 2|k||k′| cos θ

≈
︸︷︷︸

m2

l,l′
≈0

2k0k′
0
(1 − cos θ).

4Note that the last approximation does not hold for CC νµ scattering. A modification will be presented
in Sec. 4.6.
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Since experiments often work by varying the beam energy and detector angle, through-
out this work we are mostly interested in the double-differential cross section dσ/dωdΩ,
with dΩ = dφ d cos θ being the solid-angle element. For the derivation of these cross
section formulae we refer the reader to Appendix B of Ref. [Lei09]. Here, we only present
the results.

We begin by stating the general expression for the scattering cross section in the case
of two incoming particles (i = 1, 2) and N outgoing particles (f = 1, . . . , N),

dσ =
(2π)4

4 [(p1 · p2)2 −m2
1m

2
2]

1/2
δ

(
∑

f

pf −
∑

i

pi

)(
∏

f

d4pf
(2π)3

δ(p2f −m2
f )

)

|M|2. (2.24)

The product of δ functions can be simplified for particles on their mass shell, using

d4p

(2π)3
δ(p2 −m2) =

d3p

(2π)32p0
=

1

(2π)3

√

p02 −m2

2
dΩdp0. (2.25)

By restriction to lepton-nucleon states, one is led to the QE scattering cross section,

dσQE

dωdΩk′
=

|k′|
32π2

δ(p′2 −M2
N )

[(k · p)2 −m2
lM

2
N ]

1/2
|MQE|2. (2.26)

For resonance excitations,

l(k) +N(p) → l(k′) +R(p′) (2.27)

the above expression is modified by including the spectral function A(p), resulting in

dσR
dωdΩk′

=
|k′|

32π2

A(p′)

[(k · p)2 −m2
lM

2
N ]

1/2
|MR|2. (2.28)

The role of the spectral function will be discussed in more detail in Sec. 2.4 and Sec. 5.1.4.
An important quantity is the invariant mass of a resonance,

W =
√

p′2 . (2.29)

Throughout this work, we restrict ourselves to processes with W < 2 GeV.

Finally, the vector part of the pion-production cross section reads

dσV
Nπ

dωdΩk′dΩkπ

=

∫

dk0π
|k′||kπ|
512π5

[
(k · p)2 −m2

lM
2
N

]−1/2
δ(p2 −M2

N)|MNπ|2. (2.30)

This expression contains contributions from both, resonant and non-resonant processes.
An approach to disentanglement of these two quantities and an estimation of the axial
contribution will be presented in Sec. 2.5.
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boson coupling strength (G) Feynman propagator (iSF
µν)

γ
√

4πα −igµν
qηqη

W± g

2
√
2

i
qηqη−M2

W

(

−gµν + qµqν
M2

W

) |qηqη |≪M2
W−−−−−−−→ igµν

M2
W

Z0 g
2 cos θW

. . .→ igµν
M2

Z

Table 2.1: Overview of boson couplings and propagators, to be used in Eq. (2.31). Here, g =
e/ sin θW denotes the electroweak coupling constant. Following [A+08], we take MW = 80.425
GeV and MZ = 91.188 GeV as the boson masses.

2.2.4 Dynamics of the lepton-nucleon interaction

In Sec. 2.1.1 and Eq. (2.24), we already pointed out that the cross section factorizes into
kinematical parts and the invariant matrix element, M, which contains all the underlying
dynamics of the reaction. For one-boson-exchange diagrams, as the ones in Fig. 2.3,
application of the Feynman rules yields a compact relation for the matrix element,

−iM = (iGjµ) iSF
µν (iGJν) , (2.31)

where the coupling strength, G, and the boson propagator, iSF
µν , depend on the exchange

boson. The dependencies are listed in Table 2.1. Taking only the leptonic parts of the
electroweak currents, already discussed in Sec. 2.1.3, we can introduce the leptonic current
as jµ = l̄(k′)γµ(1 − aγ5)l(k), where a = 0 for electromagnetic and a = 1(−1) for weak
(anti-)lepton processes.

The hadronic current, Jν , cannot be calculated from first principles and needs to be
parametrized using form factors. It lies thus at the heart of hadronic model building and
depends very specifically on the interaction and the reaction channel.

To make the connection to a polarization-insensitive experiment via Eq. (2.2), one
needs to take first the square of the matrix element and then sum and average over
multiple final and the two initial spin states, sA and sB, respectively. This leads to the
replacement

|M|2 → |M|2 ≡ 1

(2sA + 1)(2sB + 1)

∑

all spins

|M|2. (2.32)

Keeping the gµν structure of the propagators in mind, we can perform the contraction
and introduce the scalar propagator, iSF, obtaining the compact relation

|M|2 =
∑

si

∑

sf

[(iGjµ) iSF (iGJµ)]† (iGjν) iSF (iGJν)† = C2LµνH
µν . (2.33)

In the last step we have rearranged and summarized the terms, introducing the leptonic
tensor,

Lµν =
1 + |a|

2

∑

sf

∑

si

jµ
†jν , (2.34)

the hadronic tensor,

Hµν =
1

2

∑

sf

∑

si

Jµ†Jν , (2.35)
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and the coupling of the interaction, C. The coupling is obtained by combining boson
propagator, iSF, and the square of the vertex factor, thus reading CEM = 4πα/qµq

µ for
photons, CCC = cos θCGF/

√
2 for W±-bosons and CNC = GF/

√
2 for Z-bosons5. The

tensors can be reformulated as traces, yielding, e.g.,

Leµν =
1

2
Tr
[
(/k

′
+me)γµ(/k +me)γν

]
(2.36)

for the electron tensor, and further evaluated by means of trace techniques, as described
in Ref. [HM08].

2.3 Elastic and quasielastic scattering

In this section, we reconsider ways for describing the single-nucleon QE response, which
will be of major importance throughout the rest of this work, not only because it is
dominant at energies of a few GeV, as we have seen in Fig. 2.4, but also because it plays
a key role in the development of superscaling techniques. Even though the formalism
described here is fully capable of treating NC reactions, these reactions are of no relevance
to our analysis and, omitting them from further discussion, we refer the interested reader
to Ref. [Lei09].

2.3.1 Hadronic current

In Sec. 2.2.4, we already stressed that the hadronic current Jµ lies at the heart of model
building, with the hadronic tensor being constructed from it as

Hµν =
1

2

∑

sf

∑

si

Jµ†Jν . (2.37)

Separating out the nucleon spinors, u(p), one can express the hadronic current by use of
a vertex function, Γµ, as

Jµ = ū(p′)Γµu(p). (2.38)

For elastic scattering of a spin 1/2 particle, one would suggest the electroweak “V -
A”-structure to persist and thus can make the following ansatz

ΓµQE = VµQE −Aµ
QE. (2.39)

A standard approach for the vector vertex function, VµQE, is to express it in full gener-
ality as a linear combination of Lorentz invariant vector entities γµ, pµ and p′µ. Following
Sec. 6.2 of Ref. [PS95], one can express this as

VµQE = A · γµ +B · (p′
µ

+ pµ) + C · (p′
µ − pµ), (2.40)

where A,B,C are real-valued functions of the only nontrivial Lorentz scalar qµq
µ. By

applying current conservation qµVµQE = 0, one is able to show C = 0. Using the Gordon

5Note that GF/
√
2 = g2/(8M2

W )
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identity to replace p′µ + pµ by the Lorentz tensor σµν = i
2
(γµγν − γνγµ), one is led to the

following expression for the vertex function

VµQE = F1γ
µ + F2

iσµνqν
2MN

. (2.41)

In a similar manner, one writes the axial part as a combination of an axial-vector form
factor, FA, and a pseudoscalar one, FP, reading

−Aµ
QE = FAγ

µγ5 +
FP

MN
qµγ5. (2.42)

2.3.2 Form factors of the nucleon

Vector form factors

The coefficients F1, F2 are placeholders for the interaction- and reaction-channel-dependent
form factors, with the nomenclature summarized in Table 2.2. The original motivation
for the study of form factors came from analysis of ep→ ep scattering, where by means of
Rosenbluth separation one can assess the electric and magnetic Sachs form factors, Gp,n

E

and Gp,n
M , as will be further explained in Sec. 6.2. The Sachs form factors are directly

related6 to the electromagnetic form factors of the nucleon via

F p,n
1 =

[

Gp,n
E +

Q2

4M2
N

Gp,n
M

] [

1 +
Q2

4M2
N

]−1

(2.43)

and

F p,n
2 = [Gp,n

E −Gp,n
M ]

[

1 +
Q2

4M2
N

]−1

. (2.44)

As a first approximation, the dipole ansatz,

Gp,n
i (Q2) = Gp,n

i (0)

(

1

1 + Q2

M2
∗

)2

, (2.45)

with Gp,n
i (0) and M∗ fitted to experimental data, works fairly well. In our model, the

updated BBBA2007 parameterization [BABB08], which includes more sophisticated de-
pendencies, is used.

Axial form factors

For parameterization of CC scattering, an established technique is to assume pion-pole
dominance, as proposed in Ref. [GML60], and partial conservation of the axial current
(PCAC) to find the following connection between FA and FP

FP(Q2) =
2M2

N

Q2 +m2
π

FA(Q2). (2.46)

6Cf., e.g., Eqs. (4.39)-(4.52) in Ref. [Bus08].
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interaction reaction form factor
EM l−p→ l−p F p

i

EM l−n→ l−n F n
i

CC νn→ l−p F V
i = F p

i − F n
i

Table 2.2: Nomenclature for the vector form factors in QE scattering. The placeholders Fi in
Eq. (2.41) are to be substituted with the reaction-specific form factors in the right column. A
derivation of the last relation can be found in Appendix D.1 of Ref. [Lei09].

For the Q2-dependence of the form factor in our model we use the dipole ansatz,

FA(Q2) = FA(0)




1

1 + Q2

M2
A





2

, (2.47)

where the coupling FA(0) needs to be taken from neutron beta decay experiments [BEM02]7.
In our model the value gA = 1.267, as obtained from neutron beta decay and listed by
the particle data group [A+08] is used.

For the value of the axial mass, MA = 0.999 GeV is assumed, following the ap-
proach of Kuzmin [KLN08] et al., who refitted QE neutrino scattering data relying on
the BBBA2007 parameterization. This should guarantee consistency since we also use
BBBA2007 vector form factors, as pointed out above. Nevertheless, it should be noted
that the value of the axial mass is a controversial issue, since recent data from neutrino-
scattering experiments at K2K [K2K] and MiniBooNE [G+06, AA+08] seem to imply
axial masses of 1.2 GeV and more. This issue will be taken up again in Sec. 6.4.

2.4 Excitation of baryon resonances

In this section, the influence of resonance excitation on the inclusive cross section will
be discussed. Focusing on the region of a few GeV incoming energy, we will be mostly
interested in the ∆ excitation. Since, depending on the spin of the resonance, the hadronic
currents involve different spinors, we will present the formalism for spin 1/2 and spin ≥
3/2 resonances separately. We will begin with an overview of the resonances considered
in this work.

7 Aiming at axial couplings for the resonances, where a direct measurement is not possible, we note
that one can also obtain the value of FA(0) to five percent precision using the Goldberger-Treiman relation
(cf. Sec. 19.3 of [PS95]),

gA = 2fπ
f

mπ

. (2.48)

With this equation, one can relate the axial coupling, gA = −FA(0), to the experimentally assessable
pion-decay constant, fπ=93 MeV, and the πNN coupling constant, f/mπ = 7.15 GeV−1. The entire
formalism, leading to above equations, is described in Chapter 9 of Ref. [EWE88].
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name mass [GeV] width [GeV] spin isospin parity
N,P11(938) 0.938 0.000 0.5 0.5 +
∆, P33(1232) 1.232 0.118 1.5 1.5 +
P11(1440) 1.462 0.391 0.5 0.5 +
D13(1520) 1.524 0.124 1.5 0.5 -
S11(1535) 1.534 0.151 0.5 0.5 -
S31(1620) 1.672 0.154 0.5 1.5 -
S11(1650) 1.659 0.173 0.5 0.5 -
D15(1675) 1.676 0.159 2.5 0.5 -
F15(1680) 1.684 0.139 2.5 0.5 +
D33(1700) 1.762 0.599 1.5 1.5 -
P13(1720) 1.717 0.383 1.5 0.5 +
F35(1905) 1.881 0.327 2.5 1.5 +
P31(1910) 1.882 0.239 0.5 1.5 +
F37(1950) 1.945 0.300 3.5 1.5 +

Table 2.3: List of baryons and their properties. We restrict our analysis to these 14 states.
The experimental values are taken from the analysis of Manley et. al. [MS92].

νl l−

W+

d
u
u

u
u

u

p ∆++

Figure 2.6: Feynman diagram of ∆++ production in neutrino scattering.

2.4.1 Resonances with invariant masses smaller than 2 GeV

There is a large number of nucleon excitations known in particle physics (cf. Ref. [A+08]).
Most of them have a mass higher than 2 GeV and shall thus not be considered in this
work. For our model, we focus on 13 resonances below this threshold, that are included in
the MAID2005 analysis [MAI]. They will serve as our starting point for modelling form
factors; their properties are listed in Table 2.3.

Generally speaking, resonances consist of excited states of the nucleon, where the
struck constituent quarks change their flavor or their spin configuration. As a simple
example, the CC excitation of the ∆++ is depicted in Fig. 2.6. Within this work we do not
take into account resonances containing strangeness, charmness, topness or bottomness,
since their production at the primary interaction vertex is Cabibbo suppressed.

In Table 2.3, we make use of standard hadron spectroscopy notation LIJ , where J (I)
denotes the spin (isospin) quantum number, and L = |l + l′| stands for the sum of the
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q

q

q

l

l'

Figure 2.7: Interpretation of the quarks’ relative angular momenta adding up to the angular
momentum, L, of the nucleon.

quark angular momenta, l and l′, as depicted in Fig. 2.7. The total angular momentum,
J, can be written as a sum of the particles’ relative angular momenta and their spin,

J = L + S. (2.49)

2.4.2 Excitation of spin 1/2 resonances

The treatment of spin 1/2 resonances shows many similarities to the analysis of QE scat-
tering and hence offers a good starting point. In our model, we include the P11(1440),
S11(1535), S11(1650) resonances with isospin I = 1/2 and the S31(1620), P31(1910) reso-
nances with I = 3/2.

Hadronic current

In analogy to Sec. 2.3, we begin by expressing the hadronic current,

Jµ = N̄(p′)ΓµN(p), (2.50)

through the vertex function, Γµ. For states with positive parity (e.g., P11(1440)), we start
with the following ansatz, known from elastic scattering,

Γµ1/2,− = Vµ1/2 −Aµ
1/2 (2.51)

For states with negative parity (e.g., S11(1535)), an additional γ5 has to be taken into
account, yielding

Γµ1/2,+ =
[

Vµ1/2 −Aµ
1/2

]

γ5. (2.52)

The vector and the axial part are parametrized as

VµQE =
F1

(2MN )2
(Q2γµ + /qq

µ) + F2
iσµνqν
2MN

, (2.53)

−Aµ
QE = FAγ

µγ5 +
FP

MN
qµγ5, (2.54)

involving the use of interaction and reaction-channel-specific form factors.
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interaction reaction F(I = 1/2) F(I = 3/2)
EM l−p→ l−p F p

i FN
i

EM l−n→ l−n F n
i FN

i

CC νn→ l−R++ -
√

3 FV
i = −

√
3 FN

i

CC νn→ l−R+ FV
i = F p

i − F n
i FV

i = −FN
i

Table 2.4: Nomenclature for the vector form factors of spin-1/2-resonance excitations. The
placeholders Fi in Eq. (2.53) are to be substituted with the reaction-specific form factors in the
two columns on the right, depending on isospin I.

Vector form factors

Keeping the overlapping peaks in the resonance region of Fig. 2.4 in mind, fitting the
form factors to direct cross-section measurements is a forbidding task. Nevertheless, it is
well-known [DEK76] that by means of helicity amplitudes an extraction of form factors
is possible.

Helicity amplitudes describe the nucleon-resonance-transition probability dependent
on the specific polarization of the incoming virtual photon and the spin orientation of
nucleon and resonance. In practice, they can be assessed by applying a partial wave
analysis to experimental data on photon and electron scattering. Throughout this work,
we will use the world-data analysis performed by the MAID group [DT92, DHKT99, MAI].
The expressions relating helicity amplitudes and form factors can be found, e.g. in Sec.
4.5 of Ref. [Bus08]. In Table 2.4, we present the nomenclature taken from Sec. 5.1 of Ref.
[Lei09].

Axial form factors

Both, theoretical and experimental information on the axial form factors, are not con-
clusive [BCBH07]. Following the ideas developed in the previous section, one can apply
PCAC and pion-pole dominance to relate FA and FP by

FP(Q2) =
(MR ±MN )MN

Q2 +m2
π

FA(Q2), (2.55)

with + (−) for positive (negative) parity resonances. Again, one can use the simple dipole
ansatz,

FA(Q2) = FA(0)

(

1 +
Q2

M∗
A
2

)−2

. (2.56)

In our model, the value M∗
A = 1 GeV, known from QE scattering, is assumed for the axial

mass. Using off-diagonal Goldberger-Treiman relations [FN79], one can relate the axial
coupling to the πNN coupling, f/mπ, by

FA(0) = −Ciso

√
2 fπ

f

mπ

, (2.57)

with the isospin factors Ciso(I = 1/2) =
√

2 , Ciso(I = 3/2) = −1/
√

3 derived in Appendix
A.4 of Ref. [Lei09]. The nomenclature, also taken from Ref. [Lei09], is summarized in Table
2.5.
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interaction reaction FA(I = 1/2) FA(I = 3/2)

CC νn → l−R++ -
√

3 FA

CC νn→ l−R+ FA FA

Table 2.5: Nomenclature for the axial form factors of spin-1/2-resonance excitations. The
placeholder FA in Eq. (2.54) is to be substituted with the reaction-specific form factors in
the two columns on the right, depending on isospin I. Eq. (2.55) can be used to obtain the
corresponding FP.

2.4.3 Excitation of spin 3/2 resonances

Besides the ∆ resonance, P33(1232), we include the P13(1720), D13(1520) and theD33(1700)
spin 3/2 resonances.

Hadronic current

The spinors of massive spin 3/2 fermions are described by means of the Rarita-Schwinger
formalism, as explained in Ref. [Gre00]. Let ψRα (p′) denote the spinor of the outgoing
resonance, then the hadronic current is given by

Jµ3/2 = ψ̄Rα (p′)Γαµ3/2u(p). (2.58)

Again, different vertex functions apply, depending on parity. For negative parity one
writes,

Γαµ3/2,− = Vαµ3/2 −Aαµ
3/2, (2.59)

while positive parities demand an additional γ5, yielding

Γαµ3/2,+ =
[

Vαµ3/2 −Aαµ
3/2

]

γ5. (2.60)

Due to the different spinor structure, the parameterization involves more terms, and
the vector part reads

Vαµ3/2 =
CV
3

MN

(gαµ/q−qαγµ)+
CV
4

M2
N

(gαµqηp
′η−qαp′µ)+

CV
5

M2
N

(gαµqηp
η−qαpµ)+CV

6 g
αµ. (2.61)

For the axial part one finds

−Aαµ
3/2 =

[ CA
3

MN
(gαµ/q − qαγµ) +

CA
4

M2
N

(gαµqηp
′η − qαp′

µ
) + CA

5 g
αµ +

CA
6

M2
N

qαpµ
]

γ5. (2.62)

Vector form factors

To obtain the vector form factors, our model relies on the extraction from helicity ampli-
tudes provided by MAID2005 [DT92, DHKT99, MAI]. We list the nomenclature, taken
from Ref. [Lei09] in Table 2.6.

29



Chapter 2. Elementary lepton-nucleon interactions

interaction reaction CV(I = 1/2) CV(I = 3/2)
EM l−p→ l−R+ Cp

i CN
i

EM l−n→ l−R0 Cn
i CN

i

CC νp→ l−R++ -
√

3CV
i = −

√
3CN

i

CC νn→ l−R+ CV
i = Cp

i − Cn
i CV

i = −CN
i

Table 2.6: Nomenclature for the vector form factors of spin-3/2-resonances. The placeholders
CV
i in Eq. (2.61) are to be substituted with the reaction specific form factors in the two columns

on the right, depending on isospin I.

interaction reaction CA
i (I = 1/2) CA

i (I = 3/2)

CC νn → l−R++ -
√

3CA
i

CC νn→ l−R+ CA
i CA

i

Table 2.7: Nomenclature for the vector form factors of the spin 3/2 resonances. The place-
holders CA

i in Eq. (2.62) are to be substituted with the reaction specific form factors in the two
columns on the right, depending on isospin I.

Axial form factors

Even though Eq. (2.62) now involves four form factors, one can, by once again making
use of pion pole dominance, establish a connection between CA

5 and CA
6 . One then finds

[Lei09]

CA
6 (Q2) =

M2
N

Q2 +m2
π

CA
5 (Q2). (2.63)

By once more using the off-diagonal Goldberger-Treimann relation,

CA
5 (Q2 = 0) = −Ciso

√
2 fπ

f

mπ
, (2.64)

one coupling can also be fixed. For the remaining form factors, in our model the ∆ and
the higher resonances are treated differently since, due to good signal-to-background-ratio,
the ∆ excitation allows for tests of more refined descriptions.

P13(1720),D13(1520) and D33(1700) resonances: Following Ref. [Adl68], the cou-
plings CA

3 , C
A
4 can be neglected for these less pronounced resonances. Consequently, the

only entity left to determine is the Q2-dependence of CA
5 . In our model, once again the

simple dipole ansatz,

CA
5 (Q2) = CA

5 (0)

(

1 +
Q2

M∗
A
2

)−2

, (2.65)

with the value M∗
A = 1 GeV known from QE scattering, is employed. The nomenclature,

taken from Ref. [Lei09] is summarized in Table 2.7.
P33(1232): For this major contribution, we cannot neglect CA

4 , and, following Adler
[Adl68], we presume that

CA
4 (Q2) = −C

A
5 (Q2)

4
and CA

3 (Q2) = 0. (2.66)
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2.5. Non-resonant pion background

Since CA
5 (0) is fixed by PCAC through Eq. (2.64), the remaining degree of freedom is the

Q2-dependence of CA
5 . Starting again with the dipole ansatz,

(
CA

5

)DP
(Q2) = CA

5 (0)

(

1 +
Q2

MDP
A

2

)−2

, (2.67)

and using the axial mass MDP
A = 1GeV, in the left panel of Fig. 5.6 of Ref. [Lei09] good

accordance with the νp → l−pπ+ bubble-chamber data for the differential cross section,
dσ/dQ2, from Brookhaven (BNL) [K+86, K+90] but poor agreement with bubble-chamber
data from Argonne (ANL) [B+77, R+82] is achieved. As a refinement, inspired by the
deviations from dipole behavior of the QE vector form factor, one can introduce [K+86]
the modified dipole ansatz,

CA
5 (Q2) = CA

5 (0)

[

1 +
aQ2

b+Q2

](

1 +
Q2

M∆
A

2

)−2

. (2.68)

After fitting the parameters to both, BNL and ANL data, one achieves a good accordance
(cf. Fig. 5.6 in Ref. [Lei09]) with both data sets, using the parameters a = −0.25, b =
0.04 GeV2 and M∆

A = 0.95 GeV, for the Q2-differential cross section. Unfortunately, the
integrated cross sections differs for the two experiments and using the modified dipole
ansatz one underestimates the BNL cross section while correctly describing the ANL one
(right panel of Fig. 5.7 of Ref. [Lei09]). Hence, a decision for one model has to be made,
and for the rest of this work Eq. (2.68) will be used.

2.5 Non-resonant pion background

Since pion-production data from EM scattering lie clearly above the prediction from
resonant pion production, the role of the non-resonant pion background has been studied
in different experiments and reviewed in Ref. [BL04]. Analyses of pion production in CC
reactions, e.g., [RS81] or Section 5.4 of Ref. [Lei09], also show the need for the inclusion of
a non-resonant background since for these reactions one misses pion-production strength
in the isospin 1/2 channel. In a phenomenological approach, one can express the single-π
non-resonant background cross section, dσBG, as

dσBG = dσV
BG + dσA

BG + dσ
V/A
BG (2.69)

= dσV
BG + dσnon-V

BG , (2.70)

where σ
V/A
BG stands for the interferences between vector and axial contributions. These

interferences may now arise since the entire cross section is parametrized and not the
hadronic current. As the non-vector contributions, dσnon-V

BG , appear only in CC scattering
experiments, they can be fitted to neutrino data (cf. Sec. 2.5.2).

2.5.1 Vector part

For the vector part of the non-resonant background we will follow Ref. [Bus08] and write
it as the difference between the pion production cross section, dσNπ, as measured in
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Chapter 2. Elementary lepton-nucleon interactions

electron-scattering experiments, and the cross section of resonance decay, dσVlN→lR→lNπ,
which relies on the resonance production described in the previous section. For the energy-
and solid-angle-differential cross section this relation can be expressed as

dσV
BG

dωdΩk′dΩkπ

=
dσV

Nπ

dωdΩk′dΩkπ

−
∑

R

dσV
lN→lR→lNπ

dωdΩk′dΩkπ

. (2.71)

In order to obtain the first term on the RHS of the above equation, one evaluates the
kinematics and finds

dσV
Nπ

dωdΩk′dΩkπ

=

∫

dk0π
|k′||kπ|
512π5

[
(k · p)2 −m2

lM
2
N

]−1/2
δ(p2 −M2

N)|MNπ|2, (2.72)

where |MNπ|2 is evaluated by the usual contraction of the hadronic and the leptonic
tensor. A general parameterization has been deduced in Ref. [BDW67] and applied to
recent data by the MAID group [MAI]. In analogy to Eq. (2.38), one can express the
hadronic current by

JµNπ = ū(p′)ΓµNπu(p), (2.73)

with the vertex function

ΓµNπ =

6∑

i=1

ANπi Mµ
i . (2.74)

It thus consists of six form-factor analogues, ANπi , the so-called invariant amplitudes, that
again depend on both, interaction and reaction channel, and the corresponding invariants,
Mµ

i , which are given by

Mµ
1 = −iγ5

(
γµ/q − qµ

)
,

Mµ
2 = 2iγ5

[

P µq ·
(

kπ −
q

2

)

− P · q
(

kπ −
q

2

)µ]

,

Mµ
3 = −iγ5

(
γµkπ · q − /qk

µ
π

)
,

Mµ
4 = −2iγ5

(
γµq · P − /qP

µ
)
− 2MNM

µ
1 ,

Mµ
5 = iγ5

(
qµkπ · q − q2kµπ

)
,

Mµ
6 = −iγ5

(

/qq
µ − q2γµ

)
,

with P µ = (p+ p′)µ/2. The invariant amplitudes for charged-current neutrino scattering,
ANπ,CC
i , can be related via isospin relations to the known amplitudes from electroexcita-

tion, ANπ,EM, following [HNV07].

In order to calculate the cross section of pion production via resonance decay, fol-
lowing Ref. [Bus08] on can make the simplifying assumption that the resonances decay
isotropically in their rest-frame. Consequently, the dependence of the decay width on the
solid-angle element is a constant and given as

dΓR→Nπ

dΩCM
kπ

=
ΓR→Nπ

4π
. (2.75)
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2.5. Non-resonant pion background

In this way, the cross section factorizes into resonance excitation and decay and one
obtains

dσVlN→lR→lNπ

dωdΩk′dΩkπ

=
dσV

R

dωdΩk′

dΓR→Nπ

dΩkπ

=
dσV

R

dωdΩk′

1

4π

ΓR→Nπ

ΓR→Nπ

dΩCM
kπ

dΩkπ

. (2.76)

Thus, by evaluating the resonance-production cross section, dσVR , from the previous sec-
tion, inserting the experimental decay widths and performing a solid-angle transformation
from center of momentum (CM) to the laboratory system, given in Ref. [BK73] as

dΩCM
kπ

dΩkπ

=

√

p′2 kπ
2

|kcm
π |(|kπ|p′0 − |p′|k0π cos θπ)

with θπ = ∡(kπ,p
′), (2.77)

one can obtain the cross section for resonance decay and estimate the non-resonant back-
ground. A word of caution should be spoken at this point, as the difference in Eq. (2.71)
may also become negative. This causes problems if the cross section is to be interpreted
probabilistically, e.g., in a Monte-Carlo-sampling algorithm. In Sec. 5.5 of Ref. [Bus08],
a way to resolve these complications is presented.

2.5.2 Non-vector part

Since neutrino data are scarce, our model includes a rather simple ansatz for the non-
vector part of the non-resonant background, by claiming that the non-vector cross section
has the same functional form as the vector part and thus can be obtained through mul-
tiplication with a reaction-channel-specific constant, bNπ. The total non-resonant cross
section then reads [Lei09]

dσBG = dσV
BG + dσnon-V

BG = (1 + bNπ)dσV
BG. (2.78)

A fit to ANL data leads to values of bpπ
0

= 3 and bnπ
+

= 1.5 (cf. Fig. 6.2 in Ref. [Lei09]).
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Chapter 3

Model-building for lepton-nucleus
scattering

In this chapter, we present the inclusive lepton-nucleus-scattering cross section, which
will be the central point of interest for the rest of this work. At first, basic terminology is
introduced in the discussion of electron scattering results. Then, we proceed to highlight
different aspects that have to be taken into account when attempting to describe lepton-
nucleus scattering.

3.1 Inclusive cross sections

Since quantum-chromodynamics calculations are, up to this day, not able to describe
all the properties of the nucleon discussed in the last chapter, the idea of using the
same formalism to describe even more complex hadronic systems as the nucleus must
be abandoned. Left with no microscopic theory as a starting point, one must resort to
phenomenological descriptions of the system’s properties that one is interested in. Para-
meterizations of ground state properties, such as the semi-empirical mass formula derived
from the liquid drop model, began emerging soon after the discovery of the nucleus.
Later, these parameterizations were refined by quantum-mechanical shell models and
certain nuclear properties were addressed in quantum-field theory based approaches as
the Walecka mean-field model [Wal74].

Before discussing the predictive power of different model assumptions, it is once again
important to ask, which properties we are interested in, as the complexity of the nuclear
response contains and surpasses all complexity of the nucleon response. Let us compare
the schematic depiction of Q2 cuts through the nuclear response in Fig. 3.1 to the nucleon
response in Fig. 2.4. One sees that while at high Q2 > 5 GeV the response is similar to
that of a single nucleon, at lower Q2 new structures can be found in the spectra.

Looking at the effects for Q2 = 0, i.e., real photon scattering, one finds that while
the resonance excitation at high ω is similar to that in elementary reactions, at very
low ω there is a pronounced peak, associated with a dominant collective excitation of all
nucleons, called the giant resonance.

For intermediate Q2 in the order of 100 MeV one finds a pronounced peak at ω =
Q2/2Mnucleus from elastic scattering of the entire nucleus, which is followed by a spectrum
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Chapter 3. Model-building for lepton-nucleus scattering

Figure 3.1: Schematic representation of nuclear response function as a function of energy
transfer, ω, for different slices of four-momentum transfer Q2. Taken from [BGPR96].

of nuclear excitations associated with inelastic scattering. Another peak is found at

ωQEP = Q2/2MN . (3.1)

It can be associated with the knock-out of a quasi-free nucleon at rest, and is hence
referred to as the quasielastic peak (QEP). As for medium four-momentum transfers
with Q2 ≈ 1 GeV quasielastic scattering dominates the cross section and still plays an
important role at higher momentum transfers, its study will be one of the main aspects of
this work. Eq. (3.1) falls short of properly describing the position of the peak, since the
struck nucleon still experiences binding effects from the other nucleons. In the following,
it will be discussed how to include these effects while still sticking to the most simple
one-nucleon knock-out picture.

3.2 Modeling the interaction

As a basic assumption, many models begin by treating the lepton part in one-boson-
exchange approximation, as we have already done in the previous chapter and depicted in
Fig. 2.1a. Following this approach, we focus on the question, to which degrees of freedom
the virtual boson couples when it hits the nucleus. There is, actually, a wide range of
possibilities, two of which are listed here:

3.2.1 Coupling to a single nucleon: The impulse approximation

In the scenario of impulse approximation, one nucleon is regarded as quasi-free within
the nucleus. When hit, it takes up the entire energy and momentum transfer and leaves
the nucleus. Taking into account that the largest known nucleon binding energy is found
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3.2. Modeling the interaction

qµ = (ω,q)

kµ = (
√

k2 +m2
l , |k|ez) k′µ = kµ − qµ

P µ = (M0
A, 0)

p′µ = pµ + qµ

A

l l′

N

N ′

A− 1

pµ = (p0,p)

P ′µ = (
√

M∗
A−1

2 + |p|2,−p)

Figure 3.2: Explanation of the impulse approximation: Because the nucleon is quasi-free within
the nucleus, it can be described as spontaneously separated from the nucleus with momentum
p, then being struck by the virtual boson and consequently leaving the rest nucleus behind.

to be less than 10 MeV [WAT03], this approximation should be appropriate for energy
transfers of hundreds of MeV. Our model, that will be explained in Chapter 5, takes this
approach as the starting point for both, EM and CC scattering. We note, however, that
this concept cannot be expected to hold for low q and the question when and to what
extent impulse approximation breaks down is an unresolved issue. A discussion about the
implications for neutrino scattering can be found in Ref. [ABF10].

Within this approach, questions concerning off-shell effects have to be addressed. In
Fig. 3.2 we have depicted the chain of events in more detail:

1. the nucleon is quasi-free within the nucleus, thus we describe it as spontaneously
separated from the nucleus with momentum p, the rest nucleus thus has the mo-
mentum −p,

2. after being struck by the virtual boson and changing momentum to p′ = p + q, it
leaves the rest-nucleus behind.

At each vertex, energy conservation has to be fulfilled. As a consequence, all scattering
partners, i.e., the nucleus, the rest nucleus and the nucleon, cannot be on shell and in a
ground state at the same time.

Evidently, one fixes the initial nucleus in its ground state. In addition, one has the
freedom to put the nucleon off mass shell, since it is described by an internal line, and,
further, to put the rest nucleus into an excited state, because it is clear that the formation
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Chapter 3. Model-building for lepton-nucleus scattering

of the energy-minimizing configuration will not occur instantaneously after an inner part
of the preceding system has been removed.

At the second vertex one would expect the nucleon to go on shell, but this is by
no means a necessity. In fact, at the point of interaction the nucleon is exposed to the
hadronic potential, which, depending on the momentum dependence of the potential,
might be stronger or weaker than the one acting on the incoming nucleon. More light on
these problems is shed throughout the next sections and in Sec. 4.3.

As an approximation, one could circumvent these complications by demanding on-
shellness for all particles. To comply with energy conservation, the model then has to use
nuclear masses differing from the experimentally observed ones. This approach will be
continued in Sec. 4.4.

3.2.2 Nucleon-nucleon correlations

It is an interesting and up until now unresolved issue, at which energies the impulse
approximation breaks down and nucleon-nucleon correlations within the nucleus begin to
play a significant role, and to what extent they are still present at larger energy transfers.
As analysis of the separated longitudinal and transverse responses was a driving force in
the study of short range correlation, described, e.g., in the 2p2h excitation model [FF89].
We will postpone the discussion to Sec. 6.2.

3.3 Modeling the scattering partners

From Fig. 3.2, one would expect all incoming and outgoing particles to be represented by
plane waves. A more realistic model should take two additional effects into consideration:

Coulomb distortion of the lepton wave function. The more protons a nucleus
is made of, the less negligible these distortions of the lepton-wave function become. As
Coulomb corrections are momentum dependent (cf., e.g., [dFW66]), their influence on the
cross section is an interesting question, discussed, e.g., in Sec. 11 of Ref. [BDS08].

Influence of the hadronic potential on the nucleon. As described above, neither
the incoming nor the outgoing nucleon should be expected to be completely free of the
nucleon-nucleon potential within the nucleus. Thus a hadronic potential should be defined,
leading to an off-shellness of the nucleons.

3.4 Medium-modified cross sections

Assuming one-boson exchange, impulse approximation and neglecting Coulomb correc-
tions, we are now ready to derive the nuclear cross section. Starting with the struck
nucleon, we cannot assume its hadronic current to be a quantity without a local de-
pendence anymore. Whether a nucleon at the surface or in the inner part of a heavy
nucleus is hit, should have a sizable impact on the response, and in order to obtain the
medium-modified matrix element we have to adjust Eq. (2.33) in the following way

|M|2 → |Mmed(r)|2. (3.2)
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Throughout this work we will present different ways to include medium effects, e.g., in
Appendix D.1 we present an approach where the nucleon form factors are modified while
in Sec. 5.2.4 the kinematics are changed by the introduction of an effective mass. Using
the relations in Sec. 2.2.4 to obtain the cross sections from the squared matrix element,
we know the single-nucleon medium-modified cross section to be of the form

dσlN→l′f
med ∝ |MlN→l′f

med (r)|2 (3.3)

dσlN→l′X
med =

∑

f=N,∆,Nπ,..

dσlN→l′f
med (3.4)

To obtain the nuclear cross section, we have to integrate over all possible positions,
momenta and energies, i.e. the particle-phase-space density, g<N(r, t = t0, p), yielding

dσlA→l′X =
∑

N=n,p

∫

d3r

∫
d4p

(2π)4
g<N(r, t = t0, p)fcorrdσ

lN→l′X
med . (3.5)

The above equation also includes a correction for the flux of the nucleus,

fcorr =
|vN − vl|
|vA − vl|

, (3.6)

that arises from integrating over single-nucleon cross sections. The discussion about
the momentum distribution and off-shellness encoded in the quantity g<N(r, t = t0, p) is
postponed to Chapter 5. To end this section, let us consider the less general but important
case of on-shell nucleons, being described by an energy-independent phase-space density
fN(r,p, t = t0). For the study of inclusive scattering we have to integrate over the initial
phase-space density at t = t0, omitting the time information in the following. The cross
section then reads

dσlA→l′X =
∑

N=n,p

∫

d3r

∫
d3p

(2π)3
fN(r,p)fcorrdσ

lN→l′X
med . (3.7)

Integrating fN over momentum space (coordinate space) yields the particle density (mo-
mentum distribution1), i.e.,

∫
d3p

(2π)3
fN(r,p) = ρN(r), (3.8)

∫

d3rfN(r,p) = nN(p). (3.9)

Performing both integrations yields the normalization,
∫

d3p

(2π)3

∫

d3rfN(r,p) =

∫

d3rρN(r) =

∫
d3p

(2π)3
nN (p) = NN , (3.10)

where NN denotes the number of nucleons of the given species, i.e., Nn = N and Np = Z.

1Note that in some definitions of the momentum distribution the normalization factor 1/(2π)3 from
Eq. (3.10) does not appear, e.g., in Eq. (6.31) of [BGPR96].
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3.5 Modeling the nucleus

3.5.1 Density distributions

As density distributions are accessible via different probes, there are many parameteriza-
tions in literature. For heavier nuclei, a good choice is to take the well known Woods-Saxon
distribution,

ρn,p(|r|) =
ρ0

1 + exp
(

|r|−Rn,p

an,p

) . (3.11)

One possible way to fix the fit parameters for protons in the above equation is the analysis
of elastic scattering of electrons on nuclei as performed in Ref. [DJDVDV74]. Since there
is no simple way to couple to the neutrons only, it is more difficult to obtain the separated
neutron density, but with model calculations of the nuclear ground state, e.g., Ref. [HL98],
it is also possible to assess this quantity.

3.5.2 Momentum distributions

A simple starting point for the nucleon-phase-space distributions, fn,p(r,p), is the Fermi-
gas model (FG) at temperature T = 0, with

f(|p|)FGn,p = Nθ(kn,pF − |p|), (3.12)

where the normalization constant, N , ensures that Eq. (3.10) holds. Within this approach,
nucleons are uniformly distributed in momentum space2 up to the Fermi momentum, kn,pF ,
which might differ for protons and neutrons. The Pauli exclusion principle restricts the
knocked-out nucleon’s momentum to |p′| > kn,pF , a fact that is referred to as Pauli-
blocking. As an approximation one could also consider identical Fermi momenta for the
two kinds of nucleons.

A further modification can be introduced by taking into account that the binding of
the nucleon depends on its position. This leads to a distance-dependent Fermi momentum,
kn,pF (|r|). The phase-space distribution then reads

fLTF
n,p (|p|) = Θ(kn,pF (|r|) − |p|). (3.13)

Integrating over the momentum distribution for a given point in space, r, and keeping in
mind that each momentum can be occupied by two spin 1/2 particles yields the density
distribution

ρn,p(|r|) = 2

∫
d3p

(2π)3
Θ(kn,pF (|r|) − |p|) =

(kn,pF (|r|))3
3π2

. (3.14)

This relation can be used to connect the model parameter kF(|r|) to the experimentally
measurable nuclear density, ρn,p(|r|), through

kn,pF (|r|) =
(
3π2ρn,p(|r|)

)1/3
. (3.15)

For the rest of this work, we will refer to this model as the local Thomas-Fermi gas (LTF).

2As a consequence, the dependence on the nucleon’s position disappears.
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Chapter 4

Superscaling formalism

In this chapter, we introduce the concept of superscaling. We give an overview of different
scaling approaches, namely non-relativistic and relativistic y-scaling, after outlining the
basic idea behind all scaling analyses. Finally, we illuminate the concept of superscaling
and recent modifications to it.

4.1 Introduction to scaling

Scaling is a general phenomenon occurring in various areas of physics that deal with probes
weakly interacting with many-body systems [Wes75]. In a typical scattering experiment
that exhibits scaling behaviour, a single constituent of the target absorbs the entire energy
and momentum transfer. Superscaling is the reduction of the target response to a simple
function of one kinematical variable (scaling of first kind) independent of the special
form of the target (scaling of second kind). The validity of the concepts of scaling and
superscaling applied to inclusive quasi-elastic electron scattering at intermediate energies
has been investigated in depth, e.g. in Refs. [DMDS90, DS99, MDS02]. In more recent
works, the approach has been extended to neutrino-nucleus scattering [ABC+05]. Whereas
for CC neutrino scattering some comparison to different datasets is expected to be possible
in the near future with data from SciBooNE [Sci], T2K [T2K] or MINERνA [DST+04], the
NC case (cf. Ref. [ABCD06]) is very difficult to assess experimentally, since reconstruction
of the incoming/outgoing lepton kinematics is not feasible.

The general approach in the case of lepton-nucleus scattering can be summarized as
follows:

1. At first, the interaction has to be modeled. This is usually done in impulse approx-
imation, i.e., under the assumption that during the scattering process one virtual
photon is exchanged with a single nucleon, which is then knocked-out.

2. Incoming and outgoing leptons are often represented by plane-wave functions, ne-
glecting further interactions with the nuclear Coulomb field.

3. To describe the nucleus, one usually makes the ansatz of an ensemble of non-
interacting fermions (e.g., a Fermi gas).
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Chapter 4. Superscaling formalism

4. After the separation of the trivial kinematical factors from the cross sections eval-
uated using the approximations 1-3, one is left with the nuclear response functions.

5. Usually, they can be shown to depend strongly on one combination of kinematical
variables (the scaling variable) and only weakly on other combinations, which are
neglected.

6. After this approximation one can divide out kinematical factors and is left with one
universal function (the scaling function) depending on only one variable which
incorporates all of the nontrivial nucleus response. Dividing the experimental cross
sections by the same kinematical factors leads to the experimental scaling function.

7. Finally, one analyzes whether the experimental scaling functions exhibit scaling of
first and second kind, i.e., whether the scaling function takes on the same values
for different kinematical regimes and different nuclear targets.

The above approximations can be refined, eventually leading to a more realistic de-
scription. Thus, a variety of different scaling models can be found in the literature (cf.,
e.g., Ref. [Osb95]). For historical reasons, we shall give a brief overview of well known
scaling approaches, focusing on the main results while not evading explicit calculations.
It is noteworthy, that all calculations will include the one-boson exchange approximation
(cf. Fig. 2.3) leading to the application of the nomenclature developed in Sec. 2.2.3 for the

kinematics. Throughout this chapter the shorthand q = |q| =
√

(pf − pi)
2 will appear

in most formulae, its frequent usage justifying the slight variation from the conventions
for the notation of vectors defined in Appendix A.

4.2 Non-relativistic y-scaling

West’s seminal analysis [Wes75] of scaling phenomena has been the inspiration for many
following studies. However, his analysis is too general for this discussion and we refer the
reader to Appendix C.1, where we have extracted a line of reasoning most relevant to this
work.

For many reasons, it is more instructive to begin with the non-relativistic Fermi gas and
obtain the very same scaling variable, y. As described in Sec. 3.5.2, for the nucleon species
N , the global Fermi gas consists of NN nucleons evenly distributed in momentum space
up to the Fermi momentum, kNF . Following the derivation in Chapter 5 of Ref. [dFW66]
we assume the nucleons to be pointlike and spinless and thus only take scattering off
protons into consideration, writing kF = kpF. With these approximations, one can write
(cf. Sec. 3 of Ref. [dFW66]) the single-proton-cross section as

(
dσ

dΩk′dk0
′

)

sp

=

(
dσ

dΩk′

)

Mott

(
Q2

q2

)2

δ

[

ω −
(

(p + q)2

2MN
− p2

2MN

)]

θ(|p+q|−kF), (4.1)

with θ(|p + q| − kF) accounting for Pauli-Blocking and the Mott-cross section given as

(
dσ

dΩk′

)

Mott

=

(
α cos(θ/2)

2k0 sin(θ/2)2

)2

. (4.2)
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4.2. Non-relativistic y-scaling

To normalize the phase-space distributions, one must remember that the integral over
the entire initial-state phase space must amount to the number of scattering partners,
i.e.,

∫
d3rρ(r) =

∫
d3p
(2π)3

n(p) = Z, with the proton number, Z. We determine the normal-
izations to be

c1

∫

Ω

d3r
!

= Z → c1 =
Z

|Ω| → ρ(r) =

{
Z
|Ω| r ∈ Ω

0 else,
(4.3)

c2

∫

|p|≤kF
2

d3p

(2π)3
!

= Z → c2 =
Z3π2

k3F
→ n(p) =

{
Z3π2

k3
F

|p| ≤ kF

0 else,
(4.4)

where kF denotes the proton Fermi momentum, Ω stands for the arbitrary 3-dimensional
normalization region (|Ω| for its volume) and the factor 2 in Eq. (4.4) accounts for the fact
that for any given momentum 2 spin states can be occupied. In combination we obtain
the phase space density

f(r,p) = Z
1

|Ω|1Ω(r)
3π2

k3F
θ(kF − |p|), (4.5)

with the indicator function, 1Ω(r) = (1 if r ∈ Ω; 0 else).
Note that, while the electrons are treated relativistically, the nucleons’ energy in the

energy-conserving δ function is evaluated in a non-relativistic manner (thus we refer to
this approach as non-relativistic Fermi gas).

We have now derived all terms necessary to apply Eq. 3.7 and express the nuclear
cross section as1

dσ

dk0′dΩk′
=

∫

d3r

∫
d3p

(2π)3
2f(r,p)

(
dσ

dΩ′dk0′

)

sp

(4.6)

=

∫
d3p

(2π)3
2n(p)

(
dσ

dΩ′dk0′

)

sp

(4.7)

=

(
dσ

dΩk′

)

Mott

(
Q2

q2

)2
3Z

4πk3F

∫ kF

0

d3p θ(|p + q| − kF)δ

[

ω −
(

(p + q)2

2MN
− p2

2MN

)]

︸ ︷︷ ︸

R(q,ω)

,

(4.8)

where R(q, ω) denotes the response function.
The non-relativistic expression for the energy conservation facilitates the evaluation

of the integral, where now two distinct cases can be regarded:

• For q ≥ 2kF the Pauli-blocking-Heaviside function, θ(|p + q| − kF), plays no role,
and the response function is given as the positive part of a parabola in y,

R(q, ω) =







3Z
4π

(
MN

kF

)
π
q

[

1 −
(
y
kF

)2
]

for q2

2MN
− kF

q
MN

≤ ω ≤ q2

2MN
+ kF

q
MN

0 else.

(4.9)

1Note that in passing from Eq. (3.7) to Eq. (4.6), we also make the approximation fcorr ≈ 1.
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(a) y > 0

p

p
y

z

(b) y < 0

Figure 4.1: Two-dimensional representation of the initial-state phase space for single-nucleon
knockout scattering reactions at a fixed momentum transfer q. The left panel shows a configu-
ration with 2MNω > q2, in the right panel we portray a configuration with 2MNω < q2. While
initially all states with |p| < kF (grey “Fermi circle”) are occupied, only those states lying on
the dotted straight line are permitted by energy conservation to take part in the reaction. An
additional restraint is posed by Pauli-blocking which prevents knocked-out nucleons to be scat-
tered to a state with |p| < kF. The region being affected by Pauli-blocking is a “Fermi circle”
shifted by the momentum transfer q (circle filled with stripes). As a consequence, in the right
panel only the two bold line segments, which are the intersection of the energy-conservation
line with the non-Pauli-blocked phase space, form the initial-state-phase space for the reaction.
Passing to three dimensions the circles transform into spheres and the straight into a plane.

Note that the scaling variable,

y =
2MNω − q2

2q
, (4.10)

which also appears in West’s more general derivations [Wes75], arises simply as a
consequence of energy conservation, since p = yeq is the solution2 to the equation

ω =
(p + q)2

2MN
− p2

2MN
(4.11)

which minimizes |p|. The variable, y, takes on the value 0 at the non-relativistic
position of the quasielastic peak, where

ω0 =
q2

2MN
. (4.12)

A graphical interpretation of the energy-conservation condition is given in Fig. 4.1.

• For q < 2kF Pauli-blocking is possible. Due to the energy-conserving δ function,

δ
(

ω + p2

2MN
− (p+q)2

2MN

)

, blocking only plays a role at ω < (2qkF − q2)/2MN . As a

consequence, the response is given as

R(q, ω) =







3Z
4π

(
MN

kF

)
π
q

[

1 −
(
y
kF

)2
]

for kF
q
MN

− q2

2MN
≤ ω ≤ q2

2MN
+ kF

q
MN

3Z
4π

(
M2

N

k3
F

)

2π ω
q

for 0 ≤ ω ≤ kF
q
MN

− q2

2MN

0 else.

(4.13)

2Here, eq stands for the unit vector parallel to q.
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Figure 4.2: Response function, R(q, ω), as a function of ω. For the left panel, q is chosen such
that Pauli-blocking effects play a role. For the right panel, a sufficiently large q has been chosen
so that the entire response has a parabolic shape.

While this simple approach misses the position of the QEP, it has been found that
adjusting kF and replacing MN in the above equations by the fit parameter M∗, called
the effective mass, one obtains reasonable accordance with experimental data [MSW+71].
In Fig. 4.2 we portray the two different possible shapes of the response function.

4.3 Relativistic y-scaling in plane wave impulse ap-

proximation

Starting in the eighties, groups around Pace, Salmé and Ciofi degli Atti, but also Day and
Donnelly have formulated a relativistic version of y-scaling. The first attempts have been
quite general and shall be presented here (mostly following the arguments in [CDM97],
but also [CdAPS91] and [BGPR96]).

One begins with a fully relativistic description of the semi-inclusive one-nucleon knock-
out in electron-nucleus scattering. The process is modeled in one-boson-exchange approx-
imation; the struck nucleon does not couple to the rest of the nucleus (impulse approxima-
tion), and both incoming and outgoing leptons are modeled as plane waves. Consequently,
this picture is often referred to as the plane-wave-impulse approximation (PWIA). Ana-
lyzing the kinematics of the (e, e′p) process, depicted in Fig. 3.2, one finds the following
energy-conservation condition:

MA + ω =
√

(p + q)2 +M2
N +

√

p2 + (M∗
A−1)

2 . (4.14)

The signifies that the target is at rest prior to the interaction, the rest nucleus thus
carrying the momentum −p. The entire momentum transfer is taken by one nucleon,
leaving the rest nucleus in an excited state of mass, M∗

A−1. Obviously, for a given mo-
mentum, there are two extreme kinematical cases: p being parallel or antiparallel to q.
Solving Eq. (4.14) for parallel momentum, p = y′eq, we can obtain an analytic expression
for the largest value of parallel longitudinal momentum a nucleon can have in order to
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Figure 4.3: Maximum parallel longitudinal momentum, y′(ω, q,M∗
A−1 fixed), as a function of

both, energy and momentum transfer.

participate in a reaction. It reads [CDM97]

y′(M∗
A−1) =

1

2W 2

[

(MA + ω)
√

W 2 − (M∗
A−1 +MN )2

√

W 2 − (M∗
A−1 −MN)2

−q(W 2 + (M∗
A−1)

2 −M2
N)
]
,

(4.15)

while the invariant mass is given by W =
√

(MA + ω)2 − q2 . The largest attainable
antiparallel momentum is found to be3

Y ′(M∗
A−1) =

1

2W 2
[(MA + ω)

√

W 2 − (M∗
A−1 +MN )2

√

W 2 − (M∗
A−1 −MN)2

+ q(W 2 + (M∗
A−1)

2 −M2
N)].

(4.16)

As shown in Figs. 4.3 and 4.4, regions with y′ > 0 are associated with large energy
transfers. To understand this relation better, we plot the energy loss as a function of
parallel nucleon momentum at fixed q in Fig. 4.5. One can see that energy loss increases
with the longitudinal momentum in an approximately quadratic manner. The largest
energy transfer for fixed q thus occurs, when all pi,pf ,q point in one direction. This
can be assigned to the (leading order) quadratic dependency of the kinetic energy on
momentum4.

Negative values of y′ are associated with small energy transfers. This can be under-
stood as follows: very small energy transfers cannot be realised with p aligned parallel

3Note that the solutions y′ and −Y ′ are the two roots of a quadratic equation that arises when inserting
p = y′eq into Eq. (4.14) and solving for y′.

4Which is a Lorentz invariant property since Qµ transforms as a four-vector.

46



4.3. Relativistic y-scaling in plane wave impulse approximation

Figure 4.4: Maximum parallel longitudinal momentum, y′(ω, q fixed,M∗
A−1 fixed), as a func-

tion of ω. The solid curve has been computed with an arbitrary value q1 for the fixed momentum
transfer. The dashed curve has been computed with a fixed momentum transfer q2 > q1.

Figure 4.5: Energy transfer, ω(pz, q fixed,M∗
A−1 fixed), as a function of parallel nucleon

momentum, pz.
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p

p
y

z

Figure 4.6: Two-dimensional representation of allowed momenta for different rest-nucleon
masses, M∗

A−1. The solid curve stands for the largest allowed momenta corresponding to the
smallest rest-nucleon mass, M∗

A−1 = MA−1. The curve intersects the pz axis at pz = y and
pz = −Y . The dashed curve represents the allowed momenta for an excited mass state M∗

A−1 >
MA−1. The curve intersects the pz axis at pz = −Y (M∗

A−1) and pz = y′(M∗
A−1) < 0. The

point in the center of both curves stands for the allowed momentum associated with the largest
rest-nucleon mass possible for the given kinematics, M∗

A−1 =M∗
A−1,max.

to q, thus for low ω only nucleons with antiparallel momentum are allowed to take part
in the scattering. To see why y′ < 0 and y′ > 0 have to be treated differently, one has
to illuminate the role of the mass of the remaining nucleus, M∗

A−1. By definition of the
ground state M∗

A−1 ≥ MA−1. Analyzing Eq. (4.16), one finds the maximum attainable
value for anti-parallel momentum to be

Y = Y ′
max = Y ′(M∗

A−1 = MA−1)

=
1

2W 2

[

(MA + ω)
√

W 2 − (MA−1 +MN )2
√

W 2 − (MA−1 −MN)2

+q(W 2 +MA−1
2 −M2

N )
]
,

(4.17)

while with increasing M∗
A−1 the Y ′ will become smaller. In a similar manner, the upper

limit for the y′ is found to be

y = y′max = y′(M∗
A−1 = MA−1)

=
1

2W 2

[

(MA + ω)
√

W 2 − (MA−1 +MN)2
√

W 2 − (MA−1 −MN )2

−q(W 2 +MA−1
2 −M2

N )
]
.

(4.18)

Keeping in mind that the energy conservation relation in Eq. (4.14) approximately
amounts to an equation of a sphere for p of the type

R2 = (p + q)2, (4.19)

we picture the surface of allowed momenta as a sphere in Fig. 4.6, with the positions of
the boundaries given by y′ and Y ′. From the equations for these quantities it can be seen,
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Figure 4.7: Regions of allowed momenta for different kinematical situations. Areas with
more intense coloring correspond to areas with higher excitation energies. The arrows represent
momenta that minimize the excitation energy, while the inner circle on the right shows different
possibilities of aligning the momenta. For y ≤ 0 every p within the allowed region can be rotated
to the surface of the region where E = 0, for y > 0 this is no longer possible for any p. For
|p| < y, minimizing excitation energy is done by aligning p parallel to q, maximizing by aligning
in the opposite direction.

that they converge towards a single value for increasing M∗
A−1. The surface will eventually

become singular, when both, y′ and Y ′, take on the same minimal value at a nucleon mass
of M∗

A−1,max = W −MN . For higher excitation energies Eq. (4.16) yields complex results.
Thus, as the radius decreases, the convergence point of the surfaces will always be

yc = −qW
2 + (M∗

A−1,max)
2 −M2

N

2W 2
. (4.20)

Note that, as Eq. (4.14) is continuous in M∗
A−1 and the surface is connected, in a fully

inclusive scenario one obtains a sphere-type volume of allowed momenta, varying the mass
from MA−1, associated with allowed momenta on the shell of the volume, up to M∗

A−1,max,
which only allows for a single momentum close to the center of the volume.

A different way to reflect these findings starts with the excitation energy of the re-
maining nucleus,

E = EA−1 −E0
A−1 =

√

p2 + (M∗
A−1)

2 −
√

p2 + (MA−1)2 . (4.21)

It follows from the definition, that the minimal excitation energy is 0, with the allowed
parallel momenta being bounded by y and Y in that case. Let us for the rest of this
section use p = |p| as a short hand. Looking at nucleons with such a fixed absolute
momentum, p, two cases, depicted in Fig. 4.7, show substantial differences:

• when y ≤ 0 the momenta obey the relation y < p < Y and thus for any p fulfilling
that relation a p can be found, so that E = 0

• for y > 0 there exist allowed p with p < y, these momenta are associated with
excited states only

One can thus easily fix the minimal excitation energy to be

Emin(p) = max

(

MA + ω −
√

p2 +MA−1 −
√

(p+ q)2 +M2
N , 0

)

. (4.22)
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When y ≤ 0 the minimum excitation energy will always be zero. In the case of y > 0
the excitation will be given by the above expression, which can be found by aligning the
momentum parallel to q. Since one can always align any allowed momentum antiparallel
to q, the maximal excitation energy is given by

Emax(p) = max

(

MA + ω −
√

p2 +MA−1 −
√

(p− q)2 +M2
N , 0

)

. (4.23)

To find the overall maximum limit, one has to insert M∗
A−1,max and p = yceq into Eq.

(6.3) yielding the implicitly lengthy formula

Emax =
√

y2c +M∗
A−1,max −

√

y2c +M2
A−1 . (4.24)

So far, we have analyzed the initial-state-phase space of the struck nucleon and found
that energy conservation reduces the available phase space to a sphere-like volume. To
parametrize this volume, one can start with the absolute momentum, as done in Ref.
[CDM97], and let it vary in the range max(−y, 0) ≤ p ≤ Y . As a consequence the
excitation energy is then bounded by p-dependent limits, i.e., Emin(p) ≤ E ≤ Emax(p). A
different approach starts out by varying the excitation energy in the bounds 0 ≤ E ≤ Emax

and then varying p in the range max(−y′(E), 0) ≤ p ≤ Y ′(E). In any case, the remaining
angle integration in φ will be trivial, while θ will be bounded by an upper limit depending
on both variables in the following way: 0 ≤ θ ≤ θmax(E , p).

When using the second method, as proposed in Ref. [CdAPS91], due to the complicated
structure of Eq. (4.24), it is easier to express the integral in terms of the removal energy,

ER = (M∗
A−1 +MN) −MA. (4.25)

Only in the case of no inner excitation and lack of binding effects will this quantity become
0, depending on binding effects it can also be negative. We can thus rewrite the energy
limits in the following way

Emin
R = (MA−1 +MN ) −MA,

Emax
R = (M∗

A−1,max +MN ) −MA.
(4.26)

As a consequence, the phase-space integration is bounded by the removal energies Emin
R ≤

ER ≤ Emax
R and the two momenta max(−y′(ER), 0) ≤ p ≤ Y ′(ER).

We are now ready to grasp the significance of the scaling variable, y, and the major
difference between the cases of positive and negative y. Only in the case of y ≤ 0 one can
attribute a direct physical meaning to y:

The absolute value of y, as defined in Eq. (4.18), is the minimal momentum for a
nucleon to be knocked out of the nucleus by a given photon with four-momentum (ω,q). In
addition, this knock-out process will leave the rest nucleus in its ground state, minimizing
removal/excitation energy.

In case of y > 0 this simple connection is lost, and one is left with the choice between
minimizing p or E . Note that minimizing these quantities is important as we expect
nucleons to be concentrated in phase-space regions with low p and E .

If we now remind ourselves of the discussion of the QEP in Sec. 3.1, we speak of a
quasi-elastic knock-out, when the struck nucleon is at rest and quasi-free, hence has small
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4.3. Relativistic y-scaling in plane wave impulse approximation

removal energy. It is thus possible to directly identify the value y = 0 as an indicator for
the QEP. The great difference in topology for the case y > 0, is that as excitation energy
increases, y′ will diminish and eventually become 0, thus resulting in a process where the
struck nucleon is at rest, but has a high removal energy. In such a scenario processes with
contributions from inner effects will start to play a dominant role5.

This argument includes the assumption that the probability S(p, ER) of hitting a
nucleon of momentum p which requires energy ER to be removed from the nucleus is
peaked around p = 0 for all removal energies. To avoid confusion, we will refer to S(p, ER)
as the probability function, whereas in many works, e.g. [PS82, CdAPS91], it is called
the spectral function. In the context of transport theory, presented in Chapter 5 the term
has a slightly different meaning as the spectral function, A(r, t,p), explicitly depends
on time as well as position and is separated from the phase-space distribution, f(r, t,p),
which also contains information about the momentum distribution. In the special case
of a uniformly and infinitely spread fermionic system (here, nuclear matter) all position
information is lost and the two quantities S(p, ER) and A(p, E) are related to each other,
as shown, e.g., in Sec. 3.2 of Ref. [Leh03].

Following the above assumptions (one-boson exchange, plane-wave description, im-
pulse approximation) we are lead to the following separation of single-nucleon contribu-
tions and nuclear effects [BGPR96]:

d2σ

dE′dΩ
=

[
Z

A
σep +

N

A
σen

] ∣
∣
∣
∣

dω

dp‖

∣
∣
∣
∣

−1

2π

∫ Emax
R

Emin
R

dER

∫ Y ′(ER)

|y(ER)|
p dp S(p, ER) (4.27)

=

[
Z

A
σep +

N

A
σen

] ∣
∣
∣
∣

dω

dp‖

∣
∣
∣
∣

−1

F (ω, q). (4.28)

Here the factor
∣
∣
∣
dω
dp‖

∣
∣
∣

−1

accounts for the phase space that is available due to the integration

in θ over the energy-conserving δ function, which is also responsible for the appearance
of p instead of p2 in the integral [PS82]. The one-neutron and -proton cross sections,
σep and σen, are supposed to vary very slowly with p and ER and are thus factored out
of the integral and evaluated at a point within the integration limits6 (e.g., ER = Emin

R

and p = |y|). On the other hand, one should notice that the nucleons will be generally
off-vacuum-mass shell due to binding, thus one has to choose a prescription, e.g., Ref.
[DF83] which is given in Appendix D.1, to calculate these cross sections.

If one now supposes that S(p, ER) is peaked around minimal energy and momentum
and one is dealing with sufficiently high ω and q, one can safely extend the upper integra-
tion limits to infinity. For the deuteron, where ER = Emin

R is always satisfied due to lack
of rest-nucleus degrees of freedom, one can find a very physical interpretation for F (ω, q):

The probability, S(p, ER), reduces to a product of the momentum distribution, n(p),
and δ(ER − Emin

R ). Instead of writing y(q, ω) one can interchange dependencies by sub-
stituting ω → ω(y, q) and F (ω, q) → F (y, q). We find that the only dependence on q in

5Note that these contributions are partly responsible for the observed effect of scaling violations that
will be described in the following sections.

6This approximation is based on the assumption that S(p,ER) strongly peaks in the vicinity of these
limits and that the off-shell cross sections vary relatively little in this vicinity. In model calculations
carried out in Ref. [CdAPS91], the assumption was found to hold.
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(a) Carbon (b) Iron

Figure 4.8: Experimental scaling function, F , given in 1/MeV plotted vs. y in MeV for
12C and 56Fe, with symbols representing different combinations of incoming energies in MeV
(left column) and scattering angles (right column). Taken from [CdAPS91] with data from
[DMM+87].

F (y, q) consists of the integration limit Y (ER). Since in the high-q limit we let Y → ∞,
our F (y, q) converges to the asymptotic scaling function

F∞(y) = lim
q→∞

F (y, q) = 2π

∫ ∞

|y|
pn(p)dp, (4.29)

which is only dependent on y, the remaining scaling variable.
Even for more complex nuclei, n(p) can be recovered from F∞(y); all that needs to

be considered is a correction for binding effects, B(y). These have to be estimated from
spectral-function calculations using more involved nuclear models. An application of this
ansatz can be found in Ref. [CdAPS91].

Summarizing the main aspects and possibilities of this approach, one finds that after
starting with PWIA one is able to factorize the one-nucleon knock-out cross-section into
a contribution from one-nucleon scattering and trivial kinematics on the one side and an
integral over the probability function, S(ER, p), with limits given by energy conservation
on the other. Showing that integration most sensitively depends on the lower momentum
limit, y, leads to identifying y as the scaling variable. The integral can be simplified in
the case of very high q, yielding the asymptotic scaling function F∞(y).

When faced with kinematics of a real scattering experiment, the integral cannot be
evaluated in an easy fashion. However, the experimental scaling function, F (y, q), ob-
tained by dividing the experimental cross section by the single-nucleon factors, also ex-
hibits reasonable scaling behavior, as portrayed in Fig. 4.8. In Ref. [CdAPS91] it was
shown, that the study of the convergence of the scaling function with high q and the
extraction of the nucleon momentum distribution, n(p), offer more insight on nuclear
dynamics.

4.4 Relativistic Fermi gas and the ψ scaling variable

Even though data exhibit reasonable scaling properties, as shown in the previous section,
the y-scaling approach has an important shortcoming. From the definition in Eq. (4.18)
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4.4. Relativistic Fermi gas and the ψ scaling variable

one sees that the scaling variable y still depends on the specific experimental values of the
nuclear masses, MA−1 and MA. As in the non-relativistic case, one would like to describe
the nucleus as a collection of independent nucleons, which is most easily achieved in the
relativistic Fermi gas (RFG) picture:

Let the nucleus be composed of A free nucleons occupying momenta up to the Fermi
momentum, kF. To reduce complexity, the leptons are again modeled as plane waves, and
the interaction is treated in impulse approximation.

Again, the starting point is the analysis of possible kinematics. Since the struck
nucleon is supposed to be on-shell before and after the interaction, we obtain the following
expression for energy conservation,

ω =
√

M2
N + (q + p)2 −

√

M2
N + p2 . (4.30)

Contrary to the energy-conservation relation for the PWIA scenario, given in Eq. (4.14),
the above equation does not include contributions from the remaining nucleons. As a
consequence, it allows for only one distinct solution,

yRFG = −q
2

+
ω

2

√

4M2
N + q2 − ω2

q2 − ω2
, (4.31)

when p = yRFGeq is aligned parallel to q. Negative yRFG, corresponding to antiparallel
alignment, are also possible solutions of Eq. (4.31), but only for low momenta, as ω > 0
and hence p < q/2 must be fulfilled. More insight is gained when identifying |yRFG| as the
minimal absolute momentum of the initial-state nucleon in an on-shell-vacuum scattering
reaction. The minimization of momentum can be understood as in the non-relativistic ex-
pansion Eq. (4.30) reduces to (4.11), where additional momentum components orthogonal
to q cancel out.

Plotting yRFG for fixed q, as done in Fig. 4.9, reveals that for low ω it is almost a
linear function in ω which passes through zero at the QEP similar to the variable, y,
known from PWIA. This again highlights the specific meaning of the QEP being the
(ω, q) configuration that allows minimizing of both, initial nucleon momentum and, as we
will elucidate in the following paragraphs, final-state energy.

It is more convenient to express the energy of particles of the RFG in terms of dimen-
sionless variables, as proposed in Ref. [AMD+88]. The variables read

κ ≡ q/2MN , λ ≡ ω/2MN ,

τ = κ2 − λ2 =
Q2

4M2
N

,

ηF = kF/MN , εF =
√

1 + η2F .

(4.32)

An instructive step, presented in Ref. [CDM97], is to recast yRFG in the following form

yRFG = MN

[

λ

√

1 +
1

τ
− κ

]

. (4.33)
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Further, one can use this expression to calculate the corresponding energy of a nucleon
with minimal momentum before being struck:

E(|p| = yRFG) =
√

M2
N + y2RFG

= MN (κ
√

1 + 1/τ − λ) = MNΓ,
(4.34)

where the shorthand Γ stands for the dimensionless energy. Finally, one finds for the
kinetic energy of this nucleon

E(|p| = yRFG)kin =
√

M2
N + y2RFG −MN

= MN(Γ − 1) = MN(εF − 1)
Γ − 1

εF − 1

= MN(εF − 1)ψ2.

(4.35)

Here, we have introduced the dimensionless variable ψ, which can be recast [BCDP+98]
into an explicit form7 that attributes the correct signs, as

ψ =
1√

εF − 1

λ− τ
√

(1 + λ)τ + κ
√

τ(τ + 1)
. (4.36)

Its square is the kinetic energy of the nucleon before being struck divided by the kinetic
energy of a nucleon on the surface of the Fermi sphere, MN (εF − 1) =

√

k2F +M2
N −MN .

Hence, ψ can be seen as a scaled non-relativistic approximation to the relativistic minimal
momentum, yRFG. The two entities can be compared, when making the non-relativistic
ansatz for the kinetic energy and introducing yψ as

Ekin = MN (εF − 1)ψ2 !
=

y2ψ
2MN

(4.37)

→ yψ = MN

√

2(εF − 1) ψ = ψ

[

kF + O
((

kF
MN

)2
)]

, (4.38)

where the last approximation turns out to be fulfilled with good precision for realistic
values of kF/MN ≈ 1/4.

It is interesting to compare the different variables, arising from momentum or energy
minimization, and in Fig. 4.9 we have plotted the four variables encountered so far.
Namely the variable obtained for the non-relativistic Fermi gas, yFG, the one obtained in
the relativistic PWIA picture, yPWIA, and the recently introduced yRFG and yψ. We find

7In terms of dimensionful variables, ψ is calculated from Eq. (4.35) and Eq. (4.31) to be

ψ = ± 1
√
√

1 +
(

kF

MN

)2

− 1

√
√
√
√
√1 +

1

M2
N



− q
2
+
ω

2

√

4M2
N + q2 − ω2

q2 − ω2





2

,

where + (-) is to be used when ω/(2MN)
(<)
> Q2/(4M2

N).
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Figure 4.9: Comparison of different bounds on parallel momentum: yFG (solid line) defined
in Eq. (4.10), yPWIA (dotted line) defined in Eq. (4.18), yRFG (dash-dotted line) and yψ (dashed
line), which were introduced in this section. In order to easily compute yPWIA, we assumed the
large mass number of A = 197 and no binding effects, i.e., MA = A ·MN . Realistic masses do
not change the general shape.

that at low q, all variables agree with the non-relativistic and linear yFG in the region
where it becomes zero. At higher q, yFG is clearly below 0 at the relativistic QEP, where
ωQEP = Q2/2MN = MN (

√
1 + 4κ2 − 1), while all other variables are identically 0. One

sees, that in this region yRFG is a good approximation for yψ, while at very low ω it
takes on the same values as the non-relativistic analog. As only in the PWIA scenario
the initial-state nucleon is allowed to be off-shell, one observes a considerable difference
between yPWIA and all other variables, except at the QEP.

So far, the kinematical properties of the Fermi gas have only entered by providing an
energy scale in Eq. (4.35). In order to determine the phase space, one has to consider the
restrictions imposed by the FG model. In addition to the upper bound on momentum,
kF, for low q < 2kF there also exists a forbidden region, |p+q| < kF, where the nucleon is
Pauli-blocked from scattering to a momentum within the Fermi sphere. In a case with no
Pauli-blocking, the initial-state momentum-phase space is given simply by the intersection
of the Fermi sphere with the surface obtained from energy conservation. While for the
non-relativistic case this surface is a plane, it is now slightly parabolic, bending towards
larger pz. When the intersection is not empty, the interpretations of yRFG as the lowest
and kF as the largest available momentum remain untouched. When q < 2kF the simple
connection between yRFG, ψ and the minimal momentum are lost, as shown in Fig. 4.10,
and thus we do not consider the Pauli-blocked case any further.

To derive a scaling function, we follow [Ros80] and express the double-differential cross
section in one-photon-exchange approximation as

dσ

dk0′dΩk′
=
α2

q4
k0

′

k0
LµνW

µν . (4.39)

Here, we use the leptonic tensor,  Lµν , defined in Eq. (2.34) and reading in an explicit
representation [AMD+88]

Lµν =
(
kµk

′
ν + k′µkν − gµνk · k′

)
, (4.40)
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ψ < 0 ψ = 0 ψ > 0

Figure 4.10: Two-dimensional representation of the initial-state phase space (momenta shown
in arbitrary units) for different kinematical configurations. Computation of the energy con-
servation line was performed with fully relativistic kinematics, the remaining entities and their
interpretation are identical to Fig. 4.1 and the discussion thereof. In the left panel we have chosen
a configuration with yRFG < 0 which in addition exhibits Pauli-blocking (here, kF < q < 2kF);
the situation in the middle panel, with ψ = 0, corresponds to kinematics of the vacuum QEP; in
the right panel, a configuration with ψ > 0 and no Pauli-blocking was chosen, resulting in the
minimal nucleon momentum (arrow) being parallel to pz (i.e., q). In contrast, the kinematical
situation in the left panel does not allow for the minimal nucleon momentum (large arrow) to
be aligned along pz (small arrow).

and the single-nucleon hadronic tensor,

W ′µν(pη + qη, pη) = −W1(τ)

(

gµν +
qµqν

Q2

)

+W2(τ)
1

M2
N

(

pµ +
pηq

η

Q2
qµ
)(

pν +
pηq

η

Q2
qν
) (4.41)

where the form factors W1(τ) and W2(τ) are related to the Sachs form factors introduced
in Sec. 2.3.2 through the equations,

W1(τ) = τG2
M(τ), (4.42)

W2(τ) =
1

1 + τ

(
G2

E(τ) + τG2
M(τ)

)
. (4.43)

To obtain the scattering-cross section of the relativistic Fermi gas, a normalized sum
over all non-Pauli-blocked on-shell momenta up to kF is required. The nuclear hadronic
tensor then reads [AMD+88]

W µν =
3NM2

N

4πk3F

∫
d3p

E(p)E(p + q)

× θ(kF − |p|)θ(|p + q| − kF)δ {ω − [E(p + q) − E(p)]}W ′µν(pη + qη, pη),

(4.44)

with the normalization factor containing the number of nucleons of a specific kind, N .
Given the hadronic tensor, W µν , one could directly perform the contraction and obtain

a cross section [Ros80],

d2σ

dk0′dΩk′
=

(
dσ

dΩk′

)

Mott

[vLRL(q, ω) + vTRT(q, ω)] , (4.45)
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which is separated into contributions from the longitudinal and the transverse response.
The responses are defined as

RL(ω, q) = W 00, RT(ω, q) = −
(

gij +
qiqj
q2

)

W ij i, j ∈ {1, 2, 3}. (4.46)

They will be discussed in more detail in Sec. 6.2. The kinematical factors are defined as

vL =

(
Q2

q2

)2

, (4.47)

vT =
1

2

Q2

q2
+ tan2 θ

2
. (4.48)

To proceed, one needs to evaluate the integral in Eq. (4.44). For the non-Pauli-blocked
region, this calculation has been performed in [AMD+88] and yields

RL,T =
3N

4MNκε3f
(ηF − Γ)θ(εF − Γ)

×







κ2

τ
{[(1 + τ)W2(τ) −W1(τ)] +W2(τ)∆} for L,

2W2(τ) +W2(τ)∆ for T,

(4.49)

with the dimensionless variables as defined above and the kinematical factor,

∆ ≡ τ

κ2

[
1

3
(ε2F + εFΓ + Γ2) + λ(εF + Γ) + λ2

]

− (1 + τ), (4.50)

which is shown to be ≈ 1/32 in Ref. [AMD+88]. It is thus a reasonable approximation
to neglect the terms connected with ∆ to obtain a linear dependence on Γ, respectively
a quadratic dependence on ψ2 of the form 1 − ψ2, for the transverse response. With
the approximation from Eq. (4.38) this dependence is expressed as 1 − (yψ/kF)2, which
matches perfectly with the finding for the non-relativistic response, given in Eq. (4.9).

As the non-relativistic approach has been quite successful in describing the data, one
would like to retain a parabolic scaling function as in the non-relativistic case. Thus,
the separation of the kinematical factors and the single-nucleon contributions from the
scaling function is chosen in the following way

d2σ

dk0′dΩ
=

N
4MNκ

(
dσ

dΩk′

)

Mott

X(θ, τ, ψ; ηF)S(ψ, ηF), (4.51)

with the factor

X(θ, τ, ψ; ηF) ≡
(

W2(τ) + 2W1(τ) tan2 θ

2

)

+W2(τ)

[(
τ(1 + τ)

κ2
− 1

)

+

(
3

2

τ

κ2
+ tan2 θ

2

)

∆

] (4.52)

containing the single-nucleon structure. The remaining theoretical scaling function,

S(ψ, ηF) ≡ (1 − ψ2)θ(1 − ψ2)3
εF − 1

η3F
, (4.53)
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contains all relevant information about the nucleon momentum distribution. To study to
which extent the assumptions of this model hold, one can perform the same separation
as in Eq. (4.51) with the experimental cross section and thus by division obtain the
experimental scaling function. In the next section we will discuss methods for improving
different properties of experimental scaling functions.

4.5 Superscaling and energy shift

The RFG formalism described above exhibits the same shortcomings as its non-relativistic
analog and some of those already mentioned for the PWIA-approach. First of all, the
position of the QEP is not exactly reproduced at the kinematics of the vacuum QEP,
where y and yRFG equal 0, since due to binding effects the peak is shifted from its vacuum
position towards higher ω. Thus, in all cases one has to introduce a fit parameter, Eshift,
and redefine the ω scale as

ω′ ≡ ω − Eshift, (4.54)

consequently also redefining the scaling variable as

ψ′ ≡ ψ(λ = λ′, τ = τ ′), (4.55)

While the complication of extrapolating to off-shell single-nucleon cross sections is specific
to PWIA y-scaling only, we expect a dependence on specific nuclei in every model’s scaling
function8. A straight forward approach [DS99] is to divide all factors containing kF out
of the scaling function S(ψ, ηF) and obtain

f(ψ) ≡ S(ψ, ηF)
η3F

4(εF − 1)
=

3

4
(1 − ψ2)θ(1 − ψ2). (4.56)

Inserting Eq. (4.49) into Eq. (4.45), one finds

f(ψ) = kF
d2σ/dΩk′dω

(
dσ

dΩk′

)

Mott
(vLG

2
L + vTG

2
T)
, (4.57)

with the single-nucleon responses,

GL(κ, λ) =
(G̃2

E + W̃2∆)κ2/τ

2κ
[

1 + (
√

1 + η2F − 1)(1 + ψ2)/2
] , (4.58)

GT(κ, λ) =
2τG̃2

M + W̃2∆

2κ
[

1 + (
√

1 + η2F − 1)(1 + ψ2)/2
] , (4.59)

depending on the averaged form factors

G̃2
E(τ) = ZG2

Ep(τ) +NG2
En(τ), (4.60)

G̃2
M(τ) = ZG2

Mp(τ) +NG2
Mn(τ), (4.61)

W̃1(τ) = τG̃2
M (τ), (4.62)

W̃2(τ) =
1

1 + τ

(

G̃2
E(τ) + τG̃2

M(τ)
)

. (4.63)

8This dependence is more involved in the PWIA picture due to experimental nuclear masses, while
for the FG and RFG kF is the only nucleus-specific parameter.
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Figure 4.11: Scaling function f(ψ′) as a function of ψ′ for nuclei with A ≥ 12, distinguished
by color, and different kinematics, obtained from various experiments. Taken from [DS99].

It is an interesting discovery, that even though the experimental scaling function is not
of the simple form of a parabola, the above approach in combination with the energy shift
has proven to give similar scaling functions for various ranges of A (first-kind scaling) and
q (second-kind scaling), as can be seen in Fig. 4.11. Since two separate kinds of scaling
are fulfilled, the name superscaling has been given to this property of the data.

4.6 Superscaling analysis of neutrino scattering

As the momentum distribution is a nuclear property and does not depend on the probe,
it is tempting to apply the superscaling formalism to neutrino scattering. While NC
scattering is experimentally out of reach, the detailed CC response may soon become
available. It has already been analyzed in terms of superscaling in Ref. [ABC+05]. Here
we shall outline this approach, as it will be applied in Sec. 6.1.3.

As a starting point, one proposes a separation of the scattering-cross section similar
to Eq. (4.57), reading

dσ

dΩk′dk0
′ = σ0F2

χ, (4.64)

with the elementary cross section,

σ0 =
(GF cos θC)2

2π2

(

k0
′
cos θ̃/2

)2

, (4.65)
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depending on the generalized scattering angle,

tan2 θ̃/2 =
Q2

4k0k0′ −Q2
. (4.66)

The remaining form-factor analog,

Fχ = V̂CCRCC + 2V̂CLRCL + V̂LLRLL + V̂TRT + 2χV̂T′RT′ , (4.67)

contains all nuclear information and also additional information about the probe, as the
indicator χ takes on the value 1 for particle and -1 for anti-particle scattering.

Contrary to the separation of the longitudinal and transverse response in electron scat-
tering, where the longitudinal polarization of the photon serves as a natural characteristic
(cf. Sec. 6.2), the separation in Eq. (4.67) is one among different options. AS an anolog
to the electron case, the responses, RCC, RCL, RLL, RT and RT′, are obtained from the
nuclear tensor. For the details of the derivation we refer the reader to Ref. [ABC+05].

We have already introduced the hadronic tensor for single-nucleon scattering in Sec. 2.3.1.
To obtain the nuclear tensor, it is necessary to perform an integration over all target nu-
cleons in the Fermi gas, similar to the integration in Eq. (4.44). But let us postpone this
step and write down the kinematical factors obtained from contracting the leptonic with
the nuclear tensor. One finds [ABC+05]

V̂CC = 1 − tan2

(

θ̃

2

)

δ2, (4.68)

V̂CL = ν +
1

ρ′
tan2

(

θ̃

2

)

δ2, (4.69)

V̂LL = ν2 + tan2

(

θ̃

2

)(

1 +
2ν

ρ′
+ ρδ2

)

δ2, (4.70)

V̂T =

(

1

2
ρ+ tan2

(

θ̃

2

))

− 1

ρ′
tan2

(

θ̃

2

)(

ν +
1

2
ρρ′δ2

)

δ2, (4.71)

V̂CC =

(

1

ρ
tan2

(

θ̃

2

))

(
1 − νρ′δ2

)
, (4.72)

with the definitions

δ ≡ ml
√

Q2
, (4.73)

ν ≡ λ

κ
, (4.74)

ρ ≡ τ

κ2
, (4.75)

ρ′ ≡ q

k0 + k0′
. (4.76)

The factor δ deserves special attention, since it accounts for the final-state lepton, e.g. a
muon, having a finite mass, ml. As δ approaches 0, one regains the kinematical factors
for electron scattering defined in Eq. (4.47).
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Since the integration of the CC nuclear responses involve many more terms than the
EM case in Eqs. (4.58) and (4.59), we restrict ourselves to writing the first-order expansion
in ηF from Ref. [ABC+05]. We begin by rewriting the cross section as

dσ

dΩdE ′ = σ0
1

kF
f(ψ′)

N
2κ

F2
χ,s.n., (4.77)

where f(ψ) is the scaling function and, N stands for the number of nucleons involved in
the scattering, e.g., N = N for χ = 1.

The single-nucleon form factor analog is evaluated as,

F2
χ,s.n. = XVV

L +XAA
C/L +XT + χXT′ , (4.78)

with

XVV
L =

(

V̂CC − 2νV̂CL + ν2V̂LL

)(1

ρ
G2

E

)

, (4.79)

XAA
C/L = tan2 θ̃/2 ·G′2

A(1 + δ2)δ2, (4.80)

XT = V̂T
(
2τG2

M + 2(1 + τ)G2
A

)
, (4.81)

XT′ = V̂T′2
√

τ(1 + τ)GMGA. (4.82)

The Sachs-form factors, GE and GM, are defined in Sec. 2.3.2, while the axial-vector
and pseudo-vector form factors are related to the ones defined in Sec. 2.3.1 through the
relations

GA = FA (4.83)

GP = 2FP . (4.84)

In the original work, the idea has been to insert a scaling function, f(ψ′), obtained
from analysis of the longitudinal response of electron scattering into Eq. (4.67) to predict
the neutrino response. In Sec. 6.1.3 we will turn this approach around to study to what
extent the predicted neutrino response of our model fulfills scaling.

4.7 Superscaling approaches beyond quasielastic scat-

tering

While the methods proposed so far will be employed in the analysis of experimental and
GiBUU simulated data in Chapter 6, it is important to point out that the ideas of su-
perscaling have been applied to many other aspects of inclusive lepton-nucleus scattering.
One uncertainty, that has been neglected so far, comes from the Coulomb distortion ef-
fects, that the lepton wave function will experience in the electric field of heavy nuclei
and thus should lead to some effect on second-kind scaling (investigations have been un-
dertaken, e.g., in Ref. [ABB+97]). Further, a major point of interest is the non-scaling of
the transverse response, which will be explained in more detail in Sec. 6.2.

In Ref. [MDS02], it has been proposed that scaling violations in the resonance region
can be drastically reduced using yet another kind of scaling variable, ψ′

∗, incorporating
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the higher mass, m∗, of the knocked-out resonance. This has also been implemented for
CC scattering in Ref. [ABC+05]. In Appendix C.3, we show how this formalism can
be applied to the ∆ excitation. A similar approach can be applied to the DIS region,
integrating over different invariant masses, W . A good summary on this topic is found in
Ref. [MAB+09]. It is noteworthy that NC scattering has also been studied [ABCD06].
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Chapter 5

Simulation of lepton-nucleus
scattering in the GiBUU model

5.1 The Boltzmann-Uehling-Uhlenbeck equation

Transport equations can be applied to a wide range of problems, ranging from fluid me-
chanics to financial simulations. The underlying microscopic dynamics, as described by
the Lagrangian approach in Chapter 2, offers a good starting point for model building. In
many applications one looks at non-equilibrium processes that involve a huge number of
interacting degrees of freedom, making an exact solution practically impossible. Approx-
imations allow to consider a single-particle phase-space density instead of the individual
degrees of freedom, the classical Boltzmann equation being the most prominent example.
In special cases, even macroscopic properties can be modeled directly, as pressure and flux
in the Navier-Stokes equation. An inspiring overview of these connections can be found
in Ref. [Mar07].

As we proposed in Chapter 3, outgoing and incoming particles may be modeled as
plane waves. In this configuration, it would not be necessary to involve any transport
equation for the calculation, but instead a (most likely numerical) integration of the in-
medium single-nucleon-cross section, defined in Eq. (3.5), should be directly performed.
On the other hand, the study of heavy-ion collisions, which in their description strongly
depend on transport phenomena, has led to the development of consistent treatments of
hadronic potentials and spectral functions. It is therefor useful to review the concepts that
form the basis of the GiBUU model [GiB], even though, as we are interested in inclusive
cross sections only, we will make no use of the transport part of the code and mostly
apply it as an initialization of a specific hadronic model and a Monte Carlo integration
routine for the above equation.

5.1.1 Green’s functions and Wigner transforms

Green’s functions represent elementary solutions to differential equations. As an example,
that is described, e.g., in Ref. [PS95], we give the electron propagator for the Dirac
equation,

SF(p) =
/p+m

p2 −m2 + iǫ
, (5.1)
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Chapter 5. Simulation of lepton-nucleus scattering in the GiBUU model

with ǫ > 0 being an arbitrary small. It is an inverse to the differential operator (/p−m) of
the Dirac equation in momentum space. Consequently we can use a Fourier transforma-
tion to obtain the Green’s function in coordinate space, SF(x, y), which solves the Dirac
equation in the following way

(i/∂x −m)SF(x, y) = δ4(x− y) · 14×4. (5.2)

From a physical point of view, it represents the probability for a particle to be found at
x after being created at y. This property defines the time-ordered Green’s function,

SF(x, y) = 〈0|Tψ(x)ψ̄(y)|0〉 =

{

〈0|ψ(x)ψ̄(y)|0〉 for x0 > y0,

−〈0|ψ̄(y)ψ(x)|0〉 for x0 < y0,
(5.3)

where T is the time-ordering operator.
Let

ig(x, y) = 〈Tψ(x)ψ†(y)〉, (5.4)

now be the definition for a Green’s function, g(x, y), to a general dynamical equation.
Following Ref. [Dan84], we can rewrite g(x, y) as

g(x, y) = θ(x0 − y0)g
>(x, y) + θ(y0 − x0)g

<(x, y), (5.5)

circumventing the time ordering through introduction of the correlation functions,

ig<(x, y) ≡ ±〈ψ†(y)ψ(x)〉, (5.6)

ig>(x, y) ≡ 〈ψ(x)ψ†(y)〉, (5.7)

where g<(x, y) (g>(x, y)) offers the physical interpretation as a pure particle (hole) density.
By applying a Wigner transformation,

ḡ<(r, p) = ±i

∫

d4y exp(ipy)g<(r + y/2, r− y/2), (5.8)

ḡ>(r, p) = i

∫

d4y exp(ipy)g>(r + y/2, r− y/2), (5.9)

we are led to the quantum analogs of particle and hole phase-space densities, ḡ≷(r, p),
that also are referred to as correlation functions. The connection to the positive definite
phase-space densities of classical mechanics can be achieved through coarse graining, as
described in Ref. [Leu00]. We use the upper (lower) sign in the above and the following
equations in this section to refer to bosons (fermions).

5.1.2 Phase space equations

As shown in Refs. [Kel64, LL83], one can reformulate the underlying dynamics as the
time evolution of the phase-space densities, ḡ≷(r, p), by means of the Kadanoff-Baym
equation, without loss of dynamical information. By strong approximations such as the
gradient expansion, two-body self-energies and small particle widths, one is led to the
semi-classical Boltzmann-Uehling-Uhlenbeck (BUU) equation.
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5.1. The Boltzmann-Uehling-Uhlenbeck equation

We shall first present a version that includes off-shell transport through inclusion of the
retarded Green’s function, greti (the subscript i denoting the particle species), as developed
in Refs. [Leh03, Leu00]. The extended BUU equation reads

[
p0 −HMF

i , ḡ>i
]

P
+
[
Re(ḡreti ), Σ̄<

i

]

P
︸ ︷︷ ︸

Aoff−shell

= −Σ̄>
i ḡ

<
i + Σ̄<

i ḡ
>
i

︸ ︷︷ ︸

Icoll

, (5.10)

where we use the generalized Poisson brackets

[a, b]P =
∂a

∂pµ

∂b

∂xµ
− ∂a

∂xµ

∂b

∂pµ
. (5.11)

The Hamiltonian, HMF
i , consists of a free-particle Hamiltonian and the interaction with

the mean field.
By assuming infinitesimal widths, one is led to the original BUU equation,

[
∂

∂t
+
∂H

∂p

∂

∂r
− ∂H

∂r

∂

∂p

]

fi(r, t,p) = −Σ̄>
i fi(r, t,p) + Σ̄<

i (1 + fi(r, t,p)), (5.12)

for the so-called Wigner function,

fi(r, t,p) =

∫

dR exp(ipR)〈ψ†(r−R/2, t)ψ(r + R/2, t)〉, (5.13)

which is an analog of the classical phase-space distribution.
One can interpret Σ̄< (Σ̄>) as gain (loss) terms, that couple the particles to their

own and other species, allowing to model, e.g., decays through a loss term or a two-body
collision through both gain and loss terms. These entities are connected to the self-energy,
as shown in Ref. [KB62]. Their neglect leads to the Vlasov equation,

[p0 −Hi, fi(r, t,p)]P = 0. (5.14)

5.1.3 Initial conditions

The correlation functions, ḡ≷i (r, p), are not independent [KB62]. They fulfill the boundary
conditions

ḡ<i (r, p) = fi(r, t,p)Ai(r, p)ḡ
>
i (r, p) = (1 ± fi(r, t,p))Ai(r, p), (5.15)

where we have introduced the spectral function,

Ai(r, p) = ḡ>i (r, p) ∓ ḡ<i (r, p). (5.16)

Consequently, the problem reduces to finding the seven-dimensional Wigner function,
fi(r, t,p), and the eight-dimensional spectral function, Ai(r, p), instead of two eight-
dimensional correlation functions.

In order to compute a solution for the first-order differential equation (5.10), one needs
to specify initial conditions. Here, we fix the Dirichlet-type conditions Ai(r, t = 0, p) and
fi(r, t = 0,p), which specify the phase-space density for all particle species at time t = 0.
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5.1.4 Spectral functions and self-energies

Some more words are due with regard to the spectral function, Ai(r, p), defined in Eq.
(5.19). Contrary to the Wigner function, fi(r, t,p), it does not have a classical analog,
and for a free non-relativistic particle reduces to the on-shell condition,

Ai(r, p) → Ai(p
0, |p|) = 2πδ

(

p0 − |p|2
2mi

)

. (5.17)

Its meaning becomes clearer, if we revise the simple global Fermi-gas model with an
isospin-independent Fermi momentum, kF, from Sec. 3.5.2. For temperature T = 0 one
obtains the phase space-density fi(r, t,p) = fi(|p|) ∝ θ(kF − |p|), signifying that, up to
the limit kF, momenta are uniformly distributed. In such a position-independent scenario,
Ai(p) describes the probability for a particle to be found with a certain combination of
p0 and |p|, in this way allowing for treatment of off-shell particles. In a more general
model, the probability for finding a particle in a state (r, p) is given by the product of the
phase-space analog fi(r, t,p) and the spectral function, Ai(r, p), which describes off-shell
probabilities.

Usually, the directly measurable physical input for a transport simulation is given by
the interaction-cross section, σij , that defines the collision terms, Σ≷(r, p). In Ref. [Bus08]
the relation between these quantities is shown explicitly. An important quantity in this
context is the self-energy, Σ(x, y), that has a direct physical interpretation through the
Dyson equation,

g(x, y)ret = gret,0(x, y) +

∫

d4x′d4y′gret,0(x, y′)Σret(x′, y′)gret(x′, y), (5.18)

as the strength of the interaction of a particle with the disturbances in the surrounding
system caused by its appearance, as explained in Chapter 10 of Ref. [LL83]. For non-
equilibrium processes in gradient expansion, as the ones that our formalism is concerned
with, in Ref. [Leu00] the following relation for the spectral function is found to hold

A(r, p) =
Γ(r, p)

(

p0 − p2

2m
− ReΣ̄ret(r, p)

)2

+ 1
4
Γ(r, p)2

, (5.19)

where we introduce the collisional width,

Γ(r, p) = iΣ̄>(r, p) − iΣ̄<(r, p), (5.20)

and the Wigner transform of the retarded self-energy, Σ̄ret(r, p). One can write this entity
as a combination of the mean-field contribution, Σ̄HF(r, p), and the principal value of an
integration over the collisional width [Leu00],

ReΣ̄ret(r, p) = Σ̄HF(r, p) + P
∫

dk0
2π

Γ(r, k0,p)

ω − k0
. (5.21)

In Fig. 5.1, we present calculations of the nucleon spectral function in nuclear matter,
taken from Sec. 7.7.2 of Ref. [Lei09], for different nucleon momenta. One observes that the
spectral function is peaked in the vicinity of the on-shell energy and that with increasing
momenta the spectral function broadens.
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Figure 5.1: Nucleon spectral function as a function of nucleon energy for different fixed
momenta indicated by linestyle. Taken from Ref. [Lei09].

5.1.5 Numerical solution: the test-particle ansatz

With the analytic solution far out of reach, the numerical approximation of the BUU
equation still poses a demanding task [DPR04]. A widely used approach is the test-
particle ansatz, which in addition to straight-forward implementation offers a physical
interpretation. The particle-correlation function is approximated through a sum of δ
functions, written as [Bus08]

ḡ<(r, p) = lim
n(t)→∞

(2π)4

N

n(t)
∑

j

wjδ(r− rj(t))δ(p− pj(t))δ(p
0 − p0j(t)). (5.22)

For a convergence towards the full correlation function, one would need infinitely many
δ functions, n(t), and the weights, wj, would have to be real-valued. As a first approxi-
mation, we restrict the weights to the values −1,0,1, implying the interpretation of each
contributing δ function as a test-particle (+1) or test-hole (-1). In the next step, we
restrict our initial state to particles only (∀j wj = 1) and fill it with n(0) = A×N parti-
cles, where A is the number of physical nucleons and N is called the number of ensembles,
i.e., the number of test-particles per physical particle.

5.2 The GiBUU model

With the general approach described in the previous section, here, we will focus on the nu-
merical implementation of nuclear processes in the Gießen Boltzmann-Uehling-Uhlenbeck
(GiBUU) model. First, we shall present the underlying mechanisms and then compare
our approach to experimental data.
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Chapter 5. Simulation of lepton-nucleus scattering in the GiBUU model

5.2.1 Introduction

Starting out as a model to describe heavy-ion collisions [BBCM86, TCE+97, WLM05],
the Gießen BUU code has been steadily extended and now describes scattering of elec-
trons as well as photon-, pion-, eletron- and neutrino-induced processes [FCGM04, GF05,
ECM+94, LEM00, MFM04, BLMAR07, LBMAR09]. This diversity of applications con-
stitutes a major strength of our model, since the same physical input is constantly tested
against experimental data in many different reactions.

With the test-particle approach as the basic ansatz, the recent numerical implemen-
tation is carried out in Fortran 2003, allowing for modern programming paradigms. The
collaborative development of the code is handled using version control management (Sub-
version). From 2007 on, the GiBUU code is open source under the GPL license and can
be downloaded after registration [GiB].

5.2.2 Nuclear ground state

As described in 5.1.3 we need to specify initial conditions in order to solve the BUU
equation. A crucial ingredient is the phase-space density, f(r, t,p). In the case of lepton-
induced scattering, it is given by the initial distributions of nucleons in the ground state
of the nucleus and the particles scattered directly at the vertex of interaction with the
virtual bosons. Let us now focus on the ground state, continuing the ideas developed
in Sec. 3.5.2, and postpone the description of the boson-nucleon reaction to the next
subsection.

We use a local Thomas-Fermi (LTF) approximation, as described in Sec. 3.5.2, for the
momentum distribution. The nucleon-phase-space distribution is given by a Fermi sphere

fn,p(r,p) = Θ(kn,pF (r) − |p|). (5.23)

We use
kF(r) = (3π2ρ(r))1/3 (5.24)

to relate kF(r) to the density distribution ρ(r) → ρ(|r|), which is parametrized in a
harmonic oscillator form,

ρn,p(|r|) = ρ0

[

1 + an,p

( |r|
Rn,p

)2
]

exp

[

−
( |r|
Rn,p

)2
]

, (5.25)

for light nuclei and as a Woods-Saxon distribution,

ρn,p(|r|) = ρ0

[

1 + exp

( |r| −Rn,p

an,p

)]−1

, (5.26)

for heavier nuclei. The parameters are taken from Ref. [NO+93], where the proton dis-
tribution is based on the analysis in Ref. [DJDVDV74], while the neutron distribution
is obtained from Hartree-Fock calculations. In the initialization routine of the code, the
test particles are randomly distributed in position and momentum space, according to the
probabilities 4πr2ρ(|r|) and 4πp2n(|p|).

It is easy to further simplify the initialization by decoupling position and momentum
initialization with the global Fermi gas (GFG) model, already presented in Sec. 4.2, where
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5.2. The GiBUU model

both momentum and density distributions reduce to simple spheres of radius kF and R,
respectively. In that case, the phase-space distribution reduces to

fGFG
n,p (r,p) = NΘ(R − |r|)Θ(kn,pF − |p|), (5.27)

with the normalization constant, N , determined by Eq. 3.10.

5.2.3 Hadronic potential

As the presented implementation of the Fermi gas only restricts the momentum distribu-
tion, it is still possible to adjust the nucleon energy by introducing a hadronic potential
to account for binding effects. The nucleon-mean-field potential is expressed, following
an ansatz be Welke et al. [WPK+88], as a sum of a Skyrme contribution depending on
the density and a momentum-dependent term, reading

VN(r,p) = a
ρ(r)

ρ0
+ b

(
ρ(r)

ρ0

)τ

+
2c

ρ0
g

∫
d3p′

(2π)3
f(r,p′)

1 +
(
p′−p

Λ

)2 . (5.28)

While the constant for the nucleon degeneracy, g = 2, is fixed, the other parameters
must be obtained by a fit procedure. By assuming a nuclear-matter-saturation density of
ρ0 = 0.168 fm−3 and a binding energy of 16 MeV, Teis [Tei97, TCE+97] has obtained five
distinct standard parameter sets. In this work the parameterization referred to as “EQS
5” will be used, implying a = −29.3 MeV, b = 57.2 MeV, c = −63.3 MeV, τ = −63.3
MeV, Λ = 2.13 1/fm.

Starting from the relativistic Hamiltonian,

H =
√

M2
N + p2 + VN (r,p), (5.29)

it is useful to introduce the scalar potential

UN (r,p) =

√
(√

M2
N + p2 + VN (r,p)

)2

− p2 −MN , (5.30)

leading to the new expression

H =

√

[MN + UN (r,p)]2 + p2 . (5.31)

On can thus identify
M =

√

p2 = MN + UN (r,p) (5.32)

as an effective mass of an in-medium nucleon. This will be of importance for computing
the in-medium cross sections in the next subsection.

5.2.4 Lepton-nucleus cross sections

As for the single-nucleon case we suppose the nuclear cross section to be given as an
incoherent sum of medium modified single-nucleon contributions,

dσmed
tot = dσmed

QE +
∑

R

dσmed
R + dσmed

BG . (5.33)

Next we will present how the in-medium modifications are modeled for the different con-
tributions.
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Quasielastic scattering

In Appendix B.2.1 of Ref. [Lei09], the in-medium cross section is derived to be

dσmed
QE

dk′0dΩk′
=

|k′|
32π2

[
(k · p)2 −m2

lM
2
]−1/2AN(p′, r)|Mmed

QE |2. (5.34)

Note, that the outgoing nucleon is also subject to the hadronic potential, resulting in
an effective mass, M ′, which may differ from the effective mass of the incoming nucleon,
M , due to the momentum dependence of the potential. While the spectral function can
be consistently obtained from the GiBUU model by evaluation of Eq. (5.19), the correct
treatment of the matrix element for in-medium scattering leads to form factors depending
not only on qµq

µ, but on all Lorentz scalars. As the available data do not allow to fix

such intricate dependencies, we assume |Mmed
QE |2 to be determined by the single-nucleon

hadronic tensor from Sec. 2.3.1, but calculated with the medium-modified p and p′.

Resonance excitations

For resonance excitations the cross section is modeled in a similar fashion, taking the
expression

dσR
QE

dk′0dΩk′
=

|k′|
32π2

[
(k · p)2 −m2

lM
2
]−1/2 AR(p′, r)|Mmed

R |2 (5.35)

and repeating the steps described for QE scattering, with the single-nucleon hadronic
tensor from Sec. 2.4.

Non-resonant single-pion background

The situation differs for non-resonant single-pion background, since we have defined it
in Sec. 2.5 as the difference between the expected resonant-pion-production cross section
and the observed data for vacuum-pion production. Hence, it is advisable to compute
this contribution with vacuum kinematics, i.e., p = (

√

M2
N + p2 ,p) for a given p, as

dσmed
BG (p, qµ) = dσvac

BG(pvac, q
µ). (5.36)

Response of the Fermi gas

Now that dσmed
tot is determined, the inclusive nuclear cross section can be written as the

sum of the contributions from all nucleons. As in our model the nucleons are distributed
in a (local Thomas-)Fermi gas, an integration over the initial-state-phase space has to be
performed in the following way

dσlA→l′X
tot =

∑

N=n,p

∫

d3r

∫
d3p

(2π)3
f(r,p)fcorrdσ

med
tot,NPPB(r,p). (5.37)

Here, f(r,p) must be taken from Eq. (5.27) or (5.23) respectively and the factor PPB(r,p)
ensures Pauli-blocking. An additional factor,

fcorr =
|vN − vl|
|vA − vl|

=
k · p
k0p0

1

|vA − vl|
≈
︸︷︷︸

vA≈0,vl≈1

=
k · p
k0p0

(5.38)

enters to correct for the different fluxes (cf. Sec. 5.4 of Ref. [Bus08]).
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Numerical implementation

The integration in Eq. (5.37) is carried out in a Monte Carlo sampling method. Let
us briefly walk through the steps involved in the implementation of the GiBUU code,
following the explanation in Sec. 5.5 of Ref. [Bus08].

1. At first, the properties of the virtual photon are defined as input to the code. These
specifications are written to so called job cards, where also parameters concerning
the target and simulation are stored. When total cross sections instead of double-
differential ones are desired, the code will sample through different virtual photons
and perform a numerical integration based on these values.

2. During the initialization of the scattering reaction, a specific nucleon is chosen in a
random (Monte Carlo) decision, according to spatial and momentum distributions
discussed above. Since the kinematics of only this nucleon will determine the cross
section, this step has to be repeated many times to achieve convergence.

3. With the kinematics fixed by the chosen nucleon, the cross sections for all channels
are computed according to Eqs. (5.34), (5.35) and (5.36) and then summed.

5.2.5 Model validation: Comparison with electron data

As electron scattering on nuclei has been studied in detail in the past 60 years, there is
sufficient data available for comparison. Any theory aiming to describe neutrino-nucleus
interactions should be able to describe the electron data. In Fig. 5.2 we present the
comparison of GiBUU calculations to data obtained in (e16O, e′X) reactions. As one
can see, for high Q2 the agreement is reasonably good, while at low Q2, both an excess
strength and a shift of the peak in the ω-region associated with QE scattering become
visible. The study of these effects will be a major topic in the following chapter.
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Figure 5.2: Comparison of GiBUU-calculated double-differential cross sections with data for
inclusive electron scattering on 16O from Refs. [ARC+95, A+96]. The scattering angles and the
incoming energies are specified in the panels. Plot taken from Ref. [LBARM09].
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Chapter 6

Applications, predictions and
comparisons

Throughout this chapter, we apply the superscaling analysis, described in Chapter 4, to
our hadronic model. We study different effects included in our model and compare our
results to experimental data and other theoretical approaches. More light is shed on the
connection to the analysis of the transverse and longitudinal response and the role of the
ground state. Finally, we shall discuss some possible implications for neutrino-scattering
experiments.

6.1 Superscaling analysis

6.1.1 Superscaling analysis of electron scattering simulations

As discussed in Sec. 4.4, experimental inclusive electron-nucleus-scattering-cross sections
exhibit two distinct kinds of scaling. Here, scaling signifies that the responses can be
reduced to a product of single-nucleon contributions and a scaling function, depending
mostly on one single kinematic variable ψ′ and representing nuclear dynamics. When
first-kind scaling is fulfilled scaling functions for different kinematics coincide, for second-
kind scaling the scaling functions for different targets are identical. When both kinds of
scaling apply, one speaks of superscaling. Naturally, we begin by investigating whether
our model fulfills these requirements. In the following plots we show the dimensionless
scaling function1, f , plotted versus the shifted RFG scaling variable2, ψ′. The calculations
include all contributions described in Sec. 5.2, while the role of the different effects will
be studied at a later point of this section.

First-kind scaling

Whereas in Fig. 6.1a the scaling functions of electron scattering on 12C for a fixed mo-
mentum transfer, q = 0.5 GeV, show some sensitivity on incoming energy, the GiBUU
curves in Fig. 6.1b exhibit perfect scaling. This is expected, since in our description of

1Given in Eq. (4.57).
2Given in Eq. (4.55) as the shifted analog of Eq. (4.36).
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this kinematical region the only energy dependent contribution3 to the cross section is
the single-nucleon cross section, which is divided out in the scaling approach. As the
functional form of the kinematical dependency changes for the resonance excitation cross
section, i.e., the masses in the energy conservation conditions change leading to differing
initial-state-phase spaces, our model exhibits scaling violations in the region of ψ′ > 1.

The direct comparison to data, depicted in Fig. 6.1c, shows an effect already expected
from the comparison to electron-scattering data in Sec. 5.2.5. Let us compare our model
to the 2 GeV data (plus symbol), which due to the smallest transverse component, are
expected to include the smallest amount of additional scaling-violating effects, as will be
explained in Sec. 6.2.5. We find that the QEP, expected at ψ′ = 0, is shifted to smaller
ψ′ (smaller energy transfers), narrowed and increased in size. We consider this to be an
effect of the ground-state initialization and will come back to this issue in Sec. 6.3.

An additional effect is found, when comparing the scaling function for different mo-
mentum transfers, q, in Fig. 6.2b. The difference in the region of ψ′ > 0 has already been
ascribed to different kinematics for resonance excitations. The newly found effect consists
in the shift and lowering of the scaling function for kinematics with qQEP ≈ 0.32 GeV at
the QEP. Note that the explicit formula for qQEP,vac is given in Appendix D.2.

The shift is a simple consequence of the LTF model reproducing the QEP at the
position for vacuum kinematics, ωQEP =

√

q2 +M2
N −MN , as will be discussed in Sec.

6.3. For the superscaling analysis we apply a fixed binding energy, Eshift = 0.02 GeV,
in Eqs. (4.54) and (4.55) to correct for the experimentally found shift. This implies that
with lower q the ratio Eshift/ωQEP is growing. Looking at the shifted non-relativistic
analog of ψ, given as y′ = [2MN(ω − Eshift) − q2]/2q, for vacuum non-relativistic QEP
kinematics ωQEP,nr = q2/2MN , one finds that the y value at vacuum QEP kinematics,
y′(ω = ωQEP,nr) = −MNEshift/2q of y, increases in absolute size as q → 0. A similar
relation for ψ′ is derived in Appendix D.3.

The reduced size of the peak for q = 0.32 GeV can be explained if we relate back
to Fig. 4.10, where we show that for kF < q < 2kF ≈ 0.5 GeV, Pauli-blocking reduces
the final state-phase space (strength of the response) for ψ′ < 0. Looking at the data in
Fig. 6.2a and Fig. 6.10a, we find that this effect, namely a slight lowering of the scaling
function for q < 2kF, is also observed in experiments.

Second-kind scaling

For scattering on different nuclei, we discover quite the opposite behavior. Whereas now
the experimental data in Fig. 6.3a show perfect scaling in the region of ψ′ < 0, scaling-
violating effects already set in at ψ′ > −0.5 for the GiBUU calculations in Fig. 6.3b. We
explain this effect with the qualitatively different shape of density profiles for light and
heavy nuclei, described in Sec. 5.2.2, and take it as an indication that the LTF approach
results in a coupling of momentum and density distributions that is stronger than the one
suggested by experimental data. This issue will be discussed in Sec. 6.3.

It is interesting to compare the scaling functions of the two isotopes differing the
most, i.e. , 12C, a nucleus for which a successful description as a Fermi gas comes as
a surprise, and 197Au, which is believed to already exhibit some properties of uniformly
distributed infinite nuclear matter. When comparing to data, cf. Fig. 6.3c, we see that

3Note that Pauli-blocking would also play role for q < 2kF.
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Figure 6.1: First-kind scaling analysis of electron scattering on 12C at a constant momentum
transfer of q=0.5 GeV and incoming energies between 0.32 and 2 GeV, specified by colors and
different line shapes/symbols in the plots.
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6.1. Superscaling analysis

the problems of a narrowed and shifted peak, described above, become evident for 12C,
while for 197Au we see a general lack of strength. This is again an implication that the
ground-state-initialization constitutes a key issue. It will be discussed in Sec. 6.3.

We can thus summarize that our model exhibits reasonable scaling behaviour. As
shown in Figs. 6.1c and 6.3c, our scaling functions also show satisfactory agreement with
experimental data. This result is a validation of both, the predictive power and the correct
numerical implementation of our model.

6.1.2 Impact of different parameters on the scaling function

Since the scaling function contains all “nuclear” information, it is interesting to investigate
the impact of different parameters of our nuclear model on this function. As ground-state
initialization plays a key role, we will later discuss this issue in more detail and for
now use the LTF model, introduced in Sec. 5.2.2, to evaluate the influence of the other
parameters. Since, by construction, only second-kind scaling is broken, we study the four
different nuclei already presented in Fig. 6.3.

Hadronic potential

Using a momentum-dependent hadronic potential, as the Welke-type potential discussed
in Sec. 5.2, is expected to have a noticeable impact on the QE cross section since the
nucleon is subject to different conditions before and after being struck. In Fig. 6.4, we find
that the inclusion of the hadronic potential takes strength out of the region around and
below the QEP and shifts it into the region above the QEP, much more in accordance with
data. However, the QEP itself remains at its initial position. This is unsatisfactory from
a conceptual point of view, since the hadronic potential is our only way to model binding
effects and thus correct the position of the QEP. These findings were already studied and
explained in Refs. [Bus08, LBARM09]: As the LTF correlates low momentum nucleons,
which dominate the QE scattering as shown in Sec. 4.3, with areas of low densities, which
are subject to the least medium modifications, the region around the QEP is affected the
least by a hadronic potential.

Recognizing that the lack of shift is a shortcoming of the LTF approach, we conclude
that the inclusion of a hadronic potential is important in order to obtain the shape of the
experimental scaling function. This is accomplished by a lowering of the scaling function
at and below the QEP and an increase of the scaling function in the region of large ψ′.
A possibility to account for the shift while keeping the merits of a hadronic potential in
the LTF picture would be the inclusion of a phenomenological energy shift in the GiBUU
model. We investigate this possibility towards the end of Sec. 6.3.

In-medium widths

In addition, we have included the effect of in-medium widths, since they allow for a
more realistic momentum distribution4. In Fig. 6.5, we compare calculations including
in-medium widths with calculations that do not include them and find that inclusion of
in-medium widths substantially lowers the scaling function at the position of the QEP. It

4While, through the use of tabulated spectral functions, consuming large amounts of memory.
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Figure 6.3: Second-kind scaling analysis of electron scattering on 12C, 27Al, 56Fe and 197Au
at a constant momentum transfer of q=1 GeV and incoming electron energy of 3.6 GeV.
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is also noteworthy, that without in-medium widths the scaling function directly vanishes
beneath a certain value of ψ′, whereas in case of their inclusion it vanishes asymptotically,
much more in accord with the experimental data. We explain this effect with the spectral
functions’ strength on the high-momentum side, cf. Fig. 5.1, allowing for larger parallel
momenta to be found within the nucleus. Hence, we find that the inclusion of in-medium
widths improves the scaling function both quantitatively and qualitatively.

Inclusion of resonance excitations and non-resonant single-pion background

As resonance excitations and the single-π background dominate the response right above
the QEP, we have also studied their impact on the scaling function. In Fig. 6.6, one can
see that they play no role beneath the QEP. In the region of ψ′ > 0 they cause violations
of scaling, as can be seen in Fig. 6.1b. In any case, the study of their impact offers no
insight into the momentum distribution when performed with the superscaling formalism
for QE scattering, since the difference in kinematics mixes single-nucleon contributions
into the scaling function at ψ′ > 0.

Some more words are due concerning fact that the full GiBUU prediction (solid line)
does not match the curve for ψ′ > 0 in Fig. 6.1b. As one can see the QE scaling function
is decreasing in that kinematical region, hence non-QE effects should fill the gap. We
see the large difference as a clear indication that important effects are missing in our
implementation and identify them as the excess transverse strength that will be discussed
in Sec. 6.2.

6.1.3 Superscaling of the neutrino response

In Sec. 4.6 we already pointed out that the neutrino-scattering response can be analyzed
using a similar superscaling method, i.e., by dividing out single-nucleon contributions.
While the approach of Amaro et al. [ABC+05] consists of using a scaling function obtained
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Figure 6.7: Comparison of double-differential cross section obtained from superscaling analysis
in Ref. [ABC+05] (dotted lines) and GiBUU calculations with LTF (dashed lines) and global
Fermi-Gas (solid lines) ground states.

from electron scattering to predict neutrino-cross sections, our model directly predicts the
neutrino response from the same nuclear input as for electron scattering. In Fig. 6.7 we
compare our results to the ones of Amaro and find reasonable agreement with the simple
Fermi-gas simulations while generally lower responses with the LTF approach.

Furthermore, we can directly analyze the scaling function of the neutrino response
and compare it to those obtained from electron simulations. We start by checking for
second-kind scaling, cf. Fig. 6.8a, and find a situation that looks very similar to that
of electron scattering in Fig. 6.3b. Comparing electron and neutrino scaling functions in
Fig. 6.8b, we see that they are almost identical up to the QEP. Naturally the kinematics
of non-scaling contributions differ for the two different currents, and above the QEP the
scaling functions diverge.

Checking for first-kind scaling in Fig. 6.9a, we find that, contrary to the electron case,
scaling is to some degree violated. We observe that the QEP is shifted towards lower
ψ′ for lower energies. We also find that these violations lead to larger neutrino-scaling
functions at low energies and lower scaling functions at larger energies, when compared
to perfectly scaling electron results. A possible explanation is that in Eq. (4.79) and the
following we have used a first order expansion in kF/MN , and, e.g., have approximated the
longitudinal contribution as GL(κ, λ) = κ/2×XV V

L = κ/(2ρ)×G2
E, while the appropriate

expression is given in Eq. (4.58). However we do not further investigate this aspect here.
We also do not present the neutrino-scattering analog of Fig. 6.2 as those curves exhibit
deviations from the electron response of a similar shape and magnitude as seen in Fig.
6.9a. We conclude that besides differences on a level below 10% the GiBUU scaling
function for neutrino scattering resembles the shape and size of the scaling function for
electron scattering. We consider this finding a proof that the same nuclear dynamics is
reproduced.

Furthermore, we have undertaken a superscaling analysis using the PWIA approach
described in Sec. 4.3 in Appendix C.2 and also have implemented a superscaling analysis
of the ∆-peak following Ref. [MDS02] in Appendix C.3. Both analyses underline the
statement that the GiBUU simulated response does superscale. Nevertheless we choose
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Figure 6.8: Second-kind scaling analysis of electron and muon-neutrino scattering on 12C, 27Al,
56Fe and 197Au, at a constant momentum transfer of q=1 GeV and incoming electron energy of
3.6 GeV.

to treat them in the appendix, as their discussion would divert from the analysis of the
response at the QEP.

6.2 Analysis of the longitudinal and the transverse

response

In Sec. 4.4 we have already mentioned, that, after contracting leptonic and hadronic
tensors, the double-differential QE cross section reads

d2σ

dE ′dΩ
=

(
dσ

dΩ

)

Mott

[(
Q2

q2

)2

RL(q, ω) +

(
1

2

Q2

q2
+ tan2 θ

2

)

RT(q, ω)

]

, (6.1)

with (dσ/dΩ)Mott defined in Eq. 4.2. By dividing out kinematical factors one obtains the
following equation

Σ ≡ dσ

dΩdω

ǫ
(
dσ
dΩ

)

Mott

q4

Q4
= ǫRL(q, ω) +

q2

2Q2
RT(q, ω), (6.2)

which, for the case of fixed q and Q2, expresses the reduced response, Σ, as a linear
function of the virtual-photon polarization,

ǫ =

(

1 +
2q2

Q2
tan2 θ

2

)−1

. (6.3)

In the spirit of the Rosenbluth separation, cf., e.g., Ref. [PRSZ09], it is thus possible to
obtain RL as the slope of Σ and RT as the intercept at ǫ = 0.

In practice, however, the separation is complicated by the lack of data. On one hand,
it is evidently desirable to include a large range of ǫ into the analysis. On the other
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Figure 6.9: First-kind scaling analysis of electron and muon-neutrino scattering on 12C at a
constant momentum transfer of q=0.5 GeV and incoming energies between 0.32 and 2 GeV,
specified by colors and different line shapes/symbols in the plots.

hand, one has to keep q and Q2 fixed, or at least not too different, so that interpolation
techniques can be applied. These complications have led to different interpretations of
the data sets throughout the past (cf., e.g., Ref. [Jou96], where it is argued that past
analyses suffered from systematic errors and a too narrow kinematical range). As RL

and RT give insight into the properties of the hadronic current, the measurement and
prediction of these response functions has been the subject of many studies, some of
which are described in Sec. 6.2.5.

6.2.1 Experimental status of the separated responses

Since the non-relativistic Fermi gas, described in Ref. 4.2, has been used as a means for
predicting the QE response [MSW+71], the formalism has been extended to the relativistic
Fermi gas and compared with different data sets. Unfortunately, the first analyses, e.g.,
Ref. [ACD+80], included data sets which due to systematical errors or to their limited
kinematic regions favored an overestimation of the transverse response with regard to
the longitudinal response [Jou96, W+97, DS99, BDS08]. Consequently, it has been long
believed that RT is in good agreement with Fermi gas calculations while the quenching
of RL poses a puzzle, cf., e.g., Sec. 5.5 of [BGPR96].

This assumed discrepancy has led to an intense study of the Coulomb sum rule (CSR),

SL(q) =
1

Z

∫ ∞

ω+

dω
RL(ω,Q2)

G̃2
E(Q2)

, (6.4)

with ω+ denoting the minimal energy transfer needed for nucleon knock-out and G̃2
E =

(G2
ep + G2

enN/Z). In a non-relativistic derivation, described, e.g., in Ref. [BGPR96], it
is shown to converge towards 1 for q → ∞. Early work [CG63] suggested to use the
CSR as a tool for the study of short-range correlations between the nucleons. Certain
experiments, suffering from shortcomings mentioned above, found deviations from the
CSR that exceeded 50%.
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The world-data analysis by Jourdan [Jou96] and a reanalysis by Morgenstern and
Meziani [MM01] show much smaller violations of the CSR and prove the importance of
taking Coulomb corrections into account. At the same time the analyses by Jourdan and
Williamson [Jou96, W+97] find larger values for RL and smaller values for RT.

6.2.2 Superscaling of separated responses

Describing the QE response with a relativistic Fermi gas leads to identical information
contained in both, RL and RT, since they can be reduced to the same scaling function
via5

fL ≡ kF
RL

GL

!
= fRFG !

= kF
RT

GT

≡ fT. (6.6)

Analyses by Finn et al. [FLC84] and Williamson et al. [W+97] indicate that first-
kind scaling holds for RL while it is violated for RT, yielding an excess in the transverse
response. This finding is in contrast to the early results discussed in the previous subsec-
tion and is attributed to meson-exchange currents (MEC) and other non-impulsive effects
playing a more important role in the transverse channel.

In Fig. 6.10 we bring an example of the separated scaling functions for different en-
ergies, originating from Ref. [DS99] and based on data in Ref. [Jou96]. It is important
to point out that at q = 0.3 GeV both scaling functions take on similar values, that lie,
however, far beneath the RFG scaling parabola. Also, one sees that scaling violations
occur in the transverse response, yielding a growing excess strength with higher q.

6.2.3 Separated responses from GiBUU simulations

The Rosenbluth separation has been performed on cross sections calculated in our model.
A sufficient set of data points had to be generated6 due to numerical details explained in
Appendix B.2.

In Figs. 6.11 and 6.12, we compare our approach to experimental data, the RFG
predictions and model calculations by Fabrocini and Fantoni [FF89], that are based on
orthogonalized-correlated-basis theory. Note that the transverse responses of the two ex-
perimental analyses agree while Jourdan finds less strength in the longitudinal channel.

5To obtain these relations, we compare Eq. (4.45) with Eq. (4.57) and equate them by elemination of
the double-differential cross section. After dividing out the Mott cross section, we obtain the relation

vLRL + vTRT = vL

(
fGL

kF

)

+ vT

(
fGT

kF

)

, (6.5)

which is supposed to hold for arbitrary vL and vT in the case of perfect superscaling. Eq. (6.6) follows
directly. The observed discrepancies between RL

GL

and RT

GT

motivate the introduction of the separated
scaling functions, fL and fT.

6Note that the non-relativistic LTF [Ros80] and the relativistic Fermi gas allow for an analytical
solution, while for our model it is not possible to obtain analytic expressions of the responses, similar
to Eq. (4.49). This is due to the integration being complicated by local Fermi momenta, a hadronic
potential and finite particle widths. It is, however, possible to perform a numerical integration over
the phase space, similar to Eq. (4.44), instead of generating multiple cross sections and performing a
separation. With the scaling-extrapolation approach, presented in this Section, we perform a similar
computation, though not valid for large ψ′.
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(a) Scaling function of the longitudinal re-
sponse.

(b) Scaling function of the transverse re-
sponse.

Figure 6.10: Separated scaling functions fL, fR for different momentum transfers 0.3, 0.38 and
0.57 GeV, assigned to symbols, and the nuclei 12C, 40Ca and 56Fe, with nuclear mass numbers
assigned to colors. Taken from Ref. [DS99], with data from the analysis in Ref. [Jou96].

When compared to the data of Williamson, which show the least longitudinal quench-
ing, the simulated curves exhibit the same shortcomings as the inclusive cross sections
presented in Sec. 5.2.5 and the scaling functions in Sec. 6.1.1: a narrowing and a shift
of the QEP. Note also, that when comparing Fig. 6.12 to Fig. 6.11, the experimental
longitudinal response shows a comparable lack of strength, while the transverse response
in Fig. 6.12 overshoots model calculations from both, Fabrocini and GiBUU. In accord
with Ref. [DS99], this can be interpreted as an excess strength in the transverse channel,
that increases with q.

Just as for neutrino scattering, we can turn the superscaling approach around to use
it as a means for predicting cross sections. Inserting an extracted scaling function, f , into
Eq. (6.6), offers a different possibility for obtaining RL and RT

RL,T ≈ f
GL,T

kF
. (6.7)

We will call this approach the scaling extrapolation (SE).
It is interesting to observe to what extent GiBUU responses differ when they are

obtained via Rosenbluth separation and via the scaling extrapolation. In Fig. 6.13, we
compare with data for electron scattering on 40Ca at a fixed momentum of q = 0.3 GeV,
since the Rosenbluth separation is especially difficult in this case, as discussed in Appendix
B.2. We find that, apart from statistical fluctuations affecting the Rosenbluth separated
response, the scaling SE approach and the Rosenbluth separation agree perfectly.

This result is a direct consequence of the fact that GiBUU calculations exhibit first-
kind scaling to a higher degree than experimental data, since varying electron energy for
a fixed q results in varying ǫ and thus different amounts of longitudinal and transverse
contributions. Contrary to the scaling functions in Fig. 6.10, we find the separated scaling
functions obtained from our model to take on identical values. However, this result may
be regarded as a cross-check for the implementation of the Rosenbluth separation and
the superscaling analysis and as a time-saving method to predict separated responses of
GiBUU simulations for the kinematical regions around the QEP.
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Figure 6.11: Separated responses for electron scattering on 40Ca at fixed momentum transfer
q = 0.38 GeV from Ref. [Jou96] (circles) compared to GiBUU calculations with the LTF (solid
lines)/ GFG initialization (dotted lines) and model calculations from Ref. [FF89] (dash-dotted
lines) as well as data taken at q = 0.375 GeV from Ref. [W+97] (triangles). In Fig. 6.15a, we
compare to inclusive cross-section obtained at a similar momentum transfer.
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Figure 6.12: Separated responses for electron scattering on 40Ca at fixed momentum transfer
q = 0.57 GeV from Ref. [Jou96] (circles) compared to GiBUU calculations with the LTF (solid
lines)/ GFG initialization (dotted lines) and model calculations from Ref. [FF89] (dash-dotted
lines). In Fig. 6.15b, we compare to inclusive cross-section obtained at a similar momentum
transfer.
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Figure 6.13: Separated responses for electron scattering on 40Ca at fixed momentum transfer
q = 0.3 GeV from Ref. [Jou96] (circles) and Ref. [W+97] (triangles) compared to GiBUU calcu-
lations obtained using the the Rosenbluth separation (solid lines) and the scaling extrapolation
for 1, 3 and 7 GeV incoming electron energy (dotted, dash-dotted and dashed lines).

From Fig. 6.14 we find that our SE method is limited to the area of energy transfers
below and not too far above the QEP. For larger energy transfers the Rosenbluth separa-
tion (RS) and the SE responses differ significantly, mainly because the SE response gains
most of its strength in the longitudinal channel while the RS response, in better accord
with data, substantially gains strength in the transverse channel. Thus we can conclude
that within the GiBUU model first-kind scaling violations above the QEP arise mainly
due to additional strength in the transverse channel. These effects can be attributed to
resonance excitations and single-π non-resonant background. As we are mainly interested
in the analysis of the QEP, we will nevertheless use the SE method throughout the rest
of this section.

To conclude this analysis, we compare our calculations to experimental inclusive cross
sections7, which show the impact of the deviations of our model-response functions from
the experimental ones on the inclusive cross section. The difficulties of a shifted and
narrowed QEP, that occur in our model calculations, are evident in all plots. The effect
of excess-transverse strength can best be seen in Fig. 6.15b, where the kinematics lead
to a photon polarization of ǫ = 0.0033 and q = 0.57 GeV at the QEP, meaning that the
transverse contributions constitute a large part of the total response. In that case we
see a large excess of strength at the experimental QEP, when compared to the (shifted)
theoretical prediction. The excess is also visible for a similar value of qQEP in Fig. 6.16b,
though smaller in size due to larger longitudinal contributions at ǫ = 0.4.

6.2.4 Effects on the separated responses

Finally, we present an analysis of the effects of different model parameters on the separated
responses. In Fig. 6.17 we depict the influence of the same parameters as in Sec. 6.1.2,
and see a similar effect on the response, although, due to the lower q involved, we can also
distinguish the left side of the QEP from other contributions setting in at higher ω. We

7A useful collection of data can be found in Ref. [inc].
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Figure 6.14: Separated responses for electron scattering on 40Ca at fixed momentum transfer
q = 0.57 GeV. Data taken from [Jou96] (circles) is compared with GiBUU responses obtained
using the Rosenbluth separation (RS) method (solid line) and the scaling extrapolation (SE) at
3 and 7 GeV (dotted and dash-dotted line).
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Figure 6.15: GiBUU calculations of double-differential inclusive cross section at QEP kinemat-
ics for scattering of electrons on 40Ca (solid lines) as a function of energy transfer, ω, compared
to data from Ref. [M+84] (circles).
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Figure 6.16: GiBUU calculations of double-differential inclusive cross section at QEP kinemat-
ics for scattering of electrons on 40Ca (solid lines) as a function of energy transfer, ω, compared
to data from Ref. [W+97] (circles).

find that the inclusion of a hadron potential is important in order to obtain the correct
slope of the response on both sides of the QEP.

6.2.5 Comparison with recent theoretical approaches

Summarizing the findings of this and the preceding section, we can outline a way towards
achieving better agreement with electron-scattering data within the GiBUU model. Some
issues, namely a shift of the QEP and violations of second-kind scaling, could be resolved
with a refined momentum distribution, as will be discussed in the next section.

A more complicated question is raised by the appearance of violations of first-kind
scaling with regard to incoming electron energy exhibited by data. Remember that the
lack of these effects was the basis for application of the superscaling extrapolation method
for obtaining the separated responses in our model. First-kind scale breaking is closely
related to the different q dependence of longitudinal and transverse responses [DS99].

This can be further elucidated by looking at the scattering angles associated with the
incoming energies in Fig. 6.1. At incoming lepton energy of 2 GeV and a momentum
transfer of q = 0.5 GeV the kinematics gives a scattering angle of θ ≈ 15◦ and hence,
via Eq. (6.1), a large contribution from RL, yielding a response much lower than RFG
expectations. For Ee = 0.32 GeV and q = 0.5 GeV on the other hand, we have θ ≈ 145◦

and a response that even exceeds RFG expectations. These two effects match perfectly
with the findings in Fig. 6.12, where RT exceeds RFG expectations, while RL stay beneath
them, at a ratio comparable with that in Fig. 6.11.

Since we lack separations of experimental data at large q for heavy and medium nuclei,
at this point there are two possible conclusions that can be drawn from the presented
analysis. Either our general scaling function is, except for the shift, correct at high
energies and our model misses a quenching of the longitudinal response for all q and a
quenching of both repsonses for low q, or our scaling function is too high and at high q
is compensated by a rise of the transverse response of the real data. We will now review

89



Chapter 6. Applications, predictions and comparisons

 0

 20

 40

 60

 80

 100

 120

 140

 0  0.05  0.1  0.15  0.2  0.25

R
L
 [

1/
G

eV
]

ω [GeV]

full
no width

no potential
RFG

Jourdan
Williamson

(a) Longitudinal response

 0

 20

 40

 60

 80

 100

 120

 140

 0  0.05  0.1  0.15  0.2  0.25

R
T
 [

1/
G

eV
]

ω [GeV]

full
no width

no potential
RFG

Jourdan
Williamson

(b) Transverse response

Figure 6.17: Study of separated responses for electron scattering on 40Ca at fixed momentum
transfer q = 0.38 GeV. GiBUU simulations include simple RFG simulation (dashed line), LTF
simulation including no further effects (dash-dotted line), LTF simulation including a hadronic
potential but no in-medium width (dotted line) and full calculations (solid line). Data taken
from [Jou96] (circles) and [W+97] (triangles).

theoretical developments on this question.
The Coulomb-sum-rule puzzle has motivated models that modify the nuclear-momentum

distribution by including short-range correlations. An approach based on correlated-basis
theory [Cla79] has been extended to include more advanced correlation operators by Pand-
heripande, Benhar, Fabrocini and Fantoni [FP88, BFF89]. In Refs. [FF89, Fab97] this
approach has been applied to the separated responses. Comparing to their calculations
in Figs. 6.11 and 6.12, we see that their results are in better agreement with the data
than ours. However, one must stress that these non-relativistic calculations are limited
to a certain kinematical range and already include meson-exchange currents (MEC) that
account for a modification of the transverse response.

A continuation of the work on short-range correlations has been carried out in Ref.
[AM09], where also a modification of the y-scaling variable has been introduced, and
the connection between nuclear momentum distributions and the scaling function has
been investigated. The recent debate on transverse-scaling violations is, however, not
mentioned in their work.

A different approach is pursued by the coherent-density-fluctuation model, as devel-
oped in [AGK+04, CBA+10]. It is based on the generator-coordinate method [GW57] and
includes long-range correlations for a prediction of a universal momentum distribution,
that then translates into a scaling function. This scaling function corresponds to a scaling
function for electron scattering at medium q, including an asymmetrical shape. So far
the issue of scaling violations and separated responses has not been addressed within this
approach.

In the BCS based model [BCDM08] by Barbaro et al., the focus lies on the scaling
function of the longitudinal response, which is supposed to be free of scaling violations.
Their model is also able to reproduce the asymmetric shape of the scaling function.

We find similarities to our model in the relativistic-mean-field (RMF) method [CAB+05,
CMHU10], where initial- and final-state nucleons are subject to a relativistic mean field.
In accord with our calculations shown in Fig. 6.4, their scaling function is substantially
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lowered as compared to RFG predictions.
In the semi-relativistic approach [ABC+07] an expansion of the on-shell electromag-

netic current in powers of p/MN , i.e., nucleon momentum over nucleon mass, is carried out
in order to expand the validity of calculations performed in the non-relativistic quantum
picture. In more recent applications of this method, the influence of MEC and pionic
correlations on the transverse response is intensively studied [ABC+10a, AMB+10].

To relate the current status of research to our model, it is important to stress that
recent models, that take the different behavior of the longitudinal and transverse response
into account, all tend to interpret the longitudinal response as not being affected by
scaling-violating effects. From such a standpoint the scaling function of our model at low
q must be in any case regarded as too large, and should ideally take on the shape of the
longitudinal scaling function for 2 GeV scattering in Fig. 6.10a. A way to reach agreement
with the data would be the inclusion of scaling violations via additional cross sections,
leading to the same final state (nucleon knock-out), but stemming from different effects.
As a first proof of concept, one could also directly modify the transverse scaling function
and then reevaluate the total cross section. Anyhow, the basic starting point would be
lowering the scaling function to a peak level of about 0.6 and the right position. This will
be pursued in the next section.

6.3 Ground-state analysis

Let us begin this discussion by reviewing the results in Sec. 6.1.2. In Fig. 6.4, we find
that in our LTF-based model the inclusion of a hadronic potential does change the shape
of the scaling function, but the actual position of the QEP is not affected. This finding
is unsatisfactory since a hadronic potential is a reasonable way to account for the ex-
perimentally observed shift in ωQEP away from its vacuum value, which is attributed to
nuclear-binding effects. It can be explained by the density profile of the LTF (cf. Fig.
7.8 in Ref. [Bus08]), that shows a high probability of finding nucleons with low momenta
at low densities. These low densities coincide with low potentials, as our Welke-type
hadronic potential vanishes with vanishing width. As a consequence the nucleons at rest,
i.e. the ones that contribute the most to the QEP, experience the least effects from the
nuclear potential.

From this reasoning we can also interpret the violations of second-kind scaling, by
recalling the description of nuclear densities in Sec. 5.2.2: As for large nuclei the density
in the inner core is very similar and constant, most nucleons are distributed according to
the same Fermi momentum. Only for small nuclei, most nucleons are initialized on the
surface, where the are bound to have very small momenta, which as a consequence lead
to increased strength of the scaling function at the QEP.

It is thus interesting to compare the global Fermi-gas approach to the LTF, while
including all the other effects that were shown to improve scaling qualities in Sec. 6.1.2.
In Fig. 6.18a, we perform a second-kind-scaling analysis with FG simulations and find that
they show very good scaling. The minor deviations arising from the difference between
the values8 for kF. Due to the large contributions at ψ′ > 0, it is not clear whether the

8For both analysis and modelling we have used the kF values 0.22, 0.23, 0.235 and 0.24 GeV for C,
Al, Fe and Au [DS99].
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Figure 6.18: Second-kind scaling analysis of electron scattering on 12C, 27Al, 56Fe and 197Au
at a constant momentum transfer of q=1 GeV and incoming electron energy of 3.6 GeV.

QEP is reproduced at the correct position. When compared to experimental data, in Fig.
6.18b, the results show less agreement than the non-scaling LTF results. We interpret
this, following the discussion in the previous section, as an effect of the excess-transverse
strength that is missing in our model.

To study whether the position of the QEP is reproduced correctly, it is instructive to
focus on the response at low q, where the non-quasielastic contributions to the scaling
function are low. To also exclude contributions from the excess-transverse strength, in
Fig. 6.19 we compare to the longitudinal scaling function. In addition, we show the
corresponding response of a pure RFG model and the LTF model computed for A = 12
and A = 197. We find that even though the QEP is not correctly reproduced in the
global Fermi gas model (at ψ′ ≈ 0.25 rather than at ψ′ ≈ −0.25 with as found in LTF
with q = 1 GeV) it fits the data in size and shape as well as the LTF response for A = 197
and much better than the other calculations. One must state, however, that experimental
data is only given for the nuclei 12C, 40Ca and 56Fe. From the good second-kind scaling of
experimental data we expect the longitudinal scaling functions to take on the same values
for heavier nuclei.

We conclude that the GFG ansatz is better suited to model the longitudinal response
and the transverse response at low q ≈ 0.3 GeV, whereas the LTF approach gives results
of the same quality only for heavier nuclei. We expect both approaches to fail for the
transverse response at high q > 0.5 GeV, and also to not reproduce the QEP at the correct
position. The last shortcoming can be corrected for with a phenomenological energy shift,
which was shown to lead to a shift in ψ′ in Appendix D.3. In Fig. 6.20, we perform a
comparison similar to 6.1c but with a phenomenological energy shift and find that in this
way the slope is much better fit.
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6.4 Relevance for neutrino scattering experiments

With the recent appearance of the first experimental muon-neutrino CC scatterring quasielas-
tic double-differential cross sections for 12C from the MiniBooNE experiment [AA+10] it
is very tempting to compare our model to data. However, one should not expect accor-
dance, since in Ref. [LBMAR09] it is already found that the GiBUU prediction for the
ratio of pion production over QE scattering underestimates the MiniBooNE data at about
a level of 100 % if applied directly and still on a level of 20 % if corrected for final state
interactions that lead to misidentifications of CCQE events (cf. Sec. 13.3 of Ref. [Lei09]).

In Fig. 15.1 of Ref. [Lei09] it is shown that other theoretical models suffer from the same
shortcomings. In fact, the model advocated by the MiniBooNE collaboration and correctly
describing the MiniBooNE data9 is a relativistic Fermi gas that applies an unusually large
axial mass, MA = 1.35 GeV, and a parameter to account for an increased strength of
Pauli-blocking, κ = 1.007 [Kat09]. Remember that, as described in Sec. 2.3.2, in our
model we use MA = 0.999 GeV as obtained from the analysis of past neutrino-nucleon
data in Ref. [KLN08], in accordance with other analyses, e.g., Ref. [BEM02] where pion
electroproduction is analyzed, that also yield values consistent with 1 GeV.

The experimental situation is further complicated by the fact that the incoming neu-
trino energy is not an observable quantity. It has to be reconstructed from the kinematics
of the scattering partners. Furthermore, to obtain exclusive cross sections, like the CCQE
one used to obtain the fit for MA in Ref. [AA+08], one has to subtract contributions from
other channels. These channels are calculated using event generators, which again include
assumptions about the neutrino-nucleus interaction.

Let us relate the findings of the previous sections to neutrino scattering. We have
discussed and demonstrated, using the GiBUU model, that models for electron-scattering
based on impulse approximation suffer from an underestimation of the transverse response
at large momentum transfers, q > 0.4 GeV. Many approaches, cf., e.g., the discussion in
Ref. [ABC+10a] and the references therein, consider MEC to be the cause of this effect,
with 2p-2h calculations, e.g. Ref. [DPNA+04], aiming at fully describing these effects. In
the light of the superscaling analysis these effects manifest in an increase of the transverse
scaling function. Just by comparison with data we estimate that these effects cause a rise
of the transverse scaling function by a factor of 1.8, for q > 0.5 GeV. As the neutrino
response consists of more intricate components (cf. Eq. 4.67), it is not straight-forward to
extrapolate these findings to neutrino cross sections. A first approach would be to include
the found excess-transverse strength in the component XV V

T , thus allowing for a response
that is twice as high for special kinematics. This approach has been recently pursued in
Ref. [ABC+10b], where it is found that inclusion of these effects leads to an increase of
the double-differential inclusive muon-neutrino CC cross section, but still underestimates
the recently released MiniBooNE data [AA+10]. As for CC scattering there exist more
responses which could also be affected by MEC, but have not been yet studied, we find
that the theoretical description of neutrino-nucleus-scattering experiments is subject to
very large uncertainties.

9We should also note that Ref. [MECM09] manages fitting the MiniBooNE data by computing the
response in random-phase approximation.
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Chapter 7

Summary and conclusive remarks

In this work, we have highlighted the role of nuclear effects in lepton-nucleus scattering
using a model that treats neutrino and electron scattering within the same formalism.
Performing a superscaling analysis and the separation of the longitudinal and transverse
response, we were able to gain more insight into important nuclear effects and thus make
suggestions for future improvements on the one hand and point towards uncertainties in
the analysis of present experiments on the other.

7.1 Summary

In Chapter 2, we have described the fundamental interactions on the lepton-quark and
lepton-nucleon level. We began by outlining the basic formalism underlying all of the
calculations. Later, we have argued that three processes play an important role in the
kinematic region of our interest, namely QE scattering, resonance excitation and non-
resonant single-π background, and presented methods to calculate their contributions.

In Chapter 3, we have considered important aspects for building nuclear models capa-
ble of describing lepton-nucleus scattering. First, we have discussed possible frameworks
for describing the interaction. We have then highlighted the role of the nuclear ground-
state and in-medium modifications to the single-nucleon scattering scenario.

Building on these ideas, in Chapter 4, we have outlined the development of different
scaling and superscaling approaches. We have argued that these analysis methods con-
stitute a possible way to disentangle the single-nucleon cross sections from the electron-
nucleus cross sections and obtain the nuclear information hidden in experimental data.
We have also showed how to derive the scaling variables from energy-conservation con-
siderations and how the different scaling variables relate to each other.

In Chapter 5, we have presented our model for the description of lepton-nucleus scat-
tering, starting from the underlying principles of non-equilibrium quantum-statistical me-
chanics. We have presented some details on the implementation of the GiBUU model and
argued that even though the transport part of the code has not been used for our anal-
ysis, the fact that the model is tested against experimental data in different physical
applications constitutes a major strength.

Finally, we have applied our model to current fields of research in Chapter 6. We have
studied whether the electron- and neutrino-scattering cross sections predicted by our
approach exhibit superscaling properties and found that this is the case to a reasonable
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degree. We have analyzed the slight deviations from experimental data and pointed to
their origin, thus substantiating ways for improving the model. The finding that our
model scales well is an implication that it can be used for various kinematics and nuclear
targets, yielding predictions of similar quality.

We have then separated the longitudinal and the transverse response, and, drawing a
connection to the superscaling analyses, found that our model describes the responses rea-
sonably well, while the recently established effect of excess-transverse strength is missing.
We have, in the light of these two analyses, further illuminated the role of the ground state
and showed that using a hadronic potential, in-medium widths and a phenomenological
energy shift, our model is able to describe both slope and size of the scaling function.
As a conclusion we state that using the local Thomas Fermi approach our full model de-
scribes data best for large nuclei and small contributions from transverse channels, while
the global Fermi-gas approach has the advantage of treating all nuclei on an equal foot-
ing. Finally, we have argued that the observed uncertainties, especially the transverse
contributions, pose a major complication to the evaluation of current neutrino scattering
experiments and that no model is so far able to consistently deal with all of the effects
mentioned.

We conclude that the implementation of the superscaling analysis and the Rosenbluth
separation in the context of the GiBUU model helps disentangle and understand effects
that are otherwise hidden in the inclusive cross sections. The comprehensive investigation
of the scaling phenomenon performed in Chapter 4 and in Appendix C is a prerequisite to
the understanding of the underlying kinematical and statistical effects. Apart from point-
ing out in which kinematical regions and for what reason our model has good predictive
power, we are confident that future attempts to improve the model will benefit from the
presented results and the implemented tools.

7.2 Outlook and future improvements

In our analysis, we have shown, that two aspects of the nuclear response deserve special
attention. On the one hand, a large role is played by the initial nucleon-momentum
distribution, as can best be assessed by the study of scaling functions. On the other
hand, the appearance of excess strength in the transverse channel poses an interesting
question, as could be seen in the analysis of the separated longitudinal and transverse
responses.

It would be an interesting task to improve the initial-state-phase-space distribution
in a way that the physical advantages of a local Thomas Fermi description, e.g., smaller
Fermi momenta at the surface, are kept, but the binding energy is a constant regardless
of nucleon position, thus helping to correct the position of the QEP. Microscopically
motivated momentum distributions should also be taken into account.

An effect, that is more difficult to adopt within the framework of the GiBUU model,
is the excess strength in the transverse channel. If one were only interested in the de-
scription of double-differential inclusive cross sections, a promising ansatz would be to
study the excess strength in terms of longitudinal and transverse scaling functions. Start-
ing from a model that correctly describes the response at low q, one could attribute the
underestimation of the inclusive cross section at higher q to an underestimation of the
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transverse scaling function, thus obtaining a q-dependent parametrization of excess in the
transverse scaling function, without running into the problem that at higher q separated
experimental responses are not available.

Since the treatment of final-state interactions is a strength of the GiBUU model, and
such an ad-hoc ansatz would be hard to consistently combine with the transport approach,
a microscopic solution to the problem would be more desirable. One possibility would be
to introduce an in-medium modification to the hadronic current in Eq. (2.41). It would be
worth studying, whether a simple modification of the form factors could already lead to
the desired effects, or whether additional terms would have to be introduced, as done in
Ref. [DF83] in order to derive the off-shell prescription for the single-nucleon cross section,
presented in Appendix D.1. How and whether quantum-mechanical many-body effects
can be combined with a transport-based approach also poses an interesting question.
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Appendix A

Conventions and notations

A.1 Units and constants

For the sake of simplicity, we use natural units, i.e. ~ = c = 1, throughout this work.
Electromagnetic effects are treated in Heaviside-Lorentz units1. Thus, only one choice for
a scale remains and we pick energy measured in GeV as our basic unit, leading to the
following relations for the remaining quantities

[energy] = [mass] = [momentum] = [time]−1 = [length]−1.

For conversion to International System of Units, one can apply the useful relation

~c ≈ 0.197326968 GeV fm = 0.197326968 GeV · 10−15 m. (A.1)

Within this work, we consider both cross sections for electron scattering, which are usually
expressed in units of milibarn (1 mb = 10−3 · 10−28 m2), and neutrino scattering, which
are often given in 10−38 cm2. In order to increase consistency, we will express energy and
solid-angle differential cross sections, which lie in the focus of this work, for both kinds of
leptons in the following way

[
dσ

dΩdEf

]

=

[
mb

sr GeV

]

.

Moreover, we list the most important physical constants, which our theory takes as
input parameters, in Table A.1.

A.2 Definitions and notations

A detailed discussion on definitions of kinematical entities can be found in Sec. 2.2.3. Here
we describe our general conventions. For sums of vector components, we use Einstein’s
summation convention, i.e., aibi =

∑

i a
ibi. Three-vectors are expressed by bold letters,

e.g., p, with the usual notation for the Euclidean inner product, i.e., p ·k. Their absolute
values, except for q, are always written out explicitly, e.g., as |p| =

√
p · p . Italic letters,

1The elementary charge is hence given by e =
√
4πα , with α = 1/137
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quantity symbol value
fine-structure constant α 0.007297

positron charge e =
√

4πα 0.302814
Fermi coupling constant GF 1.16637 · 10−5 GeV−2

Cabbibo mixing angle cos θC 0.9745
weak-mixing angle sin2 θW 0.2228
neutrino mass2 mν 0
electron mass me 0.00051099892 GeV
muon mass mµ 0.105658369 GeV
pion mass mπ 0.138 GeV
nucleon mass MN 0.938 GeV
pion decay constant fπ 0.093 GeV

Table A.1: Frequently used physical constants with values taken from the Particle Data Group
2008 analysis [A+08].

BG non-resonant single-pion background
CC charged current
CM center of momentum
DIS deep inelastic scattering
EM electromagnetic
h.c. hermitian conjugate
LTF local Thomas-Fermi gas
NC neutral current
PCAC partially conserved axial current
QE quasielastic (elastic for electron scattering)
QEP quasielastic peak
RHS right hand side

Table A.2: Frequently used abbreviations.

on the other hand, can describe both a scalar, e.g., p0, and, as a shorthand, a four-vector
p = pµ = (p0,p). Minkowski inner products are written as pµk

µ or p · k, while the

shorthand p2 = pµp
µ = p0

2 − |p|2 may also be used.
Abbreviations are written out at first use, but in addition we summarized the most

frequently used ones in Table A.2.

A.2.1 Relativistic quantum mechanics

For the relativistic-quantum-mechanics part of our calculations we follow the conventions
developed in Chapters 4 and 5 of [HM08]. This means starting out with the “West Coast”

2Note that, while long baseline experiments can measure the mass squared difference through com-
parison of fluxes at long dinstances, cross sections from neutrino scattering experiments are not sensitive
to the tiny value of the neutrino mass and it is hence safe to neglect these effects in our calculations.
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metric,
gµν = diag(1,−1,−1,−1), (A.2)

and using the Dirac-Pauli representation for both, spin matrices

σ = (σ1, σ2, σ3) =

[(
0 1
1 0

)

,

(
0 −i
i 0

)

,

(
1 0
0 −1

)]

, (A.3)

and Dirac matrices,

γµ = (γ0,γ) =

[(12 0
0 12

)

,

(
0 σ

−σ 0

)]

. (A.4)

Then we can attribute a spinor in momentum space, u(p, s), to any free fermion of
spin s = ±1

2
and positive energy. The spinor must satisfy the Dirac equation

(/p−m)u(p, s) = 0, (A.5)

with /p = γµp
µ. Coordinate-space wave functions of massive spin 0 particles, e.g. pions,

on the other hand, obey the Klein-Gordon equation

(∂µ∂
µ +m2)φ(r) = 0. (A.6)

For wave equations of particles of higher spin we refer the reader to Ref. [Gre00].
Treating fermions and bosons in the same manner, we choose the normalization such

that we obtain 2E particles per unit volume. This implies the orthogonality relations

u†(p, s)u(p, r) = 2Eδsr (A.7)

and
ū(p, s)u(p, r) = 2mδsr. (A.8)
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Appendix B

Numerics and programming

In this chapter, we present our solutions to numerical and computational problems that
arose during the course of this thesis. While the work on the GiBUU code was carried out
in the FORTRAN programming language, analysis and file management were handled in
Python and the UNIX-native bash scripting language. All programs are available in the
version control system of the GiBUU project.

B.1 Using Python scripts to automate development

and job-card submission

Simulations are usually connected with large amounts of output but sometimes also with
a great variety of input files. Both sides (input and output) need to be handled auto-
matically, and usually depending on one another. Here, we present some novel tools for
working with GiBUU that were needed to handle the vast amount of separate job cards
connected with the superscaling analysis, where the same reaction is analyzed for a wide
range of nuclei and kinematics, and the separation of the transverse and the longitudinal
response, treated in the next section.

B.1.1 Why Python?

Working on UNIX-like operation systems, a natural choice would be to use Bash scripts
to automate file handling. Such efforts have been undertaken by most of the GiBUU
users. However, when coming to more complex applications, the scripts become practically
unmaintainable since the lack of language functionality (e.g., string handling) needs to be
compensated by using chains of external programs with varying syntax and error handling.
The considered scripts, containing lines of the following kind

f r e e | t r −s ’ ’ | sed ’/ˆMem/ !d ’ | cut −d” ” −f2−4 >> mem. s t a t s

convinced us to look for an alternative. With Python [Pyt] being a mature interpreted
language, not only its high level (object-oriented) design patterns but also the interactive
debugging possibilities looked very promising.
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B.1.2 The general framework

With the natural working environment being the command line, a way for comfortably
handling options and arguments that were passed to the scripts had to be found. Un-
fortunately, employment of the Bash-inspired getopt module, included in the standard
Python distribution, still resulted in many redundant lines of code, so a new approach
was conceived. The ODic module [ODi] was developed, with its main focus on:

• multi-purpose & single-location documentation,

• prevention of design-pattern redundancy,

• user friendly output and

• developer-friendly debugging and testing.

It has served as the basis for the various analytical tools developed throughout the work
on this thesis, its rigid structure and testing capabilities allowing for quick enhancement
of existing tools.

B.1.3 Example

While most of the developed scripts are concerned with the analysis of data files, a specific
script should be mentioned separately. The module send jobs.py has made the automated
submission of thousands of jobs to the computing cluster possible, while also organizing
the output and deleting redundant files. Since it is already employed by other users and
might also be of service to future users of GiBUU and since its structure is a good example
of the programming paradigm connected with the ODic module, we will briefly review
the code structure of this specific module. To get an impression of the implemented
functionality, we state the program’s output to the command send jobs.py –help.

=============
send jobs

=============

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A s c i e n t i f i c computing job submitter
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SYNOPSIS
========

send jobs . py [ OPTIONS ] [ FILES ]

DESCRIPTION
===========

Running ” send jobs . py” with job cards as arguments w i l l copy them to a remote
machine , automat i ca l l y submit them to the g r i d engine , and a f t e r complet ion
organ i ze the output .

. . .

Now for the code of send jobs.py itself: After specifying the interpreter, the module
begins by a so called docstring, indicated by the triple quotes.
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1 #!/ usr / b in / python
2
3 ”””=============
4 s end j o b s
5 =============
6
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 A s c i e n t i f i c computing job submi t t e r
9 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10
11 : Author : Ivan Lappo−Dan i l e v s k i
12 . . .

Within our approach the docstring contains both, version information and help mes-
sages. It is formatted according to the Restructured Text format [RST], allowing for
intuitive editing and automatic conversion to the UNIX man page format.

Now let us jump to the end of the code, where the main function is defined. We have
omitted some lines to focus attention on the main points.

219 def main ( argv=None ) :
220 date=s t r ( datet ime . now ( ) ) . s p l i t ( ’ . ’ ) [ 0 ] . s p l i t ( ’ ’ )
221 d e f a u l t s = {( ’ c ’ , ’ c l e an ’ ) : False ,
222 ( ’ ’ , ’ pa t i ence ’ ) : 3 00 . ,
223 . . .
224 . . .
225 ( ’ ’ , ’ maxjobs ’ , ) : 1000 ,
226 ( ’ t ’ , ’ t a r g e t ’ ) : [ ] ,
227 . . .
228 . . .
229 ( ’ ’ , ’ p r i o r i t y ’ ) :−1024 ,
230 . . .
231 }
232 append dic ( de fau l t s , u s e r d e f a u l t s )
233 p r e s e t s = {}
234 append dic ( p r e s e t s , u s e r p r e s e t s )
235
236 return Sc r i p t ( doc= do c , argv=argv , d e f a u l t s=de fau l t s , p r e s e t s=pr e s e t s ,
237 run=send the jobs , ) . run ( )
238 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
239 i f name == ” ma in ” :
240 from sys import e x i t
241 e x i t (main ( ) )

If the module is executed ( name == ” main ”), the program exits with the result
of main(). This function initializes some preset options and then returns the result of the
method run() of the newly created instance of the Script class, which lies at the heart of
the ODic module.

The Script class takes the modules’ docstring, the command-line input (argv), the
defaults (which contain information about possible command-line options and their preset
values), the presets (which contain user-specific parameter sets) and the send the job
function, which is linked to the method run, as input. A strength of this approach is
that the defaults dictionary defines the accepted command-line options, their standard
value, and the accepted format of the arguments. In Fig. B.1, we depict the usual flow
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Figure B.1: Handling of presets and arguments in the ODic module. The two dictionaries
on the left store relevant information, which is extracted during the initialization step by the
class methods in the middle column from the user and programmer defined entities on the
right. During the execution, the relevant information is available through the info and options
dictionaries.

of information from programmer and user to a working instance of a Script class. The
programmer does not have to care about option assignment and can use the automatically
checked and assigned option values via the options dictionary in other parts of the code.
According to line 225 of the presented module, options[’maxjobs’] will return either the
default value 1000 or another integer value specified by the user via the command-line
option ’–maxjobs’.

So far, we have seen that the ODic module allows for quickly implementing a command
line tool with full option and argument handling. The actual functionality of the program
is passed to the class instance through the variable run=send the job in line 237. We want
to conclude this example by highlighting the chain of events within this function. For this
reason, we have extracted the most important steps and assigned new line numbers. In
line 4 the entire parameter set is saved to config.pickle. This file is then transferred by
means of the UNIX tool scp to the remote machine.

We have omitted the part where the job cards and various other files are transferred
and only highlight line 10, where ssh is used to execute the script manage jobs.py on the
remote machine. manage jobs.py, which is written in the same style, then simply imports
the options dictionary from config.pickle, submits the jobs to the cluster and afterwards
organizes the output according to the parameters obtained from config.pickle.
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1 def s e nd th e j o b s ( opt i ons ) :
2 ” send the jobs to the s e l e c t e d g r id eng ine ”
3 . . .
4 p i c k l e .dump( options , open ( opt i ons [ ’ p r o j e c t ’ ]+ ’ / c on f i g . p i c k l e ’ , ’wb ’ ) )
5 sh ( [ ’ scp ’ , op t i ons [ ’ p r o j e c t ’ ]+ ’ / c on f i g . p i c k l e ’ , op t i ons [ ’ user ’ ]+ ’@’+opt i ons

[ ’ host ’ ]+ ’ : ’+opt i ons [ ’ p r o j e c t ’ ] ] , output=’ hide ’ )
6 . . .
7 i f not opt i ons [ ’ debug ’ ] :
8 print s t r ( datet ime . now ( ) ) . s p l i t ( ’ . ’ ) [0 ]+ ’ SEND JOBS: Sta r t ing

MANAGE JOBS on remote machine > j ob s w i l l be submitted ’
9

10 sh ( ’ ssh ’+opt i ons [ ’ user ’ ]+ ’@’+opt i ons [ ’ host ’ ]+ ’ ”cd ’+opt i ons [ ’ p r o j e c t ’
]

11 +’ ; ’+opt i ons [ ’ pythonpath ’ ]+ ’ manage jobs . py −−l o g ” ’ ,
s h e l l=True )

12 else :
13 . . .

As we have seen in this example, the ODic paradigm allows for consistent modular
programming, since options dictionaries can be passed from module to module. We have
also seen that the defaults dictionary relieves the programmer from explicit setting of
values and input handling, since all that needs to be specified is the name of the option
and the preset value. We conclude that the programming effort, which was a response to
the necessity of treating large amounts of job cards, actually led to a more consistent and
powerful collection of tools.

B.2 Separation of the transverse and the longitudinal

response

As pointed out in Sec. 6.2, the Rosenbluth-type separation of the longitudinal and the
transverse response in Eq. (6.2) is a linear equation for the two variables RL and RT. It
is thus theoretically sufficient to supply two measured cross sections with identical q2 and
Q2 but different scattering angle to obtain the unambiguous solution.

The results of such a separation with two data points are not satisfactory, neither
when performed with experimental data (cf. discussion in Sec. 10 of Ref. [BDS08]) nor
when performed with GiBUU simulations, where the response takes on unphysical, i.e.,
negative, values and lacks smoothness as depicted in Fig. B.2. Since the situation does not
improve with larger statistics for the single runs, we are forced to generate more points
and then perform a least-squares fit on the data. In this way, the separation for Figs.
6.11 and 6.13 was obtained. It is noteworthy that we achieved the best results with 50
data points, resulting in 1000 job cards for every figure. This massive amount of data has
been the main motivation for developing the advanced scripting framework described in
the previous section.

However, it has not been possible to further increase smoothness of the curve, while
the discussion of our model in Sec. 6.2.3 indicates that the separated responses should
coincide with the perfectly smooth responses from the scaling extrapolation. Especially
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Figure B.2: Longitudinal (solid line) and transverse (green line) for electron scattering on 40Ca
with q = 0.57 GeV.

interesting is the finding that more precise calculations1 resulted in less smooth curves.
In Fig. B.3 we find that the simulated data with low statistics (dashed line) exhibit larger
and apparently random deviations from the linear least-squares fit (dash-dotted line),
while the high statistics results (solid line) show a sort of oscillatory behavior.

It is interesting to draw the connection to the concept of superscaling. In order to
generate the data points for the Rosenbluth separation, only the incoming energy and
scattering angle can be varied, while q2 and Q2 have to be kept fixed, thus also fixing ψ′.
If our model were to exhibit perfect first-kind scaling, all kinematical combinations with
the same ψ′ should lead to an identical value of the scaling function, f(ψ′). However,
in Fig. B.4 we observe an oscillation of small amplitude of the scaling function of the
high statistics simulation when plotted over the incoming energy of the electron. This
oscillation can be seen for various values of ω, cf. Fig. B.5, though different in amplitude
and frequency, leading to an oscillation pattern of the separated responses, that manifests
itself in Fig. B.6. We consider this minor scaling violation effect, which only plays a role
for the Rosenbluth separation, to be a consequence of the imperfect angular isotropy of
our model, that enters as a numerical inevitability through the introduction of spatial
grids.

The Rosenbluth separation can still be successfully performed, when reducing the
precision for the single calculation but taking more data points into account. We conclude
that for the kinematical region of the QEP the scaling-extrapolation method for obtaining
the separated responses, presented in Sec. 6.2.3, should be preferred, since it is a factor
20 faster and at the same time leads to maximally smooth results.

1As the best parameter set we identified 10 “same-energy runs” with 500 “parallel ensembles”. For
the meaning of these parameters we refer the reader to Sec. 5.5.1 of Ref. [Bus08]
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Figure B.3: Rosenbluth plot (Σ vs. ǫ, as defined in Eq. (6.2)) of GiBUU simulated data for
electron scattering on 40Ca with q = 0.3 GeV and ω = 0.097 GeV. Simulations with high statistics
of 30 “same-energy runs” (solid line) are compared with lower statistics of 10 “same-energy runs”
(dashed line) and with the least-squares fit to both simulation (dotted and dash-dotted lines).
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Figure B.4: Scaling function of GiBUU simulated data for electron scattering on 40Ca with q
= 0.3 GeV and ω = 0.097 GeV vs. incoming electron energy. Simulations with high statistics
of 30 runs (solid line) are compared with lower statistics of 10 runs (circles).
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Figure B.5: Scaling function of GiBUU simulated data (high statistics) for electron scattering
on 40Ca with q = 0.3 GeV and ω = 0.01 GeV vs. incoming electron energy.

 0

 20

 40

 60

 80

 100

 120

 140

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

R
L
 [

1/
G

eV
]

ω [GeV]

low statistics
high statistics

(a) Longitudinal response

 0

 20

 40

 60

 80

 100

 120

 140

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

R
T
 [

1/
G

eV
]

ω [GeV]

low statistics
high statistics

(b) Transverse response

Figure B.6: Separated responses for electron scattering on 40Ca at fixed momentum transfer
q = 0.3 GeV for GiBUU simulations with high statistics (dotted lines) and low statics (solid
lines).
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Scaling variables

C.1 Derivation of the non-relativistic y-scaling vari-

able

West’s seminal analysis [Wes75] has included different scattering processes and different
scaling approaches. It has been the inspiration for many following studies. In this section,
we focus on how the y-scaling variable, derived in another context in Sec. 4.2, appears in
West’s original approach. As a starting point, we examine an interaction that takes place
in the non-relativistic quantum mechanical picture (cf., e.g., Sec. 9.1 of Ref. [GY03]),
where the double-differential cross section is given by

dσ

dk0′dΩk′
=
∑

f

|〈k′ψf |HI|kψ0〉|2δ(k0′ + Ef − k0 −E0)
k′2

(2π)3v

d|k′|
dk0′

. (C.1)

with HI being the part of the Hamiltonian responsible for the interaction between target
and probe, in this specific case given by the Coulomb potential, Ψ0,f being the initial-
and final-state nucleus wave with corresponding energies, E0, Ef , and v the velocity of
the incoming electron. Neglecting higher-order effects of the nucleus’ Coulomb field on
the electron, both, the incoming and the outgoing electron, are modeled as plane waves.
The nucleus is supposed to be described as a simple product of radial waves of the form
ψ0(r) ∝ exp(−β|r|)/|r|.

Expressing the Coulomb potential as the integral over the charge distribution,

Vi(r) =

∫

d3r′
ρi(r

′)

|r− r′| , (C.2)

one is led to a separation of the RHS of Eq. (C.1) into the Rutherford cross section,

(
dσ

dΩk′

)

Ruth

=
α2

4k02
1

sin4(θ/2)
(C.3)

and the structure function,

W (ω, q) =
∑

f

∣
∣
∣
∣
∣
〈ψf |

∑

i

Fi(q
2) exp(iqri)|ψ0〉

∣
∣
∣
∣
∣

2

δ(Ef − E0 − ω), (C.4)
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which consists of a sum of matrix elements of the elastic form factor1,

Fi(q
2) =

∫

d3r exp(iqr)ρi(r). (C.5)

The separation reads
d2σ

dk0′dΩk′
=

(
dσ

dΩk′

)

Ruth

W (ω, q). (C.6)

Since one is interested in an inclusive process, in Eq. (C.4) knowledge of all final
states, |ψf〉, is required. One can circumvent this by first writing the δ function as a
Fourier transform in time2 and using the relation exp(itHT)|ψ0,f〉 = exp(itE0,f )|ψ0,f〉.
Applying the Heisenberg equation for the position operator3,

[ri, H ] = [ri, HT] = i
∂ri
∂t

→ ri(t) = exp(iHT)ri(0) exp(−iHT), (C.7)

and using the completeness relation,
∑

f |ψf〉〈ψf | = 1, one is led to another representation
of the structure function,

W (ω, q) =

∫ +∞

−∞

dt

2π
exp(iωt)〈ψ0|

∑

i,j

Fi(q
2)Fj(q

2) exp(iq · [rj(t) − ri(0)]|ψ0〉, (C.8)

where instead of the knowledge of the final-state wave functions one demands the knowl-
edge of the position operators’ time evolution.

By using Heisenberg’s equations once more, one is led to a representation of high
symmetry4,

W (ω, q) =

∫ +∞

−∞

dt

2π
exp(iωt)

∑

i

〈ψ0|Fi(q2) exp(−iqri) exp[i(E0 −HT)t]

×
∑

j

Fj(q
2) exp(iqrj)|ψ0〉

. (C.9)

This can be rewritten in momentum representation as

W (ω, q) =

∫ +∞

−∞

dt

2π
exp(iωt)

∑

i,j

Fi(q
2)Fj(q

2)

×
∫

d3k1

(2π)3
. . .

d3kN
(2π)3

〈ψ0|k1, . . . ,kj + q, . . . ,kN〉

× 〈k1 . . .kN | exp[i(E0 −HT)t]|k1 . . .kN〉〈k1, . . . ,ki + q, . . . ,kN |ψ0〉

(C.10)

1Written as a function of q2 only, since the nucleon charge distributions, ρi(r), are supposed to be
radially symmetric.

2Reading

δ(Ef − E0 − ω) =

∫
∞

−∞

dt

2π
exp[−it(Ef − E0 − ω)].

3Here only the nucleon Hamiltonian, HT, describing the nucleon’s kinetic energy and the nucleon-
nucleon interaction, plays a role since, by assumption of a Coulomb interaction potential, the other
Hamilton operators commute with the nucleon positions, ri.

4Note that F ∗

i (q
2) = Fi(q

2) due to the assumed radial symmetry of the charge distribution.
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Assuming that the nucleon-nucleon interaction is momentum independent and all par-
ticles have the same mass, MN , one can evaluate the Hamilton operator,

HT〈k1, . . . ,ki + q, . . . ,kN |ψ0〉 =

[

E0 +
(ki + q)2 − k2

i

2MN

]

〈k1, . . . ,ki + q, . . . ,kN |ψ0〉
(C.11)

and reduce the time integration to a δ function again. One thus obtains

W (ω, q) =
∑

i,j

Fi(q
2)Fj(q

2)

∫
d3k1

(2π)3
. . .

d3kN
(2π)3

× 〈ψ0|k1, . . . ,kj + q, . . . ,kN〉δ
[

ω − (ki + q)2 − k2
i

2MN

]

〈k1, . . . ,ki + q, . . . ,kN |ψ0〉.
(C.12)

The δ function demands that in every term of the sum the energy loss be compensated
by one nucleon picking up the momentum transfer. From now on, we focus on the diagonal
terms of the sum5 only. The structure function then reads

W (ω, q) =
∑

i

|Fi(q2)|2
∫

d3k1

(2π)3
. . .

d3kN
(2π)3

|〈k1 . . .kN |ψ0〉|2δ
[

ω − (ki + q)2 − k2
i

2MN

]

.

(C.13)
As pointed out before, the nucleus is supposed to be composed of independent par-

ticles. Thus, using normalized6 wave functions, ui, one can write the momentum-space
representation of the ground state as

〈ψ0|k1 . . .kN 〉 = ΠN
i=1ui(ki). (C.14)

One obtains, by using the fact that all integrals not containing the δ function reduce
to 1, the following expression for the structure function

W (ω, q) =
∑

i

|Fi(q2)|2
∫

d3ki
(2π)3

|ui(ki)|2δ
[

ω − 2kiq + q2

2MN

]

. (C.15)

Finally, one can use the fact that all wave functions are supposed to be identical and
given by u(r) = (β/2π)1/2 exp(−β|r|)/|r|. Their momentum-space representation then
reads u(k) = (8πβ)1/2/(k2 + β2). Integrating the δ function gives

W (ω, q) =
∑

i

|Fi(q2)|2
βMN

πq

1

[(2MNω − q2)/2q]2 + β2
. (C.16)

If one now also uses that the particles are supposed to be point-like, i.e.,
∑

i |Fi(q2)|2 =
ZQ2, with charge Q = 1, and introduces the kinematical scaling variable

y =
2MNω − q2

2q
, (C.17)

5For sufficiently large q, the non-diagonal terms can be shown to vanish, cf. discussion of Eq. (4.36)
in Ref. [Wes75].

6With the normalization chosen such that
∫

d3
ki

(2π)3 |ui(ki)|2 = 1.
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one obtains

W (ω, q) = Z
MN

πq

β

y2 + β2
, (C.18)

which clearly peaks at y = 0, i.e, for the kinematics of the non-relativistic QEP, where
ωnon−rel
QEP = q2/(2MN). To make the connection to the scaling behavior of the non-

relativistic Fermi gas in Eq. (4.9), we interpret β as the only free scale and rewrite the
fraction in Eq. (C.18) as

1

β

1

(y/β)2 + 1
. (C.19)

Expanding to first order in (y/β)2 we find

W (ω, q) = Z
MN

πqβ

{

1 −
(
y

β

)2

+ O
[(

y

β

)4
]}

, (C.20)

an expression for the response surprisingly similar to Eq. (4.9).
The appearance of y itself is, however, not very surprising, since y enters during the

integration within Eq. (C.15) as the value of the longitudinal momentum, kz, demanded
by energy conservation. The underlying origin of the scaling function is the same energy-
conservation condition as in Eq. (4.6).

We conclude with a summary of the derivation: Starting with certain assumptions
about the interaction as well as the electron- and nucleus-wave functions, one is able to
show that the non-trivial part of the electron-nucleus cross section depends strongly on
one-nucleon knockout kinematics. It is noteworthy that here a general expression for
the electron-nucleus cross section has been the starting point, while all the approaches
presented in Chapter 4 start out with the one-nucleon-knockout scenario and aim to
describe the response in the kinematical region around the quasi-elastic peak.

C.2 Scaling in plane-wave impulse approximation

In Eq. (4.18) we have presented the PWIA scaling variable, y. As an analog to Eq. (4.38),
we can introduce its dimensionless counterpart, Υ = y/kF, and also perform a superscaling
analysis. In the context of the derivation of Eq. (4.38), we have already discussed that
the variables yψ and y take on similar values in the kinematical region of the QEP. It
is an experimental finding, cf. e.g. Ref. [DS99], that the dimensionless PWIA-scaling
functions, f = kFF , also satisfy superscaling.

Using de Forest’s off-shell prescription [DF83], described in Appendix D.1, we perform
a y-scaling analysis on our simulated cross sections. As one can see from Fig. C.1c, the
violation of second-kind scaling, namely a spread in the scaling functions at Υ, ψ′ > −0.5,
already seen in Fig. 6.3c, persists. In addition, we see a general lowering of the response as
now the curve for 12C (dotted line) fits the data at the QEP, whereas in Fig. C.1c it over-
shoots the data. We consider this to be an effect of differing parameters in the computation
of the off-shell cross sections. In our computation the values MA(12C) = 11.178 GeV and
M0

A−1(
11B) = 10.255 GeV (MA(197Au) = 183.473 GeV and M0

A−1(
196Pt) = 182.540 GeV

respectively), according to Ref. [WAT03], are used. In addition, we apply the nucleon
form factors from Sec. 2.3.2.

114



C.2. Scaling in plane-wave impulse approximation

0

0.2

0.4

0.6

0.8

1

-2 -1.5 -1 -0.5 0 0.5 1

12C

f(
)

Y

Y
27Al

56Fe

197Au

(a) Experimental PWIA scaling functions, f = kFF ,
with data taken from the world data analysis in Ref.
[DS99].
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(b) GiBUU simulation of PWIA scaling functions.
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Figure C.1: Second-kind scaling analysis of dimensionless PWIA scaling functions f vs. the
corresponding scaling variable, Υ, for electron scattering on 12C, 27Al, 56Fe and 197Au at a
constant momentum transfer of q=1.0 GeV and incoming electron energy of 3.6 GeV.
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C.3 Scaling of ∆-excitation responses

In Sec. 4.7, we have already pointed out that methods have been developed to apply su-
perscaling techniques to kinematical regions associated with the ∆ excitation. Let us state
the most important steps of this approach, following the formalism in Ref. [MAB+09]. It is
our aim to analyse the non-quasielastic contributions to the cross section, dσ/dΩk′dk

0′. In
the original approach, the QE contribution in the ψ′ > 0 region is estimated by means of
a superscaling extrapolation, meaning that an experimentally motivated scaling function
is multiplied with the single-nucleon contributions. When analyzing the GiBUU response
this step can be omitted, since the code allows for switching off QE and BG contributions.

Now we will follow the general steps of the scaling analysis, described in Sec. 4.1.
Starting from the RFG picture, the scaling variable can be calculated to be [MAB+09]

ψ∆ =
1√

ǫF − 1

λ− τρ∆
√

(1 + λρ∆)τ + κ
√

τ(1 + τρ2∆)
(C.21)

with the scaled variables introduced in Eq. (4.32) and the following variables accounting
for the larger mass of the ∆ resonance7:

µ∆ =
m∆

MN
, ρ∆ = 1 +

µ2
∆ − 4τ

4τ
. (C.22)

The scaling function can then be obtained through dividing the non-quasielastic cross
section by the single-nucleon contributions,

fnon−QE(ψ∆) = kF

(
dσ

dΩk′dk
0′

)non−QE

(
dσ

dΩk′

)

Mott
(vLG∆

L + vTG∆
T )
, (C.23)

similar to Eq. (4.57). Due to the different spinor structure of the spin-3/2 final state, the
single-nucleon contributions take on a more complicated form8

G∆
L =

κ

4τ
A
[
(1 + τρ2∆ + 1)w∆

2 − w∆
1

]
, (C.24)

G∆
T =

1

2κ
Aw∆

1 , (C.25)

with

w∆
1 =

1

2
(µ∆ + 1)2(2τρ∆ + 1 − µ∆)(G2

M,p + 3G2
E,n), (C.26)

w∆
2 = (µ∆ + 1)2

2τρ∆ + 1 − µ∆

1 + τρ∆
G2

M,p + 3G2
E,n + 4

τ

µ2
∆

G2
C∆. (C.27)

7Here we follow the approach of Ref. [MAB+09], while in Refs. [MDS02, ABC+99, ABC+05] ρ∆ =
1 + (µ2

∆ − 1)/(4τ) is used instead.
8Note that when comparing the single-nucleon responses, e.g. GT , in Ref. [MAB+09] with the ones

in Ref. [ABC+05] we find several differences, the most evident being an overall factor 4. Also when
comparing Eq. (20) of Ref. [MAB+09] to Eq. (76) of the original derivation [ABC+99], we find a factor
of 2 difference.
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Figure C.2: First-kind scaling analysis of GiBUU simulated ∆ excitation data for electron
scattering on 12C at momentum transfers, q, of 0.65, 1.04 and 1.31 GeV and incoming energies
of 0.55 and 3.6 GeV. Note, that the curve for q = 0.65 GeV does not span the entire range of
ψ′ due to kinematical restrictions.

While in other analyses we have used the form factors given in Sec. 2.3.2, here we apply
the parameterization of Ref. [MAB+09] for GE,n, GM,p and GC∆.

When implementing the approach described above, as well as the one from Ref.
[ABC+05] and the one given by Eqs. (77) and (78) in Ref. [ABC+99], we have found
scaling functions with shapes similar to those obtained from QE scattering and reason-
able scaling behavior following the implementation in Ref. [ABC+05]. However, the ab-
solute values differ strongly and, as the literature on this topic is limited and exhibits
some inconsistencies (cf. footnotes in this section), we have not been able to resolve the
differences in the scope of this work. Hence, in Figs. C.2 and C.3 we present scaling
functions, obtained by multiplying the GiBUU scaling functions by a fixed value, so that
the experimental values are reproduced. If Fig. C.3, we find that second-kind scaling is
slightly broken. As the deviations strongly resemble those already seen for electron scat-
tering in Sec. 6.1.1, we consider that the same mechanism, i.e., a coupling of density and
momentum in the LTF ansatz, is to be held accountable. First-kind scaling is to some
degree observed in C.2, while not being as good as for electron scattering. We assume this
to be a consequence of the fact that the original derivation [ABC+99] includes the limit
of small Fermi momenta9 and is hence not an exact description of the response. It should
also be noted that the form factors used in the aforementioned studies on this topic differ
from the ones introduced in Sec. 2.4.3 and used in our simulation.

9Confer the derivation of Eq. (71) therein.

117



Appendix C. Scaling variables

0

0.2

0.4

0.6

0.8

1

1.2

-3 -2 -1 0 1 2 3

f(
Ψ
’)

Ψ’

12C

27Al

56Fe

197Au

Figure C.3: Second-kind scaling analysis of GiBUU simulated ∆ excitation data for electron
scattering on 12C, 27Al, 56Fe and 197Au at a constant momentum transfer of q=1 GeV and
incoming electron energy of 3.6 GeV.
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Additional formulae

D.1 De Forest’s cc1 prescription

In his original work [DF83] de Forest introduces an extrapolation of Eq. (2.41) for the
off-shell case by modifying the term that involves σµν . With this extrapolation he derives
an off-shell prescription for the single-nucleon cross section. He admits, however, that the
extrapolation is not based on a fundamental theory and hence not unambiguous, so that
he actually presents two possibilities. Here, we will describe the one referred to as σcc1.

Since we only make use of the off-shell prescription in order to perform the PWIA
scaling analysis in Sec. C.2, we do not write the cross section in the original form but
instead in the one given in the appendix of Ref. [DS99]. There, the single-nucleon off-shell
cross section reads

σeN(q, ω; p, E) =

(
dσ

dΩk′

)

Mott

(vLw̃L + vTw̃T) , (D.1)

where all quantities except the off-shell responses, w̃L and w̃T, are already known from
the previous chapters1. We will express these factors by means of the scaled variables
introduced in Eq. (4.32) and the newly defined quantities [DS99]

EN =
[
(q + p)2 +M2

N

]1/2
,

Ē = (M2
N + p2)1/2,

λ̄ =
ω̄

2MN
=
EN − Ē

2MN
,

τ̄ = κ2 − λ̄2,

η =
p

MN

,

δ2 =
τ̄

κ2

(
EN + Ē

2MN

)2

− (1 + τ̄).

(D.2)

Note that, due to fixing the excitation energy, ω and q are not independent anymore and

1The excitation energy, E , is known from Eq. (4.21). The kinematical factors vL,T were introduced in
Eq. (4.45).
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inserting Eq. (4.21) into Eq. (4.14) one obtains

ω = EN −M0
A +

√

(M0
A−1)

2 + p2 + E . (D.3)

Leading to an explicit dependence on the experimentally observed masses.
As one is interested in the single-nucleon cross section, an isospin average has to be

performed on the Sachs form factors resulting in the quantities

G̃2
E(τ) ≡ ZG2

Ep +NG2
En,

G̃2
M(τ) ≡ ZG2

Mp +NG2
Mn,

∆G̃(τ) ≡ ZGEpGMp +NGEnGMn.

(D.4)

This also implicates a modification of the Dirac and Pauli form factors (referred to as
F1, F2 in Sec. 2.3.2).

W̃1(τ) ≡ τG̃2
M,

W̃2(τ) ≡ 1

1 + τ
(G̃2

E + G̃2
M),

∆W̃1(τ, τ̄ ) ≡ τ − τ̄

(1 + τ)2
(G̃2

E + G̃2
M − 2∆G̃),

∆W̃2(τ, τ̄ ) ≡ τ − τ̄

(1 + τ)2
(G̃2

E + G̃2
M).

(D.5)

Finally, the off-shell responses of the nucleon read

w̃1(q, ω; p, E) =
1

2κ
√

1 + η2

(
κ2

τ̄

)[

G̃2
E + δ2(W̃2 + ∆W̃1) + (1 + τ̄ )∆W̃1 + (1 + τ)∆W̃2

]

w̃2(q, ω; p, E) =
1

2κ
√

1 + η2

[

2τ̄ G̃2
E + δ2(W̃2 + ∆W̃1)

]

.

(D.6)

D.2 Kinematics of the Vacuum QEP

D.2.1 Non-relativistic kinematics

When considering small momentum transfers, q ≪ MN , the non-relativistic approxima-
tion for the kinetic energy of the nucleon is justified. Energy conservation leads to

ω = E ′
kin − Ekin → ωQEP =

q2

2MN
− 0. (D.7)

Consequently, the four-momentum transfer is given by

Q2 = q2 − q4

4M2
N

. (D.8)

Still using the ultra-relativistic approximation for the electron,

Q2 = 2k0k0
′
(1 − cos θ), (D.9)
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one obtains the following relation for the momentum transfer as a function of incoming
energy and scattering angle

q2 = 2MN

[

MN + k0(1 − cos θ) −
√

[MN + k0(1 − cos θ)]2 − 2k02(1 − cos θ)

]

. (D.10)

D.2.2 Relativistic kinematics

In the relativistic case, energy conservation at the QEP reads

ωQEP =
√

M2
N + q2 −MN . (D.11)

Consequently
q2QEP = ω2

QEP + 2ωQEPMN (D.12)

and
Q2

QEP = 2MNωQEP. (D.13)

Starting again with the ultra-relativistic expression for the four-momentum transfer, Eq.
(D.9), one can relate the three momentum transfer to incoming energy and scattering
angle via

q2 =

(

M2
N + (1 − cos θ)(k0

2
+ k0MN )

MN + k0(1 − cos θ)

)2

−M2
N . (D.14)

D.3 In-medium shift of ψ at the QEP

Let us now translate the above equations into the scaled variables introduced in Eq. (4.32).
First of all, as

λQEP =
Q2

4M2
N

= τQEP, (D.15)

the vacuum scaling variable,

ψ =
1√

εF − 1

λ− τ
√

(1 + λ)τ + κ
√

τ(τ + 1)
, (D.16)

takes on the value 0 at the vacuum QEP. To account for the observed shift of the QEP,
one introduces an in-medium energy shift, Eshift, leading to the following modifications

λ′ =
ω −Eshift

2MN
= λ− ∆λ (D.17)

and
τ ′ = κ2 − λ2 = κ2 − λ2 + 2λ∆λ− ∆λ2 = τ + 2λ∆λ− ∆λ2. (D.18)

These quantities have to be inserted in Eq. (D.16) in place of λ and τ in order to obtain
the shifted scaling variable ψ′. With vacuum-QEP kinematics,

τQEP = κ2 − λ2QEP = κ2 − τ 2QEP,

τQEP =

√

1

4
+ κ2 − 1

2
,

(D.19)
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Figure D.1: Value of the shifted scaling variable, ψ′ at the vacuum QEP (solid line) as a
function of q, calculated with the canonical value of δλ = 0.0107, corresponding to Eshift = 0.02
GeV.

it is possible to write ψ′
QEP = ψ′(κ, ω′ = ω′

QEP,vac) as a function of κ only:

ψ′
QEP = −

[(

2

√

κ2 +
1

4
− 1

)

∆λ− (∆λ)2 + ∆λ

]

×
{

−1

4

(

2∆λ− 2

√

κ2 +
1

4
− 1

)[

2

(

2

√

κ2 +
1

4
− 1

)

∆λ+ 2

√

κ2 +
1

4
− 2(∆λ)2 − 1

]

+
1

2

[(

2

(

2

√

κ2 +
1

4
− 1

)

∆λ+ 2

√

κ2 +
1

4
− 2(∆λ)2 − 1

)

×
(

2

(

2

√

κ2 +
1

4
− 1

)

∆λ+ 2

√

κ2 +
1

4
− 2(∆λ)2 + 1

)]−1/2

κ







−1/2

(D.20)

Contrary to the non-relativistic case mentioned in the discussion of first-kind scaling
in Sec. 6.1.1, it is not easy to see that ψ′ ≈ −const/κ. But when plotting the function,
as done in Fig. D.1, this behavior is clearly observed.
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Deutsche Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Streuung von Leptonen an Kernen. Leichte
Leptonen, also Elektronen und Neutrinos, sind bestens als Sonde zur Untersuchung der
Eigenschaften von Kernen und Nukleonen geeignet, da sie nur elektroschwach mit diesen
wechselwirken und zudem nicht im Vakuum zerfallen. Demgegenüber haben hadronische
Sonden, z.B. Pionen, den Nachteil, dass sie auch an der starken Wechselwirkung teil-
nehmen, die für den Zusammenhalt von Nukleonen verantwortlich ist. Sowohl Kerne als
auch Nukleonen stellen Grundbausteine der Materie dar, die sich als komplex gekoppelte
Vielteilchensysteme bisher einer umfassenden theoretischen Beschreibung entziehen. Die
weitere Erforschung ihrer Eigenschaften ist daher ein wichtiges Ziel im Sinne der Grund-
lagenforschung.

Streuprozesse von Neutrinos und Kernen sind auch aus einem anderen Grund interes-
sant. Die Entdeckung von Neutrinooszillationen hat aufgezeigt, dass Neutrinos eine zwar
kleine aber von Null verschiedene Masse besitzen und zudem von der schwachen Wech-
selwirkung nur in einer Mischung aus drei Massezuständen an andere Teilchen gekoppelt
werden. Weder die Massen noch die Mischungsverhältnisse sind bis dato mit hinreichender
Genauigkeit bekannt, so dass eine Lücke in dem Verständnis der elementaren Bausteine
der Natur klafft. Streuexperimente mit Neutrinos können helfen, diese Unsicherheiten zu
beseitigen. Mehrere Experimente dieser Art werden derzeit weltweit durchgeführt bzw.
vorbereitet.

Da Neutrinos nur schwach mit Materie wechselwirken, sind bei der Analyse von solchen
Experimenten bestimmte Eigenschaften, wie z.B. die Energie der einfallenden Teilchen,
nur indirekt, unter Verwendung von Modellannahmen, zu bestimmen. Folglich ist das
theoretische Verständnis der Vorgänge im Kern und seiner Reaktion auf elektroschwache
Anregungen unerlässlich, bzw. noch nicht ausreichend, da bestimmte nukleare Eigen-
schaften, die auch schon bei elektromagnetischer Anregung auftreten, bis dato nicht kon-
sistent beschrieben werden können.

Das Ziel dieser Arbeit ist est es, zu dem Verständnis der Wechselwirkung von Lepto-
nen mit Kernen beizutragen. Dazu wird mit Hilfe des GiBUU-Modells eine numerische
Simulation des Streuprozesses vorgenommen, bei der Annahmen über den Grundzustand
des Kerns und die Funktionsweise der Wechselwirkung eine entscheidende Rolle spie-
len. Durch Vergleich mit experimentellen Daten für Elektron-Streuprozesse können wir
mehr über die Auswirkungen dieser Annahmen herausfinden und zudem unsere Vorher-
sagen für Neutrino-Streuprozesse besser einschätzen. Dabei können durch Anwendun-
gen besonderer Analyseverfahren, z.B. der superscaling-Analyse oder der Separation der
longitudinalen und der transversalen Antwortfunktionen, weitere Erkenntnisse gewonnen
werden.
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guter Freunde, zu bewältigen gewesen. Ihnen gilt mein besonderer Dank.

135



136



Erklärung zur Urheberschaft
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