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1 Introduction

In particle and hadron physics, all particles and their interactions can be described
at least in principle by the “standard model”. This quantum field theory takes the
elementary particles quarks, leptons and the force-mediating particles for strong, elec-
tromagnetic and weak interaction as degrees of freedom and is so far in agreement with
all experimental data (apart from neutrino masses and the absence of dark-matter can-
didates). One aim of this theory is the description of physical processes by analytic
formulas. Unfortunately, these formulas are often given as infinite series which indeed
are analytical but cannot be used for numerical calculations. Thus, methods have to be
developed to approximate this infinite series by finite sums.

In perturbative quantum field theories, the series are expanded as a Taylor series in terms
of the coupling constant of a considered kind of interaction. If the coupling constant
is small, the higher the order of a term the less important it will be and the series
can be approximated by a finite sum. This is the case for electromagnetic and weak
interactions.

In quantum chromodynamics (QCD), the theory of strong interaction, the coupling
constant is not small for all energies. Though it is small for high energies, it is not
for the lower-energy regime. So, perturbative QCD is only possible in the high-energy
region. In the lower-energy region another ansatz has to be used. One possibility is
an effective field theory. Instead of expanding in terms of a small coupling constant,
the importance of terms is evaluated by comparing scales: A scale describing the region
the effective theory should be applicable in has to be determined. This scale should be
separated from the scale of the region including degrees of freedom which are not taken
into account. E.g., a typical momentum or a typical energy for a given problem is taken
as the scale describing the considered region.
Due to the effect of confinement in that lower-energy region of QCD, quarks cannot be
treated as unbound. There, hadrons have to be taken as the relevant degrees of freedom
instead of quarks and gluons. Thus, developing an effective field theory describing
QCD in this energy regime includes the identification of the relevant degrees of freedom,
coupling constants and a power counting scheme to order processes by importance.
Thereby, the coupling constants can be fixed by comparison with experimental data. Of
course, a particular effective field theory is only valid while the conditions via which it
is defined are fulfilled and is not valid anymore, at least, when more degrees of freedom
than the considered ones become active. So, while developing an effective theory for
QCD at lower energies, three questions have to be answered:

• Which hadrons should be taken as the relevant degrees of freedom?

• Which power counting scheme should be taken i.e. how should different processes
be ordered?

• For which energy regime is the theory valid?
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In the low-energy region of QCD, all dynamics are well-described by the effective field
theory called chiral perturbation theory (ChPT). For this theory, the relevant degrees of
freedom are the Goldstone bosons — pions, kaons and the η-meson — associated with
the spontaneous symmetry breaking of QCD (see chapter 2.2 for an introduction to spon-
taneous symmetry breaking and Goldstone bosons). These pseudoscalar mesons have
low masses compared to other hadrons and, therefore, ChPT is valid for low energies.

The advantage of both a perturbative and an effective quantum field theory is that the
approximation of the infinite series can be improved systematically by taking the next
higher order in the expansion. Additionally, the influence of the next higher order is
smaller than the influence of the already included orders and, therewith, the intrinsic
errors of the approach can be controlled. In contrast to this, a phenomenological ap-
proach might describe the dynamics of a system successfully but without being able to
control the intrinsic errors. A systematic improvement to get a better accuracy is not
possible in that case.

Unfortunately, the energy region in which ChPT is valid is not close to the energy region
of perturbative QCD. So, the dynamics of hadronic resonances, e.g., the vector mesons
ρ0, ω and φ with masses between 0.7 and 1GeV, and their interactions with the pseu-
doscalar Goldstone bosons can neither be described with ChPT nor with perturbative
QCD. Therefore, both systematic approaches as effective field theories and phenomeno-
logical models for this energy region have been developed. In the following, they will be
used to explain the differences between these two approaches.
An example for a phenomenological approach is the standard vector meson dominance
(VMD) model which will be explained in section 2.4.1. Indeed, the present thesis studies
the interactions of hadrons with electromagnetism, i.e. real and virtual photons. Here,
the VMD model [Sak69] is the most common approach. The normalised transition form
factor for, e.g., the decay of a vector meson into a pseudoscalar meson and a virtual
photon with momentum q via a virtual vector meson with mass m is given by

FVMD(q) = m2

m2 − q2 . (1.1)

This model approach has the advantage that calculations can be performed easily. But
it does not include a rule how to improve it systematically.
In contrast to this, the most general theory would include all possible powers of q2

together with coupling constants1:

Fgeneral(q) = g0
m2

m2 − q2 + (1− g0) + g1
q2

m2 + g2
q4

m4 + . . . (1.2)

1The coupling constant for the constant term is equal to one minus the coupling constant for the term
of standard VMD type to make sure that the normalised form factor equals 1 at q2 = 0.
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1 Introduction

As it is an infinite series, it is impossible to fix all parameters. In an effective theory,
the coupling constants g0, g1, . . . will be ordered in powers of importance according to a
breakdown scale Λ. This breakdown scale denotes the energy scale where new degrees
of freedom become important and where the constraints according to which the effective
theory was developed are not fulfilled any more. Thus, m/Λ would be small in the case
discussed here. As an example, suppose that the coupling constants are ordered as

g1, g2 ∈ O(1), g0 ∈ O(mΛ ) and gi ∈ O(m
ki

Λki
) for i ≥ 3, ki ≥ 2.

With this power ordering, it is possible to perform calculations up to a given order
including a finite number of coupling constants2, e.g., taking in account the terms pro-
portional to g0, g1 and g2 which are of order O(mΛ ) and larger. The calculations can
be improved systematically by adding the next order O(m2

Λ2 ). Furthermore, errors of
calculations up to order O(mΛ ) can be estimated by the differences between calculations
with and without the terms of the order O(m2

Λ2 ) as those corrections are smaller than
calculations with leading orders.

As the standard VMD model and other hadronic models are approaches without rules for
systematic improvements, one aim of recent research is to develop effective field theories
for the energy region of the hadronic resonances. The power counting scheme this thesis
is based on was recently proposed in [LL08]. It involves both pseudoscalar Goldstone
bosons and the nonet of light vector mesons as degrees of freedom and treats them both
on equal footing. In section 2.4.2, this scheme will be explained in more detail.

Now, the question is if this counting scheme is able to describe experimental data and
if it describes them as good as or even better than the standard phenomenological
approaches, in particular the standard VMD model. In [LL08, LL09] radiative decays
of light vector and axial-vector mesons and hadronic three-body decays of light vector
mesons were considered yielding good agreement with the experimental data. In this
thesis, results of calculations based on this new counting scheme are presented and
compared to both the standard VMD calculations and the available data for the following
types of decays:

• Decays of vector mesons into a pseudoscalar meson and a dilepton3 (chapter 3),
• decays of pseudoscalar mesons into a dilepton and either a vector meson or a real

photon (see chapter 4),
• decays of pseudoscalar mesons into two dileptons (chapter 5).

As an introduction, the relevant theoretical basics are outlined in chapter 2. In chapter
6, a summary and an outlook is presented.

2Those constants have to be fixed by comparison with experimental data before.
3In this context, dilepton refers to either a dielectron or dimuon as the considered decaying particles
are not heavy enough to decay into a ditauon.
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2 Theoretical Basics

In this thesis, radiative decays of the light vector mesons ω and φ and of the pseudoscalar
mesons π0, η and η′ are examined. The decays will be described by effective field theories
including among others these mesons as relevant degrees of freedom.

To develop the Lagrangians for those theories describing the considered decays, the
QCD Lagrangian involving quarks as degrees of freedom has to be considered first. Its
symmetries yield the particle multiplets and allows to identify the pseudoscalar mesons
as Goldstone bosons of the spontaneously broken SU(3)L × SU(3)R symmetry (sections
2.1, 2.2). In ChPT, these Goldstone bosons are considered as the relevant degrees of
freedom for an effective field theory for the low-energy regime (section 2.3). Additionally,
the dynamics and interactions of vector mesons with external electromagnetic fields and
Goldstone bosons are of interest. For that, both the phenomenological approach VMD
and the counting scheme for light vector mesons proposed in [LL08] are explained in
section 2.4. On the basis of this counting scheme, the effective leading-order Lagrangian
for light vector mesons and their interaction with external electromagnetic fields and the
pseudoscalar Goldstone bosons is developed in section 2.5.

For the calculations of transition matrix elements, form factors and decay widths per-
formed in the following chapters, Feynman diagrams and rules are practical tools to
simplify calculations. The rules needed for the decays studied in this thesis are listed in
section 2.6.
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2.1 The QCD Lagrangian and Its Symmetries

2.1 The QCD Lagrangian and Its Symmetries

In this section, the QCD Lagrangian with quarks as degrees of freedom and its symme-
tries are considered. It will be used to derive the particle multiplets and to identify the
pseudoscalar mesons as Goldstone bosons in the next section 2.2. As we are interested
in light pseudoscalar and vector mesons which do consist of the light quarks, up, down
and strange, and do not contain the heavy quarks, charm, top and bottom, the QCD
Lagrangian will be restricted to the light quarks.

The QCD Lagrangian for the light quarks equals [Sch03]

LQCD =
∑

f=u,d,s
q̄f
(
i /D −mf

)
qf −

1
4Gµν,aG

µν
a = q̄

(
i /D −M

)
q − 1

4Gµν,aG
µν
a (2.1)

with the quark-mass matrix M =
(
mu 0 0
0 md 0
0 0 ms

)
. Hereby, the quark field q = (qu, qd, qs)T

also contains indices for colour and spin which are suppressed due to better readability,
i.e. for each f ∈ {u, d, s}, qf is a three-component object in colour space. Additionally,
the Lagrangian includes the gauge-covariant derivative

Dµ = ∂µ − ig
8∑

a=1

λCa
2 Aµ,a (2.2)

with eight independent gauge potentials Aµ,a due to the eight-parameter group SU(3)
and the Gell-Mann matrices

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

 . (2.3)

The superscript C of the Gell-Mann matrices in Eq. (2.2) denotes that those matrices
are acting in colour space.
Furthermore, the field strength tensor is defined as

Gµν,a = ∂µAν,a − ∂νAµ,a + gfabcAµ,bAν,c (2.4)

whereby the last term includes the structure constants fabc of the symmetry group
SU(3).

11



2 Theoretical Basics

2.1.1 Conserved Currents and Hadron Multiplets

According to “Noether’s Theorem”, there exists a conserved current for each continuous
symmetry transformation that leaves the Lagrangian of a physical system invariant (see
[Mos99, Sch03] for more information). So, for all a = 1, . . . N with N being the number
of independent symmetry transformations one gets a current Jaµ which fullfils

∂µJ
aµ = 0 (2.5)

and a corresponding time-independent charge

Qa(t) :=
∫

d3x Ja0 (~x, t) ≡ Qa. (2.6)

The QCD Lagrangian (2.1) it invariant under the symmetry group U(1), i.e. for eiα ∈
U(1) with α ∈ R

q 7→ Uq = eiαq, Gµν,a 7→ Gµν,a. (2.7)

According to Noether’s Theorem, this continuous symmetry yields the conserved charge
“baryon number”,

B := 1
3

∫
d3x q†q, (2.8)

which assigns ±1/3 to quarks and antiquarks, respectively, +1 to baryons and 0 to
mesons.
Furthermore, the numbers of quarks of a given flavour,

U := +
∫

d3x q†uqu, D := −
∫

d3x q†dqd, S := −
∫

d3x q†sqs, (2.9)

are conserved since the Lagrangian is invariant under the transformation

qf 7→ eiαf qf , αf ∈ R, (2.10)

for each flavour f ∈ {u, d, s} separately.

In addition to these exact symmetries, the QCD Lagrangian is invariant with respect to
the transformation (

qu
qd

)
7→ U

(
qu
qd

)
, U ∈ SUf(2), (2.11)

12



2.1 The QCD Lagrangian and Its Symmetries

if the difference between the masses of the up and the down quark is neglected, i.e.
mu ≈ md. The conserved charges connected to this symmetry transformation are the so
called “isospin operators”,

I1 := 1
2

∫
d3x

(
q†dqu + q†uqd

)
,

I2 := i

2

∫
d3x

(
q†dqu − q†uqd

)
,

I3 := 1
2

∫
d3x

(
q†uqu − q

†
dqd
)
. (2.12)

The squared isospin vector, I2 = (I1, I2, I3)2, is a conserved quantity, too, with eigen
values I(I+1) for I ∈ 1

2N0. Then, the eigenvalues of I3 run form −I to +I in unit steps.
If the differences between the masses of all three light quarks are neglected, mu ≈ md ≈
ms, the QCD Lagrangian is even invariant under the transformation

q =

ud
s

 7→ U

ud
s

 , U ∈ SUf(3) (2.13)

where the subscript f denotes that the symmetry group is acting in flavour space. It
yields eight conserved charges, in particular the “hypercharge”,

Y :=
∫

d3
[1
3
(
q†uqu + q†dqd

)
− 2

3q
†
sqs

]
(2.14)

which equals B + S in the absence of the heavy quarks. Using the conserved charges of
the SUf(3) symmetry, particle multiplets can be constructed which consist of particles
with the same mass. Thereby, one uses the relation

Q = e
(1

2Y + I3

)
(2.15)

for the electric charge of the particles including the electric charge of the electron, e.
The pseudoscalar-, vector-meson and baryon multiplet are shown below. Thereby, the
vector-meson state ω8 is a superposition of the physical state ω- and φ-meson. Note,
that all particles lying on the same horizontal line belong to an isospin multiplets with
I2 = const. As SUf(3) is not exact but only an approximate symmetry which only holds
for mu = md = ms, the masses of the particles belonging to the same multiplet are not
the same in reality. In Tab. 2.1, the masses of the particles belonging to the multiplets
are listed.
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2 Theoretical Basics

• pseudoscalar-meson octet: • vector-meson octet:

rπ− �
�
�
�
�
rK0

rπ0
rK+

T
T
T
T
Trπ+
�
�
�
�
�r

K−
T
T
T
T
T

rη

r
K̄0

rρ− �
�
�
�
�
rK∗0

rρ0
rK∗+
T
T
T
T
Trρ+
�
�
�
�
�r

K∗−
T
T
T
T
T

rω8

r
K̄∗0

• baryon octet:

rΣ−�
�
�
�
�
rn

rΣ0

rp
T
T
T
T
TrΣ+
�
�
�
�
�r

Ξ−
T
T
T
T
T

rΛ

r
Ξ0

2.1.2 Symmetries in the Chiral Limit

The masses of the light quarks, mu ≈ 3MeV, md ≈ 6MeV and ms ≈ 123MeV, are small
compared to the masses of the light hadrons (compare Tab. 2.1). Therefore, it seems
justified to consider the QCD Lagrangian (2.1) in the chiral limit, mu = md = ms = 0,

L0
QCD = q̄i /Dq − 1

4Gµν,aG
µν
a (2.16)

where the superscript 0 denotes the chiral limit. This Lagrangian exhibits an additional
symmetry: It is invariant under the flavour symmetry group U(3)A×U(3)V whereby the
subscript A stands for “axial vector” and V for “vector”. This symmetry transforms the
quark field according to

q 7→ UVUAq = exp [iθata] exp
[
iθ̃ataγ5

]
, UV ∈ U(3)V, UA ∈ U(3)A (2.17)

including γ5 := iγ0γ1γ2γ3. Here, θa, θ̃a ∈ R and t0 =
√

2
3I3×3, ta = λa for a = 1, . . . , 8.

Moreover, one can show that for all V ∈ U(n) with n ∈ N there exists U ∈ SU(n) so
that

V = det(V )1/n U.
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2.1 The QCD Lagrangian and Its Symmetries

Table 2.1: Masses of the particles in the light pseudoscalar-meson and vector-meson
nonet and in the light baryon octet [A+08]. A nonet is a octet plus a singlet. Thereby,
the physical states η, η′ and ω, ρ0 are superpositions of the states η1, η8 or ω1, ω8,
respectively.
multiplet mass [MeV] multiplet mass [MeV]
pseudoscalar-meson nonet vector-meson nonet
K± 494 K∗± 892
K0, K̄0 498 K∗0, K̄∗0 896
π± 140 ρ±, ρ0 776
π0 135 ω 783
η 548 φ 1019
η′ 958
baryon octet
proton p 938
neutron n 940
Σ+ 1189
Σ0 1193
Σ− 1197
Λ 1116
Ξ0 1315
Ξ− 1321

As det(V )1/n ∈ U(1), this yields that for all n ∈ N

U(n) = U(1)× SU(n). (2.18)

Therewith, the symmetry group U(3)A × U(3)V can be represented as

[U(1)A × SU(3)A]× [U(1)V × SU(3)V] = U(1)A × U(1)V × SU(3)A × SU(3)V. (2.19)

QCD as the quantized theory is not invariant under U(1)A anymore. Therefore, the
symmetry group is reduced to

U(1)V × SU(3)A × SU(3)V. (2.20)

Thereby, the group U(1)V coincides with the symmetry group U(1) of the full Lagrangian
(2.1) which gives rise to baryon number conservation.
Since the matrix t0 commutes with all other matrices, it is easy to see from (2.17) that
the transformation under SU(3)A × SU(3)V can be expressed as

q 7→ exp [iθaλa] exp
[
iθ̃aλaγ5

]
q (2.21)
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2 Theoretical Basics

for exp [iθaλa] ∈ SU(3)V, exp
[
iθ̃aλaγ5

]
∈ SU(3)A and θa, θ̃a ∈ R. The group SU(3)V

coincides with the symmetry group SUf(3) introduced in (2.13).

With the projectors

PR = 1
2(1 + γ5), PL = 1

2 (1− γ5) (2.22)

the QCD Lagrangian (2.16) can be split into a term describing “right-handed quarks”,
qR := PRq, and one describing “left-handed quarks”, qL := PLq, yielding

L0
QCD = q̄Ri /DqR + q̄Li /DqL −

1
4Gµν,aG

µν
a . (2.23)

By using (γ5)2 = 1, the transformation of the right- and left-handed quarks transform
under SU(3)A × SU(3)V is given as

qR 7→ exp [iθaλa] exp
[
+iθ̃aλa

]
qR,

qL 7→ exp [iθaλa] exp
[
−iθ̃aλa

]
qL. (2.24)

In addition, the transformation of left- and right-handed quarks under the group SU(3)L×
SU(3)R is defined as

qL
SU(3)L7→ exp

[
iθLa

λa
2

]
qL, qR

SU(3)L7→ qR, (2.25)

qR
SU(3)R7→ exp

[
iθRa

λa
2

]
qR, qL

SU(3)R7→ qL. (2.26)

This transformation is equivalent to the transformation under SU(3)A × SU(3)V as one
sees by setting θLa = 2(θa − θ̃a) and θRa = 2(θa + θ̃a). Therewith, the QCD Lagrangian
in the chiral limit (2.23) is invariant under the symmetry group

U(1)V × SU(3)L × SU(3)R. (2.27)

The conserved currents associated with the SU(3)L × SU(3)R symmetry according to
Noether’s Theorem are

Lµ,a = q̄L γ
µ λa

2 qL, (2.28)

Rµ,a = q̄R γ
µ λa

2 qR. (2.29)

Then, the linear combinations of these currents

V µ,a := Rµ,a + Lµ,a = q̄ γµ
λa
2 q, (2.30)

Aµ,a := Rµ,a − Lµ,a = q̄ γµ γ5
λa
2 q (2.31)
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2.1 The QCD Lagrangian and Its Symmetries

act as vector and axial-vector currents, respectively. I.e., including the definition

q (~x, t) parity7→ γ0q (~x, t) (2.32)

they transform under parity operation into + or − themselves:

V µ,a(~x, t) parity7→ PV µ,a(~x, t)P−1 = +V a
µ (−~x, t), (2.33)

Aµ,a(~x, t) parity7→ PAµ,a(~x, t)P−1 = −Aaµ(−~x, t). (2.34)

The corresponding time-independent charges equal

Qa
V :=

∫
d3xV a

0 (~x, t), Qa
A :=

∫
d3xAa0(~x, t) (2.35)

for a = 1, . . . , 8. The charges Qa
V are the eight conserved charges already mentioned after

(2.13). In particular, the charges Q3
V and Q8

V commute with each other and correspond
up to normalisations to I3 and Y as introduced in (2.12) and (2.14), respectively. They
lead to the multiplet assignments discussed above. Naively one would expect that the
corresponding charges Q3

A and Q8
A extend the multiplets with (approximately) degener-

ate masses by adding states with opposite parity. However, these “parity partners” do
not exist in the hadron spectrum. The non-degeneracy of hadrons with opposite parity is
explained by the effect of spontaneous symmetry breaking of SU(3)A (see section 2.2).
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2 Theoretical Basics

2.2 Goldstone Bosons in QCD

Chiral perturbation theory (ChPT) is an effective field theory describing QCD for low
energies and particles with small masses (see introduction). In this section, these par-
ticles are identified by applying “Goldstone’s Theorem” following the explanations in
[Mos99, Sch03]. An introduction to that theorem which proves that a “spontaneously
broken” or “hidden” symmetry of a theory yields the existence of massless particles
will be given in subsection 2.2.1. Thereby, a symmetry is spontaneously broken, if the
ground state |0〉 is not invariant under the full symmetry group of the Hamiltonian.
In the second subsection, the pseudoscalar mesons will be identified as the Goldstone
bosons of QCD associated with the spontaneous symmetry breaking of the symmetry
group SU(3)L × SU(3)R.

2.2.1 Goldstone’s Theorem

In this subsection, an introduction to the proof of Goldstone’s Theorem will be given.
For that purpose, let L be a Lagrangian with a continuous symmetry and the conserved
current Jµ and time-independent charge operatorQ =

∫
d3x J0(x) according to Noether’s

Theorem (see subsection 2.1.1) and let this symmetry be spontaneously broken, i.e. in
the case discussed:

Q|0〉 6= 0. (2.36)

Since Q is a symmetry of the Lagrangian, it commutes with the Hamiltonian Ĥ. With
Emin denoting the energy of the ground state this yields

ĤQ|0〉 = QĤ|0〉 = Emin ·Q|0〉. (2.37)

So, Q|0〉 can also be taken as the ground state of the system (as the ground state
is defined as being the state which minimizes the energy) and thus the system has a
degenerate ground state.

For the further argumentation, an arbitrary field operator F coupling to one-particle
states |k〉 is considered that is not invariant under the symmetry operation generated
by Q:

[J0(x), F (y)] 6= 0. (2.38)

Using ∂µJµ = 0 and Gauss’ law one can show that∫
d3x 〈0| [J0(x), F (y)] |0〉 (2.39)
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2.2 Goldstone Bosons in QCD

is time-independent and not equal to zero. By inserting a complete set of eigenstates
|n〉1 of the Hamiltonian with eigenvalues En + Emin and representing

J0(x) = eiPxJ0(0)e−iPx (2.40)

including the operator P of total four-momentum of QCD, this integral can be evaluated
as ∫

d3x
∑
n

(〈0|J0(x)|n〉〈n|F (y)|0〉 − 〈0|F (y)|n〉〈n|J0(x)|0〉)

= (2π)3∑
n

δ(3)(~pn)
(
〈0|J0(0)|n〉〈n|F (y)|0〉e−iEnx0 − 〈0|F (y)|n〉〈n|J0(0)|0〉e+iEnx0

)
.

(2.41)

Due to the δ-function the only allowed states |n〉 are those with ~pn = 0 and thus
En = mn. Additionally, the whole expression should be time independent and, therefore,
all exponential functions have to be equal to 1. As En = mn, only states |n〉 withmn = 0
yield e±iEnx0 = 1. Therefore, 〈0|J0(0)|n〉 = 0 for all states |n〉 withmn 6= 0. Furthermore,
the whole expression is not equal to zero, so there has to exist at least one state |n0〉
with mn0 = 0 and

〈0|J0(0)|n0〉〈n0|F (y)|0〉 6= 0. (2.42)

Thus, the spontaneous symmetry breaking of the ground state has generated a massless
particle |n0〉. This particle has to carry the quantum numbers of the generator in question
to exclude 〈0|J0(0)|n0〉 = 0. As the considered current Jµ is either a vector or an axial-
vector current, the particle has to be a boson with mass zero called “Goldstone boson”.

This procedure can be repeated for all charge operators Q1, . . . , Qn of the spontaneously
broken symmetry of the Lagrangian L fulfilling

Qi|0〉 6= 0, i ∈ {1, . . . , n}. (2.43)

Then, each of these operators will generate a massless Goldstone boson. The number of
all Goldstone bosons associated with a spontaneous symmetry breaking of a symmetry
group is given by the difference between the number of generators of the full symmetry
group and the number of generators of the symmetry group of the ground state.

After expanding the fields around a preselected ground state and writing the Lagrangian
in terms of those new fields, the following statements hold:

• The new fields will represent the massless Goldstone bosons and the massive par-
ticles of the theory.
• Represented in the new fields, the full symmetry of the Lagrangian is not obvious

anymore, it is “hidden” in the new definition of the fields.
1As the operator F only acts on one-particle states, the remaining m-particle states of the complete
set of eigenstates, m ∈ N0 \ {1}, do not need to be considered.
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2.2.2 Spontaneous Symmetry Breaking in QCD

In this subsection, we will show indications that the QCD symmetry group SU(3)L ×
SU(3)R is spontaneously broken. Therefor, let |i,+〉 be an eigenstate of the QCD Hamil-
tonian H0

QCD in the chiral limit with eigenvalue Ei and positive parity:

H0
QCD|i,+〉 = Ei|i,+〉, P |i,+〉 = +|i,+〉. (2.44)

Consider the state |Φ〉 := Qa
A|i,+〉 with the axial-vector charge Qa

A (2.35) defined in
subsection 2.1.2. As the axial-vector charge and the Hamiltonian commute, |Φ〉 is also
an eigenvector with eigenvalue Ei but with negative parity:

P |Φ〉 = PQa
AP
−1P |i,+〉 = −Qa

A|i,+〉 = −|Φ〉. (2.45)

Furthermore, let the states |i,+〉 and |j,−〉 be members of a basis of an irreducible
representation of the symmetry group SU(3)L×SU(3)R with positive and negative parity,
respectively, and a†i and b

†
j the corresponding creation operators. Then, the commutator

between the axial-vector charge and the creation operator for states with positive parity
can be expressed as [

Qa
A, a

†
i

]
= −taijb

†
j. (2.46)

Hence, the state |Φ〉 is equal to

Qa
A|i,+〉 = Qa

Aa
†
i |0〉 =

([
Qa
A, a

†
i

]
+ a†iQ

a
A

)
|0〉 = −taij|j,−〉+ a†iQ

a
A|0〉. (2.47)

There are two possibilities:

1. Qa
A|0〉 = 0:

In this case, |Φ〉 = Qa
A|i,+〉 = −taij|j,−〉. Thus, a degenerate state of negative

parity for every state of positive parity is expected. As no negative-parity states
have been observed which are degenerate, e.g., with the ground state baryon octet,
this hypothesis is experimentally disproven. Instead of this, the assumption is that

2. Qa
A|0〉 6= 0:

Then, there would be a spontaneous symmetry breaking in QCD yielding massless
Goldstone bosons with spin zero corresponding to the axial-vector charges Qa

A.
The whole symmetry group of the Lagrangian L0

QCD is G = SU(3)L × SU(3)R and
the ground state is still invariant under the subgroup H = SU(3)V, since this leads
to the multiplets observed in nature as discussed in subsection 2.1.1. Therefore,
there should exist

n = nG − nH = 2(32 − 1)− (32 − 1) = 8 (2.48)

Goldstone bosons φa. They must have the same transformation behaviour as the
axial-vector charges and thus
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2.2 Goldstone Bosons in QCD

• are pseudoscalar bosons since Qa
A

parity7→ −Qa
A,

• transform under H as an octet, i.e.
[
Qa
V , φ

b(x)
]

= ifabcφ
c.

This assumption is experimentally supported by the octet of pseudoscalar mesons
which have small masses in comparison to the corresponding 1− vector mesons and
all other hadrons. In reality, their masses are unequal to zero (but small) due to
the explicit symmetry breaking of QCD: Since the masses of the light quarks are
non-vanishing, a term including the quark-mass matrix M = diag (mu,md,ms),

Lmass = −q̄Mq = − [q̄RMqL + q̄LMqR] , (2.49)

has to be added to the QCD Lagrangian L0
QCD in order to get the original La-

grangian (2.1). This additional term is not invariant under the symmetry group
G anymore. Take, e.g., the simple case that both qR and qL transform as

qR/L
g∈G7→ (1− iθaλa) qR/L +O(θ2

a) (2.50)

with θa ∈ R small. Then,

Lmass
g∈G7→ −q̄ (1 + iθaλa)M (1− iθaλa) = Lmass + iθa[M,λa]− +O(θ2

a). (2.51)

As the mass matrix does not commute with the Gell-Mann matrices, the mass
term is not invariant under the symmetry group G of the QCD Lagrangian in the
chiral limit. This mass term yields non-vanishing masses of the QCD-Goldstone
bosons. As the masses of the light quarks are small, the masses of the pseudoscalar
Goldstone bosons are also small in comparison to other hadrons. For a derivation
of their masses, see section 4.3.

The eight Goldstone-boson fields φa are continuous real functions on the Minkowski
space. As it is explained in section A.1 in the appendix, they can be collected in a
Hermitian and traceless matrix

Φ = φaλa =


φ3 + 1√

3φ8 φ1 − iφ2 φ4 − iφ5

φ1 + iφ2 −φ3 + 1√
3φ8 φ6 − iφ7

φ4 + iφ5 φ6 + iφ7 − 2√
3φ8

 =:


π0 + 1√

3η
√

2π+ √
2K+

√
2π− −π0 + 1√

3η
√

2K0
√

2K−
√

2K̄0 − 2√
3η


(2.52)

with the fields π0/±, η andK0/± describing the (physical) pseudoscalar mesons. Actually,
the η state does not match the physical state. The physical η-meson is a combination
of the Goldstone-boson state and the singlet η1. For the decay of vector mesons into
pseudoscalar mesons (chapter 3) the physical η-meson is approximated by the Goldstone
boson, yet for the decay of pseudoscalar mesons (chapters 4, 5) this mixing has to be
taken into account (see section 4.3 for details).
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2.3 The Effective Leading-Order Lagrangian for
Goldstone Bosons

2.3.1 The Leading-Order Chiral Lagrangian for Goldstone
Bosons and External Fields

The aim of this subsection is to give a short summary of how to construct a general
theory describing the dynamics of the pseudoscalar Goldstone bosons associated with
the spontaneous symmetry breakdown in QCD and their interactions with external fields
(for further and more detailed information see, e.g., [Sch03], chapter 4). This theory
was first suggested by Weinberg [Wei79] and further developed by Gasser and Leutwyler
[GL84, GL85a].
The constructed Lagrangian Leff has to fulfill the following properties:

• It has to be invariant under the group U(1)V×SU(3)L×SU(3)R in the chiral limit
where the masses of the light quarks up, down and strange are set to zero. As the
Goldstone bosons have baryon number zero, they transform as

Φ U(1)V7→ Φ (2.53)

under U(1)V and, thus, this symmetry will be fulfilled automatically.
• Leff should contain exactly eight pseudoscalar degrees of freedom which describe

the eight Goldstone bosons and transform as an octet under the subgroup SU(3)V.
They are collected in the field

U(x) := exp
(
i
λaφa(x)

f

)
(2.54)

with the eight real-valued Goldstone-boson fields φa(x) and the Gell-Mann matrices
λa. f denotes the pion-decay constant in the chiral limit which is determined by
the weak decay of a pion into a muon and a neutrino and further theoretical
considerations (see, e.g., [LL08]). The field U transforms under SU(3)L × SU(3)R
as

U 7→ U ′ = VRUV
†
L (2.55)

with space-time dependent SU(3)-matrices VR and VL.
• Due to the spontaneous symmetry breaking of QCD the ground state of the theory

should only be invariant under SU(3)V × U(1)V.

As a first step, the QCD Lagrangian for quarks and

• the external vector fields vµ(x) and vµ(s)(x),
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2.3 The Effective Leading-Order Lagrangian for Goldstone Bosons

• the external axial-vector fields aµ(x),
• the external scalar field s(x) and
• the external pseudoscalar field p(x)

is considered with tr vµ = tr aµ = 0. All external fields are colour-neutral, Hermitian
3× 3 matrices that act in flavour space. The Lagrangian describing the dynamics of the
light quarks and their interactions with those external fields equals

L = L0
QCD + Lext = L0

QCD + q̄γµ

(
vµ + 1

3v
µ
(s) + γ5a

µ
)
q − q̄ (s− iγ5p) q (2.56)

whereby one obtains the QCD Lagrangian LQCD by the replacement s→ M and drop-
ping all other external fields. By splitting the quark field into its left-handed part qL
and its right-handed part qR and defining the left- and right-handed external field

lµ := vµ − aµ, rµ := vµ + aµ, (2.57)

this Lagrangian can be rearranged as

L =L0
QCD + q̄Lγ

µ
(
lµ + 1

3v
(s)
µ

)
qL + q̄Rγ

µ
(
rµ + 1

3v
(s)
µ

)
qR

− q̄R (s+ ip) qL − q̄L (s− ip) qR. (2.58)

It is invariant under the symmetry group U(1)V × SU(3)L×SU(3)R, i.e. under the local
transformation

qR 7→ exp
(
−i Θ(x)

3

)
VR(x)qR, (2.59)

qL 7→ exp
(
−i Θ(x)

3

)
VL(x)qL (2.60)

with independent space-time dependent SU(3)-matrices VL(x) and VR(x) and Θ(x) ∈ R
as defined in subsection 2.1.2 provided that the external fields transform as

lµ 7→ VLlµV
†
L + iVL∂µV

†
L , (2.61)

rµ 7→ VRrµV
†
R + iVR∂µV

†
R, (2.62)

v(s)
µ 7→ v(s)

µ − ∂µΘ, (2.63)
s+ ip 7→ VR(s+ ip)V †L , (2.64)
s− ip 7→ VL(s− ip)V †R. (2.65)

On the basis of the Lagrangian (2.56) for light quarks and external fields, the Lagrangian
describing the interactions of the pseudoscalar Goldstone bosons with themselves and
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these external fields is constructed. Therefore, a covariant derivative Dµ involving the
left- and right-handed fields lµ and rµ is defined for all objects X transforming as X ′ =
VRXV

†
L . It is defined as having the same transformation behaviour as the object it acts

on and hence equals

DµX := ∂µX − irµX + iXlµ 7→ D′µX
′ = VR(DµX)V †L . (2.66)

The right- and left-handed fields are collected in the field strength tensors

fRµν := ∂µrν − ∂νrµ − i[rµ, rν ], (2.67)
fLµν := ∂µlν − ∂νlµ − i[lµ, lν ]. (2.68)

It holds tr{fRµν} = tr{fLµν} = 0 as tr{rµ} = tr{lµ} = 0.
The scalar and the pseudoscalar external field are combined in

χ = 2B0(s+ ip). (2.69)

with a so far arbitrary constant B0 which has dimension mass.

All objects introduced so far should be combined to invariant terms. Taking objects A
and B transforming as A′ = VRAV

†
L and B′ = VRBV

†
L the trace of the product AB† is

always invariant. Hence, invariant terms can be built by traces of such products. For
the leading-order Lagrangian, the only considered terms are those up to the order Q2

for a typical momentum Q. In the counting scheme of chiral perturbation theory, the
single building blocks are of the order

U ∈ O(Q0), Dµ ∈ O(Q), χ ∈ O(Q2). (2.70)

In particular, χ will be connected to the squared Goldstone boson masses (see section 4.3
for more details). Furthermore, the external field vµ will be associated with the external
electromagnetic field Aµ. It holds

rµ, lµ ∈ O(Q), fR/Lµν ∈ O(Q2). (2.71)

Therewith, there exist the following invariants up to order Q2 which are not constant
(especially not zero):

tr{DνU(DµU)†}, − tr{(DµDνU)U †}, − tr{U(DνDµU)†},
tr{χU †}, tr{Uχ†}. (2.72)

Hereby, the first three terms are equal up to a total derivative. As the parity of the
Lagrangian should be +1 and PUP−1 = U †, P (DµU)P−1 = (DµU)† and PχP−1 = χ†,
the term tr{χU † − Uχ†} has the wrong parity. Using in addition that, due to Lorentz
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2.3 The Effective Leading-Order Lagrangian for Goldstone Bosons

invariance of the Lagrangian, Lorentz indices have to be contracted, the most general,
locally invariant, effective Lagrangian at lowest chiral order equals

L2 = 1
4f

2 tr{DµU(DµU)†}+ 1
4f

2 tr{χU † + Uχ†}. (2.73)

This Lagrangian includes two free parameters, the pion-decay constant f and the pa-
rameter B0 hidden in χ. At lowest order both parameters can be connected to the chiral
quark condensate 〈q̄q〉 (see [Sch03], section 4.3) by

3f 2B0 = −〈q̄q〉. (2.74)

In this thesis, external electromagnetic fields are considered. From (2.56) and the La-
grangian of quantum electrodynamic (QED) one can see that the coupling of quarks to
an external electromagnetic field Aµ is given by

vµ = −eQAµ (2.75)

including the quark charge matrix

Q =


2
3 0 0
0 −1

3 0
0 0 −1

3

 . (2.76)

The leading-order interaction of Goldstone bosons with such fields is given by the first
term of the Lagrangian L2 involving the covariant derivative

DµX = ∂µX + ieAµ[Q,X]− (2.77)

which emerges from the general formula (2.56) by setting all other external fields to zero.
In this case, the field strength tensors equal

fRµν = fLµν = −eQ (∂µAν − ∂νAµ) =: −eQFµν . (2.78)

Taking p = 0 and s = M = diag(mu,md,ms) with the masses of the light quarks, mu,md

and ms, the combination of pseudoscalar and scalar field χ equals

2B0M =: χ0 . (2.79)

Hence, the second term of the Lagrangian (2.73) which includes χ = χ0 = χ† gives rise
to the explicit symmetry breaking caused by the non-vanishing quark masses.
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2.3.2 The Effective Wess-Zumino-Witten Action

The lowest-order Lagrangian L2 developed in the previous subsection as well as the next-
to-leading-order Lagrangian L4 as it is given in section 4.7 in [Sch03] are more symmetric
than QCD is in reality. Both Lagrangians are even in the number of Goldstone bosons.
Thus, reactions which are odd in the number of Goldstone bosons cannot be described
with these Lagrangians. E.g., the following reactions are not describable:

• In the case of no external fields except the scalar one s = M yielding χ0 = 2B0M ,
the reaction K+K− → π+π−π0 is not described.
• If there is an external electromagnetic field, the decay π0 → γγ will not be de-

scribed.

This is connected to the “U(1)A anomaly” of QCD: As mentioned in subsection 2.1.2, the
quantized theory of QCD is not invariant under U(1)A anymore. However, let exp

[
iθ̃γ5

]
with θ̃ ∈ R be a typical element of U(1)A. Since (γ5)2 = 1, it equals

cos θ̃ + i sin θ̃γ5. (2.80)

Therewith, left- and right-handed quarks transform as

qR/L 7→
(
cos θ̃ + i sin θ̃γ5

) 1
2 (1± γ5) qR/L = 1

2
[
cos θ̃ ± i sin θ̃ ±

(
cos θ̃ ± i sin θ̃

)
γ5
]
qR/L

= e±iθ̃
1
2 (1± γ5) qR/L = e±iθ̃qR/L . (2.81)

Consider now the case θ̃ = π/2. Then,

qR
θ̃=π/27→ iqR, qL

θ̃=π/27→ −iqL . (2.82)

Thus, a general pseudoscalar-meson current transforms as

qf γ5 qg = qfL qgR − qfR qgL
θ̃=π/27→ −qfL ggR + qfR qgL = −qf γ5 qg . (2.83)

Hence, L2 and L4 which are even in the number of Goldstone bosons are invariant
under this special U(1)A transformation which is a contradiction to the quantized theory
QCD not being U(1)A invariant anymore. Therefore, terms in addition to L2 + L4 are
needed which explicitly break the U(1)A symmetry, i.e. which include an odd number of
Goldstone boson fields. Following the construction done by Wess, Zumino and Witten
(for details, see [Sch03], section 4.8), in the presence of an external electromagnetic
field vµ = −eQAµ the additional term of the Lagrangian which contains photon fields
equals

LWZW =− enAµJµ + i
ne2

48π2 ε
µναβ ∂νAαAβ tr

{
2Q2

(
U∂µU

† − U †∂µU
)

−QU †Q∂µU +QUQ∂µU
†
}

(2.84)
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with the current

Jµ = 1
48π2 ε

µναβ tr
{
Q∂νU U

† ∂αU U
† ∂βU U

† +QU † ∂νU U
† ∂αU U

† ∂βU
}
. (2.85)

εµναβ denotes the Levi-Civita tensor in the representation

εµναβ =


+1, for all even permutations of (µ, ν, α, β) = (0, 1, 2, 3)
−1, for all odd permutations of (µ, ν, α, β) = (0, 1, 2, 3)
0, otherwise

. (2.86)

Obviously, the Wess-Zumino-Witten term LWZW is of the order Q4 and hence it is not
leading order but a next-to-leading-order term of the Lagrangian.

The constant n can be restricted to integers by topological arguments. Matching to
QCD it can be shown that its modulus is equal to the number of colours. Calculating
further the partial decay width for, e.g. the decay π0 → γγ and comparing the result to
the experimental value given in [A+09] yields

|n| = 3 (2.87)

which is equal to the generally assumed number of colours2. As only the squared tran-
sition matrix element which can be calculated with the Lagrangian (2.84) and, thus, n2

is contained in any observables, the absolute sign of this number is not fixed at this mo-
ment. That is caused by the freedom to choose whether the field Φ represents Goldstone
bosons or its negative, −Φ. In section 2.5, the Lagrangian describing dynamics of light
vector mesons will be introduced whose absolute sign cannot be fixed by comparing to
experimental values, either. But if the overall sign for one of the Lagrangians is fixed,
the sign for the other one can be fixed by comparing to experimental data as, e.g., the
transition form factors for the transition of a pseudoscalar meson into a real photon. To
simplify calculations in this thesis, the overall signs for both Lagrangians were fixed in
advance yielding a not yet fixed relative sign between both Lagrangians, i.e. whether
the Lagrangians have to be added or subtracted. Due to historical reasons, n is set to
+3 and the prefactor hA included in the Lagrangian describing vector mesons will be set
to a positive value. It will turn out that the relative sign between the two Lagrangians
will be determined as negative by comparing the calculations to experimental data for
the η → γ transition form factor (see section 4.5).

2The result |n| = 3 will only be derived if the electric charges of the up quark and of the down and the
strange quark are fixed as +(2/3)e and −(1/3)e, respectively. As in the standard model the quark
charges generally scale with 1/Nc for the number Nc of colours, the decay of π0 → γγ will not yield
any information about Nc if the charges are not fixed in advance. See [BW01] for more information.

27



2 Theoretical Basics

2.4 Vector Meson Dominance and Power Counting
Schemes

2.4.1 Standard Vector Meson Dominance

The calculations presented in this subsection are based on the vector-meson-dominance
model (VMD) [Sak69]. In this model, all interactions of hadrons with photons are
mediated by intermediate vector mesons.

Standard VMD is a phenomenological approach to describe the energy regime where
light vector mesons appear as relevant degrees of freedom. It yields a normalised form
factor for the transition of a vector or pseudoscalar meson A into either a pseudoscalar
meson, a vector meson or a photon B in the standard VMD representation3:

FAB(q2) =
 ∑
V=ρ0,ω,φ

gABV gV γ

−1 ∑
V=ρ0,ω,φ

gABV gV γ
m2(V )

m2(V )− q2 . (2.88)

Here, gABV denotes the coupling constant for the decay A→ BV with the intermediate
vector meson V and gV γ the one for the decay of this vector meson into a photon. It
is common practice to describe the standard VMD form factor in the “pole approxima-
tion”

FAB(q2) = 1
1− Λ−2q2 (2.89)

with the characteristic pole mass

Λ−2 = dFAB
dq2

∣∣∣∣∣
q2=0

=
 ∑
V=ρ0,ω,φ

gABV gV γ

−1 ∑
V=ρ0,ω,φ

gABV gV γ
m2(V ) . (2.90)

The success of standard VMD is ambivalent. For some processes experimental data are
well described by standard VMD but for others it fails to described the data. Examples
are the decays η → γµ+µ− and ω → π0µ+µ−, respectively, where data taken by the
NA60 collaboration are available [A+09]. The decay of the η-meson is well described by
the standard VMD form factor while it fails to describe the decay of the ω-meson. In
Fig. 2.1 the form factors for both decays calculated with the standard VMD model are
plotted in comparison to the experimental data.

3See subsections 3.1.2 and 4.1.3 for the definition of the transition form factor.
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Figure 2.1: Form factors calculated with the standard VMD model (dot-dashed line)
in comparison to the experimental data taken by the NA60 collaboration [A+09] for
the decay η → γµ+µ− on the left-hand side and for the decay ω → π0µ+µ− on the
right-hand side.

2.4.2 The Novel Counting Scheme

In this thesis, a recently proposed power counting scheme [LL08] is used. In contrast to
the standard counting scheme of ChPT, both the pseudoscalar Goldstone bosons P and
the light vector mesons V are treated on equal footing. Thus, the masses of both are
treated as soft, i.e. they are of the order of a typical momentum Q:

m(V ), m(P ) ∈ O(Q). (C1)

So, within the framework of this counting scheme masses up to the mass of the φ-meson,
mφ ≈ 1.02GeV, are soft. Additionally, this thesis is limited to decays of either light
vector or pseudoscalar mesons. Hence, all involved momenta are smaller than the mass
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of the decaying particle and the corresponding derivatives are also of the order of Q
∂µ ∈ O(Q). (C2)

The restriction to pseudoscalar and light vector mesons as the only relevant degrees
of freedom can be justified by the hadrogenesis conjecture [LK04]. It suggests that all
other low-lying mesons are dynamically generated by the interactions between the light
pseudoscalar and vector mesons. Therewith, there is a reasonably large gap to other
mesons which otherwise would have to be included as additional degrees of freedom.
Below in subsection 2.5.2 it will be argued that the power counting scheme (C1), (C2)
is at least applicable well below the threshold of two vector mesons which equals about
1.5GeV. For such high energies, additional degrees of freedom might become important
anyway (like the excited pseudoscalar or vector meson states at approximately 1.3 to
1.4GeV [A+08]).

As this counting yields a systematic ordering of processes, the leading-order Lagrangian
and thus the leading-order form factors can be different from the standard VMD ones4.
E.g., the form factor calculated with the standard VMD model for the ω → π0 transition
equals

FVMD
ωπ0 (q) =

m2
ρ

m2
ρ − q2 (2.91)

with the mass mρ of the ρ0-meson. In contrast, the form factor calculated with the
Lagrangian based on the power counting scheme (C1), (C2) has a term of standard
VMD type plus additional terms which are not of VMD type5

Fωπ0(q) = g̃0
m2
ρ

m2
ρ − q2 + (1− g̃0 − g̃1) + g̃1

(
1 + q2

m2
ω

)
m2
ρ

m2
ρ − q2 (2.92)

with the massmω of the ω-meson and real constants g̃0 and g̃1. With the representation

g̃0
m2
ρ

m2
ρ − q2 + (1− g̃0 − g̃1) + g̃1

m2
ρ

m2
ρ − q2 + g̃1

m2
ρ

m2
ω

q2 −m2
ρ +m2

ρ

m2
ρ − q2

=
[
g̃0 + g̃1

(
1 +

m2
ρ

m2
ω

)]
m2
ρ

m2
ρ − q2 +

[
1− g̃0 − g̃1

(
1 +

m2
ρ

m2
ω

)]

=: g0
m2
ρ

m2
ρ − q2 + (1− g0), (2.93)

this form factor is in agreement with the first two terms of the general form factor
(1.2). Thus, in the effective field theory used in this thesis all gi of (1.2) with i ≥ 1
are subleading. Still, the expression (2.93) is more general than the VMD result (2.91).
Only for g0 = 1 one recovers (2.91). It will turn out that g0 is very different from 1.

4The leading-order Lagrangian is developed in section 2.5 and the form factors in the parts after this
one.

5See subsection 3.2.1 for the derivation of the ω → π0 transition form factor.
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2.5 Interactions with Vector Mesons

In this section a leading-order Lagrangian will be developed which describes interactions
of vector mesons with themselves, with Goldstone bosons and with external electromag-
netic fields. Thereby, the order of a term is identified in accordance with the counting
scheme (C1), (C2) given in the last section.

2.5.1 The Free Lagrangian for Vector Mesons

In this thesis, the light vector mesons are described by antisymmetric tensor fieldsWµν =
−Wνµ collected in the matrix [LL08]

Vµν =

ρ
0
µν + ωµν

√
2ρ+

µν

√
2K+

µν√
2ρ−µν −ρ0

µν + ωµν
√

2K0
µν√

2K−µν
√

2K̄0
µν

√
2Φµν

 (2.94)

which is an especially convenient representation if interactions with external fields as,
e.g., electromagnetic fields are considered since electromagnetic gauge invariance is easy
to ensure (see [LL08, LS08]).
The most general free Lagrangian for an antisymmetric tensor field W µν equals

L = a ∂µWµν ∂ρW
ρν + b ∂ρWµν ∂ρW

µν + cWµνW
µν (2.95)

with arbitrary constants a, b and c. As vector mesons are massive spin-1 particles,
they contain three degrees of freedom. Hence, the six degrees of freedom of a general
antisymmetric tensor field have to be reduced by the choice of the constants. Choosing
e.g. b = 0 the three fields W ij for i, j = 1, . . . , 3 are frozen (see appendix in [GL84]).
With a = −1

2 and c = 1
4m

2
W the free Lagrangian for a vector meson with mass mW

equals

L = −1
2 ∂

µWµν ∂ρW
ρν + 1

4 m
2
WWµνW

µν . (2.96)

2.5.2 The Leading-Order Lagrangian

The vector meson matrix Vµν transforms as an octet under the symmetry group SU(3)V,
i.e. for all A ∈ SU(3)V it transforms as

V µν A7→ AV µνA†. (2.97)
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In order to get the same transformation property for the Goldstone bosons, they have
to be collected in

Uµ = 1
2u
† (DµU)u† = 1

2u
†
((
∂µe

iΦ
f

)
+ ieAµ

[
Q, ei

Φ
f

]
−

)
u† (2.98)

instead of the collection in the field U defined in section 2.3.1. The field Uµ includes the
square root [Sch03]

u =
√
U = exp

(
iΦ
2f

)
(2.99)

of the primary field U . Due to the new transformation properties a new covariant
derivative

DµX = ∂µX + [Γµ, X]− + ieAµ [Q,X]− (2.100)

acting on the vector meson field Vµν and the collection of the Goldstone fields Uµ has to
be defined including

Γµ = 1
2
(
u† ∂µu+ u ∂µu

†
)
. (2.101)

According to the counting scheme (2.70), (2.71) of ChPT proposed in the section 2.3.1
and the counting scheme for vector mesons (C1), (C2), the formal chiral powers

Vµν ∈ O(Q0), Uµ ∈ O(Q), Dµ ∈ O(Q),

χ± := 1
2uχ0u±

1
2u
†χ0u

† ∈ O(Q2) (2.102)

are assigned. For the case of interest in this thesis, the leading-order Lagrangian for the
hadronic reactions up to the order Q2 concerning the formal chiral powers given above
reads [LL08]

L = i
mV hV

4 tr {VαµV µνV α
ν}+ i

h̃V
4mV

tr
{
(DαVαµ)Vµν

(
DβVβν

)}
+ i

hA
8 εµναβ tr {(Vµν (DτVτα) + (DτVτα)Vµν)Uβ}

+ i
mV hP

2 tr {UµV µνUν}+ i
bA
8 εµναβ tr

{
[Vµν , Vαβ]+ χ−

}
, (2.103)

whereby the terms are ordered according to their formal chiral powers.
All terms and therewith the Lagrangian have positive parity due to the Levi-Civita
tensor εµναβ. So, the terms including a Levi-Civita tensor are those corresponding to
the Wess-Zumino-Witten term and the chiral anomaly.
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Additional electromagnetic interaction vertices are constructed with the field-strength
tensor for the photon field Aµ,

Fµν = ∂µAν − ∂νAµ. (2.104)

It is combined with the Goldstone boson field to the building block

f±µν = 1
2
(
uQu† ± u†Qu

)
Fµν (2.105)

which has the same chiral transformation properties as the vector meson field Vµν and
as the collection of the Goldstone bosons Uµ. It is counted as Q2. Using these building
blocks, the leading-order Lagrangian describing the interaction of light vector mesons
with electromagnetic fields is equal to

Le.m. = −
eVmV

8 tr
{
V µνf+

µν

}
− ieM4 tr

{[
Vµ

α, V µβ
]
−
f+
αβ

}
. (2.106)

Since the Lagrangian constructed in this section is of leading order, the influence of the
next-to-leading order is of interest in order to get information about the intrinsic error of
the calculations. As a very rough estimate, one particular next-to-leading-order term

L = i
eA

4mV

εµναβ tr
{(
f+
µν (DτVτα) + (DτVτα) f+

µν

)
Uβ
}

(2.107)

is taken into account which describes the direct decay of a vector meson into a pseu-
doscalar meson and a photon. Therewith, the intrinsic error is estimated as the differ-
ence between the leading-order calculation and the calculation involving this particular
next-to-leading-order term. Keep in mind that this is of course not the whole next-
to-leading-order Lagrangian, not even for the decays studied in this thesis. The full
next-to-leading-order Lagrangian would also contain loops and is beyond the scope of
this thesis. Take, e.g., the next-to-leading order processes for the decay of an ω-meson
into a neutral pion and a dilepton l+l−. One of these processes is the direct decay de-
scribed by the Lagrangian (2.107) (diagram on the left-hand side of Fig. 2.2) but there
are also loop diagrams contributing, e.g., with a ρππ loop or a K∗KK loop (diagrams
in the middle and on the right-hand side of Fig. 2.2, respectively).

π0

l+

l−

ω

π0

l+

l−

ω

ρ

π
π

π0

l+

l−

ω
K∗

K

K

Figure 2.2: Selection of next-to-leading order processes for the decay ω → π0l+l−.
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For a complete error estimate at given energy and momentum a full next-to-leading-
order calculation would be necessary. Additionally, the accuracy does not only depend
on typical energies and momenta but also on the reaction one considers. In general, it is
not possible to predict for given energy and momentum the accuracy of a leading-order
calculation of an arbitrary reaction. This problem already occurs in ChPT. Here, pro-
cesses as, e.g., the majority of the pion reactions can be described for which the effects
of next-to-leading-order calculations are small [GL84] but there are also processes de-
scribable for which the next-to-leading-order results are much more important than the
leading-order ones. An example for such processes is the decay of an η-meson into three
pions [GL85b].

The Lagrangians (2.103), (2.106) and (2.107) presented above can be used to calcu-
late radiative and hadronic decays of light vector mesons depending on the parameters
mV , hV , h̃V , hA, hP , bA, eV , eM and eA. Additionally, the matrix Uµ describing the
Goldstone bosons and χ0 contain the free parameters f and B0, respectively. Three of
these parameters are fixed independently of decays of vector mesons:

• The pion decay constant f = 90MeV in the chiral limit is determined through the
decay π+ → µ+νµ and further theoretical considerations [LL08],
• B0M is defined by the averaged Goldstone boson masses m̄π ≈ 138MeV and

m̄K = 496MeV via the identity χ0 = 2B0M =
(
m̄2
π 0 0

0 m̄2
π 0

0 0 2m̄2
K−m̄

2
π

)
(see chapter 4.3

for a derivation of the value B0M) and
• mV := 776MeV is introduced in order that the other parameters are dimensionless.

Furthermore, the value of the electric charge needed for QED is determined as [LL08]

e =
√

4πα = 0.303 . (2.108)

The remaining parameters can be fixed by fitting to experimental data (for more details,
see [LL08]). E.g., the value eV is fixed by comparing the calculated partial decay widths
for the decays of the neutral light vector mesons ρ0-, ω- and φ-meson into dielectrons
and equals

eV = 0.22 . (2.109)

The parameters eA, hA and bA are related to the decays of a vector meson into a Gold-
stone boson and a photon. They can be fitted to the decays with real photons (for
details see subsection 3.1 below).
For leading-order calculations, the term (2.107) proportional to eA should not be con-
sidered. This is realised by setting eA = 0 and therewith fixing the parameter set

eA = 0, hA = 2.32, bA = 0.27 (P1)
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for the leading-order calculation6. As discussed in subsection 2.3.2, the determination
of hA as positive is not concluded by comparison to experimental values but set by
definition. What matters are the relative signs between the constants eA, hA and bA.
To get a rough error estimate, a second parameter set with eA 6= 0 is established7:

eA = 0.015, hA = 2.10, bA = 0.19 . (P2)
In table 2.2, the values for the partial decay widths of the decays ω → π0γ, ω → ηγ and
φ→ ηγ calculated with both parameter set (P1) and (P2) are listed in comparison to the
experimental data given in [A+08]. For the calculations Eq. (3.24) and the form factors
which will be given in the subsections 3.2.1, 3.3.1 and 3.4.1 are used. Both calculations
agree well with the experimental values and do not differ much from each other. This
legitimates treating the results taken with parameter set (P2) as a very rough estimate
of the intrinsic errors of the leading-order calculation.

Table 2.2: Partial decay width calculated with parameter set (P1) and parameter set
(P2), respectively, compared to the experimental values as collected in [A+08].

experimental value param. set (P1) param. set (P2)
Γω→π0γ (7.03± 0.30) · 10−4 GeV 7.14 · 10−4 GeV 7.34 · 10−4 GeV
Γω→ηγ (3.91± 0.38) · 10−6 GeV 3.71 · 10−6 GeV 3.83 · 10−6 GeV
Γφ→ηγ (5.58± 0.15) · 10−5 GeV 5.38 · 10−5 GeV 5.12 · 10−5 GeV

In [LL08, LL09], radiative decays of light vector mesons and hadronic three-body decays
of light vector mesons were calculated based on the counting scheme (C1), (C2) and
the Lagrangians given in this subsection. All calculations agreed well with the avail-
able experimental data. This suggests that the proposed approach including the power
counting scheme can provide reliable answers. Nevertheless, some problems might occur
within this framework. They will be discussed in the next subsection.

2.5.3 Problems

The first term i mV hV4 tr {VαµV µνV α
ν} in the Lagrangian (2.103) is of the order Q0 and

could cause problems within the framework of the counting scheme (C1), (C2) used in
this thesis. As an illustration, consider the annihilation and production of two pseu-
doscalar Goldstone bosons via one virtual vector meson without loops. In Fig. 2.3, this
process is represented by a “Feynman diagram” which can be used as a graphical way
to calculate the corresponding transition matrix element. Feynman diagrams and rules
are explained in section 2.6.

6All other parameters are not necessary for the calculations presented in this thesis and hence are not
listed here. Their values are given in [LL08].

7The values differ from those given in [LL08] because of better experimental data.
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Figure 2.3: Tree-level diagram for the process P + P → V ∗ → P + P .

The term proportional to hP in the Lagrangian (2.103) yields that the vertices for two
Goldstone bosons and one vector meson are always of the order Q2. As the vector mesons
are counted as soft, i.e. the mass is of the order of Q, the propagator is proportional
to

1
m2
V −Q2 ∈ O

(
1
Q2

)
. (2.110)

Thus, the process P + P → V ∗ → P + P without loops is of the order

Q2 1
Q2 Q

2 = Q2. (2.111)

The order of the process including any loops should be higher so that diagrams containing
loops are less important than tree-level diagrams. Take, e.g., the process with a loop
consisting of two vector mesons and a Goldstone boson (Fig. 2.4, left-hand side). The
loop itself counts as Q4 [Sch03] and the propagators for the three involved particles count
as Q−2 each. The vertices for two Goldstone bosons and one vector meson count again
as Q2 and the three-vector meson vertex counts as Q0. Thus, the whole diagram counts
as

Q2 1
Q2 Q

0 1
Q2 Q

2 1
Q2 Q

2 1
Q2 Q

4 = Q2 (2.112)

and hence is of the same order as the tree-level diagram. Taking into account an ad-
ditional three-vector-meson loop (Fig. 2.4, right-hand side) the order of the diagram is
even lower than the order of the tree-level diagram:

Q2 1
Q2 Q

0 1
Q2 Q

0 1
Q2 Q

0 1
Q2 Q

4 1
Q2 Q

2 1
Q2 Q

2 1
Q2 Q

4 = Q0. (2.113)

Thus, it is possible to construct loop diagrams with orders less or equal to the order of
the tree-level diagram. Hence, one would have to calculate infinitely many loop diagrams
for a leading-order calculation. For that reason, the question arises how to reconcile the
formal Q0 term with a power counting scheme which is of practical use. Two lines of
reasoning can be brought forward which essentially end at the same conclusion:
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Figure 2.4: Diagrams including one loop (left-hand side) and including two loops (right-
hand side) for the process P + P → V ∗ → P + P .

On the one hand, the problem can be solved by observing that the incriminated term
in (2.103) proportional to hV involves the appearance of at least two vector mesons at
the same time. The connected inelasticity starts at an energy of about 1.5GeV. In
contrast, the energy regime considered here is at one vector-meson mass and below. In
between, new active degrees of freedom might appear like the excited pseudoscalar or
vector states with masses of 1.3GeV or higher [A+08]. As a conservative approach it is
reasonable to restrict the range of applicability to energies well below the threshold of
two vector mesons. Thus, treating all vector mesons as soft is not reasonable anymore.
If two appear at the same time, one vector meson has to be treated as hard, i.e. the
mass is formally much larger than Q. Then the propagator for this vector meson is
proportional to

1
m2
V −Q2 ≈

1
m2
V

∈ O(Q0). (2.114)

Therewith, the diagrams with one and two loops given in Fig. 2.4 count as Q4 and Q6,
respectively. Hence, they are suppressed compared to the tree-level diagram which is
counted as Q2.
On the other hand, arguments for a large number, Nc, of colours can be applied [LL08].
According to large-Nc rules, vertices with n mesons count as N1−n/2

c . Therewith, the
term proportional to tr {VαµV µνV α

ν} would be suppressed by 1√
Nc

. This is introduced
in the counting scheme by identifying Q ∼ N−1/2

c and assigning an additional factor
QnV −2 to all interactions involving nV ≥ 2 vector-meson fields. Both diagrams in Fig.
2.4 would then count as Q3, i.e. are subleading. This is sufficient for the leading-order
calculations presented in this thesis.
Both lines of reasoning lead to the fact that for the calculations of vector-meson decays
in leading order in the power counting one has to consider only tree-level diagrams with
the interaction terms given in (2.103) and (2.106). For decays of pseudoscalar mesons,
the issue is more involved as will be discussed next.
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2.5.4 Decays of Pseudoscalar Mesons

As the vector-meson Lagrangians given in subsection 2.5.2 include both vector and
pseudoscalar mesons, they describe some of the necessary terms for the decay of a
pseudoscalar meson into a vector meson and a (real or virtual) photon or into two
photons via virtual vector mesons. Consider, e.g., the decay of a vector meson into a
pseudoscalar meson and a photon via a virtual vector meson (Fig. 2.5, left-hand side).
If this process is mirrored, one sees the connection to the decay of a pseudoscalar meson
into two photons via two virtual vector mesons (Fig. 2.5, right-hand side).

Figure 2.5: Decays V → V ∗P → γP (left-hand side) and P → V ∗V ∗ → γγ (right-hand
side).

In ChPT, the leading-order Lagrangian for the decay of a pseudoscalar meson into two
photons is given by the WZW Lagrangian (2.84) which describes the direct decay into
two photons and is of order Q4. As the process P → V ∗V ∗ → γγ includes two vector
mesons at the same time, one of them has to be treated as hard in the approach used
in this thesis due to the arguments given in the previous subsection. Therefore, this
process is also counted as Q4. Thus, for a leading-order calculation of a decay of a
pseudoscalar meson into two photons both possibilities, the direct decay and the decay
via two virtual vector mesons, have to be considered. Additionally, there are further
contributing processes as, e.g., the decay via one intermediate vector meson described
by the Lagrangian (2.107) but also loop diagrams. In this thesis, the calculations are
restricted to those processes described by the WZW Lagrangian (2.84) and by the vector-
meson Lagrangians (2.103), (2.106) and (2.107) and it is studied whether they are able
to describe the available data (see chapters 4 and 5). Furthermore, the influence of the
WZW term in comparison to the decay via one or two virtual vector mesons is analysed.
The remaining terms of the Lagrangian describing the decay of a pseudoscalar meson
are not developed in this thesis. Also the calculation of loop diagrams is beyond the
scope of this thesis. Note that these considerations only concern the pseudoscalar decays
(chapters 4 and 5). For the vector-meson decays (chapter 3), a complete leading-order
calculation is presented.
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2.6 Feynman Diagrams and Rules

In particle physics, one is interested in scatterings and decays of particles. An important
quantity for the study of such processes is the probability of one or more initial particles,
described by an initial state {~ki}, to scatter or decay and become a finial state {~pf},

| out〈{~pf}|{~ki}〉in |2, (2.115)

which defines the “invariant transition matrix element”M({ki} → {pf}) by

out〈{~pf}|{~ki}〉in =: (2π)4δ(4)
(∑

ki −
∑

pf
)
iM({ki} → {pf}). (2.116)

To calculate this probability, all possible processes in which the initial state {~ki} becomes
the final state {~pf} have to be considered and summed up. To simplify the identification
of all possible processes, “Feynman diagrams” are introduced. They yield a graphical
way to describe processes of interest and a “simple” formula for the transition matrix
element so that it can be read off from the diagrams directly.
The derivation of this simple formula is exemplary done for the case of the φ4 theory
described by the Lagrangian

L = 1
2 (∂µφ)2 − 1

2m
2φ2 − λ

4!φ
4 (2.117)

in section A.2 in the appendix following the explanations given in [PS95].

Under the assumption that all particles do not interact during their formation and their
detection, the probability (2.115) can be calculated by replacing the eigenstates 〈{~pf}|
and |{~ki}〉 of the full Hamiltonian H by eigenstates of the Hamiltonian H0 of the free
theory. Then it is possible to show that

out〈{~pf}|{~ki}〉in = lim
tf→∞(1−iε)

(〈
{(~pf )0}

∣∣∣∣∣T
{

exp
[
−i
∫ +tf

−tf
dtHI(t)

]}∣∣∣∣∣ {(~ki)0}
〉)

=
(

sum over all connected,
amputated Feynman diagrams

)
. (2.118)

Here, the operator T denotes the time ordering of a product. Furthermore:

• “Connected” diagrams are fully connected diagrams where all external lines are
connected to each other and no “vacuum bubbles” are left.
• To amputate a diagram start from the tip of each leg. Cut the diagram at the last

point at which the leg can be separated from the rest of the diagram by removing
a single propagator.
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In momentum space, the transition matrix element defined by Eq. (2.116) can be ex-
pressed as the sum over the Feynman diagrams due to the overall δ-function describing
the momentum conservation which cancels the one in the definition of the scattering
probability:

iM({~ki} → {~pf}) =
(
sum over all connected,
amputated diagrams

)
. (2.119)

2.6.1 Feynman Rules for Interactions with Vector Mesons and
QED

In this thesis, decays of vector mesons and pseudoscalar mesons into dileptons and either
pseudoscalar mesons, vector mesons or real photons are considered. Therefore, both a
Lagrangian which describes the decay into a virtual photon and the QED Lagrangian
which describes the decay of the virtual photon into a dilepton are needed. To calcu-
late the observable quantities as transition form factors and partial decay widths, the
Feynman diagrams describing the alternative ways for the decay have to be sketched.
Each Feynman diagram has a value which is the product of all analytical expressions
associated with the different parts of the diagram. According to the introduction of this
section, the transition matrix element can be calculated as the sum over the values of all
possible Feynman diagrams. The Feynman rules that define the analytical expressions
associated with a particular part of a Feynman diagram are given in this subsection.

Each particle in the Lagrangians given in this thesis is defined as an incoming particle
or, equivalently, as an outgoing antiparticle. If the particle is given with a derivative,
there is a factor −i · (momentum of the particle) associated with the Feynman diagram.
Of course, this momentum is always the momentum of an incoming particle, an outgoing
antiparticle causes a factor −i · (−momentum) = +i · (momentum).
Each vertex in the Feynman diagram associated with a term including a coupling con-
stant g in the Lagrangian yields an additional factor +ig.

The Feynman rules for QED needed to describe an external photon or the decay of an
virtual photon into a dilepton are the following [PS95]:

• Photon propagator for a photon with momentum p: −igµνp2+iε .

• QED vertex for dileptons: −ieγµ.

• Outgoing external photons with momentum p and polarisation λ: ε∗µ(p, λ).
Outgoing external fermions with momentum p and spin s: ūs(p).
Outgoing external antifermions with momentum p and spin s: vs(p).
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2.6 Feynman Diagrams and Rules

Hereby, εµ(p, λ) denotes the polarisation vector of a photon and the spinors us(p) and
vs(p) describe the plane wave solutions of the Dirac equation

(i/∂ −m)ψ = 0 (2.120)

with positive frequency, ψ(x) = us(p)e−ipx, and with negative frequency, ψ(x) = vs(p)e+ipx,
respectively.

The rules for external vector mesons 〈0|V (0)|V (p, λ)〉 and the propagators 〈0|TV (x)V (y)|0〉
including the mass m of the vector meson and the momenta p of the external particle
and q of the virtual vector meson are the following [GL84, LS08]:

• 〈0|Vµν(0)|V (p, λ)〉 = εµν(p, λ) = i

m
[pµεν(p, λ)− pνεµ(p, λ)] ,

• 〈0|TVµν(x)Vαβ(y)|0〉 = − i

m2

∫ d4q

(2π)4 e
−iq(x−y)S(q2)

[
(m2 − q2)gµαgνβ

+ gµαqνqβ − gµβqνqα − (µ→ ν)
]
.

By taking derivatives of these expressions one gets

• 〈0|∂µVµν |V (p, λ)〉 = mεν(p, λ),

• 〈0|TVµν(x)∂αVαβ(y)|0〉 =
∫ d4q

(2π)4 e
−iq(x−y)S(q2) [qµgνβ − qνgµβ] ,

• 〈0|T∂µVµν(x)Vαβ(y)|0〉 = −
∫ d4q

(2π)4 e
−iq(x−y)S(q2) [qαgνβ − qβgνα] ,

• 〈0|T∂µVµν(x)∂αVαβ(y)|0〉 = −i
∫ d4q

(2π)4 e
−iq(x−y)S(q2)

[
q2gνβ − qνqβ

]
.

S(q2) is the scalar propagator describing a structureless vector meson. It is defined as

S(q2) = 1
q2 −m2 (2.121)

with the mass m of the virtual vector meson. As vector mesons are not stable particles
but resonances, the propagator has to be extended according to their finite life time, i.e.
the inverse of their energy-dependent width:

Swidth(q2) = 1
q2 −m2 + i

√
q2 Γ(q2)

. (2.122)

In this thesis, the energy-dependent widths for the neutral vector mesons ρ0, ω and φ
are needed. For the ρ0- and φ-meson which decay dominantly into two Goldstone bosons
the width is given by [LL09]

Γ(q2) = Γ0

[
pcm(q2)
pcm(m2)

]3
m2

q2 (2.123)
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including the on-shell widths [A+08]

Γ0, ρ0 = (149.1± 0.8)MeV, Γ0, φ = (4.26± 0.04)MeV (2.124)

of the mesons and the center-of-mass momentum of the decay particles according to the
decay branch with the dominant branching ratio, i.e.

pcm, ρ0(q2) = 1
2
√
q2 − 4m̄2

π, pcm, φ(q2) = 1
2
√
q2 − 4m2

K± . (2.125)

The energy-dependence of the width of the ω-meson is not relevant and Γω(q2) is ap-
proximated by Γ0, ω = (8.49± 0.08)MeV.

For most of the decays presented in this thesis, the differences between the calcula-
tions with the energy-dependent width and without width are negligible so that the
calculations could be done with the approximative propagator Swidth(q2) ≈ S(q2).
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In this chapter, electromagnetic transitions of vector mesons A into pseudoscalar mesons
B are considered, i.e. the processes A→ Bγ(?) with a real or virtual photon.
The relevant leading-order Lagrangian and the formulas for the transition form factor
and the partial decay width are derived in section 3.1. In the subsequent sections 3.2,
3.3 and 3.4, the transitions ω → π0, ω → η and φ → η are considered. The results of
this chapter are published in [TL10].

As explained in section 2.5, the calculations presented in this and in the subsequent
chapters 4 and 5 are leading-order calculations according to the counting scheme C1,
C2. These calculations are done with the parameter set (P1). Additionally, a particular
next-to-leading order term (2.107) is used to estimate the intrinsic error very roughly.
Therefore, further calculations are done with the parameter set (P2). In this parameter
set, the parameter eA of the particular next-to-leading-order term is non-zero.
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3.1 Leading-Order Lagrangian, Transition Form Factor and Partial Decay Width

3.1 Leading-Order Lagrangian, Transition Form
Factor and Partial Decay Width

3.1.1 The Relevant Leading-Order Lagrangian

The leading-order chiral Lagrangian according to the power counting scheme (C1), (C2)
is given in (2.103) and (2.106). As

f+
µν = QFµν +O

(
Φ2
)

= Q (∂µAν − ∂νAµ) +O
(
Φ2
)

(3.1)

this Lagrangian does neither describe a direct transition of a pseudoscalar meson into a
photon nor a transition decay of a vector meson into a pseudoscalar meson. Therefore,
this leading-order Lagrangian only describes the decay of vector meson A into a pseu-
doscalar meson B and a (real or virtual) photon via a virtual vector meson V which
transforms into the photon. This is shown in Fig. 2.5, left-hand side. The parts of the
Lagrangians (2.103) and (2.106) which are relevant for the decay of a vector meson into
a pseudoscalar meson and a photon are the following:

1. Decay A→ BV :

L11 = i
hA
8 εµναβ tr {(Vµν (DτVτα) + (DτVτα)Vµν) Uβ}

≈ i
hA
8 εµναβ tr

{
(Vµν (∂τVτα) + (∂τVτα)Vµν)

i

2f ∂βΦ
}

= − hA
16f ε

µναβ tr {(Vµν (∂τVτα) + (∂τVτα)Vµν) ∂βΦ} , (3.2)

L12 = i
bA
8 εµναβ tr

{
[Vµν , Vαβ]+ χ−

}
≈ − bA

16f ε
µναβ tr

{
[Vµν , Vαβ]+ [Φ, χ0]+

}
= − bA8f ε

µναβ tr
{
VµνVαβ [Φ, χ0]+

}
. (3.3)

2. Transition V → γ:

L2 = −eV mV

8 tr
{
V µν f+

µν

}
≈ −eV mV

8 tr {V µν Q (∂µAν − ∂νAµ)}

= −eV mV

8 tr {V µν Q∂µAν + V νµQ∂νAµ}

= −eV mV

4 tr {V µν Q} ∂µAν . (3.4)
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3 Radiative Two- and Three-Body Decays of Vector Mesons

Due to charge and strangeness conservation, only the neutral vector mesons ρ0, ω
and φ can transform into a photon. Thus, the Lagrangian above describing the
V → γ transition contains only the fields describing these mesons and reduces to

L2 = −eVmV

12
[
3
(
ρ0
)µν
−
√

2φµν + ωµν
]
∂µAν . (3.5)

Therewith, the relevant leading-order Lagrangian for the decay of a vector meson A into
a pseudoscalar meson B and a photon γ equals

L(1)
A→Bγ = L11 + L12 + L2

= − hA
16f ε

µναβ tr {(Vµν (∂τVτα) + (∂τVτα)Vµν) ∂βΦ}

− bA8f ε
µναβ tr

{
VµνVαβ [Φ, χ0]+

}
−eV mV

4 tr {V µν Q} ∂µAν . (3.6)

Additionally, the particular next-to-leading order term given in Eq. (2.107) describes
the direct decay of the vector meson A into the pseudoscalar meson B and the photon:

L(2)
A→Bγ = i

eA
4mV

εµναβ tr
{(
f+
µν (DτVτα) + (DτVτα) f+

µν

)
Uβ
}

≈ − eA
8f mV

εµναβ tr {(Q (∂τVτα) + (∂τVτα)Q) ∂βΦ} F µν

= − eA
4f mV

εµναβ tr {(Q (∂τVτα) + (∂τVτα)Q) ∂βΦ} ∂µAν . (3.7)

As already explained in section 2.5.2, this term can be used to estimate the intrinsic
errors very roughly. This intrinsic errors are produced from the restriction to leading-
order calculations. The result will be given as the leading-order calculation plus the
difference between this calculation and the one including the term proportional to eA as
an error. Therefore, the general Lagrangian

LA→Bγ = L(1)
A→Bγ + L(2)

A→Bγ (3.8)

is used with two parameter sets (P1), (P2) for the open parameters eA, hA and bA.

3.1.2 Transition Form Factor and Partial Decay Width for the
Decays of Vector Mesons

Taking the Lagrangian (3.8) and the Feynman rules given in subsection 2.6.1, the tran-
sition matrix element for a decay of a vector meson A into a pseudoscalar meson B and
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3.1 Leading-Order Lagrangian, Transition Form Factor and Partial Decay Width

either a real photon or a dilepton can be calculated. As already mentioned, the decay
of a virtual photon into a dilepton is thereby described by usual QED.

The matrix element for the decay of a vector meson A into a pseudoscalar meson B and
a real photon can be expressed as

MA→Bγ = −e fAB(0) εµναβ pµqν εα(p, λA) ε∗β(q, λγ) (3.9)

and the one for the decay into a pseudoscalar meson and a dilepton l as

MA→Bl+l− = e2 fAB

(√
q2
)
εµναβ pµqν εα(p, λA) 1

q2 ūs(q1)γβvs′(q2). (3.10)

Here, fAB
(√

q2
)
is the form factor for the A → B transition, p and q are the four-

momenta of the incoming particle A and the (virtual) photon, respectively, q1 and q2
those of lepton and anti-lepton and ε(p, λA) and ε(q, λγ) are the polarization four-vectors
of the particle A and the photon. In order to shorten calculations, the definitions

lρ(q) := −ε∗ρ(q, λγ) (3.11)

for the decay into a real photon and

lρ(q = q1 + q2) := e

(q1 + q2)2 ūs(q1)γρvs′(q2) (3.12)

for the decay into a dilepton will be used. Therewith, the general matrix elements for
the considered decays of a vector meson A into either a photon or a dilepton are both
equal to

MA→Bγ/Bl+l− = e fAB

(√
q2
)
εµναβ pµqν εα(p, λA) lβ(q). (3.13)

Note that this general matrix element has to be evaluated at q2 = 0 for the decay into
a real photon.
Furthermore, the transition form factor will be normalized as

FAB

(√
q2
)

:=
fAB

(√
q2
)

fAB(0) (3.14)

so that FAB (0) = 1. Additionally,
√
q2 will be abbreviated with q.

For further calculations, the averaged squared matrix element |M|2 will be needed.
Therefore, the average over all possible incoming states and sum over all possible final
states has to be taken. As all vector mesons have spin 1, one gets an additional factor 1

3
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3 Radiative Two- and Three-Body Decays of Vector Mesons

after taking the average over the incoming states. The sum over all possible spin states
s and s′ of lepton and anti-lepton, respectively, yields∑

s,s′
ūs (q1) γβ vs′ (q2) v̄s′ (q2) γβ̄ us (q1)

=
∑
s,s′

(ūs (q1))a (γβ)ab (vs′ (q2))b (v̄s′ (q2))c (γβ̄)cd (us (q1))d . (3.15)

Using ∑s us (q1) ūs (q1) =6 q1 +ml and
∑
s′ vs′ (q2) v̄s′ (q2) =6 q2 −ml with the lepton mass

ml, this equals

(6 q1 +ml)da (γβ)ab ( 6 q2 −ml)bc
(
γβ̄
)
cd

= tr
{
(6 q1 +ml) γβ (6 q2 −ml) γβ̄

}
= 4

[
(q1)β (q2)β̄ + (q1)β̄ (q2)β − gββ̄

(
q1 · q2 +m2

l

)]
.

(3.16)

Additionally, one uses that∑
λA

εᾱ (p, λA) ε∗α (p, λA) = −gαᾱ + pαpᾱ
m2
A

, (3.17)
∑
λγ

εβ̄ (q, λγ) ε∗β (q, λγ) = −gββ̄ (3.18)

with the mass mA of the vector meson. Note that due to εµναβpµpα = 0 the second term
in (3.17) never contributes to the squared matrix element.

With the calculations done above the averaged transition matrix element equals

|MA→Bγ|2 = 2
3e

2f 2
AB (q) (p · q)2 (3.19)

for the decay into a real photon and

|MA→Bl+l− |2 = 1
3e

4 |fAB|2 (q)
[
q2 + 2

(
m2

23 −m2
B −m2

A

)
+
(

2m4
l +m4

B +m4
A

− 2m2
l

(
m2
B +m2

A

)
− 2

(
2m2

l +m2
B +m2

A

)
m2

23 + 2m4
23

)
1
q2

− 2m2
l

(
m2
A −m2

B

)2 1
q4

]
(3.20)

for the decay into a dilepton including the mass mB of the pseudoscalar particle and the
invariant mass

m2
23 = (q2 + k)2 (3.21)

of antilepton and pseudoscalar meson.
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According to [A+08], the differential partial decay width for the decay A→ Bγ equals

dΓA→Bγ
dΩ = 1

32π2 |MA→Bγ|2
∣∣∣~k∣∣∣
m2
A

. (3.22)

Here,
∣∣∣~k∣∣∣ is the momentum of the pseudoscalar meson B given as

∣∣∣~k∣∣∣ = m2
A −m2

B

2mA

(3.23)

and dΩ its solid angle in the rest frame of the decaying vector meson. Integrating over
dΩ yields the full partial decay width

ΓA→Bγ = 1
8πm2

A

|MA→Bγ|2
∣∣∣~k∣∣∣ = m2

A −m2
B

16πm3
A

|MA→Bγ|2 = (m2
A −m2

B)3
e2

96πm3
A

|fAB (0)|2 .

(3.24)

Including the definition m2
23 = (q2 + k)2, the double-differential decay width for the

decay A→ Bl+l− is given as [A+08]
dΓA→Bl+l−
dq2 dm2

23
= 1

2π3
1

32m3
A

|MA→Bl+l−|2 . (3.25)

Here, q2 runs from 4m2
l to (mA −mB)2 and

(m23)2
min = (E∗2 + E∗3)

2 −
(√

E∗22 −m2
l +

√
E∗23 −m2

B

)2
, (3.26)

(m23)2
max = (E∗2 + E∗3)

2 −
(√

E∗22 −m2
l −

√
E∗23 −m2

B

)2
(3.27)

with the energies

E∗2 = 1
2

√
q2, (3.28)

E∗3 = m2
A −m2

B − q2

2
√
q2 (3.29)

of antilepton and pseudoscalar meson, respectively, in the
√
q2 rest frame. By integrating

over dm2
23 one gets the single-differential decay width [Lan85]

dΓA→Bl+l−
dq2 ΓA→Bγ

= e2

12π2

√√√√1− 4m2
l

q2

(
1 + 2m2

l

q2

)
1
q2

(1 + q2

m2
A −m2

B

)2

− 4m2
Aq

2

(m2
A −m2

B)2

3/2

|FAB (q)|2

= XQED · |FAB (q)|2 (3.30)

with XQED denoting the single-differential decay width of pure QED.
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3.2 Decay ω → π0l+l−

3.2.1 Form Factor for the ω → π0 Transition

For the decay of an ω-meson into a neutral pion and a real or virtual photon the La-
grangian (3.8) becomes

Lωπ = Ldir
ωπ + Lindir

ωπ (3.31)

with one term describing the direct decay into the pion and the photon,

Ldir
ωπ = − eA

2f mV

εµναβ (∂τωτα) ∂βπ0 ∂µAν , (3.32)

and the other one describing the decay via a virtual vector meson,

Lindir
ωπ = − hA

4f ε
µναβ

[
ρ0
µν (∂τwτα) ∂βπ0 +

(
∂τρ0

τα

)
ωµν∂βπ

0
]

− m̄2
πbA
f

εµναβ ωµν ρ
0
αβ π

0

− eV mV

4 ρ0
µν ∂µAν . (3.33)

In the last part Lindir
ωπ , the first two terms describe the decay of the ω-meson into the

pion and a virtual ρ0-meson and the last one the decay of the virtual ρ0-meson into a,
real or virtual, photon.

The Lagrangian yields that the ω-meson can only decay via a virtual ρ0-meson into a
neutral pion and a photon. This is in accordance with isospin conservation: As the ω-
meson has isospin 0 and the neutral pion isospin 1, the virtual vector meson has to have
isospin 1 so that its isospin and the isospin of the pion can again couple to isospin 0.
Since the φ-meson has isospin 0, the only possible virtual vector meson is the ρ0-meson
which has isospin 11.

The transition matrix element can again be calculated as the sum over all possible kinds
of decays given in the Lagrangian (3.31) by the terms proportional to eA, hA and bA.
Furthermore, the Feynman rules given in section 2.6.1 have to be used. Then, the matrix
element consists of the following terms:

1Of course, the virtual vector meson has to have electromagnetic charge zero due to charge conserva-
tion.
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1). Direct decay:

ω

π0

l+

l−

← ~p

տ ~k

տ ~q2

ւ ~q1

ւ ~q

Figure 3.1: Direct decay of the ω-meson into a neutral pion and a dilepton l.

iM1
ωπ = mωεα(p, λω)

(
−i eA

2f mV

εµναβ
)

(+ikβ) (+iqµ) (−lν(q))

= − i eAmω

2fmV

εµναβ kβqµ εα(p, λω) lν(q). (3.34)

With k = p− q and εµναβqβqµ = 0 this term of the matrix element equals

iM1
ωπ = − i eAmω

2f mV

εµναβ pµqν εα(p, λω) lβ(q). (3.35)

2). Indirect decay:

ω

π0

l−

l+

← #p

↙ #q1

↖ #q2

↖ #k

↙ #q

ρ0

Figure 3.2: Indirect decay of the ω-meson into a neutral pion and a dilepton l via a
virtual ρ0-meson.
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• Decay via −hA
4f ε

µναβ ρ0
µν (∂τwτα) ∂βπ0 − eV mV

4 ρ0
µν ∂µAν :

iM2
ωπ = mωεα(p, λω)

(
− 2i
m2
ρ

Sρ
(
q2
)) [(

m2
ρ − q2

)
gµρgνσ + gµρqνqσ − gµσqνqρ

]
·
(
−i hA4f ε

µναβ

)
(+ikβ) (+iqρ)

(
−ieVmV

4

)
(−lσ(q))

= + i
hAeVmVmω

8fm2
ρ

Sρ
(
q2
)
εµναβ kβ εα(p, λω)

·
[(
m2
ρ − q2

)
qµgνσ + qµqνqσ − q2qνgµσ

]
lσ(q). (3.36)

With εµναβqµqν = 0 and −εµναβq2qµgνσ = +εµναβq2qνgµσ this is equal to

iM2
ωπ = + i

hAeVmVmω

8f Sρ
(
q2
)
εµναβ kβqµ εα(p, λω) lν(q)

= + i
hAeVmVmω

8f Sρ
(
q2
)
εµναβ pµqν εα(p, λω) lβ(q). (3.37)

• Decay via −hA
4f ε

µναβ (∂τρ0
τα)ωµν∂βπ0 − eV mV

4 ρ0
µν ∂µAν :

iM3
ωπ = εµν(p, λω)

(
−Sρ

(
q2
))

[−qρgασ + qσgαρ]
(
−ihA4f ε

µναβ

)
(+ikβ) (+iqρ)

·
(
−i eVmV

4

)
(−lσ(q))

= +hAeVmV

16f Sρ
(
q2
)
εµναβ

i

mω

[pµεν(p, λω)− pνεµ(p, λω)] kβ
[
−q2gασ + qαqσ

]
lσ(q)

= +i hAeVmV

8fmω

Sρ
(
q2
)
εµναβ pµkβ εν(p, λω)

[
−q2gασ + qαqσ

]
lσ(q). (3.38)

Using εµναβpµkβqα = 0 and εµναβ pµkβ εν(p, λω) lα(q) = εµναβpµqβ εα(p, λω) lβ(q),
one gets

iM3
ωπ = + i

hA eV mV

8f mω

Sρ
(
q2
)
q2 εµναβ pµqν εα(p, λω) lβ(q). (3.39)

• Decay via − m̄2
πbA
f

εµναβ ωµν ρ
0
αβ π

0 − eV mV
4 ρ0

µν ∂µAν :

iM4
ωπ = εµν(p, λω)

(
−i m̄

2
π bA
f

εµναβ
)(
− 2i
m2
ρ

Sρ
(
q2
)) [(

m2
ρ − q2

)
gαρgβσ + gαρqβqρ

− gασqβqρ
]
· 1 · (+iqρ)

(
−i eVmV

4

)
(−lσ(q))

= − i bAm̄
2
πeVmV

fmω

Sρ
(
q2
)
εµναβ pµqν εα(p, λω) lβ(q). (3.40)
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Thus, the transition matrix element equals

Mω→π0γ/π0l+l− =M1
ωπ +M2

ωπ +M3
ωπ +M4

ωπ

= e fωπ(q) εµναβ pµqν εα(p, λω) lβ(q) (3.41)

with the transition form factor

fωπ(q) = mω

2fmV e

[
−eA + 1

4hAeVm
2
V Sρ

(
q2
)(

1 + q2

m2
ω

)
− 2bAeVm2

V

m̄2
π

m2
ω

Sρ
(
q2
)]
.

(3.42)

Recall that for the decay into a real photon q2 has to be zero. For that case, Sρ(0) = − 1
m2
ρ

and the matrix element equals

Mω→π0γ = mω

2fmV

[
eA + 1

4hAeV
m2
V

m2
ρ

− 2bAeV
m2
V

m2
ρ

m̄2
π

m2
ω

]
εµναβ pµqν εα(p, λω) ε∗β(q, λγ).

(3.43)

Since the only possible virtual vector meson is a ρ0-meson, the standard VMD form
factor (2.88) simplifies to

FVMD(q) = m2
virtual

m2
virtual − q2 (3.44)

with mvirtual = mρ. Though the bA term is of VMD type, the whole form factor (3.42)
is not of VMD type. The eA term is constant in q and the hA term is of mixed type.
Neglecting the energy-dependent width yields Sρ (q2) ≈

(
q2 −m2

ρ

)−1
and the normalised

form factor Fωπ(q) consists of the first two terms of the general form factor (1.2) (compare
subsection 2.4.2)

Fωπ(q) ≈ g0
m2
ρ

m2
ρ − q2 + (1− g0) =

b
(
1 + m2

ρ

m2
ω

)
+ c

a+ b+ c

m2
ρ

m2
ρ − q2 +

a− bm
2
ρ

m2
ω

a+ b+ c
(3.45)

with the coefficients2

a = −eA, b = −1
4hAeV , c = 2bAeV

m̄2
π

m2
ω

. (3.46)

Thereby, g0 = 2.00± 0.23.
To estimate the qualitative difference between the standard VMD form factor and form
factor (3.42) roughly, the terms of minor importance, those proportional to eA and bA,
and therewith the coefficients a and c are set to zero. If additionally the difference

2Here, the relation mV = 776MeV = mρ was used.
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3 Radiative Two- and Three-Body Decays of Vector Mesons

between the mass of the ω- and the ρ-meson is neglected, the normalised form factor
(3.45) will be approximately equal to

Fωπ(q) ≈ 2
m2
ρ

m2
ρ − q2 − 1 =

m2
ρ + q2

m2
ρ − q2 . (3.47)

This predicts a q dependent shift of the standard VMD form factor. In particular, the
slope at q2 = 0 (cf. (2.90)),

dFωπ
dq2 |q2=0 ≈

2
m2
ρ

, (3.48)

is much larger than the slope of standard VMD,

dFVMD

dq2 |q2=0 = 1
m2
ρ

. (3.49)

In Fig. 3.3, our calculations (done without the energy-dependent width) are compared
to both the standard VMD form factor (3.44) and the experimental dimuon data taken
by the NA60 collaboration [A+09]. The calculations with parameter set (P1) and (P2)
(solid and dotted line, respectively) do not differ much from each other which supports
the leading-order calculation to be quite accurate. Both calculations fit the experimental
data very well while the standard VMD form factor (dot-dashed line) fails to describe
the data. The only data points which cannot be well described with our calculations are
the last two which are close to the upper kinematic boundary,

√
q2 < mω −mπ.

3.2.2 Single-Differential and Full Partial Decay Widths for the
Decays into Dimuon and Dielectron

According to Eq. (3.42), the form factor for the ω → π0 transition contains the ρ0-meson
propagator which includes the energy-dependent width according to (2.122). Analogi-
cal, the transition form factors for the decays considered hereafter will include energy-
dependent widths of vector mesons. However, the partial decays widths with and without
these width for the decays of vector mesons considered in this thesis differ by less than
1%. This would be a better accuracy than the leading-order calculation and the deter-
mination of the parameters (P1), (P2) provide. Therefore, energy-dependent widths are
neglected in the calculations for decaying vector mesons. In these cases the vector-meson
propagator equals

SV
(
q2
)

= 1
q2 −m(V )2 . (3.50)

54



3.2 Decay ω → π0l+l−

 1

 10

 100

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

|F
ω

π0 |
2

ml+l− [GeV]

param. set (P1)
param. set (P2)

stand. VMD
NA60

Figure 3.3: Form factor of the decay ω → π0 l+l− compared to dimuon data taken by
the NA60 collaboration [A+09]. The solid line describes the form factor calculated
with parameter set (P1) and the dotted line the one calculated with parameter set
(P2). The dot-dashed line is calculated with the VMD model (3.44) using the mass
of the ρ-meson, mvirtual = mρ.

The same holds for radiative two- and three-body decays of neutral pions and η-mesons.
Due to the relatively high mass of the η′-meson, mη′ = 958GeV, and the zero mass
of the photon, the allowed phase space for decays of η′-mesons (see sections 4.6 and
5.5) contains singularities of the simplified vector-meson propagator (3.50). Thus, the
energy-dependent widths have to be taken into account. Additionally, the decays of
neutral pions and η-mesons into two dileptons are calculated with energy-dependent
widths (see sections 5.3 and 5.4).

In Fig. 3.4, the single-differential decay width defined in Eq. (3.30) for the decay
ω → π0µ+µ− is plotted. Again, the calculations with our approach (solid and dotted)
are compared to those with the VMD model (dot-dashed) and the experimental data
taken by the NA60 collaboration. Hereby, for the VMD model and to translate the
NA60 form-factor data into single-differential decay widths data the experimental value
Γexp
ω→π0γ given in [A+08] is inserted in Eq. (3.30). The two data points close to the
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3 Radiative Two- and Three-Body Decays of Vector Mesons

upper kinematic boundary, which could not be described by the form factor given in
(3.42), are of less importance in the single-differential decay width. Thus, they will not
contribute much to the full partial decay width which is determined by integrating the
single-differential decay width. Therefore, the value for the full partial decay width

Γω→π0µ+µ− = (9.85± 0.58) · 10−7 GeV (3.51)

calculated with the form factor (3.42) and the parameter sets (P1) and (P2) by integrat-
ing (3.30) over the interval

[
4m2

µ , (mω −mπ0)2
]
agrees very well with the experimental

partial decay widths given in [A+08],

Γexp
ω→π0µ+µ− = (8.15± 2.13) · 10−7 GeV.
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Figure 3.4: Single-differential decay width of the decay ω → π0µ+µ− compared to the
experimental data calculated with Eq. (3.30) and the form factor data taken at the
NA60 experiment [A+09]. The solid/dashed line is calculated with the parameter set
(P1)/(P2), the dot-dashed one with the VMD model.

The single-differential decay width of the decay ω → π0e+e− is plotted in Fig. 3.5. As
one can see, it is largely dominated by the low-energy region. Comparing with Fig. 3.3
which shows the normalised form factor yields that in this region the deviation from
QED is irrelevant, i.e. the normalised form factor is approximately one. Therefore,
it is interesting for experiments to compare the results of the decay of the ω-meson
into a neutral pion and a dielectron to those of the decay into a dimuon. The relevant
part of the single-differential decay width of the decay into a dielectron, the part above
me+e− = 2mµ, is plotted in Fig. 3.6. In this plot, the obvious differences between the
approach used in this thesis and the VMD model are well visible.
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3.2 Decay ω → π0l+l−

Again, the result for the partial decay width

Γω→π0e+e− = (6.93± 0.09) · 10−6 GeV (3.52)

agrees very well with the experimental value [A+08]

Γexp
ω→π0e+e− = (6.54± 0.54) · 10−6 GeV.
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Figure 3.5: Single-differential decay width of the decay ω → π0e+e− calculated with
parameter set (P1) and (P2) (solid and dashed, respectively) and the VMD model
(dot-dashed).
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Figure 3.6: The same as in Fig. 3.5 for me+e− ≥ 2mµ.
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3.3 Decay ω → ηl+l−

3.3.1 Form Factor for the ω → η Transition

Evaluating the Lagrangian 3.8 yields that the ω-meson can either decay directly into an
η-meson and a, real or virtual, photon or via a virtual ω-meson. The relevant Lagrangian
equals Lωη = Ldir

ωη + Lindir
ωη with the direct decay being described by

Ldirect
ωη = − eA

6
√

3fmV

εµναβ (∂τωτα) ∂βη ∂µAν (3.53)

and the indirect decay by

Lindir
ωη = − hA

4
√

3f
εµναβ ωµν (∂τωτα) ∂βη

− bAm̄
2
π

2
√

3f
εµναβ ωµν ωαβ η

− eVmV

12 ωµν ∂µAν . (3.54)

According to isospin conservation, the ω-meson could either decay indirectly via an
intermediate ω- or an intermediate φ-meson into an η-meson and a photon. The decay
via a φ-meson is suppressed by the Okubo-Zweig-Iizuka (OZI) rule [Oku63, Zwe64, Iiz66]
which claims that processes with disconnected quark lines are suppressed. The quark
structures of the involved mesons are equal to

ωµ ∼ ūγµu+ d̄γµd, φµ ∼ s̄γµs, η ∼ ūγ5u+ d̄γ5d− 2s̄γ5s (3.55)

with the fields u, d and s for the light quarks up, down and strange, respectively. As
the ω-meson has no strange-quark part, the decay into an η- and a φ-meson yields a
diagram with disconnected quark lines and, thus, this decay is suppressed (see Fig. 3.7).
The Lagrangian (2.103) is constructed such that it respects the OZI rule.

ω

η

φ

ω

η

ω
ū/d̄

s

s̄u/d

ū/d̄

u/d u/d

Figure 3.7: Decay of an ω-meson into an η-meson and an ω-meson on the left-hand
side and into a φ-meson on the right-hand side. As the decay into a φ-meson contains
disconnected quark lines, it is suppressed according to the OZI rule.
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Analogical to the calculations performed in subsection 3.2.1, the form factor for the
ω → η transition can be calculated from the Lagrangian Lωη by using the Feynman rules
given in section 2.6.1. Therewith, the following form factor for the ω → η transition is
calculated:

fωη(q) = mω

6
√

3fmV e

[
−eA + 1

4eV hAm
2
V

(
1 + q2

m2
ω

)
Sω
(
q2
)
− 2bA eV m2

V

m̄2
π

m2
ω

Sω
(
q2
)]
.

(3.56)

The normalised form factor Fωη(q) = fωη(q)/fωη(0) is plotted in Fig. 3.8. As for the
form factor for the ω → π0 transition, the calculations with the two different parameter
sets (P1) and (P2) do not differ much from each other. Both disagree with the standard
VMD calculation (3.44) for mvirtual = mω.
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Figure 3.8: Form factor of the decay ω → η l+l− calculated with both parameter sets
(P1) and (P2) (solid and dashed line) and with the VMD model (dot-dashed line).
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3.3.2 Single-Differential and Full Partial Decay Widths for the
Decays into Dimuon and Dielectron

The single-differential decay widths of the decays of the ω-meson into an η-meson and
either a dimuon or a dielectron are plotted in Fig. 3.9 and Fig. 3.10, respectively.
For both cases, the calculations with the two parameter sets agree very well and are
practically indistinguishable in both figures. The calculation with the VMD model is
in disagreement with those calculations for the decay into a dimoun and nearly on top
of them in the figure describing the decay into a dielectron. To be able to compare the
results for the decay into a dimuon and a dielectron, the single-differential decay width
of the decay into a dielectron for me+e− above 2mµ is given in Fig. 3.11.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.21  0.215  0.22  0.225  0.23  0.235

dΓ
ω

−>
ηµ

+ µ−  
/ d

m
µ+ µ−2  [1

0-1
0  G

eV
-1

]

mµ+µ− [GeV]

param. sets (P1) and (P2)
stand. VMD

Figure 3.9: Single-differential decay width of the decay ω → ηµ+µ−. As they are prac-
tically indistinguishable, the solid line describes the calculations with both parameter
sets (P1) and (P2). The dot-dashed line is calculated with the standard VMD model.

The partial decay widths

Γω→ηµ+µ− = (8.51± 0.01) · 10−12 GeV, (3.57)
Γω→ηe+e− = (2.72± 0.09) · 10−8 GeV (3.58)

one gets with the Lagrangian Lωη can only be seen as predictions because there are no
experimental data available. Furthermore, the branching ratios of these processes are
very small

BRω→ηµ+µ− = (1.00± 0.00) · 10−9, (3.59)
BRω→ηe+e− = (3.20± 0.10) · 10−6. (3.60)

Therefore, it seems quite difficult to measure these processes and thus to judge whether
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3.3 Decay ω → ηl+l−

the approach used in this thesis or the standard VMD model describes the ω → η
transition better. It will be shown in section 4.4 that the normalised form factor for the
η′ → ω transition is equal to the one for the ω → η transition. Since it is possible for the
KLOE-2 collaboration to measure the decay η′ → ωl+l− [Kup10], there will be another
opportunity to check the results of this section.
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Figure 3.10: Same as Fig. 3.9 but for electrons instead of muons. In this case, the
dot-dashed line calculated with the VMD model is on top of the solid line which was
calculated with the parameter sets (P1) and (P2).
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Figure 3.11: Same as Fig. 3.10 but for me+e− ≥ 2mµ only. Here, the difference between
the calculation with both parameter sets (P1) and (P2) (solid line) and the one with
the standard VMD calculation (dot-dashed line) are small, but can be observed.
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3.4 Decay φ→ ηl+l−

3.4.1 Form Factor for the φ→ η Transition

For the decay of a φ-meson into an η-meson and a, real or virtual, photon the Lagrangian
(3.8) becomes Lφη = Ldir

φη + Lindir
φη with

Ldir
φη = −

√
2 eA

3
√

3 f mV

εµναβ ∂τφτα ∂βη ∂µAν (3.61)

describing the direct decay and

Lindir
φη = hA

2
√

3 f
εµναβ φµν (∂τφτα) ∂βη

+ bA (2m̄2
K − m̄2

π)√
3 f

εµναβ φµν φαβ η

+
√

2 eV mV

12 φµν ∂µAν (3.62)

describing the indirect decay via a virtual vector meson. In agreement with isospin
conservation which allows for a decay via a virtual ω- or φ-meson and the suppression
of the decay via an ω-meson due to the OZI rule (compare sections 3.2.1, 3.3.1), this
Lagrangian allows only for a decay via an intermediate φ-meson.

The form factor for the φ→ η transition can be determined as

fφη(q) = 2mφ

3
√

6fmV e

[
−eA + 1

4eV hAm
2
V

(
1 + q2

m2
φ

)
Sφ
(
q2
)

−2bAeVm2
V

2m̄2
K − m̄2

π

m2
φ

Sφ
(
q2
)]
. (3.63)

In Fig. 3.12, the normalised form factor Fφη(q) = fφη(q)/fφη(0) and the standard VMD
form factor (3.44) for mvirtual = mφ are plotted. They are compared to the data taken
at the SND detector at the VEPP-2M collider for the decay into a dielectron [A+01].
Although the calculations done with the parameter sets (P1) and (P2) (solid and dashed
line, respectively) and the calculation with the standard VMD model (dot-dashed line)
differ from each other, all three fit the data due to their relatively large error bars. So,
it is not possible to judge which ansatz is better for the φ→ η transition. It is our hope
that we will get better data form the KLOE-2 collaboration where the decay φ→ ηe+e−

can also be measured [Gio10].
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Figure 3.12: Form factor of the decay φ → ηl+l− compared to dielectron data taken
at the VEPP-2M collider [A+01]. The solid line describes the form factor calculated
with parameter set (P1) and the dotted line the one calculated with parameter set
(P2). The dot-dashed line is calculated with the standard VMD model.

3.4.2 Single-Differential and Full Partial Decay Widths for the
Decays into Dimuon and Dielectron

The single-differential decay widths of the decays into a dimuon and a dielectron are
shown in Fig. 3.13 and Fig. 3.14, respectively. For a better comparability, the single-
differential decay width of the decay into a dielectron for an invariant mass me+e− above
2mµ is plotted in Fig. 3.15. In the case of a decay into a dielectron, all three lines,
calculated with parameter set (P1) (solid), parameter set (P2) (dashed) and the VMD
model (dot-dashed), agree well, whereas they differ from each other for the decay into
a dimuon. The disagreement between the calculations for the decay into a dimuon with
both parameter sets (P1) and (P2) is greater than it was for the transition form factor.
This is caused by the differences between the partial decay widths of the decay φ→ ηγ
calculated with the different parameter sets (see table 2.2) which has to be inserted in
formula (3.30) for the single-differential decay width. Bear in mind that the φ-meson is
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the heaviest light vector meson and parameter set (P2) was introduced to have a rough
estimate for the error of the leading-order calculations performed with parameter set
(P1). Consequently, it was expected that the differences between the calculations with
the two parameter sets are largest for the decay of the φ-meson.

This larger difference is also observable at the full partial decay widths for the decay
into a dielectron where the calculated value

Γφ→ηe+e− = (4.64± 0.26) · 10−7 GeV (3.64)

has the greatest deviation from the experimental value given in [A+08]

Γexp
φ→ηe+e− = (4.90± 0.47) · 10−7 GeV (3.65)

among all partial decay widths for the decays of vector mesons considered in this thesis.
Nevertheless, it is still in agreement with the experimental value within the error bars.

For the decay into a dimuon no experimental data are available, so the calculated width

Γφ→ηµ+µ− = (2.75± 0.29) · 10−8 GeV (3.66)

has to be seen as a prediction.
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Figure 3.13: Single-differential decay width for the decay φ → ηµ+µ−. The solid and
dashed lines are calculated with the parameter set (P1) and (P2), respectively, the
dot-dashed one with the VMD model.
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Figure 3.14: Same as in Fig. 3.13 but for electrons instead of muons.
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Figure 3.15: Same as in Fig. 3.14 for me+e− ≥ 2mµ.
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4 Radiative Two- and Three-Body
Decays of Pseudoscalar Mesons
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In this chapter, electromagnetic transitions of pseudoscalar mesons A into real photons
or vector mesons B are considered, i.e. the processes A → γγ(?) and A → Bγ(?) with
real or virtual photons γ(?).
In section 4.1, the relevant leading-order Lagrangian and the formulas for the partial
decay width are derived. Thereby, the leading-order WZW Lagrangian (cf. subsection
2.3.2) describing the direct decay of a pseudoscalar meson into two, real or virtual,
photons is also considered. The π0 → γ transition is discussed in the subsequent section
4.2. For the decays of η- and η′-mesons, the mixing of these states has to be considered
first (section 4.3). Therewith, the transitions η′ → ω, η → γ and η′ → γ are calculated
in the later sections 4.4, 4.5 and 4.6.
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4.1 Leading-order Lagrangian, Transition Form
Factor and Partial Decay Width

4.1.1 The Leading-Order Lagrangian Concerning Vector
Mesons

In section 2.5, it was explained that the leading-order Lagrangian which is used in
this thesis and is based on the counting scheme (C1), (C2) does not contain all terms
describing the decays of pseudoscalar mesons into one or two (real or virtual) vector
mesons. Therefore, this kind of decays can only be used as a test for the approach
without insisting on being a full leading- or next-to-leading-order calculation.

In this chapter, decays of a pseudoscalar meson P into two real photons, into a photon
and vector meson or into a photon and a dilepton will be considered. The relevant parts
of the Lagrangian given in section 2.5 are the following:

• Decay P → V γ with a vector meson V :

L1 = i
eA

4mV

εµναβ tr
{(
f+
µν (DτVτα) + (DτVτα) f+

µν

)
Uβ
}

≈ − eA
4fmV

εµναβ tr {(Q (∂τVτα) + (∂τVτα)Q) ∂βΦ} ∂µAν . (4.1)

• Decay P → V V ′ with two vector mesons V and V ′:

L21 = i
hA
8 εµναβ tr {(Vµν (DτVτα) + (DτVτα)Vµν)Uβ}

≈ − hA
16f ε

µναβ tr {(Vµν (∂τVτα) + (∂τVτα)Vµν) ∂βΦ} , (4.2)

L22 = i
bA
8 εµναβ tr

{
[Vµν , Vα,β]+ χ−

}
≈ − bA

8f ε
µναβ tr

{
VµνVαβ [Φ, χ0]+

}
. (4.3)

• Transition V → γ:

L3 = − eVmV

8 tr
{
V µνf+

µν

}
≈ − eVmV

12
[
3
(
ρ0
)µν
−
√

2φµν + ωµν
]
∂µAν . (4.4)
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Hence, the relevant Lagrangian describing both the decay of a pseudoscalar meson into
two photons and into a vector meson and a photon equals

Lvec
P→V γ/γγ = L1 + L21 + L22 + L3

= − eA
4fmV

εµναβ tr {(Q (∂τVτα) + (∂τVτα)Q) ∂βΦ} ∂µAν

− hA
16f ε

µναβ tr {(Vµν (∂τVτα) + (∂τVτα)Vµν) ∂βΦ}

− bA
8f ε

µναβ tr
{
VµνVαβ [Φ, χ0]+

}
− eVmV

4 tr {V µνQ} ∂µAν . (4.5)

As in the case of a decay of a vector meson (see section 3.1), the eA term describing the
direct decay of a pseudoscalar meson into a (real or virtual) vector meson and a photon
will be used for a rough estimate of the intrinsic error of the calculations. Of course, the
parameters eA, hA and bA are still fixed by the sets (P1) and (P2).

4.1.2 The Effective Wess-Zumino-Witten Action

As discussed in subsection 2.3.2, the Lagrangian for Goldstone bosons as it was given
in subsection 2.3.1 exhibits a larger symmetry than the real world does. Therefore, the
Wess-Zumino-Witten (WZW) Lagrangian (2.84) has to be added. For decays of pseu-
doscalar mesons into two photons the first term −enAµJµ in (2.84) does not contribute
to tree-level calculations because Jµ ∈ O (Φ3). The trace of the second term becomes

− 6i
f

tr
{
Q2∂µΦ

}
and, hence, the relevant part of the WZW Lagrangian equals

LWZW ≈ 3e2
8π2f

εµναβ ∂νAαAβ tr
{
Q2∂µΦ

}
. (4.6)

This Lagrangian describes the direct decay of a pseudoscalar meson into two photons
without any vector meson being involved while the Lagrangian (4.5) describes only
decays via at least one virtual vector meson.

For the decays of pseudoscalar mesons, the Lagrangian

LP→V γ/γγ = Lvec
P→V γ/γγ ± LWZW

P→V γ/γγ (4.7)

with Lvec
P→V γ/γγ given in Eq. (4.5) and LWZW

P→V γ/γγ given in Eq. (4.6) has to be used. As
discussed in subsection 2.3.2, the relative sign between the two parts of the Lagrangian
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is not fixed yet. Within the approach of this thesis it is not possible to decide purely
theoretically whether it should be a positive or a negative relative sign. The only possi-
bility to fix the sign is a check against experiment: The squared normalised form factor
|FPγ(q)|2 for the transition of a pseudoscalar meson into a real photon is plotted for
both relative signs and both calculations are compared to available experimental data.
The sign which describes the data better is taken as the physically realistic sign. In this
thesis, the sign is determined as negative by comparing the η → γ transition form factor
with data taken by the NA60 collaboration for the decay η → γµ+µ− [A+09] so that

LP→V γ/γγ = Lvec
P→V γ/γγ − LWZW

P→V γ/γγ . (4.8)

Keep in mind that a negative relative sign between the two parts of the Lagrangian is,
of course, connected to fixing the parameters n of the WZW Lagrangian (4.6) and the
parameter hA of the Lagrangian (4.5) as positive in advance.

4.1.3 Transition Form Factor and Partial Decay Width

Analogical to the definition of the transition matrix element and the transition form
factor for the decay of vector mesons (see subsection 3.1.2), the transition matrix element
for the decay of a pseudoscalar meson P into a real photon and either another (real)
photon or a dilepton l is given by

MP→γγ/γl+l− = efPγ(q) εµναβ pµqν ε∗α(k, λγ) lβ(q) (4.9)

with lβ(q) defined by Eq. (3.11), (3.12) and the four-momenta p, q and k of the incoming
pseudoscalar meson, the outgoing or intermediate photon and the outgoing photon,
respectively.
The transition matrix element for the decay into a vector meson V and either a photon
or a dilepton is given by

MP→V γ/V l+l− = efPV (q) εµναβ pµqν εα(k, λV ) lβ(q) (4.10)

with k being the four-momentum of the outgoing vector meson.

The formula for the decay width for the decay of a pseudoscalar meson into a vector
meson and a photon or into two (real) photons is in principle given by Eq. (3.24).
As pseudoscalar particles have spin 0, the prefactor 1

3 arising from the average over all
incoming vector meson states has to be replaced by the prefactor 1. Additionally, for
the decay into two photons a prefactor 1

2! has to be included as there are two identical
particles in the outgoing channel which cannot be distinguished in a detector. Therefore,
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the partial decay widths equal

ΓP→V γ = e2 (m2
P −m2

V )3

32πm3
P

|fPV (0)|2 , (4.11)

ΓP→2γ = e2m3
P

64π |fPγ(0)|2 . (4.12)

Therewith, the single-differential decay width for the decay of a pseudoscalar meson into
a vector meson and a dilepton can be calculated by applying formula (3.30) (taking P
as the incoming particle instead of A and V instead of B). The single-differential decay
width for the decay into a real photon and a dilepton gets an additional factor 2 in
comparison to formula (3.30) yielding

dΓP→γl+l−
dq2 ΓP→2γ

= e2

6π2
1
q2

√√√√1− 4m2
l

q2

(
1 + 2m2

l

q2

)(
1− q2

m2
P

)3

|FPγ(q)|2 (4.13)

including that m2
γ = 0.
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4.2 Decay π0 → γl+l−

4.2.1 Form Factor for the π0 → γ Transition

The relevant leading-order Lagrangian (4.8) for the decays of pseudoscalar mesons yields
that the neutral pion can only decay via one virtual ρ0-meson, one virtual ω-meson or a
ρ0- and an ω-meson into two (real or virtual) photons. As the pion field is proportional to
ūγ5u− d̄γ5d, an intermediate φ-meson is not allowed in leading-order processes according
to the OZI rule. As a photon has isospin zero or one, both the decay of a neutral pion into
a photon and a ρ0-meson and the decay into a photon and an ω-meson are in agreement
with isospin conservation. But the decay of the pion into two ω-mesons would violate
isospin conservation and is therefore forbidden. Additionally, an allowed process should
conserve G-parity, i.e. the process should be invariant under the composition of charge
conjugation and isospin. As

Gπ0 = −1, Gρ0 = +1, Gω = −1, (4.14)

a decay into two ρ0-mesons is also forbidden and the decay into a ρ0- and an ω-meson
is the only possibility for a decay of a neutral pion into two virtual vector mesons.

Thus, the leading-order Lagrangian Lvec
πγ equals Lone virt

πγ + Ltwo virt
πγ with

Lone virt
πγ = − eA

6fmV

εµναβ
[
∂τρ0

τα + 3∂τωτα
]
∂βπ

0 ∂µAν (4.15)

describing the decay via one virtual vector meson and

Ltwo virt
πγ = − hA

4f ε
µναβ

[
ωµν

(
∂τρ0

τα

)
+ ρ0

τα (∂τωτα)
]
∂βφ

0

− bAm̄
2
π

f
εµναβ ρ0

µν ωαβ π
0 (4.16)

describing the decay via two virtual vector mesons.

The matrix element defined by the Lagrangian Lvec
πγ can be calculated with the Feynman

rules given in the subsection 2.6.1 analogically to the calculations in subsection 3.2.1
(see the two diagrams on the left-hand side in Fig. 4.1). Thereby, all possible virtual
vector mesons have to be considered and the results to be added. The calculated matrix
element equals

Mvec
πγ = e fvec

πγ (q) εµναβ pµqν ε∗α(k, λγ) lβ(q) (4.17)
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with the vector part of the form factor for the π0 → γ transition

fvec
πγ (q) = eV

12fe

[
eVm

2
V

(
hA
8 q2 − bAm̄2

π

)(
1
m2
ω

Sρ
(
q2
)

+ 1
m2
ρ

Sω
(
q2
))

+eA2
(
Sρ
(
q2
)

+ Sω
(
q2
))
q2
]

(4.18)

and using lβ(q) as defined in subsection 3.1.2. Recall that for the decay into two real
photons the form factor has to be evaluated at q2 = 0.

π0 π0 π0

ρ0, ω

ρ0, ω

← ~p

տ ~k

ւ ~q

տ ~k

տ ~k

← ~p ← ~p

ւ ~q

ւ ~qω, ρ0

Figure 4.1: Decay of the neutral pion into two (real or virtual) photons via Lvec
πγ with

one or two virtual vector mesons (left and middle) and via LWZW
πγ (right).

Additionally, the Lagrangian based on the effective Wess-Zumino-Witten action describ-
ing the direct decay of the neutral pion into two photons

LWZW
πγ = e2

8π2f
εµναβ ∂µπ

0 ∂νAαAβ (4.19)

has to be considered (see diagram on the right-hand side in Fig. 4.1). It yields the
matrix element

iMWZW
πγ = 2 (−ipµ)

(
+i e2

8π2f
εµναβ

)
(ikν) ε∗α(k, λγ) (−lβ(q))

= − i
e2

4π2f
εµναβ pµkν ε

∗
α(k, λγ) lβ(q)

= + i
e2

4π2f
εµναβ pµqν ε

∗
α(k, λγ) lβ(q) (4.20)

and, thus, the transition form factor

fWZW
πγ = e

4π2f
. (4.21)
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As already mentioned in subsection 4.1.2, the form factor fπγ for the π0 → γ transition
is the sum of fvec

πγ and −fWZW
πγ ,

fπγ(q) = fvec
πγ (q)− fWZW

πγ (q)

= eV
12fe

[
eVm

2
V

(
hA
8 q2 − bAm̄2

π

)(
1
m2
ω

Sρ
(
q2
)

+ 1
m2
ρ

Sω
(
q2
))

+eA2
(
Sρ
(
q2
)

+ Sω
(
q2
))
q2
]
− e

4π2f
. (4.22)

On the left-hand side of Fig. 4.2, the normalised form factor Fπγ(q) is plotted. Once
again, the calculations with the parameter sets (P1) and (P2) do not differ much. Ad-
ditionally, the standard VMD form factor which is approximated by

FVMD
πγ (q) = m2

virtual
m2

virtual − q2 . (4.23)

for mρ ≈ mω ≈ mvirtual = 774.5MeV is plotted in that figure. The calculations with pa-
rameter set (P1) and with the standard VMD model lie on top of each other so that the
form factor of the π0 → γ transition cannot be used to evaluate our approach in compar-
ison to the standard VMD model. In the figure on the right-hand side, the calculations
are compared to the data taken at the Brookhaven National Laboratory [Sam61]. The
error bars of the data are relatively large so that an agreement or a disagreement with
the calculations with parameters sets (P1), (P2) and the standard VMD form factor
cannot be observed.
To be able to find out which part of the π0 → γ transition form factor, the indirect vec-
tor term or the direct WZW term, are dominant in which energy regions, the quotient
fvec
πγ (q)/fWZW

πγ (q) is plotted in Fig. 4.3. The quotient is less than 0.025 for all allowed
energies. Thus, the WZW term in the form factor is the dominant one, a decay via one
or two virtual vector mesons yields a form factor whose value is at most 2.5% of the
WZW term.

4.2.2 Single-Differential and Full Partial Decay Widths for the
Decays π0 → γγ/γe+e−

For the decay of a neutral pion into two photons and the decay into a photon and a
dielectron the partial decay widths are equal to

Γπ0→γγ = (7.83± 0.14) · 10−9 GeV, (4.24)
Γπ0→γe+e− = (9.28± 0.16) · 10−11 GeV. (4.25)
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Figure 4.2: On the left-hand side, the (full) form factor of the π0 → γ transition is
plotted. The calculations with the parameter sets (P1) and (P2) are described by
the solid and the dotted line, respectively; the calculations with the VMD model are
practically indistinguishable from the calculations with parameter set (P1). The figure
on the right-hand side compares all three calculated form factors with the data taken
at the Brookhaven National Laboratory [Sam61]. In that scale, the three curves are
indistinguishable and presented by one solid line.

Both agree well with the experimental values taken from [A+08]

Γexp
π0→γγ = (7.74± 0.56) · 10−9 GeV, (4.26)

Γexp
π0→γe+e− = (9.20± 0.93) · 10−11 GeV. (4.27)

The corresponding single-differential decay width for the decay π0 → γe+e− is plotted
in Fig. 4.4 with the calculations done with parameter set (P1) and parameter set (P2)
(solid line) in agreement. The calculation done with the standard model (dot-dashed
line) differs from those.
Note that a decay into a photon and a dimuon is not possible because the lower kinematic
boundary mγ + 2mµ = 2mµ = 212MeV for such a decay is larger than the mass of the
neutral pion mπ0 = 135MeV.
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Figure 4.3: The quotient fvec
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πγ (q) using Eq. (4.18) and Eq. (4.21).
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Figure 4.4: Single-differential decay width for the decay π0 → γe+e−. The solid line
describes the calculations done with parameter set (P1) and (P2) which are indis-
tinguishable and the dot-dashed line the calculations done with the standard VMD
model.
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4.3 η-η′-Mixing

In the chapter 3 where the radiative decays of vector mesons were considered, the
Goldstone-boson octet described by the matrix Φ defined in Eq. (2.52) was used for
decays into η-mesons. Yet, the η-meson included in Φ is not equal to the physical η-
meson. This meson is a combination of the octet η-state, from now on called η8, and
the singlet η-state η1. For decays of vector mesons into an η-meson and a dilepton it is
adequate to consider the η8-state instead of the physical η-meson but for the description
of decays of η-mesons it is necessary to use the physical η-meson as the results calculated
with an unmixed η = η8 state and with the physical η-meson differ much (see section
4.5). Correspondingly, the physical η′-meson cannot be described adequately as an η1
state but consists of an η8- and an η1-part. Again, there are significant differences be-
tween the calculations done with the unmixed η′ = η1 state and the physical η′-meson
(see section 4.6). To take this mixture of octet and singlet into account, the Goldstone-
boson matrix Φ =: Φold defined in (2.52), which only includes the η8-state, is modified
by adding a matrix describing the singlet:

Φ 7→ Φold +
√

2
3

η1 0 0
0 η1 0
0 0 η1

 . (4.28)

The aim is to describe the η- and the η′-meson with one at this point still arbitrary
mixing angle θ as

η = cos θη8 − sin θη1, (4.29)
η′ = sin θη8 + cos θη1. (4.30)

To determine this mixing angle, the mass terms in the Lagrangian have to be considered.
For the Goldstone octet, the mass terms are the terms of second order in the fields in the
symmetry breaking term Ls.b. of the Lagrangian for the Goldstone bosons (2.73). With
χ = χ0 = 2B0M and the quark-mass matrix M = diag (mu,md,ms) this symmetry
breaking term equals

Ls.b. = 1
4 f

2 tr{χ0U
† + Uχ†0} = B0

2 f 2 tr{MU † + UM}

≈ − B0

2 tr{Φ2
oldM}+ const. (4.31)
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As constants are irrelevant in Lagrangians, Ls.b. is simplified as

Ls.b. ≈ −
B0

2 tr{Φ2
oldM}

= − B0

2

[
2(mu +md)π+π− + 2(mu +ms)K+K− + 2(md +ms)K0K̄0

+(mu +md)π0π0 + 2√
3
(mu −md)π0η8 + mu +md + 4ms

3 η2
8

]
. (4.32)

In the isospin-symmetric limit mu = md = m, the term proportional to π0η8 turns to
zero and there is no π0-η8-mixing. The values for B0m and B0ms can therewith be
determined via

m2
π = 2B0m, m

2
K = B0(m+ms) (4.33)

by the masses of the Goldstone bosons pion, mπ ≈ 138MeV, and kaon, mK = 496MeV,
as

B0m = 1
2m

2
π, B0ms = m2

K −
1
2m

2
π. (4.34)

To involve also the pseudoscalar singlet, an additional mass term

− 1
2 m

2
1 η

2
1 (4.35)

is needed [EGPdR89]. Thus, by modifying the Goldstone-boson matrix Φ according to
(4.28), the Lagrangian to determine the masses and the mixing angle of η- and η′-mesons
equals

Lmass = −1
2B0 tr{Φ2M} − 1

2m
2
1η

2
1. (4.36)

If only terms proportional to η8 or η1 are considered, this term will reduce to

Lmass(η8, η1) = − 1
2

[2
3B0

(
(m+ 2ms)η2

8 + 2
√

2(m−ms)η8η1 + (2m+ms)η2
1

)
+m2

1η
2
1

]

= − 1
2
(
η8 η1

)( 2
3B0(m+ 2ms) 2

√
2

3 (m−ms)
2
√

2
3 B0(m−ms) 2

3B0(2m+ms) +m2
1

)
︸ ︷︷ ︸

=: M(η8, η1)

(
η8
η1

)
. (4.37)

The physical states η- and η′-meson are defined as a multiplication of (η8, η1)T with a
unitary matrix U as defined by (4.29), (4.30). As there is no mixing of the physical

79



4 Radiative Two- and Three-Body Decays of Pseudoscalar Mesons

η- and η′-meson, all terms proportional to η η′ should vanish. Therefore, the matrix
M(η, η′) := UTM(η8, η1)U has to be diagonal1. Hence, the mass term equals

Lmass(η8, η1) = − 1
2
(
η8 η1

)
UT UM(η8, η1)UT U

(
η8
η1

)
= −1

2
(
η η′

)
M(η, η′)

(
η
η′

)

= − 1
2
[
d1η

2 + d2η
′ 2
]

(4.38)

with the diagonal elements d1 and d2 of the mass matrix M(η, η′). The first diagonal
element d1 has to be equal to the squared mass m2

η of the η-meson and the second one
d2 to the squared mass m2

η′ of the η′-meson. Both diagonal elements d1 and d2 are
defined by M(η, η′) := UTM(η8, η1)U and depend on B0m, B0ms and m1. As B0m and
B0ms are fixed by the averaged pion and kaon mass via Eq. (4.34), the mass m1 can be
calculated by solving the Eq. d2 = m2

η′ = (958MeV)2 and is determined as

m1 ≈ 819MeV. (4.39)

If this result is inserted into the Eq. d1 = m2
η, the mass of the η-meson will equal

mη ≈ 495MeV (4.40)

which is in acceptable agreement with the experimental value mη = 548MeV taken from
[A+08]. Inserting the values for B0m, B0ms and m1 in U(η8, η1)T = (η, η′)T with the
physical states η and η′ as defined in (4.29) and (4.30), respectively, fixes the mixing
angle as

θ ≈ −19.7◦. (4.41)

This result also agrees well with the generally appointed value θ = −19.5◦ [ABBC92]
for the mixing angle which is used within this thesis.

1The unitary matrix U which diagonalizes M(η8, η1) can be determined via the eigenvectors of
M(η8, η1).
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4.4 Form Factor for the η′ → ω Transition

As explained in the previous section 4.3, the η′-meson is a linear combination of the
octet state η8 and the singlet state η1. Thus, for all calculations concerning the decays
of an η′-meson both the Lagrangian describing the decay of the η8 state and the one
describing the decay of the η1 state are needed. The relevant Lagrangians for the decays
into an ω-meson and a, real or virtual, photon are

Lη8ω = − eA

6
√

3fmV

εµναβ ∂τωτα ∂βη8 ∂µAν

− hA

4
√

3f
εµναβ ∂τωτα ωµν ∂βη8

− bAm̄
2
π

2
√

3f
εµναβ ωµν ωαβ η8

− eVmV

12 ωµν ∂µAν (4.42)

describing the decay of the η8 state and

Lη1ω = −
√

2eA
6
√

3fmV

εµναβ ∂τωτα ∂βη1 ∂µAν

−
√

2hA
4
√

3f
εµναβ ∂τωτα ωµν ∂βη1

−
√

2bAm̄2
π

2
√

3f
εµναβ ωµν ωαβ η1

− eVmV

12 ωµν ∂µAν (4.43)

describing the decay of the η1 state. Obviously, the first three terms in Lη1ω are equal
to the first three terms in Lη8ω multiplied with

√
2. The last term for the decay of the

virtual ω-meson into a photon is, of course, the same for both Lagrangians. Therefore,
the matrix elementMη1ω equals

√
2Mη8ωγ. Hence, the definition η′ = sin θη8 + cos θη1

yields

Mη′ω = sin θMη8ω + cos θMη1ω =
[
sin θ +

√
2 cos θ

]
Mη8ω

= e
[
sin θ +

√
2 cos θ

]
fη8ω(q) εµναβ pµqν εα(k, λω) lβ(q) (4.44)

with the four-momenta p, q and k of the incoming η′-meson, the outgoing (real or virtual)
photon and the outgoing ω-meson, respectively.
Hence, to calculateMη′ω only fη8ω(q) has to be determined. Calculated analogically to
the π0 → γ transition form factor in subsection 4.2.1, the form factor for the η8 → ω
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transition is determined as

fη8ω(q) = − mω

6
√

3fmV e

[
−eA + 1

4eV hAm
2
V

(
1 + q2

m2
ω

)
Sω
(
q2
)
− 2bA eV m2

V

m̄2
π

m2
ω

Sω
(
q2
)]
.

(4.45)

This form factor is equal to (−1) times the form factor (3.56) for the ω → η transition
given in subsection 3.3.1. Hence, the normalised form factor for the η′ → ω transition
equals

Fη′ω(q) = sin θfη8ω(q) + cos θfη1ω(q)
sin θfη8ω(0) + cos θfη1ω(0) =

[
sin θ +

√
2 cos θ

]
fη8ω(q)[

sin θ +
√

2 cos θ
]
fη8ω(0)

= fη8ω(q)
fη8ω(0) = −fωη(q)

−fωη(0)
= Fωη (4.46)

as already anticipated in subsection 3.3.1.

The partial decay width for the decay of the η′-meson into an ω-meson and a photon
can be calculated with formula (4.11) and equals

Γη′→ωγ = (5.54± 0.16) · 10−6 GeV (4.47)

in good agreement with the experimental value [A+08]

Γexp
η′→ωγ = (6.16± 1.09) · 10−6 GeV. (4.48)

On this basis, the partial decay width and the branching ratio for the decay into a
dielectron2 are calculated as

Γη′→ωe+e− = (3.78± 0.10) · 10−8 GeV, (4.49)
BRη′→ωe+e− = (1.85± 0.19) · 10−4. (4.50)

As there is no experimental data available, these values have to be seen as predictions.
Note that the order of magnitude of the branching ratio is much larger than the branching
ratio for the decay of the ω-meson into an η-meson and a dielectron which is of the order
of 10−6. Therefore, it should be easier to verify the form factor Fη′ω = Fωη shown in
Fig. 3.8 by measuring decays of η′-mesons.

2A decay into a dimuon is not possible since the minimal mass of the dimuon equals 2mµ = 212MeV
and is therewith greater than the maximal available energy mη′ −mω = 175MeV.
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4.5 Decay η → γl+l−

4.5.1 Form Factor for the η → γ Transition

For the decay of the η-meson one has to consider again the decays of the η8 and the
η1 state as described in section 4.4 with one or two intermediate vector mesons. An
η8- or η1-state can decay via one virtual ρ0-, ω- or φ-meson into two photons (without
violating isospin conservation). As the state is proportional to ūγ5u+ d̄γ5d− s̄γ5s, none
of these possibilities is suppressed by the OZI rule in leading order. Additionally, isospin
conservation allows only the vector meson combinations ρ0ρ0, ωω, ωφ and φφ for the
decay of an η-state into two (virtual) vector mesons. In leading order, the decay into an
ω- and a φ-meson is suppressed by the OZI rule (see Fig. 4.5).

ηω

φ

ω

φ η

u/d

ū/d̄s ū/d̄

u/d

s

s̄

Figure 4.5: The possibilities of an η-meson to decay into an ω- and a φ-meson.

Therewith, the leading-order Lagrangian for the decay of the η8 state equals

Lvec
η8γ = − eA

6
√

3mV f
εµναβ

[
3∂τρ0

τα + ∂τωτα + 2
√

2∂τφτα
]
∂βη8 ∂µAν

− hA

4
√

3f
εµναβ

[
ρ0
µν∂

τρ0
τα + ωµν∂

τωτα − 2φµν∂τφτα
]
∂βη8

− bA

2
√

3f
εµναβ

[
m̄2
πρ

0
µνρ

0
αβ + m̄2

πωµνωαβ − 2
(
2m̄2

K − m̄2
π

)
φµνφαβ

]
η8

− eVmV

12
[
3
(
ρ0
)µν

+ ωµν −
√

2φµν
]
∂µAν (4.51)

and the one for the decay of the η1 state

Lvec
η1γ = − eA

6
√

3mV f
εµναβ

[
3
√

2∂τρ0
τα +

√
2∂τωτα − 2

√
2∂τφτα

]
∂βη1 ∂µAν

−
√

2hA
4
√

3f
εµναβ

[
ρ0
µν∂

τρ0
τα + ωµν∂

τωτα + φµν∂
τφτα

]
∂βη1

−
√

2bA
2
√

3f
εµναβ

[
m̄2
πρ

0
µνρ

0
αβ + m̄2

πωµνωαβ +
(
2m̄2

K − m̄2
π

)
φµνφαβ

]
η1

− eVmV

12
[
3
(
ρ0
)µν

+ ωµν −
√

2φµν
]
∂µAν . (4.52)
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The transition form factor for the η8 state is calculated as

fvec
η8γ(q) = eV

36
√

3fe
∑

V=ρ0,ω,φ

[(
eA
2 x81(V )y(V ) + hAeVm

2
V

8
1

m2(V )x82(V )y2(V )
)
q2

−bAeVm2
V

1
m2(V )x83(V )y2(V )

]
SV

(
q2
)

(4.53)

with the following parameters depending on the type of the virtual vector meson:

x81(V ) =


3, if V = ρ0

1, if V = ω

2
√

2, if V = φ

, x82(V ) =


1, if V = ρ0

1, if V = ω

−2, if V = φ

x83(V ) =


m̄2
π, if V = ρ0

m̄2
π, if V = ω

−2 (2m̄2
K − m̄2

π) , if V = φ

, y(V ) =


3, if V = ρ0

1, if V = ω

−
√

2, if V = φ

.

For the η1 state the transition form factor equals

fη1γ(q)vec = eV

36
√

3fe
∑

V=ρ0,ω,φ

[(
eA
2 x11(V )y(V ) +

√
2hAeVm2

V

8
1

m2(V )y
2(V )

)
q2

−
√

2bAeVm2
V

1
m2(V )x13(V )y2(V )

]
SV

(
q2
)

(4.54)

with the parameters

x11(V ) =


3
√

2, if V = ρ0
√

2, if V = ω

−2, if V = φ

, x13(V ) =


m̄2
π, if V = ρ0

m̄2
π, if V = ω

2m̄2
K − m̄2

π, if V = φ

.

Additionally, the leading-order WZW Lagrangians for the η8 state

LWZW
η8γ = e2

8
√

3π2f
εµναβ ∂µη8 ∂νAαAβ (4.55)

and for the η1 state

LWZW
η1γ = e2

2
√

6π2f
εµναβ ∂µη1 ∂νAαAβ (4.56)

are needed. The corresponding form factors are

fWZW
η8γ (q) = e

4
√

3 π2 f
, (4.57)

fWZW
η1γ (q) = e√

6π2 f
. (4.58)
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As already mentioned in subsection 4.1.2, the relative sign between the terms in the
Lagrangian describing decays via virtual vector mesons and the WZW term describing
the direct decay into two photons cannot be determined within the framework of the
theory. Instead, it is fixed by comparing the normalised form factors for both possible
relative signs with experimental data. The form factor for the η → γ transition is
thereby calculated as

fηγ(q) = cos θfη8γ(q)− sin θfη1γ(q)
= cos θ

[
fvec
η8γ(q)± f

WZW
η8γ (q)

]
− sin θ

[
fvec
η1γ(q)± f

WZW
η1γ (q)

]
. (4.59)

In Fig. 4.6, the normalised form factor is plotted for both signs in comparison with
by data taken at the NA60 collaboration for the decay η → γµ+µ− [A+09]. As the
calculations for the two different parameter sets (P1) and (P2) are indistinguishable,
they are plotted in one line. Obviously, the form factor calculated with a negative
relative sign fits the data very well whereas the one calculated with a positive relative
sign does not. Therefore, the sign will be fixed as negative yielding

fη8γ(q) = fvec
η8γ(q)− f

WZW
η8γ (q), (4.60)

fη1γ(q) = fvec
η1γ(q)− f

WZW
η1γ (q). (4.61)

In the panel on the left-hand side of Fig. 4.7, the form factor for an η-meson being a
mixture of η8 and η1 state (solid line) and the form factor for the unmixed case η = η8
(dotted line) are plotted. Both are compared to the experimental data for the decay
η → γµ+µ− taken by the NA60 collaboration. As mentioned above, the calculations
for the different parameter sets (P1) and (P2) are not distinguishable. Additionally,
the standard VMD form factor defined in Eq. (2.88) is plotted (dot-dashed line). It
can be calculated by identifying gPV γ

2fV with the prefactors from the terms proportional
to eA in the Lagrangians (4.51), (4.52) and normalising such that the form factor holds
FVMD
ηγ (0) = 1. Therewith, the standard VMD form factor equals

FVMD
ηγ (q) = 1

6
(
cos θ − 2

√
2 sin θ

) [9 (cos θ −
√

2 sin θ
) m2

ρ

m2
ρ − q2

+
(
cos θ −

√
2 sin θ

) m2
ω

m2
ω − q2 − 2

(
2 cos θ +

√
2 sin θ

) m2
φ

m2
φ − q2

]
. (4.62)

The plot shows that the calculations for the mixed case and the standard VMD form
factor are very close together and all three calculations fit the data quite well.

On the right-hand side of Fig. 4.7, the quotient fvec
ηγ (q)/fWZW

ηγ (q) for the mixed, phys-
ical η-meson is plotted. The quotient is smaller than one, i.e. the WZW term in the
form factor is dominant, until the invariant mass is near the upper kinematic boundary
mη − mγ = 548MeV. Only in the last part of the allowed energetic region, the term
describing decays via virtual vector mesons is dominant.
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Figure 4.6: Normalised form factor for the η → γ transition plotted for a positive
relative sign between the vector and the WZW part of the form factor on the left-
hand side and for a negative relative sign on the right-hand side. Both calculations are
compared to data taken by the NA60 collaboration for the decay η → γµ+µ− [A+09].

4.5.2 Single-Differential and Full Partial Decay Widths

For the decay η → γγ one gets the partial decay widths

Γunmixed
η→γγ = (2.13± 0.14) · 10−7 GeV, (4.63)
Γmixed
η→γγ = (6.71± 0.10) · 10−7 GeV (4.64)

for the unmixed η = η8 state and the mixed η-meson, respectively. While the value for
the unmixed η state does not fit the experimental value given in [A+08]

Γexp
η→γγ = (5.11± 0.30) · 10−7 GeV, (4.65)

the value for the mixed η-meson does agrees much better.
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Figure 4.7: In the panel on the left-hand side, the normalised form factor for the decay
η → γl+l− is plotted and compared to the experimental data for the decay η → γµ+µ−

taken by the NA60 collaboration [A+09]. The calculation for the mixed form factor
(solid line), the unmixed form factor (dotted line) and the standard VMD form factor
(dot-dashed line) are all in agreement with the data. The quotient fvec

ηγ (q)/fWZW
ηγ (q)

for the mixed case is plotted in the figure on the right-hand side.

In Fig. 4.8, the single-differential decay width for the decay of an η-meson into a photon
and a dimuon is plotted for both the unmixed η = η8 state (dotted line) and the physical,
mixed η-meson (solid line). The difference between the two curves is much larger than
the small difference between the normalised form factors for the unmixed case Fη8γ and
the mixed case Fηγ plotted in Fig. 4.7. This is caused by the large difference between the
full widths for the decay into two real photons, Γunmixed

η→γγ and Γmixed
η→γγ, which are contained

in the formula for the single-differential decay width (4.12). Additionally, the single-
differential decay width calculated with the VMD model is plotted (dot-dashed line)
which is, as expected, close to the result for the mixed case. The same is done for the
single-differential decay width of the decay into a dielectron in Fig. 4.9 and, for a better
comparability with the one for the decay into a dimuon, it is plotted for me+e− above
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4 Radiative Two- and Three-Body Decays of Pseudoscalar Mesons

2mµ only in Fig. 4.10. One always observes the same pattern: The mixed case and the
VMD result are close together.
The experimental values for the full partial decay widths taken from [A+08]

Γexp
η→γµ+µ− = (4.03± 0.74) · 10−10 GeV, (4.66)

Γexp
η→γe+e− = (9.10± 1.40) · 10−9 GeV (4.67)

are again much better described by the values for the decay of a physical mixed η state

Γmixed
η→γµ+µ− = (5.39± 0.09) · 10−10 GeV, (4.68)

Γmixed
η→γe+e− = (11.24± 0.16) · 10−9 GeV (4.69)

than by those for the decay of an unmixed η = η8 state

Γunmixed
η→γµ+µ− = (1.83± 0.11) · 10−10 GeV, (4.70)

Γunmixed
η→γe+e− = (3.59± 0.01) · 10−9 GeV. (4.71)
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Figure 4.8: Single-differential decay width of the decay η → γµ+µ−. The solid line is
calculated for the decay of a mixed η state, the dotted one for the decay of an unmixed
one. The dot-dashed line describes the calculation with the standard VMD model.
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Figure 4.9: Single-differential decay width of the decay η → γe+e− calculated for the
decay of a mixed η state (solid line), the decay of an unmixed one (dotted line) and
the calculation with the standard VMD model (dot-dashed line).
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Figure 4.10: Same as Fig. 4.9 for me+e− ≥ 2mµ only.
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4.6 Decay η′ → γl+l−

4.6.1 Form Factor for the η′ → γ Transition

For the physical η′-meson η′ = sin θη8 + cos θη1, the form factor for the transition into a
real photon equals

fη′γ(q) = sin θfη8γ(q) + cos θfη1γ(q) (4.72)

with the form factors fη8γ and fη1γ given in subsection 4.5.1 for the η8 → γ and η1 → γ
transition, respectively. For the η′ → γ transition, the upper kinematic boundary is equal
to mη′ −mγ = mη′ = 958MeV and therewith greater than the mass mω = 783MeV of
the ω-meson and the mass mρ = 776MeV of the ρ0-meson. Hence, the propagator for
these virtual vector mesons cannot be simplified as

SV
(
q2
)
≈ 1
q2 −m(V )2 (4.73)

as it was done for the decays discussed so far. Instead, the propagator

SV
(
q2
)

= 1
q2 −m(V )2 + i

√
q2 ΓV (q2)

(4.74)

with the energy-dependent width ΓV (q2) given in subsection 2.6.1 has to be used.

On the left-hand side of Fig. 4.11, the normalised form factor (solid line) is plotted in
comparison with the form factor for the unmixed η′ = η1 state (dotted line) and the
standard VMD form factor (dot-dashed line). Analogical to the η → γ transition (see
subsection 4.5.1), the standard VMD form factor can be calculated as

FVMD
η′γ (q) = − 1

6
(
sin θ + 2

√
2 cos θ

) [9 (sin θ +
√

2 cos θ
)
m2
ρSρ(q2)

+
(
sin θ +

√
2 cos θ

)
mωSω(q2)− 2

(
2 sin θ −

√
2 cos θ

)
mφSφ(q2)

]
. (4.75)

Additionally, the absolute value of the quotient fvec
η′γ (q)/fWZW

η′γ (q) is plotted in the figure
on the right-hand side of Fig. 4.11. The absolute value has to be considered since the
propagators for virtual ρ0- and ω-mesons have to include the energy-dependent width
ΓV (q2) and, therefore, are not real anymore. As for the decays discussed before, the
WZW part is important in the low-energy region. For higher energies, the vector part
becomes more important. The absolute value |fvec

η′γ (q)| is equal to up to approximately
10 times the absolute value of the WZW term for ml+l− ≈ 0.8GeV. This greater im-
portance decreases again near the kinematic boundary mη′ . Obviously, none of the two
terms can be neglected for the form factor calculations.
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Figure 4.11: On the left-hand side, the normalised form factor for the η′ → γ transition
is plotted. The solid line describes the form factor for a mixed η′-meson, the dotted
line the one for an unmixed η′ = η1 state and the dot-dashed line the standard VMD
form factor. The plot on the right-hand side shows the quotient |fvec

η′γ (q)/fWZW
η′γ (q)| for

a mixed η′-meson.

4.6.2 Single-Differential and Full Partial Decay Widths

With formula (4.12) the full partial decay widths for the decays of an unmixed η′ = η1
state and the mixed physical η′-meson into two photons can be calculated:

Γunmixed
η′→γγ = (7.08± 0.29) · 10−6 GeV, (4.76)
Γmixed
η′→γγ = (4.63± 0.27) · 10−6 GeV. (4.77)

The width for the decay of the mixed η′ state agrees with the experimental value [A+08]

Γexp
η′→γγ = (4.28± 0.56) · 10−6 GeV (4.78)

quite well while the width for the decay of the unmixed state fails to do so. A similar
observation has been done for the decay of an η-meson in subsection 4.5.2.

In Figs. 4.12, 4.13 and 4.14, the single-differential decay widths for the decays of an η′-
meson into a real photon and a dimuon and into a photon and a dielectron in comparison
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to the calculations done with the VMD model are plotted. As for the decay of an η-
meson, great differences between the decays of an unmixed η′ = η1 state and a physical
mixed η′-meson can be observed. Furthermore, the plots show a good agreement between
the standard VMD calculation and the calculations done with the mixed physical η′-
meson.
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Figure 4.12: Single-differential decay width of the decay η′ → γµ+µ−. The solid line
is calculated for the decay of a mixed η state, the dotted one for the decay of an
unmixed one. The dot-dashed line describes the calculation done with the standard
VMD model.

For the decay into a dimuon, the value for the full partial decay width for the decay of
the mixed η′ state

Γmixed
η′→γµ+µ− = (1.77 ± 0.21) · 10−8 GeV (4.79)

agrees with the experimental value taken from [A+08]

Γexp
η′→γµ+µ− = (2.10± 0.68) · 10−8 GeV. (4.80)

Again, the value for the decay of the unmixed state

Γunmixed
η′→γµ+µ− = (2.96± 0.09) · 10−8 GeV (4.81)

fails to do so.
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Figure 4.13: Single-differential decay width of the decay η′ → γe+e− calculated for the
decay of a mixed η state (solid), the decay of an unmixed one (dotted line) and with
the standard VMD model (dot-dashed line).
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Figure 4.14: Same as Fig. 4.13 but for me+e− ≥ 2mµ only.
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For the decay into a dielectron only an upper boundary

Γexp
η′→e+e− < 1.836 · 10−7 GeV (4.82)

for the experimental partial decay width is available [A+08]. Thus, the widths for the
decay of both the mixed and the unmixed η′ state

Γmixed
η′→e+e− = (9.41± 0.46) · 10−8 GeV, (4.83)

Γunmixed
η′→e+e− = (1.47 ± 0.00) · 10−7 GeV (4.84)

agree with the experimental value.

From basically all results achieved here and in the previous section 4.5 it is obvious
that the η-η′ mixing is a necessary ingredient to obtain a satisfying agreement with the
experimental data.

94



5 Decays of Pseudoscalar Mesons
into Two Dileptons

95



5 Decays of Pseudoscalar Mesons into Two Dileptons

In this chapter, decays of pseudoscalar mesons into two dileptons are considered.
Thereby, one has to distinguish between decays into two different kinds of dileptons and
decays into two identical dileptons. The decay width for decays into two different kinds
of dileptons is developed in section 5.1 and the one for decays into two identical dileptons
in section 5.2. In the subsequent sections 5.3, 5.4 and 5.5, the results for the decays of
neutral pions, η- and η′-mesons into two dileptons are presented.
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5.1 Decay Width For the Decay into Two Different
Kinds of Dileptons

If a pseudoscalar meson decays into two different kinds of dileptons, the production of
the measured four-momenta q1 and q2 of the first dilepton l1 and the momenta q3 and
q4 of the second dilepton l2 6= l1 can be illustrated by two Feynman diagrams (Fig. 5.1).
Either the “upper” virtual photon decays into the dilepton l1 and the “lower” one into
the dilepton l2 (left-hand side of Fig. 5.1) or vice versa (right-hand side of Fig. 5.1).
Then, the transition matrix element for the decay of a pseudoscalar meson P into two
different kinds of dileptons l1 and l2 6= l1 with masses m1 and m2 equals

MP→l+1 l
−
1 l

+
2 l
−
2

= e2fP (k2, q2) εµναβ qµkν
1

k2q2 ūs(q1)γαvs′(q2) ūσ(q3)γβvσ′(q4)

+ e2fP (q2, k2) εµναβ kµqν ūσ(q3)γαvσ′(q4)
1

q2k2 ūs(q1)γβvs′(q2)

= e2
[
fP (k2, q2) + fP (q2, k2)

]
εµναβ qµkν

1
k2q2 ūs(q1)γαvs′(q2) ūσ(q3)γβvσ′(q4) (5.1)

with the momenta of the virtual photons k = q1 + q2 and q = q3 + q4 analogical to the
previous chapter 4.

~q1

~q2

~q3

~q4

~q1

~q2

~q3

~q4

Figure 5.1: Feynman diagrams for the possibilities of a pseudoscalar meson to decay
into two different kind of dileptons l1 and l2 6= l1 with four-momenta q1, q2 and q3, q4,
respectively.

For the averaged squared matrix element the sum over the possible spins of the outgoing
particles ∑

s,s′,σ,σ′
ūs(q1)γαvs′(q2) ūσ(q3)γβvσ′(q4) · v̄σ′(q4)γβ̄uσ(q3) v̄s′(q2)γᾱus(q1)

=
∑

s,s′,σ,σ′
(ūs(q1))a(γα)ab(vs′(q2))b (ūσ(q3))c(γβ)cd(vσ′(q4))d

· (v̄σ′(q4))e(γβ̄)ef (uσ(q3))f (v̄s′(q2))g(γᾱ)gh(us(q1))h (5.2)
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5 Decays of Pseudoscalar Mesons into Two Dileptons

has to be calculated. Using ∑s us(p)ūs(p) = /p+m and ∑s vs(p)v̄s(p) = /p−m, this can
be simplified as

(6 q1 +m)ha(γα)ab(6 q2 −m)bg(γᾱ)gh · (6 q3 +m)fc(γβ)cd(6 q4 −m)de(γβ̄)ef
= tr{( 6 q1 +m)γα(6 q2 −m)γᾱ} tr{(6 q3 +m)γβ(6 q4 −m)γβ̄}. (5.3)

Therewith, the averaged squared matrix element equals
∣∣∣MP→l+1 l

−
1 l

+
2 l
−
2

∣∣∣2 = Wαβᾱβ̄(k2, q2) tr{(6 q1 +m1)γα( 6 q2 −m1)γᾱ}
· tr{(6 q3 +m2)γβ( 6 q4 −m2)γβ̄} (5.4)

with the abbreviation

Wαβᾱβ̄(k2, q2) := e4
∣∣∣fP (k2, q2) + fP (q2, k2)

∣∣∣2 εµναβ εµ̄ν̄ᾱβ̄ qµkν qµ̄kν̄ 1
k4q4 . (5.5)

The general formula for the partial decay width of a decay of a particle P into four decay
particles equals

ΓP → 4 particles =
∫

dΦ4 (p; q1, q2, q3, q4)
(2π)4

2mP

|MP → 4 particles|2 (5.6)

with the four-body phase-space element

dΦ4 (p; q1, q2, q3, q4) = δ(4)
(
p−

4∑
i=1

qi

) 4∏
i=1

d3qi
(2π)3 2Ei

(5.7)

including the four-momentum p of the decaying particle and the energies E1, . . . , E4 of
the four decay particles. Using notation (5.4) and inserting

1 =
∫
δ(4) (k − (q1 + q2)) δ(4) (q − (q3 + q4)) d4k d4q, (5.8)

the partial decay width for the decay of a pseudoscalar particle into two different kinds
of dileptons can be written as

ΓP→l+1 l−1 l+2 l−2

=
∫
δ(4)

(
p−

4∑
i=1

qi

) 4∏
i=1

d3qi
(2π)3 2Ei

δ(4) (k − (q1 + q2)) δ(4) (q − (q3 + q4)) d4k d4q

(2π)4

2mP

Wαβᾱβ̄(k2, q2) tr{(6 q1 +m1)γα( 6 q2 −m1)γᾱ} tr{(6 q3 +m2)γβ(6 q4 −m2)γβ̄}.

(5.9)
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This integral can be splitted into an outer integration over d4k d4q and an inner integra-
tion over d3q1 . . . d3q4:

∫
δ(4)

(
p−

4∑
i=1

qi

)
d4k d4q

1
(2π)8 2mP

Wαβᾱβ̄(k2, q2)

·
∫
δ(4) (k − q1 − q2) δ(4) (q − q3 − q4)

dq3
1

2E1
. . .

d3q4
2E4

tr{( 6 q1 +m1)γα(6 q2 −m1)γᾱ}

tr{(6 q3 +m2)γβ(6 q4 −m2)γβ̄}

=:
∫
δ(4)

(
p−

4∑
i=1

qi

)
d4k d4q

1
(2π)8 2mP

Wαβᾱβ̄(k2, q2) · Jαβᾱβ̄(k, q). (5.10)

The outer integral only depends on the momenta k and q of the virtual photons and
does not explicitly depend on the single momenta q1, . . . , q4 of leptons and antileptons
anymore. Therefore, the inner integral Jαβᾱβ̄(k, q) over d3q1 . . . d3q4 can be calculated
independently of the outer integral. As it will be shown in the next subsection, this
integrations can be performed analytically. For that, the integral Jαβᾱβ̄(k, q) is split into
two integrals concerning the integration over d3q1 and d3q2 on the one hand and the
integration over d3q3 and d3q4 on the other hand and equals

Jαβᾱβ̄(k, q) =
∫ d3q1

2E1

d3q2
2E2

tr{(6 q1 +m1)γα( 6 q2 −m1)γᾱ} δ(4)(k − q1 − q2)

·
∫ d3q3

2E3

d3q4
2E4

tr{(6 q3 +m2)γβ( 6 q4 −m2)γβ̄} δ(4)(q − q3 − q4)

= 16
∫ d3q1

2E1

d3q2
2E2

[
(q1)α(q2)ᾱ + (q1)ᾱ(q2)α − gαᾱ(q1 · q2 +m2

1)
]
δ(4)(k − q1 − q2)

·
∫ d3q3

2E3

d3q4
2E4

[
(q3)β(q4)β̄ + (q3)β̄(q4)β − gββ̄(q3 · q4 +m2

2)
]
δ(4)(q − q3 − q4).

(5.11)

5.1.1 Solving the Integral Jαβᾱβ̄(k, q)

To solve the integral Jαβᾱβ̄(k, q), integrals of the type

∫ d3x

2Ex
d3y

2Ey
δ(4)(z − x− y)h(x, y) =

∫ d3x

2Ex
d3y

2Ey
δ(4)(z − x− y)h(x, z − x) (5.12)

have to be solved including a function h(x, z − x) only depending on z2 and on linearly
appearing factors xρ1 , xρ2 , . . . , yσ1 , yσ2 , . . .. Using yσ = zσ − xσ, the following integrals
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5 Decays of Pseudoscalar Mesons into Two Dileptons

including the energies Ex =
√
m2 + ~x 2 and Ey =

√
m2 + ~y 2 are those types needed to

evaluate Jαβᾱβ̄(k, q):

I(z2) :=
∫ d3x

2Ex
d3y

2Ey
δ(4)(z − x− y), (5.13)

Iρ(z) :=
∫ d3x

2Ex
d3y

2Ey
δ(4)(z − x− y)xρ, (5.14)

Iρσ(z) :=
∫ d3x

2Ex
d3y

2Ey
δ(4)(z − x− y)xρxσ. (5.15)

As a first step, the integral I(z2) has to be evaluated. This integral is Lorentz invariant
and thus can be calculated in the frame where ~z = 0 because only z with z2 > 0 are of
interest. Then, I(z2) equals

I(z2) =
∫ d3x

2Ex
d3y

2Ey
δ(
√
z2 − Ex − Ey) δ(3)(~x+ ~y)

=
∫ d3x

2Ex
1

2
√
m2 + ~x 2

δ(
√
z2 − Ex −

√
m2 + ~x 2)

=
∫
|~x|2 d |~x| d cos θx dφx

1
4E2

x

δ(
√
z2 − 2Ex)

=π
∫ ∞
0

d |~x| |~x|2 1
E2
x

δ(
√
z2 − 2Ex).

After the substitution |~x| =
√
E2
x −m2,|~x| d |~x| = ExdEx. Hence, the integral equals

I(z2) =π
∫ ∞
m

dExEx
√
E2
x −m2 1

E2
x

δ(
√
z2 − 2Ex)

= 1
2π

√
1
4z

2 −m2 1
1
2

√
z2

Θ
(√

z2 − 2m
)

= 1
2π
√
z2 − 4m2
√
z2

Θ
(√

z2 − 2m
)
. (5.16)

The integral Iρ(z) only depends on the four-vector z and, thus, it has the general form

Iρ(z) = A(z2)zρ. (5.17)

If both sides are multiplied with zρ and the sum over ρ is performed, A(z2) will be
determined as

A(z2) = 1
z2 z

ρIρ(z) (5.18)
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with zρIρ being equal to

zρIρ(z) =
∫ d3x

2Ex
d3y

2Ey
δ(4)(z − x− y) z · x.

Since the scalar product z · x can be written as

(x+ y) · x = x2 + y · x = x2 + 1
2(z2 − x2 − y2) = m2 + 1

2(z2 −m2 −m2) = 1
2z

2,

the integral above equals∫ d3x

2Ex
d3y

2Ey
δ(4)(z − x− y) 1

2z
2 = 1

2z
2I(z2).

Hence, A(z2) and therewith Iρ(z) can be determined as

Iρ(z) = 1
2I(z

2)zρ. (5.19)

The general form for the last of the needed integrals equals

Iρσ(z) = B(z2)gρσ + C(z2)zρzσ. (5.20)

To determine B(z2) and C(z2) the integrals

Iρ
ρ(z) = Iρσ(z)gρσ = 4B(z2) + z2C(z2),

zρzσIρσ(z) = z2B(z2) + z4C(z2)

are used yielding the following representation for B(z2) and C(z2):

B(z2) = 1
3Iρ

ρ(z)− 1
3z2 z

ρzσIρσ(z),

C(z2) = − 1
3z2 Iρ

ρ(z) + 4
3z4 z

ρzσIρσ(z).

As those integrals can be calculated as

Iρ
ρ(z) =

∫ d3x

2Ex
d3y

2Ey
δ(4)(z − x− y)x2 = m2I(z2),

zρzσIρσ(z) =
∫ d3x

2Ex
d3y

2Ey
δ(4)(z − x− y) (z · x)2 = 1

4z
4I(z2),

the considered integral equals

Iρσ(z) = 1
3I(z

2)
[
−1

4(z2 − 4m2)gρσ + (z2 −m2)zρzσ
z2

]
. (5.21)
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To evaluate Jαβᾱβ̄(k, q) the following integral has to be calculated (cf. (5.11)):∫ d3x

2Ex
d3y

2Ey
δ(4)(z − x− y)

[
xρyσ + xσyρ − gρσ(x · y +m2)

]
=
∫ d3x

2Ex
d3y

2Ey
δ(4)(z − x− y)

[
xρzσ − xρxσ + xσzρ − xσxρ − gρσ(

1
2z

2 −m2 +m2)
]

= Iρ(z)zσ − Iρσ(z) + Iσ(z)zρ − Iσρ(z)−
1
2z

2I(z2)gρσ

= 2Iρ(z)zσ − 2Iρσ(z)−
1
2z

2I(z2)gρσ

= 1
3(z2 + 2m2) I(z2)

[
zρzσ
z2 − gρσ

]
. (5.22)

Thus, the wanted result is

Jαβᾱβ̄ = 4
9π

2

√
k2 − 4m2

1√
k2

(k2 + 2m2
1)

√
q2 − 4m2

2√
q2 (q2 + 2m2

2)
[
kαkᾱ
k2 − gαᾱ

] [
qβqβ̄
q2 − gββ̄

]

·Θ
(√

k2 − 2m1

)
Θ
(√

q2 − 2m2

)
. (5.23)

5.1.2 Calculation of the Full Decay Width

To evaluate the decay width, the factors Wαβᾱβ̄(k2, q2) and Jαβᾱβ̄(k, q) have to be mul-
tiplied and contracted. As εµναβqµkνkα = εµναβqµkνqβ = 0, only terms of Jαβᾱβ̄(k, q) not
including kα or qβ have to be considered. By inserting

gαᾱgββ̄ ε
µναβ εµ̄ν̄ᾱβ̄ qµkν qµ̄kν̄ = 2

[
(k · q)2 − k2q2

]
(5.24)

the full partial decay width becomes

ΓP→l+1 l−1 l+2 l−2 =
∫
δ(4)(p− (q + k)) d4k d4q

1
(2π)8 2mP

gαᾱgββ̄W
αβᾱβ̄(k2, q2)

· 49π
2

√
k2 − 4m2

1√
k2

(k2 + 2m2
1)

√
q2 − 4m2

2√
q2 (q2 + 2m2

2)

·Θ
(√

k2 − 2m1

)
Θ
(√

q2 − 2m2

)
= e4

(2π)6 9mP

∫
δ(4)(p− (q + k)) d4k d4q

∣∣∣fP (k2, q2) + fP (q2, k2)
∣∣∣2 1
k4q4

·
[
(k · q)2 − k2q2

] √k2 − 4m2
1√

k2
(k2 + 2m2

1)

√
q2 − 4m2

2√
q2 (q2 + 2m2

2)

· Θ
(√

k2 − 2m1

)
Θ
(√

q2 − 2m2

)
. (5.25)
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This integral includes only the four-vector momenta k and q of the virtual photons.
Therefore, the problem is reduced to a decay into two particles. These particles would
have the masses mk =

√
k2 and mq =

√
q2. Then, the following relations hold in the

rest frame of the decaying pseudoscalar meson P [A+08]:

∣∣∣~k∣∣∣ = |~q| = 1
2mP

[(
m2
P −

(√
k2 +

√
q2
)2
)(

m2
P −

(√
k2 −

√
q2
)2
)]1/2

,

k · q = 1
2
[
m2
P − (k2 + q2)

]
. (5.26)

Furthermore, the four-dimensional integral
∫
d4z can be written as

∫
dz2 d3z

2Ez if the inte-
gration over z0 is restricted to positive values. Therewith, the following transformations
can be performed:
∫

d4k d4q δ(4) (p− (k + q)) = (2π)6
∫

dk2 dq2
∫ d3k

(2π)3 2Ek
d3q

(2π)3 2Eq
δ(4) (p− (k + q))

= (2π)6
∫

dk2 dq2
∫

dΦ2(p; k, q). (5.27)

As
∫
dΦ2(p; k, q) = [(2π)5 2mP ]−1

∣∣∣~k∣∣∣ [PS95], this equals
π

mP

∫
dk2 dq2

∣∣∣~k∣∣∣ . (5.28)

Including all previous calculations, the full partial decay width equals

ΓP→l+1 l−1 l+2 l−2 = e4

(2π)5 36m3
P

∫
dk2 dq2

∣∣∣fP (k2, q2) + fP (q2, k2)
∣∣∣2 (k2 + 2m2

1)(q2 + 2m2
2)

k4q4√
k2 − 4m2

1√
k2

√
q2 − 4m2

2√
q2

√(
m2
P − (

√
k2 +

√
q2)2

)(
m2
P − (

√
k2 −

√
q2)2

)
[1
4
(
m2
P − (k2 + q2)

)2
− k2q2

]
= e4

(2π)5 18m3
P

∫
dk2 dq2

∣∣∣fP (k2, q2) + fP (q2, k2)
∣∣∣2 (k2 + 2m2

1)(q2 + 2m2
2)

k4q4√
k2 − 4m2

1√
k2

√
q2 − 4m2

2√
q2

[1
4
(
m2
P − (k2 + q2)

)2
− k2q2

]3/2
(5.29)

with k2 running from 4m2
1 to (mP − 2m2)2 and q2 from 4m2

2 to (mP −
√
k2)2.
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5.2 Decay Width For the Decay into Two Identical
Dileptons

5.2.1 The General Squared Matrix Element

In the case of a decay of a pseudoscalar particle into two identical dileptons, the measured
momenta q1 and q3 of the leptons and q2 and q4 of the antileptons can be produced from
all of the possibilities shown in Fig. 5.21. As leptons are fermions, each exchange of two
leptons or antileptons according to the first possibility produces an extra minus sign.

~q1

~q2

~q3

~q4

~q1

~q1
~q1

~q2

~q2
~q2

~q3

~q3

~q3

~q4

~q4~q4

Figure 5.2: The four different possibilities to produce the measured momenta q1 and q3
of the leptons and q2 and q4 of the antileptons in the case of a decay into two identical
dileptons.

These possibilities yield a transition matrix element consisting of four terms, each one
including one of the factors

a1 := + ūs(q1)γαvs′(q2) ūσ(q3)γβvσ′(q4),
a2 := − ūs(q1)γαvs′(q4) ūσ(q3)γβvσ′(q2),
a3 := + ūs(q3)γαvs′(q4) ūσ(q1)γβvσ′(q2),
a4 := − ūs(q3)γαvs′(q2) ūσ(q1)γβvσ′(q4)

1In section 5.1, the first and the third possibility have been chosen to describe the decay into two
different kinds of dileptons. Taking the second and the third possibility would only produce an
overall negative sign which would not be relevant for any observables.
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with signs defined relative to a1. As only the squared matrix element is contained in
observables, the absolute sign of a1 is irrelevant.

For the calculation of a single-differential or full partial decay width the averaged squared
matrix element is needed. The full transition matrix element has the form

M = g(q1 + q2, q3 + q4)a1 + g(q1 + q4, q3 + q2)a2

+ g(q3 + q4, q1 + q2)a3 + g(q3 + q2, q1 + q4)a4 (5.30)

with not yet fixed functions g(qI1 + qI2 , qI3 + qI4) which amongst others include the
transition form factor. To evaluate a partial decay width, an integration over d3qi has to
be performed for all i = 1, . . . , 4. Hence, the variables q1, . . . , q4 can be renamed yielding
aiāj = aj āi for all i, j = 1, . . . , 4. Thus, the squared matrix element equals

|M|2 =
[
|g(q1 + q2, q3 + q4)|2|a1|2 + |g(q1 + q4, q3 + q2)|2|a2|2

+ |g(q3 + q4, q1 + q2)|2|a3|2 + |g(q3 + q2, q1 + q4)|2|a4|2

+ 2g(q1 + q2, q3 + q4) g(q1 + q4, q3 + q2)a1ā2

+ 2g(q1 + q2, q3 + q4) g(q3 + q4, q1 + q2)a1ā3

+ 2g(q1 + q2, q3 + q4) g(q3 + q2, q1 + q4)a1ā4

+ 2g(q1 + q4, q3 + q2) g(q3 + q4, q1 + q2)a2ā3

+ 2g(q1 + q4, q3 + q2) g(q3 + q2, q1 + q4)a2ā4

+ 2g(q3 + q4, q1 + q2)g(q3 + q2, q1 + q4)a3ā4
]
. (5.31)

Some of these terms are equal. E.g., after renaming q1 as q3 and q2 as q4 in the fifth
term, the fifth and the tenth term will be equal. Furthermore, after renaming variables
the first four terms, the terms 6 and 9 and the terms 7 and 8 will be equal. So, the
squared matrix element reduces to

|M|2 = 4
[
|g(q1 + q2, q3 + q4)|2 |a1|2

+ g(q1 + q2, q3 + q4) g(q1 + q4, q3 + q2) a1ā2

+ g(q1 + q2, q3 + q4) g(q3 + q4, q1 + q2) a1ā3

+ g(q1 + q2, q3 + q4) g(q3 + q2, q1 + q4) a1ā4
]

(5.32)

with a1ā2 and a1ā4 producing a negative sign. Thus, the four combinations involving a1
are the only ones which have to be considered. Analogically to the determination of Eq.
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(5.3) one gets the following relations including the mass m of the leptons:∑
s,s′,σ,σ′

|a1|2 = tr{( 6 q1 +m)γα(6 q2 −m)γᾱ} tr{(6 q3 +m)γβ(6 q4 −m)γβ̄}, (5.33)
∑

s,s′,σ,σ′
a1ā2 = − tr{(6 q1 +m)γα(6 q2 −m)γβ̄(6 q3 +m)γβ( 6 q4 −m)γᾱ}, (5.34)

∑
s,s′,σ,σ′

a1ā3 = tr{(6 q1 +m)γα(6 q2 −m)γβ̄} tr{( 6 q3 +m)γβ( 6 q4 −m)γᾱ}, (5.35)
∑

s,s′,σ,σ′
a1ā4 = − tr{(6 q1 +m)γα(6 q2 −m)γᾱ(6 q3 +m)γβ(6 q4 −m)γβ̄}. (5.36)

5.2.2 Calculating Integrals over dΦ4 (p; q1, q2, q3, q4)

The formula for the decay width for a decay of a pseudoscalar meson into two identical
dileptons is much more complicated than the one for the decay into two different kinds
of dileptons. Some of the terms the averaged squared matrix element consists of cannot
be integrated by using the tricks given in section 5.1. In such cases, the integral depends
on all the combinations q1 + q2, q3 + q4, q1 + q4 and q3 + q2. Thus, it is not possible
to separate the integration over the three-momenta ~q1, . . . , ~q4 from the integration over
(q1 + q2)2, . . . , (q3 + q2)2 and one has to integrate numerically over the full four-body
phase space dΦ4 (p; q1, q2, q3, q4) defined in Eq. (5.7). In this subsection, a possibility to
reduce this integral to a less-dimensional integral will be presented.

As a first step, the four-body phase space is expanded by an additional δ-function
yielding

dΦ4 (p; q1, q2, q3, q4) = δ(4)
(
p−

4∑
i=1

qi

) 4∏
i=1

d3qi
(2π)3 2Ei

=
∫
δ(4)

(
p−

4∑
i=1

qi

)
δ
(
q2
4 −m2

)
Θ (E4 −m) d4q4

(2π)3

3∏
k=1

d3qk
(2π)3 2Ek

= 1
8 (2π)12 δ

(p− 3∑
k=1

qk

)2

−m2

 Θ (E4 −m)
3∏

k=1

d3qk
Ek

(5.37)

and reducing the twelve-dimensional integral to a nine-dimensional integral including
E4 = p0 −E1 −E2 −E3. In spherical coordinates, this integral can be represented as

1
8 (2π)12 δ

(p− 3∑
k=1

qk

)2

−m2

 Θ (E4 −m)
3∏

k=1

|~qk|2

Ek
d|~qk| d cos θk dφk. (5.38)

The limits of the integral over dΦ4 (p; q1, q2, q3, q4) are given by the considered decay and
will be specified in the next subsection.
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If the integration over dq3 is performed first, the axes of the coordinate system can be
chosen in such a way that the spherical representations of ~q1, ~q2 and ~q3 equal

~q1 = |~q1| ~ez, (5.39)
~q2 = |~q2| (sin θ2 ~ex + cos θ2 ~ez) , (5.40)
~q3 = |~q3| (sin θ3 cosφ3 ~ex + sin θ3 sinφ3 ~ey + cos θ3 ~ez) (5.41)

with the unit vectors ~ex, ~ey and ~ez. In this representation, the integrand of the integral
over dΦ4 (p; q1, . . . , q4) is independent of cos θ1, φ1 and φ2 and therefore the integration
over these variables only yields a factor 2 · 2π · 2π = 8π2.

In the rest frame of the decaying meson P , the argument of the δ-function equals

(
p−

3∑
k=1

qk

)2

−m2 =
(
mP −

3∑
k=1

Ek,−~q1 − ~q2 − ~q3
)2

−m2

=
(
mP −

3∑
k=1

Ek

)2

− |~q1|2 − |~q2|2 − |~q3|2 − 2 [~q1 · ~q2 + ~q1 · ~q3 + ~q2 · ~q3]−m2

=
(
mP −

3∑
k=1

Ek

)2

− |~q1|2 − |~q2|2 − |~q3|2 −m2 − 2 [|~q1||~q2| cos θ2 + |~q1||~q3| cos θ3

+|~q2||~q3| (sin θ2 sin θ3 cosφ3 + cos θ2 cos θ3)] . (5.42)

Using this representation, the integration over dφ3 of a function G depending on cosφ3

times the δ function δ
[(
p−∑3

k=1 qk
)2
−m2

]
is of the form

∫ 2π

0
δ(a− b cosφ3) dφ3G(cosφ3) (5.43)

where the abbreviations a and b stand for

a =
(
mP −

3∑
k=1

Ek

)2

− |~q1|2 − |~q2|2 − |~q3|2 − 2 [|~q1||~q2| cos θ2 + |~q1||~q3| cos θ3

+|~q2||~q3| cos θ2 cos θ3]−m2, (5.44)

b = 2|~q2||~q3| sin θ2 sin θ3. (5.45)
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Such an integral is calculated as∫ 2π

0
δ(a− b cosφ3) dφ3G(cosφ3)

=
∫ π

0
δ(a− b cosφ3) dφ3G(cosφ3) +

∫ 2π

π
δ(a− b cosφ3) dφ3G(cosφ3)

=
∫ π

0
dφ3 [δ(a− b cosφ3)G(cosφ3) + δ(a+ b cosφ3)G(− cosφ3)]

=
∫ +1

−1
dx [δ(a− bx)G(x) + δ(a+ bx)G(−x)] 1√

1− x2

= 2
|b|

1√
1−

(
a
b

)2
G
(
a

b

)
Θ
(
1−

∣∣∣∣ab
∣∣∣∣) . (5.46)

Hence, the integration of a function G depending on (|~q1|, |~q2|, |~q3|, cos θ2, cos θ3) and
cosφ3 over dΦ4(p; q1, q2, q3, q4) equals∫

dΦ4(p; q1, q2, q3, q4)G ((|~q1|, |~q2|, |~q3|, cos θ2, cos θ3) , cosφ3)

= 1
4 (2π)10

∫
d|~q1| d|~q2| d|~q3| d cos θ2 d cos θ3 Θ (E4 −m) Θ

(
1−

∣∣∣∣ab
∣∣∣∣) |~q1|2 |~q2|2 |~q3|2E1E2E3

2
|b|

1√
1−

(
a
b

)2
G
(
(|~q1|, |~q2|, |~q3|, cos θ2, cos θ3) ,

a

b

)

= 1
4 (2π)10

∫
d|~q1| d|~q2| d|~q3| d cos θ2 d cos θ3 θ (E4 −m) Θ

(
1−

∣∣∣∣ab
∣∣∣∣) |~q1|2 |~q2| |~q3|E1E2E3

1√
1− cos2 θ2

√
1− cos2 θ3

√
1−

(
a
b

)2
G
(
(|~q1|, |~q2|, |~q3|, cos θ2, cos θ3) ,

a

b

)
(5.47)

with a and b given in (5.44) and (5.45). Therewith, the integral over the four-body phase
space which was primary twelve-dimensional is reduced to a five-dimensional integral.

5.2.3 The Partial Decay Width

The partial decay width for the decay of a pseudoscalar meson into two identical dileptons
is given as

ΓP→2l+2l− = 1
2! 2!

∫
dΦ4 (p; q1, q2, q3, q4)

(2π)4

2mP

|M|2 . (5.48)
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Thereby, the symmetry factor 1
2! 2! is caused by the decay into two identical particles,

two leptons and two antileptons. According to Eq. (5.32) the squared matrix element
consists of the terms

|g(q1 + q2, q3 + q4)|2 |a1|2, (5.49)
g(q1 + q2, q3 + q4) g(q1 + q4, q3 + q2) a1ā2, (5.50)
g(q1 + q2, q3 + q4) g(q3 + q4, q1 + q2) a1ā3, (5.51)
g(q1 + q2, q3 + q4) g(q3 + q2, q1 + q4) a1ā4 (5.52)

yielding the averaged squared matrix element

|M|2 = 4
∑

lepton spins
[(5.49) + (5.50) + (5.51) + (5.52)] . (5.53)

In the following sections it will be shown that g (qi1 + qi2 , qi3 + qi4) with distinct indices
i1, . . . , i4 out of {1, . . . , 4} is of the type

e2 fP
(
(qi1 + qi2)

2 , (qi3 + qi4)
2
)
εµναβ

1
(qi1 + qi2)

2 (qi3 + qi4)
2 . (5.54)

The first term (5.49) and the third term (5.51) only depend on the sums k := q1 + q2
and q := q3 + q4 of the lepton momenta q1, q2, q3 and q4.. Additionally, Eqs. (5.3) and
(5.35) yield

εµναβ εµ̄ν̄ᾱβ̄ qµkν kµ̄qν̄
∑

lepton spins
a1ā4

= εµναβ εµ̄ν̄ᾱβ̄ qµkν kµ̄qν̄ tr{(6 q1 +m)γα(6 q2 −m)γβ̄} tr{( 6 q3 +m)γβ(6 q4 −m)γᾱ}
= εµναβ εµ̄ν̄ᾱβ̄ qµkν qµ̄kν̄ tr{(6 q1 +m)γα(6 q2 −m)γᾱ} tr{(6 q3 +m)γβ(6 q4 −m)γβ̄}
= εµναβ εµ̄ν̄ᾱβ̄ qµkν qµ̄kν̄

∑
lepton spins

|a1|2. (5.55)

So, the integral over the first and third term

Γ(13)
P→2l+2l− =

∫
dΦ4 (p; q1, q2, q3, q4)

(2π)4

2mP

∑
lepton spins

[(5.49) + (5.51)] (5.56)

can be calculated with formula (5.29) by replacing |fP (k2, q2) + fP (q2, k2)|2 by fP (k2, q2)·[
f †P (k2, q2) + f †P (q2, k2)

]
with k = q1 + q2 and q = q3 + q4 and the mass of leptons and

antileptons m1 = m2 = m.

The integrals over the second term (5.50) and the fourth term (5.52) depend on all
possible combinations q1 + q2, q3 + q4, q1 + q4 and q3 + q2. Therefore, the integral

Γ(24)
P→2l+2l− =

∫
dΦ4 (p; q1, q2, q3, q4)

(2π)4

2mP

∑
lepton spins

[(5.50) + (5.52)] (5.57)
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5 Decays of Pseudoscalar Mesons into Two Dileptons

has to be calculated numerically using the simplification of the four-body phase space
done in the previous subsection. cos θ1 and cos θ2 are integrated over [−1, 1] and the
integration interval for the absolute values of the three-momenta ~q1, ~q2 and ~q3 can be
reduced to [0,

√
m2
P −m2] by using the equality E2

k = m2 + |~qk|2 for k = 1, 2, 3. Fur-
thermore, the constraints for k, q, k′ = q1 + q4 and q′ = q3 + q2 are included in form of
θ-functions by multiplying the integrand with

Θq1,q2,q3,q4 = Θ
(
k2 − 4m2

)
Θ
(
(mP −m)2 − k2

)
Θ
(
q2 − 4m2

)
Θ
((
mP −

√
k2
)2
− q2

)
·Θ

(
k′ 2 − 4m2

)
Θ
(
(mP −m)2 − k′ 2

)
Θ
(
q′ 2 − 4m2

)
Θ
((
mP −

√
k2
)2
− q′ 2

)
.

(5.58)

Then, Γ(24)
P→2l+2l− is evaluated with formula (5.47) for

G ((|~q1|, |~q2|, |~q3|, cos θ2, cos θ3) , cosφ3) = (2π)4

2mP

∑
lepton spins

[(5.50) + (5.52)] Θq1,q2,q3,q4 .

(5.59)

Since Eqs. (5.34) and (5.36) yield

εµναβ εµ̄ν̄ᾱβ̄ kµqν k
′
µq
′
ν a1ā2 = εµναβ εµ̄ν̄ᾱβ̄ kµqν q

′
µk
′
ν a1ā4, (5.60)

the sum (5.50) + (5.52) can be combined as

e4 f(k2, q2)
[
f †(k′ 2, q′ 2) + f †(q′ 2, k′ 2)

]
εµναβ εµ̄ν̄ᾱβ̄ kµqν k

′
µq
′
ν a1ā2. (5.61)

With the arguments given above the full partial decay width equals

ΓP→2l+2l− = 1
4 · 4

[
Γ(13)
P→2l+2l− + Γ(24)

P→2l+2l−
]

= Γ(13)
P→2l+2l− + Γ(24)

P→2l+2l− . (5.62)

Keep in mind that Γ(24)
P→2l+2l− has a negative sign relative to Γ(13)

P→2l+2l− (see definition of
a1, a2, a3 and a4 in subsection 5.2.1).

As the five-fold integral for Γ(24)
P→2l+2l− has to be integrated numerically and is hence quite

difficult to determine, the whole partial decay width is approximated by Γ(13)
P→2l+2l− in

most applications. This is justified if Γ(24)
P→2l+2l− is small compared to Γ(13)

P→2l+2l− . In this
thesis, both Γ(13)

P→2l+2l− and Γ(24)
P→2l+2l− are calculated so that the influence of Γ(24)

P→2l+2l−
on the full width can be evaluated.

110



5.3 Decay of a Neutral Pion into Two Dileptons

5.3 Decay of a Neutral Pion into Two Dileptons

5.3.1 Transition Matrix Element and Form Factor

The matrix element for the decay of a neutral pion into two dielectrons equals

Mπ =
∑

n=1,...,4
e2 fπ(k2, q2) εµναβ qµkν

1
k2q2 (−1)In ūs(qIn,1)γαvs′(qIn,2) ūσ(qIn,3)γβvσ′(qIn,4) .

(5.63)

Hereby, the vector In ∈ {(q1, q2, q3, q4), (q1, q4, q3, q2), (q3, q4, q1, q2), (q3, q2, q1, q4)} with
In = (In,1, In,2, In,3, In,4),

(−1)(q1,q2,q3,q4) = (−1)(q3,q4,q1,q2) = +1, (−1)(q1,q4,q3,q2) = (−1)(q3,q2,q1,q4) = −1,

k2 = (qIn,1 + qIn,2)2 and q2 = (qIn,3 + qIn,4)2. The form factor

fπ(k2, q2) = eV
24f

[
eA
(
Sρ(q2) + Sω(q2)

)
q2 + eVm

2
V

(
−1

4hAq
2 + bAm̄

2
π

)

·
(
Sρ(k2)Sω(q2) + Sω(k2)Sρ(q2)

)]
− e2

8π2 f
(5.64)

describes decays via at least one virtual vector meson and the direct decay into two
photons given by the WZW Lagrangian2. In Fig. 5.3, the squared symmetrised and
normalised form factor∣∣∣F symm

π (k2, q2)
∣∣∣2 = |fπ(k

2, q2) + fπ(q2, k2)|2

4 |fπ(0, 0)|2
(5.65)

is plotted.
As the mass of the neutral pion mπ0 = 135MeV is smaller than the mass of a dimuon
2mµ = 212MeV, neither the decay of a neutral pion into a dielectron and a dimuon nor
the decay into two dimuons is possible.

5.3.2 Decay Width for the Decay into Two Dielectrons

As discussed in section 5.2, the partial decay width for the decay of a pseudoscalar meson
into two identical dileptons consists of two terms

ΓP→2l+2l− = Γ(13)
P→2l+2l− + Γ(24)

P→2l+2l− (5.66)

with Γ(13)
P→2l+2l− and Γ(24)

P→2l+2l− defined in Eq. (5.56) and Eq. (5.57), respectively.
2The form factor given by the WZW Lagrangian is equal to the last term multiplied with −1 since
the relative sign between the WZW form factor and the form factor describing decays via virtual
vector mesons was determined as negative in chapter 4.
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Figure 5.3: Squared symmetrised and normalised form factor |F symm
π (k2, q2)|2 for the

decay of a neutral pion into two dileptons.

For the decay of a neutral pion into two dielectrons the dominant part equals

Γ(13)
π0→2e+2e− = (2.30± 0.04) · 10−13 GeV (5.67)

and the less dominant part

Γ(24)
π0→2e+2e− = (−0.02± 0.00) · 10−13 GeV. (5.68)

This yields a full partial decay width of

Γπ0→2e+2e− = (2.28± 0.04) · 10−13 GeV. (5.69)

The derivation of the full partial width from the approximation Γ(13)
π0→2e+2e− is approxi-

mately 1% and therewith confirms the treatment of Γ(24)
π0→2e+2e− as negligible. Thereby,

this relation is the overall value. It could be quite different in parts of the energetically
allowed region.

Furthermore, the partial decay width agrees with the experimental one [A+08]

Γexp
π0→2e+2e− = (2.62± 0.31) · 10−13 GeV. (5.70)
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5.4 Decay of an η-Meson into Two Dileptons

5.4.1 Transition Matrix Element and Form Factor

As for the decays of η- or η′-mesons into a real photon and a dilepton in chapter 4, the
matrix elements for the decays of the η8 and the η1 state are needed to describe the
decay of an η-meson into two dileptons.

Analogically to Eq. (5.63), the matrix element for the decay of the η-meson is of the
type

Mη =
∑

n=1,...,4
e2 fη(k2, q2) εµναβ qµkν

1
k2q2 (−1)In ūs(qIn,1)γαvs′(qIn,2) ūσ(qIn,3)γβvσ′(qIn,4)

(5.71)

including the form factor fη = cos θfη8 − sin θfη1 . The form factor for the decay of the
η8 state equals

fη8(k2, q2) = eV

72
√

3 f
∑

V=ρ0,ω,φ
SV (q2)

[(
eA x81(V ) y(V )− 1

4hAeVm
2
V x82 y

2(V )SV (k2)
)
q2

+ bAeVm
2
V x83(V ) y2(V )SV (k2)

]
− e2

8
√

3π2 f
(5.72)

and the one for the decay of the η1 state

fη1(k2, q2) =
√

2
72
√

3 f
∑

V=ρ0,ω,φ
SV (q2)

[(
1√
2
eA x11(V ) y(V )− 1

4hAeVm
2
V y

2(V )SV (k2)
)
q2

+ bAeVm
2
V x13(V ) y2(V )SV (k2)

]
−
√

2 e2

4
√

3π2 f
(5.73)

with the coefficients x81(V ), x82(V ), x83(V ), x11(V ), x13(V ) and y(V ) given in subsec-
tion 4.5.1. The squared symmetrised and normalised form factor

∣∣∣F symm
η (k2, q2)

∣∣∣2 is
plotted in Fig. 5.4.

For the decay into two different dileptons only two of the four combinations I1, . . . , I4 for
the momenta of leptons and antileptons are allowed (compare section 5.2.1, in particular
Fig. 5.2). Without loss of generality, I1 and I3 are chosen as these allowed combinations3.
For this case, the matrix element simplifies to the form given in Eq. (5.1) in section
5.1.

3As argued before, the negative sign associated with the combinations I2 and I4 does not change any
observables since only the squared matrix element is included in the formulas for them.
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Figure 5.4: Squared symmetrised and normalised form factor |F symm
η (k2, q2)|2 for the

decay of an η-meson into two dileptons.

5.4.2 Partial Decay Widths

The partial decay width for the decay of an η-meson into a dimuon and a dielectron is
calculated as

Γη→µ+µ− e+e− = (3.92± 0.07) · 10−12 GeV (5.74)

in agreement with the experimental constraint [A+08]

Γexp
η→µ+µ− e+e− < 2.08 · 10−10 GeV. (5.75)

As explained in subsection 5.2.3, the partial decay width for the decay into two identical
dileptons is a sum of the dominant part Γ(13)

η→2l+2l− and the subdominant part Γ(24)
η→2l+2l− .

For the decay into two dielectrons, those equal

Γ(13)
η→2e+2e− = (3.07 ± 0.05) · 10−11 GeV, (5.76)

Γ(24)
η→2e+2e− = (−0.03± 0.00) · 10−11 GeV. (5.77)

As the value for Γ(24)
η→2e+2e− is about 1% of Γ(13)

η→2e+2e− , it is justified to approximate the full
partial decay width by Γ(13)

η→2e+2e− . The full partial decay width including the dominant
and the subdominant part equals

Γη→2e+2e− = (3.04± 0.05) · 10−11 GeV (5.78)
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which again agrees with the experimental constraint [A+08]

Γexp
η→2e+2e− < 8.97 · 10−11 GeV (5.79)

For the decay into two dimuons the dominant part equals

Γ(13)
η→2µ+2µ− = (6.94± 0.09) · 10−15 GeV. (5.80)

The integration for Γ(24)
η→2µ+2µ− was not numerically fully stable for the calculations per-

formed for this thesis. Thus, only an interval instead of a fixed number can be given.
The value of the subdominant part of the full partial decay width is then given as

Γ(24)
η→2µ+2µ− ∈ ([0.40, 0.42]± 0.03) · 10−15 GeV. (5.81)

This yields a full partial decay width of

Γη→2µ+2µ− ∈ ([7.34, 7.36]± 0.12) · 10−15 GeV. (5.82)

As the difference between the borders of the interval is smaller than the error of the
partial decay width, the interval can be approximated by its mean value yielding the
partial decay width

Γη→2µ+2µ− = (7.35± 0.13) · 10−15 GeV. (5.83)

For this decay, Γ(24)
η→2µ+2µ− adds up to 6% of Γ(13)

η→2µ+2µ− and, hence, the full partial decay
width cannot be approximated as Γ(13)

η→2µ+2µ− easily. Nevertheless, both the approxima-
tion and the full partial decay width agree with the experimental constraint [A+08]

Γexp
η→2µ+2µ− < 4.68 · 10−10 GeV. (5.84)
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5.5 Decay of an η′-Meson into Two Dileptons

5.5.1 Transition Matrix Element and Form Factor

Analogically to the decay of an η-meson, the matrix element for the decay of an η′-
meson into two identical dileptons is given by Eq. (5.63) and the one for the decay
into two different dileptons by Eq. (5.1). Thereby, the form factor fη′(k2, q2) equals
sin θfη1(k2, q2) + cos θfη8(k2, q2) including the form factors (5.72) and (5.73) for the
decays of an η8 and an η1 state, respectively. The squared symmetrised and normalised
form factor

∣∣∣F symm
η′ (k2, q2)

∣∣∣2 is plotted in Fig. 5.5. As for the decay of an η′-meson into
a real photon and a dilepton (section 4.6), the propagators have to include the widths
of the ρ0- and the ω-resonance since the mass of the η′-meson mη′ = 958MeV is larger
than the mass of the ρ0- and the ω-meson.
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Figure 5.5: Squared symmetrised and normalised form factor |F symm
η′ (k2, q2)|2 for the

decay of an η′-meson into two dileptons.

5.5.2 Partial Decay Widths

For decays of an η′-meson into two dileptons no experimental data are available and,
therefore, all values given in this subsection have to be seen as predictions.

The partial decay width for the decay into a dimuon and a dielectron is calculated as

Γη′→µ+µ− e+e− = (1.50± 0.04) · 10−10 GeV (5.85)

yielding a relative small branching ratio in the order of 10−6.
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For the decay into two dielectrons one gets

Γ(13)
η′→2e+2e− = (3.76± 0.18) · 10−10 GeV, (5.86)

Γ(24)
η′→2e+2e− = (−0.04± 0.00) · 10−10 GeV. (5.87)

The part Γ(24)
η′→2e+2e− equals about 1% of the dominant part and, therewith, the whole

partial decay width

Γη′→2e+2e− = (3.72± 0.18) · 10−10 GeV (5.88)

can be approximated by Γ(13)
η′→2e+2e− within the accuracy of the approach this thesis is

based on.

The value for the less dominant term for the decay into two dimuons is again numerically
not fully stable,

Γ(24)
η′→2µ+2µ− ∈ (− [0.56, 0.59]± 0.04) · 10−12 GeV. (5.89)

As it is between 11 and 12% of the dominant part,

Γ(13)
η′→2µ+2µ− = (4.98± 0.22) · 10−12 GeV, (5.90)

an approximation of the full partial decay width by the dominant part Γ(13)
η′→2µ+2µ− is not

justified. The full width Γ(13)
η′→2µ+2µ− + Γ(24)

η′→2µ+2µ− is given as

Γη′→2µ+2µ− = (4.40± 0.28) · 10−12 GeV. (5.91)
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6 Summary and Outlook

In this thesis, the decays of

• vector mesons into a pseudoscalar meson and a dilepton (chapter 3),
• pseudoscalar mesons into a dilepton and either a real photon or a vector meson

(chapter 4) and
• pseudoscalar mesons into two dileptons (chapter 5)

were calculated in leading order. Therefor, the leading-order chiral Lagrangian including
both the pseudoscalar Goldstone bosons and the light vector mesons (see sections 2.3,
2.5) was used whereat the leading-order terms where identified according to the counting
rules (C1), (C2) proposed in [LL08]. Additionally, a particular next-to-leading-order
term (2.107) was added to get a rough estimate about the intrinsic error of the leading-
order calculations. The calculations done with the Lagrangian including this next-to-
leading-order term did not differ much from the real leading-order calculations for all
decays considered in this thesis.

For the decays of vector mesons, all calculated values agreed well with the available
data. In Tab. 6.1, the values for the partial decay widths are listed. Compared to the
calculation performed with the standard vector meson dominance model (see subsection
2.4.1), the ω → π0 form factor data taken by the NA60 collaboration for the decay
ω → π0µ+µ− could be described much better with the calculation based on the counting
rules (C1), (C2).

Table 6.1: Partial decay widths for the decays of vector mesons into a pseudoscalar
meson and a dilepton compared to the experimental values given in [A+08].
decay calculated value [GeV] experimental value [GeV]

ω → π0γ (7.14± 0.20) · 10−4 (7.03± 0.30) · 10−4

ω → π0µ+µ− (9.85± 0.58) · 10−7 (8.15± 2.13) · 10−7

ω → π0e+e− (6.93± 0.09) · 10−6 (6.54± 0.54) · 10−6

ω → ηγ (3.71± 0.12) · 10−6 (3.91± 0.38) · 10−6

ω → ηµ+µ− (8.51± 0.01) · 10−12 not available
ω → ηe+e− (2.72± 0.09) · 10−8 not available

φ→ ηγ (5.38± 0.26) · 10−5 (5.58± 0.15) · 10−5

φ→ ηµ+µ− (2.75± 0.29) · 10−8 not available
φ→ ηe+e− (4.64± 0.26) · 10−7 (4.90± 0.47) · 10−7

The leading-order Lagrangian describing the decays of vector mesons and the leading-
order Wess-Zumino-Witten Lagrangian (2.84) were used as a test approach to describe
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the decays of pseudoscalar mesons. For the radiative two- and three-body decays, the
calculated values were again in fair agreement with the available experimental data but
not as good as those for the decays of vector mesons. The partial decay widths are listed
in Tab. 6.2. In all cases, the partial widths calculated for an η- or an η′-meson described
as a mixing of the octet η8 state and the singlet η1 state agreed much better with the
experimental values than the ones calculated for unmixed η = η8 and η′ = η1 states (see
sections 4.5, 4.6).

Table 6.2: Partial decay widths for the radiative two- and three-body decays of pseu-
doscalar mesons compared to the experimental values given in [A+08].
decay calculated value [GeV] experimental value [GeV]

π0 → γγ (7.83± 0.14) · 10−9 (7.74± 0.56) · 10−9

π0 → γe+e− (9.28± 0.16) · 10−11 (9.20± 0.93) · 10−11

η → γγ (6.71± 0.10) · 10−7 (5.11± 0.30) · 10−7

η → γµ+µ− (5.39± 0.09) · 10−10 (4.03± 0.74) · 10−10

η → γe+e− (11.24± 0.16) · 10−9 (9.10± 1.40) · 10−9

η′ → γγ (4.63± 0.27) · 10−6 (4.28± 0.56) · 10−6

η′ → γµ+µ− (1.77 ± 0.21) · 10−8 (2.10± 0.68) · 10−8

η′ → γe+e− (9.41± 0.46) · 10−8 < 1.836 · 10−7

η′ → ωγ (5.54± 0.16) · 10−6 (6.16± 0.19) · 10−6

η′ → ωe+e− (3.78± 0.10) · 10−8 not available

Furthermore, the available form factor data were described as well with the calculations
of this thesis as with the standard VMD calculations.

For the decays of pseudoscalar mesons into two dileptons, one has to distinguish between
decays into two different kinds of dileptons and into two identical dileptons. In the first
case, the integral defining the partial decay width can be simplified to a two-dimensional
integral (see section 5.1). In the second case, the partial decay width consists of a part
which can be simplified in the same way, Γ(13), and a part which can only be simplified
to a five-dimensional integral, Γ(24) (see section 5.2). This part has to be integrated
numerically and was not fully stable for all calculations performed for this thesis. Fur-
thermore, the calculations showed that only for the decays of pseudoscalar mesons into
two dielectrons the full partial decay widths could be approximated as Γ(13) whereas the
part Γ(24) was too important for such an approximation for the decays into dimuons.
The calculated partial decay width for the decay of a neutral pion into two dielectrons
agrees with the experimental value; for the decays of an η-meson into either two di-
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electrons or two dimuons, the experimental upper bounds were fulfilled. All calculated
partial decay widths are listed in Tab. 6.3.

Table 6.3: Partial decay widths for the decays of pseudoscalar mesons into two dileptons
compared to the experimental values given in [A+08].
decay calculated value [GeV] experimental value [GeV]

π0 → 2e+2e− (2.28± 0.04) · 10−13 (2.62± 0.31) · 10−13

η → µ+µ−e+e− (3.92± 0.07) · 10−12 < 2.08 · 10−10

η → 2µ+2µ− (7.35± 0.13) · 10−15 < 4.68 · 10−10

η → 2e+2e− (3.04± 0.05) · 10−11 < 8.97 · 10−11

η′ → µ+µ−e+e− (1.50± 0.04) · 10−10 not available
η′ → 2µ+2µ− (4.40± 0.28) · 10−12 not available
η′ → 2e+2e− (3.72± 0.18) · 10−10 not available

The counting scheme [LL08] used in this thesis is proposed as the basis of an effective
field theory. This is supported by this thesis because the leading-order calculations
describe the experimental data well and the intrinsic error estimated roughly by the
calculations including the particular next-to-leading-order term is small. Nevertheless,
to show that it is a reasonable basis of an effective field theory instead of a hadronic
tree-level model full next-to-leading-order calculations have to be performed.
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7 Deutsche Zusammenfassung

In theoretischer Physik sollen physikalische Prozesse mit mathematischen Hilfsmitteln
beschrieben werden. Außerdem soll gewährleistet werden, dass die so beschriebenen Ob-
servablen oder Annäherungen an sie in endlicher Zeit berechenbar sind. Im Niedrig-
Energie-Bereich der starken Wechselwirkung werden hierfür u.a. effektive Quantenfeld-
theorien verwendet. Hierbei werden statt Quarks Hadronen als Freiheitsgrade der Theo-
rie gewählt und es werden bespielsweise Lagrangedichten als Reihe über kleine Energien
und Impulse geschrieben. Der Vorteil solcher Theorien ist, dass endliche Rechnungen
mit kontrollierbarem intrinsischen Fehler druchgeführt werden können und es möglich
ist, diesen Fehler systematisch zu verringern.

Grundlage dieser Diplomarbeit ist ein Zählschema [LL08], das im Energiebereich der
hadronischen Resonanzen K∗-, ρ-, ω- und φ-Mesonen diese leichten Vektormesonen und
die pseudoskalaren Goldstonebosonen gleich behandelt, d.h. die Massen dieser Teilchen
werden gleichermaßen als klein bewertet. Mittels dieses Zählschemas kann die erste Ord-
nung der Lagrangedichte für den Zerfall von Vektormesonen in ein pseudoskalares Meson
und ein reelles Photon bzw. ein Dilepton1 bestimmt werden. Aus dieser Lagrangedichte
können dann (ebenfalls in erster Ordnung) Übergangsmatrixelemente und -formfaktoren
sowie partielle Zerfallsbreiten für die Zerfälle von Vektormesonen berechnet werden.
Es stellt sich nun die Frage, ob und wie gut die auf Grundlage dieses Zählschemas be-
rechneten Werte mit vorhandenen experimentellen Werten übereinstimmen und ob diese
Übereinstimmung genauso gut oder besser ist als die Übereinstimmung mit dem phäno-
menlogischen Modell für diesen Energiebereich, dem Standard-Vektormesondominanz-
Modell (Standard-VMD-Modell). Die in [LL08] und [LL09] berechneten Werte für radia-
tive 2- und hadronische 3-Körper-Zerfälle leichter Vektormesonen stimmten gut mit den
experimentellen überein. Weiter ist zu klären, ob das Zählschema die Basis einer effekti-
ven Quantenfeldtheorie für den Bereich der hadronischen Resonanzen bildet oder ob es
ein Model ist ohne Möglichkeit, den intrinsischen Fehler zu kontrollieren. Dafür wird in
dieser Arbeit ein Term der Lagrangedichte von nächst höherer Ordnung bestimmt. Da-
mit lässt sich der intrinsische Fehler einer berechneten Größe sehr grob als Unterschied
zwischen dem Ergebnis der Rechnung in führender Ordnung und dem der Rechnung mit
diesem zusätzlichen Term höherer Ordnung abschätzen.

In dieser Arbeit werden folgende Zerfälle von leichten Vektormesonen behandelt, ω →
π0γ/π0l+l−, ω → ηγ/ηl+l− und φ→ ηγ/ηl+l−, wobei l+l− ein Dilepton bezeichnet. Für
alle Zerfälle stimmen die berechneten Breiten gut mit den vorhandenen experimentellen
überein. Dabei werden die am SPS durch die NA60-Kollaboration gemessenen Daten für
den ω → π0 Formfaktor [A+09] mit diesen Berechnungen sehr viel besser beschrieben
als mit den Berechnungen aufgrund des Standard-VMD-Modells.

Die Lagrangedichte für die Zerfälle der leichten Vektormesonen kann außerdem als Test
1Aufgrund der geringen Masse der leichten Vektormesonen sind nur Zerfälle in Dielektronen oder
Dimyonen möglich; ein Zerfall in ein Ditauon ist nicht möglich. Im Weitern bezieht sich der Ausdruck
Dilepton immer auf Dielektronen oder Dimyonen.
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für die Effektivität des Zählschemas bei Zerfällen von pseudoskalaren Mesonen in ein
Vektormeson und reelles oder virtuelles Photon bzw. in zwei reelle oder virtuelle Photo-
nen genutzt werden. Dabei enthält diese Lagrangedichte jedoch nicht alle Terme führen-
der Ordnung, die für den Zerfall pseudoskalarer Mesonen erforderlich wären. Ein Term,
der in dieser Diplomarbeit hinzugenommen wurde, ist der Wess-Zumino-Witten-Term
in führender Ordnung, der den direkten Zerfall eines pseudoskalaren Mesons in zwei
Photonen ermöglicht.
Bei den Zerfällen π0 → γγ/γl+l−, η → γγ/γl+l−, η′ → γγ/γl+l− und η′ → ωγ/ωl+l−

von pseudoskalaren Mesonen stimmen die berechneten Breiten immer noch hinreichend
mit den experimentellen überein, jedoch nicht mehr so gut wie bei den Zerfällen der
Vektormesonen. Weiter konnten die von NA60 gemessen Daten für den η → γ Formfak-
tor [A+09] sehr gut beschrieben werden, wobei es jedoch kaum Abweichungen von den
Berechnungen mit dem Standard-VMD-Modell gab.
Zusätzlich wurden die Zerfälle der pseudoskalen Mesonen π0, η und η′ in zwei Dielepto-
nen von unterschiedlicher oder gleicher Art berechnet. Hierbei stimmt die Zerfallsbreite
für den Zerfall des neutralen Pions in zwei Dielektronen mit dem experimentellen Wert
überein; die Breiten für die Zerfälle der Mesonen η und η′ erfüllen die experimentellen
Schranken.

Außerdem konnte bei allen Berechnungen festgestellt werden, dass der Einfluss des Terms
von nächst höherer Ordnung auf die berechneten Werte, also die grobe Abschätzung
des intrinsischen Fehlers, klein war. Somit wurde die These unterstützt, dass das hier
verwendete Zählschema Basis einer effektiven Theorie ist. Um diese These weiter zu
untermauern, müssen jedoch in Zukunft vollständige Rechnungen in der nächst höheren
Ordnung durchgeführt werden.
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A.1 Transformation Properties of the Goldstone
Bosons

The aim of this section is to describe all Goldstone bosons corresponding to the spon-
taneous symmetry breaking in QCD as one hermitian and traceless matrix. Within the
approach of Goldstone’s theorem, they are described as eight independent fields φa on
the Minkowski space M4, so they are continuous real functions on M4.
The section follows the explanations given in [Sch03].

First step:
All Goldstone boson fields are collected into one eight-component vector Φ which is an
element of the space

M1 :=
{
Φ : M4 → R8

∣∣∣φa : M4 → R continuous
}
. (A.1)

It is possible to define an operation ϕ of G on M1, i.e. ϕ is a mapping of G ×M1 into
M1 fulfilling:

• ∀Φ ∈M1 : ϕ(1G,Φ) = Φ, (A.2)
• ∀ g1, g2 ∈ G, Φ ∈M1 : ϕ(g1, φ(g2,Φ)) = ϕ(g1g2,Φ). (A.3)

If Φ = 0 denotes the “origin” ofM1, which is the state corresponding to the ground state
configuration, and the subgroup H of G is the symmetry group of the ground state, the
operation ϕ will have to satisfy the additional property

∀h ∈ H : ϕ(h, 0) = 0. (A.4)

Second step:
A (well defined) mapping ϕ̂ of the set of all left cosets G/H := {gH|g ∈ G} into M1 is
defined by

∀ g ∈ G, h ∈ H : ϕ̂(gH) := ϕ(gh, 0) = ϕ(g, ϕ(h, 0)) = ϕ(g, 0). (A.5)

Since all left cosets are either equal or disjoint, the mapping ϕ̂ : G/H →M1 is injective
and therefore an isomorphism between G/H and the Goldstone bosons. Thus, there
exists a g ∈ G for every Goldstone boson Φ with Φ = ϕ̂(gH). Therewith, the transfor-
mation behaviour of the Goldstone bosons under an element g′ ∈ G can be described
as

Φ g′7→ Φ′ = ϕ̂(g′ · gH, 0) = ϕ(g′g, 0) = ϕ(g′, ϕ(g, 0)) = ϕ(g′,Φ). (A.6)
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In QCD, the symmetry groups are equal to

G = SU(3)L × SU(3)R = {(L,R) |L, R ∈ SU(3)} , (A.7)
H = {(V, V ) |V ∈ SU(3)} . (A.8)

For every g = (L,R) ∈ G the left coset gH =
{
(LV,RV ) = (1, RL†)(V, V ) |V ∈ SU(3)

}
is determined by U = RL† ∈ SU(3). Thus, the set of these U is isomorphic to the
Goldstone bosons. Therefore, every U has to be a function on the Minkowski space M4

and transforms as:

∀x ∈M4 : U(x) g̃=(R̃,L̃)7→ U ′(x) = R̃U(x)L̃†. (A.9)

Third step:
Define the real vector space (with respect to addition of matrices) of all hermitian and
traceless 3× 3 matrices as

H̃ := {A ∈ gl(3,C) |A† = A, tr(A) = 0} (A.10)

and the real vector space

M2 := {Φ : M4 → H̃ |Φ continuous}. (A.11)

The elements of M1 and M2 are related via

M2 3 Φ(x) =
8∑

a=1
λaφa(x) =


φ3 + 1√

3φ8 φ1 − iφ2 φ4 − iφ5

φ1 + iφ2 −φ3 + 1√
3φ8 φ6 − iφ7

φ4 + iφ5 φ6 + iφ7 − 2√
3φ8



=:


π0 + 1√

3η
√

2π+ √
2K+

√
2π− −π0 + 1√

3η
√

2K0
√

2K−
√

2K̄0 − 2√
3η

 (A.12)

with φa ∈M1, a = 1, . . . , 8. This is the wanted description of the Goldstone-boson fields
as one hermitian and traceless matrix. For further calculation, the additional set

M3 :=
{
U : M4 → SU(3)

∣∣∣∣∣U(x) = exp
(
i
Φ(x)
f

)
, Φ ∈M2

}
(A.13)

is defined with the origin U0 = exp
(
i 0
f

)
= 1. Defining the operation

ϕ̃ : G×M3 3 ((L,R), U(x)) 7−→ RU(x)L† ∈M3 (A.14)

shows that U0 is invariant underH but not invariant under axial transformation (A,A†) /∈
H which rotates left-handed quarks by A and right-handed ones by A†. Therefore, the
new fields are consistent with the assumed symmetry breaking.
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A.2 Derivation of Feynman Diagrams and Rules

In this section, a derivation of Feynman diagrams and rules for the φ4 theory described
by the Lagrangian

L = 1
2(∂µφ)2 − 1

2m
2φ2 − λ

4!φ
4 (A.15)

is given. Thereby, the explanations given in [PS95] are followed.

A.2.1 Perturbation Expansion of Correlation Functions

As a first step, the two-point correlation function

〈Ω|Tφ(x)φ(y)|Ω〉 (A.16)

with the ground state |Ω〉 of the interacting φ4 theory shall be calculated. This cor-
relation function can be interpreted physically as the amplitude for the propagation
of a particle between the two time-space points y and x. The capital T denotes the
time-ordering function, i.e.

Tφ(x)φ(y) = θ(x0 − y0)φ(x)φ(y) + θ(y0 − x0)φ(y)φ(x). (A.17)

In the free theory where λ = 0, the correlation function can be determined easily as

〈0|Tφ(x)φ(y)|0〉free =
∫ d4p

(2π)4
ie−ip·(x−y)

p2 −m2 + iε
=: DF (x− y) (A.18)

with ε being infinitesimally small.

The solutions of the free theory are known (as solutions of a Klein-Gordon equation).
Therefore, the unknown ground state and fields of the interacting theory with λ 6= 0
should be described by the free fields using the splitting of the Hamiltonian into a free
and an interacting part:

H = H0 +Hint = HKlein−Gordon +
∫

d3x
λ

4!φ
4(x). (A.19)

In the Heisenberg picture the free field is equal to

φI(t, ~x) = φ(t, ~x)|λ=0 = eiH0(t−t0)φ(t0, ~x)e−iH0(t−t0)

=
∫ d3p

(2π)3
1√
2Ep

(
ape
−ipx + a†pe

+ipx
)∣∣∣
x0=t−t0

(A.20)
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with annihilation and creation operators ap and a†p, respectively. Thus, the interacting
field in the Heisenberg picture can be written as

φ(t, ~x) = eiH(t−t0)φ(t0, ~x)e−iH(t−t0)

= eiH(t−t0)e−iH0(t−t0) eiH0(t−t0)φ(t, ~x)e−iH0(t−t0)︸ ︷︷ ︸
= φI(t, ~x)

eiH0(t−t0)e−iH(t−t0)

=: U †(t, t0)φI(t, ~x)U(t, t0). (A.21)

U(t, t0) can be described in terms of φI because it is the unique solution of the differential
Eq.

i
∂

∂t
ξ(t) = HI(t)ξ(t) (A.22)

with the interaction Hamiltonian

HI(t) := eiH0(t−t0)Hinte
−iH0(t−t0) =

∫
d3x

λ

4!φ
4
I(x) (A.23)

for the initial condition ξ(t0) = 1. Thus, the following identity holds:

U(tf , ti) = T
{
exp

[
−i
∫ tf

ti
dtHI(t)

]}
=
∞∑
n=0

(−i)n
n!

∫ tf

ti
dt1 . . . dtn T {HI(t1) . . . HI(tn)}

= 1 + (−i)
∫ tf

ti
dt1HI(t1) + (−i)2

2!

∫ tf

ti
dt1dt2 T {HI(t1)HI(t2)} . (A.24)

Inserting this formula for ti = t0 and tf = t into Eq. (A.21) yields the field φ for the
interacting theory being described in terms of the field φI . As φI is the free field in the
Heisenberg picture and hence controllable, the interacting field is controllable.

To be able to calculate the two-point correlation function (A.16), the ground state of the
interaction theory |Ω〉 has to be expressed in variables of the free theory. Considering
only interactions which are small perturbations of the free theory, the overlap between
|Ω〉 and the free ground state |0〉 is unequal zero. With the eigenvalues En of the
Hamiltonian H the free ground state can therefore be evolved through time as

e−iHT |0〉 =
∑
n∈N0

e−iEnT |n〉〈n|0〉 = e−iE0T |Ω〉〈Ω|0〉+
∑
n∈N

e−iEnT |n〉〈n|0〉 (A.25)

with the minimal energy E0 := 〈Ω|H|Ω〉 < En for all n ∈ N. The last term involves the
(unknown) eigenvalues and eigenfunctions of the interaction Hamiltonian H. They can
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be set equal to zero if T is sent to∞(1− iε) with a infinitesimal ε > 0 because the term
e−iEnT dies slowest for n = 0. Rewriting Eq. (A.25) then yields

|Ω〉 = lim
T→∞(1−iε)

(
e−iE0T 〈Ω|0〉

)−1
e−iHT |0〉

= lim
T→∞(1−iε)

(
e−iE0(T+t0)〈Ω|0〉

)−1
e−iH(T+t0)|0〉

= lim
T→∞(1−iε)

(
e−iE0(t0−(−T ))〈Ω|0〉

)−1
e−iH(t0−(−T ))eiH0(t0−(−T ))︸ ︷︷ ︸

= U(t0,−T )
|0〉 (A.26)

since H0|0〉 = 0. A formula for 〈Ω| can be derived analogically:

〈Ω| = lim
T→∞(1−iε)

〈0|U(T, t0)
(
e−iE0(T−t0)〈0|Ω〉

)−1
. (A.27)

Thus, the two-point correlation function in terms of φI equals

〈Ω|Tφ(x)φ(y)|Ω〉 = lim
T→∞(1−iε)

〈0
∣∣∣T {φI(x)φI(y) exp

[
−i
∫+T
−T dtHI(t)

]}∣∣∣ 0〉〈
0
∣∣∣T {exp

[
−i
∫+T
−T dtHI(t)

]}∣∣∣ 0〉 . (A.28)

In real applications, a finite number of terms of the Taylor series expansion is taken
instead of the whole exponential function.

The higher-order correlation function involving more fields can be derived in the same
way: For each additional factor of φ on the left-hand side there has to be an additional
factor of φI on the right-hand side. This yields the time-ordered product of m fields
which can be evaluated using “Wick’s theorem”:

T {φI(x1) . . . φI(xm)} = N

{
φI(x1) . . . φI(xm) +

(
all possible
contractions

)}
. (A.29)

Hereby, the function N denotes the normal-ordered product1. The contraction of two
field φI = φ+

I + φ−I with

φ+
I ∼

∫
d3p ape

−ipx, φ−I ∼
∫

d3p a†pe
+ipx (A.30)

is defined as

[φI(x)φI(y)]∗ =
{

[φ+
I (x), φ−I (y)] , if x0 > y0

[φ+
I (y), φ−I (x)] , if x0 < y0

}
= DF (x− y). (A.31)

1A normal-ordered product has all annihilators on the right-hand side and all creators on the left-
hand side. Therefore, the vacuum expectation value of any normal-ordered product which is not
proportional to 1 is zero.
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Then “all possible contractions” is an abbreviation for the sum of all possible terms
with contractions of the m fields with each other. For, e.g., m = 4 and φI(xi) =: φi for
i = 1, . . . , 4, all possible contractions are

[φ1φ2]∗φ3φ4 + [φ1φ3]∗φ2φ4 + [φ1φ4]∗φ2φ3 + [φ2φ3]∗φ1φ4 + [φ2φ4]∗φ1φ3 + [φ3φ4]∗φ1φ2

+ [φ1φ2]∗ [φ3φ4]∗ + [φ1φ3]∗ [φ2φ4]∗ + [φ1φ4]∗ [φ2φ3]∗. (A.32)

Due to the normal-ordering all terms which still include uncontracted operators have
the vacuum expectation value zero. So, the vacuum expectation value of Eq. (A.29)
equals

〈0|T{φI(x1) . . . φI(xm)}|0〉 =
〈

0
∣∣∣∣∣
(
sum of all totally
contracted terms

)∣∣∣∣∣ 0
〉

=
(
sum of all totally
contracted terms

)
.

(A.33)

In the case of m = 4, that expectation value thus equals

〈0|T{φ1 . . . φ4}|0〉 = [φ1φ2]∗ [φ3φ4]∗ + [φ1φ3]∗ [φ2φ4]∗ + [φ1φ4]∗ [φ2φ3]∗

= DF (x1 − x2)DF (x3 − x4) +DF (x1 − x3)DF (x2 − x4)
+DF (x1 − x4)DF (x2 − x3). (A.34)

A.2.2 Feynman Diagrams

If the numerator of the correlation function (A.28) is expanded in terms of φI , it can be
calculated using the derivations fromWick’s Theorem (A.33). To make sure one does not
forget one of the summands, each of them is represented by “Feynman diagrams”: Every
point x1, . . . , xm is represented by a dot and the contractionsDF (xi−xj) (i, j = 1, . . . ,m)
by a straight line. E.g.,

〈0|T{φ1 . . . φ4}|0〉 = + +

In general, the numerator of the correlation function for m fields equals2

〈
0
∣∣∣∣T {φI(x1) . . . φI(xm) exp

[
−i
∫

dtHI(t)
]}∣∣∣∣ 0〉 =

(
sum of all possible diagrams

with m external points

)
.

(A.35)
2The equivalence is based on the superposition principle of quantum mechanics: If a process can
happen in alternative ways, the amplitude of the process will be equal to the sum of the amplitudes
of each way.
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A.2 Derivation of Feynman Diagrams and Rules

As an additional simplification, each part of a diagram is associated with an analytical
expression so that the value of the term according to a particular diagram can be read
off from the diagram by multiplying these expressions. In the φ4 theory this analytical
expressions (“Feynman rules”) are

• DF (x− y) in momentum-space for each line between two points x and y (“propa-
gator”),
• −iλ

∫
d4z for each vertex,

• 1 for each external point.

Additionally, one has to divide by the symmetry factor, i.e. the number of diagrams
which one gets out of one be interchanging same parts. The Feynman rules used in this
thesis are given in section 2.6.1.

Consider again the two-point correlation function. A typical diagram with two external
points x and y consists of a piece which is connected to x and y and several parts which
are disconnected from these external points. Let {Ṽi} describe the set of all possible
disconnected pieces and Vi be the value of the disconnected diagram Ṽi ∈ {Ṽi}. If a
typical diagram has ni disconnected diagrams of the type Ṽi ∈ {Ṽi}, its value will be(

value of the connected part
)
·
∏
i

1
ni!

(Vi)ni (A.36)

with the symmetry factor 1
ni! arising from the possibility to interchange the ni copies of

the disconnected diagram Ṽi. Thus,〈
0
∣∣∣∣T {φI(x)φI(y) exp

[
−i
∫

dtHI(t)
]}∣∣∣∣ 0〉

=
∑

all possible
connected pieces

∑
all ordered
sets {ni}

(
value of

connected piece

)
·
∏
i

1
ni!

(Vi)ni

=

 ∑
all possible

connected pieces

(
value of

connected piece

) · ∑
all {ni}

∏
i

1
ni!

(Vi)ni︸ ︷︷ ︸
= exp [∑i Vi]

. (A.37)

With an identical argument the denominator equals〈
0
∣∣∣∣∣T
{

exp
[
−i
∫ +T

−T
dtHI(t)

]}∣∣∣∣∣ 0
〉

= exp
[∑

i

Vi

]
. (A.38)

As the argumentation is the same for the numerator and denominator of the correlation
functions with m > 2 fields, it equals

〈Ω |T {φI(x1) . . . φI(xm)}|Ω〉 =
(
sum of diagrams connected
to all n external points

)
. (A.39)
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