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1 Introduction

In particle and hadron physics, all particles and their interactions can be described
at least in principle by the “standard model”. This quantum field theory takes the
elementary particles quarks, leptons and the force-mediating particles for strong, elec-
tromagnetic and weak interaction as degrees of freedom and is so far in agreement with
all experimental data (apart from neutrino masses and the absence of dark-matter can-
didates). Ome aim of this theory is the description of physical processes by analytic
formulas. Unfortunately, these formulas are often given as infinite series which indeed
are analytical but cannot be used for numerical calculations. Thus, methods have to be
developed to approximate this infinite series by finite sums.

In perturbative quantum field theories, the series are expanded as a Taylor series in terms
of the coupling constant of a considered kind of interaction. If the coupling constant
is small, the higher the order of a term the less important it will be and the series
can be approximated by a finite sum. This is the case for electromagnetic and weak
interactions.

In quantum chromodynamics (QCD), the theory of strong interaction, the coupling
constant is not small for all energies. Though it is small for high energies, it is not
for the lower-energy regime. So, perturbative QCD is only possible in the high-energy
region. In the lower-energy region another ansatz has to be used. One possibility is
an effective field theory. Instead of expanding in terms of a small coupling constant,
the importance of terms is evaluated by comparing scales: A scale describing the region
the effective theory should be applicable in has to be determined. This scale should be
separated from the scale of the region including degrees of freedom which are not taken
into account. E.g., a typical momentum or a typical energy for a given problem is taken
as the scale describing the considered region.

Due to the effect of confinement in that lower-energy region of QCD, quarks cannot be
treated as unbound. There, hadrons have to be taken as the relevant degrees of freedom
instead of quarks and gluons. Thus, developing an effective field theory describing
QCD in this energy regime includes the identification of the relevant degrees of freedom,
coupling constants and a power counting scheme to order processes by importance.
Thereby, the coupling constants can be fixed by comparison with experimental data. Of
course, a particular effective field theory is only valid while the conditions via which it
is defined are fulfilled and is not valid anymore, at least, when more degrees of freedom
than the considered ones become active. So, while developing an effective theory for
QCD at lower energies, three questions have to be answered:

e Which hadrons should be taken as the relevant degrees of freedom?

e Which power counting scheme should be taken i.e. how should different processes
be ordered?

e For which energy regime is the theory valid?



In the low-energy region of QCD, all dynamics are well-described by the effective field
theory called chiral perturbation theory (ChPT). For this theory, the relevant degrees of
freedom are the Goldstone bosons — pions, kaons and the n-meson — associated with
the spontaneous symmetry breaking of QCD (see chapter 2.2 for an introduction to spon-
taneous symmetry breaking and Goldstone bosons). These pseudoscalar mesons have
low masses compared to other hadrons and, therefore, ChPT is valid for low energies.

The advantage of both a perturbative and an effective quantum field theory is that the
approximation of the infinite series can be improved systematically by taking the next
higher order in the expansion. Additionally, the influence of the next higher order is
smaller than the influence of the already included orders and, therewith, the intrinsic
errors of the approach can be controlled. In contrast to this, a phenomenological ap-
proach might describe the dynamics of a system successfully but without being able to
control the intrinsic errors. A systematic improvement to get a better accuracy is not
possible in that case.

Unfortunately, the energy region in which ChPT is valid is not close to the energy region
of perturbative QCD. So, the dynamics of hadronic resonances, e.g., the vector mesons
p°, w and ¢ with masses between 0.7 and 1 GeV, and their interactions with the pseu-
doscalar Goldstone bosons can neither be described with ChPT nor with perturbative
QCD. Therefore, both systematic approaches as effective field theories and phenomeno-
logical models for this energy region have been developed. In the following, they will be
used to explain the differences between these two approaches.

An example for a phenomenological approach is the standard vector meson dominance
(VMD) model which will be explained in section 2.4.1. Indeed, the present thesis studies
the interactions of hadrons with electromagnetism, i.e. real and virtual photons. Here,
the VMD model [Sak69] is the most common approach. The normalised transition form
factor for, e.g., the decay of a vector meson into a pseudoscalar meson and a virtual
photon with momentum ¢ via a virtual vector meson with mass m is given by

m2

(1.1)

FVMD(Q) = m2 — qg :
This model approach has the advantage that calculations can be performed easily. But
it does not include a rule how to improve it systematically.

In contrast to this, the most general theory would include all possible powers of ¢
together with coupling constants!:

m2 2 q4

q
Fgeneral(Q) :gom—i-(l—go)—i—glw#—ggﬁ—i— (12)

IThe coupling constant for the constant term is equal to one minus the coupling constant for the term
of standard VMD type to make sure that the normalised form factor equals 1 at ¢? = 0.
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As it is an infinite series, it is impossible to fix all parameters. In an effective theory,
the coupling constants gg, g1, ... will be ordered in powers of importance according to a
breakdown scale A. This breakdown scale denotes the energy scale where new degrees
of freedom become important and where the constraints according to which the effective
theory was developed are not fulfilled any more. Thus, m/A would be small in the case
discussed here. As an example, suppose that the coupling constants are ordered as

m mFi

A) and g; € O(Ak‘i

With this power ordering, it is possible to perform calculations up to a given order
including a finite number of coupling constants?, e.g., taking in account the terms pro-
portional to go, g1 and g which are of order O({) and larger. The calculations can

9179260(1)79060( )fOI'lZS,k‘ZZQ

be improved systematically by adding the next order (9(%2) Furthermore, errors of
calculations up to order O(f) can be estimated by the differences between calculations

with and without the terms of the order O(’/’;‘—;) as those corrections are smaller than
calculations with leading orders.

As the standard VMD model and other hadronic models are approaches without rules for
systematic improvements, one aim of recent research is to develop effective field theories
for the energy region of the hadronic resonances. The power counting scheme this thesis
is based on was recently proposed in [LLO§|. Tt involves both pseudoscalar Goldstone
bosons and the nonet of light vector mesons as degrees of freedom and treats them both
on equal footing. In section 2.4.2, this scheme will be explained in more detail.

Now, the question is if this counting scheme is able to describe experimental data and
if it describes them as good as or even better than the standard phenomenological
approaches, in particular the standard VMD model. In [LL08, LL09] radiative decays
of light vector and axial-vector mesons and hadronic three-body decays of light vector
mesons were considered yielding good agreement with the experimental data. In this
thesis, results of calculations based on this new counting scheme are presented and
compared to both the standard VMD calculations and the available data for the following
types of decays:

e Decays of vector mesons into a pseudoscalar meson and a dilepton® (chapter 3),

e decays of pseudoscalar mesons into a dilepton and either a vector meson or a real
photon (see chapter 4),

e decays of pseudoscalar mesons into two dileptons (chapter 5).

As an introduction, the relevant theoretical basics are outlined in chapter 2. In chapter
6, a summary and an outlook is presented.

2Those constants have to be fixed by comparison with experimental data before.
3Tn this context, dilepton refers to either a dielectron or dimuon as the considered decaying particles
are not heavy enough to decay into a ditauon.
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2 Theoretical Basics

In this thesis, radiative decays of the light vector mesons w and ¢ and of the pseudoscalar
mesons 7°, 1 and 7’ are examined. The decays will be described by effective field theories
including among others these mesons as relevant degrees of freedom.

To develop the Lagrangians for those theories describing the considered decays, the
QCD Lagrangian involving quarks as degrees of freedom has to be considered first. Its
symmetries yield the particle multiplets and allows to identify the pseudoscalar mesons
as Goldstone bosons of the spontaneously broken SU(3);, x SU(3)r symmetry (sections
2.1, 2.2). In ChPT, these Goldstone bosons are considered as the relevant degrees of
freedom for an effective field theory for the low-energy regime (section 2.3). Additionally,
the dynamics and interactions of vector mesons with external electromagnetic fields and
Goldstone bosons are of interest. For that, both the phenomenological approach VMD
and the counting scheme for light vector mesons proposed in [LLO8| are explained in
section 2.4. On the basis of this counting scheme, the effective leading-order Lagrangian
for light vector mesons and their interaction with external electromagnetic fields and the
pseudoscalar Goldstone bosons is developed in section 2.5.

For the calculations of transition matrix elements, form factors and decay widths per-
formed in the following chapters, Feynman diagrams and rules are practical tools to
simplify calculations. The rules needed for the decays studied in this thesis are listed in
section 2.6.

10



2.1 The QCD Lagrangian and Its Symmetries

2.1 The QCD Lagrangian and Its Symmetries

In this section, the QCD Lagrangian with quarks as degrees of freedom and its symme-
tries are considered. It will be used to derive the particle multiplets and to identify the
pseudoscalar mesons as Goldstone bosons in the next section 2.2. As we are interested
in light pseudoscalar and vector mesons which do consist of the light quarks, up, down
and strange, and do not contain the heavy quarks, charm, top and bottom, the QCD
Lagrangian will be restricted to the light quarks.

The QCD Lagrangian for the light quarks equals [Sch03]

Looo = 3 a7 (i = ms) a5 = {GuwaGl = (iD= M) = 1GaGl”  (2:1)

f=u,d,s
W 00
with the quark-mass matrix M = (Wé ma 0 ) Hereby, the quark field ¢ = (qu, 4, qs)”
ms

also contains indices for colour and spin which are suppressed due to better readability,
i.e. for each f € {u,d, s}, qs is a three-component object in colour space. Additionally,
the Lagrangian includes the gauge-covariant derivative

8 )\C

D,=0,—ig) 5 Aua (2.2)

a=1

with eight independent gauge potentials A, , due to the eight-parameter group SU(3)
and the Gell-Mann matrices

010 0 —i 0 1 0 0
M=[1 00|, %=|i 0 0|, xa=[0 -1 0],
000 0 0 0 0 0
001 00 —i 000
M=[0 00|, %=]00 0], x=]00 1],
100 i 00 010
00 0 L (100
M=100 —i|, dd=—=10 1 0 (2.3)
04 0 V3lo 0 -2

The superscript C' of the Gell-Mann matrices in Eq. (2.2) denotes that those matrices
are acting in colour space.
Furthermore, the field strength tensor is defined as

g,u,y,a - ap,Ay,a - aVAu,a + gfabcA,u,bAu,c (24)

whereby the last term includes the structure constants f,,. of the symmetry group

SU(3).

11
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2.1.1 Conserved Currents and Hadron Multiplets

According to “Noether’s Theorem”, there exists a conserved current for each continuous
symmetry transformation that leaves the Lagrangian of a physical system invariant (see
[Mos99, Sch03] for more information). So, for all a = 1,... N with N being the number
of independent symmetry transformations one gets a current J* which fullfils

0,0 =0 (2.5)

and a corresponding time-independent charge

Q°(t) := /d?’x JUE L) = Q. (2.6)
The QCD Lagrangian (2.1) it invariant under the symmetry group U(1), i.e. for '® €
U(1) with a € R

qt— Uq = emq, gp,z/,a e guu,a- (27)

According to Noether’s Theorem, this continuous symmetry yields the conserved charge
“baryon number”,

1
B:= g/d?’x q'q, (2.8)

which assigns +1/3 to quarks and antiquarks, respectively, +1 to baryons and 0 to
mesons.
Furthermore, the numbers of quarks of a given flavour,

U:.= +/d3x ¢ qu, D = —/d3x qjiqd, S = —/d?’m qiqs, (2.9)
are conserved since the Lagrangian is invariant under the transformation
qr — gy, ay €R, (2.10)
for each flavour f € {u,d, s} separately.

In addition to these exact symmetries, the QCD Lagrangian is invariant with respect to
the transformation

qd d

(q“> — U (Z“) , U € SU(2), (2.11)

12



2.1 The QCD Lagrangian and Its Symmetries

if the difference between the masses of the up and the down quark is neglected, i.e.
m, ~ mg. The conserved charges connected to this symmetry transformation are the so
called “isospin operators”,

I = ;/d?’m (ahau + alga) .

L = %/dgw (abau — alaa)

I3 = ;/d?’x (¢hau — qlaa) (2.12)
The squared isospin vector, I? = (I, Iy, I3)?, is a conserved quantity, too, with eigen
values I(I+1) for I € $Ny. Then, the eigenvalues of I5 run form —7I to + in unit steps.

If the differences between the masses of all three light quarks are neglected, m, ~ mgy ~
ms, the QCD Lagrangian is even invariant under the transformation

u Uu
g=|d|—U|d|,Uesu@) (2.13)
S S

where the subscript f denotes that the symmetry group is acting in flavour space. It
yields eight conserved charges, in particular the “hypercharge”,

1 2
._ 3|2 (4f T I
Y= /d [3 <QuQu+Qde> 3qsqs} (2.14)
which equals B + S in the absence of the heavy quarks. Using the conserved charges of
the SU¢(3) symmetry, particle multiplets can be constructed which consist of particles
with the same mass. Thereby, one uses the relation

Q=e (;Y + Is) (2.15)

for the electric charge of the particles including the electric charge of the electron, e.
The pseudoscalar-, vector-meson and baryon multiplet are shown below. Thereby, the
vector-meson state wg is a superposition of the physical state w- and ¢-meson. Note,
that all particles lying on the same horizontal line belong to an isospin multiplets with
I? = const. As SU(3) is not exact but only an approximate symmetry which only holds
for m, = mg = my, the masses of the particles belonging to the same multiplet are not
the same in reality. In Tab. 2.1, the masses of the particles belonging to the multiplets
are listed.

13
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e pseudoscalar-meson octet: e vector-meson octet:

K° K+ K*° K*t

K- Ko K*— ]_(*o
e baryon octet:

n p

N

2.1.2 Symmetries in the Chiral Limit

The masses of the light quarks, m, ~ 3MeV, my =~ 6 MeV and m; ~ 123 MeV, are small
compared to the masses of the light hadrons (compare Tab. 2.1). Therefore, it seems
justified to consider the QCD Lagrangian (2.1) in the chiral limit, m, = mg = mgs = 0,

o )
£0QCD = C]ZZDC] - Zguy,agg (216)

where the superscript 0 denotes the chiral limit. This Lagrangian exhibits an additional
symmetry: It is invariant under the flavour symmetry group U(3)a x U(3)y whereby the
subscript A stands for “axial vector” and V for “vector”. This symmetry transforms the
quark field according to

q+— UyUaq = exp [i0,t,] exp [z’éata%} , Uy € UB)y, Ua € U(3)a (2.17)
including 5 := i7°y'v2~3. Here, 0,, 0, € R and t, = \/gfgxg, to=MA fora=1,...,8.

Moreover, one can show that for all V' € U(n) with n € N there exists U € SU(n) so
that

V = det(V)V"U.

14



2.1 The QCD Lagrangian and Its Symmetries

Table 2.1: Masses of the particles in the light pseudoscalar-meson and vector-meson
nonet and in the light baryon octet [AT08]. A nonet is a octet plus a singlet. Thereby,
the physical states 1,  and w, p° are superpositions of the states 7, 7z or w;, ws,
respectively.

multiplet | mass [MeV] | | multiplet | mass [MeV]
pseudoscalar-meson nonet vector-meson nonet

K+ 494 K** 892
K% K° 498 | | K*0 K" 896
nt 140 pE, p’ 776
70 135 w 783
n 548 ) 1019
n 958

baryon octet

proton p 938

neutron n 940

xt 1189

¥0 1193

> 1197

A 1116

=0 1315

=" 1321

As det(V)/" € U(1), this yields that for all n € N
U(n) = U(1) x SU(n). (2.18)
Therewith, the symmetry group U(3)s x U(3)y can be represented as
[U(1)a x SU3)a] x [U(1)y x SUB3)yv] =U(1)a x U(1)y x SU(3)a x SU3)y. (2.19)

QCD as the quantized theory is not invariant under U(1)s anymore. Therefore, the
symmetry group is reduced to

U(1)v x SU®3)a x SU(3)y. (2.20)

Thereby, the group U(1)y coincides with the symmetry group U(1) of the full Lagrangian
(2.1) which gives rise to baryon number conservation.

Since the matrix t, commutes with all other matrices, it is easy to see from (2.17) that
the transformation under SU(3)5 x SU(3)y can be expressed as

q — exp [i0,\a] exp [iéa/\a%} q (2.21)

15



2 Theoretical Basics

for exp [i0,M\q] € SU(3)v, exp [iéa)\a%] € SU(3)x and 6,,0, € R. The group SU(3)y
coincides with the symmetry group SU¢(3) introduced in (2.13).

With the projectors

1 1

the QCD Lagrangian (2.16) can be split into a term describing “right-handed quarks”,
qr := Pgrq, and one describing “left-handed quarks”, q, := Pprq, yielding

- . 1 )
Loop = ariPar + qrilar — S Guw.ads" (2.23)

By using (v5)? = 1, the transformation of the right- and left-handed quarks transform
under SU(3)a x SU(3)y is given as

qr — exp [i6,\,] exp {+i9~a)\a} qr,
qr, — exp [i0,\] exp {—z’éa)\a} qr.- (2.24)

In addition, the transformation of left- and right-handed quarks under the group SU(3), x
SU(3)g is defined as

SU(®3 . SU(3

a1 S P exp leaQ] . ar S gn, (2.25)
SU(3)R A SUB)R

qr — €XDp ZQRa? qr, qr. +— 4qr. (2-26)

This transformation is equivalent to the transformation under SU(3)a x SU(3)y as one
sees by setting 61, = 2(0, — 0,) and Og, = 2(0, + 0,). Therewith, the QCD Lagrangian
in the chiral limit (2.23) is invariant under the symmetry group

The conserved currents associated with the SU(3);, x SU(3)r symmetry according to
Noether’s Theorem are

A

LM = qp+* ?a qL, (2.28)
RM* = qry" )\2'1 qR- (2.29)
Then, the linear combinations of these currents
Vit = R 4 L = gt >\2a q, (2.30)
AR = R [0 — Gyt g AQ (2.31)

16



2.1 The QCD Lagrangian and Its Symmetries

act as vector and axial-vector currents, respectively. I.e., including the definition
- arit; -
q(Z,1) "=" 704 (Z,1) (2.32)

they transform under parity operation into + or — themselves:

Ve (E, 1) P PYR(Z, 1) P = 4 V(T 1), (2.33)
Ale(g, 1) P PAR(T )P = — AY(—T,1). (2.34)

The corresponding time-independent charges equal
Qv = Vi@ n), Qu= [ Ay (2.35)

fora =1,...,8. The charges ), are the eight conserved charges already mentioned after
(2.13). In particular, the charges Q3 and Qf. commute with each other and correspond
up to normalisations to I3 and Y as introduced in (2.12) and (2.14), respectively. They
lead to the multiplet assignments discussed above. Naively one would expect that the
corresponding charges Q3 and Q% extend the multiplets with (approximately) degener-
ate masses by adding states with opposite parity. However, these “parity partners” do
not exist in the hadron spectrum. The non-degeneracy of hadrons with opposite parity is
explained by the effect of spontaneous symmetry breaking of SU(3)a (see section 2.2).

17



2 Theoretical Basics

2.2 Goldstone Bosons in QCD

Chiral perturbation theory (ChPT) is an effective field theory describing QCD for low
energies and particles with small masses (see introduction). In this section, these par-
ticles are identified by applying “Goldstone’s Theorem” following the explanations in
[Mos99, Sch03]. An introduction to that theorem which proves that a “spontaneously
broken” or “hidden” symmetry of a theory yields the existence of massless particles
will be given in subsection 2.2.1. Thereby, a symmetry is spontaneously broken, if the
ground state |0) is not invariant under the full symmetry group of the Hamiltonian.
In the second subsection, the pseudoscalar mesons will be identified as the Goldstone
bosons of QCD associated with the spontaneous symmetry breaking of the symmetry

group SU(3), x SU(3)r.

2.2.1 Goldstone’s Theorem

In this subsection, an introduction to the proof of Goldstone’s Theorem will be given.
For that purpose, let £ be a Lagrangian with a continuous symmetry and the conserved
current J* and time-independent charge operator Q = [ d*z Jy(z) according to Noether’s
Theorem (see subsection 2.1.1) and let this symmetry be spontaneously broken, i.e. in
the case discussed:

Q|0 # 0. (2.36)

Since @) is a symmetry of the Lagrangian, it commutes with the Hamiltonian H. With
ELin denoting the energy of the ground state this yields

HQ|0) = QH|0) = Epnin - Q|0). (2.37)

So, @Q]0) can also be taken as the ground state of the system (as the ground state
is defined as being the state which minimizes the energy) and thus the system has a
degenerate ground state.

For the further argumentation, an arbitrary field operator F' coupling to one-particle
states |k) is considered that is not invariant under the symmetry operation generated

by Q:
[Jo(x), F(y)] # 0. (2.38)

Using d,J* = 0 and Gauss’ law one can show that

[ @ 0] Lolw), Fw)] [0) (2:39)

18



2.2 Goldstone Bosons in QCD

is time-independent and not equal to zero. By inserting a complete set of eigenstates
In)! of the Hamiltonian with eigenvalues E,, + Ey;, and representing

Jo(z) = e Jy(0)e ™ (2.40)

including the operator P of total four-momentum of QCD, this integral can be evaluated
as

/d3w2 ((01Jo () [n) (| F'(y)]0) — (O[F(y)[n) {n]Jo(2)[0))

= (2m)* 32 89 (5,) ((01Jo(0) ) (n| F () [0y~ — (O F (3)|n) n] Jo (0) [0} o)
(2.41)

Due to the J-function the only allowed states |n) are those with 7, = 0 and thus
E,, = m,. Additionally, the whole expression should be time independent and, therefore,
all exponential functions have to be equal to 1. As E,, = m,,, only states |n) with m,, =0
yield e¥iEr20 = 1. Therefore, (0].J;(0)|n) = 0 for all states |n) with m,, # 0. Furthermore,
the whole expression is not equal to zero, so there has to exist at least one state |ng)
with m,, = 0 and

(0]Jo(0)|no) {nol F'(y)|0) # 0. (2.42)

Thus, the spontaneous symmetry breaking of the ground state has generated a massless
particle |ng). This particle has to carry the quantum numbers of the generator in question
to exclude (0]Jy(0)|ng) = 0. As the considered current J* is either a vector or an axial-
vector current, the particle has to be a boson with mass zero called “Goldstone boson”.

This procedure can be repeated for all charge operators )1, ..., Q, of the spontaneously
broken symmetry of the Lagrangian £ fulfilling
Qil0) #0,i€{1,...,n}. (2.43)

Then, each of these operators will generate a massless Goldstone boson. The number of
all Goldstone bosons associated with a spontaneous symmetry breaking of a symmetry
group is given by the difference between the number of generators of the full symmetry
group and the number of generators of the symmetry group of the ground state.

After expanding the fields around a preselected ground state and writing the Lagrangian
in terms of those new fields, the following statements hold:

e The new fields will represent the massless Goldstone bosons and the massive par-
ticles of the theory.

e Represented in the new fields, the full symmetry of the Lagrangian is not obvious
anymore, it is “hidden” in the new definition of the fields.

T As the operator F only acts on one-particle states, the remaining m-particle states of the complete
set of eigenstates, m € Ny \ {1}, do not need to be considered.
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2.2.2 Spontaneous Symmetry Breaking in QCD

In this subsection, we will show indications that the QCD symmetry group SU(3)p, X
SU(3)g is spontaneously broken. Therefor, let |i, +) be an eigenstate of the QCD Hamil-
tonian HgCD in the chiral limit with eigenvalue E; and positive parity:

HgCDyz, +) = Eili, +), Pli,+) = +|i, +). (2.44)

Consider the state |®) := Q9%i,+) with the axial-vector charge Q% (2.35) defined in
subsection 2.1.2. As the axial-vector charge and the Hamiltonian commute, |®) is also
an eigenvector with eigenvalue E; but with negative parity:

P|®) = PQLP™'Pli, +) = —Q4li, +) = —|®). (2.45)

Furthermore, let the states |i,4) and |7, —) be members of a basis of an irreducible
representation of the symmetry group SU(3)p, x SU(3)g with positive and negative parity,
respectively, and &I and b} the corresponding creation operators. Then, the commutator
between the axial-vector charge and the creation operator for states with positive parity
can be expressed as

Q%4 al] = —t3b]. (2.46)
Hence, the state |®) is equal to
Q4li, +) = Q4all0) = (|Q% al| +alQ4) 0) = 513, =) + alQ40). (2.47)
There are two possibilities:
1. Q%]0) = 0:
In this case, |®) = Q4li,+) = —t§|j,—). Thus, a degenerate state of negative

parity for every state of positive parity is expected. As no negative-parity states
have been observed which are degenerate, e.g., with the ground state baryon octet,
this hypothesis is experimentally disproven. Instead of this, the assumption is that

2. Q4[0) #0:
Then, there would be a spontaneous symmetry breaking in QCD yielding massless
Goldstone bosons with spin zero corresponding to the axial-vector charges (Q%.
The whole symmetry group of the Lagrangian £¢).p is G = SU(3)1, x SU(3)g and
the ground state is still invariant under the subgroup H = SU(3)y, since this leads
to the multiplets observed in nature as discussed in subsection 2.1.1. Therefore,
there should exist

n=ng—ng=23"-1)—-(3*-1)=8 (2.48)

Goldstone bosons ¢,. They must have the same transformation behaviour as the
axial-vector charges and thus
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2.2 Goldstone Bosons in QCD

. arit
e are pseudoscalar bosons since (% P —Q4%,
. b o
e transform under H as an octet, i.e. [Q{"/, o (:c)} = 0 fopedC.

This assumption is experimentally supported by the octet of pseudoscalar mesons
which have small masses in comparison to the corresponding 1~ vector mesons and
all other hadrons. In reality, their masses are unequal to zero (but small) due to
the explicit symmetry breaking of QCD: Since the masses of the light quarks are
non-vanishing, a term including the quark-mass matrix M = diag (m.,, mq, ms),

‘Cmass = _(qu = - [CYRMqL + QLMqR] ) (249)

has to be added to the QCD Lagrangian ﬁ%CD in order to get the original La-
grangian (2.1). This additional term is not invariant under the symmetry group
G anymore. Take, e.g., the simple case that both gr and ¢, transform as

qrsr (1= i0,0,) qryr + O(62) (2.50)

with 6, € R small. Then,

Lonass 15 =G (1 + 10.00) M (1 — i0,00) = Lonass + i0a[M, Aa]— + O(62).  (2.51)

As the mass matrix does not commute with the Gell-Mann matrices, the mass
term is not invariant under the symmetry group G of the QCD Lagrangian in the
chiral limit. This mass term yields non-vanishing masses of the QCD-Goldstone
bosons. As the masses of the light quarks are small, the masses of the pseudoscalar
Goldstone bosons are also small in comparison to other hadrons. For a derivation
of their masses, see section 4.3.

The eight Goldstone-boson fields ¢, are continuous real functions on the Minkowski
space. As it is explained in section A.1 in the appendix, they can be collected in a
Hermitian and traceless matrix

Gst+Jaos  Gi—ids  di—ids\ (T4 VITT VIKY
¢ = (ba)\a = ¢1 + Z¢2 _¢3 + %ng 9256 — Z¢7 =: \/57'(* —70 _|_7%n \/EKO
P4 + i3 G6 +idr  — s V2K~ V2K° —%77

(2.52)

with the fields 7%*, n and K°* describing the (physical) pseudoscalar mesons. Actually,
the n state does not match the physical state. The physical n-meson is a combination
of the Goldstone-boson state and the singlet 7;. For the decay of vector mesons into
pseudoscalar mesons (chapter 3) the physical n-meson is approximated by the Goldstone
boson, yet for the decay of pseudoscalar mesons (chapters 4, 5) this mixing has to be
taken into account (see section 4.3 for details).
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2.3 The Effective Leading-Order Lagrangian for

Goldstone Bosons

2.3.1 The Leading-Order Chiral Lagrangian for Goldstone

Bosons and External Fields

The aim of this subsection is to give a short summary of how to construct a general
theory describing the dynamics of the pseudoscalar Goldstone bosons associated with
the spontaneous symmetry breakdown in QQCD and their interactions with external fields
(for further and more detailed information see, e.g., [Sch03], chapter 4). This theory
was first suggested by Weinberg [Wei79] and further developed by Gasser and Leutwyler
[GL84, GL8ba).

The constructed Lagrangian L. has to fulfill the following properties:

e It has to be invariant under the group U(1)y x SU(3)r, x SU(3)g in the chiral limit

where the masses of the light quarks up, down and strange are set to zero. As the
Goldstone bosons have baryon number zero, they transform as

o " g (2.53)

under U(1)y and, thus, this symmetry will be fulfilled automatically.

Leg should contain exactly eight pseudoscalar degrees of freedom which describe
the eight Goldstone bosons and transform as an octet under the subgroup SU(3)y.
They are collected in the field

)\a a
U(z) := exp (z gzﬁf(:c)) (2.54)
with the eight real-valued Goldstone-boson fields ¢,(z) and the Gell-Mann matrices
Ao. f denotes the pion-decay constant in the chiral limit which is determined by
the weak decay of a pion into a muon and a neutrino and further theoretical
considerations (see, e.g., [LL08]). The field U transforms under SU(3);, x SU(3)r
as

U U =VaUV} (2.55)

with space-time dependent SU(3)-matrices Vz and V.

Due to the spontaneous symmetry breaking of QCD the ground state of the theory
should only be invariant under SU(3)y x U(1)y.

As a first step, the QCD Lagrangian for quarks and
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2.3 The Effective Leading-Order Lagrangian for Goldstone Bosons

e the external axial-vector fields a*(z),
e the external scalar field s(x) and

e the external pseudoscalar field p(x)

is considered with trv* = tra” = 0. All external fields are colour-neutral, Hermitian
3 X 3 matrices that act in flavour space. The Lagrangian describing the dynamics of the
light quarks and their interactions with those external fields equals

_ 1 _ ‘
L= Locp + Loxw = Locp + T <v“ + 3vy + 75&“) ¢ —q(s—ivsp)q (2.56)

whereby one obtains the QCD Lagrangian Lqcp by the replacement s — M and drop-
ping all other external fields. By splitting the quark field into its left-handed part qy,
and its right-handed part gz and defining the left- and right-handed external field

ly:==v,—ay, 7= v, + a, (2.57)
this Lagrangian can be rearranged as
0 4o 1 ® _—y 1
E:EQCD‘FQL/Y l#—l—gvu QL+QR’Y r#+§vu qr
—qr(s+ip)qr — qr (s — ip) qr- (2.58)

It is invariant under the symmetry group U(1)y x SU(3)r, x SU(3)R, i.e. under the local
transformation

( .O(z)
qr — exp | —i

) Vr(%)qr, (2.59)

qr, — exp (—i )

> Vi(7)qL (2.60)

with independent space-time dependent SU(3)-matrices V7 (x) and Vg(x) and ©(x) € R
as defined in subsection 2.1.2 provided that the external fields transform as

L, — Vil V] +iv,0,V], (2.61)

7y = Ver Vi 4 iVed, Vi, (2.62)
vl(f) — vl(f) — 0,0, (2.63)
s+ ip— Vi(s+ip)V;, (2.64)
s —ip— Vi(s —ip)Vy. (2.65)

On the basis of the Lagrangian (2.56) for light quarks and external fields, the Lagrangian
describing the interactions of the pseudoscalar Goldstone bosons with themselves and
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these external fields is constructed. Therefore, a covariant derivative D, involving the
left- and right-handed fields [, and r, is defined for all objects X transforming as X' =
VrX VLT. It is defined as having the same transformation behaviour as the object it acts
on and hence equals

DX = 8,X —ir,X +iXl, — D,X' = Vg(D,X)V}. (2.66)

The right- and left-handed fields are collected in the field strength tensors

/ﬁ = Oy — Oy — i1y, 1], (2.67)
= 0uly, — Ol — il ). (2.68)

It holds tr{fy} = tr{f}} = 0 as tr{r,} = tr{l,} = 0.

nv
The scalar and the pseudoscalar external field are combined in

X = 2By(s + ip). (2.69)

with a so far arbitrary constant By which has dimension mass.

All objects introduced so far should be combined to invariant terms. Taking objects A
and B transforming as A’ = VzAV, and B’ = VzxBV] the trace of the product AB is
always invariant. Hence, invariant terms can be built by traces of such products. For
the leading-order Lagrangian, the only considered terms are those up to the order ()2
for a typical momentum @). In the counting scheme of chiral perturbation theory, the
single building blocks are of the order

Ue0(Q, D, e0), x € 0Q%. (2.70)

In particular, y will be connected to the squared Goldstone boson masses (see section 4.3
for more details). Furthermore, the external field v, will be associated with the external
electromagnetic field A,. It holds

us L € 0(Q), fﬁ/L € 0(Q%). (2.71)

Therewith, there exist the following invariants up to order ()?> which are not constant
(especially not zero):

tr{D,U(D,U)'}, —tr{(D,D,U)U'}, —tr{U(D,D,U)'},
tr{xU'}, tr{Ux'}. (2.72)
Hereby, the first three terms are equal up to a total derivative. As the parity of the

Lagrangian should be +1 and PUP~' = U', P(D,U)P~! = (D,U)" and PxP~' = xT,
the term tr{xU" — Ux'} has the wrong parity. Using in addition that, due to Lorentz
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2.3 The Effective Leading-Order Lagrangian for Goldstone Bosons

invariance of the Lagrangian, Lorentz indices have to be contracted, the most general,
locally invariant, effective Lagrangian at lowest chiral order equals

1 1
Lo = ZfQ tr{D,U(D"U)"} + ZfQ tr{xU" + Ux'}. (2.73)
This Lagrangian includes two free parameters, the pion-decay constant f and the pa-

rameter By hidden in x. At lowest order both parameters can be connected to the chiral
quark condensate (gq) (see [Sch03], section 4.3) by

3/*By = —(qq). (2.74)

In this thesis, external electromagnetic fields are considered. From (2.56) and the La-
grangian of quantum electrodynamic (QED) one can see that the coupling of quarks to
an external electromagnetic field A, is given by

v, =—eQA, (2.75)
including the quark charge matrix
20 0
Q=10 —% 0 (2.76)
0 0 —%

The leading-order interaction of Goldstone bosons with such fields is given by the first
term of the Lagrangian £, involving the covariant derivative

DX =0,X +ieA,[Q, X]_ (2.77)

which emerges from the general formula (2.56) by setting all other external fields to zero.
In this case, the field strength tensors equal

R L — _eQ (0,4, —0,A,) = —eQF,,. (2.78)

N o

Taking p = 0 and s = M = diag(m,,, mg, m,) with the masses of the light quarks, m.,,, my
and my, the combination of pseudoscalar and scalar field x equals

Hence, the second term of the Lagrangian (2.73) which includes y = yo = x' gives rise
to the explicit symmetry breaking caused by the non-vanishing quark masses.
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2.3.2 The Effective Wess-Zumino-Witten Action

The lowest-order Lagrangian Lo developed in the previous subsection as well as the next-
to-leading-order Lagrangian £, as it is given in section 4.7 in [Sch03] are more symmetric
than QCD is in reality. Both Lagrangians are even in the number of Goldstone bosons.
Thus, reactions which are odd in the number of Goldstone bosons cannot be described
with these Lagrangians. E.g., the following reactions are not describable:

e In the case of no external fields except the scalar one s = M yielding xyo = 2ByM,
the reaction K* K~ — 777~ 7" is not described.

e If there is an external electromagnetic field, the decay 7% — ~v will not be de-
scribed.

This is connected to the “U(1), anomaly” of QCD: As mentioned in subsection 2.1.2, the
quantized theory of QCD is not invariant under U(1), anymore. However, let exp [iﬁ%}

with 6 € R be a typical element of U(1)s. Since (y5)2 = 1, it equals
cos 0 + i sin Oys. (2.80)
Therewith, left- and right-handed quarks transform as

_ ~ 1 1 > 5 7] j
qr/L — (008«9 +isin975) 2 (1 i%)C]R/L =3 {cos& 4+ 7sinf & (cosé’ j:isin&) 75} qr/L

1 ,
= eiwg (1£15) qr/L = eiZGQR/L . (2.81)
Consider now the case § = 7/2. Then,
6=m/2 . f=m/2 .
qr g 4R, 4L = —qr - (2.82)

Thus, a general pseudoscalar-meson current transforms as

_ . _ b=m/2 ___ _ _

45 V599 = QfL 99r — QfR A9+ —05L Ygr T AfR gL = —q5 V5 g - (2.83)
Hence, L5 and £, which are even in the number of Goldstone bosons are invariant
under this special U(1), transformation which is a contradiction to the quantized theory
QCD not being U(1), invariant anymore. Therefore, terms in addition to £y, + L4 are
needed which explicitly break the U(1)s symmetry, i.e. which include an odd number of
Goldstone boson fields. Following the construction done by Wess, Zumino and Witten
(for details, see [Sch03], section 4.8), in the presence of an external electromagnetic
field v, = —e @A, the additional term of the Lagrangian which contains photon fields
equals

ne?

4872

~QU'QI,U + QUQ,U'} (2.84)

Lwzw = — endy, ' +i—— e 0,A, Ay o {2Q* (U0,U' - Ut0,U)
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with the current

1
= e gy {Qo,UUTOU U 9U U+ QU O,UUTOU U U} . (2.85)

etveB denotes the Levi-Civita tensor in the representation

+1, for all even permutations of (u, v, «, 5) = (0,1,2,3)
gtof — 0 1 for all odd permutations of (u,v,c, 5) = (0,1,2,3) . (2.86)

0, otherwise

Obviously, the Wess-Zumino-Witten term Lywzw is of the order @* and hence it is not
leading order but a next-to-leading-order term of the Lagrangian.

The constant n can be restricted to integers by topological arguments. Matching to
QCD it can be shown that its modulus is equal to the number of colours. Calculating
further the partial decay width for, e.g. the decay 7° — v and comparing the result to
the experimental value given in [AT09] yields

In| =3 (2.87)

which is equal to the generally assumed number of colours?. As only the squared tran-
sition matrix element which can be calculated with the Lagrangian (2.84) and, thus, n?
is contained in any observables, the absolute sign of this number is not fixed at this mo-
ment. That is caused by the freedom to choose whether the field ® represents Goldstone
bosons or its negative, —®. In section 2.5, the Lagrangian describing dynamics of light
vector mesons will be introduced whose absolute sign cannot be fixed by comparing to
experimental values, either. But if the overall sign for one of the Lagrangians is fixed,
the sign for the other one can be fixed by comparing to experimental data as, e.g., the
transition form factors for the transition of a pseudoscalar meson into a real photon. To
simplify calculations in this thesis, the overall signs for both Lagrangians were fixed in
advance yielding a not yet fixed relative sign between both Lagrangians, i.e. whether
the Lagrangians have to be added or subtracted. Due to historical reasons, n is set to
+3 and the prefactor h, included in the Lagrangian describing vector mesons will be set
to a positive value. It will turn out that the relative sign between the two Lagrangians
will be determined as negative by comparing the calculations to experimental data for
the n — v transition form factor (see section 4.5).

2The result |n| = 3 will only be derived if the electric charges of the up quark and of the down and the
strange quark are fixed as +(2/3)e and —(1/3)e, respectively. As in the standard model the quark
charges generally scale with 1/N,. for the number N, of colours, the decay of 7% — v+ will not yield
any information about N, if the charges are not fixed in advance. See [BW01] for more information.
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2.4 Vector Meson Dominance and Power Counting
Schemes

2.4.1 Standard Vector Meson Dominance

The calculations presented in this subsection are based on the vector-meson-dominance
model (VMD) [Sak69]. In this model, all interactions of hadrons with photons are
mediated by intermediate vector mesons.

Standard VMD is a phenomenological approach to describe the energy regime where
light vector mesons appear as relevant degrees of freedom. It yields a normalised form
factor for the transition of a vector or pseudoscalar meson A into either a pseudoscalar
meson, a vector meson or a photon B in the standard VMD representation®:

Fap(q®) = ( Y. Yasv ng) > gaBv gy mZmé()V_)(f (2.88)

V=p0w,¢ V=pw,¢

Here, gapy denotes the coupling constant for the decay A — BV with the intermediate
vector meson V' and gy, the one for the decay of this vector meson into a photon. It
is common practice to describe the standard VMD form factor in the “pole approxima-
tion”

1

Fag(q®) = [y (2.89)

with the characteristic pole mass

— d! AB
A—2
dq2

V=p"w,¢ V=pw,¢

-1
JABV Gv~
= § E 7 2.90
o ( 9gABV gw) m2(V) ( )

The success of standard VMD is ambivalent. For some processes experimental data are
well described by standard VMD but for others it fails to described the data. Examples
are the decays n — yutpu~ and w — 7ou* ™, respectively, where data taken by the
NAGO collaboration are available [AT09]. The decay of the n-meson is well described by
the standard VMD form factor while it fails to describe the decay of the w-meson. In
Fig. 2.1 the form factors for both decays calculated with the standard VMD model are
plotted in comparison to the experimental data.

3See subsections 3.1.2 and 4.1.3 for the definition of the transition form factor.
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Figure 2.1: Form factors calculated with the standard VMD model (dot-dashed line)
in comparison to the experimental data taken by the NA60 collaboration [AT09] for
the decay n — ~yutp~ on the left-hand side and for the decay w — 7u*u~ on the
right-hand side.

2.4.2 The Novel Counting Scheme

In this thesis, a recently proposed power counting scheme [LL08] is used. In contrast to
the standard counting scheme of ChPT, both the pseudoscalar Goldstone bosons P and
the light vector mesons V' are treated on equal footing. Thus, the masses of both are
treated as soft, i.e. they are of the order of a typical momentum @:

m(V), m(P) € O(Q). (C1)
So, within the framework of this counting scheme masses up to the mass of the ¢-meson,

me ~ 1.02GeV, are soft. Additionally, this thesis is limited to decays of either light
vector or pseudoscalar mesons. Hence, all involved momenta are smaller than the mass
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of the decaying particle and the corresponding derivatives are also of the order of @)
9, € 0(Q). (C2)

The restriction to pseudoscalar and light vector mesons as the only relevant degrees
of freedom can be justified by the hadrogenesis conjecture [LKO04]. It suggests that all
other low-lying mesons are dynamically generated by the interactions between the light
pseudoscalar and vector mesons. Therewith, there is a reasonably large gap to other
mesons which otherwise would have to be included as additional degrees of freedom.
Below in subsection 2.5.2 it will be argued that the power counting scheme (C1), (C2)
is at least applicable well below the threshold of two vector mesons which equals about
1.5 GeV. For such high energies, additional degrees of freedom might become important

anyway (like the excited pseudoscalar or vector meson states at approximately 1.3 to
1.4 GeV [AT08]).

As this counting yields a systematic ordering of processes, the leading-order Lagrangian
and thus the leading-order form factors can be different from the standard VMD ones®*.
E.g., the form factor calculated with the standard VMD model for the w — 7 transition
equals

m2

VMD(,\ _ p

Fwﬂ'o (Q) m% _ q2 (291)

with the mass m, of the p’-meson. In contrast, the form factor calculated with the

Lagrangian based on the power counting scheme (C1), (C2) has a term of standard
VMD type plus additional terms which are not of VMD type®

o om? o i e m2
Fouro(q) :gom27_”q2+(1—go—gl)+gl (1+m2> F_”qZ (2.92)
P w P
with the mass m,, of the w-meson and real constants gy and g;. With the representation
om? o om2 Cm2 @ —m2 4+ m?
Go—5t+0=Go—G)+ G55+ & —F"57"
mp —q mp —4q mg mp —q
m?2 m?2 m2
= [9“91 <1+5>] T [1—95—91 (1+g>]
m2 )| m2—q m2
2
m
P
= 90— T 1 —=9), 2.93
go mz _ qQ ( 90) ( )

this form factor is in agreement with the first two terms of the general form factor
(1.2). Thus, in the effective field theory used in this thesis all g; of (1.2) with i > 1
are subleading. Still, the expression (2.93) is more general than the VMD result (2.91).
Only for gy = 1 one recovers (2.91). It will turn out that g is very different from 1.

4The leading-order Lagrangian is developed in section 2.5 and the form factors in the parts after this
one.
5See subsection 3.2.1 for the derivation of the w — 7° transition form factor.
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2.5 Interactions with Vector Mesons

In this section a leading-order Lagrangian will be developed which describes interactions
of vector mesons with themselves, with Goldstone bosons and with external electromag-
netic fields. Thereby, the order of a term is identified in accordance with the counting
scheme (C1), (C2) given in the last section.

2.5.1 The Free Lagrangian for Vector Mesons

In this thesis, the light vector mesons are described by antisymmetric tensor fields W, =
—W,,, collected in the matrix [LLOg]

/)21/ + wHV \/ﬁpj;zz \/§KII/
Vﬁ“/ = ﬁp;zl _pgl/ f W \/§KBV (294>
V2K, V2K, V20,

which is an especially convenient representation if interactions with external fields as,
e.g., electromagnetic fields are considered since electromagnetic gauge invariance is easy
to ensure (see [LLO08, LS08]).

The most general free Lagrangian for an antisymmetric tensor field W equals

L=ad"W,, 0 ,W*" +b0"'W,, 0,W" 4 c W, WH (2.95)
with arbitrary constants a, b and c. As vector mesons are massive spin-1 particles,
they contain three degrees of freedom. Hence, the six degrees of freedom of a general
antisymmetric tensor field have to be reduced by the choice of the constants. Choosing
e.g. b = 0 the three fields W% for 4, j = 1,...,3 are frozen (see appendix in [GL84]).

With a = —% and ¢ = %m%,v the free Lagrangian for a vector meson with mass my,
equals

1 1
L= =50 Wu W + miy W, WH . (2.96)

2.5.2 The Leading-Order Lagrangian

The vector meson matrix V,,, transforms as an octet under the symmetry group SU(3)y,
i.e. for all A € SU(3)y it transforms as

v A AV AT, (2.97)
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In order to get the same transformation property for the Goldstone bosons, they have
to be collected in

1 1 . P - P
U, = 5ul (D0 uf = ulf <<a) +ied, [Q ” i (2:9%)

instead of the collection in the field U defined in section 2.3.1. The field U, includes the
square root [SchO03]

u=VU = exp <$> (2.99)

of the primary field U. Due to the new transformation properties a new covariant
derivative

DX = 0,X + [T, X]_ +ieA, [Q, X]_ (2.100)

acting on the vector meson field V,,,, and the collection of the Goldstone fields U, has to
be defined including

1
I, = 3 (uT du + u@uuT) : (2.101)

According to the counting scheme (2.70), (2.71) of ChPT proposed in the section 2.3.1
and the counting scheme for vector mesons (C1), (C2), the formal chiral powers

Vi € 0(Q%), U, € O(Q), D, € O(Q),
1 1
X 7= UXoU + iuTX()qu € 0(Q? (2.102)
are assigned. For the case of interest in this thesis, the leading-order Lagrangian for the

hadronic reactions up to the order Q? concerning the formal chiral powers given above
reads [LLOS]

tr {V,, V¥V, +i 4hv tr {(Dan) Vi (DBVQV)}

my

L= v

h
+1 gA Swjaﬂ tr {(Vuu (DTVTa) + (DTV:F&) V/U/) Uﬁ}

h b
HZG UV U i e (Vi Vol } (2108)

whereby the terms are ordered according to their formal chiral powers.

All terms and therewith the Lagrangian have positive parity due to the Levi-Civita
tensor "%, So, the terms including a Levi-Civita tensor are those corresponding to
the Wess-Zumino-Witten term and the chiral anomaly.
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2.5 Interactions with Vector Mesons

Additional electromagnetic interaction vertices are constructed with the field-strength
tensor for the photon field A,,

F, = 0,4, — 0,A,. (2.104)

It is combined with the Goldstone boson field to the building block

1
=3 (uQuf + uiQu) F,, (2.105)
which has the same chiral transformation properties as the vector meson field V,,, and
as the collection of the Goldstone bosons U,. It is counted as Q?. Using these building
blocks, the leading-order Lagrangian describing the interaction of light vector mesons
with electromagnetic fields is equal to

Lo = —BV;”V tr{verpt ) — z'%M tr{{VMO‘,V“ﬂ} ;ﬁ}. (2.106)

Since the Lagrangian constructed in this section is of leading order, the influence of the
next-to-leading order is of interest in order to get information about the intrinsic error of
the calculations. As a very rough estimate, one particular next-to-leading-order term

L=i ;:V et e L( £, (D7Via) + (D™Voa) 1) U} (2.107)
is taken into account which describes the direct decay of a vector meson into a pseu-
doscalar meson and a photon. Therewith, the intrinsic error is estimated as the differ-
ence between the leading-order calculation and the calculation involving this particular
next-to-leading-order term. Keep in mind that this is of course not the whole next-
to-leading-order Lagrangian, not even for the decays studied in this thesis. The full
next-to-leading-order Lagrangian would also contain loops and is beyond the scope of
this thesis. Take, e.g., the next-to-leading order processes for the decay of an w-meson
into a neutral pion and a dilepton [T]~. One of these processes is the direct decay de-
scribed by the Lagrangian (2.107) (diagram on the left-hand side of Fig. 2.2) but there
are also loop diagrams contributing, e.g., with a prm loop or a K*K K loop (diagrams
in the middle and on the right-hand side of Fig. 2.2, respectively).

Figure 2.2: Selection of next-to-leading order processes for the decay w — 70F(~.
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For a complete error estimate at given energy and momentum a full next-to-leading-
order calculation would be necessary. Additionally, the accuracy does not only depend
on typical energies and momenta but also on the reaction one considers. In general, it is
not possible to predict for given energy and momentum the accuracy of a leading-order
calculation of an arbitrary reaction. This problem already occurs in ChPT. Here, pro-
cesses as, e.g., the majority of the pion reactions can be described for which the effects
of next-to-leading-order calculations are small [GL84] but there are also processes de-
scribable for which the next-to-leading-order results are much more important than the
leading-order ones. An example for such processes is the decay of an n-meson into three
pions [GL85b].

The Lagrangians (2.103), (2.106) and (2.107) presented above can be used to calcu-
late radiative and hadronic decays of light vector mesons depending on the parameters
my, hy, ilv, ha, hp, ba, ey, ey and ey. Additionally, the matrix U, describing the
Goldstone bosons and yo contain the free parameters f and B, respectively. Three of
these parameters are fixed independently of decays of vector mesons:

e The pion decay constant f = 90 MeV in the chiral limit is determined through the
decay 7" — ptv, and further theoretical considerations [LLOS],

e ByM is defined by the averaged Goldstone boson masses m, =~ 138 MeV and
m2 0 0
myg = 496 MeV via the identity yo = 2BgM = ( m2 o . ) (see chapter 4.3
for a derivation of the value ByM) and

e my := 776 MeV is introduced in order that the other parameters are dimensionless.

Furthermore, the value of the electric charge needed for QED is determined as [LLO0S]

e = Vira =0.303. (2.108)

The remaining parameters can be fixed by fitting to experimental data (for more details,
see [LLO08]). E.g., the value ey is fixed by comparing the calculated partial decay widths
for the decays of the neutral light vector mesons p°-, w- and ¢-meson into dielectrons
and equals

ey =0.22. (2.109)

The parameters e4, hq and by are related to the decays of a vector meson into a Gold-
stone boson and a photon. They can be fitted to the decays with real photons (for
details see subsection 3.1 below).

For leading-order calculations, the term (2.107) proportional to e4 should not be con-
sidered. This is realised by setting e4 = 0 and therewith fixing the parameter set

€p = 0, hA = 2.32, bA =0.27 (Pl)
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2.5 Interactions with Vector Mesons

for the leading-order calculation®. As discussed in subsection 2.3.2, the determination
of hs as positive is not concluded by comparison to experimental values but set by
definition. What matters are the relative signs between the constants e4, hy and b4.
To get a rough error estimate, a second parameter set with ey # 0 is established”:

es=0.015, hy =2.10, by = 0.19. (P2)

In table 2.2, the values for the partial decay widths of the decays w — 7%y, w — 17y and
¢ — 1y calculated with both parameter set (P1) and (P2) are listed in comparison to the
experimental data given in [AT08]. For the calculations Eq. (3.24) and the form factors
which will be given in the subsections 3.2.1, 3.3.1 and 3.4.1 are used. Both calculations
agree well with the experimental values and do not differ much from each other. This
legitimates treating the results taken with parameter set (P2) as a very rough estimate
of the intrinsic errors of the leading-order calculation.

Table 2.2: Partial decay width calculated with parameter set (P1) and parameter set
(P2), respectively, compared to the experimental values as collected in [A108].

| experimental value | param. set (P1) | param. set (P2)
Loy | (7.03£0.30) - 107*GeV | 7.14-10"*GeV | 7.34-10~* GeV
Loy | (391 £0.38)-107°GeV | 3.71-107°GeV | 3.83-107° GeV
Loy | (558 £0.15)-107°GeV | 5.38-107° GeV | 5.12-107° GeV

In [LLO8, LLO09], radiative decays of light vector mesons and hadronic three-body decays
of light vector mesons were calculated based on the counting scheme (C1), (C2) and
the Lagrangians given in this subsection. All calculations agreed well with the avail-
able experimental data. This suggests that the proposed approach including the power
counting scheme can provide reliable answers. Nevertheless, some problems might occur
within this framework. They will be discussed in the next subsection.

2.5.3 Problems

The first term i 2" tr {V,,,V**V,} in the Lagrangian (2.103) is of the order Q° and
could cause problems within the framework of the counting scheme (C1), (C2) used in
this thesis. As an illustration, consider the annihilation and production of two pseu-
doscalar Goldstone bosons via one virtual vector meson without loops. In Fig. 2.3, this
process is represented by a “Feynman diagram” which can be used as a graphical way
to calculate the corresponding transition matrix element. Feynman diagrams and rules
are explained in section 2.6.

6 All other parameters are not necessary for the calculations presented in this thesis and hence are not
listed here. Their values are given in [LLOS].
"The values differ from those given in [LLO8] because of better experimental data.
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Figure 2.3: Tree-level diagram for the process P+ P — V* — P + P.

The term proportional to hp in the Lagrangian (2.103) yields that the vertices for two
Goldstone bosons and one vector meson are always of the order Q. As the vector mesons
are counted as soft, i.e. the mass is of the order of (), the propagator is proportional
to

1 1
— €0 : 2.110
<) 1
Thus, the process P+ P — V* — P + P without loops is of the order
Q2 0 2= Q7 (2.111)

The order of the process including any loops should be higher so that diagrams containing
loops are less important than tree-level diagrams. Take, e.g., the process with a loop
consisting of two vector mesons and a Goldstone boson (Fig. 2.4, left-hand side). The
loop itself counts as Q* [Sch03] and the propagators for the three involved particles count
as Q72 each. The vertices for two Goldstone bosons and one vector meson count again
as Q% and the three-vector meson vertex counts as Q°. Thus, the whole diagram counts
as
2 1 0t 2t 2t a2
and hence is of the same order as the tree-level diagram. Taking into account an ad-
ditional three-vector-meson loop (Fig. 2.4, right-hand side) the order of the diagram is
even lower than the order of the tree-level diagram:
2 0 0 0 4 2 2 4 0
Q Q2 QQ Q Q2 Q Q2 Q Q2 Q Q2 Q Q2 Q Q : (2]‘13)
Thus, it is possible to construct loop diagrams with orders less or equal to the order of
the tree-level diagram. Hence, one would have to calculate infinitely many loop diagrams
for a leading-order calculation. For that reason, the question arises how to reconcile the
formal Q° term with a power counting scheme which is of practical use. Two lines of

reasoning can be brought forward which essentially end at the same conclusion:
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2.5 Interactions with Vector Mesons

Figure 2.4: Diagrams including one loop (left-hand side) and including two loops (right-
hand side) for the process P+ P — V* — P + P.

On the one hand, the problem can be solved by observing that the incriminated term
in (2.103) proportional to hy involves the appearance of at least two vector mesons at
the same time. The connected inelasticity starts at an energy of about 1.5GeV. In
contrast, the energy regime considered here is at one vector-meson mass and below. In
between, new active degrees of freedom might appear like the excited pseudoscalar or
vector states with masses of 1.3 GeV or higher [AT08]. As a conservative approach it is
reasonable to restrict the range of applicability to energies well below the threshold of
two vector mesons. Thus, treating all vector mesons as soft is not reasonable anymore.
If two appear at the same time, one vector meson has to be treated as hard, i.e. the
mass is formally much larger than (). Then the propagator for this vector meson is
proportional to

1 1 .
—_—_—— . 2.114
T~ €0@) (2114)

Therewith, the diagrams with one and two loops given in Fig. 2.4 count as Q* and Q°,
respectively. Hence, they are suppressed compared to the tree-level diagram which is
counted as Q°.

On the other hand, arguments for a large number, N,, of colours can be applied [LLO0S|.
According to large-N, rules, vertices with n mesons count as N!~™/2. Therewith, the

term proportional to tr {V,,V*V*,} would be suppressed by \/}T This is introduced

1/2

in the counting scheme by identifying ) ~ N "/“ and assigning an additional factor
Q"2 to all interactions involving ny > 2 vector-meson fields. Both diagrams in Fig.
2.4 would then count as Q3, i.e. are subleading. This is sufficient for the leading-order
calculations presented in this thesis.

Both lines of reasoning lead to the fact that for the calculations of vector-meson decays
in leading order in the power counting one has to consider only tree-level diagrams with
the interaction terms given in (2.103) and (2.106). For decays of pseudoscalar mesons,
the issue is more involved as will be discussed next.
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2.5.4 Decays of Pseudoscalar Mesons

As the vector-meson Lagrangians given in subsection 2.5.2 include both vector and
pseudoscalar mesons, they describe some of the necessary terms for the decay of a
pseudoscalar meson into a vector meson and a (real or virtual) photon or into two
photons via virtual vector mesons. Consider, e.g., the decay of a vector meson into a
pseudoscalar meson and a photon via a virtual vector meson (Fig. 2.5, left-hand side).
If this process is mirrored, one sees the connection to the decay of a pseudoscalar meson
into two photons via two virtual vector mesons (Fig. 2.5, right-hand side).

— e — —

Figure 2.5: Decays V — V*P — ~P (left-hand side) and P — V*V* — ~~ (right-hand
side).

In ChPT, the leading-order Lagrangian for the decay of a pseudoscalar meson into two
photons is given by the WZW Lagrangian (2.84) which describes the direct decay into
two photons and is of order Q*. As the process P — V*V* — ~v includes two vector
mesons at the same time, one of them has to be treated as hard in the approach used
in this thesis due to the arguments given in the previous subsection. Therefore, this
process is also counted as Q* Thus, for a leading-order calculation of a decay of a
pseudoscalar meson into two photons both possibilities, the direct decay and the decay
via two virtual vector mesons, have to be considered. Additionally, there are further
contributing processes as, e.g., the decay via one intermediate vector meson described
by the Lagrangian (2.107) but also loop diagrams. In this thesis, the calculations are
restricted to those processes described by the WZW Lagrangian (2.84) and by the vector-
meson Lagrangians (2.103), (2.106) and (2.107) and it is studied whether they are able
to describe the available data (see chapters 4 and 5). Furthermore, the influence of the
WZW term in comparison to the decay via one or two virtual vector mesons is analysed.
The remaining terms of the Lagrangian describing the decay of a pseudoscalar meson
are not developed in this thesis. Also the calculation of loop diagrams is beyond the
scope of this thesis. Note that these considerations only concern the pseudoscalar decays
(chapters 4 and 5). For the vector-meson decays (chapter 3), a complete leading-order
calculation is presented.
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2.6 Feynman Diagrams and Rules

In particle physics, one is interested in scatterings and decays of particles. An important
quantity for the study of such processes is the probability of one or more initial particles,
described by an initial state {k;}, to scatter or decay and become a finial state {p;},

| out ({87 }{Ei }im |, (2.115)

which defines the “invariant transition matrix element” M({k;} — {ps}) by
o {7 (R = (27)*6@ (3o ki = Y- ps) iM({ki} — {ps}). (2.116)

To calculate this probability, all possible processes in which the initial state {EZ} becomes
the final state {p;} have to be considered and summed up. To simplify the identification
of all possible processes, “Feynman diagrams” are introduced. They yield a graphical
way to describe processes of interest and a “simple” formula for the transition matrix
element so that it can be read off from the diagrams directly.

The derivation of this simple formula is exemplary done for the case of the ¢* theory
described by the Lagrangian

1 1 A
L= (0u0) = gm*¢* — ;0" (2.117)

in section A.2 in the appendix following the explanations given in [PS95].

Under the assumption that all particles do not interact during their formation and their
detection, the probability (2.115) can be calculated by replacing the eigenstates ({p’}|
and |{k;}) of the full Hamiltonian H by eigenstates of the Hamiltonian Hy of the free
theory. Then it is possible to show that

ol GED =t (a7 oo =1 [ aenn| ] o))

—oo(1—ie —ty

(2.118)

B sum over all connected,
~ \amputated Feynman diagrams |

Here, the operator T" denotes the time ordering of a product. Furthermore:

e “Connected” diagrams are fully connected diagrams where all external lines are
connected to each other and no “vacuum bubbles” are left.

e To amputate a diagram start from the tip of each leg. Cut the diagram at the last
point at which the leg can be separated from the rest of the diagram by removing
a single propagator.
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In momentum space, the transition matrix element defined by Eq. (2.116) can be ex-
pressed as the sum over the Feynman diagrams due to the overall §-function describing
the momentum conservation which cancels the one in the definition of the scattering
probability:

IMUEY — (7)) = ( (2.119)

sum over all connected,
amputated diagrams

2.6.1 Feynman Rules for Interactions with Vector Mesons and
QED

In this thesis, decays of vector mesons and pseudoscalar mesons into dileptons and either
pseudoscalar mesons, vector mesons or real photons are considered. Therefore, both a
Lagrangian which describes the decay into a virtual photon and the QED Lagrangian
which describes the decay of the virtual photon into a dilepton are needed. To calcu-
late the observable quantities as transition form factors and partial decay widths, the
Feynman diagrams describing the alternative ways for the decay have to be sketched.
Each Feynman diagram has a value which is the product of all analytical expressions
associated with the different parts of the diagram. According to the introduction of this
section, the transition matrix element can be calculated as the sum over the values of all
possible Feynman diagrams. The Feynman rules that define the analytical expressions
associated with a particular part of a Feynman diagram are given in this subsection.

Each particle in the Lagrangians given in this thesis is defined as an incoming particle
or, equivalently, as an outgoing antiparticle. If the particle is given with a derivative,
there is a factor —i - (momentum of the particle) associated with the Feynman diagram.
Of course, this momentum is always the momentum of an incoming particle, an outgoing
antiparticle causes a factor —i - (—momentum) = +i - (momentum).

Each vertex in the Feynman diagram associated with a term including a coupling con-
stant ¢g in the Lagrangian yields an additional factor +ig.

The Feynman rules for QED needed to describe an external photon or the decay of an
virtual photon into a dilepton are the following [PS95]:

—ig,
ptic

e Photon propagator for a photon with momentum p:

e QED vertex for dileptons: —iey*.

e Outgoing external photons with momentum p and polarisation A: &, (p, A).
Outgoing external fermions with momentum p and spin s: u*(p).
Outgoing external antifermions with momentum p and spin s: v*(p).
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Hereby, ¢, (p, A) denotes the polarisation vector of a photon and the spinors u*(p) and
v®(p) describe the plane wave solutions of the Dirac equation

(id —m)y =0 (2.120)

with positive frequency, ¥ (x) = u*(p)e~*, and with negative frequency, ¢ (z) = v*(p)et??,
respectively.

The rules for external vector mesons (0|V(0)|V (p, A)) and the propagators (0|7V (z)V (y)|0)
including the mass m of the vector meson and the momenta p of the external particle
and ¢ of the virtual vector meson are the following [GL84, LS08]:

° <O|Vuu(0)|V(p, )\)> = gwj(p7 )\) — 7; [PMEV(p, )\) B pygﬂ(p’ )\)] |
o (OTV(2)Vas()|0) = —-= d'q

m?.J (2m)4

+ 9409098 — 9upd9a — (N - V)} .

e S (g) [(mP = ¢°)guais

By taking derivatives of these expressions one gets

o (0[0"Vw|V(p, A)) = meu(p, ),

fe% d4q —iq(x—
o OITVul@)0 Vaslw)|0) = [ 5 53e™ ™ S(6) laugs — o]
d4q :
o OITOVu(@VasWI0) = = [ G55 DS [ — a5
d'q¢ .
o (OITOV,u )0 Vasl)l0) = i [ G5e S [0us — aas]
S(q?) is the scalar propagator describing a structureless vector meson. It is defined as
1
S(q°) = pr— (2.121)

with the mass m of the virtual vector meson. As vector mesons are not stable particles
but resonances, the propagator has to be extended according to their finite life time, i.e.
the inverse of their energy-dependent width:

Swidth(q2>

1
= ) (2.122)
¢ —m? +i\/¢*I'(q?)
In this thesis, the energy-dependent widths for the neutral vector mesons p°, w and ¢

are needed. For the p'- and ¢-meson which decay dominantly into two Goldstone bosons
the width is given by [LLO09]

I(¢*) =T lmr m (2.123)
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including the on-shell widths [AT08]
Ty 0 = (149.1 £ 0.8) MeV, T, = (4.26 & 0.04) MeV (2.124)

of the mesons and the center-of-mass momentum of the decay particles according to the
decay branch with the dominant branching ratio, i.e.

1 = 1
pcm,p0<q2) = 5\/@7 pcm,d)(q2> = im (2125)

The energy-dependence of the width of the w-meson is not relevant and T',(¢?) is ap-
proximated by I'y ., = (8.49 & 0.08) MeV.

For most of the decays presented in this thesis, the differences between the calcula-
tions with the energy-dependent width and without width are negligible so that the
calculations could be done with the approximative propagator Syiqm(¢?) ~ S(¢?).
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In this chapter, electromagnetic transitions of vector mesons A into pseudoscalar mesons
B are considered, i.e. the processes A — By™ with a real or virtual photon.

The relevant leading-order Lagrangian and the formulas for the transition form factor
and the partial decay width are derived in section 3.1. In the subsequent sections 3.2,
3.3 and 3.4, the transitions w — 7%, w — n and ¢ — 7 are considered. The results of
this chapter are published in [TL10].

As explained in section 2.5, the calculations presented in this and in the subsequent
chapters 4 and 5 are leading-order calculations according to the counting scheme C1,
C2. These calculations are done with the parameter set (P1). Additionally, a particular
next-to-leading order term (2.107) is used to estimate the intrinsic error very roughly.
Therefore, further calculations are done with the parameter set (P2). In this parameter
set, the parameter e of the particular next-to-leading-order term is non-zero.
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3.1 Leading-Order Lagrangian, Transition Form
Factor and Partial Decay Width

3.1.1 The Relevant Leading-Order Lagrangian

The leading-order chiral Lagrangian according to the power counting scheme (C1), (C2)
is given in (2.103) and (2.106). As

v = QFu +0(9°) = Q0,4 - 9,4,) + 0 (¥) (3.1)

this Lagrangian does neither describe a direct transition of a pseudoscalar meson into a
photon nor a transition decay of a vector meson into a pseudoscalar meson. Therefore,
this leading-order Lagrangian only describes the decay of vector meson A into a pseu-
doscalar meson B and a (real or virtual) photon via a virtual vector meson V' which
transforms into the photon. This is shown in Fig. 2.5, left-hand side. The parts of the
Lagrangians (2.103) and (2.106) which are relevant for the decay of a vector meson into
a pseudoscalar meson and a photon are the following:

1. Decay A — BV:

h
Ly = it {(V,, (D™Via) + (D™Via) Vi) Up}

8
. hA vaf T T 4
~ i (Vi (07Via) + (97Vra) Vi) 5700
h
—ﬁ e 1 {(V,0 (07 Via) 4 (07 Via) Vi) 95PY (3.2)
N b rvo
Lo = 1 gAe“ B tr {[VW, Va5]+ X—}
b ra
_é et o tr {[Vuua Vaﬂ]+ [(I)a XO]+}
b
= —é et {V, Vs [, x0l , } - (3.3)
2. Transition V' — :
ey My v
£2 = - 3 tr {V‘u ;:,}
~ _evg”V tr {V™ Q (9,4, — 0,A,)}
- —evg”V tr {V™ Q9,A, + V' Q0O,A,}
- —evin" r {V" Q} 9,4, . (3.4)
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Due to charge and strangeness conservation, only the neutral vector mesons p°, w
and ¢ can transform into a photon. Thus, the Lagrangian above describing the
V — ~ transition contains only the fields describing these mesons and reduces to

ey my

12

Ly = [3 (po)/“’ — V2" + w’“’} A, . (3.5)
Therewith, the relevant leading-order Lagrangian for the decay of a vector meson A into
a pseudoscalar meson B and a photon v equals

554237 = L+ L+ Ly

= —1}1@ 70 41 { (Vi (07Via) + (07 Vra) Vi) 95}

ba _wa
_g et g tr {V,W/Va,@ [¢>X0]+}

ey my

4

tr {V" Q) 9,A, . (3.6)

Additionally, the particular next-to-leading order term given in Eq. (2.107) describes
the direct decay of the vector meson A into the pseudoscalar meson B and the photon:

£, = ig e w{(fi (DVea) + (D Vo) f,) Us

my
— e {(Q (07 Vra) + (07Vra) Q) 5@} P
8f my
= A ol (Q(07Vo) + (07Via) Q) 950} A, (3.7)
4f my
As already explained in section 2.5.2, this term can be used to estimate the intrinsic
errors very roughly. This intrinsic errors are produced from the restriction to leading-
order calculations. The result will be given as the leading-order calculation plus the
difference between this calculation and the one including the term proportional to e4 as
an error. Therefore, the general Lagrangian

Q

1 2
‘CAHB’Y = £f4)—>B’y+£E4)—>B'y (38)

is used with two parameter sets (P1), (P2) for the open parameters e4, ha and ba.

3.1.2 Transition Form Factor and Partial Decay Width for the
Decays of Vector Mesons

Taking the Lagrangian (3.8) and the Feynman rules given in subsection 2.6.1, the tran-
sition matrix element for a decay of a vector meson A into a pseudoscalar meson B and
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either a real photon or a dilepton can be calculated. As already mentioned, the decay
of a virtual photon into a dilepton is thereby described by usual QED.

The matrix element for the decay of a vector meson A into a pseudoscalar meson B and
a real photon can be expressed as

MAHB'y = —¢€ fAB(()) g,ul/aﬁ Y ' 801<p7 )\A) 5E<q7 >"y) (39)

and the one for the decay into a pseudoscalar meson and a dilepton [ as
1 _
Mu_prii- = € fap (\/?) ghves Puly €a(ps Aa) qj Us(q1)7pvs (G2)- (3.10)

Here, fap (\/?) is the form factor for the A — B transition, p and ¢ are the four-
momenta of the incoming particle A and the (virtual) photon, respectively, ¢; and go
those of lepton and anti-lepton and e(p, A4) and (g, \,) are the polarization four-vectors
of the particle A and the photon. In order to shorten calculations, the definitions

l,(q) == —¢c,(q,\,) (3.11)

for the decay into a real photon and

e

lag=q + @)= CETAE Us(q1)7pvs (q2) (3.12)

for the decay into a dilepton will be used. Therewith, the general matrix elements for
the considered decays of a vector meson A into either a photon or a dilepton are both
equal to

My _pyBi+i- =€ fap (\/?) 5Waﬁpu% Ea(D; Aa) 15(q)- (3.13)

Note that this general matrix element has to be evaluated at ¢ = 0 for the decay into
a real photon.
Furthermore, the transition form factor will be normalized as

Fug <\/q7> = m (3.14)

so that F,p (0) = 1. Additionally, v/¢2 will be abbreviated with q.
For further calculations, the averaged squared matrix element |j\/l]2 will be needed.

Therefore, the average over all possible incoming states and sum over all possible final
states has to be taken. As all vector mesons have spin 1, one gets an additional factor %
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after taking the average over the incoming states. The sum over all possible spin states
s and s’ of lepton and anti-lepton, respectively, yields

> s (q1) v s (g2) Vs (q2) 75 us (q1)

8,8’

= (s (q1))a (V)b (Ve (2)), (0 (32))e (Vp)ea (s (@) (3.15)

s,s’

Using Y, us (1) s (1) =g +my and Yy vy (q2) Vs (g2) = g2 — my with the lepton mass
my, this equals

(dh + ml)da (’Yﬁ)ab (o — ml)bc (’Yﬁ)cd =tr {(ﬂ’l + my) VB (fo — 1) ’Y,é}
= 4[(q)5 ()5 + (@)5(@2)5 — 995 (a1 - a2+ mF) ]

(3.16)
Additionally, one uses that
Z €a (p7 )\A) 6; (p? /\A) = —Yaa + pa€&7 (317)
Aa ma
Yoesla M) es(a, M) = —gs5 (3.18)

with the mass my4 of the vector meson. Note that due to €“Vaﬁpupa = 0 the second term
in (3.17) never contributes to the squared matrix element.

With the calculations done above the averaged transition matrix element equals

Mg, |* = ?))GQfEXB (q) (p-q) (3.19)

for the decay into a real photon and

P E—— Y 1
(Macpin-I* = 3¢t fasl (0) [qz +2 (mly — miy —mi ) + (2m;* + iy + iy
1
—2m? <m2B + mi) —2 (2m12 +mp + mi‘) Mmas + 2m33> o
2 1
—2mi (m — m}) qJ (3.20)

for the decay into a dilepton including the mass mpg of the pseudoscalar particle and the
invariant mass

mas = (go + k)? (3.21)

of antilepton and pseudoscalar meson.
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3.1 Leading-Order Lagrangian, Transition Form Factor and Partial Decay Width

According to [AT08], the differential partial decay width for the decay A — B~y equals

dFA—>B’y o 1 TAs 2 ’IZ‘
a0 3 Mamsil my (322)

Here, k ‘ is the momentum of the pseudoscalar meson B given as

k| = W (3.23)

and df) its solid angle in the rest frame of the decaying vector meson. Integrating over
d? yields the full partial decay width

1 2 |7 mg 2
— M k| = ———=~ [Ma_ =
8mm? M-z ‘ ‘ 167 m3, M-z 96m3,

3
mi — (mh —mp)

© fas (0.
(3.24)

FAHB’)/ =

Including the definition m2, = (g2 + k)2, the double-differential decay width for the
decay A — BITI™ is given as [A10§]

djqiﬁi%;_ - 271r3 32in?4|MA*B’”|2‘ (3.25)
Here, ¢* runs from 4m? to (m4 —mp)® and
(mae = (B3 + B3~ (VER i+ \BE—m3) . (320
(o = (B34 P~ (VER i B wg)  (320)
with the energies
B = ; 2, (3.28)
B = ma — M — ¢ (3.29)

N

of antilepton and pseudoscalar meson, respectively, in the 1/¢? rest frame. By integrating
over dm3, one gets the single-differential decay width [Lan85]

dFA—>Bl+l7
dq2 FA—)B’y
_ e _Ami 1+27m12 1 1+L L U |Fap (q)]
= 1ox2 2 2 | ¢ m2 — m?2 2 _ 22 AB\q
A B (m% —m3g)

= Xquo - |Fag (@) (3.30)
with Xqep denoting the single-differential decay width of pure QED.
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3 Radiative Two- and Three-Body Decays of Vector Mesons

3.2 Decay w — 70T~

3.2.1 Form Factor for the w — 7° Transition

For the decay of an w-meson into a neutral pion and a real or virtual photon the La-
grangian (3.8) becomes

Lor = LT 4 cindir (3.31)
with one term describing the direct decay into the pion and the photon,

Lor = —2;:;‘/ M0 (0" wyrg) Osm° 0, A, (3.32)

and the other one describing the decay via a virtual vector meson,
ha
Af

—2
m=b
77} A cnwop Wy pgﬁ T

Lo = = 5 [ (07 wra) 05 + (0700, ) wpu D)

0

ey my
4

P O Ay - (3.33)

In the last part £97 the first two terms describe the decay of the w-meson into the
pion and a virtual p’-meson and the last one the decay of the virtual p°-meson into a,

real or virtual, photon.

The Lagrangian yields that the w-meson can only decay via a virtual p’-meson into a
neutral pion and a photon. This is in accordance with isospin conservation: As the w-
meson has isospin 0 and the neutral pion isospin 1, the virtual vector meson has to have
isospin 1 so that its isospin and the isospin of the pion can again couple to isospin 0.
Since the ¢-meson has isospin 0, the only possible virtual vector meson is the p’-meson
which has isospin 11.

The transition matrix element can again be calculated as the sum over all possible kinds
of decays given in the Lagrangian (3.31) by the terms proportional to e4, ha and by.
Furthermore, the Feynman rules given in section 2.6.1 have to be used. Then, the matrix
element consists of the following terms:

LOf course, the virtual vector meson has to have electromagnetic charge zero due to charge conserva-
tion.
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3.2 Decay w — wlt1~

1). Direct decay:

0
N —
AN Nk
AN
+ ) Ll w
[
\ @ B
7 q
/i

Figure 3.1: Direct decay of the w-meson into a neutral pion and a dilepton [.

ML = muzalp ) (=i g ) (i) (i) (-1,(0)
fmy

. €Ay, Vo
4 et p kﬁQu Ea (p, >\w) ll/((:Z) (334)

T

With k& = p — q and "“Pgzq, = 0 this term of the matrix element equals

: CEAMy
ZMi’ﬂ' =1 Q;TV et BpuCIV 5a<pa )\w) lﬁ(Q)- (335)

2). Indirect decay:

Figure 3.2: Indirect decay of the w-meson into a neutral pion and a dilepton [ via a
virtual p’-meson.
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3 Radiative Two- and Three-Body Decays of Vector Mesons

e Decay via —Z—‘? el 0 (OTwrq) O — S 0 9, A,
. 2i
iMir = Mua(p Ao) (—m25p (q2)> (M2 = ) 9o + Guptllr — Guo Ty
p

. ( ha 6’“’0‘B> (+ikg) (+ig,) ( evmv) (~1:(9))

“if 1
haeymymy, o
= i 5 (¢) 2 Raealp )
p
’ [(mi - q2) 4u9vo + quqvqo — q2QVgua:| ZU(Q)- (336)

With e"%fg,q, = 0 and —"**¢?q,9,, = +"*¢?q, 9, this is equal to

hAevmew

ZMEMT =+ T Sp (q2> 8;“/0& kﬂQu Eoz(pa )‘w) lu(Q)
Chaeymymy, Vo
=+ AVTV Sy (4%) & puty 2a(p, M) 1 (q). (3.37)

e Decay via —Z—? el (97 p,) Wy Opm® — A g0 9, A,:
: ha e : :
ZMZ))TF = guu(pa )\w) (_Sp (q2)) [—quag + qagap] ( 4;2 o 5) ("’Zkﬁ) (_}_qu)
_eym
(=) (o)

haeymy S, (q >€um6

[pﬂeu(p, o) = Pueu(ps M) big [ ~0* oo + Gato| 1o(q)

16f
; hAeVmV 2 vaS 2
Sfmw SP (q ) 8# p,ukﬁ 51,(]7, )\w) [—C] Gao + Q(xqg} lo(Q) (338)
Using e"*%p,kpge = 0 and e p,kge,(p, M) la(q) = e *“pugsca(p, M) 15(q),
one gets
. . hA ey my
3 2 2 _pvaf
IMn “sfm, Sp (q ) q~ " puqu ea(p, \o) 1s(q). (3.39)

i maba _pvof 0 .0 __ eymy mv .
e Decay via —=% ¢ Wiw Pap T pW 0LA,:

iML =P, M) <—szA 5Waﬁ> (_2@2 S, (q2)> [(m?) _ q2) Gapso -+ Japdsds

p

Eym
- gaaQﬁQp} -1- (+ZQp) <_ V4 V) (_l0<Q))
_bamieym .
- Z%Sp (4*) & puty £a(p, Ao 15(q)- (3.40)
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3.2 Decay w — wlt1~

Thus, the transition matrix element equals

MUJHWO’}//WOZ"'—Z_ = 'M(,luﬂ' + Min + Mc?:)ﬂ' + Mfm’
=€ fur(@) € pudy €alp, o) 15(a) (3.41)

with the transition form factor

2

l—eA + 1hAeVm%, S, (qz) <1 + Ti) - 2bAeVm%/ % S, (qZ)] )

2
4 w w

© 2fmye

wa(Q)

Recall that for the decay into a real photon ¢? has to be zero. For that case, S,(0) = —#
P
and the matrix element equals

[eA + zhAev m—‘g — 2baey m—g -1 gt 5pﬂqy ea(p, A\w) 56(q, Ay).

p p Mw
(3.43)

my,

Moo= 2y

Since the only possible virtual vector meson is a p’-meson, the standard VMD form
factor (2.88) simplifies to

m2

F — virtual 3.44
VMD(Q) m\%irtual - q2 ( )

with Myirtual = m,. Though the by term is of VMD type, the whole form factor (3.42)

is not of VMD type. The e4 term is constant in ¢ and the h4 term is of mixed type.
Neglecting the energy-dependent width yields S, (¢%) ~ (q2 - m%) -

form factor F,,.(q) consists of the first two terms of the general form factor (1.2) (compare
subsection 2.4.2)

1
and the normalised

m? 2

m? b(l—{—m§>—|—c m? a—b%
For(q) = 5 1—go) = E & - 3.45
(9) gom%—qQ—i—( o) a+b+c mg—q2+a+b+c (345)

with the coefficients?

1 =~ 2
a=—ey, b= _ZhAeV’ c = 2byey % (3.46)

Thereby, go = 2.00 £ 0.23.
To estimate the qualitative difference between the standard VMD form factor and form

factor (3.42) roughly, the terms of minor importance, those proportional to e4 and by,
and therewith the coefficients a and ¢ are set to zero. If additionally the difference

2Here, the relation my = 776 MeV = m, was used.
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3 Radiative Two- and Three-Body Decays of Vector Mesons

between the mass of the w- and the p-meson is neglected, the normalised form factor
(3.45) will be approximately equal to

m2 m2_|_2
Folg)m2— o —1="27% (3.47)
mg —q mg —(q

This predicts a ¢ dependent shift of the standard VMD form factor. In particular, the
slope at ¢ = 0 (cf. (2.90)),

dF,. 2
K l2=0 & 5, (3.48)

is much larger than the slope of standard VMD,

dFywvp 1

—— |¢2=0 = —=-
dg? o m?2

(3.49)

In Fig. 3.3, our calculations (done without the energy-dependent width) are compared
to both the standard VMD form factor (3.44) and the experimental dimuon data taken
by the NAGO collaboration [A*09]. The calculations with parameter set (P1) and (P2)
(solid and dotted line, respectively) do not differ much from each other which supports
the leading-order calculation to be quite accurate. Both calculations fit the experimental
data very well while the standard VMD form factor (dot-dashed line) fails to describe
the data. The only data points which cannot be well described with our calculations are
the last two which are close to the upper kinematic boundary, v/¢2 < m, — m.

3.2.2 Single-Differential and Full Partial Decay Widths for the
Decays into Dimuon and Dielectron

According to Eq. (3.42), the form factor for the w — 7° transition contains the p’-meson
propagator which includes the energy-dependent width according to (2.122). Analogi-
cal, the transition form factors for the decays considered hereafter will include energy-
dependent widths of vector mesons. However, the partial decays widths with and without
these width for the decays of vector mesons considered in this thesis differ by less than
1%. This would be a better accuracy than the leading-order calculation and the deter-
mination of the parameters (P1), (P2) provide. Therefore, energy-dependent widths are
neglected in the calculations for decaying vector mesons. In these cases the vector-meson
propagator equals

Sy (¢*) = T (3.50)

qs—m
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3.2 Decay w — wlt1~

parém. sét (Pi) _
100 | param. set (P2) - ﬁ@

% .

stand. VMD ===~

2
|Feorfl

0O 01 02 03 04 05 06 0.7
mp+- [GeV]

Figure 3.3: Form factor of the decay w — 7 [T]~ compared to dimuon data taken by
the NA60 collaboration [AT09]. The solid line describes the form factor calculated
with parameter set (P1) and the dotted line the one calculated with parameter set
(P2). The dot-dashed line is calculated with the VMD model (3.44) using the mass
of the p-meson, Myirtual = M.

The same holds for radiative two- and three-body decays of neutral pions and 7-mesons.
Due to the relatively high mass of the n’-meson, m,, = 958 GeV, and the zero mass
of the photon, the allowed phase space for decays of 7’-mesons (see sections 4.6 and
5.5) contains singularities of the simplified vector-meson propagator (3.50). Thus, the
energy-dependent widths have to be taken into account. Additionally, the decays of
neutral pions and n-mesons into two dileptons are calculated with energy-dependent
widths (see sections 5.3 and 5.4).

In Fig. 3.4, the single-differential decay width defined in Eq. (3.30) for the decay
w — mutp is plotted. Again, the calculations with our approach (solid and dotted)
are compared to those with the VMD model (dot-dashed) and the experimental data
taken by the NAGO collaboration. Hereby, for the VMD model and to translate the
NAGO form-factor data into single-differential decay widths data the experimental value
I'F 0., given in [AT08] is inserted in Eq. (3.30). The two data points close to the

w—m0
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3 Radiative Two- and Three-Body Decays of Vector Mesons

upper kinematic boundary, which could not be described by the form factor given in
(3.42), are of less importance in the single-differential decay width. Thus, they will not
contribute much to the full partial decay width which is determined by integrating the
single-differential decay width. Therefore, the value for the full partial decay width

Lyno,u- = (9.85 £ 0.58) - 1077 GeV (3.51)

calculated with the form factor (3.42) and the parameter sets (P1) and (P2) by integrat-
ing (3.30) over the interval [4mi , (my, — mwo)ﬂ agrees very well with the experimental
partial decay widths given in [AT08],

e = (8.1542.13) - 1077 CeV.

w—mOputp=

9 T T
param. set (P1) ——
8l param. set (P2) - ]
stand. VMD -~
7 NA6O —e—

I

02 025 03 03 04 045 05 055 06 0.65
Myt [GeV]

dr sy / dmye, 2 [10° Gev']

Figure 3.4: Single-differential decay width of the decay w — 7"~ compared to the
experimental data calculated with Eq. (3.30) and the form factor data taken at the
NAG6O experiment [AT09]. The solid/dashed line is calculated with the parameter set
(P1)/(P2), the dot-dashed one with the VMD model.

The single-differential decay width of the decay w — w’e*e™ is plotted in Fig. 3.5. As
one can see, it is largely dominated by the low-energy region. Comparing with Fig. 3.3
which shows the normalised form factor yields that in this region the deviation from
QED is irrelevant, i.e. the normalised form factor is approximately one. Therefore,
it is interesting for experiments to compare the results of the decay of the w-meson
into a neutral pion and a dielectron to those of the decay into a dimuon. The relevant
part of the single-differential decay width of the decay into a dielectron, the part above
Mete- = 2my,, is plotted in Fig. 3.6. In this plot, the obvious differences between the
approach used in this thesis and the VMD model are well visible.
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3.2 Decay w — wlt1~

Again, the result for the partial decay width
Loypoete- = (6.93 £0.09) - 107° GeV (3.52)

agrees very well with the experimental value [A108]

TP = (6.544+0.54) - 1076 GeV.
1 | |
param. set (P1) ——
01r param. set (P2) - 1
stand. VMD -«
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Figure 3.5: Single-differential decay width of the decay w — m’eTe™ calculated with
parameter set (P1) and (P2) (solid and dashed, respectively) and the VMD model
(dot-dashed).

14 ‘ ‘
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param. set (P2) -
12 + stand. VMD = o

Al s Pete- / dMgre-2 [10°° GV

Figure 3.6: The same as in Fig. 3.5 for me+.- > 2m,,.
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3 Radiative Two- and Three-Body Decays of Vector Mesons

3.3 Decay w — nltl~

3.3.1 Form Factor for the w — 7 Transition

Evaluating the Lagrangian 3.8 yields that the w-meson can either decay directly into an
n-meson and a, real or virtual, photon or via a virtual w-meson. The relevant Lagrangian
equals L, = L3 + L2 with the direct decay being described by

. e
£S}11;‘6Ct - 6\/§;Tnv Euuaﬁ (aTWTa) aﬂn @LA,, (353)

and the indirect decay by

indir A vao T
Ewn = mg“ BWW (0"wra) dpn
bam?
2V3f

ey my
12

guvaﬁ

Whv Wap 1]

w ,A, . (3.54)

According to isospin conservation, the w-meson could either decay indirectly via an
intermediate w- or an intermediate ¢-meson into an n-meson and a photon. The decay
via a ¢-meson is suppressed by the Okubo-Zweig-Tizuka (OZI) rule [Oku63, Zwe64, liz66]
which claims that processes with disconnected quark lines are suppressed. The quark
structures of the involved mesons are equal to

Wy ~ Wy, ~+ J’yud, G~ 5YuS, M~ Uysu + dysd — 25755 (3.55)

with the fields u, d and s for the light quarks up, down and strange, respectively. As
the w-meson has no strange-quark part, the decay into an 7- and a ¢-meson yields a
diagram with disconnected quark lines and, thus, this decay is suppressed (see Fig. 3.7).
The Lagrangian (2.103) is constructed such that it respects the OZI rule.

u/d ufd 5 u/d
w oo w
a/d u/d

¢

)

w

Figure 3.7: Decay of an w-meson into an n-meson and an w-meson on the left-hand
side and into a ¢-meson on the right-hand side. As the decay into a ¢-meson contains
disconnected quark lines, it is suppressed according to the OZI rule.

o8



3.8 Decay w — nl™l~

Analogical to the calculations performed in subsection 3.2.1, the form factor for the
w — 1) transition can be calculated from the Lagrangian L, by using the Feynman rules
given in section 2.6.1. Therewith, the following form factor for the w — 7 transition is
calculated:

mn —eA—I—lethm%/ <1+:;> S, (q2) —2bAevm%/Z§TSw (q2)] .

fenl@) = 6v/3fmye 4 2 2
(3.56)

The normalised form factor F,,,(q) = fu,(q)/fuy(0) is plotted in Fig. 3.8. As for the
form factor for the w — 7° transition, the calculations with the two different parameter
sets (P1) and (P2) do not differ much from each other. Both disagree with the standard
VMD calculation (3.44) for myirtual = M-

1.45 : : ‘
param. set (P1) ——
param. set (P2) -
14 } stand. VMD ===

135
13

125

2
IFop

12

115

11

105

0 0.05 0.1 0.15 0.2 0.25
m|+|_ [GeV]

Figure 3.8: Form factor of the decay w — nl"l~ calculated with both parameter sets
(P1) and (P2) (solid and dashed line) and with the VMD model (dot-dashed line).
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3 Radiative Two- and Three-Body Decays of Vector Mesons

3.3.2 Single-Differential and Full Partial Decay Widths for the
Decays into Dimuon and Dielectron

The single-differential decay widths of the decays of the w-meson into an 7-meson and
either a dimuon or a dielectron are plotted in Fig. 3.9 and Fig. 3.10, respectively.
For both cases, the calculations with the two parameter sets agree very well and are
practically indistinguishable in both figures. The calculation with the VMD model is
in disagreement with those calculations for the decay into a dimoun and nearly on top
of them in the figure describing the decay into a dielectron. To be able to compare the
results for the decay into a dimuon and a dielectron, the single-differential decay width
of the decay into a dielectron for me+.- above 2m,, is given in Fig. 3.11.

16 | |
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— 14t |
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0 ‘ ‘ | |
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Figure 3.9: Single-differential decay width of the decay w — nu*pu~. As they are prac-
tically indistinguishable, the solid line describes the calculations with both parameter
sets (P1) and (P2). The dot-dashed line is calculated with the standard VMD model.

The partial decay widths

Uyt u- = (8.51 £0.01) - 107" GeV, (3.57)
Dypete- =(2.72£0.09) - 107° GeV (3.58)

one gets with the Lagrangian £, can only be seen as predictions because there are no
experimental data available. Furthermore, the branching ratios of these processes are
very small

BR, - = (1.00 £0.00) - 1077, (3.59)
BRy _pete- = (3.20 £ 0.10) - 107°. (3.60)

Therefore, it seems quite difficult to measure these processes and thus to judge whether
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3.8 Decay w — nl™l~

the approach used in this thesis or the standard VMD model describes the w — n
transition better. It will be shown in section 4.4 that the normalised form factor for the
17’ — w transition is equal to the one for the w — 7 transition. Since it is possible for the
KLOE-2 collaboration to measure the decay 1" — wi™l~ [Kup10], there will be another
opportunity to check the results of this section.
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©
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0.0001 L L L . )
0 0.05 0.1 0.15 0.2 0.25
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Figure 3.10: Same as Fig. 3.9 but for electrons instead of muons. In this case, the
dot-dashed line calculated with the VMD model is on top of the solid line which was
calculated with the parameter sets (P1) and (P2).
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Figure 3.11: Same as Fig. 3.10 but for m+.- > 2m, only. Here, the difference between
the calculation with both parameter sets (P1) and (P2) (solid line) and the one with
the standard VMD calculation (dot-dashed line) are small, but can be observed.
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3 Radiative Two- and Three-Body Decays of Vector Mesons

3.4 Decay ¢ — nlTl~

3.4.1 Form Factor for the ¢ — n Transition

For the decay of a ¢-meson into an n-meson and a, real or virtual, photon the Lagrangian
(3.8) becomes Ly, = L4 + LN with

V2equ

Lir— 228 cwaBagre  0sm0,A, 3.61
on 373 Fmy Pra 0N O, ( )
describing the direct decay and
Eindir o hA praf a'r a
on € ¢uu ( ¢7’O¢> 67

2V/3 f

ba (2m3% —m?2)

s

V3 f "% Gy Pag

X \/§€V my
12

P O A, (3.62)

describing the indirect decay via a virtual vector meson. In agreement with isospin
conservation which allows for a decay via a virtual w- or ¢-meson and the suppression
of the decay via an w-meson due to the OZI rule (compare sections 3.2.1, 3.3.1), this
Lagrangian allows only for a decay via an intermediate ¢-meson.

The form factor for the ¢ — n transition can be determined as

f (q):ﬂ —e —I—lehm2 1+i2 S(q2>
on 3\/6me€ A A VIeATTby mé )
2m2 — m?
—2baeym?, % S, (qQ)l . (3.63)
¢

In Fig. 3.12, the normalised form factor Fy, (q) = fs,(q)/ fs;(0) and the standard VMD
form factor (3.44) for myirtual = My are plotted. They are compared to the data taken
at the SND detector at the VEPP-2M collider for the decay into a dielectron [A101].
Although the calculations done with the parameter sets (P1) and (P2) (solid and dashed
line, respectively) and the calculation with the standard VMD model (dot-dashed line)
differ from each other, all three fit the data due to their relatively large error bars. So,
it is not possible to judge which ansatz is better for the ¢ — 7 transition. It is our hope
that we will get better data form the KLOE-2 collaboration where the decay ¢ — nete™
can also be measured [Giol0].
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Figure 3.12: Form factor of the decay ¢ — nl*l~ compared to dielectron data taken
at the VEPP-2M collider [A*T01]. The solid line describes the form factor calculated
with parameter set (P1) and the dotted line the one calculated with parameter set
(P2). The dot-dashed line is calculated with the standard VMD model.

3.4.2 Single-Differential and Full Partial Decay Widths for the
Decays into Dimuon and Dielectron

The single-differential decay widths of the decays into a dimuon and a dielectron are
shown in Fig. 3.13 and Fig. 3.14, respectively. For a better comparability, the single-
differential decay width of the decay into a dielectron for an invariant mass m.+.- above
2m,, is plotted in Fig. 3.15. In the case of a decay into a dielectron, all three lines,
calculated with parameter set (P1) (solid), parameter set (P2) (dashed) and the VMD
model (dot-dashed), agree well, whereas they differ from each other for the decay into
a dimuon. The disagreement between the calculations for the decay into a dimuon with
both parameter sets (P1) and (P2) is greater than it was for the transition form factor.
This is caused by the differences between the partial decay widths of the decay ¢ — nvy
calculated with the different parameter sets (see table 2.2) which has to be inserted in
formula (3.30) for the single-differential decay width. Bear in mind that the ¢-meson is
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3 Radiative Two- and Three-Body Decays of Vector Mesons

the heaviest light vector meson and parameter set (P2) was introduced to have a rough
estimate for the error of the leading-order calculations performed with parameter set
(P1). Consequently, it was expected that the differences between the calculations with
the two parameter sets are largest for the decay of the ¢-meson.

This larger difference is also observable at the full partial decay widths for the decay
into a dielectron where the calculated value

Ty et = (4.64+0.26) - 1077 GeV (3.64)
has the greatest deviation from the experimental value given in [A*08§]
LoT e = (4.90 £0.47) - 1077 GeV (3.65)

among all partial decay widths for the decays of vector mesons considered in this thesis.
Nevertheless, it is still in agreement with the experimental value within the error bars.

For the decay into a dimuon no experimental data are available, so the calculated width
Lyt~ = (2.75+0.29) - 1078 GeV (3.66)

has to be seen as a prediction.

4 | |
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Figure 3.13: Single-differential decay width for the decay ¢ — nu*u~. The solid and
dashed lines are calculated with the parameter set (P1) and (P2), respectively, the
dot-dashed one with the VMD model.
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Figure 3.14: Same as in Fig. 3.13 but for electrons instead of muons.
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Figure 3.15: Same as in Fig. 3.14 for me+.- > 2m,,.
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Decays of Pseudoscalar Mesons
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4 Radiative Two- and Three-Body Decays of Pseudoscalar Mesons

In this chapter, electromagnetic transitions of pseudoscalar mesons A into real photons
or vector mesons B are considered, i.e. the processes A — yy*) and A — By™ with
real or virtual photons 7).

In section 4.1, the relevant leading-order Lagrangian and the formulas for the partial
decay width are derived. Thereby, the leading-order WZW Lagrangian (cf. subsection
2.3.2) describing the direct decay of a pseudoscalar meson into two, real or virtual,
photons is also considered. The 7 — ~ transition is discussed in the subsequent section
4.2. For the decays of - and r’-mesons, the mixing of these states has to be considered
first (section 4.3). Therewith, the transitions n’ — w, n — v and 1’ — ~ are calculated
in the later sections 4.4, 4.5 and 4.6.
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4.1 Leading-order Lagrangian, Transition Form
Factor and Partial Decay Width

4.1.1 The Leading-Order Lagrangian Concerning Vector
Mesons

In section 2.5, it was explained that the leading-order Lagrangian which is used in
this thesis and is based on the counting scheme (C1), (C2) does not contain all terms
describing the decays of pseudoscalar mesons into one or two (real or virtual) vector
mesons. Therefore, this kind of decays can only be used as a test for the approach
without insisting on being a full leading- or next-to-leading-order calculation.

In this chapter, decays of a pseudoscalar meson P into two real photons, into a photon
and vector meson or into a photon and a dilepton will be considered. The relevant parts

of the Lagrangian given in section 2.5 are the following:

e Decay P — Vv with a vector meson V:

Li=i e {5 (DVia) + (D7Vea) £1) Us)

my

~ _ €A nro, T T
~ = € Ftr {(Q(0Vra) + (0™Via) Q) 03P} 0,A, . (4.1)

e Decay P — V'V’ with two vector mesons V' and V':

h
Loy = i gA B 11 {(V,, (D" Vo) + (D" Vi) Vi) Us}

~ 1’2} B 1 { (Vi (07 Via) + (07Vra) Vi) 050} (4.2)
Log =1 bg el tr {[Vuw Vaﬂh X—}
~ gfﬂ tr {ViuVas [0 00, } (4.3)
e Transition V — ~:
L= — ev;nv tr {V‘“’ :V}

Cymy

12

3(")" = V2g +w| 9,4, . (4.4)
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4 Radiative Two- and Three-Body Decays of Pseudoscalar Mesons

Hence, the relevant Lagrangian describing both the decay of a pseudoscalar meson into
two photons and into a vector meson and a photon equals

PV oy = L1+ Lot + Log + L3

— _ €a praf T T
Afmy € tr {(Q (0"Vra) + (07V2a) Q) 35(19} Ay
B 1h6f e 1 {(Vy (07 Vra) + (07 Vra) Vi) 050}
bA e
- gg‘u‘ Btr{v;wva,@ [(PvXO]Jr}

eymy

tr {VQ} 9,A,. (4.5)

As in the case of a decay of a vector meson (see section 3.1), the e4 term describing the
direct decay of a pseudoscalar meson into a (real or virtual) vector meson and a photon
will be used for a rough estimate of the intrinsic error of the calculations. Of course, the
parameters e4, hy and by are still fixed by the sets (P1) and (P2).

4.1.2 The Effective Wess-Zumino-Witten Action

As discussed in subsection 2.3.2, the Lagrangian for Goldstone bosons as it was given

in subsection 2.3.1 exhibits a larger symmetry than the real world does. Therefore, the

Wess-Zumino-Witten (WZW) Lagrangian (2.84) has to be added. For decays of pseu-

doscalar mesons into two photons the first term —enA,J* in (2.84) does not contribute

to tree-level calculations because J* € O (®3). The trace of the second term becomes
6t

-7 tr {Q%0,}

and, hence, the relevant part of the WZW Lagrangian equals

2
LVIW ;’;f e 0,A0 Ag 1 {Q%0, 0} . (4.6)

This Lagrangian describes the direct decay of a pseudoscalar meson into two photons
without any vector meson being involved while the Lagrangian (4.5) describes only
decays via at least one virtual vector meson.

For the decays of pseudoscalar mesons, the Lagrangian

‘CP—’V’Y/’Y’Y = ‘Ifiv'y/'y'y + Egiv\y'y/ﬂm (47)
with L. ., given in Eq. (4.5) and LFZY. given in Eq. (4.6) has to be used. As

discussed in subsection 2.3.2, the relative sign between the two parts of the Lagrangian
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4.1 Leading-order Lagrangian, Transition Form Factor and Partial Decay Width

is not fixed yet. Within the approach of this thesis it is not possible to decide purely
theoretically whether it should be a positive or a negative relative sign. The only possi-
bility to fix the sign is a check against experiment: The squared normalised form factor
|Fp,(q)|* for the transition of a pseudoscalar meson into a real photon is plotted for
both relative signs and both calculations are compared to available experimental data.
The sign which describes the data better is taken as the physically realistic sign. In this
thesis, the sign is determined as negative by comparing the n — 7 transition form factor
with data taken by the NAGO collaboration for the decay n — yu™u~ [A1T09] so that

Lpvafry = yjeivv/w - EYDVEV‘XV/W : (4.8)

Keep in mind that a negative relative sign between the two parts of the Lagrangian is,
of course, connected to fixing the parameters n of the WZW Lagrangian (4.6) and the
parameter hy of the Lagrangian (4.5) as positive in advance.

4.1.3 Transition Form Factor and Partial Decay Width

Analogical to the definition of the transition matrix element and the transition form
factor for the decay of vector mesons (see subsection 3.1.2), the transition matrix element
for the decay of a pseudoscalar meson P into a real photon and either another (real)
photon or a dilepton [ is given by

MP—Vy'y/'lerl* = efP'y(Q) Euuaﬁ Puqv 5Z<k7 )W) l,@(q) (49)

with [3(q) defined by Eq. (3.11), (3.12) and the four-momenta p, ¢ and k of the incoming
pseudoscalar meson, the outgoing or intermediate photon and the outgoing photon,
respectively.

The transition matrix element for the decay into a vector meson V' and either a photon
or a dilepton is given by

Mp_vyviri- = efrv(q) ghves Pudv €a(k; Av) Us(q) (4.10)
with k& being the four-momentum of the outgoing vector meson.

The formula for the decay width for the decay of a pseudoscalar meson into a vector
meson and a photon or into two (real) photons is in principle given by Eq. (3.24).
As pseudoscalar particles have spin 0, the prefactor % arising from the average over all
incoming vector meson states has to be replaced by the prefactor 1. Additionally, for
the decay into two photons a prefactor % has to be included as there are two identical
particles in the outgoing channel which cannot be distinguished in a detector. Therefore,
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4 Radiative Two- and Three-Body Decays of Pseudoscalar Mesons

the partial decay widths equal

2 (m2 —m?2 )3

FP—>V’7 = 321;_ mgp 4 |fPV(O>|2a (41]‘)
e2m?

Lpgy = GTTFP | fp,(0)]° . (4.12)

Therewith, the single-differential decay width for the decay of a pseudoscalar meson into
a vector meson and a dilepton can be calculated by applying formula (3.30) (taking P
as the incoming particle instead of A and V instead of B). The single-differential decay
width for the decay into a real photon and a dilepton gets an additional factor 2 in
comparison to formula (3.30) yielding

ATp it e’ 1 dmj 2mj ¢\’ 2
17Tr 0 e\ U )\ g ) (4.13)

including that m? = 0.
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4.2 Decay 1 — ~ITI~

4.2.1 Form Factor for the 7 — v Transition

The relevant leading-order Lagrangian (4.8) for the decays of pseudoscalar mesons yields
that the neutral pion can only decay via one virtual p’-meson, one virtual w-meson or a
p%- and an w-meson into two (real or virtual) photons. As the pion field is proportional to
Uysu—dysd, an intermediate ¢-meson is not allowed in leading-order processes according
to the OZI rule. As a photon has isospin zero or one, both the decay of a neutral pion into
a photon and a p-meson and the decay into a photon and an w-meson are in agreement
with isospin conservation. But the decay of the pion into two w-mesons would violate
isospin conservation and is therefore forbidden. Additionally, an allowed process should
conserve G-parity, i.e. the process should be invariant under the composition of charge
conjugation and isospin. As

Grn’ = -1, Gp’ = +1, Gw = —1, (4.14)

a decay into two p’-mesons is also forbidden and the decay into a p°- and an w-meson
is the only possibility for a decay of a neutral pion into two virtual vector mesons.

Thus, the leading-order Lagrangian £} equals £92° V" 4 LI%° V' with

one vir €A vo T T
o virt o e |02, + 307 wra| D57° 0, A, (4.15)

describing the decay via one virtual vector meson and
two virt __ _ "A
L =
2
— LT el Py Wap T (4.16)

describing the decay via two virtual vector mesons.

The matrix element defined by the Lagrangian L7257 can be calculated with the Feynman
rules given in the subsection 2.6.1 analogically to the calculations in subsection 3.2.1
(see the two diagrams on the left-hand side in Fig. 4.1). Thereby, all possible virtual
vector mesons have to be considered and the results to be added. The calculated matrix
element equals

M = e £255(q) " pg, €6 (k. M) 15(a) (4.17)

™
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with the vector part of the form factor for the 7° — ~ transition
vec \ _ _EV 2 (ha 7 1 2 1 2
= (0= 157, [evmV < g0 bas ) <mg)Sp (¢°) + w2 (4 ))
e
o (50 (@) . () (1.18)

2

and using l3(g) as defined in subsection 3.1.2. Recall that for the decay into two real
photons the form factor has to be evaluated at ¢ = 0.

Figure 4.1: Decay of the neutral pion into two (real or virtual) photons via £} with
one or two virtual vector mesons (left and middle) and via LY (right).

Additionally, the Lagrangian based on the effective Wess-Zumino-Witten action describ-
ing the direct decay of the neutral pion into two photons

2
WZW € vap
L 87r2f el 9,70 0,An Ag (4.19)
has to be considered (see diagram on the right-hand side in Fig. 4.1). It yields the
matrix element

2

MDY g zm( fawﬂ) (ik,) <4 (k. M) (—5(0))

2
e rvo
— ngﬂ B puk, ei(k,\) 1s(q)
2

+ 7 W €uyaﬁ puql/ 82(1{5, )\7) l/g(q) (420)

and, thus, the transition form factor
— e
=—. 4.21
™ 42 f ( )
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4.2 Decay 70 — ~IT1~

As already mentioned in subsection 4.1.2, the form factor f,., for the 7% — ~ transition

: vec WZW
is the sum of f}%¢ and —f2™,

far(@) = [2°(0) = [ (q)

£ (5, () + 5. () q2] - (122)

On the left-hand side of Fig. 4.2, the normalised form factor Fy,(q) is plotted. Once
again, the calculations with the parameter sets (P1) and (P2) do not differ much. Ad-
ditionally, the standard VMD form factor which is approximated by

m2

VMD virtual
FTI"Y (Q) B m\%irtual - q2 . (423>
for m, =~ my, & Myirtual = 774.5MeV is plotted in that figure. The calculations with pa-
rameter set (P1) and with the standard VMD model lie on top of each other so that the
form factor of the 7° — ~ transition cannot be used to evaluate our approach in compar-
ison to the standard VMD model. In the figure on the right-hand side, the calculations
are compared to the data taken at the Brookhaven National Laboratory [Sam61]. The
error bars of the data are relatively large so that an agreement or a disagreement with
the calculations with parameters sets (P1), (P2) and the standard VMD form factor
cannot be observed.
To be able to find out which part of the 7° — ~ transition form factor, the indirect vec-
tor term or the direct WZW term, are dominant in which energy regions, the quotient
v(q)/ f* ™ (q) is plotted in Fig. 4.3. The quotient is less than 0.025 for all allowed
energies. Thus, the WZW term in the form factor is the dominant one, a decay via one

or two virtual vector mesons yields a form factor whose value is at most 2.5% of the
WZW term.

4.2.2 Single-Differential and Full Partial Decay Widths for the
Decays 10 — yvy/vete”

For the decay of a neutral pion into two photons and the decay into a photon and a
dielectron the partial decay widths are equal to

Lo =(7.83£0.14) - 1079 GeV, (4.24)
Troete- =(9.28 £0.16) - 107" GeV. (4.25)
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Figure 4.2: On the left-hand side, the (full) form factor of the 7° — ~ transition is
plotted. The calculations with the parameter sets (P1) and (P2) are described by
the solid and the dotted line, respectively; the calculations with the VMD model are
practically indistinguishable from the calculations with parameter set (P1). The figure
on the right-hand side compares all three calculated form factors with the data taken
at the Brookhaven National Laboratory [Sam61]. In that scale, the three curves are
indistinguishable and presented by one solid line.

Both agree well with the experimental values taken from [A*08§]

ror. ., =(7.7440.56) - 107" GeV, (4.26)
Lo e =(9:20£0.93) - 107 GeV. (4.27)

The corresponding single-differential decay width for the decay 7° — ~vete™ is plotted
in Fig. 4.4 with the calculations done with parameter set (P1) and parameter set (P2)
(solid line) in agreement. The calculation done with the standard model (dot-dashed
line) differs from those.

Note that a decay into a photon and a dimuon is not possible because the lower kinematic
boundary m, + 2m,, = 2m, = 212MeV for such a decay is larger than the mass of the
neutral pion m,o = 135 MeV.
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Figure 4.3: The quotient
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Figure 4.4: Single-differential decay width for the decay 7° — ~yeTe~. The solid line
describes the calculations done with parameter set (P1) and (P2) which are indis-
tinguishable and the dot-dashed line the calculations done with the standard VMD

model.

7



4 Radiative Two- and Three-Body Decays of Pseudoscalar Mesons

4.3 n-n'-Mixing

In the chapter 3 where the radiative decays of vector mesons were considered, the
Goldstone-boson octet described by the matrix ® defined in Eq. (2.52) was used for
decays into n-mesons. Yet, the n-meson included in ¢ is not equal to the physical n-
meson. This meson is a combination of the octet n-state, from now on called ng, and
the singlet n-state n;. For decays of vector mesons into an 7-meson and a dilepton it is
adequate to consider the ng-state instead of the physical n-meson but for the description
of decays of n-mesons it is necessary to use the physical n-meson as the results calculated
with an unmixed 7 = ng state and with the physical n-meson differ much (see section
4.5). Correspondingly, the physical 7’-meson cannot be described adequately as an
state but consists of an 7g- and an n;-part. Again, there are significant differences be-
tween the calculations done with the unmixed 7’ = 7; state and the physical n’-meson
(see section 4.6). To take this mixture of octet and singlet into account, the Goldstone-
boson matrix ® =: ®,q defined in (2.52), which only includes the ng-state, is modified
by adding a matrix describing the singlet:

2 m 0 0
P — CI)old + \/; 0 m 0. (428)

0 0 m

The aim is to describe the n- and the n’-meson with one at this point still arbitrary
mixing angle 6 as

1 = cos Ong — sin Oy, (4.29)
n' = sin Ong + cos On;. (4.30)

To determine this mixing angle, the mass terms in the Lagrangian have to be considered.
For the Goldstone octet, the mass terms are the terms of second order in the fields in the
symmetry breaking term L}, of the Lagrangian for the Goldstone bosons (2.73). With
X = Xo = 2BoM and the quark-mass matrix M = diag (m,, mg, ms) this symmetry
breaking term equals

1 B
Lop =7 tr{xolU" + Uxh} = 70 2 {MUt + UM}
By

N tr{®2 M} + const. (4.31)

78



4.8 n-n'-Mizing

As constants are irrelevant in Lagrangians, L1, is simplified as

B
Lsy ~ — 70 tr{®2 M}

b _
- 70 2(my + mag)mt T 4 2(my 4+ me) KK~ + 2(mg 4+ m,) K°K°

2 My + mg + 4mg
+(my + mg) 77 + %(mu — mg)Tng + ; nl.

(4.32)

In the isospin-symmetric limit m, = my = m, the term proportional to 7ng turns to
zero and there is no m%-ng-mixing. The values for Bym and Bym, can therewith be
determined via

m2 = 2Bym, M = Bo(m + m) (4.33)
by the masses of the Goldstone bosons pion, m, &~ 138 MeV, and kaon, mx = 496 MeV,
as

Bym = 5@%, Byms = mijc — 5. (4.34)

To involve also the pseudoscalar singlet, an additional mass term

1
— i (4.35)

is needed [EGPdR89]. Thus, by modifying the Goldstone-boson matrix ® according to
(4.28), the Lagrangian to determine the masses and the mixing angle of - and 7’-mesons
equals

1 1
‘Cmass = _iBO tl"{CDQM} - §m%77% (436)

If only terms proportional to ng or 7, are considered, this term will reduce to

172
Lmass(n& 7]1) = - 5 |:?)BO ((m + 2777/3)7752; + 2\/§(m - ms)TISnl + (2m + ms)ﬁ%) + m%nﬂ
1 2By(m+2my)  22(m—my) ><n8>
_ = 3 s 3 s ) 4.37
2 (nS 771) (2‘3/530(771 —ms) 2Bo(2m+m,) +mi) \n (4.37)

= M(n& 771)

The physical states n- and n’-meson are defined as a multiplication of (ng,7;)? with a
unitary matrix U as defined by (4.29), (4.30). As there is no mixing of the physical
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n- and n’-meson, all terms proportional to nn’ should vanish. Therefore, the matrix
M(n,n') := UT M (ng,n:)U has to be diagonal'. Hence, the mass term equals

_ 1 T T ng\ _ 1 ' NN
'Cmass(n&nl)_ _5(778 771)U UM(U8>771)U U<n1 __5 (77 U)M(%U) 77/

- ; |du? + dar?] (4.38)
with the diagonal elements d; and dy of the mass matrix M(n,n’). The first diagonal
element d; has to be equal to the squared mass m% of the n-meson and the second one
dy to the squared mass m%, of the n’-meson. Both diagonal elements d; and d, are
defined by M (n,n') := UT M (ng,n;)U and depend on Bym, Bym, and m;. As Bym and
Bym are fixed by the averaged pion and kaon mass via Eq. (4.34), the mass m; can be
calculated by solving the Eq. dy = m;, = (958 MeV)? and is determined as

my ~ 819 MeV. (4.39)
If this result is inserted into the Eq. d; = m%, the mass of the n-meson will equal
my ~ 495 MeV (4.40)

which is in acceptable agreement with the experimental value m, = 548 MeV taken from
[AT08]. Inserting the values for Bym, Boms and my in U(ng,m)" = (n,7')T with the
physical states n and 7' as defined in (4.29) and (4.30), respectively, fixes the mixing
angle as

0~ —19.7°. (4.41)

This result also agrees well with the generally appointed value § = —19.5° [ABBC92]
for the mixing angle which is used within this thesis.

!The unitary matrix U which diagonalizes M (ng,71) can be determined via the eigenvectors of
M(n87n1)~
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4.4 Form Factor for the n' — w Transition

As explained in the previous section 4.3, the n’-meson is a linear combination of the
octet state ng and the singlet state n;. Thus, for all calculations concerning the decays
of an n-meson both the Lagrangian describing the decay of the 7g state and the one
describing the decay of the 7, state are needed. The relevant Lagrangians for the decays
into an w-meson and a, real or virtual, photon are
e
Lo == ﬁ;mv B T w0 Dgns O, Ay
ha

43 f

bam?2

W3f

- QVSV W 8,4, (4.42)

e BTy, Wy 0378

vo
e w,uu Wap T8

describing the decay of the 7g state and

\/§6A
6v/3fmy
2h
a 4\1/\;3;2 e O e Wy gl
\/56,47’717% praf
W € Wy Wap M

- % W 9, A, (4.43)

L= 8 57 Dpn DA,

describing the decay of the 7; state. Obviously, the first three terms in £, ., are equal
to the first three terms in £, multiplied with V2. The last term for the decay of the
virtual w-meson into a photon is, of course, the same for both Lagrangians. Therefore,
the matrix element M, equals V2 Mg Hence, the definition 1’ = sin g + cos 0,
yields

M, = sin M, + cos OM,,, = {Sin 0 + /2 cos 9} Mo
=e {sin 0 + /2 cos 9} Fosw (@) €"°P puqy ek, \o) 15(q) (4.44)
with the four-momenta p, ¢ and k of the incoming 7’-meson, the outgoing (real or virtual)
photon and the outgoing w-meson, respectively.

Hence, to calculate M,y only f,..(q) has to be determined. Calculated analogically to
the 7 — ~ transition form factor in subsection 4.2.1, the form factor for the ng — w
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transition is determined as

m 1 q° m
—eq+ ey hami <1 - m2> Se (qQ) — 2bs ey my, ) S (92)] -

) = G e [ w :
(4.45)

This form factor is equal to (—1) times the form factor (3.56) for the w — 7 transition
given in subsection 3.3.1. Hence, the normalised form factor for the ' — w transition
equals

sin 6 frew(q) + cosOfyu(q) {Sin 0 + V2 cos 9} s (@)
sin 0 4., (0) + cos 0 f,,,,(0) B [sin 0 + /2 cos 0} Fnsw(0)
_ fngw(Q) _ _fwn(Q)
Susw(0) = fum(0)
= I, (4.46)

Fyuo(q) =

as already anticipated in subsection 3.3.1.

The partial decay width for the decay of the n’-meson into an w-meson and a photon
can be calculated with formula (4.11) and equals

Ly = (554 £0.16) - 107° GeV (4.47)
in good agreement with the experimental value [A*08]

ex _ —6
Fn,iw = (6.16 = 1.09) - 107° GeV. (4.48)
On this basis, the partial decay width and the branching ratio for the decay into a
dielectron? are calculated as

Lyt = (3.78 £0.10) - 107° GeV, (4.49
BR, wete- = (1.85£0.19) - 107* (4.50)

As there is no experimental data available, these values have to be seen as predictions.
Note that the order of magnitude of the branching ratio is much larger than the branching
ratio for the decay of the w-meson into an n-meson and a dielectron which is of the order
of 107%. Therefore, it should be easier to verify the form factor F,y, = F,, shown in
Fig. 3.8 by measuring decays of n’-mesons.

2A decay into a dimuon is not possible since the minimal mass of the dimuon equals 2m,, = 212 MeV
and is therewith greater than the maximal available energy m,, —m, = 175 MeV.
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4.5 Decay n — ~ITl~

4.5.1 Form Factor for the n — ~ Transition

For the decay of the n-meson one has to consider again the decays of the 73 and the
1 state as described in section 4.4 with one or two intermediate vector mesons. An
ng- or m-state can decay via one virtual p’-, w- or ¢-meson into two photons (without
violating isospin conservation). As the state is proportional to @ysu 4 dysd — 5755, none
of these possibilities is suppressed by the OZI rule in leading order. Additionally, isospin
conservation allows only the vector meson combinations p°p°, ww, w¢ and ¢¢ for the
decay of an n-state into two (virtual) vector mesons. In leading order, the decay into an
w- and a ¢-meson is suppressed by the OZI rule (see Fig. 4.5).

ASS
MU
3

Figure 4.5: The possibilities of an n-meson to decay into an w- and a ¢-meson.

Therewith, the leading-order Lagrangian for the decay of the ng state equals

vec __ €A urof 0 - -
Lr=— 7 — e (30702, + 07wra + 2V207 bra| O 9, A,
hA prafB | 0 a7 0 T -
_ m 5 {pwﬁ Pro + W0 Wrg — 2¢,,0 qu] 0pns
ba _ _ _ _
— =B 200 00 L miw L was — 2 (2m3 — m2 o
2\/§f |: ﬂpuypaﬁ T B ( K 7r) ¢,u (b ﬁ:| T8
. evimy 0\~ |22 Ly
3 3(")" +wm — V29| 9,4, (4.51)
and the one for the decay of the n; state
vee _ __ _ €A uraf 7 0 T - T
L= T V207 Pl + V20 wr0 — 2V207 b7 ] Dgmi DA,
\/ih ro T T T
_ VAPA wap [pgya P20+ W0 Wra + G0 <bm} Osm

4\/§f
V2by

prafB | =2 0 0 —2 =2 =2
2\/3](. € |:m p;ﬂ/paﬁ + mTerVwOéﬁ + (2mK mw) gb,uvgbaﬁ} /’71

B 6V17;V [3 (po>;w Lo \/Zb“”} 0,4, . (4.52)
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The transition form factor for the ng state is calculated as

ey eq hAeVm%/ 1
vec — A 14 V) +
Us’Y(Q) 363 fe V%@mﬁ [( 5 zs1(V)y(V) 3 m2(V)

5 1 2 2
—bAevvaJJss(V)y <V)] Sv (¢°)

with the following parameters depending on the type of the virtual vector meson:

3, if V= p° 1, if V=p°
g1 (V) =141, ifV=w, zV)=11, ifV=w
2v2, iV =2¢ -2, ifV=4¢
m2, if V= p° 3, if V= p°
zg3(V') = {m2, fV=w, yV)=11, ifV=w.
—22m% —m2), ifV=9¢ /2, fV=2¢

For the n; state the transition form factor equals

$82(V)y2(v)> ¢

(4.53)

@ = o 3 |G+ T ¢

- 36V3fe 5,

_ﬁbAevm%/mgtv)xlz(V)Zf(v)} Sv (qQ)

with the parameters

32, ifV= o° m2, if V=p"
r11(V) = \/i fV=w, r3(V)= ﬁlfr, fV=w.
-2, V=9 2mi —mZ, iV =¢

Additionally, the leading-order WZW Lagrangians for the ng state

ﬁWZW _

€ 1o}
N8y 8\/§ﬂ-2f E'u B aunS a}/Aa Aﬁ
and for the 7, state

2

(&
mny - 2\/67T2f

are needed. The corresponding form factors are

LV — e 9,1 O, Aa A

WZW/ N\ _ €

N8y <Q) o 4\/§7TQf ’
WZW/ N _ €

my <Q) -
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4.5 Decay n — ~IHI~

As already mentioned in subsection 4.1.2, the relative sign between the terms in the
Lagrangian describing decays via virtual vector mesons and the WZW term describing
the direct decay into two photons cannot be determined within the framework of the
theory. Instead, it is fixed by comparing the normalised form factors for both possible
relative signs with experimental data. The form factor for the n — ~ transition is
thereby calculated as

fon(@) = cos 0 fy(q) — sinbfy,4(q)
= cos [ f25(q) £ fn? (q)] = sind [ £3(q) + f7V(q)] - (4.59)

N8y n8Y moy moy

In Fig. 4.6, the normalised form factor is plotted for both signs in comparison with
by data taken at the NAGO collaboration for the decay n — ~yu*p~ [AT09]. As the
calculations for the two different parameter sets (P1) and (P2) are indistinguishable,
they are plotted in one line. Obviously, the form factor calculated with a negative
relative sign fits the data very well whereas the one calculated with a positive relative
sign does not. Therefore, the sign will be fixed as negative yielding

fusy(@) = F2(q) — fV7 Y (q), (4.60)
Sur(@) = f2e5(a) = £V (q). (4.61)

In the panel on the left-hand side of Fig. 4.7, the form factor for an n-meson being a
mixture of g and 7; state (solid line) and the form factor for the unmixed case n = g
(dotted line) are plotted. Both are compared to the experimental data for the decay
n — yup~ taken by the NAG0 collaboration. As mentioned above, the calculations
for the different parameter sets (P1) and (P2) are not distinguishable. Additionally,
the standard VMD form factor defined in Eq. (2.88) is plotted (dot-dashed line). It
can be calculated by identifying 2° V” with the prefactors from the terms proportional
to ey4 in the Lagrangians (4.51), (4 52) and normalising such that the form factor holds
FYMP(0) = 1. Therewith, the standard VMD form factor equals

2

VMD 1
Fn ) = (cos 0 — 2y/2sin 9) [ (COS 0= V2sin 6)

(COSG V2sin 9) i 2 (2 cos f + /2 sin 9) m?ﬁzl . (4.62)

q2

The plot shows that the calculations for the mixed case and the standard VMD form
factor are very close together and all three calculations fit the data quite well.

On the right-hand side of Fig. 4.7, the quotient fy*°(¢)/f)Y*"(q) for the mixed, phys-
ical n-meson is plotted. The quotient is smaller than one, i.e. the WZW term in the
form factor is dominant, until the invariant mass is near the upper kinematic boundary
my, —my = 548 MeV. Only in the last part of the allowed energetic region, the term

describing decays via virtual vector mesons is dominant.
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Figure 4.6: Normalised form factor for the n — ~ transition plotted for a positive
relative sign between the vector and the WZW part of the form factor on the left-
hand side and for a negative relative sign on the right-hand side. Both calculations are
compared to data taken by the NAGO collaboration for the decay n — yu*p~ [A1T09].

4.5.2 Single-Differential and Full Partial Decay Widths

For the decay n — ~7 one gets the partial decay widths

unmixed __ -7
F”*W =(2.1340.14) - 1077 GeV, (4.63)
Iried = (6.71 4 0.10) - 1077 GeV (4.64)

for the unmixed n = ng state and the mixed n-meson, respectively. While the value for
the unmixed 7 state does not fit the experimental value given in [A108§]

re® = (5.1140.30) - 107 GeV, (4.65)

n—yy

the value for the mixed 7-meson does agrees much better.
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Figure 4.7: In the panel on the left-hand side, the normalised form factor for the decay
n — ~IT1~ is plotted and compared to the experimental data for the decay n — yut ™
taken by the NA60 collaboration [AT09]. The calculation for the mixed form factor
(solid line), the unmixed form factor (dotted line) and the standard VMD form factor
(dot-dashed line) are all in agreement with the data. The quotient fy*“(q)/f)Y*"(q)
for the mixed case is plotted in the figure on the right-hand side.

In Fig. 4.8, the single-differential decay width for the decay of an n-meson into a photon
and a dimuon is plotted for both the unmixed 1 = ng state (dotted line) and the physical,
mixed n-meson (solid line). The difference between the two curves is much larger than
the small difference between the normalised form factors for the unmixed case F,,, and
the mixed case F,, plotted in Fig. 4.7. This is caused by the large difference between the
full widths for the decay into two real photons, [i™2*¢! and T'**d, which are contained
in the formula for the single-differential decay width (4.12). Additionally, the single-
differential decay width calculated with the VMD model is plotted (dot-dashed line)
which is, as expected, close to the result for the mixed case. The same is done for the
single-differential decay width of the decay into a dielectron in Fig. 4.9 and, for a better
comparability with the one for the decay into a dimuon, it is plotted for m.+.- above
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2m,, only in Fig. 4.10. One always observes the same pattern: The mixed case and the
VMD result are close together.
The experimental values for the full partial decay widths taken from [A108]

LT e, =(4.034£0.74) - 1071 GeV, (4.66)
T7% e =(9.10 +1.40) - 1077 GeV (4.67)

are again much better described by the values for the decay of a physical mixed 7 state

rmixed - =(5.39 4 0.09) - 107 GeV, (4.68)
Ieed, - =(11.2440.16) - 107 GeV (4.69)

than by those for the decay of an unmixed 1 = ng state

rpmmixed = (1.83£0.11) - 1079 GeV, (4.70)
rommied = (3.59 4 0.01) - 107° GeV. (4.71)
8 - T
mixed ——

unmixed -
stand. VMD === ]

AN sy i 7 dmye 2 [10° GevY
D

Myt 0 [GeV]

Figure 4.8: Single-differential decay width of the decay n — yu*u~. The solid line is
calculated for the decay of a mixed 7 state, the dotted one for the decay of an unmixed
one. The dot-dashed line describes the calculation with the standard VMD model.
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Figure 4.9: Single-differential decay width of the decay n — ~vete™ calculated for the
decay of a mixed 7 state (solid line), the decay of an unmixed one (dotted line) and
the calculation with the standard VMD model (dot-dashed line).
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Figure 4.10: Same as Fig. 4.9 for mg+.- > 2m,, only.

89



4 Radiative Two- and Three-Body Decays of Pseudoscalar Mesons

4.6 Decay ' — ~ITl~

4.6.1 Form Factor for the ¥ — v Transition

For the physical n’-meson 1’ = sin 0ng + cos 61y, the form factor for the transition into a
real photon equals

fn”y(Q) = sin efﬂs’Y(Q) + cos efmv(Q) (4.72)

with the form factors f,. and f,,, given in subsection 4.5.1 for the ng — v and 9, —
transition, respectively. For the ’ — ~ transition, the upper kinematic boundary is equal
to my —m, = m, = 958 MeV and therewith greater than the mass m,, = 783 MeV of
the w-meson and the mass m, = 776 MeV of the p’-meson. Hence, the propagator for
these virtual vector mesons cannot be simplified as

1
Sy (?) ———— 4.73
v (q ) 2 —m(V)? (4.73)
as it was done for the decays discussed so far. Instead, the propagator
1
Sy (¢°) = (4.74)
() ¢ —m(V)2 +iy/@2Ty (¢2)

with the energy-dependent width I'y (¢?) given in subsection 2.6.1 has to be used.

On the left-hand side of Fig. 4.11, the normalised form factor (solid line) is plotted in
comparison with the form factor for the unmixed 7' = n; state (dotted line) and the
standard VMD form factor (dot-dashed line). Analogical to the n — ~ transition (see
subsection 4.5.1), the standard VMD form factor can be calculated as

1
6 (sin@ +2v/2cos b

+ (Sin6 + V2 cos 6) mwS,(q*) — 2 (2 sinf — v/2 cos 9) md,Sd,(qz)} . (4.75)

FY¥(q) = - j 19 (mo+ Vaeos) misi e

Additionally, the absolute value of the quotient f(q) 7;’,‘;ZW(Q) is plotted in the figure

on the right-hand side of Fig. 4.11. The absolute value has to be considered since the
propagators for virtual p°- and w-mesons have to include the energy-dependent width
I'v (¢?) and, therefore, are not real anymore. As for the decays discussed before, the
WZW part is important in the low-energy region. For higher energies, the vector part
becomes more important. The absolute value |f)(q)| is equal to up to approximately
10 times the absolute value of the WZW term for my+,- ~ 0.8 GeV. This greater im-
portance decreases again near the kinematic boundary m,,. Obviously, none of the two

terms can be neglected for the form factor calculations.
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Figure 4.11: On the left-hand side, the normalised form factor for the ' — ~ transition
is plotted. The solid line describes the form factor for a mixed 7n’-meson, the dotted
line the one for an unmixed 1’ = 7, state and the dot-dashed line the standard VMD
form factor. The plot on the right-hand side shows the quotient | £ (q) XYWZW((])’ for
a mixed n'-meson.

4.6.2 Single-Differential and Full Partial Decay Widths

With formula (4.12) the full partial decay widths for the decays of an unmixed 7' =
state and the mixed physical n’-meson into two photons can be calculated:

unmixed __ —6
repmied — (7,08 +0.29) - 107 GeV, (4.76)
mixed _ —6
roxed — (4,63 40.27) - 1076 GeV. (4.77)
The width for the decay of the mixed 1’ state agrees with the experimental value [AT08|
ex _ —6
TSP = (428 +0.56) - 107° GeV (4.78)

quite well while the width for the decay of the unmixed state fails to do so. A similar
observation has been done for the decay of an n-meson in subsection 4.5.2.

In Figs. 4.12, 4.13 and 4.14, the single-differential decay widths for the decays of an 7’-
meson into a real photon and a dimuon and into a photon and a dielectron in comparison
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to the calculations done with the VMD model are plotted. As for the decay of an 7-
meson, great differences between the decays of an unmixed n' = n; state and a physical
mixed 7-meson can be observed. Furthermore, the plots show a good agreement between
the standard VMD calculation and the calculations done with the mixed physical 7’-

meson.
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Figure 4.12: Single-differential decay width of the decay ' — yutu~. The solid line
is calculated for the decay of a mixed n state, the dotted one for the decay of an
unmixed one. The dot-dashed line describes the calculation done with the standard

VMD model.

For the decay into a dimuon, the value for the full partial decay width for the decay of

the mixed 7’ state

romixed = (1.7740.21) - 1078 GeV

=yt

agrees with the experimental value taken from [A*08§]

Ty i, = (210 £0.68) - 107° GeV.

0 —ypt

Again, the value for the decay of the unmixed state
pupmixed —— (2,96 4+ 0.09) - 107% GeV

0 —ypt

fails to do so.
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Figure 4.13: Single-differential decay width of the decay 7’ — ~vyete™ calculated for the
decay of a mixed 7 state (solid), the decay of an unmixed one (dotted line) and with

the standard VMD model (dot-dashed line).
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Figure 4.14: Same as Fig. 4.13 but for me+.- > 2m,, only.
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For the decay into a dielectron only an upper boundary

| < 1.836- 107" GeV (4.82)

n'—ete~

for the experimental partial decay width is available [A*08]. Thus, the widths for the
decay of both the mixed and the unmixed n’ state

Ioxed - =(9.41+0.46) - 107° GeV, (4.83)
ropmised = (1.47 £0.00) - 1077 GeV (4.84)

agree with the experimental value.

From basically all results achieved here and in the previous section 4.5 it is obvious
that the -’ mixing is a necessary ingredient to obtain a satisfying agreement with the
experimental data.
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5 Decays of Pseudoscalar Mesons into Two Dileptons

In this chapter, decays of pseudoscalar mesons into two dileptons are considered.
Thereby, one has to distinguish between decays into two different kinds of dileptons and
decays into two identical dileptons. The decay width for decays into two different kinds
of dileptons is developed in section 5.1 and the one for decays into two identical dileptons
in section 5.2. In the subsequent sections 5.3, 5.4 and 5.5, the results for the decays of
neutral pions, - and 7’-mesons into two dileptons are presented.
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5.1 Decay Width For the Decay into Two Different
Kinds of Dileptons

If a pseudoscalar meson decays into two different kinds of dileptons, the production of
the measured four-momenta ¢; and ¢ of the first dilepton /; and the momenta g3 and
q4 of the second dilepton ls # [; can be illustrated by two Feynman diagrams (Fig. 5.1).
Either the “upper” virtual photon decays into the dilepton /; and the “lower” one into
the dilepton [y (left-hand side of Fig. 5.1) or vice versa (right-hand side of Fig. 5.1).
Then, the transition matrix element for the decay of a pseudoscalar meson P into two
different kinds of dileptons [; and Il # [; with masses m; and msy equals

MPHlIrl;l;l;
2 2 2\ _pvaf L =
= e fp(k*,q7) " q.k, kTuns(ql)%vsf(%)uo—(%)vﬁva/((h)

_ r
= EFr(g" ) Rty T (@3)7av0 (@) s ()50 (02)
1 _
= e [fo(k?, @) + frlq® k)] % gk, kquus(Ch)%Us'(%) Uo(g3) Y800 (qa)  (5.1)

with the momenta of the virtual photons k = ¢; + ¢2 and ¢ = g3 + ¢4 analogical to the
previous chapter 4.

q1 (ﬁ
@ q2
a3

q3
a di

Figure 5.1: Feynman diagrams for the possibilities of a pseudoscalar meson to decay
into two different kind of dileptons /; and Iy # [; with four-momenta q;, g2 and q3, qu,
respectively.

For the averaged squared matrix element the sum over the possible spins of the outgoing
particles

Y us(@) Vv (02) Ue(gs)18ver (a) - Vor(qa) V50 (g3) Vs (q2)Vats(q1)

s,s! 0,0’

- Z (as(Q1))a(7a>ab(Us’(QZ))b (ao(qk?))c(,yﬂ)cd(va’(Q4))d

s,s' 0,0’

- (00(94))e(V5)er (o (93)) 5 (Usr(d2))g(Va) g (0s(g1))n (5.2)
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has to be calculated. Using 3>, u(p)is(p) = p +m and 3=, vs(p)vs(p) = p — m, this can
be simplified as

(dr +m)na(Va)ab(d2 — M)bg(Va)gn - (43 + M) se(V8)ca(da — 1) ae(V5)er
= tr{(dr + m)Va(de — m)va} tr{(ds +m)ys(ds — m)vz}. (5.3)

Therewith, the averaged squared matrix element equals

= Waﬂ&ﬁ(k2> @) tr{(sh + m1)va(de — m1)va}
tr{(gs + ma)vs(da — m2)v35} (5.4)

’MP—JTZI_Z;I;

with the abbreviation

_ = 2 ___ =
WSS (k2 ) o= et | fp(k2, %) + frlq®, k2)| €m0 €770 gk, gk, (5.5)

1
kigh

The general formula for the partial decay width of a decay of a particle P into four decay
particles equals

(2m)* 2
FP—>4 particles — / d(I>4 (p, q1, 42,43, CI4) |MP—>4 particles (56)
2mp
with the four-body phase-space element
4
dd =t i 5.7
1 (P51, 42, 93, q4) (P EQ>1;[ 27r32E (5.7)
including the four-momentum p of the decaying particle and the energies E, ..., E4 of
the four decay particles. Using notation (5.4) and inserting
1= /5 @+ a2)) 09 (g — (g3 + qu)) d'kd'q, (5.8)

the partial decay width for the decay of a pseudoscalar particle into two different kinds
of dileptons can be written as

FP-»lf'll_l;'lz_

4 4 d3 ;
= [o@ <p -3 qz-) [T gryrgg 0 (k= @+ 0)) 69 (4~ (a5 +a) d'k 'y

=1

(@n)!

S WP (12 q2) te{ (s + ma)va(de — m)va} tr{(ds + ma)vs(da — m2)7s}-

(5.9)
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This integral can be splitted into an outer integration over d*k d*q and an inner integra-
tion over d®qy ... d%qu:

1 .
4 4 afBafB (1.2 2
o <p }jqz)dkd s V)

dg?
/54) —Q1—Q2) 5(4)(q—Q3—CI4) —L

58, " 2E4 =t { (o + ma)Va(de — ma)vat
tr{(ds + ma2)ys(ds — m2)v5}

4
1 L
— (4) o ) 4 4 ”roaﬂaﬁ 2 2y . . ) 1
/5 (p ;:1 q2> d*kd q (27T)8 Qmp (k » g ) Ja,@aﬁ(k7Q> (5 0)

The outer integral only depends on the momenta k and ¢ of the virtual photons and
does not explicitly depend on the single momenta ¢, ..., qs of leptons and antileptons
anymore. Therefore, the inner integral J,555(k, q) over d3qy ... d%qs can be calculated
independently of the outer integral. As it will be shown in the next subsection, this
integrations can be performed analytically. For that, the integral J,;:5(k, ) is split into
two integrals concerning the integration over d®¢; and d3g, on the one hand and the
integration over d3g; and d®q, on the other hand and equals

(;;11 (;b;]j tr{(dh + m1)va(de — m1)7a} 6 (k — g1 — g2)
d’ a-qgs d’ a-qs tr
2E; 2E,

- 16/ (;qul ggj [(@)a(@2)a + (01)al@2)a — goalar - @2 +m)] 6Dk — g1 — )
d’ a-qs d’ a°qs
2F; 2E,

Ja,@o‘zﬁ(k7 q) =

{(ds + m2)vs(ds — m2)v5} 6 (g — a3 — qu)

[(QS>B(Q4)B + (Q3)B<Q4)ﬁ - 9,35(613 g4+ mg)} 5(4)(9 —q3 — Q4).
(5.11)

5.1.1 Solving the Integral J_;.5(k,q)

To solve the integral J,555(k, q), integrals of the type

3z d3y
2F, 2B,

Bz d3y

°F, 2E, L oWz~ —y)h(z,z —7) (5.12)

Y50z — 2 —y) h(z,y) =

have to be solved including a function h(z, z — x) only depending on 2? and on linearly
appearing factors z,,,Zp,, .. ;Yo Yoo, - - - UsINg Yo = 2, — T, the following integrals
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5 Decays of Pseudoscalar Mesons into Two Dileptons

including the energies E, = vm? 4+ 22 and E, = /m? + y? are those types needed to
evaluate J,555(k, q):

Bz By

1(2?) —Z Wz —x—y), (5.13)
°F, 2B,
Bz 3y

I,(z) = 2L, ﬁé(‘l)(z—x—y) Ty, (5.14)
d’z &%y

1,p(2) = oL, ﬁé Dz -z —y) 2,2, (5.15)

As a first step, the integral I(z?) has to be evaluated. This integral is Lorentz invariant
and thus can be calculated in the frame where 7 = 0 because only z with z? > 0 are of
interest. Then, I(z?) equals

Pz dy
2F, 2E

d3
:/ (\/_ E, —Vm?+ 7?)
2k, 2 m2 + 2

1(2?) = 5(V22 — E, — E,)6®(Z + 7))

- / 172 d || dcos b, dé, @ 5(V22 — 28,)

= [ a7 7 5(VZE —2E,).
After the substitution |Z| = /E2 — m?,|7|d |Z| = E,dE,. Hence, the integral equals

~ |
1(2?) :7r/ AE, Eo\[ B2 —m? = 6(V" - 28,)

1 1 1
ziwwlfzz—rrﬂ 1\/_ (@—Qm)

1 V22 —4m?2 5
ziﬂT@(\/z_—Qm).

(5.16)

The integral 1,(z) only depends on the four-vector z and, thus, it has the general form
,(2) = A(2?)z,. (5.17)

If both sides are multiplied with 2 and the sum over p is performed, A(z%) will be
determined as

A(Z?) = = 2P1,(2) (5.18)
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5.1 Decay Width For the Decay into Two Different Kinds of Dileptons

with 271, being equal to

Bz d3y

O T T
x 4Ly

W (z—z—y)z- .

Since the scalar product z - x can be written as

1 1 1
(+y) o=ty =2+ (7 gy = (P ) =

the integral above equals

Ex dy
2F, 2F,

1 1
SW(z—x—vy) 522 = 522[(22).

Hence, A(z?) and therewith [,(z) can be determined as

I(2) = =1(2%)z,. (5.19)

The general form for the last of the needed integrals equals
Ly(2) = B(2*)gps + C(2%) 2,2, (5.20)
To determine B(z?) and C(2?%) the integrals

1,°(2) = 1, (2)g" = 4B(2*) + 2°C(2?),
227, (2) = 2°B(2*) + 2'C(2?)

are used yielding the following representation for B(z?) and C(z?):

1 1
B(2%) =31,°(2) = 552727 o (2);

1 4
C(Zz) = — @Ipp(zﬁ) + @ZPZ Ipo(Z).

As those integrals can be calculated as

Pz d3y
I,°(z) = —Z W (2 —x —y) 22 = m2I(2?),
g 2F, 2E,
Pz d3y 1
POT — I (4) o . 2 _ — 4[ 2
22710 (2) 2L 2Ey5 (z—a—y)(z-2)" = 12U,

the considered integral equals

1

po(2) = 51(2’2) {—(22 — 4m2)gpa + (22 _ m2) “pZa

. (5.21)
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5 Decays of Pseudoscalar Mesons into Two Dileptons

To evaluate J,3,5(k, q) the following integral has to be calculated (cf. (5.11)):

Pz dy
2B, 28, N {w/’y" + ToYp = Gpo(T -y +m )}
d*z d? 1
= QEi QEZ 6(4)(2 -z —y) [:Eng — Xyl + ToZp — ToTp — gpa(izﬁ —m2 4 m2>

= ()2 () + 10(2)2 — Lop(2) — 52T ()

1
= 21,(2)z — 21,5(2) — 5221(22)9,)0

2pZ

(5.22)

= ;(zz +2m?) I(2?) { _gpa:| .

22

Thus, the wanted result is

\/ — 4m? £/ g% — 4m ko~ _
! 2m1 q 2 2) [ = _gad‘| lngg _gﬁﬁ]

Japap = \/p L2 ¢
.0 (x/ﬁ - 2m1> c <\/q>2 - 2m2> . (5.23)

5.1.2 Calculation of the Full Decay Width

To evaluate the decay width, the factors W55 (k2 ¢2) and J wpap(k,q) have to be mul-
tiplied and contracted. As e *Pq,k, k, = e’“’o‘ﬁqukuqﬁ = 0, only terms of J,g55(k, ¢) not
including k, or gz have to be considered. By inserting

Gacg5 £ €70 b, qukiy = 2 [(k - 9)* — K] (5.24)
the full partial decay width becomes
1 .
éﬂ'Z X K — dmi (K* 4+ 2m7) 7(]2 —dm; (¢* +2m3)

9
C) (\/p — 2m1) C) (\/;2 — 2m2>
= (27T§;mp/(5(4)(p — (g + k))d*kd'q ‘fP(k27q2) + fr(¢*, k)
{(l{; q)? — k? 2} \/? k? +2m?3) \/QZ\/_Q_W (¢* + 2m3)
0 (Vi —2m) © (a2 —2m). (5.25)

2
‘ kiq?
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5.1 Decay Width For the Decay into Two Different Kinds of Dileptons

This integral includes only the four-vector momenta k£ and ¢ of the virtual photons.
Therefore, the problem is reduced to a decay into two particles. These particles would
have the masses m;, = V2 and my = v/¢>. Then, the following relations hold in the
rest frame of the decaying pseudoscalar meson P [AT08]:

1 e 8 - - )

1
kog=g mp — (K +¢%)] . (5.26)
Furthermore, the four-dimensional integral [ d*z can be written as [ dz*§ d = if the inte-
gration over zj is restricted to positive values. Therewith, the following transformations
can be performed:

d3
A7 94 (4) (o —(2 / 2 / q ) (0
/dkdq5 (p—(k+4q) m)° [ dk*dq 2 NCE q<5 (p—(k+q))

= (2m) /dk:2 dg® /dfbg (p; k,q). (5.27)
As [d®s(p;k, q) = [(27)° 2mp] ‘E‘ [PS95], this equals

njp dk? dg? [K]. (5.28)

Including all previous calculations, the full partial decay width equals

4

FP-»lfl;l;z; - W
W“Eml W (o ) (- v )

Lll (m2 e q2))2 e

(k* + 2m3)(q* + 2m3)
kgt

[akzag® |fp(,a®) + fo(a® 1)

(K* + 2mi)(q* + 2m3)

[ akde? | folk2,a?) + fr(a k)|

~ (2r) 18 g, kg
k2 —4m? \/q® —4m3 11 9 3/2
\/ T \/ NG {4 (m% — (K* + q2)> - quZ} (5.29)

with &? running from 4m? to (mp — 2my)? and ¢* from 4m3 to (mp — Vk2)2.
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5 Decays of Pseudoscalar Mesons into Two Dileptons

5.2 Decay Width For the Decay into Two Identical
Dileptons

5.2.1 The General Squared Matrix Element

In the case of a decay of a pseudoscalar particle into two identical dileptons, the measured
momenta ¢; and ¢3 of the leptons and ¢ and g4 of the antileptons can be produced from
all of the possibilities shown in Fig. 5.2'. As leptons are fermions, each exchange of two
leptons or antileptons according to the first possibility produces an extra minus sign.

qi a

i a3
i
q .
a
. @
+ =
@3
3]
@ @

Figure 5.2: The four different possibilities to produce the measured momenta ¢; and g3
of the leptons and ¢, and g4 of the antileptons in the case of a decay into two identical
dileptons.

These possibilities yield a transition matrix element consisting of four terms, each one
including one of the factors

a1 =+ Us(q1)7Yavs (¢2) Uo(q3) V50" (qa),
ag = — Us(q1)VaVs (@) Uo(q3)78v0(q2),
as := + Us(q3)VaVs (qa) o (q1) V800 (q2),
ay = — Us(q3)Vavs (q2) ﬂﬁ(m)’yﬁv”'(q‘l)

In section 5.1, the first and the third possibility have been chosen to describe the decay into two
different kinds of dileptons. Taking the second and the third possibility would only produce an
overall negative sign which would not be relevant for any observables.

104



5.2 Decay Width For the Decay into Two Identical Dileptons

with signs defined relative to a;. As only the squared matrix element is contained in
observables, the absolute sign of a; is irrelevant.

For the calculation of a single-differential or full partial decay width the averaged squared
matrix element is needed. The full transition matrix element has the form

M=g(q+q2,q5 + q1)ar + 9(q1 + @a, G5 + @2) a2
+9(gs+ qu, 1 +q2)as + 9(g3s + @2, 1 + qa)ay (5.30)

with not yet fixed functions g(qr, + qn,, 9, + qr,) which amongst others include the
transition form factor. To evaluate a partial decay width, an integration over d3g; has to
be performed for all + = 1,...,4. Hence, the variables ¢, ..., q4 can be renamed yielding
a;a; = aja; for all 4,7 = 1,...,4. Thus, the squared matrix element equals

M|? = [ 19(q1 + g2, 43 + qa) Plaa|* + |g(aq1 + qa, g5 + g2)[*|az|”

+19(g3 + g1, @1 + @)1} as® + |9(q3 + g2, @1 + qu)|?|aal®

+29(¢1 + 92, 43 + q4) 9(q1 + q4, g3 + g2)arao

+29(q1 + q2,93 + q1) 9(g3 + @4, @1 + q2)aq1a3

43 + 42, q1 + qa)a1a4

q3 + qa, 1 + q2)aza3

9( )
9( )
9( )
+29(q1 + q4,33 + ¢2) 9(q3 + @2, 1 + qa)asty

)
( )
+29(q1 + 42,43 + @)
+29(q1 + @4, 43 + 42)
( )
( )

+29(as + g4 01 + 42)9(as + G2, 1 + 4a)asaa | - (5.31)

Some of these terms are equal. E.g., after renaming ¢; as ¢3 and ¢» as ¢4 in the fifth
term, the fifth and the tenth term will be equal. Furthermore, after renaming variables
the first four terms, the terms 6 and 9 and the terms 7 and 8 will be equal. So, the
squared matrix element reduces to

IMP =4 [g(q + g2 05 + q0)? |aa]?

+9(q1 + @2, 43 + q4) 9(q1 + qu, g3 + q2) a1z

+9(q1 + @2, 03+ qu) 9(q3 + qu, @1 + @2) a1a3
+9(q1 + 2,43 + q4) 9(q3 + G2, 1 + qa) a1y } (5.32)

with ajas and ayas producing a negative sign. Thus, the four combinations involving a,
are the only ones which have to be considered. Analogically to the determination of Eq.
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5 Decays of Pseudoscalar Mesons into Two Dileptons

(5.3) one gets the following relations including the mass m of the leptons:

> laal* = tr{(sh + m)valde —m)ya} tr{(ds +m)ys(ds —m)y},  (5.33)
> wmay = —tr{(sh +m)valde — m)v5(ds + m)7(ds — M)a}, (5.34)
Y. aay = tr{(d +m)yalde — m)yg} tr{(ds + m)ys(ds — m)7a}, (5.35)
Y mag = —tr{(d + m)va(de — m)valds + m)ys(ds — m)vz}- (5.36)

5.2.2 Calculating Integrals over d®, (p; q1, ¢2, q3, q4)

The formula for the decay width for a decay of a pseudoscalar meson into two identical
dileptons is much more complicated than the one for the decay into two different kinds
of dileptons. Some of the terms the averaged squared matrix element consists of cannot
be integrated by using the tricks given in section 5.1. In such cases, the integral depends
on all the combinations ¢; + ¢2, g3 + @1, ¢1 + ¢4 and g3 + g2. Thus, it is not possible
to separate the integration over the three-momenta ¢, ..., ¢s from the integration over
(1 + @)% ..., (g3 + ¢2)* and one has to integrate numerically over the full four-body
phase space d®y (p; ¢1, G2, G3, qa) defined in Eq. (5.7). In this subsection, a possibility to
reduce this integral to a less-dimensional integral will be presented.

As a first step, the four-body phase space is expanded by an additional J-function
yielding

4 3
d’q;
094 (p 5@ T e
4(p’ QI7Q27Q3;Q4 p—= Zq H 277')3 2E

:/5(4) _i, 5(2—m2)@(E _ m) d'qr & d3q
p p qi Q4 4 (27’(’)3 Pt (271')3 2Ek

2
1 3
- 5l(p=- —m?
8 (2m)2 [(p 2 q’“)
and reducing the twelve-dimensional integral to a nine-dimensional integral including
Ey = py— E1 — E5 — E3. In spherical coordinates, this integral can be represented as

(=) | e 1

The limits of the integral over d®4 (p; q1, g2, ¢3, 1) are given by the considered decay and
will be specified in the next subsection.

O (B, —m) f[ d;q’“ (5.37)

k=1 'k

b
8 (2m)12

d\qk\ d cos 0, doy. (5.38)
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5.2 Decay Width For the Decay into Two Identical Dileptons

If the integration over dqs is performed first, the axes of the coordinate system can be
chosen in such a way that the spherical representations of ¢;, ¢> and ¢3 equal

= |@l e, (5.39)
= |@| (sinfy €, + cosby €,), (5.40)
= |@5] (sin 03 cos ¢3 €, + sin O sin ¢3 €, + cos b3 €;) (5.41)

with the unit vectors €,, €, and €. In this representation, the integrand of the integral
over d®, (p;q1, . ..,qs) is independent of cosfy, ¢; and ¢ and therefore the integration
over these variables only yields a factor 2 - 27 - 2 = 872,

In the rest frame of the decaying meson P, the argument of the J-function equals

3 2 3 2
(p—zqk) ? = <mp—zEk,—qa—(f2—c73) _m?
k=1

k=1

3 2
:<mp—zEk) N B B =200 Bt @ B+ G- @) —
k=1

3 2
- (mp—zEk) LG = B = 1B = m? — 21 1] cos b + @1 cos b
k

=1

+|@|| 3| (sin B, sin 63 cos p3 + cos Oy cos b3)] . (5.42)

Using this representation, the integration over d¢s of a function G' depending on cos ¢
2
times the § function & {(p -3 qk> - mz} is of the form

/027T d(a — bcos ¢3) dos G(cos ¢3) (5.43)

where the abbreviations a and b stand for

3 2
a= (mp - ZEk> @ =@l =16 — 2[|a[13] cos 0 + |qi||Gs] cos 05

k=1
+[2[ 3| cos B cos B3] —m?, (5.44)
b =2|3||35] sin 8, sin 5. (5.45)
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5 Decays of Pseudoscalar Mesons into Two Dileptons

Such an integral is calculated as

/027r d(a — beos ¢3) dps G(cos ¢3)
= /07r d(a — beos ¢3) dos G(cos ¢3) + /27r d(a — beos ¢3) dps G(cos ¢3)

= /07r degs [0(a — beos ¢3) G(cos ¢3) + d(a + beos ¢3) G(— cos ¢s3)]

1
VA
a

! ) . (5.46)

= /_:1 dz [6(a — bx) G(x) + 0(a + bx) G(—x)]

—|§|1_1<Z)2G(Z>@(1‘

Hence, the integration of a function G depending on (|¢1], ||, |3, cos b, cosf3) and
cos ¢z over d®y(p; q1, g2, 3, 1) equals

/d<I>4(p; 41,42, 93, Q4) G ((|€71|7 |€72|a |(73|7COS 02, cos 93) , COS ¢3)

4

a
|b| \/7 <|QI| |q2| |Q3| COSGQ,COSH:))) b>

= ﬂ/d]cjﬂd\q}\dlq}]dcos%dcos% 0(Ey—m) O <1 _

1 21217212 |74 |12
:im/dyqud@\dy@dcos@dcoseg O (Ey —m) @(1— “) Pl ]

b by By By

a) |0l 13| 135
4(2

E, By Es

a
( |11, 12|, @3], cos B2, cos 03) b) (5.47)
\/1—008292\/1—005263\/1_ a

with a and b given in (5.44) and (5.45). Therewith, the integral over the four-body phase
space which was primary twelve-dimensional is reduced to a five-dimensional integral.

5.2.3 The Partial Decay Width

The partial decay width for the decay of a pseudoscalar meson into two identical dileptons
is given as

(2m)"
2mp

I'p_orvar- 2,2| /(@4 b; a1, C12>Q37Q4) |/\/l|2 (5'48)
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5.2 Decay Width For the Decay into Two Identical Dileptons

Thereby, the symmetry factor ﬁ is caused by the decay into two identical particles,
two leptons and two antileptons. According to Eq. (5.32) the squared matrix element
consists of the terms

(a1 + a2, 43 + 1) ||, (5.49)
9(q1 + 2, g3 + q4) 9(q1 + qu, 43 + G2) a1 G2, (5.50)
9(q1 +q2: g3 + q4) 9(g3 + qa. 1 + ¢2) @13, (5.51)
9(@1 +q2,93 + q1) 9(q3 + G2, 1 + qa) 14 (5.52)

yielding the averaged squared matrix element
MPP=4 Y [(5.49) + (5.50) + (5.51) + (5.52)] . (5.53)
lepton spins
In the following sections it will be shown that g (¢;, + @iy, ¢is + ¢i,) With distinct indices
i1,...,04 out of {1,...,4} is of the type
1

(5.54)
(qi, + %’2)2 (qis + %)2

e fp ((Qz'l +¢i,)%, (g, + qz-4)2> ghvold

The first term (5.49) and the third term (5.51) only depend on the sums k := ¢ + g2
and q := g3 + g4 of the lepton momenta ¢y, g2, g3 and ¢4.. Additionally, Egs. (5.3) and
(5.35) yield

ghvad ghivap Quky kpgs Z a104

lepton spins
= et P gk kngo tr{( g + m)va(ds — m)vz} tr{(ds +m)ys(ds — m)7a}
= P e gk ki tr{(d + m)va(de —m)va} tr{(ds +m)ys(ss — m)73}
L I S S P (5.55)

lepton spins
So, the integral over the first and third term
2m)*

ng),gﬁgk = /d(I)4 (P; C]17Q2,Q37Q4) ( [(5-49) + (5-51)] (5-56>

2mp lepton spins

can be calculated with formula (5.29) by replacing | fp(k2, ¢2) + fr(q% k%) by fp(k2, ¢%)-
[f};(kz, )+ fh(¢?, kQ)} with £ = ¢; + ¢q2 and ¢ = g3 + ¢4 and the mass of leptons and
antileptons m,; = my = m.

The integrals over the second term (5.50) and the fourth term (5.52) depend on all
possible combinations q; + q2, q3 + q4, ¢1 + q4 and g3 + go. Therefore, the integral

27)*

VU P N PRPAPAPAL 650+ (652]  (557)

2mP lepton spins
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5 Decays of Pseudoscalar Mesons into Two Dileptons

has to be calculated numerically using the simplification of the four-body phase space
done in the previous subsection. cosf; and cosfy are integrated over [—1,1] and the
integration interval for the absolute values of the three-momenta ¢i, ¢ and g3 can be

reduced to [0, W] by using the equality E? = m? + |g;|? for £ = 1,2,3. Fur-
thermore, the constraints for k, ¢, ' = ¢q; + q4 and ¢’ = ¢3 + ¢2 are included in form of
f-functions by multiplying the integrand with

9%4127(13414 =6 (kz o 47712) © ((mP - m>2 - ]{72> ) (q2 - 4m2) © ((mp - \/ﬁ) ’ - q2)

.0 (k:’2 — 4m2) S) ((mp —m)® — k;’2) S) (q'2 - 4m2) S) ((mp - @)2 - q’2) .
(5.58)

Then, Fgﬁﬂﬂl, is evaluated with formula (5.47) for

e ) 2m)4
G <<|Q1|7 |Q2|7 |Q3|7 cos 05, cos 93) , COS ¢3) = (Zml Z [(5'5()) + (5-52)] @q1,qz,q3,q4‘
lepton spins
(5.59)
Since Egs. (5.34) and (5.36) yield
ghvol ghvap kugy K, arGy = ghval civaf kugy q,,k,, aray, (5.60)
the sum (5.50) + (5.52) can be combined as
e FO2 @) [F1020%) + 1% K)| e 70 kg, kg ard. (5.61)
With the arguments given above the full partial decay width equals
1 3 13 24
Upoortar- = 4 -4 {Fgl2l+2l* + Fﬁ)ﬁ)zﬁzl } - F;ﬁ)zlﬂk + FEDJQZ+21* : (5.62)

Keep in mind that F(24 _o1+9— has a negative sign relative to F 2l+2[* (see definition of

ai, as, az and a4 in subsectlon 5.2.1).

As the five-fold integral for Fg4)21+2l_ has to be integrated numerically and is hence quite

difficult to determine, the whole partial decay width is approximated by I P )2l+2l* in

)21+21_ is small compared to F(P}S)21+2l— In this

thesis, both ng)ﬂlml, and FPH25+257 are calculated so that the influence of FED—)>21+217

on the full width can be evaluated.

most applications. This is Justlﬁed if Fgf

110



5.8 Decay of a Neutral Pion into Two Dileptons

5.3 Decay of a Neutral Pion into Two Dileptons

5.3.1 Transition Matrix Element and Form Factor

The matrix element for the decay of a neutral pion into two dielectrons equals

voy 1 = -
Moo= 3 € (K 0) by ooy (1) 0, )00 01,) (a1, ) o (0,.)-
n=1,...,4

(5.63)

Hereby, the vector I,, € {(q1, ¢z, 43, 1); (q1, 04503, 42), (43, G4 Q15 42), (43, G2, q1, Ga)} With
[n = (In,la [n,27 In,37 In,4)7

(_1>(q1,q2,q37q4) _ (_1)((137(147611,612) = +1, (_1)(‘117114#137(]2) — (_1)(q37q27q1,q4) =1,

k* = (q1,, + a1,.)* and ¢* = (q1, , + q1,,,)*- The form factor

fo(K2,¢%) = QZVf ea (So(@®) + 8u(q?)) ¢ + evm? (—ihAqQ + bAmfr)
(S, 8u(e%) + Sw<k2)5p(q2)>] - 87(:2f (5.64)

describes decays via at least one virtual vector meson and the direct decay into two
photons given by the WZW Lagrangian®. In Fig. 5.3, the squared symmetrised and
normalised form factor

2 | fa(K %) + fo(a® K]
4|fx(0,0)["

Emm ¢ (5.65)

is plotted.

As the mass of the neutral pion m, o = 135 MeV is smaller than the mass of a dimuon
2m,, = 212MeV, neither the decay of a neutral pion into a dielectron and a dimuon nor
the decay into two dimuons is possible.

5.3.2 Decay Width for the Decay into Two Dielectrons

As discussed in section 5.2, the partial decay width for the decay of a pseudoscalar meson
into two identical dileptons consists of two terms

Upogrrar- = F%i)mﬂz— + ng)mﬂz— (5.66)

with ng)2l+2l— and Fgﬁ2l+2l— defined in Eq. (5.56) and Eq. (5.57), respectively.

2The form factor given by the WZW Lagrangian is equal to the last term multiplied with —1 since
the relative sign between the WZW form factor and the form factor describing decays via virtual
vector mesons was determined as negative in chapter 4.
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Figure 5.3: Squared symmetrised and normalised form factor |F ™™ (k? ¢*)|? for the
decay of a neutral pion into two dileptons.

For the decay of a neutral pion into two dielectrons the dominant part equals
T e = (230 +£0.04) - 1071 GeV (5.67)
and the less dominant part
reY s = (=0.02 % 0.00) - 107 GeV. (5.68)
This yields a full partial decay width of

[ ro_getoe- = (2.28 £0.04) - 10712 GeV. (5.69)

The derivation of the full partial width from the appr?ximation Ffrl(fa2e+28, is approxi-
24)

mately 1% and therewith confirms the treatment of I',”, ., _ as negligible. Thereby,
this relation is the overall value. It could be quite different in parts of the energetically
allowed region.

Furthermore, the partial decay width agrees with the experimental one [AT08]

Lo eige- = (2.62£0.31) - 107" GeV. (5.70)

112



5.4 Decay of an n-Meson into Two Dileptons

5.4 Decay of an n-Meson into Two Dileptons

5.4.1 Transition Matrix Element and Form Factor

As for the decays of 7- or n’-mesons into a real photon and a dilepton in chapter 4, the
matrix elements for the decays of the ng and the 7, state are needed to describe the
decay of an n-meson into two dileptons.

Analogically to Eq. (5.63), the matrix element for the decay of the n-meson is of the

type
vo, 1 - =
Mn - Z 62 fﬁ(k27 q2) 5“ ﬂ quky kqu (_1)In us(an,l)’yavsl (qIn,Q) ua(qln,3>7ﬂvo'/ (qInA)
(5.71)

including the form factor f,, = cos@f,, —sinff,, . The form factor for the decay of the
ns state equals

f”]s(k27 612) = 726\;3]” V:%:’uw SV(QQ) (6A $81(V) y(V) - ihAevm%/ Tg2 y2(V) Sv(k2)> q2
2
Hhacymy aw(V) (V) Se (k)] - o (5.72)

and the one for the decay of the n; state

\/§ 2 1 1 2 2 2 2
s Sl |ZgeamVIn) - Jhaevm V) S0 )

=Poyw»¢
\/562
+baeymi 215(V) 2 (V) Sy (R?)| — ————
aeymy, w13(V) y~ (V) Sy ( )} 4372 f

with the coefficients xg(V'), 2s2(V), xg3(V), x11(V), 213(V) and y(V') given in subsec-

2
tion 4.5.1. The squared symmetrised and normalised form factor ‘Fnsymm(k:z,qz)’ is
plotted in Fig. 5.4.

fm (kzv q2)

For the decay into two different dileptons only two of the four combinations Iy, ..., I for
the momenta of leptons and antileptons are allowed (compare section 5.2.1, in particular
Fig. 5.2). Without loss of generality, I; and I3 are chosen as these allowed combinations?®.
For this case, the matrix element simplifies to the form given in Eq. (5.1) in section
5.1.

3As argued before, the negative sign associated with the combinations I» and I, does not change any
observables since only the squared matrix element is included in the formulas for them.
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Figure 5.4: Squared symmetrised and normalised form factor |Fnsymm(k:2, q*)|? for the
decay of an n-meson into two dileptons.

5.4.2 Partial Decay Widths

The partial decay width for the decay of an n-meson into a dimuon and a dielectron is
calculated as

Lty ete- = (3.92£0.07) - 1072 GeV (5.74)
in agreement with the experimental constraint [A*08]

ree < 2.08-107 GeV. (5.75)

n—ptu~ete”
As explained in subsection 5.2.3, the partial decay width for the decay into two identical
dileptons is a sum of the dominant part rts) and the subdominant part )

n—21+t20— n—20t20—
For the decay into two dielectrons, those equal

T ge = (3.07 £0.05) - 107" GeV, (5.76)
D2 e = (—0.03 £0.00) - 107" GeV. (5.77)
As the value for F;Qi)%ﬂe, is about 1% of F7(71_3))26+28,, it is justified to approximate the full
partial decay width by F7(71—3>)26+26~ The full partial decay width including the dominant

and the subdominant part equals

T, oetoe = (3.04 £0.05) - 107" GeV (5.78)
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which again agrees with the experimental constraint [AT08§]

e ., - <897-107" GeV (5.79)

n—2et2e

For the decay into two dimuons the dominant part equals

T4 o = (6.94+0.09) - 107 GeV. (5.80)
The integration for Ffﬁé ,+2,~ Was not numerically fully stable for the calculations per-

formed for this thesis. Thus, only an interval instead of a fixed number can be given.
The value of the subdominant part of the full partial decay width is then given as

re € ([0.40,0.42] + 0.03) - 1075 GeV. (5.81)

n—2put2u~

This yields a full partial decay width of
T, outou- € ([7.34,7.36] £0.12) - 107'° GeV., (5.82)

As the difference between the borders of the interval is smaller than the error of the
partial decay width, the interval can be approximated by its mean value yielding the
partial decay width

Ly outou- = (7.35 £0.13) - 107'° GeV. (5.83)
For this decay, F7(72~4>)2u+2u— adds up to 6% of F;lj)%ﬁ - and, hence, the full partial decay

width cannot be approximated as F;li)mﬂu_ easily. Nevertheless, both the approxima-

tion and the full partial decay width agree with the experimental constraint [AT08§]

e <4.68-107'°GeV. (5.84)

n—2pt2p
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5.5 Decay of an n’-Meson into Two Dileptons

5.5.1 Transition Matrix Element and Form Factor

Analogically to the decay of an n-meson, the matrix element for the decay of an 7'-
meson into two identical dileptons is given by Eq. (5.63) and the one for the decay
into two different dileptons by Eq. (5.1). Thereby, the form factor f,/(k?, ¢*) equals
sinff,, (k*,¢*) + cos0f,,(k? ¢*) including the form factors (5.72) and (5.73) for the
decays of an ng and an 7, state, respectively. The squared symmetrised and normalised
form factor ‘Fns,ymm(kz, qz)’2 is plotted in Fig. 5.5. As for the decay of an n’-meson into

a real photon and a dilepton (section 4.6), the propagators have to include the widths
of the p’- and the w-resonance since the mass of the n’-meson m,, = 958 MeV is larger
than the mass of the p°- and the w-meson.

2 2\2
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Figure 5.5: Squared symmetrised and normalised form factor |F"™™(k?, ¢*)|* for the
decay of an n’-meson into two dileptons.

5.5.2 Partial Decay Widths

For decays of an n’-meson into two dileptons no experimental data are available and,
therefore, all values given in this subsection have to be seen as predictions.

The partial decay width for the decay into a dimuon and a dielectron is calculated as
Lty ete- = (150 £0.04) - 10710 GeV (5.85)

yielding a relative small branching ratio in the order of 1076.
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For the decay into two dielectrons one gets

LYY e = (3.76 £0.18) - 1071 GeV, (5.86)
L0, g = (—0.04 £ 0.00) - 1071 GeV. (5.87)
The part Ffﬁi)aeﬂe_ equals about 1% of the dominant part and, therewith, the whole

partial decay width

Ty oetoe = (3.72£0.18) - 1071 GeV (5.88)

(13)

o2+ 26— within the accuracy of the approach this thesis is

can be approximated by I'
based on.

The value for the less dominant term for the decay into two dimuons is again numerically
not fully stable,

re € (—[0.56,0.59] & 0.04) - 1072 GeV. (5.89)

n'—2ut2p~

As it is between 11 and 12% of the dominant part,

13 _

LU0, o = (4.98£0.22) - 10712 GeV, (5.90)

an approximation of the full partial decay width by the dominant part Fffi{z jiro,— 18 N0t
justified. The full width I‘Si)%ﬂ -t I’fﬁi)a L+o,— 18 given as

Lyoprou- = (4.40 £0.28) - 1072 GeV. (5.91)
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6 Summary and Outlook

In this thesis, the decays of

e vector mesons into a pseudoscalar meson and a dilepton (chapter 3),

e pseudoscalar mesons into a dilepton and either a real photon or a vector meson
(chapter 4) and

e pseudoscalar mesons into two dileptons (chapter 5)

were calculated in leading order. Therefor, the leading-order chiral Lagrangian including
both the pseudoscalar Goldstone bosons and the light vector mesons (see sections 2.3,
2.5) was used whereat the leading-order terms where identified according to the counting
rules (C1), (C2) proposed in [LLO8|. Additionally, a particular next-to-leading-order
term (2.107) was added to get a rough estimate about the intrinsic error of the leading-
order calculations. The calculations done with the Lagrangian including this next-to-
leading-order term did not differ much from the real leading-order calculations for all
decays considered in this thesis.

For the decays of vector mesons, all calculated values agreed well with the available
data. In Tab. 6.1, the values for the partial decay widths are listed. Compared to the
calculation performed with the standard vector meson dominance model (see subsection
2.4.1), the w — 7° form factor data taken by the NAG60 collaboration for the decay
w — muTp~ could be described much better with the calculation based on the counting
rules (C1), (C2).

Table 6.1: Partial decay widths for the decays of vector mesons into a pseudoscalar
meson and a dilepton compared to the experimental values given in [AT08§].

decay | calculated value [GeV] | experimental value [GeV]
w — 70y (714 40.20)- 1074 | (7.03 % 0.30) - 10~

W Ot | (9.85£0.58) 1077 | (8.15+2.13)- 1077

w— mlete” | (6.93+£0.09)-107° (6.54 +0.54) - 1076

W — 17y (3.71 £0.12) - 10-¢ (3.914+0.38) - 107
w—nutp~ | (8.5140.01) 10712 not available

w—mnete” | (2.7240.09) - 1078 not available

O —ny (5.38 +0.26) - 10~° (5.58 +0.15) - 107°

¢ — nutu~ | (2.7540.29) 1078 not available

¢ — nete” (4.64 +0.26) - 1077 (4.90 £0.47) - 1077

The leading-order Lagrangian describing the decays of vector mesons and the leading-
order Wess-Zumino-Witten Lagrangian (2.84) were used as a test approach to describe
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the decays of pseudoscalar mesons. For the radiative two- and three-body decays, the
calculated values were again in fair agreement with the available experimental data but
not as good as those for the decays of vector mesons. The partial decay widths are listed
in Tab. 6.2. In all cases, the partial widths calculated for an 7- or an n’-meson described
as a mixing of the octet ng state and the singlet 7; state agreed much better with the
experimental values than the ones calculated for unmixed 1 = ng and 1’ = n; states (see
sections 4.5, 4.6).

Table 6.2: Partial decay widths for the radiative two- and three-body decays of pseu-
doscalar mesons compared to the experimental values given in [AT08].

decay | calculated value [GeV] | experimental value [GeV]
7 yy | (7.83£0.14)-107° | (7.74£0.56) - 10~
70— yete | (9.28+£0.16)-1071 | (9.20 £ 0.93) - 101!
n— vy (6.71 £ 0.10) - 107 (5.11 & 0.30) - 107
n— oyt | (5.39£0.09) 1071 | (4.03+0.74) - 10710
n—yetem | (11.24+0.16)-10~° | (9.10 £ 1.40) - 10~
7 — (4.63£0.27)-107% | (4.28 £ 0.56) - 10~°
0 — Ayt | (L77£021)-107° | (2.10 £0.68) - 103
W — yetem | (9.41£0.46)-10° | < 1.836-1077

n — wy (5.54 +0.16) - 10~° (6.16 +0.19) - 10~¢
n — wete™ | (3.78 £0.10) - 1078 not available

Furthermore, the available form factor data were described as well with the calculations
of this thesis as with the standard VMD calculations.

For the decays of pseudoscalar mesons into two dileptons, one has to distinguish between
decays into two different kinds of dileptons and into two identical dileptons. In the first
case, the integral defining the partial decay width can be simplified to a two-dimensional
integral (see section 5.1). In the second case, the partial decay width consists of a part
which can be simplified in the same way, '™, and a part which can only be simplified
to a five-dimensional integral, I'?Y) (see section 5.2). This part has to be integrated
numerically and was not fully stable for all calculations performed for this thesis. Fur-
thermore, the calculations showed that only for the decays of pseudoscalar mesons into
two dielectrons the full partial decay widths could be approximated as I'*®) whereas the
part I'®Y was too important for such an approximation for the decays into dimuons.

The calculated partial decay width for the decay of a neutral pion into two dielectrons
agrees with the experimental value; for the decays of an n-meson into either two di-
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electrons or two dimuons, the experimental upper bounds were fulfilled. All calculated
partial decay widths are listed in Tab. 6.3.

Table 6.3: Partial decay widths for the decays of pseudoscalar mesons into two dileptons
compared to the experimental values given in [AT08].

decay | calculated value [GeV] | experimental value [GeV]
10 22 | (2.28+0.04) 1078 | (2.62+0.31) 1071

n— ptumete” | (3.92+0.07) - 10712 < 2.08-1071°

n— 22 | (7.3540.13)-107% | < 4.68-10710

n — 2et2e” (3.04 +0.05) - 1071 <8.97-107H1

n — pTu~ete” | (1.50 +0.04) - 10710 not available

n — 2ut2u” (4.40 +£0.28) - 10712 not available

n — 2et2e” (3.724+0.18) - 10710 not available

The counting scheme [LLO08] used in this thesis is proposed as the basis of an effective
field theory. This is supported by this thesis because the leading-order calculations
describe the experimental data well and the intrinsic error estimated roughly by the
calculations including the particular next-to-leading-order term is small. Nevertheless,
to show that it is a reasonable basis of an effective field theory instead of a hadronic
tree-level model full next-to-leading-order calculations have to be performed.
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7 Deutsche Zusammenfassung

In theoretischer Physik sollen physikalische Prozesse mit mathematischen Hilfsmitteln
beschrieben werden. Auflerdem soll gewédhrleistet werden, dass die so beschriebenen Ob-
servablen oder Anndherungen an sie in endlicher Zeit berechenbar sind. Im Niedrig-
Energie-Bereich der starken Wechselwirkung werden hierfiir u.a. effektive Quantenfeld-
theorien verwendet. Hierbei werden statt Quarks Hadronen als Freiheitsgrade der Theo-
rie gewahlt und es werden bespielsweise Lagrangedichten als Reihe iiber kleine Energien
und Impulse geschrieben. Der Vorteil solcher Theorien ist, dass endliche Rechnungen
mit kontrollierbarem intrinsischen Fehler druchgefithrt werden kénnen und es moglich
ist, diesen Fehler systematisch zu verringern.

Grundlage dieser Diplomarbeit ist ein Zéhlschema [LL08|, das im Energiebereich der
hadronischen Resonanzen K*-, p-, w- und ¢-Mesonen diese leichten Vektormesonen und
die pseudoskalaren Goldstonebosonen gleich behandelt, d.h. die Massen dieser Teilchen
werden gleichermaflen als klein bewertet. Mittels dieses Zéhlschemas kann die erste Ord-
nung der Lagrangedichte fiir den Zerfall von Vektormesonen in ein pseudoskalares Meson
und ein reelles Photon bzw. ein Dilepton! bestimmt werden. Aus dieser Lagrangedichte
konnen dann (ebenfalls in erster Ordnung) Ubergangsmatrixelemente und -formfaktoren
sowie partielle Zerfallsbreiten fiir die Zerfalle von Vektormesonen berechnet werden.

Es stellt sich nun die Frage, ob und wie gut die auf Grundlage dieses Zahlschemas be-
rechneten Werte mit vorhandenen experimentellen Werten tibereinstimmen und ob diese
Ubereinstimmung genauso gut oder besser ist als die Ubereinstimmung mit dem phéno-
menlogischen Modell fiir diesen Energiebereich, dem Standard-Vektormesondominanz-
Modell (Standard-VMD-Modell). Die in [LLO8] und [LL09] berechneten Werte fiir radia-
tive 2- und hadronische 3-Korper-Zerfélle leichter Vektormesonen stimmten gut mit den
experimentellen iiberein. Weiter ist zu klaren, ob das Zahlschema die Basis einer effekti-
ven Quantenfeldtheorie fiir den Bereich der hadronischen Resonanzen bildet oder ob es
ein Model ist ohne Moglichkeit, den intrinsischen Fehler zu kontrollieren. Dafiir wird in
dieser Arbeit ein Term der Lagrangedichte von néchst hoherer Ordnung bestimmt. Da-
mit lasst sich der intrinsische Fehler einer berechneten Grofie sehr grob als Unterschied
zwischen dem Ergebnis der Rechnung in fithrender Ordnung und dem der Rechnung mit
diesem zusétzlichen Term hoherer Ordnung abschétzen.

In dieser Arbeit werden folgende Zerfélle von leichten Vektormesonen behandelt, w —
70 /711, w — ny/nltl™ und ¢ — nry/nlTl~, wobei [T1~ ein Dilepton bezeichnet. Fiir
alle Zerfélle stimmen die berechneten Breiten gut mit den vorhandenen experimentellen
iiberein. Dabei werden die am SPS durch die NA60-Kollaboration gemessenen Daten fiir
den w — 7° Formfaktor [AT09] mit diesen Berechnungen sehr viel besser beschrieben
als mit den Berechnungen aufgrund des Standard-VMD-Modells.

Die Lagrangedichte fiir die Zerfélle der leichten Vektormesonen kann auflerdem als Test

! Aufgrund der geringen Masse der leichten Vektormesonen sind nur Zerfille in Dielektronen oder
Dimyonen moglich; ein Zerfall in ein Ditauon ist nicht méglich. Im Weitern bezieht sich der Ausdruck
Dilepton immer auf Dielektronen oder Dimyonen.
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fur die Effektivitiat des Zahlschemas bei Zerfallen von pseudoskalaren Mesonen in ein
Vektormeson und reelles oder virtuelles Photon bzw. in zwei reelle oder virtuelle Photo-
nen genutzt werden. Dabei enthélt diese Lagrangedichte jedoch nicht alle Terme fithren-
der Ordnung, die fiir den Zerfall pseudoskalarer Mesonen erforderlich waren. Ein Term,
der in dieser Diplomarbeit hinzugenommen wurde, ist der Wess-Zumino-Witten-Term
in fiilhrender Ordnung, der den direkten Zerfall eines pseudoskalaren Mesons in zwei
Photonen ermoglicht.

Bei den Zerfallen 70 — v~ /yI 1=, n — vy /41T, 0 — yy/¥IT1~ und ' — wy/wltl~
von pseudoskalaren Mesonen stimmen die berechneten Breiten immer noch hinreichend
mit den experimentellen tiberein, jedoch nicht mehr so gut wie bei den Zerfallen der
Vektormesonen. Weiter konnten die von NA60 gemessen Daten fiir den n — + Formfak-
tor [AT09] sehr gut beschrieben werden, wobei es jedoch kaum Abweichungen von den
Berechnungen mit dem Standard-VMD-Modell gab.

Zusitzlich wurden die Zerfille der pseudoskalen Mesonen 7%, 7 und 7’ in zwei Dielepto-
nen von unterschiedlicher oder gleicher Art berechnet. Hierbei stimmt die Zerfallsbreite
fiir den Zerfall des neutralen Pions in zwei Dielektronen mit dem experimentellen Wert
iiberein; die Breiten fiir die Zerfille der Mesonen n und 7’ erfiillen die experimentellen
Schranken.

AufBlerdem konnte bei allen Berechnungen festgestellt werden, dass der Einfluss des Terms
von néachst hoherer Ordnung auf die berechneten Werte, also die grobe Abschatzung
des intrinsischen Fehlers, klein war. Somit wurde die These unterstiitzt, dass das hier
verwendete Zahlschema Basis einer effektiven Theorie ist. Um diese These weiter zu
untermauern, missen jedoch in Zukunft vollstandige Rechnungen in der néchst hoheren
Ordnung durchgefiithrt werden.
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A.1 Transformation Properties of the Goldstone Bosons

A.1 Transformation Properties of the Goldstone
Bosons

The aim of this section is to describe all Goldstone bosons corresponding to the spon-
taneous symmetry breaking in QQCD as one hermitian and traceless matrix. Within the
approach of Goldstone’s theorem, they are described as eight independent fields ¢, on
the Minkowski space M*, so they are continuous real functions on M*.

The section follows the explanations given in [Sch03].

First step:

All Goldstone boson fields are collected into one eight-component vector ® which is an
element of the space

MI::{CI>:M4—>RS

bo: M* — R continuous} : (A.1)

It is possible to define an operation ¢ of G on My, i.e. ¢ is a mapping of G x M; into
M fulfilling:

. VdeM ol d) =, (A2)
o Vg, 92€G, ®c M :p(g,o(92P) = (9192, P). (A.3)

If ® = 0 denotes the “origin” of My, which is the state corresponding to the ground state
configuration, and the subgroup H of G is the symmetry group of the ground state, the
operation ¢ will have to satisfy the additional property

VheH:ph0)=0. (A.4)

Second step:

A (well defined) mapping ¢ of the set of all left cosets G/H := {gH|g € G} into M, is
defined by

Vge G, he H:p(gH) = ¢(gh,0) = o(g,0(h,0)) = ¢©(g,0). (A.5)

Since all left cosets are either equal or disjoint, the mapping ¢ : G/H — M, is injective
and therefore an isomorphism between GG/H and the Goldstone bosons. Thus, there
exists a g € G for every Goldstone boson ® with & = @(gH). Therewith, the transfor-
mation behaviour of the Goldstone bosons under an element ¢’ € G can be described
as

!

o =¢(q - gH,0) = ¢(d'9,0) = (g, ¢(g,0)) = ¢(g, D). (A.6)
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In QCD, the symmetry groups are equal to

G =SU@3), x SUB)r ={(L,R)|L, R € SU(3)}, (A.7)

H={(V,V)|VeSU@3)}. AB)
For every g = (L, R) € G the left coset gH = {(LV, RV) = (1, RL})(V, V) |V € SU(3)}
is determined by U = RL' € SU(3). Thus, the set of these U is isomorphic to the

Goldstone bosons. Therefore, every U has to be a function on the Minkowski space M*
and transforms as:

Voe M U) T8 U'(e) = RU(2) LT (A.9)

Third step:

Define the real vector space (with respect to addition of matrices) of all hermitian and
traceless 3 x 3 matrices as

H:={Aecgl3,C)|Al = A, tr(4) = 0} (A.10)
and the real vector space
My :={®: M* — H|® continuous}. (A.11)
The elements of M; and M, are related via

8 o3+ %% O1— 1Py Py — iP5
My > ®(z) = > Ntu(z) = | ¢1+id2 —d3+ %d)s P — 107
a=1

G4 + 105 G + 17 —%%
70 4+ %n V2rt V2K
= | V2 —n'+ e V2K (A.12)
V2K~ V2KY =2

with ¢, € My, a =1,...,8. This is the wanted description of the Goldstone-boson fields
as one hermitian and traceless matrix. For further calculation, the additional set

M; = {U . M* — SU(3) |U($) = exp <2®fo)> , e Mg} (A.13)

is defined with the origin Uy = exp (z%) = 1. Defining the operation
¢:G x Ms> ((L,R),U(x)) — RU(z)L" € Ms (A.14)

shows that Uy is invariant under H but not invariant under axial transformation (A4, A") ¢
H which rotates left-handed quarks by A and right-handed ones by Af. Therefore, the
new fields are consistent with the assumed symmetry breaking.
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A.2 Derivation of Feynman Diagrams and Rules

A.2 Derivation of Feynman Diagrams and Rules

In this section, a derivation of Feynman diagrams and rules for the ¢* theory described
by the Lagrangian

1

A
L= 5007 - Gm*e* - 0" (A.15)

E
2

is given. Thereby, the explanations given in [PS95] are followed.

A.2.1 Perturbation Expansion of Correlation Functions

As a first step, the two-point correlation function

(QUTp(x)p(y)[$2) (A.16)

with the ground state |2) of the interacting ¢* theory shall be calculated. This cor-
relation function can be interpreted physically as the amplitude for the propagation
of a particle between the two time-space points y and x. The capital T denotes the
time-ordering function, i.e.

T(x)d(y) = 0(x0 — yo)d(x)d(y) + 0(yo — z0)d(y) (). (A.17)

In the free theory where A\ = 0, the correlation function can be determined easily as

d4p ie_ip'(x_y)

2m)4 p? —m? +ie

(0[T)(z)d(y)|0)tree = / ( =: Dp(z —y) (A.18)

with € being infinitesimally small.

The solutions of the free theory are known (as solutions of a Klein-Gordon equation).
Therefore, the unknown ground state and fields of the interacting theory with A\ # 0
should be described by the free fields using the splitting of the Hamiltonian into a free
and an interacting part:

A
H = HO + Hint = HKlein—Gordon + /d3$1¢4($) (Alg)
In the Heisenberg picture the free field is equal to

¢1(t, %) = ¢(t, T)|rmo = U0 p(1,, 7)e~Holt=l0)

—ipx 1t _+ipz
(ape + a,e )

(A.20)

z0=t—tg

_ / dp 1
IRACTENTA

129



A Appendix

with annihilation and creation operators a, and aL, respectively. Thus, the interacting
field in the Heisenberg picture can be written as

O(t, T) = AW, F)e 01

— eiH(t—to)e—iHo(t—to) eiHO(t_tO)qb(t, f)e—iHo(t—to) eiHo(t—to)e—iH(t—to)

- ¢I(t’ f)
= UT(t,to)ds(t, D) U(t, Lo). (A.21)

Ul(t,to) can be described in terms of ¢; because it is the unique solution of the differential
Eq.

0
€)= Hi () (A.22)
with the interaction Hamiltonian
. < A
H(t) = ettolt=to) f o =iHolt=to) — /d?’xgﬁ(x) (A.23)

for the initial condition £(ty) = 1. Thus, the following identity holds:

Uty t) =T {exp {—@' 7t Hl(t)] }

ti

3 (_n"yl/:f dty ... dt, T {Hi(t1) ... Hi(t,))

1+ (—i) /: dt, Hy(t) + <_2?2 /: dtvdts T{H (0)Hi(8)} . (A.24)

Inserting this formula for ¢; = ¢y and ¢y = t into Eq. (A.21) yields the field ¢ for the
interacting theory being described in terms of the field ¢;. As ¢ is the free field in the
Heisenberg picture and hence controllable, the interacting field is controllable.

To be able to calculate the two-point correlation function (A.16), the ground state of the
interaction theory |{2) has to be expressed in variables of the free theory. Considering
only interactions which are small perturbations of the free theory, the overlap between
|2) and the free ground state |0) is unequal zero. With the eigenvalues E, of the
Hamiltonian H the free ground state can therefore be evolved through time as

eHTI0) = 3 e T |n) (nf0) = ¢ ETIQ)(QI0) + Y0 B ) (nj0)  (A.25)

n€eNg neN

with the minimal energy Ey := (QH|Q) < E, for all n € N. The last term involves the
(unknown) eigenvalues and eigenfunctions of the interaction Hamiltonian H. They can
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be set equal to zero if 7" is sent to oo(1 —ie) with a infinitesimal £ > 0 because the term
e tEnT dies slowest for n = 0. Rewriting Eq. (A.25) then yields

_ . —iE,T -1 _iHT
[ = lim (e PT(Q)0) e T]0)

— lim <e—iEo(T+to)<Q|O>)_1e—iH(T+t0)|O>
)

T—oo(1—ie

— lim (e—z’Eo(to—(—T))<Q|0>>_1 e~ H(to—(=T)) iHo(to—(=T)) 0) (A.26)
T—oo(1—ig)
- U(to, —T)

since Hy|0) = 0. A formula for (€| can be derived analogically:

@ = lim  (OU(T.t,) (P 0j)) . (A.27)

T—o00(1—ig)

Thus, the two-point correlation function in terms of ¢; equals

Qoo —  tm  UTAG@o) e [~ [ dt Hi ()] }]0)

A28
T—o0(1—ie) <0 ‘T {exp {—Z’ J*7dt Hf(t)} H 0> e

In real applications, a finite number of terms of the Taylor series expansion is taken
instead of the whole exponential function.

The higher-order correlation function involving more fields can be derived in the same
way: For each additional factor of ¢ on the left-hand side there has to be an additional
factor of ¢; on the right-hand side. This yields the time-ordered product of m fields
which can be evaluated using “Wick’s theorem”:

contractions

T{é1(x1). .. 01(xn)} = N {gzﬁ;(xl) i) + ( all possible ) } . (A.29)

Hereby, the function N denotes the normal-ordered product!. The contraction of two
field ¢; = ¢ + ¢; with

b7 ~ /d?’pape_ip’”, b7 ~ /d3p alet (A.30)

is defined as

(67 (v), 1 ()], if 2 <y”

LA normal-ordered product has all annihilators on the right-hand side and all creators on the left-
hand side. Therefore, the vacuum expectation value of any normal-ordered product which is not
proportional to 1 is zero.

[pr(x)dr(y)]" = {[¢}“(x),¢;(y)] , if 20> yo} = Dp(z — ). (A.31)
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Then “all possible contractions” is an abbreviation for the sum of all possible terms
with contractions of the m fields with each other. For, e.g., m = 4 and ¢;(z;) =: ¢; for
1 =1,...,4, all possible contractions are

[G102]" P304 + [0103]" P200s + [$104]" 203 + [9203]" D104 + [P204] " D103 + [P3604]" D102
+ [P102]" [P30a]" + [P103]" [P20a]™ + [P104]" [P2003]" (A.32)
Due to the normal-ordering all terms which still include uncontracted operators have

the vacuum expectation value zero. So, the vacuum expectation value of Eq. (A.29)
equals

contracted terms contracted terms

(A.33)

OT{61(21) ... () }0) = <o

<sum of all totally) ’ > - (sum of all totally)

In the case of m = 4, that expectation value thus equals

O|T{p1 ... 04}0) = [P1d2]" [P304]" + [P103]" [P20a]™ + [P104]" [D2P3]"
= Dp(x1 — x2) Dp(xs — x4) + Dp(x1 — 23) Dp(r2 — 24)
+ DF($1 — I‘4) DF(.Z’Q - .Tg). (A34)

A.2.2 Feynman Diagrams

If the numerator of the correlation function (A.28) is expanded in terms of ¢y, it can be
calculated using the derivations from Wick’s Theorem (A.33). To make sure one does not
forget one of the summands, each of them is represented by “Feynman diagrams”: Every
point 1, ..., z,, is represented by a dot and the contractions Dp(x;—x;) (4,5 = 1,...,m)
by a straight line. E.g.,

r—> 0

(O[T{e1 ... ¢4a}|0) = + +

o —> 0

In general, the numerator of the correlation function for m fields equals?

<0 ‘T {¢1($1) (@) exp [—i/dtHl(t)] H O> _ (sum of all possible diagrams) ‘

with m external points

(A.35)

2The equivalence is based on the superposition principle of quantum mechanics: If a process can
happen in alternative ways, the amplitude of the process will be equal to the sum of the amplitudes
of each way.
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As an additional simplification, each part of a diagram is associated with an analytical
expression so that the value of the term according to a particular diagram can be read
off from the diagram by multiplying these expressions. In the ¢* theory this analytical
expressions (“Feynman rules”) are

e Dp(x —y) in momentum-space for each line between two points x and y (“propa-
gator”),

e —i) [d*z for each vertex,

e 1 for each external point.

Additionally, one has to divide by the symmetry factor, i.e. the number of diagrams
which one gets out of one be interchanging same parts. The Feynman rules used in this
thesis are given in section 2.6.1.

Consider again the two-point correlation function. A typical diagram with two external
points x and y consists of a piece which is connected to x and y and several parts which
are disconnected from these external points. Let {V;} describe the set of all _possible
disconnected pieces and V; be the value of the disconnected diagram Vi e {Vi}. Ifa
typical diagram has n; disconnected diagrams of the type V; € {V} its value will be

1
(value of the connected part) : H o (V)™ (A.36)

with the symmetry factor —; arising from the possibility to interchange the n; copies of
the disconnected diagram V;. Thus,

<o ‘T {@(Q;)qsf(y) exp {—i / dtHI(tﬂ }’ 0>

- Z Z (cong:cl::doliiece> . H nl.l (V)"
all possible  all ordered % v
connected pieces sets {n;

lue of

- 3 ( Va:edo , ) 3 H (A.37)
all possible connected piece all {n;} ¢ Z'

connected pieces

= exp [ Vi
With an identical argument the denominator equals

ool [Tamo o) -oofsr]. ass

As the argumentation is the same for the numerator and denominator of the correlation
functions with m > 2 fields, it equals

QT {¢1(x1) ... dr(zm) } Q) = (

(A.39)

sum of diagrams connected
to all n external points
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