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Chapter 1

Introduction

During the first few microseconds after the big bang the universe went through
a phase transition where the quarks and gluons were confined into hadrons. One
aim of heavy-ion physics is to create the reverse process, i.e. to deconfine the
hadrons into quarks and gluons. This state of matter is called the quark-gluon
plasma. In Fig. 1.1 one sees the phase diagram of QCD according to our present
understanding as a function of density and temperature. Accelerator facilities
like RHIC (Relativistic Heavy Ion Collider) or the LHC (Large Hadron Collider)
try to reach the phase boundary with very high temperatures and low baryon
density (cf. Fig. 1.1). Another possibility to reach the quark gluon plasma is to
create a high baryon density, which is expected to be highest at beam energies
around 30 A-GeV [KL95]. The reason for the high densities is that the collision
partners are stopped to a certain amount. So they cannot leave the collision zone
as fast as the new particles enter the collision zone and therefore high densities
are created. Pioneering work at large baryon densities was done at the AGS (Al-
ternating Gradient Synchrotron) in Brookhaven, where the energy range up to
15 A-GeV was explored. CBM (Compressed Baryon Matter), the future facility
at GSI, will provide beams from 2 A-GeV to 40 A-GeV and one aim is to scan
for indications of the deconfinement phase transition.

One believes that an indirect signal for the quark-gluon plasma is an enhancement
of strangeness production. The main qualitative idea, which was first suggested
by Rafelski and Miiller [RM82], is that the strange quarks are thought to be pro-
duced more easily via the fusion of gluons in that deconfined state as compared to
the production in highly threshold suppressed inelastic hadronic collisions. That
effect should then be seen most easily in the most abundant strange particles,
the kaons. At the AGS and the SPS the K* /7% ratio was studied and one found
indeed a maximum in the ratio at about 30 A-GeV [A102].

The underlying theory which describes the dynamics of quarks and hadrons is
the Quantum Chromodynamics (QCD). In QCD the exchange particles are the
gluons, which are the analogue of the photons of QED (Quantum Electrodynam-
ics). Unlike the photons, the gluons carry a charge themselves. Therefore they
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Figure 1.1: The QCD-phase diagram as a function of density and temperature
taken from [KHu).

can also interact with each other, which leads to the peculiar property of QCD
that the coupling constant increases at low momentum transfers. Due to the
increase of the coupling constant, perturbation theory is not applicable at low
energies and the confinement and the deconfinement cannot be understood from
QCD calculations. The only hints at which temperatures the phase transition
might occur come from lattice QCD calculations and they suggest a critical tem-
perature T, ~ 150 — 180 MeV for the deconfinement phase transition.

In this work we will study kaon and pion yields and especially the Kt /7" ra-
tio within a transport model based on the BUU equation. Similar studies have
already been performed with other codes, as for example RQMD (Relativistic
Quantum Molecular Dynamics) [WLS*99] or HSD (Hadron String Dynamics)
and UrQMD (Ultra-relativistic Quantum Molecular Dynamics) [WBCS03]. The
RQMD model explained the ratio in terms of hadronic rescattering and has been
in agreement with data. HSD and UrQMD did not reproduce the peak in the
ratio but in their calculations the discrepancy were due to the pions and not to
the kaons. We will come back to that issue in Chapter 5.

The energy range, we are interested in, is from 2 A-GeV up to 40 A-GeV. The
problem in that energy range is that one has to deal with different kind of reac-
tions and degrees of freedom. At the lower energies, for example, one has to deal
with resonance scattering, whereas at the higher energies we describe reactions
within a string model. In the first chapter we will present our model and show its
results in elementary reactions. The next chapter is devoted to the most impor-
tant ingredient (at CBM energies), the string model. Then we will work our way
from proton induced reactions to heavy-ion collisions and we will put emphasis



on the development of the KT and 7™ rapidity spectra. After we have studied
the system size dependence for strangeness production, we will study the energy
dependence. That will be done in Chapter 5, where we will show the excitation
functions in comparison to data and other models. The thermal model will also
be discussed and compared to our model. We will see that our model is not
able to reproduce the peak, which exists in the data. Therefore we will study
the influence of some modifications of our model. In particular we will show the
influence of off-shell effects and resonance life times on the particle production
and we will discuss string-string collisions. Finally we will close the work with a
summary and an outlook.
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Chapter 2
The BUU Model

In the present work we describe heavy-ion collisions with a transport theory
based on the Boltzmann-Uehling-Uhlenbeck (BUU) equation. This equation de-
scribes the space-time evolution of a many-body system under the influence of a
mean-field potential and a collision term. Since we have performed most of the
calculations in the cascade modus, which means without potential, we will focus
on the collision term in our discussion and only give a brief description of the
BUU equation itself.

The model, which is used in the present study, is described in detail in [Eff99].
We will try to give a self contained overview but we will also often refer to that
work. In [Eff99], however, the model is not used for high-energy heavy-ion colli-
sions and the description of the string model is very short. Therefore we will put
emphasis on those parts and on the things which have changed.

2.1 The BUU equation

The BUU equation is an equation for the phase-space density f(7,p,t). We will
first write down the equation and afterwards briefly discuss its structure. For a
derivation we refer to the literature [KB62, Dan84, BM90]. The BUU equation

is given by
0 OHpy 0 OHpyyp 0

<§+ op oF  orF a_ﬁ) fEp) =51+ f)-%7f  (21)

with

3
(1 + f) E>f / d p2 d? p33 (Cé p)43( 71_)45(4)(p + Dy — 3 — p4)

x |M|* (f3f4(1 i L)+ f) = R+ f5)(1 £ fa)),

where M is the invariant matrix element, f; = f(7, i, t) the phase-space density
for one particle species and H,,y is the Hamiltonian which is in a non-relativistic

(2.2)
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setting
-

. p .
H(Tapa t) = % + U(Tapa t) (23)

and U (7, p,t) is the single-particle mean-field potential. We will discuss the rel-
ativistic Hamiltonian in Section 2.1.1 and 2.1.2.

If the right hand side of Eq. (2.1) is zero, the equation is also called the Vlasov
equation. The meaning of that equation is easy to see, if one recalls Liouville’s
theorem which says that the phase-space density along the phase-space trajectory
of a member of the ensemble is constant

dfn

X =o. (2.4)

fv = fn(F1, D1, -- -, 7N, Pn, t) is the N-body phase-space density. If one neglects
the dynamical correlations between the particles and assumes that the N-body
phase-space density can be written as a product of the one body phase-space

densities
N

fN(Flaﬁla"'aFNaﬁNat):H‘fl(ﬁi;@at)a (25)
i=1

we get the Vlasov equation

d 0 OH 0 OH 0

dt ot orop O0p or
So the left hand side of Eq. (2.1) describes the time evolution of the phase-space
density of a system of non-interacting particles under the influence of a potential
U.
In situations, we are interested in, e.g. a heavy-ion collision, we cannot neglect
the hard short-ranged interactions between the particles and therefore we need
the right hand side of Eq. (2.1), which is called the collision term. We want to
discuss the structure of the collision term by looking at a two body process

1+2—3+4. (2.7)

The right hand side of Eq. (2.1) is made up of two terms, the gain term L<(1+ f)
and the loss term X~ f. The loss term describes the possibility of a particle to
scatter out from the phase-space cell, we are looking at. The integral is per-
formed over all possible collision partners, i.e. over ps and over all possible final
states with momenta p3 and p,. The probability for the scattering process is
proportional to the density of the initial state, which is taken care of by the fac-
tor fifo(fi = f). In case of fermions, the final state is Pauli blocked, which is
expressed by including the factors (1 — f3) and (1 — f4). In case of bosons the
final state is Bose enhanced and the factors change to (1 + f3) and (1 + f). The
transition probability is given by the cross section, which is proportional to the
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invariant matrix element squared |M|?, which explains the factor |M|?. Similar,
the gain term describes a scattering into the phase-space cell under consideration.
The processes which are taken into account in the present model are described
in Section 2.3.

For resonances, we actually solve in our model a slightly modified transport equa-
tion, where one does not use the on-shell approximation :

0  OHn; 0 0Hnp 0\ ... -
94 °_ Z)F —S(1+£ JA-SF, (2
(6t op or o 6;5) (Bt ) = 55(1 £ ) - @Y

where F(7,p,t,n) = f(7,p,t, u)A(7 P, t, 1) is the spectral distribution function,
A is the spectral function given by

2 M2Ftot(f’7ﬁ: ta ,LL)
A _" _‘7 t’ = - — = 2‘9
P ) = 208 232 + 12T s 1) 29

and y is the mass of the resonance. A is normalized according to the measure du
instead of dpy/27. For a more detailed description we refer to [Eff99].

If there are N particle species in the code, we have to solve a coupled set of N
differential equations

Difi = Li(fi,---, fn)- (2.10)

D; is a differential operator, representing the left hand side of Eq. (2.8) and I; is
the collision integral, which in case of N particle species might depend on N one
body phase-space densities. Solving such a set of equations is analytically out of
reach and so we have to rely on an approximation scheme. The method we use to
solve those equations is the test-particle method, where the spectral distribution
function is approximated by a discrete density of a certain number of so called
test particles

(27)°
g

F( 5 t) = 3 300~ R(0) =8~ S - m(®), (211

where NV is the number of test particles per physical particle and g is the degener-
ation factor in case of inner degrees of freedom. The normalisation is again suited
for an integration over du. For a detailed description of the numerical realisation
we refer to [Eff99].

2.1.1 Relativistic generalisation

In order to get a relativistic generalisation of Eq. (2.1), we use a relativistic
Hamiltonian and we modify the collision integral. The relativistic Hamiltonian
is given by

Hop =\ (M + Us)? + (1) + U, (2.12)
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where Ug is a scalar potential, Uy is a vector potential and
M=p-Uy (2.13)

the kinetic four-momentum (cf. [Eff99]).
The collision integral changes to (cf. [Eff99])

1 / d3T1, d®113 d®T,
21Ty J (2m)32119 (27)32118 (27)32119

x (2m)*6™ (p + p2 — ps — pa) 5| M|
X (fsfa(Q £ f2) (A £ f) = fa(1£ f3)(1 £ fu)).

S+ f) -5 =
(2.14)

l\DIn—l

2.1.2 The Potential

In the last section we introduced the relativistic Hamiltonian and the relativistic
collision integral, where one encounters the vector potential Uy . For numerical
simplicity we set Uy = 0, but we will account for it in the following different way.
The four current j, is given by an integration over the phase-space density

. d*p p*
gu—g/( s 70, (2.15)

where g is the degeneracy of the one particle state. The local restframe is the
system where the spacial components of j, vanish. In that system the density is

given by
pirf = p(T) = \/J*ju- (2.16)
The potential is parametrized according to a suggestion of Welke et al. [WPK™88|

p(7) p(7) &’y f(7, D)
U7, p) = A——i—B( )—i—pg L) (2.17)

Po (2m)31 + _(p?gy

Since that potential is numerically very expensive, we approximate the phase-
space density by the phase-space density at temperature 7" =0 :

f(79) = 0(pr(r) — |P1), (2.18)
where the local Fermi momentum pg is given by
s
el = (S0 (2.19)

We take that potential to be the zeroth component of the vector potential in the
local restframe, so that HI myf 1S given by

Hyf = \/M + Uy (7, D). (2.20)
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The effective scalar potential is now defined such that

(US + M0)2 +pl2rf = (\/ M(% +Z§l2'rf + Ule)Q' (221)

Setting Uy, = 0 is therefore not an approximation because in a spin symmetric
system in the local restframe Uy vanish anyway.

2.2 Considered Particles

In Tab. 2.1, 2.2, 2.3 and 2.4 we list all particles, which are incorporated in the
BUU model. We also list the charmed particles for completeness, although they
have not much influence on the dynamics of the reactions, we are looking at. The
parameters are taken from the work of Manley [MS92].

2.3 The Collision Term

In this section we will summarize the interactions which are implemented in the
BUU model. In general the collisions are divided into three sections: the baryon-
baryon reactions, the baryon-meson reactions and the meson-meson reactions,
which will be described in the next three subsections. The general criterion for
collisions is a semiclassical geometrical method, which is based on a relativistic
algorithm from Kodama et al. [K*84]. First we calculate the distance of the
particles in their center-of-mass system, which is then compared to a maximal
distance byae = 4/ 0t0s/m, which is the radius of the total cross section oy for the
reaction. Then we determine if the current time step is the time step at which
the particles reach their closest distance. If the distance in their center-of-mass
system is smaller than b,,,, and they reach their closest distance in the time step
under consideration the particles will collide and in case of several final states,
the state is chosen by a Monte Carlo decision with the probability according to
the respective exclusive cross sections.

2.3.1 Baryon-Baryon Reactions

For invariant energies of \/s > 2.6 GeV we use the Fritiof model, which will be
explained in Chapter 3 to describe baryon-baryon reactions. Below those energies
the following reactions are taken into account
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Resonance Decay probabilities in %
Nr|Nnp|Nw|KA| Axr | Np |[NX|N«w|Ap
N (938) ool oTo 0 0 0 0 0
P3(1232) 100 0 | 0 | 0 0 0 0 0 0
P(1440) [ 69 [ 0 | 0 | © 22p 0 9 0 0
P(1535) || 51 [ 43 [ 0 | 0 0 3s 1 2 0
S11(1650) [ 89 [ 3 | 0 | 0 20 3s 2 1 0
S11(2090) [ 10 0 | 0] O 6p 49¢ 5 ] 30 [ 0
D13(1520) [ 59 [ 0 | 0 | 0 | 5s,15p 21g 0 0 0
Di3(1700) [ 1 [ 0 [ 0 | 0 | 5s,79p 13 2 0 0
Di3(2080) [ 23] 0 | 0 | 0 | 3g,21p 265 27 | 0 0
Di5(1675) | 47 [ 0 | 0 | 0 53p 0 0 0 0
Gi7(2190) | 22 | 0 [ 49 | © 0 29p 0 0 0
Pn(1710) | 9 [ o | o | 37 49p 3p 2 0 0
P(2100) [ 15 0 [ 0 | 2 24p 27p 32 [ 0 0
P3(1720) [ 13 [ 0 [ 0 | 0 0 87p 0 0 0
Pi3 26 | 0 |30 [ O 0 44p 0 0 0
Fi5(1680) | 70 [ 0 | 0 | 0 | 10p,1p | 5p,2¢ | 12 | 0 0
Fi5(2000) | 8 [ 0 [ 0 | 0 12p | 60p,155 | 5 0 0
Fi7(1990) | 6 [ 94 0 | 0 0 0 0 0 0
S3(1620) [ 9 [ 0] 0] 0 62p 255,4p | 0 0 0
S3(1900) | 4 [ 0 [ 0 | O 16p 55,33p | 0 6 0
D33(1700) | 14 [ 0 | 0 | 0 | 74g,4p 8s 0 0 0
Ds3(1940) || 18 | 0 [ 0 | 0 | 7s,40p 355 0 0 0
D35(1930) [ 18 [ 0 | 0 | 0 0 0 0 0 |82p
D35(2350) [ 2 [ 0] 0 | 0 0 0 0 0 |98p
Py, 8| 0] 0] O 0 0 0 | 28 |64p
Py (1910) [ 23 [ 0 [ 0 | © 0 10p 0| 67 [ 0
Ps3(1600) [ 12 [ 0 [ 0 | 0 68p 0 0 [ 20 0
P(1920) [ 2 [ 0 [ 0 | 0 83p 0 0 [ 15 | 0
Fis 2 10 0 | 0 |28p,48x| 22p 0 0 0
Fy5(1905) [ 12 [ 0 [ 0 | 0 1p 87p 0 0 0
F3(1950) | 38 [ 0 [ 0 | © 185 0 0 0 | 44p

Table 2.1: Included baryons with S=0 and their decay properties. The index
at the decay probabilities corresponds to the relative angular momentum of the
outgoing particles.
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Resonance Ty Decay probabilities in %
MeV] | A | NK | En [ E*n | Ap | NK* | A*m
A(1116) 0 o] olo]o o] o 0
¥(1189) 0 ol 0] 0] 0 ]O0] O 0
P5(1385) | 36 [ 8] 0 [ 12| 0 [0 ] 0 0
So1(1405) | 50 0] 0 J100] 0 [ 0] O 0
Dy3(1520) | 16 0| 46 [ 43 ] 11 [ 0] O 0
Py (1600) | 150 || 0 [ 35 [ 65| O | 0 | O 0
Py;(1660) | 100 | 40 | 20 | 40 | O | O 0 0
S1(1670) | 35 0] 25|45 ] 0 [30] 0O 0
Di53(1670) | 60 15015 [ 70| 0 |0 0 0
Dy3(1690) | 60 0253|450 0 0
S11(1750) | 90 103 [60] 0 |0 0 0
D15(1775) 120 [20] 45 [ 5 [ 10 0] 0 | 20
So1(1800) | 300 | 0 [ 35 [ 35 [ 30 | 0| 0O 0
Py (1810) | 150 || 0 [ 35 [ 20| 0 | 0 | 45 | 0
Fos(1820) | 80 0601228 0] 0 0
Dy5(1830) | 95 0| 5 [60] 3 | 0] 0O 0
Py3(1890) | 100 || 0 [ 30 [ 10 [ 30 [ 0| 30 | 0
Fi5(1915) | 180 [[ 25| 25 [ 10 | 15 | O 5 |20
Go7(2100) | 200 || 0 | 30 | 5 [ 45 | 0 | 20 0
Fos(2110) | 200 || 0 [ 15 [ 30| 0 [ 0 | 55 | 0

Table 2.2: Properties of the included baryons with S=-1.

| baryon || Mo[MeV] [ [4[MeV] | S | C |
= 1315 0 2710
=R 1530 9 210
Q 1672 0 3]0
Ac 2285 0 01
Yo 2455 0 01
3 2530 0 01
Ec 2466 0 11
=5 2465 0 11
Qc 2704 0 211

Table 2.3: Properties of the included baryons with S < -1 or C=1.
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Meson [1\5[\/;{ ({/] [l\/fe OV] JI1T|S|C decay channels
™ 138 0 0/1[0]0
_ 40%),
n 547 |1.2-1073|0[0| 0|0 7r+7r—7r0gs§%),;7r0(32%)
p 770 151 [1[1]0]0 T
o 800 800 [0J0[0]0O T
7 (2%), ™ (9%),
w 782 84 |1/0[0]0 e nO(89%)
n' 958 0.2 0000 pv31%),rmn(69%)
pr(13%),
¢ 1020 44 |1|/0]0]0 KT(S4%). »n- 70(3%)
Ne 2980 0 0/0[0]0
J/v | 3097 0 1[o]0]0
K 496 0 0]z]1]0
K 496 0 0[z]-1]0
K* 892 50 1/2]1]0 Kr
K 892 50 [1]i]-1]0 Kn
D 1869 0 0[z]0]1
D 1869 0 0[2]0]-1
D* 2007 0 1/2]0]1
D" | 2007 0 1]1]0]-1
Ds | 1969 0 0jo[1]1
Ds | 1969 0 0[0]-1]-1
Dy | 2112 0 ojof1]1
Dy | 2112 0 0[0[-1]-1

Table 2.4: Properties of the included mesons.
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NN — NN
NN & NR
NN & AA
NN + NN7
NN — NNw
NR + NR
BB — NYK
BB — NY*K
BB — NNKK,

where N stands for a nucleon, R for a resonance, Y for a hyperon, Y* for a
hyperon resonance and B for a nucleon or a resonance except of A. The exact
parametrisations and comparison to data can be looked up in [Eff99].

2.3.2 Meson-Baryon Reactions

Here we use the Fritiof model for invariant energies above 2.0 GeV. For /s < 2.0
GeV the collisions are treated via resonance production. In particular we use the
Breit-Wigner formula

2JR +1 47 SFR_meR_,f
(2J, + 1)(2Jy + 1) Sepp?, (s — (M3))? + sT%,’

Oab—R—f = (2-22)

where pg is the center-of-mass momentum, /s the invariant mass, My the pole
mass of the resonance, S, = 1/(mgmy) is a statistical factor, the J’s are spins
of the particles and the I’s are the widths. Since we propagate resonances ex-
plicitly, we sum over all possible decay channels to get the cross sections for the
resonance production only (for a detailed description see [Eff99]). If all reso-
nances are included we overestimate the total cross section for 7~ p collisions.
Therefore we neglect all resonances which are assigned one star in [MS92]. At
pion momenta above 1.5 GeV the total cross section seems to saturate whereas
the resonance cross section drops. We treat this discrepancy as a non resonant
two-pion-production background

bg 5%P
OrNosNar — OaNox — E OrN—R- (223)

If we neglect the one star resonances the 7tp cross section turns out to be too
low and therefore we treat the discrepancy again as a non resonant background,
which is equal to the contribution of the one star resonances.

Wpﬁwp Z Orn4+p—R—mp (224)
R(1star)
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bg — E:
Uﬁp_ﬂvﬂﬂ— - On4+p—R—Nrr (225)

R(1star)

In addition we consider the following non resonant processes explicitly

N <+ wN
N — wrN
wN — 7N
wN — wN
™N <  ¢N
oN — 7N
oN — oN
TN <  nA.

For processes including an w-meson we have to subtract the resonance contribu-
tions which couple to the Nw-channel.
For strangeness production we included the following processes

N +— AK
TN < YK
N — NKK
A < AK
A < YK
A — NKK.

For N — AK again we have to subtract the resonance contributions. Those
processes are important at the low AGS energies and of course below, whereas at
higher energies those channels become unimportant in comparison to the string
channels. We will discuss that in more detail in Section 4.3.3.

For processes involving strange particles the following reactions are incorporated

KN — KN
KN & 7A
KN & 7%
KN < 7#Y*
KN — KN
KN — KnrN.

These reactions are important in order to get the right relation between strange
mesons and strange baryons.
The parametrisations of all those processes can be looked up in [Eff99].

2.3.3 Meson-Meson Reactions

In the meson-meson channel the resonance cross sections are included according
to the decay properties which are listed in Tab. 2.4. In addition we put in
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K K K K K K
| | | | | |
| | | | | |
| | | | | |
I ok* Ik | k|
- - - g__
n n Y Y Y n

Figure 2.1: Feynman-diagrams for MM — KK.

background terms, which account for the strangeness production. In [BKWX91]
the cross sections for 7 — KK, m7p — KK and pp — KK were calculated by
considering the diagrams in Fig. 2.1. We use a parametrisation of 77 — KK
from [CBM™97], which is based on these calculations.

)

S

(2.26)

™

Onr ki = C6.075mb <1 -

where C' is the Clebsch-Gordan coefficient for the respective isospin channels

C' =" | (iviamama | irial M) |?| (igiamamy | igiaI M) [2. (2.27)
I

The sum runs over all possible isospin configurations and ¢, and my are the total
isospin and the z’th component of the particle k. The particles are numbered
according to (1 +2 — 3+ 4). For simplicity we take the same cross section for
pp — KK and mp — KK since the isospin in the incoming channel is the same.
This is not exactly the result from [BKWX91] as we will discuss later. For all
other reactions with two nonstrange mesons in the incoming channel we assume
a constant value of 2 mb for the cross section. The back reactions are included
and their values are calculated according to detailed balance.

Now we briefly want to motivate our choice for the cross sections, we just de-
scribed. In [BKWX91] the authors also studied medium effects and the result
was that the cross section from Fig. 2.1 increase significantly. So in principal
there is a lot of freedom to choose the value of the cross sections. In [BKWX91]
and references therein the vacuum cross sections are always of the order of a few
mb and therefore we think, that our choice of the strangeness production cross
section for meson-meson reactions is reasonable. Since the elementary reactions
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are not accessible experimentally, we have to check our choice of the cross sections
in heavy-ion collisions by checking the yields of kaons, which will be done later.
That will give us of course just a rough estimate of our cross sections since many
other collisions influence the dynamics.



Chapter 3
The Fritiof Model

At the energy regime we are interested in, we encounter the problem that we are
not able to describe hadron-hadron collisions from first principles since we are at
the non-perturbative region of QCD. So we have to rely on models, like the Lund
string model [And87], which we want to discuss in the following.

The picture is that in a hadron-hadron collision there are many soft parton colli-
sions which add up to a sizeable longitudinal momentum transfer. In the Fritiof
model it is assumed that there is no exchange of color, like in other string models,
e.g. the VENUS model [Wer93]. Now we want to describe how the momentum
transfers are determined and in order to do that we will use lightcone coordinates
which will turn out to be useful, especially when we describe the string fragmen-
tation.

The lightcone coordinates are defined as follows

pi =FE+p, (31)

and so the four momentum of two hadrons with masses m; and ms in the center-
of-mass system with four momenta in usual coordinates (E, p,0;), (E, —p, 0;), are

given by
. 7n2 . 'rn,2
Plz = (pH—, —laot) 3 PQZ = <—25p2a0t) ) (32)
Pt P2
where ¢ stands for initial. It is easy to see that
PetDr— =mi k=1,2. (3.3)

After the momentum transfer @ = (Q+, Q—, @t) we get two excited hadrons with
four momenta

2 . . 2 .
Plf = <p+ _Q+a;n__:+Q—:Qt> ’ PZZ = (% +Q+7p— - Q—aQt) . (34)

The momentum transfer scales according to the following distribution
dP{ dP{,
Pl P,

Prob ~ , (3.5)

17
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where ) )
pl="11q, pP.="241q. (3.6)
Py P2
This longitudinal momentum transfer determines which energy will be available
for particle production.
The transverse momentum transfer is distributed according to a Gauss function

with (Q?) = 0.01 GeV?/c?, which corresponds to o = 0.2.

Prob(Q;) ~ ﬁ exp (‘;) (3.7)

An important point is that the Fritiof model does not reproduce the experimen-
tally known elastic cross sections and so the decision whether an elastic or an
inelastic process is happening is put in by hand [Fal].

Once the excited hadrons are generated they decay by the Lund fragmentation
which will be described in the next section.

3.1 The Lund Model

Most of the informations about the Lund Model, which will be presented in the
following have been obtained from [And98]. We start out by looking at a massless
relativistic string in one dimension. The string plays the role of a constant force
field acting on a charge and an anticharge, which sit at the endpoints. We identify
the charges as massless quark and antiquark with triplet 3, resp. 3, color charges.
They form a so called yoyo hadron, which is in that model a meson. We neglect
the masses of the quarks and the production of baryons for simplicity. There
are no conceptual differences in implementing those issues and we discuss these
points later.

The equation of motion for a particle under a constant force —x is simply

dp _

= k. (3.8)

In our case for massless particles, it is easy to show that the model is covariant,
since (with ¢ = 1), we know that £ = p and « = ¢ and after a Lorentz boost we
have

t' =t — Bzr) =v(1 - B, pP=vp-BE)=71-8p  (3.9)

and therefore
dp _ dyf

dt — dt'
The solution to the equation of motion is obviously

p(t) = po — kt = K(tg — 1). (3.10)
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We also need an expression for the kinetic energy, which we get by

dE  dEdpdt
b e 3.11
dz ~ dpdtds " (3:11)

and the corresponding equation of motion is
E(z) = Ey — kx = k(x0 — ). (3.12)

Now we describe the yoyo hadrons in more detail. In Fig. 3.1 one can see the
trajectories of the particles together with their energy at certain times. At t =0
the particles both have lightcone momenta 2FE, and they start to separate and to
stretch the color field in between them. At time ¢4 they are a distance 2t 4 apart
and their remaining energy is Fy — kt4. At time tg = Ey/k they lost all their
energy and they reverse the direction of motion. On the way back they eat up
the color field between them and therefore increase their energy until they meet
again and they restored their original energy E,. Now the whole motion starts
again but the role of the ¢ and the g are exchanged. We note that the total area
A spanned by the force field in space-time is related to the mass m of the system
by ,

K2A = I€2% = m?. (3.13)
In Fig. 3.2 we see the yoyo mode after a boost in the positive direction. The
sides of the rectangle now change from 2Ej to 2E; exp(—y) and 2Fj to 2Eq exp(y)
respectively, according to the transformation properties of the lightcone coordi-
nates under a Lorentz boost.
The fragmentation is described by assuming that if the mass of the state is larger
than the mass of a hadron, new ¢g-pairs can be produced along the field. This
corresponds to a breaking of the strings. The pair will immediately start to sepa-
rate due to the attraction of the original quarks and antiquarks. In that way they
will eat up the field energy between them and so there is no field between the
newly produced pair. Now the original quarks and the newly produced quarks
build together two hadrons and the string in between can break up again (see Fig.
3.3). That procedure goes on until all yoyo states have the masses of physical
hadrons.
Now we want to discuss the ordering of the process and in order to do that we
have to consider the energy momentum properties of the string pieces. We look at
a state with one quark produced at the vertex A and the other quark produced at
B with space-time coordinates and energy momentum given by (z;,t;), (p;, E;),
for j = A, B (cf. Fig. 3.4). According to the equations of motion (3.10, 3.12),
the total energy E and total momentum p of the two quarks meeting at O is

E=FE\s+ Ep=k(za—zp), (3.14)

p=pa+pp=k(tsa—tp). (3.15)
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Figure 3.1: The left side shows the space-time diagram for the motion of a
qq-state, in which particles always have the same energy, i.e. the yoyo mode at
rest. On the right hand side, the arrowed lines show the energy of the particles
and the thick lines correspond to their separation, i.e. the field in between. The
time evolution of the right hand side corresponds to only one of the squares of
the left hand side.

2t,coshy
f, exp y

L.

Ty €xp(-y)

/257 oy

Figure 3.2: Space-time diagram of the ¢g-pair after a boost in the positive
direction.

2E,exp(-y)
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Figure 3.3: The fragmentation of a string.

Figure 3.4: The Formation of a hadron from a quark coming from vertex A and
a quark originating from B.
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So we know that the mass of our meson is given by
m? =E? —p® = k*((xa — 28)? — (ta — t)?). (3.16)

An important consequence of that equation is that the distance of the vertices
A,B must be spacelike in order to have a real mass. Therefore the vertices are
not causally connected and the vertices have to be independent of each other.
This fact will be used when we derive the fragmentation function.

Another important consequence of Eq. (3.16) is that we have only one degree of
freedom for every yoyo meson, namely p, = F+p or p_ = E—p. That provides
us with a way of ordering the decay process, namely along one of the lightcones.
We start with a quark-antiquark pair g, g, with lightcone energy-momenta pg , py
(cf. Fig. 3.3). If we order the process along the positive lightcone, we will first
decide, which part of pj the first hadron gets. Once we decided, we know p;
by the mass constraint and we can go to the next vertex. So at the j'th vertex
we make a decision for p}L and the step in the negative lightcone p; is always
pinned down by the mass constraint. The same ordering can of course also
be achieved along the negative lightcone. We continue the procedure until all
states have physical masses. For the last step this is a problem since we are
additionally constrained by energy-momentum conservation or in other words
the p; for j = 1,n have to add up to py. If that is not possible in the last
step, one has to go through the whole iteration process again. In practice there
are two circumstances, which weaken the constraints. The first one is that there
are mesons and baryons with a width and so the mass constraint gets flexible.
The second point is that we also assign a transverse momentum to the particles,
which gives us another degree of freedom in order to fulfill energy-momentum
conservation and the mass relation.

In the next section we will derive the fragmentation function, which determines
the distribution of the step sizes z along the lightcones.

3.1.1 The fragmentation function

First we will define a new variable, namely the scaled lightcone components

p:I:

Z+ P at .

This is the variable we want to find a distribution for. The only difference is that
in the definition above z is scaling with the original light cone momenta p,. In
the fragmentation process we will choose z to scale with the remaining lightcone
momentum at the vertex.

We consider two adjacent vertices A,B and a hadron of mass m being produced
in between. This event can be described by taking a certain amount of steps
along the positive lightcone to reach A and then one further step to reach B or
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by taking a certain amount of steps along the negative lightcone to reach B and
then one further step to A. We call the lightcone coordinates at A and B z;, z_;
with 7 = A, B. Then by introducing the probability distribution H we can write
the probability to arrive at vertex A as

HI(A)d.T+Ad.T_A = H(FA)dFAdyA (317)

with '
x

FA:Ii2£E+AiL‘_A and Ya = —logLA.

2 T_A
In Eq. (3.17) we also used that H can only depend upon I'4 since that is the only
Lorentz invariant available. The corresponding probability to arrive at vertex B

going along the negative lightcone is

Now we introduce the probability distribution f, we are interested in. Taking
another step from A to B, respectively B to A, is thus given by the probabilities

f(zy)dzy and f(z-)dz_. (3.19)

By using that the probability for a certain fragmentation should be the same for
going along the negative lightcone as for going along the positive lightcone, we
can equate the two joint probabilities and get

H(T 4)dT gdyaf(zy)dzy = H(Tg)dl gdypf(z_)dz_. (3.20)

Since none of the distributions depend on y4 and yp we can take dy, and dyg
to be equal. Furthermore we find by looking at Fig. 3.5 the following relations
between the variables left

FA = (1 — Z,)WAWB, (3.21)
Tp=(1—2)WaWs, (3.22)
m? =z 2, WaWp. (3.23)

So we can eliminate ['4,'g, W4 and Wg. By building the Jacobian for the
transformation from I'4, 2y — 2z_, 24 and 'g, 2 — z_, 2z, we find the relation

ar 27— ar, (3.24)

2+ Z_

Using those relations, Eq. (3.20) reduces to

H(Ta(zy,2-))21 f(24) = HB(24,2-)) 2 f(2-). (3.25)
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Figure 3.5: The production of a hadron with mass m between two adjacent
vertices.

Taking the logarithm of that equation we obtain with A(I') = log H(I') and

9(2) = log(zf(2))
h(Ca) + g(21) = M) + 9(z-). (3.26)

Now we differentiate with respect to z, and z_, so that the g-dependence vanishes
and after some algebra we are left with the following identity
dh(T 4) d’h(T's) _ dh(T'p) d*h(Tp)

r _ r
ar, AT ar, P arg

(3.27)

Since the left hand side depends only on I'4 and the right side only on I'g, both
sides have to be equal a constant, which we will call b. Then the differential
equation we have to solve is

d (_dh
e (rd—F) = —b. (3.28)

By plugging in, one can easily check that the solution to that equation is
h(I') = —bI' + alogI' +log C (3.29)

and therefore
H(T) = CT%exp(—0bI). (3.30)

Now we can plug back in that solution into Eq. (3.26) and get an equation for
g. By assuming that the constant a, we introduced above, is the same for all
vertices, we find that the solution for f is

bm?

Flz) = NE(1 = 2)%exp (—7) , (3.31)

z
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Figure 3.6: The motion in space time of a particle with mass m under a constant
force —k.

where N is a normalisation constant.
The values for a, b are

a=0.44,

3.32
b= 0.37, (3:32)

which were fitted to data.

3.1.2 Massive quarks and baryons

So far we only considered mesons made of massless quarks. Now we will discuss
the changes when one assigns masses to the quarks and we also discuss the treat-
ment of baryons.

Massive quarks do not move along rectangles. They move along hyperbolas,
which one can easily see by looking at the equation of motions (3.10,3.12).

m? = E? — p* = k*[(z¢ — 1)* — (to — t)?]. (3.33)

The asymptotes, however, are again the rectangles (cf. Fig. 3.6). We also note
that the considerations for the fragmentation were independent of the mass of
the particles. In addition we have to account for another physical effect. Due to
energy-momentum conservation, a real massive quark-antiquark pair cannot be
created at one point of the string. For that reason a virtual pair has to be created
first, which then tunnels to a real pair. That effect can be calculated (cf. [GM83])
as follows. We start with a massive quark-antiquark pair which is produced in
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the string at time ¢ = 0. The longitudinal component of the momentum is given

by

pr+pi+mP=0 = p =iVp}+m? (3.34)
At time ¢ > 0 the virtual particles have moved a distance r apart and ate up the
color field in between. So at that time p; is given by

P = Z\/pf +m? — (kr)2. (3.35)

The particles will become real when p;(r) = 0, i.e. when E; = \/p? + m? = kr.
The wave function in the classically forbidden region can be calculated in the
WKB approximation. This is a quasiclassical approximation which one obtains

by plugging the ansatz ¥ = e#°) into the Schrédinger equation for one dimension
2
29"+ (E — U(z))¥ = 0, which results in an equation for o

1 2 7’ ! "
- - = E - - .
5 o 2 o U(x) (3.36)

The prime means a derivative with respect to x. If we now expand ¢ in a power
series in 7

h
a:ao+;al+... (3.37)
and keep only the lowest order term, i.e. we approximate o = 0y, we get
1
%03 =FE—-U() (3.38)

and therefore

o¢ = :i:/ V2m(E — U(z))dz, (3.39)

which is just the integral over the classical momentum. So in our case we can
write our wavefunction for the classical forbidden region in that approximation
as .

U(z) = U.exp [—z/ pl(r)dr] , (3.40)

E¢/k

where W, is the value of the wave function at x = E;/k. We chose the plus sign
in the exponential in order to get an exponentially decaying wavefunction in the
classical forbidden region. The integral for = 0 can easily be performed and we

get
¥(0) mE?
=) _ 7t 3.41
o = (-7 (3.41)
The probability that the virtual pair tunnels to a real one is then given by the
overlap of their wavefunctions at the origin

E2
|R?|> = exp (—W—t) . (3.42)
K
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The 4th power reflects the fact that both, the quark and the antiquark, have to
tunnel to real particles. The production of s-quarks is therefore suppressed in
comparison to the lighter u- and d-quarks.

The production of baryons is realised by the creation of diquark-antidiquark pairs.
The diquarks are treated like quarks with a higher mass. Thus a baryon is a yoyo
hadron made out of a quark and a diquark.

In the technical realisation the masses of the quarks and the diquarks are trans-
lated into suppression factors. The values for the suppression factors are

P(uu)

Plu) = 0.07

p  [03 for V5 > 20GeV

P(z) =404 for Vs < 5GeV (3.43)

- ﬁ\/E[GeV]_l for 5GeV < /s < 20GeV
P(su)
=04

P(uu) 0

Those parameters are taken from [Gei98]. The energy dependence of the strange-
ness suppression factor v = P(s)/P(u) was introduced in order to get a good
agreement with experimental data on strangeness production in pp collisions. A
comparison to data is shown in Section 3.1.5.

The particles which are implemented in our string model are

7T’77’K7K*7p7w’¢777,

and
p’ n’ A’ A" E’ E*'

We did not list the charmed particles because they are not produced at our energy
regime due to their high suppression factors.

3.1.3 Annihilation processes

The Fritiof model is only capable to produce two excited hadrons, which fragment
separately. Thus it is not possible to describe processes in which a quark from,
for example, an incoming baryon and an antiquark from an incoming meson
annihilate (cf. Fig. 3.7). An example for such a process is

N = YK, (3.44)

where Y stands for a hyperon.

Due to that reason we underestimate the strangeness production in the region
just above our threshold (y/s > 2 GeV) because there the easiest way to produce
a strange particle is through the annihilation processes, which we completely
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u u
p u u z
d S
d E K
1L
u u

Figure 3.7: Quark Diagram for the process ntp — ST K.

miss.

For that reason we included the annihilation by hand. In case of a reaction
of a baryon with a meson we check if an annihilation between a quark and an
antiquark is possible. This means that we split the hadron in its constituents
and check whether a quark and antiquark with the same flavour exists. If it is
possible we will choose according to the probability in Eq. (3.45) whether the
Fritiof model is called or an annihilation takes place. In the latter case we put
the remaining quarks (the quark content of the baryon and the meson without
the antiquark and the quark with the same flavour as the antiquark) in one
string which has the energy and momentum of both particles. Then the frag-
mentation is done according to the Lund Model. This is, of course, only a model
description. In case the two quarks are annihilating, at least a gluon would have
been emitted from the annihilation process. However, if one interprets that kind
of processes as a meson and a baryon annihilating into a short living resonance
which immediately decays, then we would have again only one object, which has
to decay. Since the decay properties are unknown one simulates the decay by a
string model. This is the way UrQMD interprets those reactions [Web02].

The probability for the annihilation is chosen such that we agree on the strangeness
production in 7mp — strange particles (see Fig. 3.8). We see that directly above
the threshold for string production the cross section with the old description
descends to almost zero for the reasons we just mentioned. The data is taken
from [BFMMS88] and it is not obvious how to count that cross section. In our
calculation we decided to have a 'strange particle’ event, if at least one strange
particle has been in the final state. In case of several strange particles we nev-
ertheless count the event only once. The strange particles have been in our case
the A, X, =, Q and all kaons. Due to these uncertainties we also compared exclu-
sive channels to data from [BFMMS88], where no question about the final state
arises. Some of the comparisons are shown in Fig. 3.9. We see in all channels an
improvement by implementing the annihilation processes, even though we do not
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Figure 3.8: Strangeness production in 7p in comparison to data from
[BFMMS88|. The vertical line corresponds to the threshold for the string model

(v/s =2 GeV).

Elab [GeV]

hit the data exactly in all reactions. The agreement at low laboratory momen-
tum is of course due to the threshold for string production. Above the threshold
the cross sections without the annihilation processes are falling down to zero as
expected.

Prob(annihilation) = max(0.85 — 0.17 - Gov 0). (3.45)

e

In some of the calculations, which will be presented later, we used a different
strangeness suppression factor, namely v = 0.3. In that case we have to readjust
the probability for the annihilation processes

Prob(annihilation), _, ; = max(1.2 — 0.2 - GV’ 0). (3.46)

There are two main reasons for the increase of the strange particle production
by including the annihilation. The first one is that we completely miss some
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Figure 3.9: Exclusive cross sections for strangeness production in 7p in com-
parison to data from [BFMMSS].
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Figure 3.10: Decay of a string. t; is the time, at which the quarks from the
adjacent vertices meet first.

channels, which we already explained before. Another point is that the invariant
energy per string decay is higher. If we have two strings instead of one, the two
strings decay separately and therefore it will often occur that every string alone
is below the threshold for strangeness production but if one puts the whole in-
variant energy into one string the string might decay into strange particles. By
putting all the energy into one string, the invariant energy becomes higher and
the production of strangeness more probable.

3.1.4 The Formation time

The application of a string model in a hadronic transport model raises the ques-
tion of the formation time of the hadrons, which are formed in the string. The
formation time is the time the constituent quarks of the respective hadron need
in order to bind together and to form the hadron. One question which arises is,
which is the point to define as formation point. One could for example use the
string break-up points or the point where the quark trajectories of a yoyo state
meet for the first time (cf. Fig. 3.10). If one defines one of those points as the
formation point, one can in general calculate the formation time. We decided to
let that question open and to use an effective formation time of

7y = 0.8fm/c. (3.47)

This is a reasonable time since in this time a quark-antiquark pair can separate
far enough to reach a distance which is of the order of the size of a hadron. Other
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transport models as HSD and UrQMD use a similar value for the formation time,
which will be discussed in Chapter 5. The formation time is defined in the rest
frame of the particle and so one has to multiply with the ~-factor of the particle
in the current system.

The next question which arises is, how to treat the hadrons, which are build out
of at least one quark, which have been there from the beginning. Those hadrons
are called the leading hadrons. It would be unreasonable to treat them in the
same way as the newly produced particles because part of their constituents
have always been there. On the other hand they also have to form and so it
would be wrong to treat them as ordinary hadrons. We decided to parametrize
our ignorance by reducing the cross sections of the leading hadrons during the
formation time by a certain factor. It turned out that the data is best described,
if we choose that factor to be 5.

1
o(lead.hadron-hadron) = go(hadron—hadron) (3.48)

The comparison to data in photoproduction processes was done in [Fal]. After
their formation time, all particles from the string decay react like ordinary par-
ticles.

We will raise the question of the formation time once more in Section 6.3 when
we talk about string-string collisions and the lifetime of a string.

3.1.5 Comparison to data

In this section we want to compare the elementary processes with the data,
available at the energies of interest. This means basically that we will show
the particle spectra and particle multiplicities which are produced by our string
model.

pp Collisions

The only baryon-baryon channel which offers enough data at our energies to
compare with, is the pp channel. In Fig. 3.11 we show the inclusive 7 and K
production cross sections as a function of kinetic energy. The data for the pions
are taken from [A173, BFMMS88| and the data for the kaons is a sample from
[GR96, BFMMS88]. We see that we describe pions relatively well, although we
slightly overestimate 7+ at energies below 10 GeV and underestimate them at
energies above 10 GeV. For the kaons we show two model calculations. One is the
calculation with the energy dependent suppression factor, as it was explained in
Section 3.1.2, and the other one is a calculation with a reduced suppression factor
v = 0.3. At energies below approximately 10 GeV we overestimate kaons in both
cases, whereas the situation looks better with the reduced suppression factor.
Above 10 GeV the error bars become very big and it is hard to make a precise
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statement. We have to keep that in mind when we look at heavy-ion collisions.
For K~ production the situation is similar. At energies below approximately 15
GeV we seem to overestimate K~ production, whereas at the higher energies it
is again hard to make a statement due to the big error bars.

Next we will investigate rapidity and p; distributions. We use the data from
an old experiment done by Blobel et al. in 1973 [B*73]. They measured the
inclusive production of 7%, K3, p, A,¥* and A at an incident beam momentum
of 12 GeV/c, which corresponds to a kinetic energy of 11.1 GeV. In Fig. 3.12 we
see the differential cross section for proton production together with the experi-
mental data. In the determination of the cross section only inelastic events were
taken into account. We overestimate the data around midrapidity which means
that the stopping is too high.

Figure 3.13 shows the differential cross section for 7 production. The dashed line
corresponds to the reduced suppression factor v = 0.3. We see that the differ-
ence in the pion production is quite small and the pion yields increase only little.
Therefore we will show in the following only the influence of the reduced suppres-
sion factor on strange particles. We underestimate the data around midrapidity
for 77, as well as for 7—. By looking at the proton rapidity spectra, which pro-
duced too much stopping, this result is unexpected. Since the stopping is too
high, we would expect the pions to be overestimated. We have to remember
that fact, when we discuss pion yields in heavy-ion collision. Next we look at
pe-spectra, which are shown in Fig. 3.14. The differential cross section is plotted
as a function of the transverse momentum squared. We see that the slopes agree
very well, whereas the multiplicity of the K9 is too high. This overestimation
of strangeness was already seen when we looked at the Kt and K~ yields as a
function of energy. So we seem to produce too much strangeness in pp collisions.
The situation improves slightly by employing the lower suppression factor, but
the spectrum is still overestimated. We determined the K3 by

1 _
Ky =5 (K + K. (3.49)

3.1.6 @ N Collisions

For the baryon-meson channel we do not have much data to compare with. There-
fore we compare with other models, namely HSD [CB99] and UrQMD [Web02].
We will mention the differences and general ingredients of those transport mod-
els in Chapter 5, when we show the excitation functions for heavy-ion collisions.
Here we only want to note that both codes use quite comparable string models.
In Fig. 3.15 we see in the upper two graphs the 7+ rapidity distributions at a
kinetic energy for the pion of 2 GeV and 4 GeV. The results show differences,
but they are not very pronounced. The lower two graphs show the rapidity dis-
tributions for KT at an incident energy of again 2 GeV and 4 GeV. Here the
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Figure 3.11: Inclusive cross section for 7 and K production in comparison with
data from [A*73](full squares), [GR96](full triangles) and [BFMMS8&8](full circles)
as a function of kinetic energy.
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Figure 3.12: Inclusive differential cross section for p production in pp collisions
at an incident momentum of 12 GeV/c in comparison with data from [B*73].
Only processes with at least three particles in the final state have been taken into
account.
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Figure 3.13: Inclusive differential cross section for m production, calculated with
two different suppression factors, in pp collisions at an incident momentum of 12
GeV/c in comparison with data from [B*73].
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Figure 3.14: Differential cross section for 7+, 7~ and K2 production in pp
collisions at an incident momentum of 12 GeV/c as a function of p; in comparison
with data from [B*73].

differences are big. Whereas at 2 GeV the UrQMD model produces less kaons by
a factor of about 5 in comparison to HSD and our model, the situation changes
drastically at 4 GeV. Here UrQMD produces twice as many kaons as HSD and
our model gives results in between. The angular distribution also seems to be
different, since the shape of the spectra is quite different. That difference is again
more pronounced in the kaon spectra. Those uncertainties are surely a problem
and it would be worthwhile to spend some effort on that issue in order to get
more reliable models to simulate those collisions.
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Figure 3.15: Differential production cross section for 77 and Kt in 7~ p colli-
sions at 2 GeV and 4 GeV in comparison to HSD and UrQMD [WBCS03].
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Chapter 4

From proton induced reactions to
heavy-ion collisions

In order to clarify the reaction mechanism in heavy-ion collisions, it is neces-
sary to understand the systematics of the underlying processes. As we increase
the system size, we can study, for example, the effect of secondary collisions or
check some otherwise experimentally not accessible cross sections, which will be
explained in more detail in the next section. By increasing the system size we
increase the density of the system. Thus we can also see how particle spectra
evolve with increasing density and if our model within the standard parameters
is able to reproduce the experimental measurements. That would be a sign for
the correct implementation of the reaction dynamics.

4.1 Proton induced Reactions

We are going to compare our model to data, which was published by the E-802
collaboration at the AGS [Abb92]. The collaboration measured =, K and p my-
spectra at an incident momentum of 14.6 GeV /c in proton induced reactions with
Be, Al, Cu and Au targets. We will compare our model to the data on p+Be and
p+Au. The spectra were fitted with an exponential function

d’o
= Ae™™/T. 4.1
2mmydmdy ¢ (4.1)

The rapidity distributions are obtained as follows

do _ /OO /27r A A, dp = 2ATT*(1 + mo/T)e™™/T.  (4.2)
dy mo Jo 2mmydmydy R ’ ' '

So we only need the parameters A and T from the fit to the m; spectra in the
respective rapidity interval. In our calculations we determined the rapidities
in two different ways. First we calculated the spectra in the same way as the

39



40 CHAPTER 4. FROM PROTON INDUCED REACTIONS TO HIC

experimentalists, which means that we determined the m; spectra for one rapidity
interval and calculated the rapidity in that interval through the fit parameters
by using Eq. (4.2). In order to get a rapidity distribution, one has to repeat that
procedure for the other intervals. Second we calculated them directly. If at low
p; the spectra had shown a flattening, there would have been a difference. Since
we could not see a significant difference, we present the direct calculations.

In order to compare the particle production in each collision for various targets,
the rapidity spectra were normalized to the inelastic cross section

1
dn _ 1 do (4.3)
dy Oinel dy
The values for oj,e are
Oinel (p + Be) = 208 mb, )
Tinel(p + Au) = 1790 mb. (4.5)

which was measured by [DDG'73].

We start out by looking at the inverse slope parameters 7" and the rapidity spectra
in p+Be reactions. Since the radius of Be is only about 2.5 fm, we do not expect
an influence of the secondary collisions. A pion with p = 1 GeV/c for example
has a y-factor of about 7 and so the formation time is 7; ~ 5.6 fm/c. Therefore
the pion will form outside the nucleus and will not react with other particles.
That means that the process is a good test for the isospin averaged cross sections
for p + N-reactions. In Fig. 4.1 we see the rapidity spectrum for protons. As
in the pp collisions (cf. Fig. 3.12) we see that our model produces too much
stopping because the calculated yields at midrapidity are too high. However,
the spectrum has to be compared with some caution. The rise of the measured
spectrum at rapidities above 2 might be due to a misidentification of particles.
Positive charged kaons with a momentum between 3.5 GeV/c and 5.6 GeV/c
are for example identified as protons. By taking this fact into account in our
calculations, we also get a little increase at rapidities above 2 but it is not as
pronounced as in the data. However, if we also count other positive charged
particles with momenta above 3.5 GeV/c as protons we get the same increase.
In the calculation which is shown in Fig. 4.1 protons were counted in the usual
way.

The rapidity spectra of kaons and pions show the same behaviour as the spectra
for pp collisions, namely we overestimate the kaons and we underestimate the
pions (see Fig. 4.2). The deviations in the K spectra are not very pronounced
and with the suppression factor v = 0.3 we even underestimate kaons. The K~
are overestimated with both suppression factors, whereas the lower suppression
factor seems to be favored. In Fig. 4.3 we show the inverse slope parameters for
K* and 7*. The pion slopes are well described, except at the larger and lower
rapidities, where we overestimate the data. The K slopes are overpredicted by
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Figure 4.1: Rapidity distribution of protons for p+Be at 14.6 GeV /¢ in compar-
ison to data from [Abb92|. The arrow indicates the nucleon-nucleon midrapidity.

about 20% at midrapidity. This might be compared to the slopes in pp collisions
in Fig. 3.14. However, in Fig. 3.14 we only see the Kg slope integrated over the
whole rapidity and unfortunately we did not find data on K slopes as a function
of rapidity in elementary reactions. The overestimation of the slopes should be
kept in mind, as it will be important when we investigate the excitation function
for the K slopes in heavy ion collisions. There our model will underestimate
the slopes, which we will see in Chapter 5.

Now we increase the target mass and investigate p+Au reactions. Whereas in
p+Be we underestimated pions and overestimated the K production, we now
agree on the Kt production and agree well on the w production, too (see Fig.
4.5). We have to keep that development in mind while we further increase the
system size. We also see that in the Kt spectrum v = 0.3 does not seem to be
favored anymore, whereas the K~ spectra still favors the lower suppression factor.
For K we also show the calculation without the annihilation processes in order
to show their influence on K production. In Fig. 4.6 we see the inverse slope
parameters as a function of rapidity for 7+ and K. For pions we see that the
results of our calculations are still too high at larger rapidities. The kaons slopes
seem to be described pretty well and we do not overestimate them at midrapidity
anymore. The proton spectra in Fig. 4.5 are also in line with data. So we cannot
see any significant deviations to data in p+Au at 14.6 GeV/c.

4.2 Si+Au

Now we want to increase the system size one step further and look at Si+Au
reactions. The data were again taken by the E-802 collaboration [A194] at 14.6
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Figure 4.3: Rapidity distributions of inverse slope parameters for 7+ and K+
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Figure 4.7: Baryon density in the central region in Au+Au at 11.6 GeV/c and
Si+Au at 14.6 GeV/c as function of time.

GeV/c in order to be able to compare directly to the proton induced reactions.
In Fig. 4.7 we see the baryon density in Au+Au at 11.6 GeV/c and Si+Au at
14.6 GeV/c as a function of time. The density was calculated as p = /j#j, in
the central region of the collision. In addition to the baryons, we also counted
the baryonic strings with a weight which is equal to the factor by which the cross
section is reduced (see Section 3.1.4). We see that in Si+Au we already reach
high baryon densities, which are compatible to Au+Au collisions. In Fig. 4.2
a contour plot of the density profiles of the collisions is shown. We plotted the
density as function of the x-coordinate and z-coordinate at y=0. We see that the
high density region in Si+Au is much smaller than in Au+Au.

The events were characterized by the multiplicity of charged hadrons and central
collisions were defined to be the upper 7% of the so characterized events. We will
discuss the centrality selection in more detail in Section 4.3.1.
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Figure 4.8: Contour Plots of the baryon density profile in Si+Au at 14.6 GeV /c
and Au+Au at 11.6 GeV/c in units of py.

We see in Fig. 4.2 that the development of the 7 production continues in the
same manner. In other words, the pions continue to increase in comparison to
experiment and we are not agreeing anymore with the experimental yields. We
see that the discrepancy is already quite pronounced in Si+Au collisions. This is
a problem which we will also encounter in heavy-ion collisions at these energies
and which is still an open problem. Since the behaviour of the spectra in the
elementary reactions is the opposite, the reason seems to be in the secondary
collisions. The K™ rapidity distribution, however, is very well in line with exper-
iment. This indicates that the implementation of the secondary collisions for K+
is reasonable. However the overshooting in the K~ rapidity distribution might
also indicate that the meson-meson cross sections are too high because this is
one of the most important channels for K~ production as the number of mesons
increase, which is the case in Si+Au. The most important of those channels is
7p — KK, followed by mw — KK. In those channels the production of KK
is p-wave suppressed and the threshold for K K" and K*K is of course higher.
Since we had so much freedom in choosing the cross sections, we did not take
this into account so far. In the future it should be investigated, how these mod-
ifications influence the kaon yields in Si+Au and in heavy-ion collisions. As in
p+Au the K~ spectra suggest a strangeness suppression factor y=0.3, whereas
the K spectra favors the old suppression factor. The slopes also show first seri-
ous disagreement with data. For both 7+ and K the slopes of our calculations
are not hard enough, which means that we seem to miss pressure in our system.
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Figure 4.10: Inverse slope parameter as function of rapidity for 7 and K+ in
Si+Au at 14.6 GeV/c in comparison to data from [A194].

4.3 Heavy-lon Collisions

Now we want to investigate heavy-ion collisions. In order to compare the devel-
opment to the preceding chapters, we choose Au+Au collisions at 10.7 A-GeV.
This energy is close to the energy region we just discussed and there is a lot of
data at that energy. The experiment we are looking at used two different meth-
ods to determine centrality, which will be explained in the next section. This
gives us the possibility to study the influence of centrality selection criteria. By
studying the particle production as a function of centrality, we also have again
the possibility to look at particle spectra with increasing system size.

4.3.1 Centrality selection

The impact parameter is experimentally not accessible and so one has to come
up with an idea of how to characterize a collision. Two quantities, which are
used frequently, are the energy measured near zero degrees and the total event
multiplicity. The connection to the impact parameter is as follows. In case of a
characterization of collisions by the total multiplicity N, which is the number of
particles which hit a detector with a certain geometry, we can build the quantity
do/dN. Now we can define another quantity

N,
max - dog
oN = ——dN, 4.6

N /]cht dN ( )

where Ny is the multiplicity cut which has to be chosen according to the desired
centrality selection and Np,,, corresponds to the most central collision, which was
detected. The most central 5% are, for example, determined by demanding that
on/0ine = 0.05, which can be fulfilled with the right choice of Ny. Once we
interpret oy as an area we can calculate the impact parameter. The zero degree
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Figure 4.11: The number of collisions as a function of the impact parameter
for three different centrality selections. 'ZDE’ corresponds to a definition of
centrality through the zero degree energy, 'NMA’ corresponds to the definition by
the multiplicity and ’sharp cut’ stands for sharp cut off in the impact parameter
in the theoretical simulation (see text).

energy method works the same way, except that we build the quantity do/dZ
instead of do/dN. Z is the energy of the nucleons, which did not collide and
which therefore fly straight through the collision zone and can be detected at a
low angle far behind the detector. If a collision satisfies one of the criteria it is
called an event and the result contributes to the analysis.

Now we want to check which collisions we take into account by applying the
different criteria for the centrality selection. In Fig. 4.11 we show the collisions
contributing to the different criteria sorted according to their impact parameter.
The first criterion which is labeled ’sharp cut’ in the figure means that we only
take into account collisions with an impact parameter lower than 3.5 fm. Due to
the geometry larger impact parameters contribute more frequently according to
the formula dN ~ bdb. The squares and the circles correspond to the criteria,
we just described. One sees that due to the statistical nature of those collisions,
different events are contributing in the analysis depending on the centrality se-
lection. Whereas the difference between the selection by the zero degree energy
and the total event multiplicity is pretty small, the sharp cutoff seems to select
different events. However, if one compares the particle spectra one cannot make
out a difference. In Tab. 4.1 we listed the midrapidity yields of 77 and K+ for
the three different criteria. Due to this agreement we decided to choose a sharp
cut off for the calculation of the excitation functions in Chapter 5 in order to save
computational time.
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criterion | dN/dyg+(mid) | dN/dy,+(mid) | K /7" (mid)
sharp 22.51 138.2 0.163
ZDE 23.0 141.1 0.163
NMA 22.88 141.4 0.162

Table 4.1: Midrapidity yields of K™ and 7" for different centrality selections.
"ZDE’ corresponds to a definition of centrality through the zero degree energy,
'NMA’ corresponds to the definition by the multiplicity and ’sharp cut’ stands
for sharp cut off in the impact parameter in the theoretical simulation (see text).

EzcaL class | Ezcar range [GeV] | %0ina | (Npp)
1 0-240 0-3 181
2 240-390 3-7 168
3 390-570 7-12 152
4 570-780 12-17 134
5 780-1020 17-24 113
6 1020-1290 24-32 | 89.5
7 1290-1590 32-43 | 62.5
8 > 1590 43-76 | 26.9

Table 4.2: Borders for Ezcar. The percentage of the inelastic cross-section (6.8
mb) to which the class corresponds is also listed.

4.3.2 Particle yields at 10.7 A-GeV/c

In this section we will compare our model to data taken by [A*99]. In that paper
Au+Au collisions were characterized by two global observables simultaneously :
the energy near zero degrees Ezcar, and the total multiplicity. Particle spectra
were measured for different event classes, which were defined according to Tab.
4.2 and Tab. 4.3 ,where N,, is the number of projectile participants, which is
estimated by the following formula

Eycar
Npp =197 (1 - Jkin )

beam

(4.7)

and Eyin =2123 GeV is the kinetic energy of the beam. In the proton spectra
in Fig. 4.12 we see that our model produces too much stopping, as we already
observed in the elementary reactions. In heavy-ion collision this discrepancy
might also be due to the lack of a potential. In a potential the protons will store
some energy in the field, which they will get back after leaving the high density
phase and so they will not loose that much energy. Another effect will be that we

have less energy available for particle production, which would be a problem for
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E7carL range | multyya range | Fzcar | multnyva | Average multana
0-240 > 375 1 1 394.7
0-240 345-375 1 2 360.5
0-240 < 345 1 3 323.2

240-390 > 340 2 1 363.5
240-390 305-340 2 2 322.5
240-390 < 305 2 3 281.0
390-570 > 295 3 1 319.0
390-570 265-295 3 2 280.1
390-570 < 265 3 3 240.7

Table 4.3: Borders for the double event selection.
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Figure 4.12: Proton rapidity spectra in Au+Au at 10.7 A-GeV double selected
by the total multiplicity and the zero degree energy in comparison to data from
[AT99]. The centrality decreases from the upper left corner to the lower right.
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Figure 4.13: Rapidity spectra of 77 in Au+Au at 10.7 A-GeV characterized
by the zero degree energy in comparison to data from [AT99]. The centrality
decreases from the upper left corner to the lower right.
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Figure 4.14: Rapidity spectra of Kt in Au+Au at 10.7 A-GeV characterized
by the zero degree energy in comparison to data from [AT99]. The centrality
decreases from the upper left corner to the lower right.
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the K+ yields but an improvement for pions and K. As we already figured out
in Section 3.1.5 we already had too much stopping in the elementary reactions,
which might also be a reason for the disagreement with the experimental data. In
Fig. 4.13 we see the pion spectra for different centralities selected by the energy
measured at zero degree. They show the same development as in the preceding
sections. As the centrality increases the data are overestimated, whereas for more
peripheral collisions everything is fine and in very peripheral collisions we even
underestimate pion production. The kaon spectra in Fig. 4.14 agree pretty well
for all centralities. We will discuss the kaon production in more detail in the next
section when we look at the production mechanisms for strangeness in central
heavy-ion collisions.

Now we want to look at a quantity, which is called the fiducial yield. The fiducial
yield is defined as

dN
fiducial yield = ) d—ydy (4.8)

rapidity intervals

where the dN/dy are the rapidity distributions selected by zero degree energy
and the sum runs between 0.6 < y < 1.3. The fiducial yield for a specific particle
is therefore the number of those particles in the rapidity interval, over which
the sum is performed. When one divides the fiducial yield by the number of
participant nucleons one gets a measure of how much the secondary collisions
influence. If there are no secondary collisions at all for example, the fiducial yield
divided by the number of participant nucleons should be flat. Any rise is due to
secondary collisions, about which one can get information in that way. In Fig.
4.15 the fiducial yield for K* and 7% per participant nucleon is plotted. The
pion data shows a flat beginning whereas in more central collisions the pion yield
increases more than linear. Our model shows a continuous quite linear increase,
which indicates that the pion production at those energies is not completely
understood. The deviations in the fiducial yield can also be due to missing
absorption of pions. The kaons show a linear increase which we reproduce very
well in our model. In Fig. 4.16 we see the ratio of fiducial yields KT /7" again
plotted versus N,,. The data and our model both show a smooth increase as the
number of participants increase but we are off as the density increases, which is
of course due to the deviations in the pion sector.

4.3.3 Strangeness production

In this section we want to discuss the production of strangeness in a heavy-ion
collision according to our model. In particular we want to show a picture, which
tells us about the importance of the different channels for strangeness production
at different energies. In Fig. 4.17 one sees the number of produced s-quarks
versus time for four different channels. We subtracted the absorption of 5-quarks
so that we really see the net gain of strangeness. We see that almost half of the
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Figure 4.15: Fiducial yields for 77 and K divided by the number of partic-
ipants as a function of the number of participants in Au4+Au at 10.7 A-GeV in
comparison to data from [A199].
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Figure 4.16: The ratio of fiducial yields Kt /7" plotted versus N,, in Au+Au
at 10.7 A-GeV in comparison to data from [A199].
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strangeness is produced by secondary collisions. We counted only the creation of
the s-quark and we did not consider reactions or decays, as for example K* — K7
where the s-quark is only shifted from a K* to a K. We split all production chan-
nels into five different sectors. One section is the baryon-baryon channel at high
energies or, in other words, the baryon-baryon reactions, which are simulated by
the Fritiof string model. The collisions contributing to strangeness production are
mostly the first collisions between the nucleons of the target and the projectile.
We called the baryon-baryon collisions simulated by the Fritiof model ’baryon-
baryon-string’ in the picture. The baryon-baryon reactions at invariant energies
below the Fritiof threshold, i.e. with \/s < 2.6, are not plotted because they do
not contribute to the strangeness production significantly at the energies we are
looking at. We also plotted the contributions from the meson-baryon channels
again split into the low-energy region below the threshold for string production
and the reactions simulated by the Fritiof model. The fourth channel shows the
contribution from the meson-meson collisions.

We see that at lower energies the meson-meson channel plays almost no role
whereas at higher energies it becomes more and more important. The baryon-
meson channel shows a similar behaviour and its contribution is even more im-
portant. The dominant channel is the baryon-baryon string channel and it will be
interesting to see how the Kt spectra evolve with energy. At the lower energies,
where the baryon-baryon string channel dominates, we have therefore another
possibility to gain information on the strangeness production in nucleon nucleon
collisions. In heavy-ion collisions, however, one has to be careful because other
effects, as for example a potential, might also influence particle yields.
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Chapter 5

Excitation Functions

The K+ /7% ratio as a function of beam energy in heavy-ion collisions is of spe-
cial interest because of its possibility of being a signature for the quark-gluon
plasma. In the following we will compare midrapidity yields for pions and kaons
in comparison to two other transport codes, HSD [CB99] and UrQMD [Web02],
and to data from the experiments E866 and E917 at the AGS [A1T00b, A*00a]
and the NA49 at CERN [AT02, Fri03]. The transport calculations by all models
have been performed in the cascade mode.

The experiments at the AGS were using the multiplicity and the zero degree
calorimeter for event characterization, which we already described in Section
4.3.1. The experiment at the AGS studied Au+Au collisions at 1.96 A-GeV, 4
A-GeV, 5.93 A-GeV, 7.94 A-GeV and 10.7 A-GeV. The measured m;-spectra at
1.96, 4, 5.93 and 7.94 A-GeV in a slice of 0 < % < 0.25 around midrapidity
were fitted with the following functions

1 &N dN/dy
= —(mg—mo)/T for k 51
onmy dmydy 21 (Tmg + T?2) € or kaons (5.1)
1 2N N
d d /dy m;)\efmt/Ts for pions (52)

27tmy dmydy - 21T (2 — N, /mo/Ts)

where dN/dy, T and X are the fit parameters. In case of the pion the scaled ex-
ponentials were used because the pion spectra raise above an exponential at low
my. The data at 10.7 A-GeV were fitted with the same functions but the width
of the rapidity interval was chosen only half as big.

The experiment NA49 investigates Pb+Pb collisions at 20 A-GeV, 30 A-GeV, 40
A-GeV, 80 A- GeV and 160 A-GeV. We are interested in the first three energies.
The data from the reactions at 20 A-GeV still have to be analysed and published
and for the run at 30 A-GeV we found so far only the value for K /x". For
event selection the so called Veto Calorimeter is used, which is based on the same
principles as the Zero Degree Calorimeter at the AGS.

In Section 4.3.1 we showed the influence of the different methods for event se-
lection. Since the differences are negligible within our accuracy, we used for

99
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Figure 5.1: Midrapidity yields for 7 as a function of energy in comparison to
results of HSD, results of UrQMD and data from [AT00b, AT02, Fri03].

simplicity a sharp cut for the impact parameter. At the AGS this cut was chosen
to be b < 3.5 fm and for the calculations at SPS energies we used b < 4 fm.

In Fig. 5.1, 5.2, 5.3 and 5.4 we see the midrapidity yields for 7+, K*, K~ and
A + ¥ as a function of energy. The BUU model overestimates the 7+, K~ and
A + X yields, whereas the results for K are pretty well in line with data, ex-
cept at the lower energies. At the lower energies the situation for all particles
becomes better if we use a potential because the particle production decreases in
that case. The reason for that is that some of the energy is stored in the field
and will not be available for particle production. But so far we do not have a
reliable potential at energies above 2 A-GeV in our model and we run it in the
cascade mode. At higher energies the influence of the potential should decrease
anyway. Nevertheless we did the same calculations with a potential in order to
show the quantitative change. We described the potential already in Chapter 2 in
Eq. (2.17). The parameters we use are chosen such that it describes the proton
and neutron flow between 0.15 A-GeV and 2 A-GeV [LCGMO00]. The results are
shown in Tab. 5.1 together with data and the results of the cascade runs. One
sees, that at 2 A-GeV and at 4 A-GeV the results really improve and even at 6
A-GeV the midrapidity yields for 7+ and K+ are closer to data. Only the ratio is
described better without potential above 4 A-GeV. In Fig. 5.8 we see the K /7™
ratio calculated with and without potential. At lower energies we agree with data
by using the potential, at intermediate energies we are too low and at energies
above 20 GeV the two curves merge.

Another reason for the overestimation of K* at low energies is the fact that we
already overestimate K in elementary pp reactions, as we showed in Section
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Figure 5.2: Midrapidity yields for K as a function of energy in comparison to
results of HSD, results of UrQMD and data from [A*00b, A*02, Fri03].
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Figure 5.3: Midrapidity yields for K~ as a function of energy in comparison to
results of HSD, results of UrQMD and data from [A*00a, A*02, Fri03].
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Figure 5.4: Midrapidity yields for A + 3 as a function of energy in comparison
to results of HSD, results of UrQMD and data from [MT02, M*03, A*96, Pin02,
Ant99].
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Figure 5.5: The Kt /7" ratio at midrapidity as a function of energy in compar-
ison to results of HSD, results of UrQMD and data from [AT00b, A*02, Fri03].
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Figure 5.6: The K~ /K™ ratio at midrapidity as a function of energy in compar-
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Figure 5.8: K /7% ratio as a function energy with and without potential in
comparison to data from [AT00b, A*00a, A*T02].

Elab dN/dy,+(mid) dN/dyx+(mid) K™ /nt (mid)
wp | wop |data| wp |[wop | data | wp | wop | data |
2 GeV || 17.71 | 20.3 | 14.1 || 0.56 | 0.99 | 0.381 || 0.032 | 0.049 | 0.027
4 GeV || 34.69 | 38.74 | 26.4 | 2.9 | 3.89 | 2.34 || 0.084 | 0.10 | 0.089
6 GeV || 45.91 | 50.39 | 38.9 || 5.12 | 6.39 | 4.84 0.11 | 0.127 | 0.1244
8 GeV || 54.64 | 58.97 | 49.7 || 7.21 | 8.54 | 7.85 1.32 | 0.145 | 0.158

Table 5.1: Midrapidity yields for 7+ and K+ at AGS energies calculated within
the BUU model with and without potential in comparison to data, where wp
corresponds to the calculations with potential and wop to the calculations with-
out potential. The data are quoted without errors since they will only give an
orientation.
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3.1.5. As in Section 3.1.5 we also show the calculations with a strangeness sup-
pression factor y=0.3 in case of strange particles. The pions are not affected
by the different choices of v. In the K™ excitation function it is hard to judge
which v describes data better. The deviations in the K ~-excitation function in-
crease with increasing energy. That might be due to too high cross sections for
strangeness production in the meson-meson channel. This assumption is sup-
ported by the K~ /K™ excitation function in Fig. 5.6. The reason for the rise in
that function is on the hand due to the increasing probability of producing K~
instead of hyperons in nucleon nucleon collisions as the energy increases. But
as we saw in Section 4.3.3 the meson-meson collisions become very important
for strangeness production and here the number of produced K7 is equal to the
number of produced K~ and those reactions will strongly increase the K~ /K™
ratio. The lower suppression improves the situation for the K~ yields but it has
no almost no influence on the K~ /K™ ratio. The A + X° yields are too high at
low energies, which might be compensated by a potential as already mentioned.
By choosing v = 0.3 we see that we are closer to data except at 40 A-GeV. The
slope of The A 4+ X° excitation function is reproduced nicely with both suppres-
sion factors. The problem with hyperons at lower energies is of course linked
to the problems with kaons, because they are mainly produced together at the
lower energies and they are linked via the strangeness-exchange cross sections
KN 1Y . The biggest problem occurs in the pion sector, where we are off at
all energies and which cannot be explained. As we already saw, the same problem
occurred in Chapter 4 when we increased the system size. A similar problem is
observed at lower energies (0.4-1.5 A-GeV), where pions are also overestimated
[LMO03]. There the problem could be cured by employing a medium modified
cross section for NN <+ NA. Since at higher energies the Fritiof string model
is employed, one cannot just modify the resonances. Here one would also have
to modify the string model and then the question arises how to treat the endless
number of different final states.

Before we comment on the other two transport codes, we want to summarize the
most important facts about the two codes in comparison to our code. For details
we refer to [CB99] and [Web02]. Although the three codes are different in numer-
ical realisation they are based on the same concepts : string and hadronic degrees
of freedom. For the calculations in that work, none of the codes employed non
standard modification, as for example an explicit phase transition to a quark-
gluon plasma. All calculation have been performed in the cascade mode. The
philosophy is that a common failure of all models should indicate the appearance
of 'new physics’.

The UrQMD model

The UrQMD transport approach includes all baryon resonances up to 2 GeV
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and all mesonic resonances up to 1.9 GeV as tabulated in the PDG [CT00]. Up
to invariant energies of about 2 GeV the particle production is simulated by the
production of resonances in inelastic collisions and their decay. At higher en-
ergies UrQMD includes the possibility to create an effective heavy resonance in
the meson-baryon and the meson-meson channels. The decay of those effective
resonances is simulated by the string fragmentation model. At even higher en-
ergies the resonance picture is left behind and the string model is used. The
string model they use has a few differences to the string model we use. First
of all the formation time, UrQMD uses, is of the order 1-2 fm/c and depends
on the momentum and energy of the produced particle. This dependence comes
from the fact that the so called yo-yo formation time definition is used, where
the formation point has the coordinates of the quark trajectories intersection.
The cross sections during the formation time is 0 for a particle with none of the
original quarks and reduced by % - #(constituent leading quarks) in case of a lead-
ing particle. For a leading meson the cross section is reduced by 0.5. Another
difference is the fragmentation function. For leading nucleons they use

@) = e (-0, (5.3

where A=0.275 and B=0.42. For newly produced particles UrQMD uses
f(@) = (1 - a2 (5.4)
The suppression factors for strangeness production and diquark production are

UrQMD: w:d:s:diquark=1:1:0.35:0.1. (5.5)

The HSD model

The HSD transport approach incorporates the baryon octet and decuplet states
and N*(1440), N*(1535) as well as their antiparticles and 0~ and 1~ meson octets.
In contrast to the resonance concept HSD includes the direct meson production
in order to describe the cross sections. The HSD model uses the same string
model we use and also the same formation time (see Chapter 3). Even though
the string fragmentation function is the same (Eq. (3.31)), HSD uses different
values for the parameters ¢ and b, namely @ = 0.23 and b = 0.34 GeV~2. The
influence of the different parameters is hard to quantify since our fragmentation
depends on m;. But qualitatively the difference is small and the fragmentation in
HSD has a slightly higher probability to produce faster particles. The transverse
momentum is also chosen according to a Gaussian but the width is taken to be
o = 0.5 GeV in HSD. The suppression factors are again the same as in our model.
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Now we want to look at the results. In general one can say that the codes give
very similar results and only in the K~ yields at midrapidity, we disagree with
the other codes and data. The differences in the yields for other particles do not
look very pronounced but they can be seen better when we look directly at the
ratios in Fig. 5.5 and Fig. 5.6. HSD describes the ratio at low energies very well,
whereas is cannot reproduce the slope in the ratio which seems to be too flat.
At 40 A-GeV it catches up but it clearly does not reproduce the maximum at 30
A-GeV. UrQMD overestimates the ratio at the lower energies but seems to repro-
duce the slope in the ratio pretty well although it is decreasing to early. It is the
only code, which shows a maximum in the ratio, even though it is at the wrong
energy. We lie somehow in between the two other curves. We also overestimate
the data at low energies and our slope is not steep enough. Therefore we catch up
with data at 6 A-GeV. At 10 A-GeV and 30 A-GeV we are off and we also do not
reproduce the maximum. The reason for the disagreement however is in all codes
due to the high pion abundances and not due to the strangeness, which seems to
be described well. In case of v = 0.3 we describe the low energy data better but
fail to describe the data at higher energies. The K~ /K™ ratio is described well
by HSD and UrQMD, whereas we are too high, as already discussed. In Fig. 5.7
we see the A + Xg/7 ratio as a function of energy, which shows the same peaky
behaviour as the K /7™ ratio. However, in that case we reproduce the peak and
the slope even though we are again off at the lower energies. The peak in that
ratio is, however, most probably due to a domination of mesons over baryons at
higher energies and the production of hyperons in meson collisions is very im-
probable. The lower suppression factor again only improves the calculation at
the lower AGS energies and worsens the situation at the higher energies.

In Fig. 5.9 we see the K /7" ratio in comparison to data with different versions
of the BUU model. The calculations without the annihilation processes differ
from the standard version at the AGS energies and shows no difference to the
standard version at SPS energies. One sees that the annihilation processes in-
crease the slope in the K+ /7t ratio. The meson-meson collisions influence the
ratio significantly at energies above 6 A-GeV. That was expected since meson-
meson collisions become more and more important at those energies.

In Fig. 5.10 we see the inverse slope parameters for K. We clearly cannot
describe the slope at all energies and we do not reproduce the raise in the inverse
slope parameter. This is a clear sign that we miss pressure producing mecha-
nisms in our code. There are recent studies within the transport codes HSD and
UrQMD, which show the same problems [BSS™*04].

5.1 The Statistical Model

The statistical methods offer another possibility to interpret the data from the
SPS and the AGS. The fundamental assumption for applying the statistical model
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Figure 5.9: K /7™ ratio calculated by the BUU model in the standard version,
without annihilation processes and without meson-meson collisions in comparison
to data from [AT00b, AT02, Fri03].
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is that the particles are in chemical and thermal equilibrium at freeze out. If one
makes that assumption and starts the machinery of statistics, the abundances of
particles can be well described with two parameters, the temperature 7' and the
baryochemical potential ug. In the following we will describe the statistical model
which is used in the calculations and afterwards compare the model calculations,
which were done by [BMCORO02], to data and to our model.

5.1.1 The Grand Canonical ensemble

In case of a system with many particles one uses the grand canonical ensemble
to describe the partition function, which is in that case given by

Z9(T,V, pug) = Tr [e P Zirai@)] | (5.6)

where H is the Hamiltonian of the system, 8 = 1/T the temperature , the @; are
the conserved charges and pq, are the chemical potentials that guarantee that the
charges (); are conserved on the average in the whole system. The Hamiltonian is
usually taken such as to describe a hadron resonance gas. The partition function
of a hadron resonance gas can then be written as a sum of partition functions of
the considered particles

InZ(T,V,p) = > InZ(T,V, i), (5.7)
where /i = (1B, is, f1g), with the chemical potentials responsible for the conser-

vation of baryon number, charge and strangeness. In case of a free Fermi gas
In Z; is given by

Vg
InZi(T,V, i) = 2:2 / p*In(1 £ \; exp(—fe:))dp (5.8)
0
with the fugacity
Ai = exp(B(Bipp + Sips + Qifg))- (5.9)

B;, S; and @; are the baryon number, the strangeness and the charge of the
particle species we are looking at. g; and m; are the spin-isospin degeneracy
factor and the mass. The plus sign inside the logarithm stands for fermions
and the minus sign for bosons. Expanding the logarithm and performing the
momentum integration in Eq. (5.8) we obtain

In(Z)(T, V, ) = ng Z i}; N2 Koy (), (5.10)

where K5 is the modified Bessel function. The average number of particles is
then obtained by differentiating with respect to A; and multiplying by \;

Vi ~— (£1)F!
(NZ->(T,,1,V):27T§52( k) Nem2 Ko (Bkm;). (5.11)
k=1
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The strangeness chemical potential, the charge chemical potential and the volume
are fixed by the three conservation laws

baryon number : Z(NZ-)B,- =Z+ N, (5.12)
where Z is the number of protons and /N the number of neutrons of the colliding
system;

strangeness : Z(NZ)S,- =0 (5.13)

and

Z —N
charge : ;(NZ) == (5.14)
The number of independent parameters is therefore reduced to the temperature
T of the system and the baryo-chemical potential. These two parameters can
now be fitted to particle spectra at the energies of interest. In general it would
now be possible to calculate all particle multiplicities. However, in the grand
canonical ensemble the conservation laws are only valid in the average and in
smaller system this approximation becomes questionable. That is why we want

to look at the Canonical ensemble in the next section.

5.1.2 The exact conservation of charges

At low AGS energies and SIS energies one has to account for the exact conser-
vation of the charges. In the following we will introduce the formalism, which is
necessary in order to do that. We will see that this will introduce a suppression
factor.

We will start out by rewriting the grand canonical partition function. For simplic-
ity we will only consider a partition function with one conserved charge namely
strangeness.

Z (s, V, T) = Tr [ePH1s9)] Z Trgle PH]ehs = Z Zs\y,  (5.15)

where \g = €%#s is the fugacity and
Zg = Trgle ) (5.16)

is the partition function which sums over all states with a total strangeness S.
This is the canonical partition function with respect to strangeness conservation.
We note that Zg can be interpreted as the coefficient in the Laurent series for Z
with respect to Ag. Thus we may apply Cauchy’s formula and take an inverse
transformation to obtain

1 [ d) d
Zs(T,V) = 5 f )\Sle()\s,T V)= /_ 2¢’ (¢, T,V)e 2, (5.17)
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where we chose the unit circle as integration path and Z(¢,T,V) = Z(\g =
e’ T, V). Equation (5.17) is a projection procedure to get Zs out of Z. Now we
rewrite Eq. (5.6) and we only consider particles with strangeness +1 and 0 :

Z = exp(N5:0 + N5:1€i¢ + Ngz_le_i¢) (518)
with
Ng—o41 = ZZ;%, (5.19)
k

where the sum over & runs over all particles having strangeness 1 and 0 and Z}
is the one particle partition function which we get from Eq. (5.11) by keeping
only the first term of the sum

_ Vi o1

Z ) mkgK2(mk5) exp(Bipp + Qrig)- (5.20)

Zg is now obtained by
Zs =17, i 27rd —iS¢,Ns=1€"¥+Ns=_1e”* 5.21
5T Mo 0 pe e ’ (5.21)

where Z, = e/Vs=0 is the partition function of all particles having zero strangeness.
Rewriting the above equation as

27 N Ng—1 ,ipy , [NS=-1 -i¢
ZSZZOQi / gpe-iseeV N (et e ) (5.22)
T Jo

and using the following relation for the modified Bessel functions I;(z)
eF(41) = STt (a), (5.23)

we get

1 o2 0 Sl k/2 .
Zs = ZO%/O do Y I(x) (S—_1> k), (5.24)

k=—o0

where Si; = Ns—i; and z = 24/515 ;. Thus for a hadron gas with net
strangeness S we end up with

g \ 52
Z6(T. Vo ia) = (T Vopmia) (5) Ise) (529

The calculation of the particle density n; amounts to the replacement 7}, — A\, Z}
of the corresponding one particle partition function and taking the derivative of
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the logarithm of the canonical partition function with respect to the fugacity A
and multiplying by A

0
n% = )\ka—AkhlZS()\k)‘,\kzl. (526)

As an example we compare this result to the grand canonical result for the density
of K*. According to the formulas just derived the density for kaons in the
canonical formalism is given by

c _ Z}(+ S,1 15,1(513)

= ) 5.27
KT TS5, Is(x) (5:27)
In the grand canonical approach the density is given by
Zl
nSq = ZKE ), (5.28)

K+ — V

By looking at Eq. (5.18) we see that the strangeness neutrality condition requires
AsS1 — Ag'S_1 =0, (5.29)

which means that \¢ = S 1/4/S1S 1. Therefore the difference of the two ap-
proaches is given by the ratio of the modified Bessel functions. The canonical
suppression factor, which we call Fg thus reads

I (z)
Io(l') ’

The factor is quantified in Fig. 5.11, which is taken from [BMRS03]. It is plotted
versus the participant nucleons multiplied with the particle densities of particles
with S = +1. We see that at the low AGS energies and at the SIS energies
this suppression factor becomes quite important, whereas for higher energies it
is almost 1.

Fg =

(5.30)

5.1.3 Results

Now that we explained the basics of the formalism we want to compare cal-
culations for the ratio of K*/7% done with the statistical model to data and
to our results. The calculations within the statistical model were performed in
[BMCORO2]. They employed the canonical formalism, which we just described,
except that they also considered multi strange particles. In that case the partition

function reads s
1 27 .
78, = %/0 d exp (Z Se 4’) (5.31)

n=—3
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F Canonical suppression factor
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Figure 5.11: Canonical suppression factor (see text).

with the same notation as before. The result for that integral is given by

Z§ , =e% Z Z abala; * L (22) Iy (23) T 9n-sp(21), (5.32)

N=—00 p=—00

where a; = /S;/S_; and z; = 21/5;5S_;. The energy dependence of up is

parametrized as follows

a
= 5.33
where @ = 1.27 GeV and b = 4.3 GeV. At freeze-out the chemical potential is
related to the temperature via the phenomenological condition of fixed energy

per hadron, namely
(E)/(N) ~1GeV. (5.34)

The results of those calculations can be seen in Fig. 5.12. We see that our model
produces nearly the same curve as the statistical model. That might indicate that
the equilibrium condition is really fulfilled in a heavy-ion collision. However, in
order to get chemical equilibrium we have to fulfill detailed balance. At the
low-energy collisions below the threshold for string production this is indeed the
case, but for the string reactions we do not have included any back reactions. It
is not possible to include all back reactions since Fritiof produces a very large
number of different final states. In [Cas02] first attempts have been made to
include multi particle collisions, but only for a small number of reactions. It is
hard to say which channels are the most important ones in order to fulfill detailed
balance because it is not necessarily the case that if the reaction in one direction
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Figure 5.12: K /7" ratio as a function of energy in comparison to the statistical
model and data from [AT00b, AT02, Fri03].

is important, the back reaction has also to be important. However, in our result
it seems as if we are almost in equilibrium even without multi particle collisions
but still it would be worthwhile to spend some effort on that issue.

In comparison to data the statistical model has also problems to describe the 10
A-GeV point and the data point at 30 A-GeV.



Chapter 6

Oft-shell pions, resonance
lifetimes and string-string
collisions

As already mentioned the density in a heavy-ion collision at AGS and SPS en-
ergies can be pretty high and therefore collective effects can take place. In this
chapter we want to investigate three different effects. First we will look at the
effect of off-shell pions on the particle production. The motivation is that due to
the width of those particles in the medium they can propagate with higher masses
than usual and therefore the collisions can take place at higher invariant energies,
which might have an influence on the particle production. Second we will inves-
tigate the influence of a modification of resonance lifetimes and especially the
A lifetime. A resonances are produced abundantly in heavy-ion collisions and a
modification of their lifetime might have an influence on the particle production.
If a A lives longer for example, collisions will take place at a higher invariant
energy in comparison to the collisions of the nucleon and the pion separately,
which are bond together in the A. The third effect we will study are string-string
collisions. Due to numerous high-energy collisions a lot of strings are created. As
already mentioned in Chapter 3, the strings do not decay immediately, they have
a formation time. So it is reasonable to introduce some kind of interaction for
those objects, which will be discussed in Section 6.3.

6.1 Off-shell pions

The most frequently produced particles in a heavy-ion collision are the pions.
Especially at the energies under consideration they are produced abundantly.
As the pions propagate through the nuclear matter they might be absorbed by
the nucleons and a resonance is created. Due to this absorption pions acquire
a width in the medium. The spectral function for pions in a nuclear medium
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p+k

Figure 6.1: Feynman graph representing —:II (see text).

was calculated by different authors and we will use the results of the calculation
performed by Larionov et al. [LMO02]. That calculation was done on the basis of
the A-hole-model [EW88]. In order to calculate the pion polarization function
I1(k), one has to evaluate the Feynman graph, which is shown in Fig. 6.1. The
Lagrangian which was used in [LMO02] is the following

NA_
J UL\TU N7 + h.c., (6.1)

‘Cﬂ'NA =
where T is the isospin transition operator(1/2 — 3/2), ¥/ is the Rarita-Schwinger
field of the A-resonance, ¥ and 7 are the nucleon and the pion fields. For details
of the calculation we refer to [LMO02]. The results for the imaginary and the real
part of the polarization function are

24 rer(s —m3) 4
mﬂmy:/ p7MT(mp“S mﬂ—ﬂwﬁngﬁy (6.2)

n
(2m)® En () Fa(s)y/s 3
2d3p my 4
ImII(k) = — el =0 L k?), 6.3
W) =~ [ G T pagoeepacs (B, (63
where p,.; is the pion momentum in the restframe of a nucleon. Usin
g
4
go-w"‘pﬁA‘H‘ = Ozp—A + OrnsA, (64)

we can rewrite Eq. (6.3) in a more intuitive form

ImH(k) = —g <%ﬁrel(0wﬁA + 07m%A)> ) (65)

where the averaging is performed with respect to the nucleon momentum and p is
the nuclear matter density. In addition the pion polarization function is corrected
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Figure 6.2: Pion spectral function in nuclear matter at the density p = py and
temperature 7' = 5 MeV shown versus mass squared and momentum.

for the repulsive interaction of holes and A resonances at short distances

) - FIR)

2 — gk’ o

with the Migdal parameter g/ = 0.5. The pion four-momentum £ has to be taken
in the restframe of nuclear matter. The quantity we really wanted to know is the
spectral function, which is given by

_ 1 1 ImIT. (k)
Ar(k) = —ZImG(k) = =2 (k* — m2 — Rell(k))? + (ImIL,(k))?’ (67)

where G(k) = (k* —m2 —TI.(k))™" is the pion propagator. The spectral function
at normal nuclear matter density and 7" = 5 MeV is plotted in Fig. 6.2 versus
momentum and M?2.

In case a resonance is decaying into a final state including a pion, the mass of
the pion is determined according to the spectral function. A problem about
the implementation is that we only modified the pions, which come out of those
resonances, which decay into N7 and which come from the reaction NN — NN.
That means that the Fritiof model is producing on-shell pions and that the meson
resonances decay into on-shell pions, as well as some of the baryon resonances
(see Tab. 2.1 for the decay channels). In Fig. 6.3 we see the number of pions
per energy as a function of energy in order to show the importance of the string
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Figure 6.3: Number of pions from string decays and resonance decays per energy
as function of the center of mass energy in Au+Au at 10.7 A-GeV at b=1 fm.

channel and the resonances, as for example the p, which have not been modified.
We see that almost half of the pions are modified and therefore it is hard to
predict the change which is induced by modifying the other half.

In order to get the pions back on their mass shell when they enter the vacuum,
a scalar so called off-shell potential s, is introduced. That potential has the

following form
— Mﬂ'(tCT) — My =
(7 t) = " t),t), 6.8
8 (T ) pN(T(tCT),tC’I")pN(T( ) ) ( )

where py is the density of nucleons in the local restframe of nuclear matter and
ter is the creation time of the pion. The pion mass at time ¢ is given by

M, (t) = mg + 5(7, 1), (6.9)

which fulfills the desired requirements.

Figure 6.4 shows the results of our model in the standard mode and with the
implementation of off-shell pions at an incident energy of 10.7 GeV in Au+Au.
We see that the pion rapidity spectrum is not altered at all and the influence on
the kaon spectrum is very small and can also be driven by statistics. In Fig. 6.5
we see the mass spectrum of all pions, which have been modified at some point
of the collision. It is pretty symmetric about the on-shell mass and therefore we
expect the average invariant energy of the system to stay the same. By looking at
the number of collisions as a function of energy, we indeed saw that this quantity
was not changed. A reason for that might be that just modifying the resonance
decays as described above might not be enough and one also has to modify the
string model and the other resonances. However since the effect on the collision
dynamics is so small, it might also be that the pion masses are just not shifted
enough in order to induce a change in such a big system.
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Figure 6.4: Rapidity spectrum of 71 and K in Au+Au at 10.7 GeV and impact
parameter b=1 fm with off-shell pions in comparison to the standard calculations.
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Figure 6.5: Mass spectrum of all modified pions during the whole collision in

Au+Au at 10.7 A-GeV.
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6.2 Resonance lifetimes

Usually the lifetime of the resonances is assumed to be given by

1
T=o (6.10)
In Chapter 2 we explained that in our model we propagate resonances explicitly
and in that case the lifetime does not have to coincide with Eq. (6.10). The
lifetime of a resonance as the intermediate state of a two body scattering depends
on the relation between its width and the energy spread of the incoming particles
AE [JoaT75]. In general the lifetime of a resonance is given by

_ (p)

where E' is the center-of-mass energy. That lifetime is the time delay of the wave
packet due to the scattering. In [Leu0l1] Eq. (6.11) has been generalized to the
decay of the A resonance with multiple final channels. In our model we take into
account A — N7 and A — N7!NN, where the second process is just another
way of writing NA — NN. The result for the lifetime in [Leu01] is

r= A0~ K), (6.12)
with
I'(w, p)
(w—p%/2m — ReXt (w, P))? + T'%(w, p) /4

being the spectral function and

Aw,p) = (6.13)

OReX " (w, P) LY 72/2m — ReX* (w, p) O (w, P)

K Ow I'w, p) Oow

Il

(6.14)

where I'(w,p) = —2ImYX " (w,p). In the calculations we neglected Re(X") and
for the A width we used the vacuum decay width with a parametrization from
[EBM99]

3 2 2
q ma B§ + q;
I'=Ty(—= 6.15

0(%) Eem. B3 + ¢ (6.15)

with ¢ being the pion momentum in the restframe of the A, g9 = ¢(ma), [y =
0.118 GeV, and fy = 0.2 GeV. In Fig. 6.6 we see the dependence of the A
lifetime as a function of the center-of-mass energy of the pion and the nucleon,
where one can clearly see a difference. In the calculations we also changed all other
resonances by using the same formula, but with the parameter of the respective
resonance.

In the final results however one does not see a difference. In Fig. 6.7 we see that
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Figure 6.6: Resonance life time as a function of center-of-mass energy.
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Figure 6.7: Pion and kaon rapidity spectra in Au+Au at 10.7 A-GeV with
modified resonance lifetimes in comparison to the standard calculation.
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there is no influence on the kaon and pion production. Again we looked at the
number of collisions as a function of energy and again there was no significant
change. One reason might be that in average the lifetime of the A is not changed,
since, as we see in Fig. 6.6, the lifetime of the A is sometimes enhanced and
sometimes suppressed. Another reason might again be that the change is just
too small to change the dynamics of the complex system significantly. A similar
very weak influence of the A lifetime choice on heavy-ion collisions at 1-2 A-GeV
was reported in [LELU02].

6.3 String-String collisions

In collisions with an invariant energy above 2.6 GeV in case of a baryon-baryon
collision and 2 GeV in case of a meson colliding with a baryon, we simulate
events with the Fritiof string model. As already explained, the particles in the
string have a formation time and during that time only the leading particles
inside the string are allowed to scatter with a reduced cross section (see Chapter
3). Now we want to modify that picture slightly. We will divide the formation
time into two parts, the production time and the new formation time. The
production time is the time in which the string is treated as kind of a high
resonance, which is explicitly propagated and which then decays according to the
Lund fragmentation. In the standard picture the string immediately starts to
decay and we only treat it through its decay products. Now we add another way
of existence to a string life by introducing the production time. During that time
we will treat the string as a single object, which can collide with other strings
and particles. After that time we use the same description as before. The only
difference is that the new formation time is shorter in such a way that if one adds
the production and the new formation time, the old formation time is recovered.
In the following we will discuss the details of the implementation and the choice
of the new parameters.

First of all we have to pin down the value of the production time. This is for sure
a very small time and we choose it to be

torod = 0.2 fm (6.16)

in the restframe of the string, which is of the order of the time steps, we are
using in our simulation. So after the Fritiof model has produced a string, it is
propagating as all other particles. We choose the value of the cross section with
all other objects to be

Ostring-string — Ostring-particle — 30 mb. (617)

This value is of the order of the inelastic cross section for NN scattering at
invariant energies above the threshold for string production. In order to preserve



6.3. STRING-STRING COLLISIONS 83

Au+Au 10.7 A GeV Au+Au 10.7 A GeV
35 T T T T T 45 T T T T T T T
baryon-baryon (standard) —— baryon-meson (standard) ——
30 baryon-baryon (string-string) —e— 40 + baryon-meson (string-string) —e— |
35 B
R 25 B ol |
0 0
§ 20 1 § 25 L i
P =z
T 15t g T 20 1
o o
= =15+ 1
— 10t | b
10 - 1
5r B 5| ]
0 0 I I I Ry vt
1 7 05 1 15 2 25 3 35 4 45 5
s*2 [GeV] s*2 [GeV]
Au+Au 10.7 A GeV Au+Au 10.7 A GeV
14 - — — T 18 T T T T ; T
string-string collisions —— meson-meson (standard) ——
1l string-particle collisions —e— | 16 meson-meson (string-string) —e— 4
14 + B
~ 10 b —
o o 12 F b
— —
L 8 8 Lot i
3 3
=z Z gl |
T 6 B h=]
(=} (=}
~ ~ 6 F -
— 4 ] H
4 L 4
2 B oL ]
0 0 L L L L T by "
8 0 05 1 15 2 25 3 35 4
st [GeV] st? [GeV]

Figure 6.8: Number of collisions normalized to the total cross section as a
function /s in Au+Au at 10.7 A-Gev and b=1 fm in different channels.

baryon number we distinguish between baryon strings and meson strings, which
are of course created out of baryons and mesons, respectively. In case of two
colliding baryon strings we get two new baryon strings, which are treated the
same way as all other strings. In case of a baryon string colliding with a meson
string, we get with equal probability either one baryonic string or one mesonic
and one baryonic string. The decay of the strings after the production time is
then done by jetset as before.

In Fig. 6.8 we see the number of collisions divided by the total cross section
as a function of \/s. We see indeed that the string-string collisions take place
at a higher invariant energy in comparison to the other channels. The number
of collisions is also quite comparable to the other channels. On the other hand
we also notice that the number of reactions in the other channels decrease. The
reason is of course that the produced particles now live in the string for a while and
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Figure 6.9: K™ rapidity spectra in Au+Au at 4 A-GeV, 10 A-GeV and 20
A-GeV with and without string-string collisions.

they are not available as collision partners. This reduction in the other channels
is quite sizeable, especially if one recalls that the cross sections for strangeness
production in e.g. the meson-meson channels is pretty high above the threshold
of about 1 GeV in comparison to other channels. Therefore we can understand
why the rapidity spectra of 7+ and K* in Fig. 6.9 and Fig. 6.10 show no
significant change. We compared rapidity spectra at three different energies in
order to investigate the influence of the number of strings. The number of strings
is of course higher at higher energies but obviously the results are not sensitive
to that. We also looked at the m; spectra for pions and kaons and again we did
not find a change.

An advantage about the stiffness of the model against the changes is that we can
gain more trust in the results of the model. The drawback is that those results do
not describe all of the data and so some changes are necessary. Another drawback
is that we can neither exclude nor prove the existence of certain processes or
medium modifications.
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Figure 6.10: 7" rapidity spectra in Au+Au at 4 A-GeV, 10 A-GeV and 20
A-GeV with and without string-string collisions.
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Chapter 7

Summary and Outlook

In this work we have performed a systematic study of kaon and pion production
in heavy-ion collisions at energies in the range from 2 A-GeV to 40 A-GeV within
the BUU model. The first chapters were devoted to the presentation of our model
and the description of the new implementations. Then we studied the influence of
the system size at energies around 10 A-GeV, the particle production as a func-
tion of energy and the influence of off-shell pions, A lifetime and string-string
collisions.

The system size dependence showed no ambiguities for Kt and we reproduced
the rapidity spectra in p+Au and Si+Au very well. The number of K as a
function of centrality in Au+Au at 10.7 A-GeV were also predicted nicely. Only
in p+Be and in pp collisions at lower energies we overestimated K. This was
improved by employing a lower strangeness suppression factor, but at the same
time the agreement in p+Au, Si+Au and Au+Au for Kt got worse. The K~
yields on the other hand were overestimated in almost all systems and here a re-
duced suppression factor is favored. The overshooting in bigger systems at higher
energies, however, is more likely to be due to the meson-meson cross section as
pointed out in Chapter 5. The pion yields also started to deviate as we increased
the system size and there was a clear sign that our cascade model misses some
kind of reaction dynamics, which reduces pions.

The excitation functions for the pions, kaons, lambdas and sigmas were studied
in Chapter 5. The biggest deviation appeared again in the results for pions. Here
we could confirm the results, which have already been obtained by HSD and
UrQMD, namely that the 7 are overestimated at all energies. Due to the high
number of pions we could not reproduce the peak in the Kt /7% ratio, but we are
close to the statistical model. The disagreement with data is also not big enough
to make any statement on the appearance of new physics. Since the kaon yields
could be reproduced, the reason for the peak does not seem to be strangeness
enhancement but "pion reduction’.

The modifications we implemented in Chapter 6 did not have a significant influ-
ence on the particle production, which shows that the influence of the secondary
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collisions is pretty robust against small changes. The idea behind all those mod-
ification has been to increase the invariant energies of the collisions in order to
enhance the production of heavy particles. Since the densities in high-energy
heavy-ion collisions are very high, medium modifications or multi particle colli-
sions become more and more probable. Unfortunately the system is too complex
in order to get a clean sign for one of those effects.

Another problem is the string model. We saw that the string model has already
problems in describing excitation functions of the elementary reactions. How-
ever, the spectra in p+Be and especially in p+Au looked better and therefore
the averaged cross section of pp and pn seems to be well produced. If that is
the case and there is such a difference between np and pp reactions, the question
is of course how nn reactions behave. In a heavy-ion collision, those will be the
most frequent collisions. Therefore it is very difficult to trace back the reasons for
the deviations in the excitation functions for Au+Au collisions. Thus it would
be reasonable to spend some thoughts on a better description of the elementary
reactions since they are one of the foundations of a transport model. A problem
with that is of course that for most channels like almost all baryon-meson and
meson-meson channels, there is no data and therefore it will be difficult to say if
a model is describing the elementary reactions right. However, it should at least
be able to describe the data on pp collisions, which is available.

An interesting and important point is that in the elementary reactions and in
small systems, we always overestimated kaons and underestimated the pions. As
the system size increases, we see the opposite effect and we overestimate pions
and underestimate kaons. That is a clear sign of reaction dynamics which have
not been completely understood and which will be interesting to study further.
Another open problem in our model is the potential at AGS energies. In our
model we overestimated all particle yields at the lower AGS energies and our
stopping was too high. That seems very much to be due to the missing potential,
which should be investigated.

The potential might also be important for the generation of the additional pres-
sure, which we seem to miss by looking at the K™ slopes as a function of energy.
Here we also confirmed calculation by other transport models that the K slopes
are underpredicted in heavy-ion collisions at those energies. Here it will be inter-
esting to study whether this increase of the slopes is due to some pre-hadronic
phase or if it can be explained in hadronic terms.

Due to the high abundance of particles, the energy range from 2 A-GeV to 40
A-GeV seems to be very well suited for the study of the strong interactions. An
interesting mechanism, which might influence the model predictions, is the multi
particle scattering. Those reactions are also important in order to fulfill detailed
balance in case of the string model and they are another way to gather more en-
ergy in one collision and therefore increase the production of heavy particles and
the pressure in the system. However, it is questionable and it will be interesting
to further investigate if at those high densities a description in terms of hadrons
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is still reasonable or if one deals with some kind of pre-hadronic phase.
The question, which was raised in the introduction, if there is a sign for a quark-
gluon plasma, cannot be answered for the reasons mentioned above.
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Appendix A

Deutsche Zusammenfassung

Eines der Ziele der Schwerionenphysik ist die Entdeckung des Quark-Gluon Plas-
ma. Bei einer Einschussenergie von etwa 30 A-GeV ist die Dichte in einer Schw-
erionenkollision am hochsten und ein Phaseniibergang von hadronischen Frei-
heitsgraden zum Quark-Gluon Plasma ist moglich. Wir untersuchten in dieser
Arbeit Schwerionenkollisionen mit Hilfe eines Transportmodells in einem En-
ergiebereich zwischen 2 und 40 A-GeV und suchten nach Anzeichen fiir diesen
Phaseniibergang. Eines der méglichen Anzeichen ist eine erhohte Produktion von
Strangeness, da strange Quarks leichter durch die Fusion von Gluonen in einem
Quark-Gluon Plasma erzeugt werden, als in hadronischen Reaktionen. Experi-
mente haben in der Tat ein Maximum im K* /7" Verhiltnis als Funktion der
Energie bei etwa 30 A-GeV gefunden.

Die ersten zwei Kapitel dieser Arbeit galten der Préisentation des BUU Trans-
portmodells, das auf der BUU Gleichung basiert. Da wir, wie gesagt, dieses
Modell bei Energien zwischen 2 und 40 A-GeV einsetzen, verlassen wir teilweise
den Resonanzbereich und verwenden fiir diese Kollisionen bei hoheren Energien
das Fritiof String Modell. Das Modell wurde anschliessend an Systemen mit
steigender Grosse getestet. Angefangen bei pp Kollsionen, iiber pA Reaktionen
zu Schwerionenkollisionen wurden die Rapiditiatspektren von Pionen und Kao-
nen mit den experimentellen Daten verglichen. Dabei war auffillig, das, obwohl
die Pionen in elementaren Reaktionen unterschitzt wurden, bei steigender Sys-
temgrosse die Pionen iiberschatzt wurden.

Anschliessend untersuchten wir die Produktion von Pionen und Kaonen als Funk-
tion der Einschussenergie. Dort stellten wir wiederum fest, das wir zu viele Pionen
produzieren, was friihere Rechnungen mit anderen Transportmodellen, HSD und
UrQMD, bestatigte. Ebenso auffillig war, dass obwohl wir die K* zufrieden-
stellend beschreiben, die K~ iiberschitzt werden. Unser berechnetes K+ /7t
Verhiltnis ist in guter Ubereinstimmung mit dem thermischen Modell, allerdings
wird das Maximum bei 30 A-GeV nicht reproduziert. Die Abweichung ist jedoch
nicht gravierend genug, um eine Aussage iiber Hinweise auf die Existenz oder das
Ausschliessen eines Quark-Gluon Plasmas zu treffen. Eine grossere Abweichung
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fanden wir in den K ’slopes’ als Funktion der Energie. Das rasche Ansteigen der
‘slopes’, welches man in den Daten beobachtet, konnte nicht reproduziert werden.
Ebenso unterschitzen wir die ’slopes’ bei allen Energien, wihrend in elementar-
eren Reaktionen, wie p+Be oder p+Au, keine Probleme auftraten. Dies bestétigt
wiederum Rechnungen mit den Transportmodellen HSD und UrQMD und man
spekuliert, dass der zusatzliche Druck durch prahadronische Freiheitsgrade in der
Frithphase der Kollision hervorgerufen wird.

Im letzten Kapitel untersuchten wir die Einfliissse von Off-shell Pionen, Resonanz
Lebensdauern und String-String Kollisionen, konnten aber keine Auswirkung auf
die Spektren von Kaonen und Pionen finden.

Es wird interessant sein, in der Zukunft neue Daten in dem Energiebereich zwis-
chen 2 und 40 A-GeV zu bekommen, um die Frage nach prahadronischen Frei-
heitsgraden und dem Phaseniibergang zu hadronischen Freiheitsgraden genauer
zu untersuchen.
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