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One

Introduction

Short range particle interactions are mainly governed by three fundamental forces: the electro-
magnetic, weak and strong force. Their unified description as quantum field theories based on
gauge invariance makes up the Standard Model of particle physics. It successfully explains a
wide range of experimental results and allows for astoundingly accurate predictions of various
phenomena.

In this thesis we will focus solely on the strong force which is described by the quantum
field theory named quantum chromodynamics (QCD). Its building blocks are the fermionic
quark fields and their interaction is governed by gluon fields–the gauge bosons of QCD. Most
notably, the proposition of quarks has provided a classification scheme for the multitude of
particles discovered in the 1950s and goes back to the quark model by Gell-Mann and Zweig
from 1964 [1, 2]. It entails that quarks form bound states called hadrons. This model was first
challenged with the discovery of the ∆++ baryon which consists of three quarks with parallel
spin. This seemed to violate the Pauli principle and for this reason a new quantum number was
proposed–the so called color charge. At that time quantum electrodynamics (QED), the gauge
theory describing electromagnetic interactions, was already enjoying great success and so QCD
was also constructed upon the principle of gauge invariance with the underlying gauge group
SU(Nc), where Nc is the number of color charges and Nc = 3 is realized in nature.

One of the curious properties of QCD is the fact that no states have been detected so far that
carry color charge. This phenomenon is known as confinement and implies that no free quarks
may be directly measured. Another defining feature of QCD is asymptotic freedom, discovered
by Gross, Wilczek and Politzer in 1973 [3, 4]. Quarks and gluons are asymptotically free in a
sense that the strong interaction becomes week at high energies. It is therefore believed that
quarks and gluons form a so called quark-gluon plasma at high temperatures and densities [5] for
example present in the early universe. An interesting question is then how this fundamentally
different state of QCD is connected to low energy QCD where quarks are bound to hadrons.
It is natural to assume that a phase transition between both states of QCD occurs at certain
temperatures and densities. In fact, various model studies suggest that QCD exhibits a rich
phase structure with the possibility for a critical end point (CEP) [6]. An idealized picture of
the current knowledge about the QCD phase diagram is shown in Fig. 1.1.

Theoretical investigations of QCD basically predict two distinct transitions at high temper-
ature and densities: Deconfinement of quark matter and restoration of chiral symmetry. Both
transitions seem to be connected, however, the exact nature of their interplay is still under
discussion. In this thesis we will focus exclusively on the chiral phase transition. Various other
phases of QCD, for example a color superconducting phase at very high densities, have been
conjectured [8, 9].

On the technical side QCD has proven to be an exceptionally hard theory to solve. This
is in part due to the running of the strong coupling. Standard perturbative approaches give
access to the high energy limit of QCD, however, for small energies the strong coupling grows
and therefore an expansion in this parameter is bound to break down. Low energy theoretical
studies of QCD rely on model calculations and non-perturbative methods. One such method
that has gained a lot of traction in recent years is lattice gauge theory. On a discrete set of
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Figure 1.1: Schematic overview of the QCD phase diagram [7].

space-time points, called the lattice, the QCD path integral is calculated directly using Monte
Carlo methods. This has given first reliable results for various aspects of QCD such as the
critical temperature and the crossover nature of the chiral transition at vanishing chemical
potential [10–12]. However, the famous sign problem of lattice gauge theory hinders its appli-
cation to finite chemical potential. Different methods to circumvent this problem are currently
under active research [13, 14]. Furthermore, the inclusion of fermions on the lattice is compu-
tationally expensive and this is especially true for the chiral limit which can only be reached
by extrapolation to vanishing quark masses.

Other non-perturbative methods that have been successfully applied to QCD include Dyson-
Schwinger equations (DSE) and the functional renormalization group (FRG). Both are based
on the path integral formulation of quantum field theory and they are both intrinsically exact
functional equations. However, for any non trivial system truncations have to be made which
spoil this exactness. Crucially, within these methods, one can develop truncation schemes
which do not expand in the coupling strength and therefore can be applied to low energy
QCD. Furthermore, finite chemical potential can be implemented without encountering the
sign problem.

In this thesis we use the FRG framework to investigate the chiral phase transition of 2+1
flavor QCD. It is known that the correlation length ζ diverges at the critical point and conse-
quently fluctuations on all length scales become relevant. Within the FRG formulation this is
handled by implementing Wilson’s renormalization group idea of successively integrating fluc-
tuations on an infinitesimal momentum shell. This makes the FRG a suitable tool for the study
of critical phenomena, see e.g. [15]. In this thesis we will show how the U(Nf)L ⊗ U(Nf)R
quark-meson model follows from a low energy treatment of QCD and then focus on a 2+1
flavor formulation thereof. This procedure is systematically improvable and can be related to
perturbative QCD by a technique called dynamical hadronization [16–18].

The 2 flavor phase diagram has already been extensively studied within the FRG framework,
see e.g. [19, 20]. Restoration of chiral symmetry is commonly studied within effective quark-
meson type models. These models are then often augmented by the Polyakov loop which
incorporates gluon degrees of freedom in form of an effective gluon potential [21, 22]. This
makes it possible to investigate the deconfinement transition of QCD in a rudimentary fashion.
Only recently have these considerations been extended to 2+1 flavor [23–26].

Various investigations have found that the nature of the chiral phase transition is heavily
dependent on the quark masses. General renormalization group arguments predict a first-order
phase transition of 3 flavor QCD in the chiral limit [27]. It is still not entirely settled how
this statement relates to the physical point1 where lattice results reliably determine the chiral

1Where quarks have a finite current mass.
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Figure 1.2: Sketch of the order of the chiral phase transition in dependence of quark masses at
zero chemical potential [13].

phase transition to be a smooth crossover [10–12]. The order of the chiral phase transition in
dependence of quark masses is visualized in the so called Columbia plot. An idealized picture
of the current knowledge of the Columbia plot at vanishing chemical potential is shown in Fig.
1.2. A second-order line (chiral critical line) separates the first-order region around the chiral
limit and the crossover region comprising the physical point. This second-order line has been
determined by lattice calculations to fall under the Ising (Z2) universality class [28, 29]. Lattice
calculations have to this date not been conclusive in the light chiral limit where the two lightest
quarks (up and down) are massless [30, 31]. One possibility is the existence of a tricritical point
where the Ising (Z2) second-order line hits the ms axis. About this tricritical point a second-
order line is expected to follow along the ms axis into the 2 flavor limit at ms = ∞. In this
scenario the universality class of the second-order line along the ms axis is likely to be dictated
by 2 flavor QCD. One possibility is the universality class O(4) as seen in SU(2)L ⊗ SU(2)R
models.

An entirely different picture is seen for example in a mean field investigation [32]. There a
wide first-order region has been found that connects the chiral limit to the 2 flavor axis. On
the other hand, a similar investigation in Hartree approximation predicts a small first-order
region around the chiral limit with a tricritical point at the ms axis [33]. Fluctuations are
expected to further modify the structure of the critical line and this will be the main topic of
this work. We include meson and quark fluctuations within the FRG framework and determine
the dependence of the chiral phase transition on pion and kaon masses.

The mass sensitivity of the chiral phase transition is also highly relevant for the search of a
CEP in the QCD phase diagram. This becomes evident by extending the Columbia plot into
the µ axis. The chiral critical line then turns into a critical surface and its curvature ultimately
determines if a CEP exists for physical quark masses. The standard scenario involves a positive
curvature of the critical surface at µ = 0 so that the first-order region expands for increasing µ
which would place the physical point in the first-order region at some finite µ. The contrary
scenario suggests a negative curvature and would lead to a vanishing first-order region at some
µ. Recent lattice simulations using the imaginary chemical potential method favor the non-
existance of a tricritical point on the ms axis and predict a shrinking first-order region at finite
µ [13, 34].

Another aspect of QCD that plays a crucial role in the chiral phase transition of QCD is the
anomalous breaking of U(1)A symmetry. It is the reason why the η′ meson is not a light pseudo
Goldstone boson [35, 36]. As shown by ’t Hooft the anomaly is caused by instantons and it can
be effectively understood as a 2Nf quark interaction mixing quarks of different flavor [37]. The
resulting determinant in flavor space breaks U(1)A symmetry and can be formulated in terms
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of meson fields via a bosonization procedure [38, 39]. Previous investigations have shown that
the order of the chiral phase transition is crucially dependent on the state of the anomaly at
the critical temperature [32, 33].

This thesis is structured as follows: We start by collecting some basic facts about the
functional approach to quantum field theory. Then we briefly discuss properties of QCD and
focus on its symmetries as they will play an integral role for the construction of our truncation.
After the basic ideas of the functional renormalization group are introduced in Sec. 4, the
truncation is motivated which we use to study the chiral phase transition of QCD. We then
derive the Wetterich flow for the U(Nf)L ⊗ U(Nf)R truncation and discuss the 2+1 and 2
flavor realizations thereof which we solve numerically. We present and discuss our findings in
Sec. 6. Finally, we give some details above the numerical setup and present a novel approach
to solve FRG flow equations in Sec. 7.

1.1 Notations and Conventions

Throughout this thesis we will be working in Euclidean space-time. The transition from
Minkowski space-time to Euclidean space-time is performed by a Wick rotation of the time
coordinate t→ −ix0 and results in the 4-vector product

x2 = t2 − ∣x∣2 → −(x0)2 − ∣x∣2 = −∣xE ∣2. (1.1)

We will omit the subscript E from now on and all quantities are to be understood as
evaluated in Euclidean space-time.

For the frequently occurring space and momentum integrals we use the shorthand notation

space: ∫
x
≡ ∫ d4x, momentum: ∫

⋆p
≡ ∫

d4p

(2π)4
, (1.2)

where we add a star to identify the momentum integrals.
We implement finite temperature in the standard fashion and use the notation

∫
x
f(x) → ∫

1/T

0
dτ ∫ d3x f(τ,x), ∫

⋆p
f(p) → T

∞

∑
n=−∞

∫
d3p

(2π)3
f(ωn,p), (1.3)

where for bosons ωn = 2nπT and for fermions ωn = (2n+1)πT are the respective Matsubara
frequencies.

In sections 2.1 and 4 we make use of a compactified notation put forward in [40]. Fields
of arbitrary type are collected in a super-field Φ. For example if we have fields with spin
0, 1

2
, 1 the super-field might read Φ = (φ,ψ, ψ̄,A)T where ψ and ψ̄ are Grassmann valued. We

denote all substructure of the super-field by a general multi-index with bold typesetting Φa.
Dependent on the specific field the multi-index may comprise indices for space-time, Lorentz,
color, flavor and so on. It is understood that the individual field types generally have different
internal indices.

Raising and lowering of the general multi-index is done by the generalized metric γab

Φa = γabΦb. (1.4)

It is the direct sum of all internal metrics and includes a non-trivial field space metric if
fermionic fields are comprised in Φ. For the above specified super-field the field space metric
reads
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γab =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠

(1.5)

so that the contraction of Φ with itself reads ΦaΦa = ∫x(φ
2 + 2ψ̄ψ +A2) where contraction

over remaining internal indices is implied. We define the source term corresponding to Φ as
Ja = (Jφ, Jψ,−Jψ̄, JA) so that the usual contraction with Φa is given by

JaΦa = ∫
x
(Jφφ + Jψψ + ψ̄Jψ̄ + JAA). (1.6)

Finally we mention one identity of the field space metric which will be used later on

γab = (−1)abδab , (−1)ab =
⎧⎪⎪⎨⎪⎪⎩

−1 a and b fermionic

1 otherwise
(1.7)

The true power of this notation is only realized when one is dealing with composite fields.
However, here we simply use it to simultaneously deal with fermions and bosons.





Two

Functional Methods

Historically quantum field theory was first developed using the canonical quantization formalism
which has a somewhat intuitive connection to quantum mechanics. It involves a generalization
of the canonical commutation relations to quantum field operators and thus generates creation
and annihilation operators akin to second quantization formalism in many body theory. There
is however another approach, the so called path integral approach which has proven to be
invaluable to quantum field theory and has been widely used since the 1950s. It is equivalent to
the canonical quantization formalism and is based on the action principle of classical mechanics.
In this thesis we will also benefit from the close resemblance of the path integral formalism to
statistical mechanics.

2.1 The Generating Functional

We want to calculate n-point correlation functions which are given as the vacuum expectation
value (VEV) of the time ordered product of n fields and can be written as

⟨TΦa1 . . .Φan⟩ = ∫
DΦ Φa1 . . .Φane

−S[Φ]

∫ DΦe−S[Φ]
. (2.1)

Here S[Φ] = ∫xL(Φ(x)) is the action in Euclidean space-time. The path integral ∫ DΦ is a
deceptively simple notation for a summation over all continuously infinite field configurations
Φ(x) and can only be analytically evaluated for special cases i.e. the Gaussian integral in field
space.

A more elegant way to compute correlation functions is given through the generating func-
tional

Z[J] = ∫ DΦ exp [−S[Φ] + JaΦa] (2.2)

where J is a so called source term resembling external sources in classical equations of
motion. We define the generating functional in Euclidean space-time because the connection
to statistical mechanics becomes apparent in this formulation. The direct analogue of the
generating functional is the partition function which is given as the sum over all possible states
weighted with a Boltzmann factor. This close correspondence enables us to apply our knowledge
of statistical mechanics to quantum field theory and vice versa.

Using the generating functional we can compute the desired correlation functions but we
first have to define the functional derivative which is the functional generalization of standard
differentiation. In our multi-index notation we have

δ

δJa
JbΦb = Φa. (2.3)
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The usual rules for differentiation apply when differentiating composite functionals. With
this it is easy to see that each differentiation of Z[J] with respect to Ja gives a factor of Φa in
the integrand. Subsequently setting the source term to zero we recover Eq. (2.1)

⟨TΦa1 . . .Φan⟩ = 1

Z[0]
δnZ[J]

δΦan . . . δΦa1

∣
J=0

. (2.4)

2.2 The Effective Action

In classical field theory the vacuum expectation value of a field is given as the stationary point
of the action. In quantum field theory the classical expectation value receives corrections due
to quantum fluctuations similar to thermal fluctuations in a statistical system. Fortunately, it
is possible to construct a functional that gives the true expectation value including fluctuations
at its stationary point. This construction is analogous to a Legendre transformation from
the free energy to the Gibbs free energy which upon minimization gives the expectation value
including thermal fluctuations. We call the QFT analogue the quantum effective action (or
simply effective action) and it is defined by

Γ[ΦJ] = JaΦJa −W [J] (2.5)

with W [J] the quantum field theory analogue of the free energy. W [J] is given as the sum
of all connected vacuum-vacuum diagrams in the presence of a source J . Since Z[J] is the sum
of every possible vacuum-vacuum diagram we can write it as a sum over connected diagrams

Z[J] = ∑
N

1

N !
W [J]N = eW [J] (2.6)

where the N ! factor cancels out permutations.
The effective action is a functional of the classical expectation value in the presence of a source
J which is given by differentiating W [J] with respect to the source

δW [J]
δJa

= ⟨Φa⟩J ≡ ΦJa. (2.7)

This equality can be formally inverted to give J[ΦJ] which is needed for the Legendre
transformation to be well defined. We can verify that the effective action satisfies the quantum
equation of motion

δΓ[ΦJ]
δΦJa

= δJb

δΦJa
ΦJb + Ja − δW [J]

δΦJa

= δJb

δΦJa

δW [J]
δJb

+ Ja − δJb

δΦJa

δW [J]
δJb

= Ja (2.8)

where we have used Eq. (2.7) between the first and second line.
The effective action has a few noteworthy properties: One can show that Γ[ΦJ] is the sum
of all one-particle-irreducible vacuum-vacuum diagrams which are diagrams that can not be
disconnected by cutting a single line. Also, it is possible to calculate W [J] as the sum of tree
graphs if instead of the classical action S[Φ] the effective action is used. This implies that
all loop corrections are included in the vertices calculated with the effective action, hence its
name. Furthermore, because of its definition as a Legendre transformation Γ[ΦJ] is a convex
functional. This property will be of special interest for the later discussion.
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2.3 The Effective Potential

In many cases the vacuum state is expected to be invariant under translations and Lorentz
transformations. In such cases the solutions to (2.8) become constants so that all functional
character is lost and the equation of motion becomes a standard partial differential equation.
For a vanishing source term we have

∂

∂Φ
Γ(Φ) = 0. (2.9)

Since no kinetic terms contribute to the effective action for constant fields one writes

Γ[Φ]∣Φ=const = Γ(Φ) = ∫
x
U(Φ) = Vd U(Φ) (2.10)

where Vd is the d-dimensional volume and U(Φ) the so called effective potential. This is
also the first term in a derivative expansion of the effective action as we will see later.

Already a lot of information is stored in the effective potential. For example the true ground
state including quantum fluctuations can be extracted by minimizing the potential. This means
that e.g. symmetry breaking can be intuitively understood through the effective potential.

We conclude with a further analogy to statistical mechanics. If we include a chemical
potential in the action S[Φ] → S[Φ]+µN and evaluate the corresponding generating functional
for a vanishing source term we recover a form reminiscent of the grand canonical partition
function

ZGC = Tr e−β(H−µN). (2.11)

In this case the effective action Γ[ΦJ=0] = − lnZ[J = 0] corresponds to the grand potential
Ω = − 1

β
lnZ and therefore U can be understood as the grand potential density Ω/V .





Three

Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the quantum field theory describing the strong force. Its
building blocks consist of quarks and gluons where the latter are understood as the mitigating
particles of the strong force - the gauge bosons of QCD. Quarks carry so called color charge
and this gives rise to the gauge group SU(Nc = 3) upon which QCD is constructed, as we will
see shortly. Additionally, quarks come in 6 flavors with widely different masses (see. Tab. 3.1).
Because the up, down and strange quarks are much lighter than the remaining three they are
often called the light quarks and for this thesis we will only consider their dynamics.

Asymptotic Freedom and Running of the Strong Coupling. At different energy and
length scales the strength of the strong coupling changes. This is generally true for interacting
field theories requiring renomalization and can be intuitively understood as a combination of
screening and/or anti-screening effects at various length scales. The change of couplings is
measured in so called beta-functions and in QCD it reads to one loop order

β1(αs) = k∂kαs =
α2
s

6π
(2 Nf − 11 Nc) (3.1)

where αs = g2s
4π

is the QCD analogue of the fine structure constant of QED. For Nc = 3 and

Nf < 33
2

the beta function is negative which is known as asymptotic freedom [3, 4]. It entails
that the strong coupling vanishes in the high energy limit and becomes strong in the IR. In
Fig. 3.1 αs is shown as a function of the energy scale Q. The rise of the strong coupling at
low energies leads to a breakdown of standard perturbation theory so that non-perturbative
methods have to be developed to fully understand all aspects of QCD.

Color Confinement. Another curious property of QCD is the absence of colored states in
the hadron spectrum. This property is called confinement, however, there is to this date no
agreed upon definition connected with this term. Consequently, it is not a mathematically
proven property of QCD. One possible way to express color confinement is with the statement

flavor el. charge [e] current mass
up 2/3 2.3 MeV

down -1/3 4.8 MeV
strange 2/3 95 MeV
charm -1/3 1.275 GeV

top 2/3 173.21 GeV
bottom -1/3 4.66 GeV

Table 3.1: Electrical charge and current mass of each quark flavor. Masses taken from [41].
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QCD αs(Mz) = 0.1181 ± 0.0013
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Figure 3.1: Summary of measurements of αs as a function of the energy scale Q [41].

that all measurable particles must be color singlets. This statement has so far been confirmed
by experimental data and it is also one of the first results of lattice QCD simulations.

In the limit of heavy quarks confinement manifests in a linearly rising potential between
quarks and antiquarks

lim
r→∞

Uqq̄(r) = σ r. (3.2)

Here r is the distance between a quark and antiquark and σ is the string tension. Conse-
quently, an infinite amount of energy is required to separate a quark-antiquark pair. This can
never be achieved since it only takes a finite amount of energy to create a new pair from the
vacuum. The original quark-antiquark pair therefore breaks up into two pairs before it can be
separated.

3.1 QCD as a Non-Abelian Gauge Theory

The three field theories contained in the standard model are built upon the principle of gauge
invariance. For QCD the gauge group is SU(Nc). Therefore, quarks q and antiquarks q̄
transform in the fundamental representation of SU(Nc)

q(x) → U(x)q(x), q̄(x) → q̄(x)U �(x). (3.3)

An infinitesimal gauge transformation can be written as

U(x) = 1 − iωa(x)T a +O(ω2) (3.4)

with N2
c − 1 generating matrices T a for a = 1, . . . ,N2

c − 1 which are Hermitian and traceless.
Note that the gauge transformation is local1 which generally breaks gauge invariance of standard
derivative terms such as q̄ /∂q. This fault can be cured by introducing the covariant derivative

∂µ Ð→ Dµ = 1∂µ − igsAµ = 1∂µ − igsAaµT a (3.5)

where gs is the strong coupling and Aaµ the gauge fields decomposed in the basis of SU(Nc).
The gauge fields of QCD are commonly referred to as gluons. They are spin one particles and
carry color charge denoted by the superscript a which is the QCD analogue of the electric
charge. Using this substitution the kinetic term ψ̄ /Dψ becomes gauge invariant.

1The transformation is dependent on space-time.
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The newly found gauge fields also require a kinetic term to describe their dynamics and this
is typically included through the field strength tensor

Fµν(x) =
i

gs
[Dµ,Dν] = ∂µAν − ∂νAµ − igs[Aµ,Aν] (3.6)

which is itself not gauge invariant but transforms with

Fµν(x) Ð→ U(x)Fµν(x)U �(x). (3.7)

The term 1
2

Tr(FµνFµν), however, is gauge invariant and turns out to be the only renomal-
izable quantity which also respects CT symmetry. This means that we have found our kinetic
term for the gauge field so that the total Lagrangian reads

SQCD[q̄, q,Aµ] = ∫
x
L(q̄, q,Aµ) = ∫

x
[q̄( /D +Mq)q +

1

2
Tr(FµνFµν)] . (3.8)

A gluon mass term AµAµ is not gauge invariant. Therefore, it is not present in the QCD
Lagrangian and we conclude that gluons are massless particles.

An important feature of QCD is its non-Abelian nature. By expanding the field strength
tensor as Fµν = F aµνT a we find

F aµν = ∂µAaν − ∂νAaµ + gsfabcAbµAcν (3.9)

where fabc are the structure constants of SU(Nc) defined by [T a, T b] = ifabcT c. Since for
SU(Nc = 3) the structure constants do not vanish2 there are contributions with three and four
gluon fields in 1

2
Tr(FµνFµν). This implies that there is gluon self interaction already at the

classical level which is an important distinction to QED where photon-photon interactions are
only possible through fluctuations.

QCD and the path integral formalism. Now that we have established the classical action
of QCD the next step towards a solution of QCD in perturbation theory would be to derive
Feynman rules. Applying canonical quantization turns out to be extremely tedious for non-
Abelian theories [42]. Turning to the path integral formalism we encounter another problem: In
a gauge theory physically equivalent states are connected by a gauge transformation. This fact
leads to an overcounting in the path integral since it is a summation over all field configurations
many of which (infinitely many) correspond to the same physical state. As shown by Faddeev
and Popov [43] it is possible to cure this infinite overcounting by imposing a gauge fixing
condition Fa(Aµ) = 0 in the path integral. Further complications arise due to the complex
topological structure of gauge orbits3 so that gauge fixing can at best be achieved locally. This
is known as Gribov ambiguity [44].

Incorporating the gauge fixing condition into the path integral the change in the measure
introduces the Faddeev-Popov determinant. It can be rewritten in terms of so called ghost fields
c(x), c̄(x). They are complex scalar fields but due to their Grassmann valued nature they
anti-commute which violates the spin-statistics theorem. Therefore, ghost fields are considered
non-physical and they only appear as virtual particles in Feynman diagrams.

With the specific gauge condition Fa(Aµ) = ∂µAaµ the action for gauge fixed QCD reads
[45]

Sgf
QCD[q̄, q, c̄, c,Aµ] = ∫

x
[q̄ ( /D +Mq) q +

1

2
Tr(FµνFµν) + c̄a∂µDab

µ c
b + 1

2ζ
(∂µAaµ)2] . (3.10)

2Groups where the commutator vanishes are called Abelian.
3Fields Aµ are considered to be in the same gauge orbit if they can be transformed into each other through

gauge transformations.
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3.2 Symmetries of QCD

Apart from the local SU(Nc) symmetry that determines the interactions of QCD there are
various global symmetries (approximately) realized in the action (3.8). These symmetries will
play a crucial role in the construction of our truncation. Even more interesting than the
symmetries themselves is how they are broken at low energies. The breaking of chiral symmetry
will reveal two essentially different phases of QCD and they are the main topic of this thesis.

U(1)V Symmetry. We start with the most obvious symmetry which is the U(1)V symmetry.
It is realized as a phase change of the quark fields

q(x) → eiωq(x), q̄(x) → q̄(x)e−iω (3.11)

which clearly leaves leaves the QCD action invariant. For any continuous global symmetry
we can calculate the conserved Noether current and a correspondent charge which is constant
in time

Jµ(x) =
1

3
q̄(x)γµq(x), B(t) = ∫ d3xJ0(x) =

1

3
∫ d3xq�(x)q(x). (3.12)

The charge is the baryon number so that U(1)V symmetry is directly responsible for baryon
number conservation.

Isospin symmetry. If we assume all quark flavors to be of equal mass then the action exhibits
a global SU(Nf) symmetry

q(x) → eiωaT
a

q(x) (3.13)

where T a with a = 1, . . . ,N2
f − 1 are the generators of SU(Nf) acting solely on the flavor

part of the quark field. This symmetry often referred to as isospin symmetry and its breaking
pattern can give insight into the meson spectrum as will be seen later on. The conserved
Noether currents and charges are

Vaµ(x) = q̄(x)γµT aq(x), Qa(t) = ∫ d3xVa0 (x) = ∫ d3x q̄�(x)T aq(x). (3.14)

Just as the generators the conserved charges form the SU(Nf) Lie algebra

[Qa,Qb] = ifabcQc. (3.15)

The assumption that all quark flavors have the same mass is not realized in nature so that
isospin symmetry is not an exact but an approximate symmetry. It works especially well for
Nf = 2 since the difference in mass between up and down quark is small md−mu < 3.4 MeV [41].
It also often applied to Nf = 3 since charm, top and bottom quarks are considerably heavier
than up, down and strange quarks.

We note that even in the case of explicit isospin symmetry breaking by different quark
masses the charge algebra defined in (3.15) still holds at each time instance even though the
charge need not be conserved. The four divergence of the current can be evaluated to

∂µVaµ = iq̄ [Mq, T
a] q (3.16)

where the commutator only vanishes if Mq ∼ 1 and therefore the current is only conserved
if quark masses are equal.
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Chiral Symmetry. We go one step further away from the physically realized case by as-
suming that we have Nf massless quarks. The other quark flavors are assumed to be infinitely
heavy and therefore their dynamics can be neglected.

We define two projection matrices

PR/L = 1

2
(1 ± γ5). (3.17)

Applied to a quark spinor they project onto spinors of unique handedness4

qR/L = PR/L q, q̄R/L = q̄ PL/R (3.18)

and in accordance with standard projection properties5 we get

q(x) = qR(x) + qL(x). (3.19)

In the limit of massless quarks the fermionic part of the QCD Lagrangian separates into
contributions from left and right handed quarks

q̄ /Dq = q̄R /DqR + q̄L /DqL (3.20)

which is commonly referred to as chiral symmetry. It is easy to see that non vanishing quark
masses mix left and right handed spinors and therefore break chiral symmetry

q̄Mqq = q̄RMqqL + q̄LMqqR. (3.21)

From this formulation it is clear that for the chiral limit we can define two U(Nf) trans-
formations that act separately on the left- and right handed spinors and leave the Lagrangian
invariant. We denote these symmetries as

U(Nf)L ⊗U(Nf)R. (3.22)

This symmetry group can be decomposed into

SU(Nf)L ⊗U(1)L ⊗ SU(Nf)R ⊗U(1)R (3.23)

and the conserved currents are given by

Jµ,R/L = q̄R/L γµ qR/L, J aµ,R/L = q̄R/L γµT
a qR/L. (3.24)

We can make the connection to isospin symmetry by defining vector and axial currents

Vµ = Jµ,R + Jµ,L = q̄γµq, Vaµ = J aµ,R + J aµ,L = q̄γµT aq,
Aµ = Jµ,R − Jµ,L = q̄γµγ5q, Aaµ = J aµ,R − J aµ,L = q̄γµγ5T

aq (3.25)

4We use the anti-commutator relation {γµ, γ5} = 0 for the adjoint spinor.
5Properties of projection operators include P 2

R,L = 1, PRPL = 0, PR + PL = 1.
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and the corresponding charges

QV (t) = ∫ d3xVa0 = ∫ d3xq�q, QaV (t) = ∫ d3xVa0 = ∫ d3xq�T aq,

QA(t) = ∫ d3xAa0 = ∫ d3xq�γ5q, QaA(t) = ∫ d3xAa0 = ∫ d3xq�γ5T
aq. (3.26)

The U(1)V symmetry corresponding to Vµ is the symmetry discussed above which lead to
baryon number conservation and SU(Nf)V defined by Vaµ is just the isospin symmetry. Vaµ is
conserved even for finite but equal quark masses. This is not true for the axial current since
its four divergence

∂µAaµ = iq̄{Mq, T
a}γ5q (3.27)

is finite for Mq ≠ 0. Finally the U(1)A corresponding to the axial current Aµ plays a special
role in QCD since it is anomalously broken, i.e. the symmetry is broken on the quantum level.
We will discuss this in more detail in Sec. 3.4.

3.3 Spontaneous Breaking of Chiral Symmetry

Spontaneous symmetry breaking is an important mechanism in many areas of physics. It is
defined as a symmetry that is realized in the action of a theory but not in its ground state.
Therefore the symmetry of a theory is hidden and not observed in its measurements. Notable
examples for spontaneous symmetry breaking include the magnetization of a ferromagnet and
the Higgs mechanism.

We already noted that chiral symmetry is not realized in the QCD vacuum, because finite
quark masses break chiral symmetry explicitly. Nevertheless, for the two (three) lightest quark
flavors chiral symmetry should be a good approximate symmetry. Supposing that chiral sym-
metry is realized in the QCD vacuum there should exist parity partners of equal mass for the
vector and axial-vector mesons. This is not the case for the observed meson spectrum. For
example, the two lightest vector and axial-vector mesons have a mass of mρ = 770 MeV and
ma1 = 1260 MeV [41] which leads us to the conclusion that chiral symmetry is not even approx-
imately realized. An explanation was provided by Nambu and Jona-Lasinio: They suggested
that SU(Nf)A was spontaneously broken in the QCD vacuum [46].

An important implication of spontaneous chiral symmetry breaking is the emergence of
massless bosons, the Goldstone bosons [47, 48]. For every broken global symmetry one such
particle arises so that for spontaneously broken SU(Nf)A, N2

f − 1 massless bosons should ap-
pear. Because finite quark masses additionally break chiral symmetry explicitly the Goldstone
bosons acquire a small mass and become pseudo Goldstone bosons. This reasoning is supported
by experimental findings; a meson triplet, made up of the pions π0, π±, is observed which is
significantly lighter than all other mesons. They can be understood as the pseudo Goldstone
bosons of spontaneously broken SU(2)A. Furthermore, a meson octet of relatively light mass
is found which correspond to the pseudo Goldstone bosons of spontaneously broken SU(3)A.

That the ground state is not invariant under SU(Nf)A can be formulated in terms of the
axial charges

QaA ∣0⟩ ≡ ∣πa⟩ ≠ 0 (3.28)

i.e. the axial charges do not annihilate the vacuum but create a state of pseudo scalar
particles that we suggestively name pions. On the other hand, for equal quark masses SU(Nf)V
is still intact so that the vector charges annihilate the vacuum QaV ∣0⟩ = 0.

In QCD vacuum U(1)A symmetry is not spontaneously broken, because it is already anoma-
lously broken. It is possible that the axial anomaly is weakened at high temperatures or densities
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so that there might exist a point in the QCD phase diagram where U(1)A⊗SU(Nf)A ≃ U(Nf)A
is spontaneously broken. Consequently N2

f (pseudo) Goldstone bosons should be observed. In
the experimentally measured meson spectrum the η′ meson corresponds to U(1)A symmetry.
It has a considerably higher mass than the η meson (mη′ = 957.8 MeV vs. mη = 547.9 MeV)
which is a direct consequence of anomalous breaking of U(1)A.

One possible way to understand the dynamic breakdown of chiral symmetry is by an analogy
to the formation of electron pairs in a superconductor. At low energies quarks and antiquarks
feel a strong attractive force as indicated by the rise of the strong coupling. If, additionally,
the quarks can be considered massless or very light then the energy cost of creating a quark-
antiquark pair is small. Therefore, one can imagine the QCD vacuum to be filled with quark-
antiquark pairs (condensates). Because of momentum conservation the total momentum and
total angular momentum of the condensate must be zero. This means that the condensate has
non-vanishing chirality. We can express the chiral condensate as the expectation value

⟨q̄q⟩ = ⟨q̄RqL⟩ + ⟨q̄LqR⟩ (3.29)

which couples left and right handed quarks and therefore breaks chiral symmetry. It can
be used to identify the state of chiral symmetry: If ⟨q̄q⟩ = 0 chiral symmetry is realized in the
ground state and ⟨q̄q⟩ ≠ 0 signals chiral symmetry is explicitly and/or spontaneously broken.
The chiral condensate therefore acts as an order parameter for the chiral phase transition of
QCD.

3.4 Anomalous Breaking of U(1)A

As already mentioned, the absence of a flavor-singlet (pseudo) Goldstone boson can be explained
by the fact that the U(1)A symmetry is not spontaneously but instead anomalously broken
in QCD. An anomalously broken symmetry is conserved at the classical level but broken by
quantum fluctuations. Generally, one finds anomalies when renormalization is required but no
regulator can be formulated that preserves the symmetry. Crucially, Goldstone’s theorem does
not apply to anomalously broken symmetries since quantum fluctuations generate a mass term
and therefore no Goldstone boson arises.

Contrary to a spontaneously broken symmetry where the associated current is still con-
served an anomalously broken symmetry sees a non-vanishing contribution to the divergence
of the symmetry current. In the case of U(1)A we have ∂µAµ = ∂µq̄γµγ5q ≠ 0. The need for
renormalization of symmetry currents becomes evident if we write the current as a limit

Aµ = lim
x→y

q̄(x)γµγ5q(y) (3.30)

which is potentially quite divergent. Of course, this is also true for Aaµ, Vaµ,Vµ, the currents
associated with SU(Nf)A and U(Nf)V . For the vector currents a simple argument can show
that they can not be affected by anomalies: The charges associated with vector symmetries
always carry some physical meaning6 and lead to important conservation laws. Breaking of
such conservation laws on the quantum level would ultimately violate gauge symmetry and
therefore render the theory useless. This is not a problem for axial symmetries and only a
careful calculation reveals that the anomalous contribution vanishes for SU(Nf)A.

We start our analysis of the U(1)A anomaly with the fermionic part of the QCD action
(3.8) in the chiral limit. Performing a local U(1)A transformation we get

S → S′ = ∫
x
q̄eiω(x)γ5i /Deiω(x)γ5q = S − (∂µω(x))Aµ. (3.31)

6For example baryon density, color charge, flavor charge.
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If we carelessly plug this into the path integral

Z[0] = ∫ Dq′Dq̄′e−S[q
′,q̄′] = ∫ DqDq̄e−S[q,q̄] (1 + i∫

x
ω(x)∂µAµ) (3.32)

we could come to the conclusion that ⟨∂µAµ⟩ = 0 if we were to assume that the integral
measure is not changed by the transformation. It turns out that this is not necessarily correct
for axial transformations. Rather we have to explicitly calculate the functional determinant

Dq′Dq̄′ = (detC)−2DqDq̄. (3.33)

It can be evaluated for example following Fujikawa’s method [49] by expanding the determi-
nant in eigenfunctions of /D. Doing so, one encounters a singularity which can for example be
regularized with a Gaussian cutoff function. We here simply state the result of this calculation
which involves various trace operations and subsequently sending the cutoff parameter towards
infinity. The final four divergence of the axial current reads

∂µAµ =
g2
sNf

8π2
Tr(F̃µνFµν) (3.34)

where F̃µν = 1
2
εµναβFαβ . Since this expression generally does not vanish it must be the

anomalous contribution to the axial current.
In order to see that SU(Nf)A is not afflicted by an anomaly the same calculation can be

performed for the corresponding current and one finds

∂µAaµ =
g2
s

(4π)2
εαβµνF bαβF

c
µν TrF (Ta)TrC(TbTc) = 0. (3.35)

In contrary to the U(1)A case this expression vanishes because the generators of SU(Nf)
are traceless and therefore TrF Ta = 0.

The ’t Hooft Interaction. It has been discovered by ’t Hooft that the anomaly leads to
instanton induced effective 2Nf quark interactions [37]

Ldet = κ(det q̄PLq + det q̄PRq) (3.36)

where the constant κ is related to instanton density. The determinant is evaluated in
flavor space which implies that the 2Nf quark interaction mixes quarks of different flavor.
It explicitly breaks U(1)A symmetry and within a NJL-type model it can also be used to
implement spontaneous chiral symmetry breaking. In the path integral formalism the ’t Hooft
interaction term can be expressed by auxiliary fields which are then identified with physical
mesons. This has been done to lowest order stationary phase approximation in [38] and beyond
[50]. The wrong mass of the η′ meson in effective U(3)L⊗U(3)R theories is essentially corrected
by the ’t Hooft determinant, see i.e. [51].



Four

The Functional Renormalization Group

Our goal is it to investigate chiral symmetry restoration of QCD at high temperatures and
densities. As discussed in the last section these macroscopic effects are not accessible by stan-
dard perturbation theory. The need for non-perturbative methods becomes even more urgent
in the vicinity of a critical point. There the correlation length ζ diverges such that fluctuations
of all length scales have to be accounted for which can not be accomplished in a perturba-
tive expansion. This however, is exactly the point where the functional renormalization group
shines.

Renormalization group in general deals with the physics of scales. It connects the known
microscopic interactions of a given theory to generally complex and interesting long range
interactions. In the case of QCD this could be for example the formation of hadronic matter
in the low energy sector or distinct properties such as confinement. In order to make this
transition from microscopic to macroscopic scales we have to consider fluctuations on all scales
in between.

The functional renormalization group is based on the RG idea of Wilson. Instead of treating
all fluctuations at the same time fluctuations of a small momentum range (also called momen-
tum shells) are integrated out successively. This concept can be nicely combined with the
functional approach to quantum field theory. The path integral in the partition function is es-
sentially divided into separate contributions from fluctuations with different momenta. Starting
from the classical action with no fluctuations included one integrates over low range, high mo-
mentum fluctuations going down towards long range, low momentum modes. This is not only
a convenient method to find the full solution of a theory but also allows a detailed investigation
of what interactions contribute at what momentum scale. This applies especially to QCD since
there is a wide variety of different degrees of freedom that become dominant at different energy
scales.

Considering how the effective action or arbitrary correlation functions change with an ad-
ditional momentum shell integration reveals the differential structure of FRG equations which
has various analytic and numerical advantages over the integral structure of standard field the-
ory. The differential equations of FRG are typically called flow equations and here we will only
consider the flow equation for a scale dependent effective action Γk which was first suggested
by Wetterich in 1993 [52].

4.1 The Wetterich Equation

Point of our investigation is the scale dependent effective action Γk. It interpolates smoothly
between the classical action at some cutoff scale Λ and the full effective action Γ as k → 0

Γk→Λ = S, Γk→0 = Γ. (4.1)

The RG scale k loosely speaking tells us that fluctuations of momenta between k and Λ
have been included in Γk. This is a direct implementation of Wilson’s RG idea and will lead
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us to the flow of the scale dependent effective action ∂kΓk.
In order to define the scale dependent effective action we start by adding an IR regulating

term to the classical action

S[Φ] → S[Φ] +∆Sk[Φ] (4.2)

so that the now scale dependent partition function reads

Zk[J] = ∫ DΦ exp (−S[Φ] −∆Sk[Φ] + JaΦa) . (4.3)

The regulator term can for example be written as

∆Sk[Φ] = 1

2
ΦaR

ab
k Φb. (4.4)

If Rab
k is diagonal this regulator term is quadratic in the fields and can therefore be under-

stood as a scale dependent mass term. For a single bosonic field we can express it in momentum
space as

∆Sk[ϕ] =
1

2
∫
⋆p
ϕ(−p)Rk(p)ϕ(p). (4.5)

The following conditions have to be met by the regulator function R(p) so that the classical
action is recovered in the UV and the full theory as k → 0:

lim
k→Λ→∞

Rk(p) = ∞, lim
k→0

Rk(p) = 0. (4.6)

On the scales in between we require Rk(p) to suppress fluctuations of momentum p2 ≲ k2

which can be implemented by

Rk(p)∣p2≲k2 ∼ k
2 (4.7)

which effectively adds a mass m2 ∼ k2 to the considered momentum modes. For q2 ≥ k2 all
fluctuations are to be included and therefore the regulator function should fall off

Rk(p)k2/p2→0 = 0. (4.8)

Typical regulator function that satisfy all of the above conditions include1

� the exponential regulator: Rk(p) = p2

ep2/k2
−1

,

� the optimized regulator: Rk(p) = (k2 − p2)θ(k2 − p2),

� the quartic regulator: Rk(p) = k4

p2
,

� the sharp regulator: Rk(p) = p2

θ(k2−p2)
− p2,

� the Callan-Symanzik regulator: Rk(p) = k2.
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p
k

Rk(p)
k2

k∂k
Rk(p)
k2

Figure 4.1: The exponential regulator (solid) and its scale derivative (dashed) in dependence
of p.

As an example, we show the momentum dependence of the exponential regulator and its
scale derivative in Fig. 4.1.

In direct analogy to Sec. 2.1 we define the scale dependent generating functional

Wk[J] = lnZk[J] (4.9)

which gives rise to the partially dressed, connected two point function or propagator

Gk,ab ≡
δ2Wk

δJaδJb
= ⟨ΦJbΦJa⟩con. . (4.10)

For a constant source term we evaluate the scale derivative of the generating functional

∂kWk[J] = ∂k lnZk[J] = ⟨−∂k∆Sk[Φ]⟩

= −1

2
(∂kRab

k ) ⟨ΦaΦb⟩

= −1

2
(∂kRab

k ) (Gk,ab +ΦJaΦJb)

= −1

2
(∂kRab

k )Gk,ab − ∂k∆Sk[ΦJ] (4.11)

with ΦJa ≡ ⟨Φa⟩J and we have used ⟨ΦΦ⟩ = ⟨ΦΦ⟩con. + ⟨Φ⟩ ⟨Φ⟩ in the third line.
Finally we define the scale dependent effective action as a modified Legendre transformation

Γk[ΦJ] = −Wk[J] + JaΦJa −∆Sk[ΦJ]. (4.12)

where we again substitute J → J[ΦJ] by formally inverting

ΦJa = δWk[J]
δJa

. (4.13)

Both ΦJ and J are generally scale dependent, however we will assume here that we can
impose all scale dependence onto the source J ≡ Jk. A full derivation including scale dependent
fields can be found for example in [40].

1The regulator functions generally have to be adjusted for various field types.
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The regulator term in the modified Legendre transformation can spoil the convexity of
Γk which becomes important for example when investigating spontaneous symmetry breaking.
However, since ∆Sk→0 → 0 the standard Legendre transformation is obtained and convexity
therefore restored in the IR.

We find that the quantum equation of motion receives a correction due to the regulator
term

δ (Γk[ΦJ] +∆Sk[ΦJ])
δΦJa

= γadJd (4.14)

where we have used JaΦJa = ΦJaJ
bγab. Applying a second derivative to this expression

yields

δ2Γk
δΦJbδΦJa

+Rba
k = γad

δJd

δΦJb
. (4.15)

We contract this with the propagator and use Eq. (4.13) to get

( δ2Γk
δΦJbδΦJa

+Rba
k ) ⋅ δ2Wk

δJaδJc
= γad

δJd

δΦJb
⋅ δΦJc
δJa

= γbc. (4.16)

Finally, we can invert Eq. (4.16) to find an expression for the two point function

Gk,ac = (Γ
(2)
k +Rk)

−1

ab
γbc (4.17)

where we have introduced the shorthand notation

(Γ(n))a1...an ≡ δnΓk
δΦJ

a1 . . . δΦJ
an
. (4.18)

To arrive at the Wetterich equation we evaluate the scale derivative of the effective action

∂kΓk[ΦJ] = −∂k(Wk [Jk]) + (∂kJa
k )ΦJa − ∂k∆Sk[ΦJ]

= −∂kWk[J] − (∂kJa
k )
δWk[J]
δJa
k

+ (∂kJa)ΦJa − ∂k∆Sk[ΦJ]

(4.13)= −∂kWk[J] − ∂k∆Sk[ΦJ]
(4.11)= 1

2
Gk,ab∂kR

ab
k . (4.19)

This expression can be brought into the form of a trace by permuting the fields in the
propagator Gk,ab → Gk,ba (or in Rab

k ) which introduces an additional minus sign for Grassmann
valued fields and no sign for bosonic fields. We keep track of this distinction by introducing the
so called super trace which includes apart from the usual trace operation an integration over
continuous indices and a minus sign for Grassmann valued fields. The Wetterich equation in
operator notation now reads

∂tΓk[ΦJ] =
1

2
STr (Gk ⋅ ∂tRk) =

1

2
STr ((Γ(2) +Rk)−1γ ⋅ ∂tRk) . (4.20)

where we have introduced the so called RG-time t = ln(k/Λ) so that ∂t = k∂k.
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A few general remarks about the Wetterich equation are in order:

Wetterich equation for one boson field. Let us evaluate the Wetterich equation for a
single bosonic field. We assume Rab

k to be a local operator and therefore Rk(p, q) ∼ (2π)dδ(p+q).
We find

∂tΓk =
1

2
∫
⋆p
Gk(−p, p)∂tRk(p) =

1

2
∫
⋆p

(Γ(2) +Rk)
−1

(−p, p)∂tRk(p). (4.21)

Wetterich equation for fermion fields. In the case of fermionic fields ψ, ψ̄ the propagator
can schematically be written as

Gk =
⎛
⎝

0 Gψψ̄k
Gψ̄ψk 0

⎞
⎠
. (4.22)

Permuting the fermionic indices introduces a minus sign so that Gψψ̄k = −Gψ̄ψk . Similar con-
siderations hold for the regulator matrix where we define regulators for ψψ̄ and ψ̄ψ. Performing
the trace we end up with two identical contributions which gives a factor of 2 and from the
super trace we receive a global minus sign. Assuming again locality of the regulator function
we have

∂tΓk = −∫
⋆p
Gψψ̄k (−p, p)∂tRψψ̄k (p). (4.23)

Exactness. It is important to note that no truncations have been made during the derivation
of the Wetterich equation which means that it is an exact equation. As discussed in section 2.2
the effective action encodes all information of a given theory. Solving the Wetterich equation
therefore equates to the full solution a theory. However, since the Wetterich equation is a
functional partial differential equation it is inherently an infinite tower of coupled differential
equations which has to be truncated in some way for all but the most trivial cases. Truncations
will of course spoil the exactness of the Wetterich equation but its non-perturbative origin
allows for truncations that do not rely on a small coupling parameter and can therefore be
applied to low energy QCD.

Trajectory in theory space. With the Wetterich equation a given theory is defined as an
initial value problem. The initial value is the effective action at some UV cutoff Λ which can be
interpreted as the bare theory consistent only of bare, microscopic interactions. Following the
RG scale downwards to the IR we include continually more fluctuations, approaching the full
theory with dressed couplings. We can view this flow from k = Λ to k = 0 as a path in theory
space which is the space of all possible operators invariant under the symmetry constraints of
the theory. Theory space is generally infinitely dimensional and the role of truncations is to
project the full theory space onto a finite dimensional subspace.

Regulator dependence. The trajectory of the flow in theory space is clearly regulator de-
pendent, however without truncations all trajectories must arrive at the full effective action
for k → 0 as dictated by Eq. (4.1). A sketch of the trajectory in theory space is depicted in
Fig. 4.2. When truncations are made the full effective action will generally deviate from the
truncated effective action. The end point of the differential equation then becomes regulator
dependent. This fact is often utilized in order to gauge the validity of a specific truncation.
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Γk=Λ = S

Γk=0 = Γ

Figure 4.2: Schematic flow of the scale dependent effective action in theory space. Different
regulator functions produce different paths in theory space but all end at the full effective action
for k → 0 [54].

One-loop nature. Since the flow of the effective action is given as a contraction of the
propagator with the regulator ∂tRk it can be represented as a one loop diagram

∂tΓk =
1

2
. (4.24)

This simple structure is somewhat deceiving and should not be confused with one loop
diagrams in standard perturbation theory. The key difference is that the full scale dependent
propagator enters in the Wetterich equation which includes all fluctuations in the limit k → 0.
We denote the full scale dependent propagator with a double line and the crossed dot symbolizes
the regulator insertion ∂tRk. The one-loop structure is a result of ∆Sk being quadratic in the
fields [53].

Flow equations for n-point functions. By differentiating the Wetterich equation with
respect to the fields it is possible to obtain flow equations for arbitrary n-point functions

∂tΓ
(n)
k = δn

δΦa1 . . . δΦan

1

2
STr (Gk∂tRk) . (4.25)

The derivative on the right hand side will generally introduce n+1 and n+2 point functions
resulting in an infinite tower of coupled differential equations. In many cases one can perform
projections that extract specific scale dependent couplings.

Truncations. As already mentioned the infinitely many interactions that are generated in
the flow of the effective action have to be reduced to a manageable size. What truncation
scheme is most suited depends on the physical system and what quantities are of interest. One
possible truncation prescription is the so called vertex expansion of the effective action

Γk[Φ] =
∞

∑
n=0

1

n!
(Γ(n)

k )a1...anΦa1 . . .Φan (4.26)

which is an expansion in the n-point functions Γ(n). Another commonly used truncation
scheme is the gradient expansion where all possible operators are ordered in their number of
derivatives. For a bosonic field the expansion might read
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Γk = ∫
x
[Uk(φ) +

1

2
Zk(φ)(∂µφ)2 +O(∂4)] . (4.27)

This expansion is applicable for relatively small momenta since pµ = −i∂µ. The first term is
the effective potential which as discussed in Sec. 2.3 already encodes a lot of information about
for example the ground state of the system.

For this thesis we use this gradient expansion and we take into account only a minimal
momentum dependence by setting Zk(φ) = 1 and neglecting all O(∂4) terms. All scale depen-
dence is therefore encoded in the effective potential. This truncation is often referred to as the
leading potential approximation (LPA) and it has proven to be surprisingly powerful despite
its simplicity.





Five

The Chiral Phase Transition of QCD

We now apply the FRG framework introduced in the last section to study the chiral phase
transition of QCD. To this end we first motivate what degrees of freedom are the most relevant
for the phase transition and then construct the effective action accordingly. This defines our
truncation and it is always the most crucial step in every FRG investigation. We then plug
the truncated effective action into the Wetterich equation and derive a flow equation for the
effective potential.

5.1 Effective Action for Low Energy QCD

Ideally we would start with an effective action that describes QCD in the perturbative regime
and evolve it directly into the non-perturbative region. This is in principle possible but tech-
nically quite evolved. Here we restrict ourselves to a much lower initial scale of Λ ≈ 700 − 1000
MeV. For relatively small temperatures and chemical potential this will include the most rele-
vant degrees of freedom that drive the chiral transition.

First, let us consider the QCD action (3.10) which we identify with the effective action at
the scale k = Λ

ΓQCD
Λ ≡ Sgf

QCD[q, q̄, c, c̄,Aµ] = ∫
x
q̄( /D +Mq)q + Sgauge

QCD [c, c̄,Aµ]. (5.1)

We will not be focusing on the pure gauge part of the action and implicitly assume that its
contribution has already been integrated out.

Using the Wetterich equation we attempt to integrate the QCD action minus the gauge
contribution to the low energy regime. The flow ∂tΓk=Λ will immediately produce four-fermion
interactions due to gluon exchange. For example the box diagrams depicted in Fig. 5.1 will
be generated during the flow. Since such diagrams come with a factor of g4

s and gs can not be
considered small we write it explicitly into our action1

S[q, q̄] = ∫
x
(q̄( /∂ +Mq)q +

1

2
λq[(q̄T aq)2 − (q̄T aγ5q)2]) (5.2)

where T a are the usual generators of U(Nf). From here on we will neglect further quark-
gluon interactions and assume that the most important gluon fluctuations are encoded in the
four-fermion vertex. Recent investigations suggest that this is not necessarily the case and
further gluon fluctuations need to be incorporated to properly describe the quark dynamics
[18].

1This is also the action of the Nambu-Jona-Lasinio (NJL) model.
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Figure 5.1: Box diagrams that produce a four-fermion vertex.

Furthermore, we have restricted ourselves to the scalar and pseudo scalar channels. More
generally we would include a four-fermion vertex for each possible tensor structure

∑
i

λk,i(q̄ Tiq)2 (5.3)

where Ti are tensors with color-, flavor-, and Lorentz indices. The Lorentz part of Ti
is defined by the Clifford algebra in four space-time dimensions. It is generated by the 16
basis elements {1, γµ, σµν , γµγ5, γ5}. This means that we should also include vector- and axial-
vector channels in our ansatz 2. However, for our application we suffice with the scalar and
pseudo-scalar channels as defined in Eq. (5.2) since those are the dominant channels that drive
spontaneous chiral symmetry breaking in the vacuum [55]. In fact, it has been shown that the
vector mesons completely decouple from the flow in the vacuum due to their large mass [56].

Another subtlety known as Fierz ambiguity arises when considering the different four-
fermion channels. It stems from the fact that an algebraic identity lets us convert the scalar,
pseudo-scalar channel into the vector, axial-vector channel. For one quark flavor this identity
reads

[(q̄q)2 − (q̄γ5q)2] = 1

2
[(q̄γµγ5q)2 − (q̄γµq)2]. (5.4)

The different channels are therefore not independent and a direct identification with physical
particles should be done with caution. A proper treatment of the four-fermion interaction would
require a so called Fierz complete basis. The ambiguity can be related to a parameter γ. Mean
field calculations of the four-fermion vertex have found to be strongly dependent on this non-
physical parameter, however, in a similar FRG investigations this dependence has been found
to be greatly reduced [57]. We therefore feel safe to neglect any issues that might arise through
Fierz ambiguity and only include the scalar, pseudoscalar channel in our truncation.

Furthermore, we neglect any momentum dependence of the four-fermion coupling and only
consider its RG scale dependence. This is often referred to as the point like approximation.
We note here that a true study of bound states is only possible by calculating the momentum
dependence since bound states manifest themselves as singularities in the four-fermion coupling
at real momenta in Minkowski space. For our investigation the scalar condensate is of main
interest, since it signals chiral symmetry breaking and it is already exactly determined at p = 0
which justifies the use of the point like approximation.

It turns out that the four-fermion vertex as defined in (5.2) is already sufficient to trigger
spontaneous chiral symmetry breaking. This can be seen in the fix point structure of the beta
function ∂tλq: if gs exceeds a critical coupling strength the four-fermion coupling diverges and
a finite ⟨q̄q⟩ is induced, see e.g. [17]. While it is possible to describe chiral symmetry breaking
entirely in terms of fermions and gluons there is a more convenient way by expressing the
four-fermion interaction in terms mesonic bound states. This fits nicely into the concept of
RG since the degrees of freedom shift from quarks and gluons at high energies to mesons and
baryons at small energies. We perform this shift in degrees of freedom by hand via an analytic
transformation known as Hubbard-Stratonovich transformation.

2The tensor channel (q̄σµνq)2 is not invariant under U(1)A transformations.
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λq g g

Figure 5.2: Diagrammatic representation of the four-fermion vertex before (left) and after
(right) bosonization. In the bosonized formulation a four-fermion interaction is not directly
included in the action but is possible via a mitigating meson (dashed line).

We begin by noting the identity

1 = N ∫ DσaDπa exp [∫
x
(m

2

2
σ2
a +

m2

2
π2
a)] (5.5)

where the constant result of the Gaussian integrals is absorbed in N . We combine this with
the four-fermion part of the action in (5.2) and complete the square to get

exp [∫
x

λq

2
((q̄T aq)2 − (q̄T aγ5q)2)]

= N ∫ DσaDπa exp [∫
x
(
λq

2
(q̄T aq)2 + m

2

2
σ2
a +

λq

2
(iq̄T aγ5q)2 + m

2

2
π2
a)]

= N ∫ DσaDπa exp [∫
x
(1

2
(mσa −

√
λq q̄T

aq)2 +
√
λqmq̄T

aσaq+

+1

2
(mπa − i

√
λq q̄T̄

aγ5q)2 + i
√
λqmq̄T

aπaγ5q)] . (5.6)

In the quadratic terms we perform a shift in the integration variables

σa Ð→ σa −
√
λq

m
q̄T aq

πa Ð→ πa − i
√
λq

m
q̄T aγ5q (5.7)

so that the total UV effective action now reads 3

S[q, q̄, σa, πa] = ΓΛ = ∫
x
(q̄ ( /∂ +Mq + gT a(σa + iγ5πa)) q +

m2

2
(σ2
a + π2

a)) (5.8)

where we have set

g2 = λqm2. (5.9)

We have completely eliminated the four-fermion vertices in our action and in turn get a
set of scalar σa and pseudo-scalar πa mesons. The interaction between quarks and mesons
are given by a Yukawa type vertex which allows for new four-fermion interactions (see Fig.
5.2). Crucially, box diagrams similar to Fig. 5.1, where the gluon line is now substituted by
a meson line, arise in the flow. This means that the four-fermion vertex is re-generated by

3The constant value of the Gaussian integral has been dropped.
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the Yukawa coupling so that the beta function for the four-fermion coupling does not vanish:
∂tλq ≠ 0. This is somewhat disheartening since our initial goal was it to express the four-fermion
vertex entirely in terms of composite fields. It is expected that this re-emerging four-fermion
interaction becomes relevant if the bosons are relatively light e.g. near a phase boundary [17].
Fortunately, it is possible to circumvent this problem by a technique called re-bosonization.
Loosely speaking, the bosonization procedure for the constantly re-emerging four-fermion vertex
is repeated at each RG step, see e.g. [54]. In fact, it is possible to resolve Fierz ambiguity using
this technique. In practice, re-bosonization has been found to give a negligible correction in
the spontaneously broken phase for a 2 flavor system in the vacuum [58]. We therefore suffice
with the partially bosonized formulation in this thesis.

The meson fields obey the classical equations of motion

δS

δσa
= −gq̄T aq +m2σa = 0

δS

δπa
= −igq̄T aγ5q +m2πa = 0 (5.10)

and therefore

σa =
g

m2
q̄T aq, πa =

ig

m2
q̄T aγ5q. (5.11)

This formulation reveals that the meson fields created by the Hubbard-Stratonovich trans-
formation are in fact quark bilinears. For vanishing quark current masses Mq = 0 we have
seen that the QCD action is symmetric under a chiral U(1)V ⊗U(1)A⊗SU(Nf)V ⊗SU(Nf)A
transformation and this directly translates to the bosonized version since we have not per-
formed any symmetry violating steps during this short derivation. As discussed in Sec. 3.3
chiral symmetry on the action level may be broken in the ground state, indicated by a finite
chiral condensate ⟨q̄q⟩. With Eq. (5.11) we find that in the bosonized formulation spontaneous
symmetry breaking is signaled by ⟨σa⟩ ≡ σ̄a > 0.

From Eq. (5.8) we see that a finite ⟨gT aσa⟩ acts as a mass term for the quark fields. We
identify the total effective mass given as the sum of the current quark mass matrix Mq and the
contribution from spontaneous chiral symmetry breaking as the constituent mass of the quark
field.

Another nice aspect of the bosonized formulation is that Goldstone’s theorem is directly
manifest. We recall that λq diverges at the spontaneous symmetry breaking scale. For a
constant Yukawa coupling this implies that m = 0 due to Eq. (5.9). This suggests that the
auxiliary fields are massless if chiral symmetry is spontaneously broken. We will find later that
the masses of the scalar fields σa receive contributions from higher couplings so that they are
generally not massless except for special cases. The pseudoscalar fields πa, however, remain
massless in the spontaneously broken regime and we conclude that they must be the Goldstone
bosons of broken SU(Nf)A or U(Nf)A. This is of course only exactly true if the quark current
masses Mq are zero. To study the effect of explicit symmetry breaking we bosonize the current
quark mass term in Eq. (5.8)

q̄Mqq ≡ caσa = ca
g

m2
q̄T aq. (5.12)

Since the quark mass matrix is diagonal we only have Nf contributions on the right hand
side of Eq. (5.12) corresponding to the diagonal generators of U(Nf). With explicit breaking of
U(Nf)L ⊗ U(Nf)R the Goldstone bosons acquire a finite mass and become pseudo Goldstone
bosons.
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Figure 5.3: Meson propagator (left) and four meson vertex (right) generated in the flow of the
bosonized action.

It is convenient to combine the 2N2
f meson fields in a complex meson matrix of dimension

Nf ×Nf

φ ≡ T a(σa + iπa), φ5 ≡ T a(σa + iγ5πa) (5.13)

where we have also defined a modified meson matrix φ5 which enters in the Yukawa vertex
and reflects the pseudo-scalar nature of the pion4. Both matrix fields transform under a chiral
U(Nf)V ⊗U(Nf)A as

φ→ URφU
�
L, φ5 → URφ5U

�
L. (5.14)

The action (5.8) can be expressed in terms of the matrix fields by using Tr(T aT b) = δab/2
and therefore

1

2
∑
a

(σ2
a + π2

a) = Tr(φ�φ), caσa = Tr [caT a(φ� + φ)] . (5.15)

The action of Eq. (5.8) now reads

S[q̄, q, σa, πa] = ∫
x
{q̄ ( /∂ + gφ5) q +m2 Tr(φ�φ) +Tr [caT a(φ� + φ)]} . (5.16)

Furthermore, we have to keep track of meson dynamics which are generated in the flow. For
example the diagram depicted in the left panel of Fig. 5.3 acts as a meson propagator and we
should therefore include a kinetic term for the mesons in our action

1

2
((∂µσa)2 + (∂µπa)2) = Tr(∂µφ�∂µφ). (5.17)

Also higher order meson vertices are generated during the flow (see right panel of Fig. 5.3),

so that for example (Trφ�φ)2
should be captured in the flow of the effective action. This is,

however, not the only possible meson vertex that respects chiral symmetry. We can construct
in total Nf chiral invariants

ρn = Tr [(φ�φ)n] , n = 1, . . . ,Nf (5.18)

and the flow of the corresponding vertices can conveniently be summed up in an effective
potential which is a function of the chiral invariants

Uk(ρ1, . . . , ρNf
). (5.19)

4φ5 carries Lorentz indices whereas φ does not.
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That the ρn are in fact invariant under a chiral transformation can easily be verified using
Eq. (5.14)

Tr [(φ�φ)n] → Tr [(ULφ�U �
RURφU

�
L)
n] = Tr [(φ�φ)n] . (5.20)

Finally, we add one further ingredient to our truncation which models the anomalous break-
ing of U(1)A. We have discussed in Sec. 3.4 that the anomaly can be understood in terms of
an instanton induced 2Nf quark interaction. Here we include a bosonized version the ’t Hooft
determinant in form of the lowest dimensional U(1)A violating term

ζ ≡ det(φ� + φ). (5.21)

The same term with a relative minus sign is not included because it breaks CP invariance.
Only U(1)A symmetry is explicitly broken by ζ and chiral SU(Nf)L ⊗ SU(Nf)R symmetry is
not affected. We note here that a proper bosonization of the ’t Hooft determinant within the
path integral formalism introduces further corrections which we neglect here [50].

In the final effective action we introduce a quark chemical potential for each quark flavor by
making the substitution /∂1f → /∂1f+γ0µ where µ is a diagonal matrix in flavor space. Collecting
all the above discussed contributions we end up with the following truncated effective action

ΓΛ ≡ S[q, q̄, σa, πa] = ∫
x
{q̄ ( /∂ + γ0µ + gφ5) q +Tr(∂µφ�∂µφ) +Uk(ρ1, . . . , ρNf

)

−cA ζ −Tr [caT a(φ� + φ)]} . (5.22)

5.2 Deriving the Flow Equation

After having motivated all terms in our truncation we proceed by plugging this into the
Wetterich equation. To this end we have to evaluate the matrix of second derivatives of
the effective action. In this derivation we will refer to all meson fields as ϕi(x) with ϕ =
(σ0, . . . , σN2

f
−1, π0, . . . , πN2

f
−1) the combination of the scalar and pseudo-scalar mesons. Fur-

thermore, we have quark fields qcfµ (x) and antiquark fields q̄cfµ (x) which carry Lorentz, flavor
and color indices. This said we almost always suppress the color indices since no gluon fields
are present in our truncation which couple to color charge.

We should also clarify the vacuum expectation value of the fields in our model since we have
to project onto the vacuum after all derivatives have been calculated. The fermionic quark
fields can not have a finite VEV due to required Lorentz invariance of the vacuum. Turning to
the meson fields we note that only the diagonal, scalar components of the matrix field φ carry
the quantum numbers of the vacuum and therefore can exhibit a finite expectation value. All
other meson fields will be set to zero in the final flow equation.

With this we write the second derivative matrix generically as5

Γ(2) =
⎛
⎜
⎝

Γϕϕ Γϕq Γϕq̄

Γqϕ Γqq Γqq̄

Γq̄ϕ Γq̄q Γq̄q̄

⎞
⎟
⎠
=
⎛
⎜
⎝

Γϕϕ 0 0
0 0 Γqq̄

0 Γq̄q 0

⎞
⎟
⎠

(5.23)

which is to be understood as evaluated at the VEV. There is no contribution with two quark
or two antiquark fields in our truncation, since we fully bosonized the four-fermion vertex and
therefore Γqq = Γq̄q̄ = 0. Derivatives of the Yukawa vertex with respect to one meson field and
one fermion field always leave another fermion field in our truncation and consequently those

5For clarity we suppress the k subscript of the effective action but k dependence is always implied.
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contributions also vanish in the vacuum. Changing the order of differentiation with respect to
the Grassmann valued quark fields gives a minus sign so that Γqq̄ = −Γq̄q.

The next step would be to calculate the propagators which involves calculating the inverse
of Γ(2) +Rk. With Eq. (4.17) we generically write

Gk =
⎛
⎜⎜
⎝

(Γϕϕ +Rϕϕk )−1 0 0

0 0 −(Γq̄q +Rq̄qk )−1

0 −(Γqq̄ +Rqq̄k )−1
0

⎞
⎟⎟
⎠
≡
⎛
⎜
⎝

Gϕϕk 0 0
0 0 Gqq̄k
0 Gq̄qk 0

⎞
⎟
⎠

(5.24)

where the minus signs in the first matrix arises in the contraction with the field metric, see
relation (1.7). Noting that also Rqq̄k = −Rq̄qk we write for the propagators

Gϕϕk = (Γϕϕk +Rϕϕk )−1
, Gqq̄ = (Γqq̄k +Rqq̄k )−1

. (5.25)

The final step in the Wetterich equation is the contraction of all indices and integration over
the loop momentum which can be done separately for the meson and quark contribution.

Meson contribution. We start the explicit calculation with the meson sector where we first
have to take the second functional derivative of the effective action with respect to the meson
fields. This gives

(Γφφ)
ij

(x, y) = δ2Γk
δϕi(x)δϕj(y)

= −δijδ(x − y)∂µ∂µ + ∫
z

δ2

δϕi(x)δϕj(y)
Ũk (ρ1(z), . . . , ρNf

(z), ζ) (5.26)

where we have defined the combined meson potential

Ũk(ρ1, . . . , ρn, ζ) ≡ Uk(ρ1, . . . , ρn) − cA ζ −Tr [caT a(φ� + φ)] . (5.27)

The SU(Nf)V breaking term is only linear in the fields and will therefore vanish after
differentiating twice. Since ζ is a determinant in flavor space it will depend on the number of
quark flavors if cA enters in the flow. For Nf = 1 it is linear in the fields and therefore will not
contribute to Γ(2) and for Nf = 2 it behaves like a meson mass term. A more interesting case
is Nf = 3 where it acts as a three meson vertex and has a non-constant contribution to Γ(2).

We hide in the notation above that the chiral invariants and ζ are functions of the meson
fields i.e. ρi(z) ≡ ρi(ϕ1(z), . . . , ϕ2N2

f
(z)). Apart from the usual kinetic term we have to perform

all second derivatives of the effective potential by applying the chain rule.
With the notation Ũk(z) ≡ Ũk(ρ1(z), . . . , ρNf

(z), ζ(z)) we can write the second derivatives
of the effective potential as

∫
z

δŨk(z)
δϕi(x)

= ∫
z
∫
y

⎡⎢⎢⎢⎢⎣

Nf

∑
j=1

δρj(y)
δϕi(x)

δŨk(z)
δρj(y)

+ δζ(y)
δϕi(x)

δŨk(z)
δζ(y)

⎤⎥⎥⎥⎥⎦

=
Nf

∑
j=1

∂ρj

∂ϕi

∂Ũk
∂ρj

+ ∂ζ

∂ϕi

∂Ũk
∂ζ

. (5.28)

The integrals cancel because of delta distributions that arise in the functional differentiation

δϕj(y)
δϕi(x)

= δijδ(x − y),
δŨk(z)
δρj(y)

= ∂Ũk
∂ρj

δ(y − z). (5.29)
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The second derivative is evaluated in the same manner and gives a global δ(x − y) factor.
The explicit expressions for the derivatives of the higher chiral invariants are lengthy due to
their non trivial dependence of the meson fields. For now we simply write

∫
z

δ2Ũk(z)
δϕi(x)δϕj(y)

≡ δ(x − y) (M2
k,ϕ(x))ij (5.30)

where M2
k,ϕ is the Hessian matrix consistent of all second derivatives of Ũk with respect to

the fields. Note that these are ordinary partial derivatives since the functional part has already
been taken care of. After all derivatives have been calculated we replace fields with their VEVs
which generally leads to large cancellations in M2

k,ϕ.
Going into momentum space and adding the optimized Litim regulator in three dimensions

Rϕϕk (p,q) = (k2 − p2) θ (k2 − p2) δ(p,q)(2π)3 (5.31)

we get

Gϕϕk (p, q) = (2π)−4δ(p + q) [1p2 +M2
k,ϕ + 1(k2 − p2)θ (k2 − p2)]−1

(5.32)

where 1 denotes the 2N2
f × 2N2

f dimensional unit matrix.

At this point we make the finite temperature substitution p = (ωn,p) so that p2 = ω2
n + p2

Gϕϕk (p, q) = (2π)−3δ(p + q)δωnωm
[1ω2

n + 1p2 +M2
k,ϕ + 1 (k2 − p2) θ (k2 − p2)]−1

= (2π)−3δ(p + q)δωnωm

⎡⎢⎢⎢⎣

θ (k2 − p2)
1(ω2

n + k2) +M2
k,ϕ

+
θ (p2 − k2)

1(ω2
n + p2) +M2

k,ϕ

⎤⎥⎥⎥⎦
(5.33)

where q0 = ωm. Ignoring the second term in the parentheses this has the familiar structure
of a propagator for particles with energy ω2

n+k2 and mass (M2
k,ϕ)ii. This identification should,

however, not be made too hastily, because M2
k,ϕ is not necessarily diagonal yet. We get the

meson masses by diagonalizing the second derivative matrix

U �M2
k,ϕU ≡M2

k,ϕ = diag(m2
k,π0 ,m

2
k,π+ ,m

2
k,π− ,m

2
k,σ, . . . ). (5.34)

These are so called curvature masses and they are itself not physical quantities. However,
an investigation within a 2 flavor quark-meson model including a fully momentum dependent
propagator has revealed the difference between curvature masses and experimentally measurable
pole masses to be relatively small [59].

We furthermore define the diagonalized propagator

U �Gϕϕk U = Gϕϕk = diag(Gπ
0π0

k ,Gπ
+π+
k ,Gπ

−π−
k ,Gσσk , . . . ). (5.35)

which consists of individual propagators for the physical mesons in our truncation. Note
that this rotation does not alter the final flow equation since we can absorb it in the trace
Tr(U �GkU ⋅ ∂tRk) = Tr(Gk ⋅ ∂tRk) because Rk ∼ 1 in meson field space.

Finally, we contract the diagonal propagator with ∂tR
ϕϕ
k and perform the trace. First let

us explicitly write out the momentum dependence of the contraction

(Gϕϕk ∂tR
ϕϕ
k ) (p, q) = ∫

p′
Gϕϕk (p, p′) ⋅ ∂tRϕϕk (p′,q)(2π)δp′0q0

≡ ∫
p′
Gϕϕk (p)δ(p + p′) ⋅ ∂tRϕϕk (q)(2π)4δ(p′ + q)

= Gϕϕk (p) ⋅ ∂tRϕϕk (q)(2π)4δ(p − q). (5.36)
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The super trace in the Wetterich equation also acts on momentum space so that only the
momentum-diagonal components of Gk∂tRk survive. We therefore set p = q and get a factor of
(2π)4δ(0) = V which is just the four dimensional volume of the system. Plugging this into the
Wetterich equation we get

∂tΓ
ϕϕ
k = 1

2
Tr (Gϕϕk ⋅ ∂tRϕϕk ) = V 1

2

2N2
f

∑
i=1
∫
⋆p

(Gϕϕk (p))
ii
∂tR

ϕϕ
k (p) (5.37)

where only the momentum integral is left to be evaluated. Evaluating the scale derivative
of the regulator function we find

∂tR
ϕϕ
k (p) = 2k2θ (k2 − p2) . (5.38)

Taking the derivative of the Heaviside step function introduces a term of the form xδ(x)
which we can omit because it always vanishes in an integral. The meson propagator from
Eq. (5.33) has two contributions where one is proportional to θ(1 − k2/p2) and the other to
θ(k2/p2 − 1). Multiplying the propagator with ∂tR

ϕϕ
k (p) only the first term survives because

θ(k2/p2 − 1)θ(1 − k2/p2) = 0. The momentum integration can be trivially performed

∫
⋆p

(Gϕϕk (p))
ii
∂tR

ϕϕ
k = T

2

∞

∑
n=−∞

∫
d3p

(2π)3

2k2θ (k2 − p2)
ω2
n + k2 +m2

k,i

= T

6π2

∞

∑
n=−∞

k5

ω2
n + k2 +m2

k,i

. (5.39)

For the remaining sum over Matsubara frequencies we use the relation

coth(x) =
∞

∑
n=−∞

x

(πn)2 + x2
(5.40)

and substitute ωn with the bosonic Matsubara frequencies ωn = 2πTn. Plugging the result
into Eq. (5.37) we arrive at the final flow equation for the meson part of our truncation

∂tΓ
ϕϕ
k = V k5

12π2

2N2
f

∑
i=1

1

Ei
coth(Ei

2T
) , (5.41)

with the meson energies given by Ei =
√
k2 +m2

k,i.

Quark Contribution. For the quark contribution the general procedure is exactly the same
and here we only review some important steps. The second derivative of the effective action in
coordinate space is given by

(Γqq̄k )ff
′

µν
(x, y) = δ2Γk

δqf
′
µ (y)δq̄fµ(x)

= ( /∂µνδff
′
+ γ0µνµfδ

ff ′ + gφ5
ff ′
µν ) δ(x − y). (5.42)

We switch to momentum space and add the optimized fermion regulator in three dimensions

Rqq̄k (p,q) = i(γ ⋅ p) rk(p)δ(q + p)(2π)3, rk (p2) =
⎛
⎝

k√
p2

− 1
⎞
⎠
θ (k2 − p2) . (5.43)
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which inverted leads to the propagator

(Gqq̄k )ff
′
(p, q) =

−γ0(iωn + µf) − i (γ ⋅ p) (1 + rk (p2)) + gφ�5
ff

(iωn + µf)2 + p2 (1 + rk (p2))2 +m2
q,f

(2π)−4δ(p + q)δff
′

(5.44)

where we have used the following abbreviation for the squared quark mass matrix

m2
q,f = g2φff5 φ�5

ff
. (5.45)

Since we evaluate the propagator at the VEVs it is clear that m2
q is diagonal and we can

define separate propagators for each quark flavor.
Finally we contract with ∂tR

qq̄
k and perform the trace. Only the term proportional to γ ⋅ p

survives the Dirac trace and color trace gives the usual factor of Nc. After the trivial momentum
integration we perform the Matsubara sum analytically to arrive at

∂tΓ
qq̄
k = −NcV k

5

6π2

Nf

∑
f=1

(tanh(
Eq,f + µf

2T
) + tanh(

Eq,f − µf
2T

)) (5.46)

where we have defined the scale dependent quark energy Eq,f =
√
k2 +m2

q,f .

Flow Equation For The Effective Potential. The flow of the effective action is still a
complicated functional differential equation because the fields ϕi(x) depend on space time. In
order to extract the ordinary partial differential equation for the effective potential we set the
fields constant as suggested in Sec. 2.3. Dividing by the four dimensional volume factor V we
end up with the flow equation for the effective potential

∂tUk =
k5

12π2

⎡⎢⎢⎢⎢⎣

2N2
f

∑
i=1

1

Ei
coth(Ei

2T
) − 2Nc

Nf

∑
f=1

(tanh(
Eq,f + µf

2T
) + tanh(

Eq,f − µf
2T

))
⎤⎥⎥⎥⎥⎦
. (5.47)

5.3 Flow Equation for 2+1 Flavor

So far we have formulated the flow equation for the general case of U(Nf)L⊗U(Nf)R symmetry.
We now specify the discussion to the 2+1 flavor configuration which will be the main topic of
this thesis.

Approximate U(3)L ⊗ U(3)R symmetry gives rise to a scalar and pseudoscalar nonet (see
Sec. 3.3). The pseudoscalar and scalar part of the meson field matrix φ = T a(σa + iπa) can be
expanded as

T aπa =
1√
2

⎛
⎜⎜⎜
⎝

π0
√

2
+ π0√

3
+ π8√

6
π− K−

π+ − π0
√

2
+ π0√

3
+ π8√

6
K̄0

K+ K0 π0√
3
− 2π8√

3

⎞
⎟⎟⎟
⎠

T aσa =
1√
2

⎛
⎜⎜⎜
⎝

a00√
2
+ σ0√

3
+ σ8√

6
a−0 κ−

a+0 − a00√
2
+ σ0√

3
+ σ8√

6
κ̄0

κ+ κ0 σ0√
3
− 2σ8√

3

⎞
⎟⎟⎟
⎠

(5.48)
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where T a for a = 0, . . . ,8 are the generators of U(3) given by the Gell-Mann matrices

completed with
√

2/31. Some identifications with experimentally known particles have already
been performed: The pion triplet is given by

π0 = π3, π± = 1√
2
(π1 ± iπ2) (5.49)

and the two kaon doublets

K± = 1√
2
(π4 ± iπ5), K0 = 1√

2
(π6 + iπ7), K̄0 = 1√

2
(π6 − iπ7). (5.50)

Similar relations hold for the scalar particles.
We have already established that only the diagonal entries in T aσa can have finite expectation
values which are in the case of Nf = 3 the fields σ0, σ3 and σ8. From Eq. (5.48) with a0

0 = σ3

we can read of that a finite ⟨σ0⟩ ≡ σ̄0 does not break SU(3)V symmetry. However, if σ̄8 > 0
the SU(3)V symmetry is broken down to SU(2)V i.e. we see a difference in the strange- and
up, down condensates. If furthermore σ̄3 is finite, isospin symmetry is completely broken and
there is a difference in the up and down quark condensates.

From now on we will simplify our calculations by assuming exact SU(2)V symmetry, i.e.
σ̄3 = 0. This is a good approximation, since the experimentally measured quark masses are very
similar for up and down quarks, whereas the strange quark is heavier than both light quarks
by a factor of ∼ 20. We refer to this as the 2+1 flavor configuration.

It is convenient to separate light and strange part of σ0 and σ8 which can be done with the
rotation

( σl
σs

) = 1√
3
(
√

2 1

1 −
√

2
)( σ0

σ8
) . (5.51)

Using this substitution the vacuum expectation value of the meson field matrix now reads

⟨φ⟩ = 1

2
diag

⎛
⎜
⎝

σ̄l
σ̄l√
2σ̄s

⎞
⎟
⎠
. (5.52)

With σ̄3 = 0 the explicit symmetry breaking parameter c3 must also vanish and we express
the two non-vanishing parameters c0 and c8 in the nonstrange-strange basis. The explicit
symmetry breaking term in the meson potential now reads

−clσl − csσs (5.53)

where SU(2)V symmetry is apparent.
For Nf = 3 we have 3 independent chiral invariants, however, in our calculations we will neglect
the effect of the third chiral invariant ρ3 for simplicity. This means that the meson potential is
a function of ρ1, ρ2 and ζ. The undiagonalized mass matrix from Eq. (5.30) is then given by

(M2
k,ϕ)ij =

∂2

∂ϕj∂ϕi
Ũk(ρ1, ρ2, ζ) =

∂2

∂ϕj∂ϕi
(Uk(ρ1, ρ2) − cAζ) (5.54)

where we specify ϕ = (σl, σ1, . . . , σ7, σs, π0, . . . , π8). After explicitly performing the differ-
entiation we set the fields to their VEVs and find that large parts of the mass matrix vanish.
The general structure of the mass matrix can be schematically written as
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M2
k,ϕ ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

σll σsl
a0 0

κ
σls σss

π00 π80

0 π
K

π08 π88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.55)

In this compressed notation we indicate that due to SU(2)V symmetry some meson masses
degenerate. For example the π triplet has three identical entries in the mass matrix and the
same is true for the a0 triplet. Furthermore, the two kaon doublets degenerate and so do the
κ mesons. As discussed in section 5.2 we get the meson masses by diagonalizing M2

k,ϕ. In
our case we only have non-diagonal components in the nonstrange-strange or 0-8 sector. This
can be easily diagonalized by two separate 2 × 2 rotations respectively acting on the scalar
and pseudoscalar part of the mass matrix. In terms of physical particles this is observed as
mixing of the pseudoscalar η′ and η mesons and the scalar σ and f0 mesons. The mesons η
and η′ are therefore mixtures of a singlet and octet state. Similarly σ and f0 have strange and
non-strange components. For ideal flavor mixing the off-diagonal entries in the mass matrix
vanish and η′ becomes a pure singlet state and σ is non-strange. The explicit expressions for
all non-vanishing entries of M2

k,ϕ and definitions for the scalar and pseudoscalar mixing angle
are listed in appendix B.1.

The quark masses are much simpler in structure. Evaluating Eq. (5.45) at the vacuum
expectation value we find in the nonstrange-strange basis

ml = g
σl
2
, ms = g

σs√
2
. (5.56)

Finally, we mention two important PCAC relations for the 2+1 flavor quark-meson model.
They relate the decay constants of the (pseudo) Goldstone bosons to the light and strange
condensate. Such relations can generally be derived as shown in [60] and in our case they read

fπ = σ̄l, fK = σ̄l
2
+ σ̄s√

2
. (5.57)

For the numerical calculations we use experimental values for fπ and fK to fix the conden-
sates to the values σ̄l = 92.4 MeV and σ̄s = 94.5 MeV in the vacuum. Further details on the
parameter fixing procedure are summarized in appendix C.

5.4 Flow Equation for the SU(2)L ⊗ SU(2)R Model

We now consider the following important limit of the 2+1 flavor system: If we assume the
strange quark to be infinitely heavy6 they will completely decouple from the flow and we have
effectively only the two light quarks i.e. approximate U(2)L⊗U(2)R symmetry. It is possible to
investigate the axial anomaly also in this approximation. For Nf = 2 the ’t Hooft determinant
acts as a mass term since it is quadratic in the fields. The U(2)L ⊗ U(2)R symmetric quark-
meson model has been investigated in a FRG treatment for example in [61]. Here we will
consider axial symmetry to be completely broken. If we perform the limit cA → ∞ the chiral
partners a0 and η′ become infinitely heavy and therefore decouple from the flow. We are left
with approximate U(2)V ⊗ SU(2)A ≃ U(1)V ⊗ SU(2)L ⊗ SU(2)R symmetry which is often

6We also assume charm, top and bottom quarks to be infinitely heavy.
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referred to as the SU(2) ⊗ SU(2) quark-meson model since the baryon number of U(1)V is
trivially conserved.

In the SU(2) ⊗ SU(2) model isospin symmetry is automatically conserved since only one
scalar condensate exists–the sigma meson. The other remaining mesons are given by the pseu-
doscalar pion triplet. The LPA effective action at the UV scale can be written as

Γk=Λ = ∫
x
{q̄2 ( /∂ + g(σ + iγ5τ ⋅π)) q2 +

1

2
(∂µσ)2 + 1

2
(∂µπ)2 +U(ρ) − cσ} (5.58)

where τ are generators of SU(2) given by the three Pauli matrices. We define the 2 flavor
quark field as q2(x) = (u(x), d(x))T . There is only one chiral invariant ρ = σ2 + π2 if axial
symmetry is broken and the meson potential can therefore be written as a function of ρ.
This simplifies the meson masses significantly since only derivatives with respect to one chiral
invariant occur. We find for the quark and meson masses

m2
σ = 2U ′

k + 4ρU ′′
k , m2

π = 2U ′
k, m2

q = g2ρ. (5.59)





Six

Numerical Results

In this section we collect and discuss the results of extensive numerical calculations of the
previously discussed flow equations. We solved the 2+1 flavor and 2 flavor FRG flow equations
(see Eq. (5.47) with masses as discussed in Sec. 5.3 and 5.4) as well as the 2+1 flavor system in
standard mean field approximation (MFA). The derivation of the effective potential in MFA is
outlined in appendix A. We compare the FRG results to corresponding mean fields calculations
in order to gauge the importance of meson fluctuations on the chiral phase transition. This
is not strictly true since we also neglect the divergent vacuum energy in the standard mean
field approximation. It is possible to include the vacuum energy for example by dimensional
regularization [62] which is then equivalent to FRG calculations without the meson loop.

The flow equations for the effective potential are highly non-linear, stiff partial differential
equations and therefore constitute a significant numerical challenge. Several methods have
been successfully used to find solutions to such flow equation which all have their strengths and
weaknesses. We discuss some of those methods in Sec. 7 and there we also describe in detail
the specific implementation used during this work. For Nf = 2 we use a novel approach to solve
flow equations which combines strengths of various other methods. We discuss this thoroughly
in Sec. 7.2. Parameter fixing is done in the vacuum so that experimentally measured pion and
kaon decay constants are recovered and a range of meson masses. Furthermore, we neglect any
T and µ dependence of the parameters. Details on the parameter fixing and start potential
for the flow equations can be found in appendix C. All results shown here will be for the 2+1
flavor system unless stated otherwise.

We structure the discussion of our results as follows: First we investigate the finite tem-
perature behavior at vanishing chemical potential where we discuss the condensates, meson
spectrum and pressure density. At finite chemical potential we reveal the full phase structure
of the chiral quark meson truncation and also investigate effects of unsymmetrical quark mat-
ter. Finally we investigate the order of the chiral phase transition in dependence of pion and
kaon mass which can be considered the main result of this work.

6.1 Finite Temperature

We start our discussion at vanishing chemical potential and finite temperature. Since the sigma
meson is experimentally only known as a very broad resonance we vary the sigma mass in our
calculations to gauge its effect on the chiral phase transition. Fig. 6.1 shows the light and
strange condensate for three different sigma masses including the U(1)A breaking determinant.
In agreement with Lattice simulations and e.g. calculations using Dyson Schwinger equation
[63] we find the chiral transition to be a smooth crossover at vanishing chemical potential. We
use the inflection point in the light condensate as definition for the critical temperature which
gives Tc = 139.7, 156.0, 175.1 MeV corresponding to the sigma masses mσ = 400, 480, 560 MeV.
Lattice calculations agree on a pseudo critical temperature of Tc ∼ 150 MeV [64] which suggests
that our range of sigma masses is reasonable.

We find that σ̄l falls off faster than σ̄s with increasing temperature indicating that SU(2)L⊗
SU(2)R is restored first. Only at very high temperatures, not accessible within our truncation,
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Figure 6.1: Light (lower lines) and strange (upper lines) condensate in dependence of temper-
ature with U(1)A anomaly and for three different sigma masses. With smaller sigma masses
the drop of the light condensate becomes steeper.
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Figure 6.2: Temperature dependence of the light and strange condensate with U(1)A anomaly
for mσ = 480 MeV. Solid lines are FRG calculations and dashed lines are analogous calculations
in mean field approximation.

σ̄s also approximately vanishes and full chiral SU(3)L⊗SU(3)R symmetry is restored. This can
be understood as a consequence of the higher mass of strange quarks which acts against chiral
symmetry restoration. Additionally, we see that lighter sigma masses increase the steepness of
the chiral transition and consequently decrease the critical temperature.

We compare the FRG results to corresponding calculations in mean field approximation in
Fig. 6.2 where we have chosen the sigma mass mσ = 480 MeV. Similar to 2 flavor MFA calcu-
lations (see e.g. [21]) we find a steep drop in the light condensate and therefore a significantly
lower critical temperature. Furthermore, we see a steep but small drop in the strange conden-
sate near Tc and generally a faster decline at high temperatures compared to FRG results. In
mean field approximation we also find an increasingly steeper chiral transition with decreasing
sigma mass and for mσ ≲ 350 MeV the chiral transition is of first-order even at µ = 0. We
conclude that fluctuations wash out the chiral phase transition i.e. move further away from a
first-order phase transition.

Using two different parameter sets, where one includes the ’t Hooft determinant term and
one omits it, we can see the effect of the axial anomaly on the condensates. The solid lines in
Fig. 6.3 denote the light and strange condensate calculated with the anomaly and dashed lines
were calculated without the anomaly. Both parameter sets were fitted to give identical sigma
masses in the vacuum mσ ∼ 480 MeV. We find that the anomaly only marginally affects the
light condensate. It pushes the chiral transition to a slightly higher temperature and the drop
in the light condensate is less steep. In the strange condensate we find an obverse effect: It
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Figure 6.3: Temperature dependence of the light and strange condensate with- (solid lines) and
without (dashed lines) U(1)A anomaly for mσ = 480 MeV.

vanishes more rapidly at high temperatures if the anomaly is included which means that the
anomaly works in favor of chiral SU(3)L ⊗ SU(3)R restoration. This could, however, be an
artifact of not properly fitted start parameters since both condensates do not perfectly agree
at T = 0.

6.2 The Scalar-Pseudoscalar Meson Spectrum

The temperature dependence of the scalar and pseudoscalar meson masses in MFA and FRG
are compared in Fig. 6.4. Because only the masses of the pseudoscalar nonet and the sigma
mass were used in the fitting procedure all other scalar meson masses are predictions. The
scalar a0 triplet in our calculation is 5% heavier than the experimentally measured a0(980).
For the other scalar particles the identification with measured particles becomes less clear: The
κ mesons are experimentally very broad resonances and the f0 meson can be identified with
either the f0(980) or f0(1370) particle. In our calculations the mass of the f0 meson is special
in a sense that it is the only mass where the predictions of FRG and MFA differ in the vacuum.
In MFA the f0 mass is 5% higher than the FRG result of 1155 MeV. However, since both the
FRG and MFA f0 masses lie somewhere between the two experimentally measured masses a
clear identification can not be made.

At finite temperature we see the restoration of chiral symmetry realized in the degeneration
of meson masses. This can be observed for the chiral partners π and σ as well as a0 and
η′. They start to degenerate at temperatures above the pseudo critical temperature Tc ∼ 150
MeV and are approximately degenerate at T ∼ 250 MeV. This is a result of SU(2) ⊗ SU(2)
restoration which, as discussed in the last section, is linked to the melting light condensate
around the pseudo critical temperature. The mass gap between π,σ and a0, η

′ is generated by
an opposite sign of the anomaly term m2

a0/π
∼ ±cAσs (see Appendix B.1). In agreement with

experimental observations we find a drop of the η′ meson mass around the critical temperature
[65, 66]. This has also been observed in FRG treatment of the U(2)L ⊗ U(2)R quark-meson
model with a temperature dependent ’t Hooft determinant term [61].

In mean field approximation we see qualitatively the same symmetry breaking features
as in the FRG calculation. However, the degeneration of the chiral partners sets in earlier
and is less smooth compared to the FRG calculation. This is in agreement with the earlier
observation that the light condensate falls off steeper and at lower temperatures in MFA and
a similar behavior has been found in two flavor calculations [67]. At large temperatures the
chiral partners are degenerate in both the FRG and MFA calculations. There is, however, a
growing gap between FRG and MFA masses at larger temperatures. Furthermore, we find a
smaller mass gap between π,σ and a0, η

′ at high temperatures in the MFA calculation. Both
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Figure 6.4: Temperature dependence of the scalar and pseudoscalar meson masses with U(1)A
anomaly at µ = 0. Solid lines are FRG calculations and dashed lines are analogous calculations
in mean field approximation.

observations can be understood as a consequence of the faster melting strange condensate in
MFA.

With the chiral partners K and κ we find that the degeneration sets in at temperatures
well above the pseudo critical temperature Tc < T ∼ 280 MeV and the last remaining chiral
partners f0, η do not degenerate in the investigated temperature region. This is a result of
non-ideal flavor mixing and broken SU(3)L ⊗ SU(3)R symmetry even at high temperatures
due to a slowly vanishing strange condensate. At even higher temperatures all meson masses
will eventually degenerate as SU(3)L ⊗ SU(3)R symmetry is fully restored. Because the ’t
Hooft determinant term ζ contains meson fields to the third power, the anomaly term in the
meson masses is linear in the fields. Consequently the mass gaps caused by the anomaly will
also vanish at very high temperatures when σl → 0 and σs → 0. In MFA the f0 meson becomes
lighter than κ, K and f0 at temperatures T ≳ 250 and then approaches the f0 mass from below.
This is not seen in the FRG calculation where f0 is always the heaviest meson.

Fig. 6.5 shows the meson spectrum with (solid lines) and without U(1)A anomaly (dashed
lines). Without the anomaly η′ degenerates with the pion for all temperatures and the dashed
blue line is therefore hidden in Fig. 6.5 under the yellow pion mass line. The significant drop
in the η′ mass can be explained by the fact that without the anomaly it becomes a pseudo
Goldstone boson. We also find that the scalar a0 triplet drops 19% in mass if the anomaly is
excluded. Furthermore, the mass gap between the chiral partners π,σ and η′, a0 vanishes above
the pseudo critical temperature and all non-strange particles degenerate.

Without the anomaly we find that the f0 and η masses increase by 11% and 17% respectively
and consequently the f0 meson degenerates with the κ,K and η mesons at higher temperatures
when compared to the corresponding masses including the anomaly. It is possible that this is
an artifact of the fitting procedure since the start parameters resulting in a specific sigma mass
are possibly not unique. This means that there might be multiple start parameters that exactly
reproduce the fitted parameters but give a different f0, κ and η mass.

6.3 Pressure Density

With knowledge of the effective potential U ≡ Uk=0 a wide range of thermodynamic properties
are easily calculated. For example the energy density ε, entropy density s, particle density
n and pressure density p can be expressed as derivatives of the potential with respect to the
thermodynamic variables T and µ

ε = U − T ∂U
∂T

− µ∂U
∂µ

, s = −∂U
∂T

, n = −∂U
∂µ

, p = −U (6.1)
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Figure 6.5: Temperature dependence of the meson masses with (solid lines) and without (dashed
lines) U(1)A anomaly. Without the anomaly the η′ meson degenerates with the pion at all
temperatures.

and higher order derivatives lead to generalized susceptibilities.
Here we will only examine the pressure density in our truncation and compare it with lattice
QCD data. We perform the comparison with lattice data in order to gauge the validity and
expose missing contributions in our truncation.

In section 5.1 we have defined the truncation with a UV cutoff scale Λ. Thermal and
quantum fluctuations with q2 > Λ2 are therefore lacking within our FRG treatment which leads
to wrong high temperature behavior of thermodynamic properties. The pressure density is
known to approach the Stefan Boltzmann (SB) limit at high temperatures which is for QCD

pSB
T 4

=
NfNc

6
[7π2

30
+O(µ2)] + (N2

c − 1)π2

45
. (6.2)

Here we use the following simplistic approach to cure the wrong high temperature limit: We
add the potential of a free quark-gluon gas to the FRG effective potential which guarantees that
eventually the SB limit is approached. This approach accounts for some thermal fluctuations,
but ignores important interactions between quarks and gluons and gluon self interactions.

The fermionic part of the quark-gluon gas can be extracted from the flow equation (5.47)
by omitting the meson terms and dropping the divergent vacuum contribution which can be
absorbed in the normalization of the potential. We additionally set the quark masses to zero
and add an ideal boson gas which incorporates free gluons. Putting all together the correction
to the UV truncated potential reads

UΛ
QG(T,µ) = ∫

∞

Λ
dk

k3

6π2
[Ng nB(k) + 2NcNf (nF (k,µ) + nF (k,−µ))] (6.3)

with Ng = 16 and nB(k), nF (k,µ) are the usual bosonic and fermionic occupation numbers

nB(k) = 1

ekβ − 1
, nF (k,µ) = 1

e(k−µ)β + 1
. (6.4)

This integral can be performed numerically without further complications. The total ex-
pression for the pressure density within our procedure now reads

p(T ) = −Uk=0(T ) + Uk=0(T = 0) − UΛ
QG(T ). (6.5)
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Figure 6.6: Temperature dependence of the scaled pressure density p/T 4. For 2+1 flavor we
show the FRG and MFA results and compare with Lattice data from [64]. Additionally we
show the 2 flavor pressure density calculated with the bilocal expansion. The arrows denote
the 2 and 3 flavor Stefan Boltzmann limit (see Eq. 6.2).

In Fig. 6.6 we show the resulting pressure density calculated with FRG and MFA. Since we
have no cutoff scale in MFA the full range of thermal quark fluctuations is already included
and only the free gluon gas has to be added. We also show recent lattice results for the 2+1
flavor pressure [64] and a 2 flavor FRG calculation which was done using the bilocal expansion.
Compared to the lattice results the 2+1 flavor FRG pressure rises at smaller temperatures and
approaches the SB limit significantly faster. This is mainly due to missing gluon fluctuations in
our truncation. Since gluon self-interactions are attractive they reduce the pressure compared
to an ideal boson gas. It is possible to incorporate gluon degrees of freedom in the form of
an effective gluon potential for example through the Polyakov loop [21]. A variation of the
Polyakov loop implemented within the 2+1 flavor quark-meson model is in perfect agreement
with lattice results within temperatures upto 1.3 times the pseudo critical temperature [24]. In
MFA we find a sharper increase in the pressure compared to our FRG calculation. Overall the
difference is rather small and constrained to the temperature region T ∈ [120,240] MeV. We
conclude that gluon fluctuations play a vital role in the thermodynamics of QCD, more so than
meson fluctuations.

6.4 Finite µ and the Phase Diagram

In this section we investigate the phase structure of the 2+1 flavor model at finite chemical
potential. We will focus on symmetric quark matter where µ = µl = µs for the most part of this
section but towards the end also discuss the phase diagram for unsymmetric quark matter.

The typical behavior of the light condensate in the T, µ plane is depicted in Fig. 6.7.
As already discussed for a sigma mass of mσ ∼ 480 MeV, the chiral transition is a smooth
crossover at zero chemical potential in both FRG and MFA. Increasing µ the drop in the light
condensate becomes steeper until the temperature derivative diverges at the critical end point.
This is accompanied by a drop of the sigma mass at the CEP which is a general feature of the
quark-meson model. We see this in the MFA calculation at µc ∼ 165 MeV and for even higher
chemical potential both the light and strange condensates become discontinuous. This jump in
the order parameter signals a first-order phase transition and is accompanied by the emergence
of two discrete minima in the effective potential. The first-order critical line is then given as
points in the T, µ plane where the potential values at both minima degenerate.

In agreement with earlier observations at vanishing chemical potential we find that fluctu-
ations wash out the chiral phase transition and the first-order region is significantly smaller in
the FRG calculation. Because the critical line curves onto the µ axis at large µ we define polar
coordinates in T, µ space. In the crossover region we fix the critical line at the minimum of
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Figure 6.7: Light condensate near the critical line at kend = 90 MeV and mσ = 480 MeV. The
left panel shows FRG result and right panel the corresponding MFA results. Only condensate
values near the chiral transition were calculated.
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Figure 6.8: FRG (left panel) and MFA (right panel) phase diagram for three different sigma
masses including axial anomaly. Dashed lines denote crossover and solid lines first-order phase
transitions.

∂σ̄l

∂r
, the derivative in radial direction. The crossover region spans over almost the entire T, µ

plane and only at (Tc, µc) = (12.2, 290.7) MeV do we find that the radial derivative of the
light condensate diverges and the identifying drop in the sigma mass. Temperatures lower than
T ∼ 12 MeV at high µ could not be accurately calculated due to numerical difficulties. It is,
however, very likely that a small first-order region exists that connects the CEP with the µ
axis.

We show the FRG and MFA phase diagrams for three different sigma masses in Fig. 6.8.
Apart from the significantly smaller first-order region in the FRG calculation we find that the
critical line bends backwards as it approaches the µ axis which is not seen in the MFA phase
diagram. This is a common feature of FRG phase diagrams. The effect of the sigma mass on
the phase diagram is qualitatively the same in FRG and MFA. With increasing sigma mass the
critical line shifts to higher T and µ and the first-order region shrinks until at some critical
sigma mass the CEP hits the µ axis. Within the FRG calculation this already happens at
sigma masses around mσ ≳ 560. However, because of the aforementioned numerical difficulties
we can not give a precise value for this critical sigma mass.

In Fig. 6.9 we show both the 2+1 and 2 flavor phase diagram for a comparable sigma
mass. We find that the course of the critical line is entirely determined by 2 flavor dynamics.
The location of the CEP is pushed towards lower temperatures which suggests that the added
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Figure 6.9: Phase diagram for 2+1 and 2 flavor. Dashed lines denote crossover and the green
solid line first-order phase transitions. In the 2 flavor formulation a CEP is found at (Tc, µc) =
(14.6, 302.695) MeV while for 2+1 flavor the phase transition is a smooth crossover at T ∼ 12
MeV.

fluctuations further wash out first-order phase transitions which are mainly driven by the pion
triplet and the two light quarks. In the 2+1 flavor case we can not make definite statements
if a CEP exists for a sigma mass of mσ = 560 MeV. However, the trend observed in Fig. 6.8
suggests that it is located at very small temperatures or is non existent. Furthermore, we could
not identify the triangular structure of the phase diagram observed at low temperatures in the
2 flavor case. It is possible that the added fluctuations wash out this already subtle feature of
the 2 flavor phase diagram, but it could also be missing due to numerical deficiencies in the
2+1 flavor setup.

Contrary to MFA where the ’t Hooft term does not significantly influence the phase diagram
we find that for the full FRG calculation the phase diagram is pushed inwards to smaller
temperatures and chemical potential if the ’t Hooft term is neglected (cA = 0). This reduces the
pseudo critical temperature at µ = 0 by ∼ 15 MeV and at low temperatures we find a difference
in the critical chemical potential of ∼ 23 MeV.

Finally, we extend our discussion to unsymmetrical quark matter where we consider two
independent chemical potentials. The critical surface in T, µl, µs space is shown in Fig. 6.10. In
the right panel we show the MFA result where we differentiate crossover- and first-order phase
transitions by dashed and solid grid lines respectively. The FRG critical surface is crossover
for the numerically treatable temperatures T ≳ 12 MeV shown in Fig. 6.10. It borders on a
first-order region at low temperatures which can be inferred from the existence of a CEP at
comparable temperatures (see Fig. 6.8). The general structure of the critical surface is the same
in MFA and FRG. It takes on a quarter dome-like structure centered around T = µl = µs = 0
and stretched in the µs direction. The phase diagram for symmetric quark matter from Fig.
6.8 is found by a diagonal cut along the critical surface (red line in Fig. 6.10). Remarkably,
the phase diagram for symmetric quark matter is almost identical to the µs = 0 phase diagram
(bottom plane in Fig. 6.10). We conclude that the chiral phase transition is mainly driven
by light quark density and is less sensitive to the strange quark chemical potential. Further
evidence of this is found at high µl and small temperatures: the critical surface is completely
independent of µs until a critical value, comparable to the constituent strange quark mass, is
reached, ms ∼ µs ∼ 433 MeV, from where on the critical surface collapses onto the µs-axis at
T = µl = 0.

Extrapolating to the critical chemical potential where the phase boundary hits the µl (or
µs) axis at T = µs = 0 (or T = µl = 0) we find µl,c ∼ 302 MeV (µs,c ∼ 495 MeV) for the MFA
calculation and µl,c ∼ 280 MeV (µs,c ∼ 560 MeV) in the FRG calculation. The higher critical
µs,c can be understood as a consequence of the constituent quark mass being higher for strange
quarks than for light quarks (ms ∼ 433 MeV vs. ml ∼ 300 MeV).
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Figure 6.10: FRG (left panel) and MFA (right panel) critical surface in T, µl, µs space for
mσ = 480 MeV at kend = 90 MeV including the axial anomaly. The FRG critical surface
is crossover for the shown temperature region. The first-order region at T ≲ 12 MeV could
numerically not be reached. In the right panel dashed lines denote crossover and solid lines
first-order regions of the MFA critical surface. The red line cuts across the critical surface at
µl = µs and projected onto the µs = 0 plane gives the respective phase diagrams from Fig. 6.8.

6.5 The Light Chiral Limit

Finally, we investigate the chiral phase transition in dependence of cl and cs. An important
limit of the 2+1 flavor system is the limit of vanishing light quark masses (light chiral limit).
To this end we set the explicit symmetry breaking in the light direction cl to zero and leave cs
at its physical value. In the Columbia plot the light chiral limit is reached by going left from
the physical point.

We show both condensates at vanishing chemical potential, with and without anomaly in
the left panel of Fig. 6.11. The order of the phase transition is determined by the state of
U(1)A symmetry: Including the anomaly we find a second-order phase transition at µ = 0.
This supports the idea that a tricritical point exists at some ms,tri < ms,phys and ml = 0 with
a second-order line continuing along the ms axis into the 2 flavor limit. Without the anomaly
we find a discontinuity in the light condensate indicating a first-order phase transition.

In MFA the chiral phase transition is first-order at µ = 0 independent of axial anomaly.
Consequently we find a first-order transition line over the whole T, µ plane. The sigma mass
does not have any effect on the order of the chiral phase transition. However, as in the physical
phase diagram the critical line is moved to higher T and µ with increasing mσ. Including the
vacuum term which we neglect in the standard mean field approximation a second-order phase
transition has been observed both with and without anomaly [23].

The full FRG phase diagram for symmetric quark matter is shown in the right panel of
Fig. 6.11. With anomaly the CEP is found at (Tc, µc) = (54.1, 240.0) MeV. Compared to
the corresponding physical phase diagram (depicted in Fig. 6.8) the CEP moves to higher
temperatures and lower chemical potential so that the first-order region is significantly larger
in the light chiral limit. Without the anomaly no CEP exists and the critical line is always first
order. Both critical lines could not be continued to the µ axis due to numerical instabilities at
high µ and small T .

In Fig. 6.12 we compare 2+1 and 2 flavor phase diagrams of the light chiral limit with
comparable sigma masses. Both critical lines exactly overlap and only the location of the CEP
is pushed to marginally smaller temperatures if strange dynamics are included. This again sup-
ports the observation that the chiral phase transition is completely driven by 2 flavor dynamics.
In the 2 flavor chiral phase diagram a unique triangular structure with a secondary CEP is ob-
served at low temperatures. This could not be reproduced in the 2+1 flavor calculation since
only temperatures above T ≳ 20 MeV could be calculated due to numerical deficiencies of the
two dimensional grid.
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Figure 6.11: Left panel : Temperature dependence of the condensates in the light chiral limit
(cl = 0) with and without anomaly for µ = 0. Without the anomaly a discontinuity is seen
in the light condensate which indicates a first-order phase transition at µ = 0. Right panel :
Phase diagram of the light chiral limit with and without axial anomaly. Dashed line denotes
a crossover and solid lines first-order phase transition. Without the anomaly there is no CEP
and the phase transition is first-order even at µ = 0. The phase transition lines could not be
continued to the µ axis due to numerical difficulties.
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Figure 6.12: Comparison of the 2+1 flavor and 2 flavor phase diagram in the light chiral
limit. Both critical lines lie on top of each other and only the location of the CEP shifts to
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6.6 The Chiral Critical Line

We extend the discussion of the previous section by investigating the chiral phase transition
for arbitrary symmetry breaking parameters cl and cs. Many interesting limits are contained
in the 2+1 flavor system by adjusting the symmetry breaking parameters. For example if cs
is increased from its physical value, the strange quark and all mesons containing strangeness
will gain in mass and eventually decouple from the flow. This is equivalent to a 2 flavor
description and depending on the state of the anomaly will reproduce the phase diagram of the
SU(2)L ⊗ SU(2)R or U(2)L ⊗ U(2)R model. Similarly we recover a one flavor model in the
limit cl → ∞. This is, however, highly non-physical since it essentially means that the light
quarks have infinite mass while the strange quark mass is finite.

Another important limit is the full chiral limit given by cl = cs = 0. Renormalization group
arguments predict a first-order phase transition in the three flavor chiral limit independent
of the state of U(1)A symmetry [27]. We investigate how this prediction connects with the
physical point where the chiral phase transition is a smooth crossover.
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By using the Ward identities

cl = fπm2
π, cs =

√
2fKm

2
K − 1√

2
fπm

2
π (6.6)

we express the symmetry breaking parameters in terms of pion and kaon masses. A direct
translation from cl, cs to light and strange current quark masses is not apparent beyond the
mean field level and we therefore investigate the order of the chiral phase transition in the
mπ, mK plane.

Spontaneous Symmetry Breaking in the Chiral Limit. While the light chiral limit
gives reasonable values for fπ that are in agreement with chiral pertubation theory [68] we find,
going into the full chiral limit, that both light and strange condensates vanish. We visualize
this in Fig. 6.13 where we have chosen a straight path from the physical point to the chiral
limit

(cl
cs

) = α ⋅ (cl,phys
cs,phys

) . (6.7)

Both condensates melt with decreasing α and at the chiral limit (α = 0) they are exactly
zero. Furthermore, we find that the drop in the sigma mass shifts towards T = 0 and therefore
Tc → 0 going into the chiral limit. This implies that no spontaneous symmetry breaking occurs
in the chiral limit which is in contradiction to arguments made in section 3.3: The formation
of quark-antiquark condensates is favored for massless quarks, since the energy cost of creating
such a pair decreases with the quark mass.

The absence of spontaneous symmetry breaking in our model is seen more explicitly in the
MFA formulation. Considering only the light sector of the meson potential we have in chiral
limit

U(σ̄l) =
m2

2
σ̄2
l +

2λ1 + λ2

8
σ̄4
l . (6.8)

Assuming 2λ1+λ2 > 0 so that the potential is bounded from below a finite expectation value
for σ̄l is only generated if m2 < 0. With the parameter fixing procedure described in Appendix
C we find for sigma masses in the range mσ ∈ [400,600] MeV that m2 is positive and therefore
no spontaneous symmetry breaking is observed. In MFA this can be cured by setting the sigma
mass unreasonably high (mσ ∼ 800 MeV) where m2 becomes negative [32]. This is not possible
within the FRG formulation where the flow equation dictates that only sigma masses in the
range mσ ∈ [400,600] MeV can be found.

In Sec. 3 we have seen that the one-loop β-function of QCD becomes positive for Nf > 33/2
so that QCD transforms from an asymptotically free to an IR free theory as the number of
flavors is increased. Adding further quark dynamics therefore reduces the strong coupling in
the IR. For spontaneous symmetry breaking to occur some critical value for the strong coupling
must be exceeded and the question arises if already for three massless quarks the strong coupling
falls below this critical value. Intuitively, this seems highly unlikely since the strange quark
is already light compared to charm, top and bottom quarks. Furthermore, lattice simulations
with light domain wall fermions see clear signs of spontaneous chiral symmetry breaking [69]
upto Nf = 8.

For the remainder of this investigation we will assume that spontaneous symmetry breaking
should be present in the QCD vacuum. Its absence in our model is likely related to the
parameter fixing procedure. So far we have held all parameters in the UV constant and only
adjust cl, cs going into the chiral limit. The flow from the perturbative region of QCD to
our initial scale Λ = 700 MeV will certainly produce different initial conditions depending on
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Figure 6.13: Light and strange condensates in dependence of temperature as the chiral limit is
approached. The parameter α linearly interpolates between the physical point (α = 1) and the
chiral limit (α = 0). Both condensates vanish in the chiral limit, signaling that no spontaneous
symmetry breaking occurs.

the quark masses. Without direct access to the perturbative regime it is not clear how the
initial parameters change and here we propose a somewhat heuristic approach to account for
the changing potential at Λ: Instead of changing the initial parameters we adjust the UV cutoff
Λ while approaching the chiral limit. With this we fix the light condensate in the vacuum for
each value of cl and cs to its physical value of σ̄l = fπ = 92.4 MeV, i.e. we force spontaneous
symmetry breaking also in the chiral limit.

With an increasing UV cutoff the system is allowed more time in the chirally symmetric
regime and crucially the chiral symmetry breaking scale kχSB rises. We use this to counteract
the decreasing kχSB going into the chiral limit and by fixing σ̄l in the IR the symmetry breaking
scale is held almost constant for different cl and cs.

The approach into the chiral limit can be seen in Fig. 6.14 where we show both condensates
and the sigma mass for different cutoff values starting with Λ = 700 MeV at the physical point
going up to Λ ∼ 1143 MeV in the chiral limit. For each cutoff value we have adjusted cl and
cs such that σ̄l = 92.4 MeV in the IR. Since we have only one condition and two parameters
cl and cs each cutoff value corresponds to a line in the cl, cs or equivalently in the mπ, mK

plane. For Fig. 6.14 we have again chosen a straight path from the physical point to the chiral
limit with the interpolating parameter α.

Going into the chiral limit the light condensate at T = 0 is fixed by construction. With
decreasing α the chiral phase transition gets steeper and in the chiral limit (α = 0) we find
a first-order phase transition in agreement with [27]. We note that for Λ = 1100 MeV which
corresponds to α ∼ 0.04 the phase transition is still crossover which indicates that the first-
order region around the chiral limit is fairly small. Going into the chiral limit the strange
condensate drops by about 30%. The reasoning for not fixing the strange condensate to the
physical point is as follows: The light quark constituent mass is almost entirely generated by
spontaneous symmetry breaking and only about 0.8%-1.6% of the constituent mass comes from
its current mass. Therefore it is reasonable to assume that the constituent mass is not changed
significantly going into the chiral limit. On the other hand, the strange quark has a significantly
higher current mass which makes up about 23% of its constituent mass. Since σ̄s is connected
to the constituent mass of the strange quark it will decrease going into the chiral limit because
the contribution from the current quark mass vanishes.

The existence of a critical end point at µ = 0 going from the physical point toward the chiral
limit is further suggested by the drop in the sigma mass. At some critical value 0 < αc < 0.04
it drops to zero at the critical temperature and for α < αc the chiral phase transition is first
order.
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Figure 6.14: Condensates and sigma mass in dependence of temperature as the chiral limit is
approached. For each cutoff value the symmetry breaking parameter has been adjusted such
that σ̄l = 92.4 in the vacuum. The symmetry breaking parameters are cl/s = (0, 0.04, 0.17, 1) ⋅
cl/s,phys corresponding to Λ = (1143, 1100, 1000, 700) MeV.

The Chiral Critical Line in MFA. We start our discussion by examining the order of the
chiral phase transition without meson fluctuations. We use model parameters that give a sigma
mass of mσ = 800 MeV to ensure spontaneous symmetry breaking in the chiral limit. The order
of the chiral phase transition is identified for different combinations of cl and cs, including the
chiral limit. The result for vanishing chemical potential are shown in Fig. 6.15 where we use
Eq. (6.6) to translate from cl, cs to mπ, mK . In the left panel the ’t Hooft term is included and
in the right panel cA = 0 so that U(1)A symmetry is intact. In both cases we find a first-order
phase transition in the chiral limit and a surrounding first-order region which follows along the
mK axis. It is separated from the crossover region by a second-order line–the chiral critical
line–marked in red in Fig. 6.15. The physical point lies in the crossover region as suggested by
earlier results. With included ’t Hooft term the first-order band along the mK axis spans up
to a pion mass of mπ ∼ 57 MeV. With decreasing kaon mass the critical line bends away from
the mK axis.

Without the ’t Hooft term the critical line is constant at mπ ∼ 55 MeV and no bending
away from the mK axis could be observed. The blank triangles in the lower right corner of
both graphs is an area with negative cs which happens for mK <

√
fπ/2fK .

Finally, we extend the critical line into the µ = µl = µs dimension which gives rise to a
critical surface. The existence of a CEP in the physical phase diagram already allows us to
exclude the non standard scenario since we know that the physical point must hit the critical
surface at µCEP . Fig. 6.16 shows the critical surface in mπ,mK , µ space with and without
axial anomaly. As expected the curvature of the critical surface is positive at µ = 0 so that the
first-order region is expanded with increasing µ.
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Figure 6.15: Order of the chiral phase transition in dependence of mπ and mK in MFA. Here
µl = µs = 0 and mσ = 800 MeV. Left panel with- and right panel without axial anomaly. First-
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The yellow band in the right panel could not accurately be determined and might involve a
sharp turn of the chiral critical line. The blue dot indicates realistic pion and kaon masses
(physical point).
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Figure 6.16: MFA critical surface in mπ, mK , µ space for mσ = 800 MeV with and without
axial anomaly. In both cases the curvature of the critical surface is positive.

The Chiral Critical Line Including Fluctuations. In Fig. 6.17 we show the order of
the chiral phase transition in dependence of mπ and mK including meson fluctuations within
the FRG framework. We force chiral symmetry breaking in the chiral limit by applying the
procedure discussed above. A detailed description of the numerical steps leading to Fig. 6.17
are disclosed in Appendix D.

We have already seen that in the light chiral limit the order of the phase transition is
dependent on the state of U(1)A symmetry. Including the ’t Hoof term we see a second-order
phase transition at µ = 0 and this holds true for less than physical kaon masses as can be seen
in the left panel of Fig 6.17. We find a second-order phase transition line right at the mK axis.
Only at the tricritical point at kaon masses of mK,tric ∼ 25 MeV does the chiral critical line
turn away from the mK axis and thereby encloses a small first-order region surrounding the
chiral limit. Note that the plot range is enlarged in the left panel compared to other figures.
While examining the physical phase diagram we have seen that meson fluctuations wash out
first-order phase transitions and here it leads to a collapse of the first-order region to pion and
kaon masses of mπ ≲ 20 MeV, mK ≲ 25 MeV. We indicate with the dashed line in Fig. 6.17 that



6.6. THE CHIRAL CRITICAL LINE 55

0

20

40

60

80

100

120

0 10 20 30 40 50

mK,tric

m
K

[M
eV

]

mπ [MeV]

mσ = 530 MeV
kend = 70 MeV
cA 6= 0

Crossover

1st-Order FRG
0

100

200

300

400

500

600

0 50 100 150 200 250 300

m
K

[M
eV

]

mπ [MeV]

mσ = 500 MeV
kend = 70 MeV
cA = 0

Crossover

1
st-O

rd
er

FRG

Figure 6.17: Order of the chiral phase transition in dependence of mπ and mK including
fluctuations. Left panel with and right panel without axial anomaly. First-order and crossover
regions are separated by the chiral critical line (solid red line). The blank triangle in the lower
right of both graphs is an area with negative cs. With included anomaly we find a tricritical
point at mK ∼ 25 MeV and mπ = 0. The dashed line in the left panel denotes the second-order
transition line at kend = 100 MeV and implies that the tricritical point has not entirely converged
in k. The blue dot in the right panel indicates realistic pion and kaon masses (physical point).

the location of the tricritical point is not completely settled in the RG flow. Between k = 100
MeV and k = 70 MeV the tricritical point moves towards lower kaon mass by ∆mK ∼ 6 MeV.

Without anomalous breaking of U(1)A we find a first-order band that continues along the
mK axis similar to the MFA results. For kaon masses larger than mK ∼ 47 the chiral critical
line runs loosely perpendicular to the mK axis at a pion mass of mπ ∼ 20 MeV. Continuing this
into the 2 flavor limit we have a tricritical point at mπ,tric ∼ 20 MeV and mK,tric = ∞. A more
precise assessment of mπ,tric could be made by investigating the order of the phase transition
in a U(2)L⊗U(2)R model in dependence of cl. On the lower side of the mπ, mK plane we find
for kaon masses mK ≲ 47 MeV a trend away from the mK axis until a pion mass of mπ = 25
MeV is reached.

Our results both with and without anomaly extrapolate well into the corresponding 2 flavor
limit. If U(1)A is broken we recover the SU(2)L ⊗ SU(2)R quark-meson model. It exhibits a
second-order phase transition at µ = 0 in the (light) chiral limit. The second-order line along
the mK axis is therefore likely continued into the 2 flavor limit. Similarly, in the case of intact
U(1)A symmetry renormalization group arguments predict a first-order phase transition for
Nf = 2 [27]. This is also in agreement with our findings if we continue the first-order band
along the mK axis.
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Numerical Implementation

In section 5.2 we have derived a flow equation that connects the bare action at a UV cutoff
with the truncated effective action or effective potential in the IR. In our case the flow equation
(5.47) is a highly non-linear, stiff partial differential equation and no procedure is known which
solves such a differential equation analytically. We therefore turn to numerical methods, where
the study of partial differential equations is a vast field. Approaches to solve flow equations
for the effective potential usually fall under one of two broad categories: A Taylor expansion
of the potential breaks down the infinite number of couplings to a truncated set of coupled β-
functions [25, 70, 71]. The expansion can be done either around a fixed expansion point (static
Taylor) or around the k-dependent minimum of the potential (co-moving Taylor). For O(N)
models the co-moving Taylor has been found to converge, see e.g. [15]. However, for models
including fermionic and mesonic degrees of freedom this is not necessarily true and a static
expansion might be preferable as we will show later (see also [72]). Both Taylor expansions
have in general a limited range of validity which might not include a secondary minimum of
the potential. Accurate knowledge of all local minima becomes important when investigating
the order of a phase transition. To this end one can discretize the independent variables of the
effective potential on a so called grid and solve the flow equation on each grid point [19, 73,
74]. The differentiating factor for grid methods is the way in which the derivatives on the right
hand side of the flow equation are calculated. Recently, pseudo-spectral methods have been
used to integrate flow equations with promising results [75].

The purpose of this section is twofold: First we describe the numerical setup for the 2+1
flavor investigation where we solve the flow equation on a two dimensional grid. Then we briefly
present a novel method which combines the benefits of a standard Taylor expansion and general
grid methods. A more detailed discussion of this bilocal expansion scheme can be found in [76].

7.1 Two Dimensional Grid

We start by defining the independent, positive variables [23]

x = σ2
l , y = 2σ2

s − σ2
l . (7.1)

The vacuum expectation values of the chiral invariants in terms of the new coordinates are
given by

ρ1 =
1

4
(3x + y), ρ̃2 = ρ2 −

ρ2
1

3
= y

2

24
. (7.2)

Here we have introduced a modified chiral invariant ρ̃2 which simplifies some expressions
later on. We rewrite all derivatives that enter in the meson masses as derivatives with respect
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to x and y by applying the chain rule (see Appendix B.1). Finally, we discretize both the x
and y coordinate and solve the flow equation on each grid point

∂tUk(x, y) → ∂tUk(xi, yj) ≡ ∂tUij = f (Uk, U (1,0)
k , U

(0,1)
k , U

(2,0)
k , U

(0,2)
k , U

(1,1)
k )∣

x=xi,y=yj
(7.3)

where we have used the notation U
(p,q)
k ≡ ∂px∂qyUk(x, y). The derivatives on the right hand

side of the flow equation can be calculated for example using finite difference formulas or an
appropriate interpolation method. This will give a linear relation between derivative- and

potential values at each grid point which we can write as U
(p,q)
ij = A(p,q)

ijmnUmn. Plugging this
into the flow equation we arrive at a set of coupled ordinary differential equations which can
be solved by standard numerical methods

∂tUij ≡ f̃({Uij}). (7.4)

Solving FRG flow equations in this manner is often computationally expensive because of

singular terms of the form 1/
√
k2 + 2U (1,0) which are hard to evaluate at small field values

where U (1,0) ∼ k2/2. However, one is awarded with the full potential at a wide range of field
values which makes it possible to identify first-order phase transitions and metastable states.
Since the flow equation for our truncation can be classified as a stiff equation it is worthwhile
to use an implicit ODE solver instead of the usual explicit Runge Kutta method. But even
with an implicit solver the approach to the IR is hampered by the non-analytical behavior of
the solution, which foils all good convergence properties of the interpolation method. Generally
k = 0 can not be reached and one has to choose a point kend where all relevant fluctuations are
included. Furthermore, the computation required for a single evaluation of the flow equation
increases with O(N2) where N is the number of grid points in x and y direction. This is
a serious challenge for the computations on a two dimensional grid. CPU time has to be
constantly balanced against needed accuracy which can be adjusted with the number of grid
points.

For the 2+1 flavor results presented in this thesis we have used the following setup: We
initialized an equidistant grid in

√
x = σl and

√
y =

√
2σ2

s − σ2
l so that the final grid is linear

in the field dimension. This has proven to be more accurate than a grid equidistant in x and
y when describing phase transitions with a relatively low number of grid points. However, for
a sufficiently high number of grid points both give identical results. In order to calculate the
derivatives of the potential on the right hand side of the flow equation we have used cubic spline
interpolation in two dimensions. This interpolation was also used to determine the minimum
(minima) of the potential and derivatives at that point which enter in the meson masses. Having
established the linear relation between the potential values at each grid point and derivatives
of the potential, we solved the resulting set of coupled ordinary differential equations using
the semi-implicit ODE solver StepperSie as implemented in [77]. We have found that the
semi-implicit solver performs significantly better in our case than various Runge Kutta solvers.

In order to make sure that the numerical results are reliable we have performed the following
checks for all calculations: We have compared different values of kend to determine whether the
flow has converged. If we do not point it out specifically in Sec. 6 no significant dependence
on kend could be found. Additionally we have repeated the calculations with different grid
configurations e.g. by increasing the number of grid points and varying the start and end
points of the grid. Numerical accuracy varies heavily for different T,µ points. We find that a
Nx ×Ny = 15×15 grid is already sufficient to give reliable results at µ = 0. Closer to the critical
end point we have increased the number of grid points to 30×20 and sometimes 40×20. These
configurations were used for all calculations involving a possible first-order phase transition.
An even finer grid would further decrease the error for example in Fig. 6.17.
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7.2 Bilocal Expansion

We now present a novel method to solve flow equations that bridges the gap between standard
Taylor expansions and grid methods. The key idea behind the bilocal expansion scheme is to
extend the standard Taylor method to find a global solution of the potential and not one that
is limited to a small range of field values. We start by expanding the potential up to order N
around two distinct expansion points ρL and ρR. We restrict ourselves to a potential dependent
upon one invariant ρ but generalizations to arbitrary independent variables should be straight
forward. The goal is to transfer information from one expansion point to the other i.e. couple
both expansions together. We do so by demanding both expansions to be equal for all ρ

Uk(ρ) =
N

∑
i=0

ai
i!

(ρ − ρL)i =
N

∑
i=0

bi
i!

(ρ − ρR)i . (7.5)

The coefficients ai and bi are RG-scale dependent while the expansion points ρL and ρR are
not, as in a static Taylor expansion. This is certainly not the only possible coupling procedure
and there is plenty of room for experimentation.

Continuing with Eq. (7.5) we can compare in powers of ρ which gives

N

∑
i=n

ai
i!

( i
n
)(−ρL)i−n =

N

∑
i=n

bi
i!

( i
n
)(−ρR)i−n n = 0, . . . ,N . (7.6)

These are N + 1 equations for the in total 2(N + 1) coefficients ai and bi which have to be
determined. Similar to a standard Taylor expansion we solve the flow of coupled β-functions
∂tai and ∂tbi but with Eq. (7.6) we can reduce the number of β functions by N + 1. To make
this explicit we divide the 2(N +1) coefficients into N +1 known and N +1 unknown coefficients

known: ak ≡ (a0, . . . , aN/2−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
)

N/2

bk ≡(b0, . . . , bN/2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
)

N/2+1

, (7.7)

unknown: au ≡ (aN/2, . . . , aN
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

)

N/2+1

bu ≡(bN/2+1, . . . , bN
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

)

N/2

. (7.8)

For the N + 1 known coefficients we solve the β-functions which generally depend upon
the N + 1 unknown coefficients. For every instance in the flow1 we calculate the unknown
coefficients from the known coefficients using Eq. (7.6). The specific choice made in (7.7) is
again not unique but it is in our experience the numerically most stable configuration and we
therefore restrict our discussion to this specific case.

Eq. (7.6) can be written as a linear matrix equation

A(ρL) ⋅ (
ak

au
) = B(ρR) ⋅ (

bk
bu

) (7.9)

with the matrices

(A(ρL))ji =
⎧⎪⎪⎨⎪⎪⎩

1
j!(i−j)!

(−ρL)i−j if i ≥ j
0 otherwise

, (B(ρR))ji =
⎧⎪⎪⎨⎪⎪⎩

1
j!(i−j)!

(−ρR)i−j if i ≥ j
0 otherwise

.

(7.10)

1Practically this means for every k-step the ODE solver takes.
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This set of equations has to be solved for the unknown coefficients au and bu. Since A(ρL)
and B(ρR) are upper triangular matrices the inversion can be easily done analytically. If
furthermore ρL = 0 the linear system of equations simplifies significantly.

To recap: we have connected two different points of the flow with a linear system of equations
which essentially cuts the number of β-functions that have to be solved in half. If we choose
for example ρL = 0 and ρR = σ2

R = (90MeV)2 then the potential will be continuous between
these expansion points and not diverge as in the case of a standard Taylor expansion. It is
important to keep in mind that the final potential is still only a polynomial of order N which
is now tasked with describing the global potential instead of a limited range of field values.
This is clearly a severe approximation to the true potential which is known to exhibit non
analytic behavior in the IR. Crucially, the potential in the IR becomes convex and within our
bilocal expansion scheme it is not possible to describe a convex potential while remaining in
the spontaneously broken regime. This is, however, not an eliminating fault since we extract
all physical information at kend > 0 where the potential is not necessarily convex anyway.

Results for the 2 flavor quark meson model. We solve the bilocal system of equations
with a standard Runge Kutta algorithm for the SU(2)L ⊗ SU(2)R realization of the flow
equation (5.47) as described in Sec. 5.4. In Fig. 7.1 we show the potential for different values
of k in the vacuum. The potential agrees with analogous calculations using a grid method and
it is evident that with k → 0 one approaches a convex potential even though no fully convex
potential can be reached.

0 20 40 60 80 100

Ω
k
(σ

)
[a

.u
.]

σ [MeV]

Figure 7.1: Potential calculated with the bilocal expansion at k values ranging from k = 50 MeV
(innermost line) to 210 MeV (outermost line) with ∆k = 20 MeV between each line. Convexity
is approached in the IR even though no fully convex potential can be reached with the bilocal
system.

We investigate the convergence properties in the expansion order N in Fig. 7.2. Using
the same start parameters we extract fπ and the sigma mass in the IR for different N . We
additionally compare this with a standard co-moving Taylor expansion and a static Taylor
expansion using the same start parameters. With the co-moving expansion we find no clear
sign of convergence. On the other hand, both the static and bilocal expansions converge already
at order N = 6. In Fig. 7.3 we show the pressure density2, fπ and the sigma mass at finite
temperature and µ = 0. We find that already N = 4 gives almost perfect agreement with grid
calculations and only in the sigma mass small deviations can be found. At N = 6 or higher we
find that the bilocal expansion reproduces the grid results. Similar agreement can be found with
a static Taylor expansion which also converges already at N = 6 for the quantities discussed
here.

2We do not add the ideal quark-gluon gas in this comparison which causes p/T 4 to fall off at large temper-
atures.
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Figure 7.2: Convergence of the bilocal, static Taylor and co-moving Taylor system with the
expansion order N . The co-moving Taylor system shows no definite convergence whereas both
the static Taylor and bilocal expansion show excellent convergence.

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350

p
/T

4

T [MeV]

N=4
N=6
N=8
N=10
grid

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

σ̄
>

[M
eV

]

T [MeV]

N=4
N=6
N=8
N=10

grid

250

300

350

400

450

500

550

600

0 50 100 150 200 250 300 350

m
σ
[M

eV
]

T [MeV]

N=4
N=6
N=8
N=10
grid

Figure 7.3: Temperature dependence of the pressure density, order parameter and sigma mass
calculated with the bilocal expansion.

The reason why a standard Taylor expansion gives such accurate results for thermodynamic
properties is that they are defined at the minimum of the potential. This means that if one
tunes the expansion point such that the minimum lies within the range of validity it will give
good results for thermodynamic properties. However, near a first-order phase transition at
least two local minima will emerge in the potential and the range of validity of a standard
Taylor expansion is often not wide enough to cover both. This is where the advantage of the
bilocal expansion lies. Since the potential is known globally it encompasses all local minima
and therefore allows an accurate description of first-order phase transitions. To show this we
calculate the phase diagram of the 2 flavor quark-meson model in the chiral limit which is
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Figure 7.4: Phase diagram of the chiral SU(2)L ⊗SU(2)R quark meson model calculated with
the bilocal expansion. The dashed line denotes second-order phase transition and the solid line
first order. Both regions are separated by a critical end point at (T,µ) = (273.3,24.0) MeV.
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Figure 7.5: Multiple potentials along the critical line as seen in Fig. 7.4. The top line corre-
sponds to T = 5 MeV and the lowest to T = 30 MeV with 5 MeV between each line. At low
temperatures there is a distinct maximum between the two potential minima, which is indicates
a first-order phase transition. With increasing temperature this maximum is dampened until it
vanishes at the critical end point from where on the first-order becomes a second-order phase
transition.

essentially a replication of [19]. The phase diagram is depicted in Fig. 7.4. We find a critical
end point at slightly lower temperatures compared to [19] but otherwise good agreement. Even
the triangular structure at high µ can be observed with the bilocal expansion if we set a finite
left expansion point σL = √

ρL ≳ 20 MeV. We emphasize that the phase diagram was calculated
with N = 4 which means that the flow of only 5 β-function were solved. Finally, we show in Fig.
7.5 that a clear distinction between first and second-order phase transitions can be made. In
the first-order region two distinct minima of the potential are found and following the critical
line to higher temperatures we see the maximum between both minima flattening until only
one minimum remains.
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Summary and Outlook

In this thesis we have investigated the chiral phase transition of 2+1 flavor QCD beyond
mean field approximation. Fluctuations were included via the FRG formalism–more specifically
we used the Wetterich equation as a means to interpolate between the known microscopic
interactions and the macroscopic phenomena comprised in the QCD phase diagram.

We have derived our truncation from the QCD action where we neglected the pure gauge
part. Using standard bosonization techniques we established the scalar and pseudoscalar me-
son nonet as the effective degrees of freedom of three flavor QCD at low energies. The U(1)A
anomaly was modeled by a ’t Hooft interaction which we included in our truncation in a simple
bosonized form. The quark mass matrix was rewritten in terms of meson fields which functions
as an explicit chiral symmetry breaking term. Finally, we allowed for meson interactions of
arbitrary order by introducing a meson potential which we wrote as a function of two inde-
pendent chiral invariants. The final form of the truncated effective action is reminiscent of
an effective model known as the quark-meson model. Using the Wetterich equation we have
derived the flow of the effective potential in leading potential approximation. Apart from the
2+1 flavor realization of this flow equation we also discussed the 2 flavor limit with broken
U(1)A symmetry.

We then solved the 2+1 flavor flow equation numerically on a two dimensional grid using
cubic splines to interpolate the effective potential. This gave the IR effective potential in
dependence of temperature and chemical potential from which we were easily able to extract
the condensates, meson masses and pressure density. We determined the order of the chiral
phase transition by examining the light condensate in the T, µ plane and scanning the effective
potential for secondary minima. In order to gauge the effect of anomalous breaking of U(1)A
we performed calculations both with and without the ’t Hooft determinant.

In the 2 flavor case we made use of a newly developed method, the bilocal expansion scheme.
We found that we were able to reliably calculate the 2 flavor phase diagram with only 5 β-
functions. We showed that it is possible to clearly differentiate between first and second-
order phase transitions which is often problematic using standard Taylor expansions. We also
compared the convergence properties of the bilocal expansion to standard, static and co-moving
Taylor expansion and concluded that both the bilocal and static Taylor expansion converge
already at order N = 6. However, we were not able to find convergence with the co-moving
Taylor expansion.

We started the discussion of the numerical results at vanishing chemical potential and
finite temperature where we observed that the chiral phase transition is a smooth crossover in
agreement with lattice QCD findings. We observed that chiral SU(2)L ⊗SU(2)R symmetry is
effectively restored first and only at very high temperatures is the full chiral SU(3)L⊗SU(3)R
symmetry approximately restored. The slow restoration of the strange sector could also be
seen in the pseudoscalar and scalar mass spectrum since all mesons degenerate only at very
high temperatures. We have further seen that the large experimentally measured mass of the
η′ meson can be explained by the ’t Hooft interaction.

Examining the phase diagram for physical quark masses we have observed that the chiral
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phase transition is almost completely driven by 2 flavor dynamics. Strange flavor fluctuations
wash out first-order phase transitions. However, we found that this effect is relatively small.
We find a CEP at high chemical potential and low temperatures as long as the sigma mass
does not exceed a critical mass of ms,c ∼ 560 MeV. Going beyond the usual study of symmetric
quark matter we have evaluated the critical surface in T, µl, µs space. We have found that
the chiral phase transition is mainly sensitive to the light chemical potential until the strange
chemical potential exceeds the constituent mass of the strange quark µs ≳ms ∼ 433 MeV.

Contrary to our mean field calculation where we found the effect of the ’t Hooft term to be
small it can not be neglected in the FRG calculation where we observed an enlarged first-order
region without the anomaly. This is even more prominent in the limit of massles light quarks:
We have found the order of the phase transition at µ = 0 to be entirely dependent on the state
of the anomaly. Including the ’t Hooft term the chiral phase transition is second-order and
without the explicit U(1)A breaking a first-order transition is found at µ = 0. Since the chiral
phase transition in the light chiral limit is effectively governed by 2 flavor dynamics this agrees
with arguments made in [27] which predict a first-order phase transition for Nf = 2 with U(1)A
symmetry.

Finally, we have discussed the chiral phase transition in dependence of pion and kaon masses
including the full chiral limit. For fixed start values at the UV cutoff scale Λ we have found
that both the light and strange condensates vanish in the chiral limit. We have argued that
this is not physical behavior but rather caused by changing initial conditions at Λ depending
on the quark masses. Instead of changing the initial parameters at Λ we have introduced a
variable UV cutoff going into the chiral limit and fixed fπ to its value at the physical point
which ensured spontaneous symmetry breaking for all quark masses. With this variable cutoff
we were able to reach the full chiral limit and we found in agreement with [27] that the phase
transition is first-order independent of U(1)A symmetry.

Examining the order of the phase transition for various pion and kaon masses we found
a qualitatively very different behavior depending on the axial anomaly. For a broken U(1)A
symmetry we found a small first-order region around the chiral limit which was confined in the
mK direction by a tricritical point at a kaon mass of mK,tric ∼ 25 MeV. We have compared
this to mean field type calculations which predict a significantly larger first-order region and
concluded that meson fluctuations effectively wash out first-order phase transitions. From the
tricritical point upwards the phase transition is second-order along the mK axis which connects
intuitively with the 2 flavor limit. Without the ’t Hooft determinant a first-order band follows
the mK axis with a critical pion mass of mπ,tric ∼ 25 MeV. In this case the tricritical point lies
in the 2 flavor limit and is effectively determined by the U(2)L ⊗U(2)R model.

We have seen that the existence of a tricritical point is determined by the state of U(1)A
symmetry at the critical temperature. Within our model we have taken the strength of the
’t Hooft determinant to be temperature independent. Consequently the restoration of U(1)A
symmetry is linked to the slowly vanishing strange condensate. By taking into account the
temperature dependence of the axial anomaly a more accurate assessment of U(1)A symmetry
at the chiral phase transition should be possible.

Large qualitative differences between FRG and MFA results have been found. The chiral
phase transition in MFA seems to generally favor a first-order transition and the effect of
the axial anomaly is less pronounced compared to the FRG calculation. This can be in part
explained by fluctuation, however, we want to emphasize that the vacuum energy is neglected in
standard mean field approximation. The comparison with FRG results is therefore misleading
since qualitatively different results are obtained in extended mean field calculations where the
vacuum term is included [23, 62].

The discussion of the chiral critical line within the FRG formulation was restricted to
vanishing chemical potential. This is simply due to time constraints and the long run time
of calculations on a two dimensional grid. There is no apparent problem with repeating the
calculations at finite µ and this should be performed in the future. We also would have liked
to make the direct connection to the Columbia plot where some results for the chiral critical
line exist from lattice calculations, see e.g. [29]. However, this requires an accurate relation
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between mπ, mK and ml, ms, the light and strange quark current masses. This should be the
topic of further investigation.

Because we have omitted the pure gauge part in our truncation of the QCD action no
statement about the deconfinement transition could be made. It would be of interest to see
how the U(1)A anomaly relates to the deconfinement transition. This might give an indication
on how the chiral and deconfinement phase transitions are linked. The omission of gluonic
degrees of freedom also became apparent in the pressure density where our calculation predicted
a much faster approach to the Stefan-Bolzman limit compared to recent lattice calculations.
The usual way to include gluon interactions is by including the Polyakov loop as an effective
gluon potential. This leads to the Polyakov-quark-meson model, see e.g. [21, 24] for a FRG
discussion.

It is evident that the truncation used for this work is just the first step in a FRG treatment
of 2+1 flavor QCD. Going beyond the leading potential approximation a scale dependent wave
function renormalization should be included for quark and meson fields. Furthermore, a scale
and field dependent Yukawa interaction has been shown to unfold important new dynamics in
2 flavor calculations [72]. The main goal of FRG investigations is to bridge the gap between
microscopic QCD interactions and macroscopic phenomena. In our truncation we start with a
partially bosonized effective action where quarks and mesons are the degrees of freedom. This
is not in the true spirit of microscopic QCD and should be improved by allowing the shift in
effective degrees of freedom to happen naturally. Recent investigations have found that this
can be achieved by a technique called dynamical hadronization [16, 18, 55]. Ultimately this
allows the direct connection to perturbative QCD and eliminates the need for model parameters
present in our truncation.

On the numerical side there is also considerable room for improvement. We have used a
two dimensional grid method in order to reliably differentiate between first and second-order
as well as crossover transitions. Since the two dimensional grid comes with O(N2) scaling
in the number of grid points we had to sacrifice accuracy to keep the run-time manageable.
Improving the numerical setup would likely allow us to reach smaller IR scales and access
smaller temperatures in the high µ region. A promising alternative for the two dimensional
grid is the bilocal expansion scheme which we only discussed in one dimension, but should also
be applicable in two dimensions.





A

Effective Potential in Mean Field Approximation

Here we briefly outline the derivation of the 2+1 flavor effective potential in mean field approx-
imation. We start with the generating functional at vanishing external sources J = 0

Z = ∫ ∏
a

DσaDπa ∫ DqDq̄ exp (−S[q, q̄, σa, πa]) (A.1)

where we identify S with the action defined in Eq. (5.22). In mean field approximation we
set all meson fields to their vacuum expectation value so that the path integral over meson
fields is lost and the meson potential as a function of the two finite condensates σ̄l, σ̄s can be
factored out of the path integral

Z = exp [−V4 Ũ(σ̄l, σ̄s)] ⋅ ∫ DqDq̄ exp(−∫
x
q ( /∂ + γ0µ + g (T 0σ̄0 + T 8σ̄8)) q) ≡ Zm ⋅Zq. (A.2)

The effective potential1

U(T,µf ; σ̄l, σ̄s) = −
lnZ

V4
(A.3)

then divides into separate contributions from the meson and quark Lagrangian

U(T,µf ; σ̄l, σ̄s) = Ũ(σ̄l, σ̄s) −
lnZq

V4
. (A.4)

We expand the meson potential in the chiral invariants ρ1 and ρ2 up to renormalizable
couplings

Ũ(ρ1, ρ2, ζ) =m2ρ1 + λ1ρ
2
1 + λ2ρ2 − cAζ − clσl − csσs. (A.5)

In MFA we evaluate this at the vacuum expectation value for σl and σs which is in the
nonstrange-strange basis

Ũ (σ̄l, σ̄s) =
m2

2
(σ̄2
l + σ̄2

s) +
λ1

4
(σ̄2
l + σ̄2

s) 2 + λ2

8
(σ̄4
l + 2σ̄4

s)

− cA

2
√

2
σ̄sσ̄

2
l − clσ̄l − csσ̄s. (A.6)

1As discussed in Sec. 2.3 it is in this case equivalent to the grand potential density.
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Here we have used that the chiral invariants and the ’t Hooft term evaluated at the vacuum
expectation value yields

ρ̄1 =
1

2
(σ̄2
l + σ̄2

s) , ρ̄2 =
1

8
(σ̄4
l + 2σ̄4

s) , ζ̄ =
σ̄sσ̄

2
l

2
√

2
. (A.7)

The meson potential is independent of T and µf which is a result of neglected thermal
fluctuations in mean field approximation. However, for the quarks we can perform the path
integral explicitly since it is a Gaussian integral over Grassman valued fields. This basically
gives the determinant of the exponent and using the relation ln detD = Tr lnD we evaluate the
trace over momentum, color and flavor. After summation over fermionic Matsubara frequencies
and dropping constant terms which are independent of β,µ or V we end up with (see [78] for
details)

lnZq = 2V Nc ∑
f=u,d,s

∫
d3p

(2π)3
[βωf + ln (1 + e−β(ωf−µ)) + ln (1 + e−β(ωf+µ))] . (A.8)

This result allows an intuitive interpretation of separate contributions from quark and anti-
quarks. The first term in the integrand is the divergent vacuum energy. For our calculations
we will simply subtract this divergent constant which is sometimes called no-sea approximation
or standard MFA. It has been applied to the 2+1 flavor quark meson model in for example in
[32] and for the SU(2)L ⊗ SU(2)R case in [79].

As usual, the physical state is found at the minimum of the effective potential

∂U
∂σl

∣
σl=σ̄l
σs=σ̄s

= ∂U
∂σs

∣
σl=σ̄l
σs=σ̄s

= 0 (A.9)

and the meson masses are defined by the Hesse matrix of the effective action. The individual
expressions are similar in structure to the FRG meson masses, however, derivatives of the
running meson potential are substituted with the respective derivatives of Eq. (A.5). Note,
that it is important to calculate the derivatives of the full effective potential before substituting
the expectation values of the fields. Furthermore, it is necessary to consider second derivatives
of the quark effective potential because the quark mass matrix is dependent on the meson
fields. We list the individual expressions in appendix B.2. As in the FRG formulation the
diagonalization leads to mixing of σ and f0 as well as η′ and η.



B

Meson Mass Matrix

B.1 Meson Masses in FRG

Here we list all non-vanishing entries of the squared mass matrix M2
k,ϕ for the 2+1 flavor system.

They are found by differentiating Eq. (5.27) with respect to the meson fields and evaluating the
result at the vacuum expectation values. In order to simplify some expressions we introduce a
modified chiral invariant ρ̃2 = ρ2 − ρ2

1/3 and write the meson potential as a function of ρ1 and
ρ̃2. Since we numerically represent the effective potential on a grid in the coordinates x and y
we transform the derivatives ∂ρ1 and ∂ρ̃2 into derivatives ∂x and ∂y by applying the chain rule.

We start with the already diagonal entries of M2
k,ϕ. For the scalar mesons we have the a0

and κ meson masses

m2
a0 = Ũ

(1,0) (ρ1, ρ̃2) +
1

6
(7σ2

l − 2σ2
s) Ũ (0,1) (ρ1, ρ̃2) +

cAσs√
2

= 2(y − 2x)
y

Ũ (1,0)(x, y) + 2(6x − y)
y

Ũ (0,1)(x, y) + 1

2
cA

√
x + y

m2
κ = Ũ (1,0) (ρ1, ρ̃2) +

1

6
(3

√
2σlσs + σ2

l + 4σ2
s) Ũ (0,1) (ρ1, ρ̃2) +

cAσl
2

= −1

y
(2

√
x(x + y) + 2x) Ũ (1,0)(x, y) + 1

y
(6

√
x(x + y) + x + 4y) Ũ (0,1)(x, y) +

√
xcA
2

(B.1)

where m2
a0 = (M2

k,ϕ)σiσi
for i = 1,2,3 and m2

κ = (M2
k,ϕ)σiσi

for i = 4, . . . ,7. The masses of

the a0 triplet degenerates due to SU(2)V symmetry and so do the masses of the two κ doublets.
The analogous entries of the pseudoscalar sector are given by

m2
π = Ũ (1,0) (ρ1, ρ̃2) +

1

6
(σ2
l − 2σ2

s) Ũ (0,1) (ρ1, ρ̃2) −
cAσs√

2

= 2 Ũ (1,0)(x, y) − 2 Ũ (0,1)(x, y) − 1

2
cA

√
x + y

m2
K = Ũ (1,0) (ρ1, ρ̃2) +

1

6
(−3

√
2σlσs + σ2

l + 4σ2
s) Ũ (0,1) (ρ1, ρ̃2) −

1

2
cAσl

= 2

y
(3x + 2y − 3

√
x(x + y))(Ũ (0,1)(x, y) − 1

3
Ũ (1,0)(x, y)) + 4

3
Ũ (1,0)(x, y) − 1

2

√
xcA (B.2)

with m2
π = (M2

k,ϕ)πiπi
for i = 1,2,3 and m2

K = (M2
k,ϕ)πiπi

for i = 4, . . . ,7. The only non-

diagonal entries in the mass matrix are comprised in the 0 − 8 or l − s sector. Derivatives with
respect to σl and σs yield
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m2
σlσl

= 2 Ũ (1,0)(x, y) − 2 Ũ (0,1)(x, y) + 4x [Ũ (2,0)(x, y) + 2Ũ (1,1)(x, y) + Ũ (0,2)(x, y)] − 1

2
cA

√
x + y,

m2
σlσs

= 4
√

2x(x + y) [Ũ (1,1)(x, y) − Ũ (2,0)(x, y)] − cA
√
x

2
,

m2
σsσs

= 4 Ũ (0,1)(x, y) + 8(x + y) Ũ (0,2)(x, y) (B.3)

where m2
ij = (M2

k,ϕ)ij . There is no overlap between the scalar and pseudoscalar mass matrix,

which means that we can already diagonalize this 2×2 submatrix. Introducing the scalar mixing
angle φS we write

m2
f0 =m

2
σlσl

cos2 φS +m2
σsσs

sin2 φS −m2
σlσs

sin2(2φS)
m2
σ =m2

σlσl
sin2 φS +m2

σsσs
cos2 φS +m2

σlσs
sin2(2φS) (B.4)

which follows from a rotation of the nonstrange-strange sector

f0 = σl cosφS − σs sinφS

σ = σl sinφS + σs cosφS . (B.5)

For φS = 90° we have ideal flavor mixing where σ = σl has no strange component and f0 = σs
is a pure strange state. We find the following relation for the mixing angle

tan(2φS) =
2m2

σlσs

m2
σsσs

−m2
σlσl

. (B.6)

In the pseudoscalar sector we derive the masses in the 0 − 8 basis

m2
π0π0

= Ũ (1,0) (ρ1, ρ̃2) +
1

3
cA (2σl +

√
2σs) =

4

3
Ũ (1,0)(x, y) + 1

3
cA (

√
x + y + 2

√
x) ,

m2
π0π8

=
(σ2
l − 2σ2

s)
3
√

2
Ũ (0,1) (ρ1, ρ̃2) +

1

6
cA (2σs −

√
2σl)

= 2

3

√
2 Ũ (1,0)(x, y) − 2

√
2 Ũ (0,1)(x, y) +

cA (√x + y −
√
x)

3
√

2
,

m2
π8π8

= Ũ (1,0) (ρ1, ρ̃2) +
1

6
(2σ2

s − σ2
l ) Ũ (0,1) (ρ1, ρ̃2) +

1

6
cA (

√
2σs − 4σl)

= 2

3
Ũ (1,0)(x, y) + 2 Ũ (0,1)(x, y) + 1

6
cA (

√
x + y − 4

√
x) (B.7)

which can be diagonalized by introducing the pseudoscalar mixing angle θP

η = π8 cos θP − π0 sin θP

η′ = π8 sin θP + π0 cos θP . (B.8)

We can transform the 0 − 8 basis into the nonstrange-strange basis according to Eq. (5.51)
which is a rotation of π0, π8 by the constant angle −arctan

√
2 ∼ −54.74°. With this the

pseudoscalar mixing angle in the nonstrange-strange basis φP as defined by

η = πl cosφP − πs sinφP

η′ = πl sinφP + πs cosφP (B.9)

can be expressed as φP = θP + arctan
√

2.
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B.2 Meson Masses in Mean Field Approximation

In MFA the meson masses are given as derivatives of the expanded meson potential from Eq.
(A.5). The derivatives of the with respect to the scalar fields are given by

∂2U

∂σ2
0

=m2 + 1

3
cA (−2σl −

√
2σs) + λ2 (σ2

l + σ2
s) +

1

3
λ1 (7σ2

l + 4
√

2σsσl + 5σ2
s) ,

∂2U

∂σ0∂σ8
= 1

6
cA (

√
2σl − 2σs) +

λ2 (σ2
l − 2σ2

s)√
2

+ 2

3
λ1 (

√
2σ2

l − σsσl −
√

2σ2
s) ,

∂2U

∂σ2
i

=m2 + 3

2
λ2σ

2
l +

cAσs√
2
+ λ1 (σ2

l + σ2
s) for i = 1,2,3

∂2U

∂σ2
i

=m2 + cAσl
2

+ λ2 (
σ2
l

2
+ σsσl√

2
+ σ2

s) + λ1 (σ2
l + σ2

s) for i = 4, . . . ,7

∂2U

∂σ2
8

=m2 + 1

6
cA (4σl −

√
2σs) +

1

2
λ2 (σ2

l + 4σ2
s) +

1

3
λ1 (5σ2

l − 4
√

2σsσl + 7σ2
s) (B.10)

and the derivatives with respect to the pseudo scalar fields

∂2U

∂π2
0

=m2 + 1

3
cA (2σl +

√
2σs) + λ1 (σ2

l + σ2
s) +

1

3
λ2 (σ2

l + σ2
s) ,

∂2U

∂π0∂π8
= 1

6
cA (2σs −

√
2σl) +

λ2 (σ2
l − 2σ2

s)
3
√

2
,

∂2U

∂π2
i

=m2 + 1

2
λ2σ

2
l + λ1 (σ2

l + σ2
s) −

cAσs√
2

for i = 1,2,3

∂2U

∂π2
i

=m2 + λ2 (
σ2
l

2
− σsσl√

2
+ σ2

s) + λ1 (σ2
l + σ2

s) −
cAσl

2
for i = 4, . . . ,7

∂2U

∂π2
8

=m2 + 1

6
cA (

√
2σs − 4σl) + λ1 (σ2

l + σ2
s) +

1

6
λ2 (σ2

l + 4σ2
s) . (B.11)

In MFA the meson masses receive further corrections from second derivatives of the quark
contribution. We have

∂2Ωq(T,µ)
∂φi,a∂φi,b

∣
VEV

= νc
2
∑
f=l,s
∫

d3p

(2π)3

1

Eq,f

⎡⎢⎢⎢⎢⎣
(nq,f + nq̄,f)

⎛
⎝
m2
f,ab −

m2
f,am

2
f,b

2E2
q,f

⎞
⎠

−(bq,f + bq̄,f)
m2
f,am

2
f,b

2Eq,fT
] , (B.12)

where we have abbreviate derivatives of the quark masses m2
f,a =

∂m2
f

∂φa
, m2

f,ab =
∂2m2

f

∂φa∂φb
and

introduce the quark function bq,f = nq,f(1 − nq,f) with its corresponding antiquark function
bq̄,f(T,µf) = bq,f(T,−µf).

The quark mass matrix can be worked out to be

M2
q = g2φ5φ

�
5 = g

2 [(T aσa)2 + (T aπa)2] (B.13)

and its derivatives with respect to the meson fields are given by
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m2
l,am

2
l,b/g4 m2

l,ab/g2 m2
s,am

2
s,b/g4 m2

s,ab/g2

σ0σ0
1
3
σ2
l

2
3

1
3
σ2
s

1
3

σ1σ1, . . . , σ3σ3
1
2
σ2
l 1 0 0

σ4σ4, . . . , σ7σ7
1

2
√

2
σlσs

1
2

1

2
√

2
σlσs

1
2

σ8σ8
1
6
σ2
l

1
3

2
3
σ2
s

2
3

σ0σ8

√
2

3
σ2
l

√
2

3
−

√
2

3
σ2
s −

√
2

3

.

Table B.1: Vacuum expectation value of the quark mass derivatives in respect to the meson
fields. Only derivatives with respect to the scalar mesons σa are shown since m2

f,πa
= 0 and

m2
f,πaπb

=m2
f,σaσb

.

∂M2
q

∂σa
∣
VEV

= 2g2(T 0σ0 + T 8σ8)T a,
∂M2

q

∂πa
∣
V EV

= 0,

∂2M2
q

∂σa∂σb
∣
VEV

=
∂2M2

q

∂πa∂πb
∣
VEV

= 2g2T aT b. (B.14)

The u, d, s quark masses are given by the diagonal elements of the quark mass matrix
and so are their respective derivatives. Because we enforce SU(2) isospin symmetry we have
Eq,u = Eq,d so that we only need to integrate over the light- and strange quark contributions
separately in Eq. (B.12). We define the sum of up and down mass derivatives as m2

l,am
2
l,b =

m2
u,am

2
u,b +m2

d,am
2
d,b and m2

l,ab =m2
u,ab +m2

d,ab which are tabulated in Tab. B.1.



C

Parameter Fixing

As initial condition we for the flow equation we define the effective potential U at the cutoff
scale Λ. We expanding U in the chiral invariants ρ1 and ρ̃2 up to renormalizable couplings.
Subsequently adding the explicit symmetry breaking terms we have

UΛ = a10ρ1 +
a20

2
ρ2

1 + a01ρ̃2 − cAζ − clσl − csσs. (C.1)

The parameters in the initial potential and the Yukawa coupling g were fitted to several IR
values. With the pion and kaon masses (mπ = 138 MeV, mK = 496 MeV) and the respective
decay constants (fπ = 92.4 MeV, fK = 113 MeV) we analytically evaluate the explicit symmetry
breaking parameters using Eq. (6.6). The ’t Hooft determinant term is fixed by the combined
η′ and η masses [32] and we choose g = 6.5 which gives constituent quark masses of ml = 300
MeV and ms = 433 MeV. The other free parameters are fixed by fπ, fK and the sigma mass
in the IR. Since the flow equation is a highly non-linear partial differential equation the task of
finding suitable start parameters is non-trivial. We use three parameter sets from [23] with Λ = 1
GeV and find further start parameters using the stochastic minimization algorithm Differential
Evolution [80]. The structure of the flow equation limits the range of possible IR values. This
limits the possible sigma masses to mσ ∈ [400, 600] MeV which fortunately includes realistic
sigma masses.

In the SU(2)L⊗SU(2)R model we have only one chiral invariant ρ = σ2 and since U(1)A is
maximally broken a single explicit symmetry breaking parameter remains. The expansion up
to marginal couplings reads

UΛ = a10ρ1 +
a20

2
ρ2

1 − cσ. (C.2)

We fix the three parameters by demanding physical values for fπ, mπ and mσ in the IR.

All parameters used for the 2+1 and 2 flavor FRG calculations are collected in Tab. C.1 and
its caption.

Parameters in Mean Field Approximation. In the mean field approximation we do not
have to evolve from the UV to the IR which simplifies the parameter fixing. We follow the
procedure put forward in [32] and for comparison with FRG results we fitted parameters to the
sigma masses mσ = 400,480,560 MeV. All MFA parameters can be found in Tab. C.2 and its
caption.
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Nf Λ [MeV] a10 [MeV2] a01 a20 cA [MeV] mσ [MeV]
2+1 1000 (972.63)2 50 2.5 4807.84 400

(867.76)2 50 12 4807.84 480
(542.22)2 50 36 4807.84 560
(306.60)2 140 19.68 0 480

2+1 700 (562.02)2 50.38 26.31 4807.84 490
(345.84)2 108.70 14.73 0 540

2 900 (417.99)2 - 2.614 - 560

Table C.1: Parameters for the 2 and 2+1 flavor initial potential. First three parameter sets
from [23]. The remaining free parameters are g = 6.5 and at the physical point cl = c =
(120.73 MeV)3, cs = (336.41 Mev)3.

m2 [MeV2] λ1 λ2 c [MeV] mσ [MeV]

494.762 -5.90 46.48 4807.84 400
448.562 -3.40 46.48 4807.84 480
384.712 -0.36 46.48 4807.84 560

−(306.26)2 13.49 46.48 4807.84 800

225.232 -21.98 82.47 0 480
−(503.55)2 -4.55 82.47 0 800

Table C.2: Parameter sets for the effective potential in mean field approximation. The re-
maining free parameters are g = 6.5 and at the physical point cl = c = (120.73 MeV)3, cs =
(336.41 Mev)3.



D

Determining the Chiral Critical Line

Here we describe some technical aspects that went into calculating the chiral critical line.

An important first realization is that we can add the explicit symmetry breaking terms
in the IR because ∂tcl = ∂tcs = 0 and cl, cs do not appear in the meson masses since the
explicit symmetry breaking terms are linear in the fields. This is not true for the ’t Hooft
determinant where we also have ∂tcA = 0 but ζ is cubic in the fields and therefore cA enters
in the meson masses. Because cl and cs do not enter in the flow we always calculate the
effective potential in the chiral limit and subsequently add the explicit symmetry breaking
terms. This drastically reduces the numerical effort for the calculation of the critical line since
the potential in chiral limit has to be calculated essentially once which is the computationally
expensive step. Retroactively different quark masses can be adjusted by varying the parameters
cl and cs. This constitutes tilting the potential in the σl and σs direction and subsequently
minimizing to extract σ̄l and σ̄s. This step is numerically much cheaper compared to solving
the flow equation.

What can not be avoided is the calculation of different temperature and chemical potential
values. This gives the effective potential in chiral limit as a function of T and µ. Naturally,
this can be also extended to unsymmetrical quark matter with independent chemical potential
µl and µs. We then numerically minimize the effective potential for a set value of cl and cs
which gives the condensates as a function of T and µ

σ̄l,clcs(T,µ), σ̄s,clcs(T,µ). (D.1)

Each set of cl and cs can be attributed to a point in the mπ, mK plane using Eq. (6.6). We
then determine the order of the chiral phase transition from the temperature dependence of
the light condensate. A discontinuity in the order parameter σ̄l is the necessary condition for
a first-order phase transition with the existence of two minima in the effective potential being
a sufficient condition. Distinguishing a first-order from a very steep second-order or crossover
transition is at times difficult because numerically only a finite number of T values can be
computed. This is especially true right at the chiral critical line.

In our calculations we have computed T values in ∆T = 0.5 MeV steps in the vicinity of
the critical temperature. With this relatively fine temperature resolution a clear distinction
between first-order and crossover in the vicinity of the chiral critical line was still not possible.
In order to complement the finite number of temperature values {Ti} we make use of the
information encoded in the effective potential: We determine the temperature Ti closest to the
critical temperature Tc. Then we examine if the potential exhibits two discrete minima at this
temperature. We do this numerically by tilting the potential

Ũclcs(α,Ti, µj , σl, σs) = Uclcs(Ti, µj , σl, σs) − α(σl + σs) (D.2)
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Figure D.1: Light condensate at numerically calculated temperature values and approximate
intermediate condensate values near the critical temperature by tilting the effective potential
(see text for details).

which upon minimization gives σ̄l,clcs(α,Ti, µj) and σ̄s,clcs(α,Ti, µj). If two discrete minima
exist in the potential the light condensate will be discontinuous as a function of α1. This
procedure is visualized in Fig. D.1. The light condensate at the computed Ti values are shown
and at the point where a jump in the order parameter might occur additional (approximate)
condensate values are calculated by tilting the potential. In this case a first-order transition
could be clearly identified.

We automate this process in order to calculate the chiral critical line. To this end we have
constructed a simple recursive algorithm that terminates if a sufficiently sharp peak in ∂ασ̄l
could be found. We use this as a criterion for a first-order phase transition.

As described in Sec. 6.6, we calculate the chiral effective potential for different UV cutoffs
to cure the problem of vanishing condensates in the chiral limit. Fixing fπ to its physical value
we end up with lines in the mπ, mK plane corresponding to a single value of Λ. This visualized
in Fig. D.2 where we show the output of the recursive algorithm for different Λ values. This is
the underlying data used for the right panel of Fig. 6.17.

1Assuming that both minima are not on a line perpendicular to the tilt direction. This is never the case in
our system.
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Figure D.2: The order of the chiral phase transition without anomaly in dependence of pion
and kaon masses. Each line in the plot corresponds to a different UV cutoff Λ. We have noted
several cutoff values inside the plot. The order of the phase transition was determined at each
point in the plot using the recursive procedure (see text). At the yellow line cs = 0.
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