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Abstract
In this thesis a novel approach to construct an expression for the quark self-energy
from a Bethe-Salpeter kernel is presented. We will show that this approach satisfies
the axialvector Ward-Takahashi identity. We will use this approach to calculate
the quark propagator and solve the corresponding Bethe-Salpeter equation. Fur-
thermore, we will investigate, how different terms inside the Bethe-Salpeter kernel
affect the spectrum of light scalar and pseudoscalar mesons.

Zusammenfassung
In dieser Arbeit wird ein neuartiger Ansatz gezeigt, mit dem ein Ausdruck für
die Quark Selbstenergie aus einem Bethe-Salpeter Kernel berechnet werden kann.
Wir werden zeigen, dass dieser Ansatz die Axialvektor Ward-Takahashi Identität
erfüllt. Wir werden diesen Ansatz verwenden, um den Quarkpropagator zu berech-
nen, und die Bethe-Salpeter Gleichung lösen. Weiterhin wird untersucht, wie
sich unterschiedliche Terme im Bethe-Salpeter Kernel auf das Spektrum leichter
skalarer und pseudoskalarer Mesonen auswirkt.
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Chapter 1

Introduction

The theory which describes the strong interaction between hadrons and their con-
stituents is called Quantumchromodynamics, or QCD for short. On a quantum
field theory level its main components are Nf massive fermion fields, called quarks,
and eight SU(3) gauge fields, called gluons. When taking a look at the spectrum
of light hadrons and comparing it to the masses of the bare quarks, there are a few
things that seem odd at a first glance. First of all, it seems odd, that the masses
of the light hadrons are so much higher than the bare masses of their quark con-
stituents. In fact, the masses of the proton and neutron are about 100 times larger
than the combined masses of their quark content [1]. Knowing this, it should come
as a surprise, that the light pseudoscalar (JPC = 0−+) mesons, in particular the
pions, kaons and the η, are considerably lighter compared to the light baryons.
These phenomena are consequences of the symmetries of the underlying theory. In
particular, they occur due to an effect called spontaneous symmetry breaking. It
is the process, which is responsible for the light masses of the pseudoscalar mesons.
It also makes the quarks obtain an effective mass due to self interaction, which is
much higher than their bare mass.
Other than the light pseudoscalar mesons, one can also form a multiplet of light
scalar (JP = 0++) mesons. This light meson nonet has been under debate for
a long time. Especially the experimental situation appeared questionable. In
fact, it has only established its place in the Review of Particle Physics [1] in the
last century. One of the reasons for this is that it seems incompatible with a qq
picture of mesons. If they were ordinary qq states, the isosinglet σ/f0(500) and the
isotriplet a0(980) were mass-degenerate, which is not the case [2]. Also, in the non-
relativistic quark model the scalar mesons are p-waves, carrying orbital angular
momentum. Therefore, their masses should lie above 1 GeV like the axialvector
and tensor mesons with quantum numbers JPC = 1+−, 1++ and 2++. Instead, the
lightest scalar meson found in nature, the f0(500) has a mass of 400−550 MeV [1].
Furthermore, the mass ordering of the light scalar mesons is not compatible with a
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CHAPTER 1. INTRODUCTION 5

qq bound state picture [3]. Modern research suggests, that the light scalar meson
nonet are no conventional qq states, but rather bound states of four (anti-)quarks
(qqqq), so called tetraquarks [4].
In this thesis we will use fundamental equations of QCD to see how meson masses
are generated dynamically. In particular, we will use the Bethe-Salpeter formal-
ism in order to calculate meson masses. This formalism leads to bound states
of quarks and antiquarks which have to satisfy certain conditions by the symme-
tries of the underlying quantum field theory. For the underlying equation of this
formalism, the Bethe-Salpeter equation (BSE), to be solved we first need to solve
equations for the quark propagator. It is obtained by solving the Dyson-Schwinger
equations (DSE), a set of self-consistent equations derived from QCD. Since the
Dyson-Schwinger equations cannot be solved in general, a truncation scheme has
to be employed to simplify the interaction between quarks and gluons. We will
explicitly see how this works by applying the Rainbow-Ladder truncation. Then
we will use a novel approach to go beyond the Rainbow-Ladder truncation, which
we will call the Kernel-first truncation. The idea behind that approach is to con-
struct an expression for the quark self-energy from the quark-antiquark scattering
kernel used in the BSE. This approach satisfies the axialvector Ward-Takahashi
identity (AVWTI), thus preserving the effects of spontaneous symmetry breaking.
In particular, we will add further terms to the scattering kernel and see, what
their effects on the spectrum of scalar and pseudoscalar mesons are. We will then
modify the parameters in the model used for the correction terms and investigate
their influence on the mass spectrum. After we get an idea of how they change
the masses, we will tune them in a way so that the Bethe-Salpeter equation for
the pseudoscalar meson reproduces the physical properties of the lightest pseu-
doscalar found in nature, the pion. Meanwhile, we will see how the parameters
can be tuned, so that the scalar mass goes above 1 GeV. This is done, because,
as discussed above, the lightest scalar mesons are better described as tetraquarks.
Hence, we will investigate, if the scalar mass will go up as far as to reach the mass
of the next lightest scalar meson, the a0(1450).



Chapter 2

Technical foundations

2.1 Symmetries
To understand the concept of spontaneous symmetry breaking, it is useful to first
think about what a symmetry actually is. For our purposes we will use the fol-
lowing definition:

A symmetry is a transformation, which when applied to the fundamental degrees
of freedom of a theory leaves the action unchanged.

In field theories, such as QCD, the fundamental degrees of freedom mentioned
above are the fields themselves. In the case of QCD they are the quark and gluon
fields. The transformations can be split into two different kind of transformations,
discrete and continuous ones. Discrete transformations are classified by the fact,
that they form a group, which has a countable amount of elements. These include,
but are not limited to, spatial inversion, permutation and charge conjugation. Con-
tinuous transformations also form a group, but in contrast to discrete transforma-
tions the group has an uncountable amount of elements, which can be continuously
transformed into each other by varying a set of parameters. Such transformations
include Poincaré transformations, U(N) transformations and SO(N) transforma-
tions. Next we shall see how symmetries actually affect the physics of a theory.

2.1.1 Consequences of symmetries
On top of oftentimes simplifying calculations, symmetries also manifest themselves
in the actual physics of a theory. The most notable consequence of a continuous
symmetry is Noether’s theorem. It states that for every continuous symmetry
of a field theory there is a conserved current ∂µjµ = 0. An important example
for this is that space-time symmetries, i.e. invariance under spatial rotations and
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CHAPTER 2. TECHNICAL FOUNDATIONS 7

space-time translations, imply the conservation of energy, momentum and angular
momentum. Other symmetries also have conservation laws attached to them, some
of which we will take a closer look at later.

2.1.2 Symmetry breaking
Since symmetries play an important role in our understanding of filed theories, it
is also interesting to look at symmetries, that are not exact, but broken in some
way.

Explicit symmetry breaking

The most obvious way to break a symmetry is by adding a term to the action,
which is not invariant under the symmetry transformation. One such case is a
mass term breaking the axial U(1)A and SU(N)A symmetries of a theory with
N flavours of fermions in it. This is also the case in QCD, as we will see later.
Symmetries do not have to be broken explicitly though. They can be broken in
different, more subtle ways.

Anomalous symmetry breaking

One such way is via anomalous symmetry breaking. It only occurs in quantum
field theories, when quantum fluctuations break an otherwise fine symmetry of the
classical action. This manifests itself through the fact, that such symmetries are
broken by the introduction of an ultraviolet regulator and that the symmetry is
not restored when the regulator is removed after renormalization. This results in
a non-zero divergence of the current jµ, which does not vanish when the regulator
is removed, so the current is not conserved. A famous example for this is the
U(1)A symmetry of a gauge theory with fermions [5]. As mentioned above, a mass
term breaks this symmetry explicitly, but even if the fermions are massless, the
symmetry is broken anomalously.

Spontaneous symmetry breaking

Another way to break a symmetry is spontaneous symmetry breaking. We call a
symmetry spontaneously broken, if it is a symmetry of the action, but not of the
ground state of the theory. Note, that this is not the same as anomalous symme-
try breaking. While anomalies occur due to quantum fluctuations and the need
of a regulator in quantum field theories, spontaneous symmetry breaking can also
appear outside of quantum field theories. The prime example for this is a ferro-
magnet under the critical temperature Tc. At these temperatures the ground state
of the ferromagnet has a non zero magnetization along some axis. Therefore, the
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SO(3) symmetry of the action is broken down to an SO(2) symmetry, representing
rotations along its magnetization axis.
Spontaneous symmetry breaking is particularly interesting, since it has direct con-
sequences on physical observables. Most notably, every spontaneously broken con-
tinuous symmetry leads to one massless boson appearing in the spectrum of the
theory. This is called Goldstone’s theorem, the massless bosons are called Gold-
stone bosons.
While this theorem can be proven in general [6], it is helpful to find a way to intu-
itively think about this result. If we assume a theory with a spontaneously broken
continuous symmetry, this theory will have a continuum of degenerate ground
states, which can be transformed into each other via that symmetry transforma-
tion. Thus, the ground states can be labelled by a set of parameters corresponding
to the parameters of the transformation. We will write them as θ. Given a ground
state |θ〉, a transformation into a different ground state |θ′〉 requires no additional
energy. Therefore, it can be transmitted by excitations with arbitrary small ener-
gies. This implies, that there is no mass gap in the spectrum, so there have to be
massless particles, which correspond to these excitations.
This already hints at the low masses of the pseudoscalar mesons in the QCD spec-
trum. Later we will see, that they are in fact Goldstone bosons of a spontaneously
broken symmetry. But in order to understand, which symmetry this is and why
their masses are not exactly zero in reality, we have to take a closer look at the
symmetries of QCD.

2.1.3 Symmetries of QCD
We now want to investigate the symmetries of QCD. Therefore, we take a look at
the QCD action, which is the simplest local SU(3) gauge theory with fermions we
can write down. In 4-dimensional euclidean space-time1 it is given by [5]

SQCD =

∫
d4x

 Nf∑
i=1

ψi

(
/D +mi

)
ψi +

1

4
F a
µνF

µν
a

 . (2.1)

Here the ψi and ψi are the quark fields and their conjugate fields, /D = /∂ + ig /A is
the covariant derivative and F a

µν is the gluon field strength tensor. By construction,
this action is invariant under a local SU(3) gauge transformation. This action also
has a set of global symmetries. We want to focus on the symmetries of the quark
fields.

1Using natural units, i.e. ~ = c = 1. For more information about the conventions used,
chapter A in the appendix can be consulted.
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First of all, the action is also invariant under a global U(1)V transformation of the
quark fields

ψi(x) → eiθψi(x), (2.2)

where θ is a real parameter. The conservation law connected with this symmetry
is the conservation of baryon number, which is an unbroken symmetry even in the
full quantum field theory. If the quark masses mi are zero, the action also has an
axial U(1)A symmetry, which differs from the U(1)V symmetry by insertion of a
γ5 matrix in the argument of the exponential

ψi(x) → eiγ
5θψi(x). (2.3)

This symmetry is explicitly broken by the quark masses, since the mass term
miψiψi is not invariant under this transformation but picks up a factor of exp (2iγ5θ).
Even in the chiral limit when the quark masses are set to zero, the symmetry is
broken anomalously as mentioned in the previous section.
The QCD action has additional symmetries under the condition, that there are
N ≤ Nf flavours of quarks, which have the same mass mc. In that case, the action
is also invariant under an SU(N) transformation which mixes these flavours

ψi(x) → (Ul)ij ψj(x), (2.4)

with l ∈ {V,A} labeling the symmetry as vector or axial symmetry. UV =
exp (iθaτa) is an SU(N)V matrix, the τa are the N(N − 1)/2 generators of the
SU(N) group and the θa are the corresponding parameters. If additionally mc = 0,
there is also the axial SU(N)A symmetry, which again corresponds to an insertion
of γ5 in the argument of the exponential, UA = exp (iγ5θaτa). In total these global
symmetries can be summarized as

SU(N)V ⊗ SU(N)A ⊗ U(1)V ⊗ U(1)A, (2.5)

In the real world, the quark masses are all different and nonzero, therefore all the
symmetries except for the U(1)V are broken explicitly by mass terms. If the quark
masses and their differences are small compared to ΛQCD, which is the case for
up-, down- and, arguably, strange quarks these symmetries are good approximate
symmetries though.
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2.1.4 The pion as Goldstone boson
In the chiral limit the SU(N)A symmetry is actually broken spontaneously. By
Goldstone’s theorem we therefore expect massless Goldstone bosons to appear.
In fact, the spontaneous symmetry breaking results in the pion mass being zero
for N = 2 flavours of massless quarks and the kaon and η having zero mass
additionally to the pion for N = 3. This can be seen in numerical calculations [7],
but it can also be shown analytically. Since the real world does have quark masses,
the SU(N)A symmetry is broken explicitly, therefore the pion mass is not zero.
The relation between the pion mass and the quark mass mc is called the Gell-
Mann-Oakes-Renner relation [8]

f 2
πm

2
π = −2mc

〈
ψψ
〉
/N +O(m2

c), (2.6)

with fπ being the decay constant of the pion.
〈
ψψ
〉

is called the chiral quark
condensate. A non-zero value of

〈
ψψ
〉

indicates, that the chiral SU(N)A symmetry
is spontaneously broken. From this relation we can directly see, that in the chiral
limit either the mass or the decay constant of the pion has to be zero. One can
further show that if chiral symmetry is spontaneously broken the decay constant
has to be non zero [8]. Therefore, the mass of the pion is indeed zero in the chiral
limit, making it the Goldstone boson we expect.
Another consequence of the relation (2.6) is, that for low quark masses the mass
of the pion grows proportionally to the square root of the quark mass mc. This
explains, why in the real world the pion has a non-zero, but light mass.

2.2 The Dyson-Schwinger equations
The Dyson-Schwinger equations (DSEs) are an infinite set of coupled integral
equations that describe the propagation of the particles of a quantum field theory.
In this thesis we will focus on the DSE for the quark in QCD. If we express the
quark DSE for the full, "dressed", quark propagator S(p) in terms of the bare
propagator S0(p) and the quark self-energy Σ(p), it has the form [9]

S−1(p) = Z2S
−1
0 (p)− Σ(p). (2.7)

The DSE expressed this way is also known as the gap equation. In order to solve
this equation, we need to know Σ(p). It is usually derived from the effective action
of QCD, which results in the expression [9]



CHAPTER 2. TECHNICAL FOUNDATIONS 11

Figure 2.1: The gap equation expressed in Feynman diagrams. Straight lines with
an arrow correspond to a free quark propagator, lines with an blob correspond to
a dressed quark propagator. The springy line with a blob on it is a dressed gluon
propagator. The vertex with a solid blob on it is a dressed quark-gluon vertex.

Σ(p) = −Z1F (µ
2,Λ2)g2Cf

∫
d̄4qγµS(q)Γν(q, p)D

µν(p− q), (2.8)

where g is the coupling strength from the QCD action, Cf is a factor obtained
from taking traces of the colour Gell-Mann matrices, which is equal to 4/3 for a
SU(3) gauge theory, Dµν is the gluon propagator and Γν(q, p) is a fully dressed
quark-gluon vertex.2 Z1F (µ

2,Λ2) is a renormalization constant, which we will take
a closer look at in chapter 3 when talking about truncation schemes. Using this
expression for the quark self-energy we can express the gap equation diagrammat-
ically as it is seen in figure 2.1.
The gluon propagator and quark-gluon vertex also satisfy their own set of Dyson-
Schwinger equations. In these equations higher order vertices appear, which again
satisfy their own set of DSEs [10]. This results in an infinite tower of coupled
integral equations, which has to be truncated in some way in order to get a finite
set of equations, which can be solved self-consistently. Before we apply a truncation
to this expression of the self-energy, we will take a look at the formalism we will
use to describe bound states.

2.3 The Bethe-Salpeter equation
The goal of this thesis is to calculate properties of light scalar and pseudoscalar
mesons. Therefore, we need to develop a formalism, which can be used to describe
bound states of quarks and antiquarks. In particular, we will focus on states
consisting of a single quark and a single antiquark with no net colour charge.

2The notation d̄nq is an abbreviation for dnq/(2π)n.
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The formalism we are going to use for this is the Bethe-Salpeter formalism. The
idea behind this formalism is, to start with the exact equation for the scattering
T -matrix in QCD, which is related to the full 4-point Green’s function G via [11]

G = G0 +G0TG0. (2.9)

Here G0 denotes the free 4-point Green’s function. The T -matrix satisfies a Dyson
equation itself

T = K +KG0T, (2.10)

where K is the quark-antiquark scattering kernel. Bound states between quarks
and antiquarks occur, by definition, at poles of the T -matrix. Their mass is given
by m2 = −P 2, where P µ is the position of the pole. Therefore, we can describe
the T -matrix close to bound states with the ansatz

T ∝ ΓΓ

P 2 +m2
. (2.11)

Here we introduced the so called Bethe-Salpeter amplitude (BSA) Γ and the con-
jugate amplitude Γ. Plugging this ansatz into eq. (2.10), multiplying both sides
with (P 2 +m2) and then evaluating both sides on-shell, i.e. at P 2 = −m2, we get

ΓΓ = KG0ΓΓ. (2.12)

If we now multiply both sides from the right with the multiplicative inverse of Γ,
we get

Γ = KG0Γ. (2.13)

This equation is known as the Bethe-Salpeter equation (BSE). It can be seen dia-
grammatically in fig. 2.2. The structure of this equation is that of an eigenvalue
equation of the matrix KG0. In order to see this more easily, we can explicitly
write an eigenvalue λ into eq. (2.13)

(KG0) · Γ = λ · Γ. (2.14)



CHAPTER 2. TECHNICAL FOUNDATIONS 13

Γ ΓK

Figure 2.2: The Bethe-Salpeter equation in diagrammatic form. Here, Γ denotes
the Bethe-Salpeter amplitude, K is the scattering kernel and lines with a blob are
fully dressed quark propagators.

Thus, physical bound states are characterized by an eigenvalue of λ = 1. If we
plug in the explicit expression for the free 4-point Green’s function, we can write
the BSE as [12]

[Γ(p, P )]tu =

∫
d̄4q[S(q+)Γ(q, P )S(q−)]srK

rs
tu (q, k, P ). (2.15)

The indices r, s, t and u are Dirac indices, which denote in which order tensor
structures have to be multiplied. The momentum argument p is the relative mo-
mentum, P is the absolute momentum of the meson, and q± = q ± 1

2
P are the

momenta of the quark and the antiquark. In general, the total momentum P of
the meson can split between the momentum in an antisymmetric fashion, with a
routing parameter η ranging between 0 and 1 and q± = q + η±P with η+ = η
and η− = η − 1. But since all equations we are using are Lorentz invariant, the
solutions of the BSE are Lorentz invariant as well.3 We will thus use a symmetric
momentum routing, splitting the total momentum of the meson equally to both
constituents, i.e. η = 0.5.

2.4 The Ward-Takahashi identities
The concrete form of the BSE depends on the choice of the scattering kernel K.
The kernel K can not be chosen arbitrarily though. In order to conserve the
features of spontaneous symmetry breaking in QCD, in particular the pion being
a massless Goldstone boson in the chiral limit, the scattering kernel K and the
quark self-energy K must satisfy a set of relations, known as the Ward-Takahashi

3We have to be careful though when choosing a regulator for divergent loop diagrams, as
some regulators, such as a hard UV cutoff break Lorentz invariance.
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Figure 2.3: The axialvector Ward-Takahashi identity in diagrammatic form. The
crossed boxes represent an injection of a γ5 matrix.

identities (WTIs). Therefore, every truncation we apply to the kernel and the self-
energy must not violate the WTIs. The identity, which is most important to us,
is the axialvector Ward-Takahashi identity (AVWTI). It is of particular interest,
since it ensures, that the effects of the spontaneous chiral symmetry breaking are
conserved. In its explicit form the AVWTI is given by [8]

PµΓ
µ
5(p, P ) + 2mcΓ5(p, P ) = S−1(p+)iγ

5 + iγ5S−1(p−). (2.16)

where the notation p± follows the same convention as q± introduced earlier. Γ5 and
Γµ
5 are the pseudoscalar and axialvector Bethe-Salpeter amplitudes respectively.

However, for our purpose it is more useful to write the AVWTI in a different way,
which can be derived from (2.16). This way it reads [13]

Σ(p+)γ
5 + γ5Σ(p−) = −

∫
d̄4qK(p, q, P )

(
γ5S(q−) + S(q+)γ

5
)
, (2.17)

This relation is illustrated diagrammatically in fig. 2.3. Conceptually, the AVWTI
balances the amount of binding energy provided by the scattering kernel with the
effective mass produced by the quark self-energy, such that they exactly cancel in
the chiral limit, resulting in a massless bound state. We will see this in practice
when numerically solving the Bethe-Salpeter equation in section 3.4.1.



Chapter 3

The Rainbow-Ladder truncation

We now want to take a look at a well established truncation scheme, which is
the so-called Rainbow-Ladder truncation. The idea behind the Rainbow-Ladder
truncation is to replace the fully dressed quark-gluon vertex in the quark self-
energy by a bare vertex, while replacing the full gluon propagator by a free one
with a modeled dressing function. In order not to violate the AVWTI, we need to
truncate the scattering kernel in the BSE as well. It will only consist of a one gluon
exchange, dressed with the same dressing function as the gluon in the self-energy.
In this chapter, we will use this truncation scheme to solve the quark DSE and
the BSE for the scalar and pseudoscalar channel. Later we will then find a way to
go beyond the Rainbow-Ladder truncation by constructing an expression for the
quark self-energy from the scattering kernel.

3.1 Truncating the quark DSE
We will start by applying the Rainbow-Ladder truncation to the quark DSE. To
do this, we start with the expression for the quark self-energy, eq. (2.8). The first
piece, we want to take a closer look at, is the gluon propagator Dµν(k). In Landau
gauge, the dressed gluon propagator is given by [14]

Dµν(k) = T µν(k)
Z(k2)

k2
, (3.1)

where T µν(k) = (δµν − kµkν/k2) is a transverse projector. The function Z(k2) is
a dressing function, which contains the nonperturbative properties of the gluon
propagator. The gluon propagator is a well known object by now. It’s dressing
function is well known from functional methods [14] as well as from lattice cal-
culations [15]. The nonperturbative structure of the quark-gluon vertex on the

15
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other hand is not as well understood yet. In general, the full quark-gluon vertex
is composed out of twelve independent tensor structures, which are all possible
combinations of three independent four vectors and four scalars [7]

Γµ(p, q) ∈ {γµ, pµ, qµ} ⊗
{
1, /p, /q,

[
/p, /q
]
−

}
. (3.2)

Combining these structures together, we can decompose the quark-gluon vertex in
the following way

Γµ = ig

(
4∑

i=1

λiL
µ
i +

8∑
i=1

τiT
µ
i

)
. (3.3)

In the Rainbow-Ladder truncation, only the leading structure, Lµ
1 = γµ is used.

To be more precise, the full quark-gluon vertex is replaced by

Γµ
RL(p, q) = Z1Fγ

µλ1(k
2), (3.4)

with k = p − q. We can now plug all of this into the quark self-energy, eq. (2.8),
to get

Σ(p) = −CfZ
2
1Fg

2

∫
d̄4qγµS(q)γνT

µν λ1(k
2)Z(k2)

k2
. (3.5)

We will further combine the dressing functions of the gluon propagator and the
leading structure of the quark-gluon vertex by introducing the abbreviation

α(k2) :=

(
Z̃1

Z̃3

)2
g2

4π
Z(k2)λ1(k

2). (3.6)

The renormalization constants Z̃1 and Z̃3, that appear in this expression, are
no independent factors, but they are related to Z1F and Z2 via Slavnov-Taylor
identities (STIs). The STIs relate renormalization constants of different parts of
the QCD action (2.1) with each other. They can be used to find, that Z1F , Z2, Z̃1

and Z̃3 satisfy the relation

Z2
1F = Z2

2

(
Z̃1

Z̃3

)2

. (3.7)
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Figure 3.1: Diagrammatic illustration of the DSE for the quark propagator in
Rainbow-Ladder truncation. The high order diagrams closely resemble rainbows,
which inspired the name of the truncation scheme.

For a derivation of this expression, section B.1 can be consulted. If we combine
this expression with definition (3.6) and eq. (3.5), we get

Σ(p) = −CfZ
2
24π

∫
d̄4qγµS(q)γνT

µνα(k
2)

k2
. (3.8)

oxford To see, where the name of the Rainbow-Ladder truncation comes from, we
can iterate the truncated DSE a few times and see, how the gluon propagators
in the higher order diagrams start to look like a rainbow. This is illustrated in
fig. 3.1. Before we go on and talk about solution strategies for the quark DSE, we
will show, how the Rainbow-Ladder truncation affects the BSE.

3.2 Truncating the BSE
In order to apply the Rainbow-Ladder truncation to the BSE, we need to define
the scattering kernel K first. Therefore, we start by using an expression for the
kernel, which is analogous to the quark self-energy

Kabcd(p, q, P ) = −CfZ1Fg
2Dµν(k)γ

µ
abΓ

ν
cd(p, q). (3.9)

If we now again replace the full quark-gluon vertex by its leading structure, intro-
duce α(k2) as in eq. (3.6) and use the STIs (3.7), we can bring the kernel to the
form

Kabcd(p, q, P ) = −CfZ
2
24πTµν(k)γ

µ
abγ

ν
cd

α(k2)

k2
. (3.10)

If we plug this expression into eq. (2.15), we get for the truncated form of the BSE
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Γ(p, P ) = −CfZ
2
24π

∫
d̄4qγµS(q+)Γ(q, P )S(q−)γ

νTµν(k)
α(k2)

k2
. (3.11)

The expression (3.10) already looks similar to the quark self-energy in the rainbow-
ladder truncation, eq. (3.8). It needs to be shown though, that these expressions
indeed satisfy the AVWTI. To verify this, we start by plugging the expression
for Σ(p) into the left-hand side of the AVWTI, eq. (2.17). Ignoring factors, which
both Σ and K have in common, such as Cf , Z2

2 and 4π, the left-hand side now
reads

∫
d̄q4∆µν(p+ − q)γµS(q)γνγ5 +∆µν(p− − q)γ5γµS(q)γν . (3.12)

Here we have introduced the abbreviation ∆µν(p) = Tµν(p)α(p)/p
2. If we now plug

eq. (3.10) into the right-hand side of eq. (2.17), it reads

−
∫

d̄q4∆(p− q)γµγ5S(q−)γ
ν +∆(p− q)γµS(q+)γ

5γν . (3.13)

Since we are already assuming, that all divergent integrals are regulated in a
Lorentz invariant way, we can safely shift the integration variable on the right
hand side by a constant. In the first term of the integral we shift the integration
variable by q → q + P/2 and in the second term we shift it by q → q − P/2. This
leaves us with

−
∫

d̄q4∆(p− − q)γµγ5S(q)γν +∆(p+ − q)γµS(q)γ5γν . (3.14)

Since γ5 anticommutes with all occurrences of γµ, we can change the order of each
neighboring γµγ5 pair at the cost of an additional minus sign. After doing this it
is clear, that the left-hand side and the right-hand side of the equation are indeed
equal. Therefore, the Rainbow-Ladder truncation does in fact satisfy the AVWTI.
Thus, we expect the pseudoscalar meson (pion) to be massless in the chiral limit
when we use the Rainbow-Ladder truncation to solve the BSE. We will verify this
explicitly by numerically calculating the mass of the pion in section 3.4. We will
also see, that the pion is no longer massless if the AVWTI is explicitly violated.
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3.3 Solving the truncated quark Dyson-Schwinger
equation

We now want to discuss a solution strategy for the truncated quark DSE. We
start by recalling the gap-equation (2.7) and plugging in the truncated quark self-
energy (3.8). If we do this, we end up with

S(p)−1 = Z2

(
i/p+ Zmmc

)
+ CfZ

2
24π

∫
d̄4qγµS(q)γνT

µνα(k
2)

k2
, (3.15)

where we have already replaced the free quark propagator S0(p) by its exact per-
turbative form. Zm is the mass renormalization constant. To solve this equation,
we use the fact, that the inverse quark propagator S(p)−1 can in general be de-
composed into a scalar and a vector part [16]

S(p)−1 = i/pA(p
2) +B(p2) (3.16)

with two dressing functions A(p2) and B(p2), which contain all nonperturbative
properties of the full propagator. This means that if we manage to determine
A(p2) and B(p2) from eq. (3.15) we have full knowledge of the quark propagator.
To determine A(p2) and B(p2), we project onto the scalar or vector part of the
expression respectively by multiplying both sides of eq. (3.15) with a projector to
the respective part and taking the trace over the remaining Dirac indices. The
technicalities of this are elaborated in more detail in sec. B.2. After doing this, we
end up with two separate equations for A(p2) and B(p2)

A(p2) = Z2 + ΣA(p
2) (3.17)

B(p2) = Z2Zmmc + ΣB(p
2) (3.18)

with

ΣA(p
2) = Z2

2

16π

3

1

p2

∫
d̄4q

A(q2)

q2A2(q2) +B2(q2)

α(k2)

k2

(
p · q + (p · k)(q · k)

k2

)
(3.19)

ΣB(p
2) = Z2

2

16π

3

∫
d̄4q

B(q2)

q2A2(q2) +B2(q2)

α(k2)

k2
(3) . (3.20)

In order to solve these two equations, we have to specify a model for α(k2). We are
going to use a model, which consists of an infrared part and a separate ultraviolet
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part. The ultraviolet part is motivated by the perturbative behaviour of the gluon
propagator at high momenta. To be consistent with one-loop perturbative QCD,
α(k2) must approach the asymptotic behaviour of QCD’s running coupling [11]

α(k2)
k2→∞−−−−−→ πγm

ln k2/Λ2
QCD

, (3.21)

where γm = 12/(11Nc−2Nf ) is the anomalous dimension of the quark propagator.
In our calculations we will use Nf = 4, therefore γm = 12/25. For the infrared
part several models have been employed in the past. The one we are going to use
has first been used by Maris and Tandy and reads [17]

α(k2) = αIR(k
2) + αUV(k

2) (3.22)

αIR(k
2) = πη7

(
k2

Λ2

)2

e−η2k2/Λ2 (3.23)

αUV(k
2) =

πγm

(
1− e−k2/Λ2

0

)
ln
√
e2 − 1 +

(
1 + k2/Λ2

QCD
)2 . (3.24)

The ultraviolet term is constructed in such a way, that for k2 → ∞ it produces the
correct asymptotic behaviour (3.21) while going to zero for k2 → 0. We use Λ0 =
1.0 GeV as scale in the ultraviolet part and ΛQCD = 0.234 GeV for the interaction
scale of QCD. Note however, that we are using a different parametrization of the
infrared part compared to [17]. In this version, the infrared part is parametrized
by a dimensionless parameter η, which determines the strength of the interaction,
and an interaction width Λ. Fig. 3.2 shows α(k2) for several values of η and
Λ. Having specified α(k2), equations (3.17) can be solved numerically using an
iterative method. The details about all the numerical methods used throughout
this thesis can be found in appendix C. Before presenting the results of these
calculations, we have to take a closer look at the renormalization of the quark
DSE.

3.3.1 Renormalization of the quark DSE
We now want to talk more about renormalization in the context of the quark
DSE. Up to this point we have neglected the cutoff and renormalization point
dependencies of the quark propagator and the bare quark mass mc. Since QCD is
multiplicatively renormalizable, renormalized and unrenormalited dressing func-
tions and quark mass obey the relations [18]
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Figure 3.2: Upper panel: The model used for α(k2) for several values of η.
Lower panel: The model used for α(k2) for several values of Λ.

A(p2, µ2)Z−1
2 (µ2,Λ2) = A0(p2,Λ2) (3.25)

B(p2, µ2)Z−1
2 (µ2,Λ2) = B0(p2,Λ2) (3.26)

mc(µ
2)Zm(µ

2,Λ2) = m0
c(Λ

2), (3.27)

where µ is the renormalization point and Λ is the UV cutoff. The cutoff depen-
dent expressions on the right-hand side of these relations are the unrenormalized
version of the ones appearing on the right and are thus denoted with a superscript
zero. Since the right-hand side of all of these expressions do not depend on the
renormalization point, a finite change in the renormalization point from µ to ν is
described by
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A(p2, ν2) = A(p2, µ2)
Z2(p

2, ν2)

Z2(p2, µ2)
(3.28)

for the dressing function A(p2) and similar relations for other renormalization
point dependent quantities. In order to determine the values of Z2 and Zm for a
given cutoff and renormalization point, we first have to specify a renormalization
condition. This is done by requiring the dressing functions to have a fixed value
at the renormalization point. We are going to employ the natural choice

A(µ2, µ2)
!
= 1 (3.29)

B(µ2, µ2)
!
= mc. (3.30)

If we apply this condition to equation (3.17), we can rearrange them to find

Z2(µ
2,Λ2) =

1

1 + ΣA(µ2,Λ2)
(3.31)

Zm(µ
2,Λ2) =

1

Z2(µ2,Λ2)
− Z2(µ

2,Λ2)ΣB(µ
2,Λ2)

mc(µ2)
. (3.32)

Note, that ΣA and ΣB still depend on Λ, since the integrals appearing in eqs. (3.19)
are still divergent and need a cutoff.

3.3.2 Numerical results
We now want to take a look at explicit solutions of the quark DSE. These are
obtained by numerically solving the coupled set of equations (3.17). All of these
calculations are done with a renormalization point of µ = 19 GeV and a UV cutoff
of ΛUV = 103 GeV.1 For the parameters η and Λ in the effective coupling (3.22)
we are using the values η = 1.8 and Λ = 0.72 GeV. Using these parameters, the
results for the dressing functions are shown in fig. 3.3.
Another way of writing the dressed quark propagator (3.16) is by expressing it in
terms of two other dressing functions, the wave function Z(p2) and the effective
mass function M(p2). In this notation the dressed quark propagator can be written
as

1Here we have added a subscript UV added to the cutoff so it is not to be confused with the
interaction width Λ in α(k2)
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Figure 3.3: Left panel: Numerical results for A(p2). The upper line (dashed)
is calculated for a bare quark mass of mc = 3.7 MeV, the lower line (solid) is
calculated in the chiral limit, mc = 0.
Right panel: Numerical results for B(p2). The upper line (dashed) is calculated
for a bare quark mass of mc = 3.7 MeV, the lower line (solid) is calculated in the
chiral limit, mc = 0. Note, that the right panel uses a logarithmic scale on the
y-axis while the left panel does not.

S(p) = Z(p2)
1

/p+M(p2)
. (3.33)

Therefore we can express Z(p2) and M(p2) in terms of A(p2) and B(p2)

Z(p2) =
1

A(p2)
(3.34)

M(p2) =
B(p2)

A(p2)
. (3.35)

Since the integrand in ΣA(p
2), eq. (3.19) is always positive, the value of A(p2) is

greater than zero. Thus, these functions are always well-defined. The numerical
results for Z(p2) and M(p2) can be found in fig. 3.4. From that we see, that
the wave function goes to 1/Z2 in the UV, which is indeed the free renormalized
quark. Hence, this result describes an asymptotically free quark. In the infrared
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Figure 3.4: Left panel: Numerical results for Z(p2). The lower line (dashed)
is calculated for a bare quark mass of mc = 3.7 MeV, the upper line (solid) is
calculated in the chiral limit, mc = 0.
Right panel: Numerical results for M(p2). The upper line (dashed) is calculated
for a bare quark mass of mc = 3.7 MeV, the lower line (solid) is calculated in the
chiral limit, mc = 0. Note, that the right panel uses a logarithmic scale on the
y-axis while the left panel does not.

the wave function drops below one, indicating that the quark is no longer free, but
surrounded by a cloud of gluons.
As stated before, the function M(p2) can be interpreted as the effective mass
function of the quark. Note, that its value in the infrared, i.e. for low values of
the momentum argument, is higher than the bare quark mass by several orders of
magnitude. In particular, for a bare quark mass of 3.7 MeV the effective quark
mass in the infrared is equal toM(0) = 488 MeV. Even in the chiral limit the quark
obtains an effective mass of 475 MeV. This phenomenon is known as dynamic mass
generation, since the high effective mass is generated by the quark self-interaction
via an effective one gluon exchange in the Rainbow-Ladder truncation. It occurs
as a consequence of the chiral symmetry of QCD being broken spontaneously [19].
This is also part of the reason, why bound states, such as baryons and mesons,
are so much heavier than their bare quark constituents. To describe bound states
precisely though, interactions between multiple (anti-)quarks have to be taken into
consideration. In the chiral limit the effective quark mass goes to zero in the UV
limit though, which is a consequence of QCD being asymptotically free.
During the numerical calculations, the values of Z2 and Zm have also been cal-
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culated. They are shown for different renormalization points and different values
of mc in fig. 3.5. One can see, that Z2 barely even changes if mc is increased.
The value of Zm on the other hand seems to drop off drastically for small current
quark masses. At first, this seems logical when we consider, how we calculate Zm,
as equation (3.31) indeed goes to −∞ in the chiral limit. However, this is not
a physical result but rather an artifact of the numerical method used. In fact,
Zm should also be nearly constant, just like Z2. We do not get the correct result
numerically, because eq. (3.31) is no longer correct in the chiral limit. This has
to do with B(p2) having a different asymptotic ultraviolet behaviour in the chiral
limit than when there is a non-zero current quark mass, as can be seen in fig. 3.5.
Thus, we would need to go to the limit µ → ∞ if we want to calculate Zm in the
chiral limit numerically [20]. However, since Zm only slightly varies with changing
mc, good results can be obtained by fixing it to a value, which is calculated at
larger bare quark masses, i.e. Zm = 0.69. The dependency on the renormalization
point is more noticeable for both renormalization constants. In the limit µ→ ΛUV
their values go to 1, which is again consistent with eq. (3.25).
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Figure 3.5: Upper left panel: Numerical results for Z2 as a function of mc. A
UV cutoff of ΛUV = 103 GeV is used. The lines correspond to renormalization
points of 13 GeV, 19 GeV and 25 GeV, with the bottommost line (solid) being
µ = 13 GeV.
Upper right panel: Numerical results for Zm as a function of mc. The same UV
cutoff of ΛUV = 103 GeV is used. Also, the same values for µ are used, again with
the lowest line (solid) corresponding to µ = 13 GeV.
Lower panels: Numerical results for Z2 and Zm as a function of µ. Here the bare
quark mass been fixed to mc = 3.7 MeV.
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3.4 Solving the truncated meson Bethe-Salpeter
equation

Now, that we know the dressed quark propagator S(p), we can use the results to
solve the BSE for quark-antiquark bound states. In section 3.2 we have already
specified the scattering kernel K, eq. (3.10), and we have shown, that it satisfies
the AVWTI. Since we want to solve the BSE for several different meson channels,
we first have to specify the transformation properties of these channels under
parity transformation and charge conjugation. In this thesis we will focus on
the scalar (JPC = 0++) and pseudoscalar (JPC = 0−+) channels. In general,
we can decompose the Bethe-Salpeter amplitudes into several tensor structures
multiplied with dressing functions, in similar fashion as we did with the quark-
gluon vertex and the dressed quark propagator. In particular, we are going to use
the decomposition [21]

ΓS(p, P ) = 1
(
E(p, P )− i (p · P ) /PF (p, P )− i/pG(p, P ) +

[
/p, /P

]
−H(p, P )

)
(3.36)

ΓPS(p, P ) = γ5
(
E(p, P )− i /PF (p, P )− i (p · P ) /pG(p, P ) +

[
/p, /P

]
−H(p, P )

)
.

(3.37)
The subscript labels S and PS stand for the scalar and pseudoscalar amplitude re-
spectively. Note that the amplitudes differ by a factor of γ5 to account for parity.
Additionally, the amplitudes differ by a factor of (p · P ) being present at different
tensorstructures. This is done to ensure that all parts of the amplitude are even
under the transformation p · P → −p · P . Analogous to the quark propagator, we
need to know the dressing functions E, F , G and H to know the full amplitude.
We can again project onto the individual dressing functions by plugging the de-
composition of the amplitude into the truncated Bethe-Salpeter equation (3.11),
multiplying both sides with projectors and taking the trace over the open Dirac
indices. The details of this process are again elaborated in section B.2 in the ap-
pendix. Doing this leaves us with four coupled integral equations for the dressing
functions E through H. This system of equations can be written as2


E(p)
F (p)
G(p)
H(p)

 =


κEE(p, q) κEF (p, q) κEG(p, q) κEH(p, q)
κFE(p, q) κFF (p, q) κFG(p, q) κFH(p, q)
κGE(p, q) κGF (p, q) κGG(p, q) κGH(p, q)
κHE(p, q) κHF (p, q) κHG(p, q) κHH(p, q)

 ·


E(q)
F (q)
G(q)
H(q)

 , (3.38)

2All functions in this equation also depend on the total momentum P . We have left them out
for the sake of readability though.
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where q is the integration variable from the integrals, which appear inside the
κ-functions. As explained in section 2.3, physical bound states are those, where
the eigenvalue of the κ-matrix on the right-hand side is equal to 1. Hence, we can
solve equation (3.38) by finding a value for m, such that this condition is met.3
The dressing functions are then the eigenvector of the κ-matrix to the eigenvalue
1. Equation (3.38) can technically be solved iteratively in a similar fashion to the
coupled equations for the dressing functions in the quark propagator, eqs. (3.17)
and (3.19). However, there is a more efficient way to solve this eigenvalue equation.
Since we are solving the BSE numerically on a finite momentum grid, we can
interpret it as an eigenvalue equation of a 4N dimensional square matrix, where
N is the number of sites in the momentum grid. Therefore, we can efficiently find
the eigenvalue of the κ-matrix for each value of m. This gives us the eigenvalue
as a function of the meson mass, i.e. λ(m). We then need to find the value of
m, where this function intersects 1, or equivalently where 1 − λ(m) is zero. A
root finding algorithm, such as the false position method (regula falsi) can be used
for this [22]. Once the physical mass is found, we can easily calculate the 4N
dimensional eigenvector of the κ-matrix. The first N components of it yield the
value of E(p) on the sites of the momentum grid, the next N components contain
those of F (p) and so on.

3.4.1 Numerical Results
We first want to take a look at how the masses of the scalar and pseudoscalar
mesons depend on the bare quark mass mc. For the pseudoscalar meson (pion)
we recall, that, if chiral symmetry is spontaneously broken, the Gell-Mann-Oakes-
Renner relation (2.6) should hold. Since we have shown in section 3.2, that the
Rainbow-Ladder truncation satisfies the AVWIT, we expect a behaviour of the
form mπ ∝ √

mc. Especially, we expect mπ to be zero in the chrial limit. To
confirm, whether this is true in our numeric calculations, the masses of the mesons
have been calculated for several values of mc. The results of this can be seen in
fig. 3.6. Fitting a function of the form mπ =

√
amc+ b to this result gives the best

parameters as a = 5.64 GeV and b = −2.8 MeV. This fit has only been conducted
on quark masses up to 20 MeV, since the Gell-Mann-Oakes-Renner relation is only
valid for small masses. At higher masses higher order terms have to be included
as well. This can be seen in the plot, as for high quark masses the fit no longer
matches the numerical data. These results show, that for a bare quark mass of
mc = 3.7 MeV the mass of the pseudoscalar meson is 141 MeV, which only differs
from the actual physical value of 139.57 MeV [1] by about 1%. We also see, that

3Since we are setting the total momentum on-shell, we can relate it to the meson mass m via
P 2 = −m2.
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Figure 3.6: The pseudoscalar mass as a function of mc. Note, how the mass goes
to zero in the chiral limit and reaches its physical value at around mc = 3.7 MeV.
The solid line shows a fit to a function of the form f(m) =

√
am+ b.

the mass of the pseudoscalar meson is zero in the chiral limit, as we expected. This
behaviour indicates, that the pseudoscalar meson is indeed the Goldstone boson
indicating spontaneous symmetry breaking.
In order to show, that this is not just a coincidence but in fact a result of spon-
taneous chiral symmetry breaking, we can calculate the pseudoscalar mass when
the AVWTI is explicitly violated. This can easily be done by choosing different
values for the parameters η and Λ in equation (3.22) for the quark self-energy in
the DSE and the scattering kernel in the BSE. The results of this can be seen
in fig. 3.7. In these calculations we have fixed the values for η and Λ used in the
quark DSE and varied their values in the BSE. In the DSE, the values η = 1.8 and
Λ = 0.72 GeV have been used. Therefore, these points on the x-axes of the plots
represent the point, where the AVWTI is satisfied. One can clearly see, that the
mass drastically increases, when the AVWTI is violated, and goes to zero when
the AVWTI is restored.
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Figure 3.7: These plots show the pseudoscalar mass in the chiral limit, when the
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zero.
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Figure 3.8: The scalar meson mass as a function of mc. Note, that the scalar
meson does not become massless in the chiral limit, but still carries a mass of
around 683 MeV.

We can also calculate the scalar mass from the BSE as a function of mc. The
results of this can be seen in fig. 3.8. Note, that the scalar meson has a much
higher mass than its pseudoscalar counterpart. It also does not become massless
in the chiral limit, but still has a dynamically generated mass. This indicates, that
it is not a Goldstone boson like the pseudoscalar meson. Thus, it does not come as
a surprise, that it also does not satisfy the Gell-Mann-Oakes-Renner relation (2.6).
It is also important to note, that the scalar mass is less sensitive to changes in mc,
especially when compared to the pseudoscalar mass close to the chiral limit. For
quark masses higher than the ones included in this plot the scalar mass exceeds
1 GeV. This leads to some technical difficulties in the calculations, which we
will discuss in more detail later. As mentioned in the introduction, in the non-
relativistic quark model the scalar meson mass lies above 1 GeV. At a bare quark
mass of 3.7 MeV, which produces a good result for the pion mass, the scalar mass is
712 MeV, which is far below the 1 GeV threshold. Therefore, the Rainbow-Ladder
truncation struggles to reproduce this result. We will later see how going beyond
the Rainbow-Ladder truncation can improve the results in this regard.
It is also interesting to ask, how much the individual tensor structures of the
Bethe-Salpeter amplitudes effect the meson masses. Therefore, these calculations
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Structures pseudoscalar mass scalar mass
E 122 779
E, F 144 791
E, F, G 146 788
E, F, G, H 141 712

Table 3.1: The masses of the pseudoscalar and scalar mesons, calculated with
different tensor structures in use. They have been calculated with mc = 3.7 MeV,
as this reproduces the physical pion mass. All of these masses are given in MeV.

have been repeated with several combinations of tensor structures in use. To be
more precise, we start with only the leading tensor structure in place.4 We then
add one structure after the other and see, how the results for the meson masses
change. The results of this procedure can be seen in table 3.1. From this we can
deduce, which of the tensor structures are the most relevant for the meson mass in
each channel. For the pseudoscalar channel we see, that the E and F structures are
the biggest contributors to the mass with F increasing it by around 17%, while G
and H each only contribute a few percent each. In the scalar channel however, the
H structure in particular has a big influence on the mass, changing it by around
10%, while F and G only contribute little to the mass.
In all the calculations done so far, the Bethe-Salpeter amplitudes (3.36) have been
calculated as well. The results for the dressing functions E(p) through H(p) can be
found in fig. 3.9. We can see that in both channels E(p) is the dominant dressing
function. Note however, that the amplitude is calculated as the eigenvector of a
matrix and thus so far only known up to a constant factor. This factor has to be
fixed by the separate normalization condition [23]

(
d log(λ(P 2))

dP 2

)−1

= 3 tr

∫
d̄4qΓ(q,−P )S(q+)Γ(q, P )S(q−) (3.39)

We will for now not normalize the amplitude, but we can still compare the asymp-
totic behaviour of E(p) in the pseudoscalar channel and the quark’s scalar dressing
function B(p2) in the chiral limit. In fig. 3.10 we can see, that they match each
other up to a multiplicative factor. This not just a coincidence, but can be shown
analytically.5

4Since this structure’s dressing function is called E(p), we are going to label it with an E
synonymously.

5For a proof of this, section B.3 can be consulted.
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Chapter 4

Beyond the Rainbow-Ladder
truncation

4.1 Motivation

4.1.1 Problems of the Rainbow-Ladder truncation
The Rainbow-Ladder truncation has already been used a lot in previous research.
It has been applied to a multitude of problems, ranging from the analytic structure
of the quark propagator [24] over the mass spectrum of light pseudoscalar and
vector mesons [17], heavy quarkonia spectra [25], baryon studies [8] and all the
way to the study of exotic states, such as tetraquarks [26]. While it has shown
good results in some aspects, such as light vector and pseudoscalar ground state
masses and the baryon spectrum, it fails to describe some other phenomena, such
as light scalar meson masses, the decay of the ρ meson, excited mesons and exotic
states. This is a consequence of the drastic simplification done to the quark-gluon
vertex and quark-antiquark scattering kernel. Therefore, it is necessary to include
more complicated interactions into the calculations in order to correctly describe
such phenomena.

4.1.2 Previous research
There have already been a number of efforts to go beyond the Rainbow-Ladder
truncation using functional methods. For an overview, the review [8] can be con-
sulted. Most of them can be summarized in that they include the Dyson-Schwinger
equations for the gluon propagator, the quark-gluon vertex and other vertices as
well. They can as well be derived by expanding the effective action of QCD into
n particle irreducible vacuum diagrams and taking functional derivatives thereof.
An example of this done with the 3PI effective action can be seen in [10]. In these

34
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calculations many more dressing functions appear than in a Rainbow-Ladder cal-
culation, which all satisfy coupled integral equations, which again take way more
effort and technicalities to solve.1 The corresponding Bethe-Salpeter scattering
kernels are derived by taking second derivatives of the nPI effective action [27].
Hence, there is an incentive to find a way to go beyond the Rainbow-Ladder trun-
cation in a manner, that still allows for easy and efficient calculations.

4.2 Introducing the Kernel-first truncation
We now want to take a look at a different approach to go beyond the Rainbow-
Ladder truncation. In order to see the motivation behind this approach, note that
the derivation the Dyson-Schwinger equations contains taking first order functional
derivatives of the effective action and that a consistent Bethe-Salpeter scattering
kernel can be constructed by taking the second order functional derivative. In
general, it is not possible however to take a functional derivative of the quark
self-energy (2.8) to obtain a scattering kernel which satisfies the AVWTI. It does
not work, because to arrive at equation (2.8), one needs to evaluate the expression
at the physical point after taking the first functional derivative, which leads to
certain stationarity conditions [14]. To see how this happens, we can compare the
general expressions for both quantities

Σ(S0) =
δΓ[φ̂]

δS

∣∣∣∣
φ̂=φ

(4.1)

−Kqq =
δ2Γ[φ̂]

δSδS

∣∣∣∣
φ̂=φ

6= δΣ(S0)

δS0

. (4.2)

Thus, if we wanted to construct a scattering kernel from equation (2.8), we would
need to apply the chain rule of differentiation and take functional derivatives of
the quark-gluon vertex as well. Doing so leads to a four-quark-gluon five-point
function appearing. This leads to a whole new set of coupled integral equations
for this five-point function, as illustrated in fig. 4.1.
Another way of preserving chiral symmetry would be to begin with a quark-
antiquark scattering kernel and then construct a quark self-energy in such a way,
that the AVWTI is not violated. The advantage of this approach is that it leads
to a condition, which is nearly trivial to satisfy. The downside however is that
the self-energy is no longer the same derived from the effective action. Thus, we
will derive an equation for the quark propagator, which is technically no longer a

1In fact, the set of equations arising from the Rainbow-Ladder truncation can be solved within
a few seconds on a standard desktop CPU.
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Figure 4.1: Coupled integral equation for the four-quak-gluon five-point function,
which arises from taking the functional derivative of the quark-gluon vertex.

Dyson-Schwinger equation. Since they are both derived from functional methods
and have a very similar structure, we will still use the name DSE synonymously
for it.

4.2.1 Contructing the quark self-energy
The method used in this section is based on unpublished work by R. Williams and
C. S. Fischer [28]. To construct a quark self-energy from a given scattering kernel
K, we start with Goldstone’s theorem. In the Bethe-Salpeter equation it is shown
through

δ2Γ

δSδS

{
γ5, S

}
= 0. (4.3)

The first term is the Bethe-Salpeter operator, S−1
ab ⊗S−1

cd −Kabcd, while the second
term is the analog of the Bethe-Salpeter wave function. Evaluating this expression
we find2

[S−1(p)]ab
{
γ5, S(p)

}
bc
[S−1(p)]cd =

∫
d̄4qKabcd(p, q, P )

{
γ5, S(q)

}
bc
. (4.4)

We can now again decompose the quark propagator into a vector and a scalar part
according to (3.16). We can then use the fact that the vector part anticommutes
with all occurrences of the γ5 matrix to get

2γ5adB(p2) =

∫
d̄4qKabcd(p, q, P )

{
γ5, S(q)

}
bc
. (4.5)

2During this derivation, wherever lowercase subscripts with latin letters appear, they explicitly
mark dirac indices.
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If we multiply by γ5 from the left and take the trace over the uncontracted dirac
indices, we can separate B(p2) from this equation. Doing so yields

B(p2) =
1

8
tr

(
γ5ab

∫
d̄4qKbcde(p, q, P )

{
γ5, S(q)

}
cd

)
, (4.6)

which replaces, as the consequence of introducing a constraint equation, the usual
result for the scalar dressing function from the equations of motion. Note that we
may also include a current quark mass mc. Doing so does not change the fact that
the equation remains in satisfaction of the AVWTI. Therefore, the scalar part of
the gap equation becomes

B(p2) = Z2Zmmc −
1

8
tr

[
γ5ab

∫
d̄4qKbcde(p, q, P )

{
γ5, S(q)

}
cd

]
. (4.7)

We can once more use the anticommutator rules of the γ matrices to further
simplify the right-hand side of that equation, i.e.

{
γ5, S(p)

}
=
{
γ5,−i/pA(p2) +B(p2)

}
d(p2) = 2γ5B(p2)d(p2), (4.8)

with d(p2) = 1/(p2A2(p2) +B2(p2)). Thus equation (4.7) simplifies further to

B(p2) = Z2Zmmc −
1

4
tr

[
γ5ab

∫
d̄4qKbcde(p, q, P )γ

5
cdB(q2)d(q2)

]
. (4.9)

Note, that this construction just gives a constraint on the self-energy corrections
of B(p2). The self-energy used for A(p2) does not need to be constrained in order
to preserve the AVWTI and thus chiral symmetry breaking. Therefore, we are free
to choose a self-energy for A(p2), it is sensible though to include similar corrections
to it as well, as we will see later.

4.2.2 Specifying a kernel
Now that we have derived the self-energy corrections needed to satisfy the AVWTI
given any kernel K, we can see, how they look when using an explicit kernel.

Rainbow-Ladder kernel

As a first consistency test, we will show, that this construction leads to the DSE
obtained from the Rainbow-Ladder truncation, eq. (3.19), when we start with a
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single bare gluon exchange in the scattering kernel. Recall, that a single bare gluon
exchange kernel is given by

Kabcd(p, q, P ) = −CfZ
2
24π[γ

µ]ab[γ
ν ]cdDµν(k) (4.10)

with Dµν(k) being the gluon propagator and again using the notation k = p − q.
If we plug this expression into equation (4.9), we get

B(p2) = Z2Zmmc − Z2
2Cf

1

4
tr

[
γ5
∫

d̄4qγµγ5γνDµν(k)B(q2)d(q2)

]
(4.11)

= Z2Zmmc + Z2
2

16π

3

∫
d̄4q

B(q2)

q2A2(q2) +B2(q2)

α(k2)

k2
(3) (4.12)

which is indeed the same as eq. (3.19). Hence, we see that the Kernel-first trunca-
tion is consistent with the Rainbow-Ladder truncation. Numerical results for this
truncation are presented in section 3.3.2 and 3.4.1.

Dressed ladder exchange

One kernel, which we want to discuss in more detail in this thesis is a kernel
consisting of a ladder exchange between two fully dressed quark-gluon vertices [10]

Kabcd(p, q, P ) = −g2CFDµν(k)[Γ
µ(p−, q−)]ab[Γ

ν(p+, q+)]cd. (4.13)

Recall, that a fully dressed quark-gluon vertex can be decomposed into twelve
tensor structures, as can be seen in eq. (3.3). While the Rainbow-Ladder truncation
only uses the perturbatively leading structure

L1
µ(p, q) = γµ, (4.14)

other structures contribute to certain amounts to the results as well. In this work
we will not work with the full vertex, but only include another component, which
is the scalar piece [7]

L3
µ(p, q) = ilµ = i(p+ q)µ. (4.15)

Here we introduced the momentum four vector lµ := (p + q)µ, which is the sum
of incoming and outgoing quark momenta. Since the quark-gluon vertex has to
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be dimensionless, lµ has to be properly normalized by it dividing by its norm. In
contrast to the leading structure L1

µ, this structure is not invariant under chiral
transformations. It only appears, when chiral symmetry is dynamically broken
and then provides significant enhancement of symmetry breaking effects in the
quark DSE [29]. If we use both of these structures in the scattering kernel, it can
be written as a sum of three parts [10]

K ∝ Kγγ +Kγp +Kpp. (4.16)

The first part Kγγ is the already well known Rainbow-Ladder kernel. The second
part Kγp describes a single gluon exchange between a leading vertex structure
and a scalar one, the third part Kpp is a single gluon exchange between two scalar
structures. These can be thought of as subleading correction terms to the Rainbow-
Ladder kernel and will also have an impact on the results for the quark propagator
according to equation (4.9). Additionally, we can dress each of these exchanges
with a separate dressing function. While these dressing functions could again be
calculated from a Dyson-Schwinger equation for the quark-gluon vertex, we will
employ dressing functions similar to the effective running coupling (3.22) for all
three parts of the kernel. Written out explicitly the kernels are given by3

[Kγp]abcd(p, q, P ) = −CFZ
2
24π[γ

µ]abl
ν [1]cdTµν(k)

Zγp(k
2)

k2
(4.17)

[Kpp]abcd(p, q, P ) = −CFZ
2
24πl

µ[1]abl
ν [1]cdTµν(k)

Zpp(k
2)

k2
, (4.18)

with the dressing functions Zγp and Zpp defined as

Zγp = πη7γp

(
k2

Λ2
γp

)2

e−η2γpk
2/Λ2

γp + ZUV (k
2) (4.19)

Zpp = πη7pp

(
k2

Λ2
pp

)2

e−η2ppk
2/Λ2

pp + ZUV (k
2). (4.20)

The ultraviolet part is the same as in eq. (3.22). For the Kγγ part of the kernel,
we will use the same parameters as we did before. For the parameters of the other
two contributions will at first also use the same values as in the Rainbow-Ladder
part and then later vary them to see, how they influence the results. This kernel
can be seen diagrammatically in fig. 4.2.

3Since the Rainbow-Ladder kernel is known by now, it is not written out once more.



CHAPTER 4. BEYOND THE RAINBOW-LADDER TRUNCATION 40

Figure 4.2: A diagrammatic illustration of the dressed ladder exchange kernel.
The momentum lµ at the vertices is again defined as the normalized sum of the
incoming and outgoing momenta.

4.3 Solving the modified DSE
We now will investigate how the self-energy corrections affect the results of the
quark DSE. As stated above, the Kernel-first truncation only gives us an explicit
constraint on the equation for the scalar dressing function B(p2). The equation
for the vector dressing function A(p2) is not constrained. We can therefore chose
whether to include corrections to it or not. For the sake of consistency we are
going to implement corrections similar to the kernel as well. In particular, we
are going to start with the Rainbow-Ladder (γγ) expression and add γp and pp
terms in a canonical fashion as well. The explicit form of these terms are derived
by taking the original quark self-energy (2.8) and replacing both vertices with
fully dressed quark-gluon vertices.4 We then project onto the vector dressing
function by multiplying both sides with a projector and taking the trace over
Dirac indices as explained in section B.2. The upside of this procedure is, that
we can systematically turn the corrections in the kernel on or off and see, how
they each affect the results for A(p2) and B(p2) while ensuring, that the effects of
dynamical chiral symmetry breaking are preserved.

4Again, we are only focusing the tensor structures L1
µ and L3

µ.
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4.3.1 Numerical results
Next, we will present numerical results of the DSE with the correction terms in
place. As mentioned above, we will separately turn the correction terms on and
see what their effects are.

γp corrections

The first correction we want to focus on is the γp correction. This correction to
the kernel has a tensor structure of the form

[Kγp]abcd ∝ [γµ]ab[1]cdp
νDµν (4.21)

with pν chosen to be the normalized sum of incoming and outgoing momenta.5
This expression contains exactly one occurrence of gamma matrices. Thus, if we
plug it into equation (4.9), we are left with a trace over a product of three gamma
matrices, which is zero.6 Even though this means that the γp correction to the self-
energy for B(p2) is zero, B(p2) still is affected by the corrections to the self-energy
for A(p2), which do not vanish. Since the explicit expressions of these corrections
are quite lengthy, we will not write them down explicitly here but instead focus on
the results they produce. The numerical results for A(p2) and B(p2) alongside the
mass function M(p2) and the wave function Z(p2) can be seen in fig. 4.3. In these
calculations we have again used a current quark mass of mc = 3.7 MeV. Note,
that since we can still modify the dressing functions of the correction terms, we
can change their sign, giving us the choice to either add or subtract the correction
terms. For now, we will take a look at the results for both options, as both are
shown in fig. 4.3. We will then later choose one option by taking a look at which
option produces the best results in the pseudoscalar meson channel.

5Here we are deviating from our convention of using lµ as the sum of incoming and outgoing
momenta to make it obvious, where the p in the labels γp and pp comes from.

6For more information about gamma matrices, section A.2 in the appendix can be consulted.
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Figure 4.3: Numerical results for the dressing functions A(p2) (upper left), B(p2)
(upper right), the wave function Z(p2) (lower left) and the mass function M(p2)
(lower right). Each plot shows the Rainbow-Ladder results together with the
results for single correction terms with positive and negative signs respectively.

Taking a look at the results we see, that adding the γp correction term increases
the vector dressing function A(p2) in the infrared significantly. The correction
also smoothens out the little bump that the function had in the Rainbow-Ladder
truncation around the 1 GeV scale, which can be seen in fig. 3.3. The scalar
dressing function B(p2) gets decreased in the infrared by adding the correction.
These results combined lead to the mass function M(p2) being lowered to a value
of about 284 MeV. This is a nice result, as it is closer to an effective quark mass
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which is compatible with a constituent quark model than the Rainbow-Ladder
result of 488 MeV [30]. These results also manifest in the wave function being
lowered even further to around 0.5 in the infrared, underlining the picture of an
asymptotically free quark mentioned in section 3.3.
In contrast, when we subtract the correction term by giving its dressing function
a negative sign, we see the exact opposite qualitative behaviour. The value of
A(p2) now gets suppressed in the infrared, leading to an even bigger bump around
the 1 GeV scale, while the value of B(p2) gets enhanced in the infrared. This
leads to an effective quark mass of 1372 MeV and a wave function which is bigger
than one in the infrared. Thus, we should not expect any promising results when
subtracting the γp correction.

pp corrections

Next we will investigate, how the pp correction to the scattering Kernel affects the
DSE results. The tensor structure of this correction is of the form

[Kpp]abcd ∝ [1]ab[1]cdp
µpνDµν . (4.22)

This time around, the correction to the equation for B(p)2 contains a trace over
an even number of gamma matrices and thus is not zero, but instead also gives
a lengthy expression. Additionally, we obviously have a non-vanishing correction
to the equation for A(p2) as well. We can again calculate both dressing functions
with positive or negative signs relative to the γγ term, as long as we use the same
sign convention for both A(p2) and B(p2). The results for the dressing functions,
the wave function and M(p2) can also be seen in fig. 4.3. For the scalar dressing
function B(p2) we get similar results compared to the γp corrections. In particular
the value of B(p2) increases in the infrared when subtracting the correction and
decreases when adding it. There is a new bump appearing at the 1 GeV scale
though when using the positive sign. Subtracting the correction again leads to
an increase in the infrared value of B(p2). The vector dressing function shows a
completely different response to the pp correction than to the γp correction. This
time around, A(p2) has its infrared value decreased and its bump enhanced when
adding the correction term. Subtracting it this time leads to an increase in the
infrared and a small bump at the 1 GeV scale. Combined these results again lead
to a lower effective mass of around 452 MeV with a positive sign in the correction
term and a higher effective mass of 546 MeV with a negative sign. Within these
results none really stick out as being unlikely physical results. We thus have to
investigate their influence on the Bethe-Salpeter equation’s results to see, which
sign produces more promising results.
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Combining both corrections

Lastly, we will combine both corrections to the self-energy, i.e. using two full
vertices in the kernel. We now also have four different ways of combining the signs
of these correction terms, being

• K++ = Kγγ +Kγp +Kpp

• K−+ = Kγγ −Kγp +Kpp

• K+− = Kγγ +Kγp −Kpp

• K−− = Kγγ −Kγp −Kpp.

We again calculate the quark propagator, the wave function and the effective mass
function for all possible combinations. The results can be seen in fig. 4.4. These
results already look reminiscent of the results with only one correction term in
place. We again see that the effective mass and wave function have unlikely high
values if we subtract the γp term. When focusing on the terms where the γp
correction term is added, the effect of the pp term is less prevalent though. In
fact, the effective mass only changes by around 23 MeV when changing the sign of
the pp term, which is a change of less than 10%. This is a way less severe effect
compared to the influence the γp correction has on the effective mass. We thus
will again rely on the BSE results to fix the sign.
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Figure 4.4: Numerical results for the dressing functions A(p2) (upper left), B(p2)
(upper right), the wave function Z(p2) (lower left) and the mass function M(p2)
(lower right). Each plot shows the Rainbow-Ladder results together with the
results for a combination of correction terms with positive and negative signs.
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4.4 Solving the modified BSE
Now that we know the quark propagator with the corrections put in place, we can
use the full kernel (4.13) to formulate and solve the Bethe-Salpeter equation. The
general solution strategy stays the same as in the Rainbow-Ladder truncation; we
decompose the Bethe-Salpeter amplitude into its tensor structures, which depend
on the quantum numbers of the channel in question (pseudoscalar, scalar), dress
each structure with dressing functions E through H and formulate the BSE as
an eigenvalue equation. Therefore, the only thing that changes in comparison
to equation (3.38) is, that the elements of the κ-matrix pick up additional terms,
which are also derived by the projection procedure explained in section B.2. Similar
to the corrections to the DSE, they become very lengthy, so we will not write
them down explicitly here. Instead, we will again focus on the results of numerical
calculations done with the modified BSE.

4.4.1 Numerical results
We will start by taking a look at how the corrections to the scattering kernel
affect the masses of the scalar and pseudoscalar mesons. We will then see, which
combination of signs looks the most promising in terms of increasing the difference
between scalar and pseudoscalar masses, ideally pushing the scalar mass even over
1 GeV. We can then further modify the parameters in the infrared part of the
dressings used in the correction terms to see how they influence the results. The
results for the meson masses using all the different combinations of corrections
can be seen in table 4.1. From these table a few things immediately stand out.
First we see, that no physical solution to the Bethe-Salpeter with an eigenvalue
of 1 can be found for some cases. All of these cases have in common, that they
have a negative sign in front of the pp correction term. There are two cases,
where a solution could be found with a negative pp term, but those were a very
high pseudoscalar mass of over 200 MeV and an unrealistically low scalar mass of
around 300 MeV. Additionally, in these cases only one of the two masses could be
found, while the other could not be determined. Thus we can rule out a negative
sign for the pp correction from the BSE results, even though the results from the
DSE did not explicitly rule such a possibility out. Surprisingly both signs in front
of the γp term lead to similar results, even though one of them was favoured by
the results of the DSE. A small difference can be noted however, being that the
difference between the masses is a bit larger when adding the γp term instead of
subtracting it. In fact the best result thus far is the one with positive signs in
front of both corrections, having the largest overall scalar mass and a pseudoscalar
mass only slightly below its physical value. This result is not too surprising, as
this combination also produces promising solutions for the quark DSE and is in
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Kernel pseudoscalar scalar
Kγγ 141 712
Kγγ +Kγp 156 691
Kγγ −Kγp 127 634
Kγγ +Kpp 122 798
Kγγ −Kpp 205 —

−→ Kγγ +Kγp +Kpp 131 832
Kγγ +Kγp −Kpp — 307
Kγγ −Kγp +Kpp 112 808
Kγγ −Kγp −Kpp — —

Table 4.1: The masses of the scalar and pseudoscalar mesons calculated using the
kernel combination specified in the first column. All masses are given in MeV and
have been calculated with a current quark mass of mc = 3.7 MeV. Fields marked
with a dash signify, that for this combination of correction terms and channel no
solution could be found, since the eigenvalue never crosses the λ = 1 mark. The
combination marked with an arrow gives the most promising results.

general the most natural way to employ the corrections to the scattering kernel. It
is nice to see however, that the signs, which are suggested by the solutions of both
DSE and BSE, are consistent with each other. Henceforth, we will be focusing on
this exact combination of signs, as it looks the most promising.
In Fig. 4.5 the dependence of the meson masses on the current quark mass is shown
with the kernel corrections in place. As we see, the mass of the pseudoscalar meson
is again zero in the chiral limit, which indicates, that the Kernel-first truncation
actually conserves spontaneous chiral symmetry breaking with the pion being the
corresponding Goldstone boson. The pseudoscalar mass has again been fitted to a
function of the form mπ =

√
amc+b for quark masses up to 20 MeV as suggested by

the Gell-Mann-Oakes-Renner relation (2.6). This can be seen in fig. 4.5. We see,
that with the extended kernel in place, the relation still holds with a = 4.55 GeV
and b = 1.2 MeV. It is interesting to note, that here the actual values of the mass
lie under the fit. In the Rainbow-Ladder case, the actual mass was higher than
the fit to the Gell-Mann-Oakes-Renner relation.
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Figure 4.5: The pseudoscalar mass as a function of the current quark mass. Again,
we see that the mass goes to zero in the chiral limit and from there on has a square
root like behaviour.
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Furthermore, we can again calculate the Bethe-Salpeter amplitudes for both chan-
nels using the Kernel-first truncation. The results for the dressing functions E(p)
through H(p) are shown in fig. 4.6. It is interesting to note, that the structures,
which are contributing most to the mass of each meson (E and F for the pseu-
doscalar, E and H for the scalar) still look similar to the results in the Rainbow-
Ladder truncation, while the other two structures have their values in the infrared
lowered by a drastic amount, making them even negative with only a bump above
zero around the 1 GeV mark for some structures.

4.4.2 Varying the parameters
Now that we know, how the correction terms affect the results for the quark
propagator and the meson masses and amplitudes, we can further vary the param-
eters in their dressing functions and see, how they influence the results. Recall,
that we so far used a dressing function, which was the same as the effective cou-
pling used in the Rainbow-Ladder part of the kernel, see equation (3.22). This
model is parametrized by two parameter η and Λ, which were set to η = 1.8 and
Λ = 0.72 GeV up to this point. For now, we will not use a completely different
model for the dressing functions of the correction terms, but just modify the value
of η and Λ. To do this, we multiply both with a factor, which we can then vary
over a range of values and see, how they change the meson masses. Since it is
known, that Λ does not have a significant influence on the meson mass but more
on the decay constant [11], we will for now keep its value fixed. This means we
define

ηγp := αγpη (4.23)
ηpp := αppη (4.24)

with η being fixed to 1.8. After finding a range for αγp and αpp, in which they
produce meaningful results by trying out several values for αγp and αpp first, the
domain, where interesting results could be expected, was narrowed down to a
rectangular area in the αγp-αpp plane with the boundaries

αγp ∈ [1.5, 2] αpp ∈ [0.5, 1.5]. (4.25)
One thing to note is, that the area we are focusing on now does not include the
unmodified case, i.e. the point (1, 1). The meson masses and their difference can
be seen as a function of these two parameters in fig. 4.7 to 4.9. Note, that the mass
of the scalar meson has error bars when it goes above the 1 GeV threshold. These
denote the numerical error introduced by extrapolating the eigenvalue curve7 to

7The eigenvalues of the κ-matrix as a function of the meson mass.
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Figure 4.7: The mass of the pseudoscalar meson as a function of αγp and αpp. The
masses are given in MeV.

meson masses over this threshold. The reason we have to extrapolate the eigenvalue
curve is that the quark propagator has complex conjugate poles in the complex
momentum plane, which we would need to integrate over in order to get to higher
meson masses [16]. Since we are integrating numerically though, we can not expect
our integration method to correctly sample complex momenta around these poles
correctly. However, we can calculate the eigenvalues up to around 1 GeV without
running into trouble and then use an extrapolation method to estimate, where the
physical mass lies. For detailed information on the method used and how the error
bars are calculated, section C.5 can be consulted.
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From fig. 4.9 we see, that the difference between the scalar and pseudoscalar mesons
is at its highest value around the point (2, 0.8) in the αγp-αpp plane. Since the scalar
masses over 1 GeV have an error bar attached to them, we can not certainly identify
a single point as a maximum. It could even be that the difference increases even
further for αγp > 2. We are still going to assume, that the point (2, 0.8) indeed
maximizes the difference between the meson masses. At this point the pseudoscalar
mass is 188 MeV and the scalar mass is (1301±103) MeV with the difference being
(1133 ± 103) MeV. Since the pseudoscalar mass is now higher than the physical
pion mass of 139 MeV, we can lower the current quark mass we use as an input
in order to rescale the mass, so that the pesudoscalar meson becomes indeed a
physical pion. By doing so, we get a pseudoscalar mass which is equal around
the physical pion mass of 139 MeV at mc = 1.95 MeV. At this value of mc, the
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scalar mass becomes (1306± 108) MeV. This is (475± 108) MeV heavier than the
scalar mass without varied parameters and (595 ± 108) MeV heavier than in the
Rainbow-Ladder case. One thing to note is, that the scalar mass barely changes
when mc is varied. In fact, the result for the lower value of mc is even slightly
larger than for the original value. This makes sense, as the pion is a Goldstone
boson and thus its mass is very sensitive to changes in mc close to the chiral limit.
The scalar on the other hand is not massless in the chiral limit as discussed earlier.
The change in mass of the scalar is smaller than the numerical uncertainty and
should therefore not be alarming. A summary of these results is given is chapter 5.
Note, that we have not investigated, how the decay constant of the pseudoscalar
meson has changed as a consequence of the corrections added to the kernel. In
order to ensure, that the kernel used indeed describes a physical pion, we would
have to calculate the decay constant fπ and modify the values of Λγp and Λpp in
a way, that the physical value of fπ = 93 MeV is obtained. However, this is not
done within the scope of this thesis, but is a task for further research.



Chapter 5

Concluding remarks

Finally, we want to summarize all the results from the previous chapters. We
started by talking about symmetries of quantum field theories in general and then
focused on the chiral SU(N)A symmetry of QCD and that it is broken sponta-
neously. As a result, we saw that massless Goldstone bosons arise in the spectrum
of the theory.
We then took a look at the Dyson-Schwinger equations, which are exact equa-
tions for Green’s functions derived from the QCD effective action. Since they
can not be solved exactly, we talked about how to truncate the Dyson-Schwinger
equations and explicitly solved the quark Dyson-Schwinger equation within the
Rainbow-Ladder truncation. In this truncation we used a simple model for the
gluon propagator and the quark-gluon vertex. These calculations showed, how an
effective quark mass is generated dynamically by the self interaction of the quark.
In order to investigate bound states, we introduced the Bethe-Salpeter equation,
which is an eigenvalue equation for a quark-antiquark scattering kernel. We saw,
that this kernel has to obey a certain condition in order to preserve the effects of
spontaneous chiral symmetry breaking, which is the so called axialvector Ward-
Takahashi identity. An obvious choice was to use a kernel, which is compatible
with the truncated quark DSE. With this kernel we then solved the Bethe-Salpeter
equation for a pseudoscalar and a scalar meson. The solutions were the Bethe-
Salpeter amplitudes. We also calculated how the mass of the meson changes, when
parameters of the equations are varied. This revealed, that the pseudoscalar meson
becomes indeed massless in the chiral limit, making it the Goldstone boson of the
spontaneously broken chiral symmetry. Furthermore, the calculations showed how
violating the AVWTI destroys the effects of the symmetry breaking.
Then, we summarized for which applications the Rainbow-Ladder truncation is
well suited and for which it can not produce correct qualitative or quantitative
results. We especially talked about why the light scalar mesons are still not fully
understood and are a topic of ongoing research.

54
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Lastly, we introduced a novel method to go beyond the Rainbow-Ladder trunca-
tion. It provides a simple scheme, which allows us to start with a quark-antiquark
scattering kernel and derive a quark self-energy from that. This Kernel-first trun-
cation has been derived from the axialvector Ward-Takahashi identity, so the con-
structed self-energy and the scattering kernel automatically satisfy the AVWTI.
We showed explicitly, that this construction reproduces the Rainbow-Ladder trun-
cated self-energy when starting with the corresponding scattering kernel. Using
this method, we derived self-energy corrections from a more involved kernel than
the Rainbow-Ladder one. These self-energy corrections and their effects on the
quark propagator were then investigated further. They have then been applied
to the meson Bethe-Salpeter equation to calculate the corrected meson masses.
Finally, the parameters in the correction terms have been varied in a way, that the
scalar meson mass is maximized. The pseudoscalar meson mass has been fixed to
its physical value by adjusting the bare quark mass.

5.1 Summary of results
We now want to summarize the explicit numerical results for the meson spec-
trum from the numerical calculations done. We are going to compare the me-
son spectrum calculated from the Rainbow-Ladder truncation and the Kernel-first
truncation to experimental results for the meson spectrum. This can be seen in
fig. 5.1. It should not come as a surprise, that the pion mass of both truncation
schemes match the experimental value very closely, since we used it to fix the pa-
rameters in our model. What is more interesting however, is that the Kernel-first
truncation with modified parameters in the dressing functions of the correction
terms produces a much higher scalar mass, which is even over 1 GeV at a value
of (1306 ± 108) MeV. This result looks very promising, as this is much closer to
the physical mass of the a0(1450) with a mass of (1474 ± 19) MeV, which is also
a scalar meson which consists of light quarks. In order to fix the pion mass to its
physical mass, we had to set the current quark mass to 1.95 MeV, which is also in
the same order of magnitude as the PDG values for the u- and d-quark masses.

5.2 Outlook
We have seen, that the Kernel-first truncation produces promising results for the
light scalar mesons, though they do not match the experiment perfectly yet. This
has multiple reasons. Firstly, we are still using a truncated quark-antiquark scat-
tering kernel. The truncation we used for it is already more sophisticated than
the Rainbow-Ladder truncation, but it is difficult to say how big the systematic



CHAPTER 5. CONCLUDING REMARKS 56

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0-+ 0++

π

f0(500) (PDG)

a0(1450) (PDG)

RL

BRL

BRL+

m
 [

M
e
V

]

JPC

Figure 5.1: The calculated meson spectrum compared to experimental results [1].
The values, which are labeled as "RL" are results from the Rainbow-Ladder trun-
cation, those labeled with "BRL" have been calculated with the Kernel-first trun-
cation without varying any parameters, "BRL+" values are the results with the
parameters varied as described in section 4.4.2.

error introduced by truncations really is. Secondly, we are only using two out of
twelve tensor structures of the fully dressed quark-gluon vertices appearing in the
kernel. As mentioned earlier, these tensor structures are usually the leading struc-
tures in the vertex, but the entire structure of the quark-gluon vertex is not fully
understood yet. So, the influence subleading structures have on the results might
not be negligible. Thirdly, we have just chosen a simple model for the dressing
functions of the correction terms in the kernel. Using an effective coupling just
like in the Rainbow-Ladder kernel is a natural choice, and we have managed to get
a grasp on what the parameters in it do, but it does not necessarily resemble the
actual dressing functions one would obtain from solving the full Dyson-Schwinger
equation for the quark-gluon vertex. A more systematic approach would be to
use dressing functions obtained from explicit calculations of the vertex. Another
approach would be to fit the dressing functions to spectra of heavy quarkonia, such
as charmonium or even bottomonium, since they can be described well by calcu-
lations in non-relativistic QCD [31]. Finally, some of the numerical methods used
in these can be optimized further to narrow down the numerical error, especially
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when extrapolating eigenvalue curves to high meson masses.
Nevertheless, this new method is at the very least an interesting new approach
to improve the Rainbow-Ladder truncation. One of its advantages is, that it can
be used to investigate, what the effects of individual structures appearing in a
scattering kernel are. It is also very efficient in terms of computation time, as
it only takes slightly longer than a Rainbow-Ladder calculation. There is still
work to do in order to improve it and to see how viable it actually is. Once this
work is done however, it can be applied to many areas of particle physics, where
functional methods are used. These range from investigating analytic properties
of the quark propagator to the full spectrum of light and heavy mesons, including
vector, axialvector and tensor mesons and excited states of those. It can also be
applied to the baryon spectrum, even though we do not have any evidence yet
on whether it will produce good results there. Lastly, it can also be used to do
tetraquark physics beyond the Rainbow-Ladder truncation, as most research done
on tetraquarks so far has been done in the Rainbow-Ladder truncation [2].



Appendix A

Conventions and relations

Throughout this thesis we mostly follow the conventions used in [32]. For com-
pleteness’ sake we are going to quote some important ones here.

A.1 Euclidean conventions
In all of the calculations in this thesis Euclidean conventions are applied, which
means that the used metric is given by

gµν = g ν
µ = gµν =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (A.1)

With that, scalar products of four vectors can be written as

a · b =
3∑

µ=0

aµbµ ≡ aµb
µ = aµbµ. (A.2)

Associated with the use of an Euclidean instead of a Minkowski metric the four
momentum vector has been Wick rotated, such that

pµ :=

(
iE
~p

)
, (A.3)

where E =
√
m2 + |~p|2 is the Energy and ~p is the three momentum vector. In

this convention, a four vector p ∈ C×R3 is spacelike, if p2 > 0. A free fermion
propagator in this convention takes the form [33]
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S0(p) = (i/p+m)−1. (A.4)

A.2 Gamma matrices
The gamma matrices γµ (µ ∈ {0, 1, 2, 3, 5}), also sometimes called Dirac matrices,
are a set of matrices, that obey a certain (anti-)commutator algebra. One possible
representation of the matrices in Euclidean convention is via the Pauli matrices ~σ:

γ0 =

(
1 0
0 −1

)
, γj =

(
0 iσj

−iσj 0

)
, γ5 =

(
0 1

1 0

)
, (A.5)

where 1 = 12×2 and j ∈ {1, 2, 3}. In Euclidean metric the gamma matrices are
hermitian

γµ = (γµ)
† (A.6)

and obey the anticommutator rules of a Clifford algebra

{γµ, γν} = 2δµν . (A.7)

Helpful relations
In some derivations in this thesis traces of products of gamma matrices are evalu-
ated. Therefore the following relations for products and traces of gamma matrices
are used frequently.

Products:

• (γ5)
2 = 1

• {γµ, γν} = 2δµν

• γjγ
j = 4 · 1

• γµγνγ
µ = −2γν

• γµγνγργ
µ = 4δνρ · 1

• γµγνγργσγ
µ = −2γσγργν

Here again j and µ can take the value {1, 2, 3} and {0, 1, 2, 3} respectively. Addi-
tionally, the anticommutator of γ5 and every other gamma matrix vanishes.
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Traces:

• tr(γµ) = 0

• tr(γµγ
µ) = 16

• tr(γµγν) = 4δµν

• tr(γµγνγργσ) = 4(δµνδρσ + δµσδνρ − δµρδνσ)

• tr(γαγβ . . . γω︸ ︷︷ ︸
odd#

) = 0

A.2.1 Feynman slash notation
Another practical abbreviation is the so called Feynman slash notation. It stands
for a scalar product between a four vector and a four vector containing the gamma
matrices γ1 to γ3,

/A := γµA
µ. (A.8)

Due to the fact, that the gamma matrices’ trace is zero, the trace of every slashed
vector is zero as well,

tr( /A) = 0. (A.9)

Since the gamma matrices form a Clifford algebra, see eq. (A.7), the product of
two slashed vectors is the same as the scalar product of the vectors times a unity
matrix

/A · /B = (A ·B) · 14×4. (A.10)

A.3 Natural units
All equations and results in this thesis are calculated in a natural unit system. In
this system we use the fact, that the speed of light c and the Planck constant ~ are
finite value greater than zero, but the physics don’t change qualitatively if they
are exchanged for another value. So for convenience we set them to ~ = c = 1.
This also leads to the convenient situation that only powers of one unit, the unit
of energy, are required to describe physical quantities. Some important examples
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for that are given in table A.1. When converting back to SI units it is sufficient
to multiply the value in natural units by a conversion factor, which is a power of
~ and c in SI units. For example to convert a distance x given in natural units to
SI units, it needs to be multiplied by a factor of ~c = 197.327 MeV fm to be given
in terms of meters.

Quantity SI N.u. Conversion factor
Energy J eV1 1
Momentum kg m s−1 eV1 c−1

Mass kg eV1 c−2

Time s eV−1 ~
Length m eV−1 ~c
Energy density J m−3 eV4 (~c)−3

Table A.1: Natural and SI units for some important quantities and the correspond-
ing conversion factor f , such that ASI = fAn.u.

A.4 Hyperspherical coordinates
Throughout this thesis, there are several four-dimensional integrals to calculate.
For convenience, they have been evaluated in hyperspherical coordinates, which
are a generalization of three-dimensional spherical coordinates. A general, four-
dimensional vector x = (x0, x1, x2, x3) can be expressed as

x0 =r cosψ (A.11)
x1 =r sinψ cosϑ (A.12)
x2 =r sinψ sinϑ cosϕ (A.13)
x3 =r sinψ sinϑ sinϕ (A.14)

Using this convention the Jacobi-determinant becomes

d4x = dϕdϑ sinϑdψ sin2 ψdrr3, (A.15)

so that the integral of a function of x can be rewritten as

∫
R4

d4xf(x) =

2π∫
0

dϕ

π∫
0

dϑ sinϑ

π∫
0

dψ sin2 ψ

∞∫
0

drr3f(r, ψ, ϑ, ϕ). (A.16)
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Introducing the abbreviations y = cosϑ and z = cosψ we can express eq. (A.16)
in terms of z and y

∫
R4

f(x)d4x =

2π∫
0

dϕ

1∫
−1

dy

1∫
−1

dz
√
1− z2

∞∫
0

drr3f(r, z, y, ϕ). (A.17)

Furthermore, most of the dressing functions appearing throughout this thesis typ-
ically depend only on a squared momentum p2. It is thus convenient to further
transform the integration variable from r to r2. For a UV-regulated integral this
means

Λ∫
0

drr3f(r) =

Λ2∫
0

d(r2)2r2f(r2). (A.18)

Lastly, most structure of the dressing functions lies in the infrared, i.e. momenta at
or below 1 GeV. So, in order to improve the accuracy of our numerical integration,
we can transform the integration variable to a logarithmic grid, enhancing the
accuracy in the infrared. This results in an integral of the form

Λ2∫
0

d(r2)2r2f(r2) =

2 log Λ∫
0

d(log(r))4r4f(log(r)). (A.19)

A.4.1 Scalar products
In the integrals appearing in the quark DSE and meson BSE a number of scalar
products between different momenta appear. The angles of those momenta follow
the conventions

P ∝ (0, 0, 0, 1) (A.20)
p ∝ (0, 0, sin(β), cos(β)) (A.21)
q ∝ (

√
1− y2

√
1− z2 cosϕ,

√
1− y2

√
1− z2 sinϕ, y

√
1− z2, z), (A.22)

where P is used to denote the total and p is the relative momentum of the meson.
The variable q is the integration variable appearing in the integrals. The angle β
only slightly affects the outcome of the BSE, hence fix it in all calculations to the
value of π/4.
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Derivations

B.1 Slavnov-Taylor identities
As mentioned in section 3.1, the renormalization constants appearing in the quark
DSE and the Rainbow-Ladder truncation are not all independent, but satisfy the
Slavnov-Taylor identities [18]

Z1 = ZgZ
3/2
3 (B.1)

Z̃1 = ZgZ̃3Z
1/2
3 (B.2)

Z1F = ZgZ
1/2
3 Z2 (B.3)

Z4 = Z2
gZ

2
3 (B.4)

Z̃4 = Z2
g Z̃

2
3 . (B.5)

In order to get to derive relation (3.7), we take the third Slavnov-Taylor indentity
and square it to get

Z2
1F = Z2

gZ3Z
2
2 . (B.6)

We can eliminate Z3 from this equation, by taking the squared second STI

Z̃2
1 = Z2

g Z̃
2
3Z3 ⇒ Z3 =

Z̃2
1

Z2
g Z̃

2
3

(B.7)

and plug it into (B.6). By doing so, we can cancel Z2
g and obtain

63



APPENDIX B. DERIVATIONS 64

Z2
1F = Z2

2

(
Z̃1

Z̃3

)2

, (B.8)

which is the relation we want.

B.2 Projecting onto tensor structures
Both the quark Dyson-Schwinger equation and the meson Bethe-Salpeter equation
are equations for full 4 × 4 dimensional Dirac structures, making a total of 16
equations each. As discussed earlier though, we do not need to solve all 16 of
these equations independently. Instead, we can decompose their solutions into a
few independent Dirac structures, each multiplied with a dressing function. We
will now take a closer look on how the full equations can be reduced to equations
for those tensor structures.

B.2.1 Dyson-Schwinger equation
Recall, that the Dyson-Schwinger equation can be written as

i/pA(p
2) +B(p2) = Z2S0(p)

−1 − Σ(p). (B.9)

In order to separate this equation into two coupled equations for A(p2) and B(p2)
respectively, we multiply it with the projectors pA or pB respectively and take the
trace of the uncontracted Dirac indices. These projectors are given by

pA =
−i
4p2

/p (B.10)

pB =
1

4
1. (B.11)

After multiplying the DSE with those projectors and taking the trace, we end up
with eqs. (3.17) through (3.19).

B.2.2 Bethe-Salpeter equation
In analogy to the quark DSE, we can also separate the meson BSE into four
equations, one for each of the four dressing functions E through H. This is done
by the exact same procedure as described above. The only difference is, that the
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projectors are a bit more lengthy, since we are dealing with four tensor structures
now. Also, we need to differentiate whether we are solving the BSE for a scalar or
pseudoscalar meson. For a pseudoscalar, the projectors read explicitly

pE =
1

4
γ5 (B.12)

pF =
i

4((p · P )2 − p2P 2)
γ5
(
p2 /P − (p · P )/p

)
(B.13)

pG =
i

4((p · P )2 − p2P 2)
γ5
(
P 2

p · P /
p− /P

)
(B.14)

pH =
1

16((p · P )2 − p2P 2)
γ5
[
/p, /P

]
− , (B.15)

while the projectors for a scalar meson are given by

pE =
1

4
1 (B.16)

pF =
i

4((p · P )2 − p2P 2)

(
/p−

p2

p · P
/P

)
(B.17)

pG =
i

4((p · P )2 − p2P 2)

(
(p · P )/P − P 2

/p
)

(B.18)

pH =
1

16((p · P )2 − p2P 2)

[
/p, /P

]
− . (B.19)

B.3 Chiral limit relations between dressing func-
tions

In section 3.4 we have seen, that in the chiral limit the scalar dressing function
of the quark propagator and the dressing function of the leading structure of the
pseudoscalar Bethe-Salpeter amplitude are proportional to one another. We now
want to investigate, why this is the case by proving this relation analytically. To
begin with, recall the AVWTI (2.16)

P µΓµ
5(p, P ) + 2mcΓ5(p, P ) = S−1(p+)iγ

5 + iγ5S−1(k−). (B.20)

We can again decompose the quark propagators appearing on the right-hand side
into a scalar and a vector part. This leads to



APPENDIX B. DERIVATIONS 66

P µΓµ
5(p, P ) + 2mcΓ5(p, P ) = iγ5(B+ +B−)− (/p+A+γ

5 + γ5/p−A−). (B.21)

Here we introduced the abbreviations A± = A(p2±) and B± = B(p2±). Further-
more, we can again use the anticommutator relation between gamma matrices and
expand the short-hand notation p± = p± P/2 to get

P µΓµ
5(p, P ) + 2mcΓ5(p, P ) = iγ5(B+ +B−) + i/p(A− − A+)−

1

2
/P (A+ + A−).

(B.22)

Since by equation (2.11) the Bethe-Salpeter amplitudes are only really meaningful
object on their mass shells, we can evaluate this equation on-shell, where we can
relate the axialvector amplitude to the pseudoscalar amplitude1 via [8]

Γµ
5(p, P ) = P µ 2ifπ

P 2 +m2
π

Γπ(p, P ). (B.23)

We can contract this equation with the total momentum P µ to get

PµΓ
µ
5(p, P ) = P 2 2ifπ

P 2 +m2
π

Γπ(p, P ). (B.24)

Since the pion is a Goldstone boson in the chiral limit, evaluating this equation in
the chiral limit yields

PµΓ
µ
5(p, 0) = 2ifπΓπ(p, 0). (B.25)

Since equation (B.22) still holds, we see that the pseudoscalar amplitude are related
to the quark dressing functions via

2ifπΓπ(p, 0) = 2iγ5B(p2). (B.26)

Here we have already used to fact, that in the chiral limit mc = 0 and p+ = p− = p.
Furthermore, the only term in Γπ(p, 0) that is not zero in the chiral limit is the
leading tensor structure. Thus, the relation between between E and B(p2) becomes

fπΓπ(p, 0) = fπγ
5E(p, 0) = γ5B(p2). (B.27)

1Since the lightest pseudoscalar meson in nature is the pion, the subscript π is used to label
pseudoscalar quantities.



Appendix C

Numerical methods and software
used

C.1 Numerical integration
All integrals appearing in the quark DSE and meson BSE have been evaluated
numerically. There are many ways to approach the task of numerical integration.
The simplest is the bar method, which approximates the integral of a function
f over a given interval (a, b) by approximating the area under the function with
rectangles of equal width, and their height being the functions value at the center
of each rectangle’s base. This can be written as the equation

b∫
a

f(x)dx ≈
N∑
i=1

f(xi) ·∆x, (C.1)

with xi = a+ 2i−1
2N

(b−a) and ∆x = b−a
N

. This method however is not very efficient
as it only converges slowly for increasing N . A faster method is the Gauß-
Legendre method, where the function is no longer evaluated at equidistant points,
but instead is only evaluated at a specific set of points xi which all have their own
weight factor wi, so that we get

b∫
a

f(x)dx ≈
N∑
i=1

f(xi) · wi. (C.2)

With the correct choice of the abscissas and weights this method converges much
faster, even for small values of N . In fact, the radial integrals in the DSE have
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been evaluated using 600 abscissas, while the angular integrals used 128 abscissas.
The integrals appearing in the BSE required even fewer abscissas, being 32 for
the ψ integration and 12 for the ϑ integration. In and close to the chiral limit,
twice as many abscissas have been used for the angular integrals in the BSE, as
this region requires some better precision in order to converge. A subroutine to
calculate appropriate values for the abscissas and weights can be found in [22].

C.2 Iterating the quark DSE
The coupled integral equations for the dressing functions of the quark propagator
have been solved iteratively. In detail this means, that we start by initializing
a starting value for both A(p2) and B(p2) at each momentum site p. A fast
convergence could be obtained by using the constant initial values

A0 = 1.6 (C.3)
B0 = mc +∆m. (C.4)

The exact initial values are not very important, they only play a role in how fast
the iteration converge but do not change the result. The only important thing is
to include a ∆m > 0 term as introduced above, when going to the chiral limit.
Omitting it might lead to the iteration running into a fixed point where B ≡ 0
and the equations decouple. The exact value for ∆m is also not too important,
but especially when going beyond the Rainbow-Ladder truncation it should not be
too small, as this might lead to numerical instabilities in the chiral limit as well.
A value of ∆m = 1 MeV has been used in this thesis and has not led to any major
problems.
After the dressing functions have been initialized, they are plugged into the right-
hand side of the Dyson-Schwinger equation and the integrals are evaluated. The
result are new functions A1(p

2) and B1(p
2), which now depend on the momentum

p. These are then again plugged into the right-hand side of the DSE, yielding the
functions A2(p

2) and B2(p
2) and so on. This process is then repeated, until the

functions An(p
2) and An+1(p

2), or Bn(p
2) and Bn+1(p

2) respectively, only change
by less than a given precision threshold with each new iteration step. In this
thesis’ calculations a precision of 10−9 in the ultraviolet has been required in order
to terminate the iteration.

C.3 Interpolating the quark propagator
The integrals appearing in the κ-matrix (3.38) contain appearances of the quark’s
dressing functions evaluated in the complex plane. They occur, when the terms
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S(q±) are evaluated. These in turn contain the expressions q2±, which, written out
explicitly, read

q2± = q2 +
1

4
P 2 ± q · P = q2 − 1

4
m2 ± imq cos(ψ). (C.5)

This expression describes the area bordered by a parabola lying in the complex
momentum plane with its vertex at the point −m2/4 on the real axis. The quark
propagator can in principle be calculated in the complex plane by knowing it
on the real axis. This can be done by taking the Dyson-Schwinger equation and
evaluating the integral appearing on its right with a complex momentum argument
in the gluon propagator. This is computationally not very efficient though. The
integrals in the κ-matrix require us to do these evaluations a lot of times also.
Therefore, we employ a much faster, but slightly less accurate way to evaluate
the quark propagator in the complex plane. The idea behind this method is, to
pre-calculate the quark propagator on a fixed logarithmic grid in the integration
domain first and save the results in a lookup table. When the quark propagator for
a specific complex momentum is then required, it can be estimated by doing two
steps. First, the four momenta are determined, which span the smallest square,
in which the wanted momentum lies. Then, the values for the propagator at these
four momenta are used to interpolate to the momentum in question. The first step
can be done in logarithmic runtime and thus only takes a minimal amount of time.
There are multiple interpolation methods, that can be used to do the second step.
In the calculations done in this thesis, a bilinear interpolation method was used.
This method approximates the function within the square as a plane.
In order to see how this works explicitly, we want to look at the math behind it.1
Say we want to interpolate the function f : R2 → R to a point a = (ax, ay) and
we know that

f1 = f(x1, y1) (C.6)
f2 = f(x2, y1) (C.7)
f3 = f(x2, y2) (C.8)
f4 = f(x1, y2) (C.9)

are the values of the function at the corners of the minimal square surrounding a,
i.e. x1 ≤ ax ≤ x2 and y1 ≤ ay ≤ y2. Then, we can define the values

1Even though the example shown here is for a function mapping from a two dimensional real
space to the real numbers, it can canonically be generalized to a function S : C→ C.
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t :=
ax − x1
x2 − x1

(C.10)

u :=
ay − y1
y2 − y1

, (C.11)

with which we estimate the function at the point a as

f(ax, ay) ≈ (1− t)(1− u)f1 + t(1− u)f2 + tuf3 + (1− t)uf4. (C.12)

C.4 Numerical root finding
To find the zeros of the function f(m) = λ(m)− 1, the false position method, also
called regula falsi, has been used. The method requires a continuous function f
given in an interval [x1, x2] with the condition f(x1)·f(x2) < 0, assuring that a root
can be found in the given interval. The idea behind this method is to approximate
the function as linear in the interval. The linear approximation crosses the x-axis
at a point x3 ∈ (x1, x2), which then replace one of the original points x1 or x2,
depending on the sign of f(x3). This procedure is iterated over and over until a
certain accuracy ∆x is reached. The false position method converges faster than
most simpler methods, such as the bisection method. There are still methods that
are faster, such as the secant method, but some do not converge at all for certain
functions, while the false position method always converges. An implementation
of this method in C/C++ can be found in [22]. In the calculations done in this
thesis, the implementation from the GNU scientific library (GSL)2 has been used
though.

C.5 Extrapolating eigenvalue curves
As mentioned in section 4.4, the quark propagator has poles in the complex plane,
which we can not numerically integrate over without running into problems. There-
fore, the κ-matrix, eq. (3.38), can not be evaluated for too far out in the complex
momentum plane. Thus, we are limited to only calculate the eigenvalue of the
κ-matrix up to a meson mass of around 1 GeV. To go to higher meson masses, we
used an extrapolation method, called the Schlessinger point method [34]. The idea
behind the method is, to take a function, in our case the eigenvalue as a function
of the meson mass, which is known at a set of N points x1 . . . xN and fit a rational

2https://www.gnu.org/software/gsl/
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function to it and analytically continue it to points outside the scope, where the
function is known. In particular, the function used is of the form

CN(x) =
f1

1 + a1(x−x1)

1+
a2(x−x2)...aN−1(x−xN−1)

, (C.13)

where fi = f(xi). The coefficients ai can be calculated by initializing a1 = f1/f2−1
x2−x1

and then using the iterative formula

ai =
1

xi − xi+1

1 +
ai−1(xi+1 − xi−1)

1 + ai−2(xi+1−xi−2)

...a1(xi+1−x1)

1−f1/fi+1

 . (C.14)

Having calculated the coefficients, we can just find the value for the meson mass,
where the extrapolated eigenvalue curve intersects λ = 1. This gives an estimate
on the physical meson mass.

C.5.1 Estimating the numerical error
Extrapolating the eigenvalue curve obviously introduces a numerical error to the
results. However, this error can be estimated by doing the following procedure.
First, the eigenvalue curve is calculated directly at numerous points below 1 GeV.
From these points, a smaller subset of points is chosen. Using this subset of points,
the eigenvalue curve is extrapolated and the physical mass is calculated. Then,
a different subset of points is chosen and the physical mass is calculated again.
Those steps are repeated many times, resulting in a distribution of masses. We
can then evaluate the mean and standard deviation of this distribution. The mean
is what we use as the result for the physical mass and the standard deviation gives
an estimate on the uncertainty introduced by the extrapolation. This standard
deviation is what is displayed as error bars in sections 4.4 and 5.1.

C.6 Software used
The software used to do the computations done in this thesis has been programmed
in C++14 using the JetBrains CLion IDE3 and the C++ compiler from the GNU

3Student’s license, https://www.jetbrains.com/
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Compiler Collection (GCC).4 The sourcecode of this software is available on my
github.5 The two-dimensional plots of the results have been plotted using gnuplot
version 5.2 patchlevel 8.6 The three-dimensional plots found in section 4.4 have
been created using python3.8.57 and the matplotlib library.8

4https://gcc.gnu.org/
5https://github.com/StHagel/MSc_code
6http://www.gnuplot.info/
7https://www.python.org/
8https://matplotlib.org/
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