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Abstract

High Density Fluctuations in Neutron Stars
The impact of thermal and quantum fluctuations at high baryon chemical potential on
neutron stars is studied in the framework of the quark-meson model. Mean field and
functional renormalization group (FRG) solutions are presented for both an Nf = 2
and an Nf = 2 + 1 version of the quark-meson model in order to determine the role
of strangeness in compact objects. It is found that already the inclusion of vacuum
fluctuations in mean field approximation alters the mass-radius relationships of neutron
stars to lower maximum masses. The inclusion of mesonic fluctuations in the FRG
approach significantly increases neutron star radii and masses such that a maximum
mass of 2.5M� could be attained. Although the addition of strangeness is observed
to reduce the stiffness of the equation of state in general, it is found that in the FRG
approach this effect only occurs at high chemical potentials above the stability region
of the given neutron star solutions and the influence of strangeness is negligible.

Fluktuationen bei hoher Dichte in Neutronensternen
Der Einfluss von thermischen Fluktuationen und Quantenfluktuationen bei hohem ba-
ryonischen chemischen Potential auf Neutronensterne wird im Rahmen des Quark-
Meson-Modells untersucht. Ergebnisse in Mean-Field-Näherung und unter Anwendung
der Funktionalen Renormierungsgruppe (FRG) werden sowohl für eine Version des
Quark-Meson-Modells mit Nf = 2 als auch eine Version mit Nf = 2 + 1 dargelegt, um
die Rolle von Strangeness in kompakten Objekten zu bestimmen. Es wird beobachtet,
dass schon die Mitnahme von Vakuumfluktationen in der Mean-Field-Näherung die
Masse-Radius-Beziehung von Neutronensternen zu niedrigeren maximalen Massen ver-
schiebt. Die Einbindung mesonischer Fluktuationen durch den FRG-Ansatz vergrößert
die Radien und erhöht die Massen von Neutronensternen deutlich, sodass Massen bis
zu 2.5M� erreicht werden können. Obwohl durch das Hinzufügen von Strangeness im
Allgemeinen eine Verringerung der Steifigkeit der Zustandsgleichung beobachtet wer-
den kann, wird im Falle des FRG-Zugangs festgestellt, dass dieser Effekt nur bei hohen
chemischen Potentialen über der Stabilitätsregion der berechneten Neutronensterne
auftritt und der Einfluss von Strangeness somit zu vernachlässigen ist.
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1 Introduction

The cosmos has always been the largest laboratory known to humankind. From the
precise description of planet orbits by Johannes Kepler to their mathematical expla-
nation in form of Isaac Newton’s law of gravity, cosmological observables have already
influenced the early physics of classical mechanics. These findings, however, should not
be the only significant contributions to new theories. A generalization to graviationally
interacting objects lead Einstein from special relativity to general relativity and allowed
the successful description of many cosmological effects such as gravitational lensing [1].
Next to classical large-scale physics as described by general relativity, effects from small-
scale quantum theories are essential in the explanation of various stellar observations.
Among those are the nuclear fusion processes required to understand stellar nucleosyn-
thesis as well as the ability of white dwarfs to withstand gravitational collapse via Pauli
degeneracy pressure. The modern description of quantum effects is accomplished with
the help of quantum field theories. In the standard model we know three elementary
forces that can be transmitted via the exchange of gauge bosons and allow a quantum
field theoretical description: the weak force transmitted via the Z and W bosons, the
electromagnetic force transmitted via photons in quantum electrodynamics, and the
strong force that is described by the interaction of quarks and the gauge bosons of
quantum chromodynamics, the gluons. At very high energies, a unification of the weak
and electromagnetic forces has already been achieved by Glashow, Salam and Weinberg
[2–4] in the framework of an electroweak interaction. Nevertheless, a unified description
of all elemental forces in nature fails to this day because the quantization of gravity
using a Graviton exchange boson yields non-renormalizable interactions. Hence, the
study of stellar object always encompasses a transfer from microscopical, quantized in-
teractions to a macroscopical classical description that includes gravity as known from
general relativity. This is achieved by calculating the thermodynamical equation of
state from the quantum theory and applying it to a differential equation for the pres-
sure and mass distribution of a stellar object, i.e. the Tolman-Oppenheimer-Volkoff
(TOV) equation.

In modern day research, the study of the stars with the highest known density (ex-
cept black holes), so-called neutron stars, is of great interest. The reason for this is
that at the densities expected in such cold and dense compact objects, nuclear physics is
pushed to its boundaries and the emergence of new degrees of freedom from the strong
interaction is expected. As already mentioned, the strong interaction is described by
a quantum field theory called quantum chromodynamics (QCD). It is a local gauge
theory of the SU(3) gauge group and includes quarks of multiple flavors interacting
via gluons as well as gluon self-interaction. It knows three different color charges (and
anticharges) of which each quark carries one and color neutrality can be achieved by a
combination of all three different elementary charges. Furthermore, it displays unique
features like asymptotic freedom and confinement. While the former means that at
asymptotically large energies, the theory becomes weakly coupled and perturbative,
the latter means that quarks are confined to color-neutral states at low energies. This
explains the occurence of baryonic and mesonic degrees of freedom at low energies and
a transition to free quark-gluon matter, the quark-gluon plasma, is conjectured for
matter of very high temperature or chemical potential. While the phase diagram of
this non-perturbative theory is already well understood at chemical potentials close to
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zero thanks to e.g. lattice QCD calculations, the low temperature and high density
region can neither be accessed by experiment nor by first principle calculations to this
day. Hence, data from neutron stars which live in this regime can constrain possible
equations of state which in turn constrains effective theories and models that aim at
describing the complex phase structure that is expected in the high density region of
the QCD phase diagram. In that way, the study of neutron stars can be understood
as interdisciplinary research combining the fields of small-scale quantum physics and
large-scale general relativity.

This work aims at conducting a first study of the properties of neutron stars with
an equation of state obtained from the quark-meson (QM) model, a low-energy effec-
tive theory of interacting constituent quarks and mesons which displays a chiral phase
transition similar to the one expected in QCD. In particular, the influence of thermal
and quantum fluctuations at high density on the thermodynamics of the theory and
their impact on mass-radius relationships of neutron stars are of interest. On top of
that, the role of strangeness shall be investigated as well. To this end, the quark-meson
model is formulated and solved for both two light quark flavors (Nf = 2) and two light
flavors plus a heavier strange quark flavor (Nf = 2 + 1). The solution is acquired in
mean field approximation both without consideration of the divergent vacuum term and
with a renormalized version of the vacuum contribution included. Furthermore, both
versions of the model are solved with a functional renormalization group (FRG) flow
equation that allows the inclusion of meson fluctuations. The TOV equation is solved
for all these configurations and a comparison between the mass-radius relationships of
neutron stars based on the individual equations of state allows for a determination of
the role of various fluctuations and strangeness in this framework.

In Sec. 2 of this work, the modern research status and important properties concerning
neutron stars are conveyed. The TOV equation is derived and important restrictions
on possible equations of state are considered. In Sec. 3, the features of quantum
chromodynamics are detailed and chiral symmetry is investigated. The Lagrangian of
Nambu–Jona-Lasinio type models is made plausible as an effective low-energy descrip-
tion of QCD and a bosonization procedure leads to a Lagrangian close to that of the
quark-meson model. The QM model is further elaborated on in Sec. 4 where the two-
and 2+1-flavor versions are defined. A solution in standard mean field approximation
(without the vacuum term) is derived in Sec. 5. The functional renormalization group
flow equation is then calculated in Sec. 6 and from its fermionic part, the idea of a
renormalized mean field approximation is followed. Sec. 7 details the numerical setup
used in this work and introduces the thermodynamic relations used in the calculation
of the equation of state. The numerical results are discussed in Sec. 8 and a summary
and an outlook to future investigations are given in Sec. 9. The appendices pick up
technical details such as the conventions of the Matsubara formalism employed in this
work (App. A) and analytic limits for vanishing temperature of flow equations and in-
tegrals (App. B). The calculation of meson masses is explained in App. C and starting
parameters are given in App. D.
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2 Neutron Stars

The study of neutron stars has experienced considerable research interest in recent
years. Cold and dense objects that underlie the quantum nature of the strong interac-
tion on the one hand and are subject to their own gravitational pull on the other hand,
they connect the physics of microscopic interactions with the macroscopically relevant
theory of general relativity. Various experiments are aimed at gathering important
neutron star data such as mass-radius relations. The Neutron Star Interior Composi-
tion Explorer (NICER) experiment at ISS is specifically designed to probe the inner
structure of such compact objects with precise x-ray measurements [5]. Gravitational
wave detectors such as LIGO, Virgo, GEO, and several others that are in planning
or construction like the space-based experiment LISA are searching for cosmic events
like mergers of black holes and neutron stars. Very recently, the first neutron star
merger has successfully been detected by the LIGO-Virgo collaboration and confirmed
by electromagnetic telescope measurements [6]. Furthermore, pulsar timing arrays use
fast-spinning neutron stars that are spread out over large distances as a clock to de-
tect low-frequency gravitational waves [7]. Ultimately, new collider experiments like
the CBM (Compressed Baryonic Matter) experiment that is currently built at FAIR
in Darmstadt aim to probe strongly interacting matter at higher densities and lower
temperatures than previous collider experiments [8]. Findings about e.g. the expected
phase transition to a quark-gluon plasma are of relevance for the description of processes
in the inner core of neutron stars [9]. This is the case because there is still no clarity on
the state of matter at high densities and low temperatures. Traditionally, neutron stars
are described by nuclear models, but at high densities unbound quarks, the elementary
building blocks of protons, neutrons and other hadrons, should emerge. Observations
of neutron stars with masses greater than two solar masses, such as the pulsar (rotating
neutron star) J0348+0432 at ∼ 2.01M� [10], demand a stiff equation of state, i.e. a
high pressure per unit of energy density, in order to withstand gravitational collapse. At
the densities present in the inner core of a neutron star, strange quarks are expected to
play a role. If they first appeared in the confined phase in strange baryons (hyperons),
this would according to previous studies weaken the equation of state significantly and
one could not reach two solar masses [11]. If a deconfinement phase transition to quark
matter happened first and strangeness appeared in the form of strange quark degrees
of freedom, this could potentially resolve the problem which is commonly referred to as
the “hyperon puzzle”. In that case, one would speak of hybrid stars as those objects do
not purely consist of nucleonic matter anymore. Unfortunately, the equation of state of
hybrid stars and pure neutron stars tend to look very similar, which means it is hard to
distinguish between such objects from experimental results like mass-radius relation-
ships. This issue is also called the “masquerade problem” [12]. A search for gaps in the
mass-radius curves of observed neutron stars has been proposed, which would allow a
classification of compact objects into groups and indicate a first order phase transition
from hadron to quark matter, thereby proving the existence of a critical endpoint in
the phase diagram of Quantum Chromodynamics (as elaborated further in Sec. 3) [13].

2.1 Properties

Neutron stars stand at the end of the life cycle of many heavy stars that do not possess
enough mass to collapse into a black hole. Main-sequence stars like the sun primarily
consist of hydrogen and helium and develop sufficient thermal pressure to fight gravity
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via nuclear fusion of hydrogen to helium [14]. If this reaction stops due to a lack of
fuel, stars with a mass of 8M� or lower usually collapse and shed all remaining layers
until only an iron core remains. This remainder, a white dwarf, is kept from collapsing
by ultrarelativistic electron degeneracy pressure, which works up to the Chandrasekhar
limit that determines a maximum white dwarf mass of ∼ 1.4M� [15]. Heavier stars
oftentimes feature high enough core temperatures for the iron nuclei to disintegrate with
the help of high energy photons into protons and neutrons. The protons in turn can
capture electrons which gives a neutron and a neutrino. The loss in electron pressure
triggers a second collapse. The sudden stop of this collapse around nuclear density is
accompanied by a supernova, shockwaves that violently propel remaining outer layers
away from the core [14]. The remainder that now has densities of the order of nuclear
matter is a neutron star. Note that assuming the object in question has a constant
nuclear density of 1018 kg/m3, the Schwarzschild radius

RS =
2MG

c2
(2.1)

becomes greater than the object’s actual radius at a mass of approximately 4.3M� and
above. This serves as a rough upper bound for possible neutron star masses, because
anything more massive becomes a black hole. However, it does not mean that neutron
stars up to this mass are actually stable and can exist. As already stated, neutron stars
of 2M� already pose significant theoretical constraints on possible equations of state
of cold and dense matter.

Typical temperatures of neutron stars are below 1 MeV, which is close to zero in scales
of the strong interaction [16]. The radius is of order 10 km and one distinguishes three
different layers in the modern description of compact stars. The outer crust has a radius
of about 0.5 km and its mass is only ∼ 0.01M� [17]. Here, separate nuclei can exist,
but going to higher densities, neutrons start “dripping” out into the continuum. Close
to the outer core, protons and neutrons build complex nuclei that resemble pasta [18].
From the crust to the outer core, a phase transition to liquid nuclear matter occurs.
The outer core can be described by nuclear models up to densities of twice the nuclear
matter density n0. Typically, one employs one isospin symmetric and one pure neutron
matter model in beta equilibrium [16]. This allows for the conversion process of pro-
tons into neutrons under electron capture which renders the interior of the star very
neutron rich. The inner core starts at densities of 2n0 and to incorporate the emer-
gence of quark degrees of freedom, one includes a quark model equation of state that is
expected to hold at ∼ (4− 7)n0. Then, either the state of matter that gives the lower
energy density at each chemical potential is chosen or an interpolation between the
two equations of state is performed. The first method requires a Maxwell construction
and results in a first order transition from hadronic matter to deconfined quark matter
while the second matter represents a continuous (crossover) transition [16]. Note that
the given densities are not high enough for perturbative QCD calculations. Hence, typ-
ical low-energy approximations of the strong interaction that neglect the gauge sector
like the Nambu–Jona-Lasinio (NJL) model [19, 20] come into place, allowing for chiral
and, optionally, diquark condensates [21]. Phenomenological approaches are applied as
well. For example, the energy difference of the non-perturbative and the perturbative
vacuum can be expressed by a bag constant [16]. NJL type approaches that feature
an effective bag constant are also utilized [22, 23]. Furthermore, the phenomenologi-
cal string-flip model [24, 25] has recently been extended to strange quark flavors and
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applied to neutron stars [26].

2.2 Tolman-Oppenheimer-Volkoff Equation

A relation between external properties of stellar objects, specifically mass and radius,
and internal properties of matter can be established with the Tolman-Oppenheimer-
Volkoff equation [27–29]. It is a differential equation for the pressure p(r) of spherically
symmetric, non-rotating heavy objects in hydrostatic equilibrium and follows from
general relativity (GR). In general relativity, we define the covariant derivative of a
vector [1]

∇µV ν = ∂µV
ν + ΓνµλV

λ , (2.2)

such that the object ∇µV ν itself transforms like a tensor. The Γνµλ are the connection
symbols. The connection is, from a perspective of differential geometry, not unique. If
we demand it to be symmetric in the lower indices and render the covariant derivative
of the metric zero, ∇ρgµν = 0, we obtain the Christoffel connection that also renders
the proper time of a physical path extremal and is therefore used in GR. The Christoffel
symbols are

Γσµν :=
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) . (2.3)

From these definitions, the covariant derivative of a one-form can be shown to behave
like

∇µων = ∂µων − Γλµνωλ . (2.4)

Consequently, the covariant derivative of a general tensor is just the sum of its partial
derivative and one Christoffel term per upper and lower index, respectively. Given a
connection, one can define the Riemann curvature tensor

Rρσµν := ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ . (2.5)

With the Christoffel connection in use, it is a measure for the curvature of spacetime
and vanishes if the metric becomes coordinate independent (flat spacetime). The Ricci
tensor follows from contracting the upper index with the second lower index:

Rµν := Rλµλν (2.6)

and the Ricci scalar is just the trace

R := gµνRµν . (2.7)

They are the defining terms of the Einstein tensor

Gµν := Rµν −
1

2
Rgµν . (2.8)

The Einstein equation of general relativity now relates the curvature of spacetime to
the presence of matter, expressed by the energy-momentum tensor Tµν :

Gµν = 8πGTµν , (2.9)

with G being Newton’s gravitational constant. For flat spacetime in the vacuum, Tµν =
0, Einstein’s equation Gµν = 0 is trivially fulfilled. The general non-trivial vacuum
solution under the assumption of spherical symmetry is the Schwarzschild metric

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2 (2.10)
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with
dΩ2 = dθ2 + sin2 θ dφ2 . (2.11)

Note that here we use the Minkowski metric ηµν = diag(−1,+1,+1,+1) that is obtained
asymptotically for large distances r from the coordinate center and a transformation
to Euclidean coordinates. In the rest of the work we will use the (+,−,−,−) signature
that is more common in hadron physics. There are two singularities, one at r = 2GM
that can be identified with the Schwarzschild radius, cf. Eq. (2.1) (with natural units
where c = 1), and one at r = 0. The Schwarzschild radius is just a coordinate singularity
and can be circumvented by switching to different coordinates, but it also signifies the
event horizon that no time- or lightlike trajectories can traverse from the inside. Hence,
spherically symmetric objects that are smaller than the Schwarzschild radius can not
be directly observed from the outside and are classified as black holes. It shall be
mentioned that if an object is larger than its formal Schwarzschild radius, there does
not have to be an event horizon at all since the metric is governed by the presence of
matter, Tµν 6= 0, and the Schwarzschild solution is invalid in that regime. The second
singularity can be associated with a true singularity in spacetime [1] but we do not
have to worry about that because we want to describe objects of finite proportions.
Typically, stars are described as perfect fluids with the ansatz

Tµν = (ε+ p)UµUν + pgµν (2.12)

for the energy-momentum tensor where

Uµ :=
dxµ

dτ
(2.13)

is the four-velocity and τ the proper time. This makes sense since in Minkowski space
in the rest frame of the fluid the four-velocity becomes Uµ = (1, 0, 0, 0)T and therefore
the components of the energy-momentum tensor are Tµν = diag(ε, p, p, p). ε is the
energy density and p is the isotropic pressure in the rest frame. Inside such a star, we
can also take a spherically symmetric ansatz and ensure correct signs in the Lorentzian
metric by using exponential functions:

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2 . (2.14)

The energy-momentum tensor changes compared to the tensor in flat spacetime but
we can still move into the fluid’s rest frame such that the four-velocity only has one
component and exploit its normalization:

− 1 = UµU
µ = gµνU

µUν = −e2α(r)(U0)2 ⇒ U0 = ±e−α(r) ⇒ U0 = ∓eα(r) .
(2.15)

Hence the energy-momentum tensor reads

Tµν = diag
(

e2α(r)ε , e2β(r)p , r2p , r2 sin2 θ p
)

. (2.16)

The calculation of the left-hand side of the Einstein equation is a more tiresome task.
First, all Christoffel symbols Γσµν as defined in Eq. (2.3) with indices in spherical
coordinates (t, r, θ, φ) must be computed. Afterwards, all elements of the Riemann
tensor Rρσµν given in Eq. (2.5) must be calculated. The Ricci tensor and scalar can
then be inferred from the contractions (2.6) and (2.7). All non-vanishing components
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of above quantities can be found in Ref. [1]. Just like in the energy-momentum tensor
on the right-hand side, only diagonal components remain:

Gtt =
1

r2
e2(α−β)

(
2r∂rβ − 1 + e2β

)
Grr =

1

r2

(
2r∂rα+ 1− e2β

)
Gθθ = r2e−2β

[
∂2
rα+ (∂rα)2 − ∂rα∂rβ +

1

r
(∂rα− ∂rβ)

]
Gφφ = sin2 θ Gθθ .

(2.17)

The fourth relation is just sin2 θ times the third relation on both sides of the Einstein
equation. Consequently, there are only three independent equations. This makes sense
since we have four parameters α, β, ε, and p, but there should be one degree of freedom
left that is related to the structure of the matter in the star. Specifically, we assume
that our perfect fluid follows a relation p(ε), the equation of state. Since the factor of
exp(2α) can be dropped on both sides of the equation in the tt sector,

1

r2
e−2β

(
2r∂rβ − 1 + e2β

)
= 8πGε , (2.18)

we can just set ε as the free parameter for now and solve for β without consideration
of the other equations. From a physical perspective, it proves reasonable to redefine β
since we want the metric to look like the Schwarzschild metric outside the star where
the energy-momentum tensor vanishes. Hence we write

e2β(r) =

(
1− 2Gm(r)

r

)−1

. (2.19)

Assuming a sharp boundary of the star, say Tµν = 0 for r > R, we have to have
m(r) = M for all r > R. Note that r > 2Gm(r) must be fulfilled for all r in order
to render β real. In other words, the radial coordinate r must always be greater than
the Schwarzschild radius of the mass inside the sphere of radius r. Thus, this ansatz
already includes the condition that there can not be a event horizon inside the star.
Inserting our redefinition into Eq. (2.18) we obtain

1

r2
2G∂rm = 8πGε ⇐⇒ ∂rm(r) = 4πr2ε . (2.20)

One could integrate

m(r) = 4π

∫ r

0
dr′ (r′)2ε(r′) , (2.21)

but usually the relation ε(r) is unknown (instead, the equation of state that relates p
and ε is known) and we need to solve the system in conjunction with the remaining
equations. Interestingly, the integral looks just like a three-dimensional integral of the
energy density in flat space. Moreover, we now see that

M = m(R) = 4π

∫ R

0
dr r2ε(r) (2.22)

can indeed be interpreted as the mass M that is felt from outside the star and it
becomes constant for r > R as suspected, because ε(r > R) = 0. Turning to the second
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of the three independent equations,

1

r2

[
2r∂rα+ 1−

(
1− 2Gm(r)

r

)−1
]

= 8πGp

(
1− 2Gm(r)

r

)−1

, (2.23)

we obtain

∂rα(r) = G
4πr3p+m(r)

r(r − 2Gm(r))
. (2.24)

The remaining equation in the θθ sector includes second derivatives of α and complicates
the matter. Luckily, we can use energy-momentum conservation to obtain the third
relation in an easier fashion. The relation

∇µTµν = 0 (2.25)

yields four conserved quantities. First, we have to raise the indices of Tµν , which gives

Tµν = diag

(
e−2αε , e−2βp ,

1

r2
p ,

1

r2 sin2 θ
p

)
. (2.26)

The only equation that does not trivially cancel to zero on both sides is

∇µTµr = 0 =⇒ ∂rp = −(ε+ p)∂rα . (2.27)

This is the Tolman-Oppenheimer-Volkoff equation. Usually, one combines the two
relevant differential equations

dp(r)

dr
= −G(ε(r) + p(r))

[
m(r) + 4πr3p(r)

]
r [r − 2Gm(r)]

,

dm(r)

dr
= 4πr2ε(r) .

(2.28)

Given an equation of state (EoS) p(ε), the inversion ε(p) = ε(p(r)) = ε(r) is the
missing function. Both differential equations become coupled and have to be solved
numerically. Starting at r = 0, the initial value m(0) = 0 is a reasonable physical
condition. The value p0 = p(0) remains a parameter that can be chosen for solutions
of e.g. neutron stars of varying mass and radius. The equations are evolved until the
pressure drops to zero (or becomes sufficiently low). This determines the radius R and
the mass M = m(R). Interestingly, as there is only one non-trivial initial condition
for two observables, M and R are not independent. Plotting possible M on one axis
and R on the other axis, a fixed equation of state produces a line in the diagram, a
relation M(R). Moreover, not all values of M or R necessarily have to be attainable.
Typically, one observes a maximal mass M for which the mass decreases both for
larger and smaller radii. That can be understood directly from the competing system
of equations. We have learned that r > 2Gm(r) has to be fulfilled at each point, hence
p(r) will decrease monotonously while m(r) increases monotonously until the pressure
is close to zero. Given a relation ε(p), increasing the central pressure p0 will make the
mass rise more quickly, but also make the pressure drop more quickly. At some point,
the decrease in pressure “wins” and the mass can not increase for shorter radii anymore.
Of course, the maximum mass depends on the equation of state, i.e. its stiffness. An
important observation is the unintuitive result that a higher mass can correspond to a
lower radius.
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2.3 Stability

Even though the TOV equation delivers possible mass-radius relationships, not all
points on the curve necessarily correspond to a stable neutron star. To determine the
stability of a star, it can be tested for small perturbations in the radial direction. This
allows for the formulation of a simple necessary criterion [30]:

dM

dp0
> 0 . (2.29)

For a perturbation that renders p0 → p0+δp0, the compact object moves infinitesimally
along the M(R) line. Note that in the last section we made plausible that higher central
pressures actually correspond to lower radii and higher masses up to a maximum mass
when the mass decreases with decreasing radii. From that argument, if condition
(2.29) is fulfilled and the mass increases, we should be in the area where the radius
decreases. Now the central pressure is too high for the given actual mass that has
not changed and the star expands back to its original size. The same argument holds
for p0 → p0 − δp0 when the star becomes too heavy for the new radius and gravity
shrinks it to original size. Should dM/dp0 be negative, an infinitesimal increase in
central pressure p0 → p0 + δp0 would lead to a star that is actually too heavy to be
in equilibrium at the new radius. The stronger gravitational attraction would lead
to a collapse. Of course, this is only a plausibility argument that is not worked out
rigorously here.

2.4 Restrictions on Equation of State

Several conditions can be posed that further restrict possible equations of state. Specif-
ically, the conditions

∂nB
∂µB

=
∂2p

∂µ2
B

> 0 , c2
s =

∂p

∂ε
≤ 1 (2.30)

are common [16]. The first condition is just the thermodynamic statement that the
baryon density should increase with increasing baryon chemical potential and that the
pressure which is a thermodynamic potential should not have an inflection point with
increasing µB. The second condition states that the speed of sound cs shall not exceed
the speed of light (given in natural units). This means causality ultimately restricts the
stiffness of the equation of state, although it has to be noted that according to Ref. [16]
several works indicate that cs > c might not violate causality after all. All EoS that are
derived from the thermodynamics of a physical theory should fulfill these conditions
automatically. However, they become important if one attempts to interpolate between
two equations of state. As already stated, such unified constructions can be used in
the description of a crossover transition from hadron to quark matter. As laid out
in Ref. [16], a first-order phase transition can be described in this approach as well,
but the given restrictions greatly limit the strength of the transition to a very weak
first-order kink in the p(µB) curve. Then again, a hybrid star approach featuring a
Maxwell construction actually requires the two EoS to intersect at some reasonable
chemical potential and pressure. This further limits the stiffness of the quark matter
EoS [16]. Concerning the minimal radius of a neutron star, we have already found the
condition R > 2GM (otherwise it would be a black hole). This can be further restricted
by applying the causality condition. In order to stay in a reasonable regime, one can
e.g. take a well-understood model pm(ε) for the equation of state up to a maximum
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energy density εm. The pressure stays fixed up to an energy density εc at which point
one assumes a maximally stiff equation of state where ∂p/∂ε = 1:

p(ε) =


pm(ε) ε ≤ εm
pm(εm) εm ≤ ε ≤ εc
ε− εc + pm(εm) ε ≥ εc .

(2.31)

This procedure is detailed in Ref. [31] among other possibilities of determining a
reasonable maximally stiff EoS. Furthermore, a resulting minimal radius for physical
parameter choices in the approach taken above is given as R ≥ 2.87GM therein. We will
use this value as the causality constraint for the mass-radius relationships we compute.
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3 Quantum Chromodynamics

Quantum chromodynamics is the theory of the strong interaction. It is a quantum field
theory based on a local SU(3) gauge symmetry. The corresponding charges are called
color charges, which gives quantum chromodynamics (QCD) its name. We denote the
color gauge symmetry as SU(3)c. The QCD Lagrangian reads (in Minkowski space)
[32]

LQCD = q̄(i/∂ −m)q − 1

4
F aµνF

µν
a + gq̄γµAaµTaq , (3.1)

with the SU(3)c generators

Ta =
λa
2

(3.2)

and the Gell-Mann matrices λa. The elementary fields in the theory are the fermionic
quarks q and the gauge bosons Aµ = AaµTa called gluons. The pure gauge interaction
term F aµνF

µν
a , with the field strength tensor

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν (3.3)

and the SU(3) structure constants fabc, is named after Yang and Mills who considered
local SU(N) gauge theories already in 1954 [33]. The quarks live in the fundamental
representation of the gauge group SU(3)c. This means that they transform according
to

q → Uc(x) q , q̄ → q̄ U †c (x) (3.4)

where
Uc(x) = exp (−iωa(x)Ta) (3.5)

is a unitary 3×3 matrix with determinant 1. Due to the spacetime dependence (locality)
of the transformation, the kinetic term in the quark sector is not invariant under it:

q̄ i/∂ q = q̄ iγµ∂µ q −→ q̄ U †c (x) iγµ∂µ U(x) q = q̄ iγµ∂µ q + q̄ U †c (x) iγµ (∂µU(x)) q .
(3.6)

Gauge invariance is achieved by coupling the gauge boson Aµ to the quarks. This can
be seen by pulling the last term of the QCD Lagrangian, Eq. (3.1), into the derivative
by defining the covariant derivative

Dµ := ∂µ − igAµ . (3.7)

The gluon lives in the adjoint representation and has to transform like

Aµ −→ U(x)Aµ U
†(x)− i

g
(∂µU(x))U †(x) (3.8)

such that q̄ i /D q stays invariant. From this relation, a gauge invariant action in the
gluon sector can be constructed. The field strength tensor as defined in Eq. (3.3) can
be followed from the commutator of two covariant derivative operators:

[Dµ, Dν ] = −ig (∂µAν − ∂νAµ − ig [Aµ, Aν ]) = −igTaF
a
µν = −igFµν (3.9)

with the relation [Tb, Tc] = iTaf
abc and the definition Fµν := TaF

a
µν . It can easily be

worked out from the commutator that the transformation behavior of the covariant
derivative just transfers to the field strength tensor:

Fµν −→ U(x)Fµν U
†(x) . (3.10)
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In order to construct a quantity that is gauge invariant and Lorentz contracted we take
the trace

1

2
Tr (FµνF

µν) (3.11)

which does not change under local gauge transformations by virtue of the cyclic invari-
ance of the trace operation. The relation

Tr (TaTb) =
1

2
δab (3.12)

allows us to identify
1

2
Tr (FµνF

µν) =
1

4
F aµνF

µν
a . (3.13)

In contrast to abelian gauge field theories like QED, the generators of SU(3) do not
commute and thus the structure constants do not vanish, which leads to the additional
term gfabcAbµA

c
ν in the field strength tensor. This can be understood as the reason for

direct gluon self-interaction in form of three- and four-gluon vertices at the action level:
the term F aµνF

µν
a features gluon fields of power three and four. The complexity of the

theory follows in large parts from this feature of self-interacting, massless gauge bosons.
Note that there is another subspace that is not denoted here: there are Nf different
sorts of quarks, where Nf denotes the number of flavors. Originally, the Gell-Mann
matrices were introduced to successfully describe the baryon and meson octets that were
found in collider experiments in a group theoretical approach [34, 35]. Today, we know
six different quark flavors, but the first three (up, down, and strange) are sufficient to
describe most thermodynamic processes due to their comparably low mass. The flavor
space underlies chiral flavor symmetry which is spontaneously broken in some areas
of the phase diagram and explicitly broken by a quark mass term in the Lagrangian.
It will be discussed in detail in Sec. 3.1. Further symmetries of QCD include an
approximate Z(3) global center symmetry, which can be related to confinement, and
scale invariance (dilation symmetry). The latter is only a symmetry of the classical
Lagrangian which is anomalously broken by quantum effects and its order parameter
is the gluon condensate [8].

3.1 Chiral Symmetry

Chiral (flavor) symmetry is a global symmetry under independent U(Nf ) flavor space
transformations of right- and left-handed spinors. In the chiral basis, the Dirac spinor
of the quarks can be written as two two-component Weyl spinors. One of them lives in
the right-handed representation of the Lorentz group, the other one in the left-handed
representation:

q =

(
qR
qL

)
. (3.14)

The projectors

PL =
1− γ5

2
, PR =

1 + γ5

2
(3.15)

can be used to extract purely right- or left-handed Dirac spinors in a basis-independent
way:

qR = PRq , qL = PLq . (3.16)
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Consider a symmetry transformation

UL/R = exp
(
−iωaL/RTa

)
(3.17)

in flavor space that rotates left- and right-handed parts independently. The Ta now
denote the N2

f generators of U(Nf ) transformations. This U(Nf )L×U(Nf )R transfor-
mation renders

q = PRq + PLq = qR + qL −→ URqR + ULqL = (URPR + ULPL)q . (3.18)

Under infinitesimal transformations, the term in ellipses can be rewritten:

(1− iδωaRTa)
1 + γ5

2
+ (1− iδωaLTa)

1− γ5

2
= 1− i

δωaR + δωaL
2

Ta − i
δωaR − δωaL

2
Taγ5 .

(3.19)
We see that the chiral flavor symmetry can also be expressed as a symmetry un-
der rotations that treat left- and right-handed spinors equally and those that treat
them oppositely. The former are called vector, the latter axial vector transformations:
U(Nf )V × U(Nf )A. This symmetry is commonly split into a U(1)V phase factor, a
U(1)A axial current and the remaining SU(Nf )V × SU(Nf )A symmetry. The U(1)V
symmetry just corresponds to a global phase factor

q −→ e−iω0
V q . (3.20)

The Noether current and conserved charge of this symmetry are

jµV = q̄γµq , B =
1

3

∫
d3x q†q , (3.21)

where the factor of 1/3 is a normalization such that B can be interpreted as the baryon
number. The U(1)V symmetry is always conserved in the theory (and no violation has
been observed in nature). At this point, we can study the Dirac structure of the quark

Lagrangian. With γ†5 = γ5, {γµ, γ5} = 0 and P 2
L/R = PL/R we have

q̄
(
i /D −m

)
q = q†Lγ

0
(
i /D −m

)
q + q†Rγ

0
(
i /D −m

)
q

= q†LPLγ
0
(
i /D −m

)
q + q†RPRγ

0
(
i /D −m

)
q

= q†L
(
−γ0m

)
qR + q†R

(
−γ0m

)
qL + q†L

(
γ0i /D

)
qL + q†R

(
γ0i /D

)
qR .

(3.22)

It becomes obvious that the derivative term breaks neither of the remaining symme-
tries since it only couples left-handed quarks with left-handed quarks and right-handed
quarks with right-handed quarks. A mass term, however, breaks SU(Nf )A and U(1)A
since those transform right- and left-handed quarks oppositely. As long as m is pro-
portional to unity in flavor space, SU(Nf )V stays conserved as left- and right-handed
quarks are transformed equally. In the case of only two quark flavors, up and down,
equal masses are a very good approximation and SU(2)V is just isospin symmetry. If m
does not assign an equal mass to each quark flavor, the unitary transformation matrix
does not generally commute with m anymore and SU(Nf )V is explicitly broken as well.
The conserved currents and charges of SU(Nf )V and SU(Nf )A are

jµV,a = q̄γµTaq , QVa =

∫
d3x q†Taq (3.23)
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and

jµA,a = q̄γµγ5Taq , QAa =

∫
d3x q†Taγ5q . (3.24)

Even if the quarks are massless and the Lagrangian is chirally symmetric, SU(Nf )A
can be broken in the vacuum state of the theory. In this context, chiral symmetry
oftentimes exclusively refers to SU(Nf )A and one speaks of spontaneous chiral symme-
try breaking. According to the Goldstone theorem, each spontaneously broken global
symmetry means the existence of a massless boson, the Goldstone boson [36–38]. The
vacuum of the theory becomes degenerate and the Goldstone bosons are thought of as
particles that shift the vacuum state, mediated by the coserved charge operators of the
broken symmetries. Looking at the conserved axial charges QAa , it becomes clear that
the N2

f − 1 Goldstone bosons that belong to broken SU(Nf )A should be pseudoscalar
quark-antiquark bound states. Indeed, for the three lightest flavors u, d, s an octet of
relatively light pseudoscalar mesons can be observed in nature. They are, however, not
massless and the mesons with strange content are still considerably heavier than the
pions which only have u, d content. Both of these effects can be attributed to the fact
that chiral symmetry is only approximately realized in nature. Small u, d quark masses
of order 3 MeV and a heavier strange quark mass of order 95 MeV explicitly break the
symmetry [8]. An order parameter for the spontaneous breaking of chiral symmetry is
the chiral condensate 〈q̄q〉 = 〈q̄LqR〉 + 〈q̄RqL〉, cf. Eq. (3.22) [39]. A vacuum state of
this form obviously breaks SU(Nf )A, but also U(1)A. The U(1)A symmetry is a special
case in the sense that it is already anomalously broken due to quantum fluctuations
(axial anomaly). Anomalous symmetry breaking specifies that a symmetry is conserved
in the Lagrangian and thus in the classical theory, but not in the path integral measure
of the corresponding quantum field theory (i.e. there exists no regularization that con-
serves it). As shown by ’t Hooft, the axial anomaly gives rise to an instanton-induced
effective interaction term of the form [40]

κ (det q̄LqR + det q̄RqL) . (3.25)

3.2 Asymptotic Freedom and Confinement

The coupling constant αs = g2

4π of quantum chromodynamics has the striking feature
that its beta function is negative. A beta function measures the change in a coupling
under a change of the renormalization scale. As depicted in Fig. 1, a negative beta
function means that the coupling falls off for higher interaction energy scales. This
feature has many important consequences. In quantum electrodynamics (QED), where
the coupling is small for most interactions and diverges at high energies, perturbation
theory works astonishingly well. In QCD, however, perturbation theory can only be
applied at very high energies where the coupling becomes small. At these energy
scales, QCD matter can be described as weakly interacting quarks and gluons. At very
high energies, the theory becomes asymptotically free (non-interacting) [41, 42]. At
low energies, the large coupling and the gluon self-interaction render the vacuum non-
perturbative. The degrees of freedom in this regime do not have to be elemental quarks
and gluons anymore. From experiment we know that only color-neutral bound states
of quarks can be observed in large areas of the phase diagram. Such hadrons become
effective degrees of freedom, which can ultimately also be seen in the well-known larger-
scale world of protons and neutrons. This confinement of quark matter to composite
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Figure 1: Running of the QCD coupling αs with the interaction scale µ. Figure taken
from Ref. [8].

objects has been observed both in experiments and in lattice QCD simulations [43],
but it has not yet analytically been shown to be an actual feature of QCD.

3.3 Phase Diagram

The phase diagram of QCD is very rich in the sense that it exhibits various phases,
which can be attributed to the non-perturbative nature of the theory and the resulting
phenomena like confinement. As a consequence, calculations of QCD observables must
also be conducted with non-perturbative methods. Among such methods, lattice QCD
is a first principle approach that has successfully delivered many quantitative results
like determining light hadron spectra and the running of the strong coupling [43]. The
basic idea is to discretize the theory on a finite lattice in spacetime. Unfortunately,
lattice QCD suffers from the famous sign problem that prohibits computations at non-
vanishing real baryon chemical potentials to this day. At finite density, functional
approaches like Dyson-Schwinger equations (DSE) [44–46] and the functional renor-
malization group (FRG) are employed [47–49]. Oftentimes such approaches are used
in conjunction with effective theories such as the Nambu–Jona-Lasinio (NJL) model or
the quark-meson model [50] which are believed to approximate QCD at low energies.
Fig. 2 schematically depicts the phase diagram from a modern understanding. At low
energies, i.e. low temperature and low chemical potential, chiral symmetry is broken
and the vacuum consists of quark-antiquark bound states 〈q̄q〉, the hadron resonance
gas. Going along the temperature axis, a smooth deconfinement transition to a chirally
symmetric quark-gluon plasma occurs at about T ∼ 150 MeV. This is confirmed by
lattice calculations and there is good agreement among DSE and FRG calculations as
well [51–54]. Such calculations suggest the existence of a critical endpoint followed by
a first-order transition line which is also seen under the inclusion of gluonic effective
interactions in the form of an effective Polyakov loop potential [55–58]. Going to low
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Figure 2: Schematic depiction of the phase diagram of quantum chromodynamics. The
first axis shows the baryon chemical potential µB, the second axis denotes temperature
T . Figure taken from Ref. [16].

temperatures and high densities, the phase diagram is still largely unknown. Along the
baryon chemical potential axis, nucleons should become the relevant degrees of free-
dom up to the point where matter becomes so dense that quarks can directly interact.
As already discussed, the point of emergence of quark matter and the role of strange
quarks are of significant research interest at this time. Additionally, the existence of a
diquark condensate that would lead to color superconductivity has been conjectured for
high densities. The condensation of q̄q pairs becomes energetically expensive for high
occupation numbers due to the high fermi level and low temperature. Diquark pairings
near the fermi surface would become possible. The condensation energy of such di-
quarks would lower the energy density in this region, which is of significant importance
for neutron stars [9, 22]. As shown in Fig. 2, the existence of a second critical point at
low T after which the transition to color superconducting matter happens continuously
is in discussion as well [16].

3.4 Effective Low-energy Description

In order to apply a functional renormalization group approach to QCD, we first have to
develop an effective low-energy theory that allows us to neglect the complicated gauge
sector. Note that from now on we work in Euclidean metric as described in App. A.
The gauge terms can easily be brought into the Euclidean framework by following for
the covarian derivate [Eq. (3.7)] that Aµ should transform like ∂µ under Wick rotation:

At = iAτ . (3.26)

From antisymmetry, we can follow for the field strength tensor

FµνF
µν = −2FtiFti + FijFij = 2FτiFτi + FijFij . (3.27)
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Without explicitly denoting that the gamma matrices, Aµ, and Fµν now transform in
Euclidean space, the QCD Lagrangian reads

LQCD = q̄(/∂E +m)q +
1

4
F aµνF

µν
a − igq̄γµAaµTaq . (3.28)

The index positions have been left in a contracted form. Following the procedure in
Ref. [59], the last term can be recast as a color current jµa that the gluons couple to:

jµa := q̄γµTaq , −igq̄γµAaµTaq = −igAaµj
µ
a . (3.29)

This allows us to write the QCD path integral in the form

ZQCD =

∫
Dq̄DqDA e−

∫
d4xLQCD

=

∫
Dq̄Dq e−

∫
d4x q̄(/∂E+m)q

∫
DA e−

∫
d4x [ 14F

a
µνF

µν
a −igAaµj

µ
a ]

=

∫
Dq̄Dq e−[

∫
d4x q̄(/∂E+m)q+Γg [j]]

(3.30)

with

Γg[j] := − ln

∫
DA e−

∫
d4x [ 14F

a
µνF

µν
a −igAaµj

µ
a ] . (3.31)

Actually, a gauge fixing procedure must be performed to avoid integrating over gauge-
invariant orbits multiple times. This would lead to Faddeev-Popov ghosts [60] in the
Lagrangian. In this work, we will not take care of gauge fixing. For the quark in-
teractions, Γg takes on the role of an effective action of the color currents that the
gluons produce. Unlike the usual definition, the “external” field in the effective action
is the current j that is dynamically produced for each configuration in the quark path
integrals. For the gluon partition function, Γg is basically the generator of connected
gluon correlation functions. Hence, a functional derivative of Γg with respect to jµa
evaluated at j = 0 is proportional (up to powers of g and the imaginary unit) to 〈Aaµ〉,
the second derivative is proportional to the gluon propagator and so on. Note that for
j = 0 there is no quark current interaction, thus the expectation values are those of
pure Yang-Mills theory. If we assume a gauge that sets 〈Aaµ〉 = 0 and expand Γg in
powers of j around j = 0,

Γg[j] = −
∞∑
n=0

(ig)n

n!

∫
d4x1 . . . d

4xn Γ(n)
g (x1, . . . , xn)a1...anµ1...µn j

µ1
a1 (x1) . . . jµnan (xn) , (3.32)

the first non-trivial and non-vanishing term stems from the second derivative. This
expansion is comparable to a vertex expansion of the effective action in the quark

picture into current interaction vertices. Only taking the gluon two-point function Γ
(2)
g

and dropping higher orders, we obtain

Zeff =

∫
Dq̄Dq e

−
[∫

d4x q̄(/∂E+m)q+ g2

2

∫
d4xd4y jµa (x)Γ

(2)
g (x,y)abµνj

ν
b (y)

]
. (3.33)

This effective four-quark vertex is non-local, but for low energies or transferred mo-
menta we can approximate it as point-like. Furthermore, we take the easiest choice for
the color and Dirac indices

Γ(2)
g (x, y)abµν = κ δ(x− y) δab gµν . (3.34)
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This yields

Zeff =

∫
Dq̄Dq e

−
∫

d4x

[
q̄(/∂E+m)q+ g2κ

2
jµa j

a
µ

]
. (3.35)

While Eq. (3.34) can be understood as a low energy approximation, there is no con-
clusive argument that shows we can leave out higher orders in the expansion of Γg.
Rather, investigations speak against this procedure [59]. Nevertheless, a field strength
approach (FSA) as conducted in Ref. [59, 61–63] also results in an effective current-
current interaction of this form. The idea of the FSA is to introduce an auxiliary field
with the same tensor structure as the field strength tensor. This way, the gluon field
can be put into Gaussian form and integrated out. The new dynamical field looks like
the field strength tensor and couples to the quarks. To lowest order, the path integral
over the field strength can be approximated by a stationary path. This returns the
effective partition function given in Eq. (3.35) with the action

Seff [q̄, q] =

∫
d4x

(
q̄(/∂E +m)q +

g2κ

2
jµa j

a
µ

)
. (3.36)

The current-current interaction can be written out explicitly, taking into account flavor,
color and Lorentz (or Euclidean) structure:

jµa j
a
µ = (q̄γµT ac 1fq) (q̄γµT

a
c 1fq) . (3.37)

We will denote the SU(Nc) generators for Nc quark colors T ac and the U(Nf ) generators
T af . Taking Dirac space as an example, we can also express the given vector channel
interaction as a sum of scalar, pseudoscalar, vector and pseudovector interactions:

(γµ)ij(γµ)kl = δilδkj − (γ5)il(γ5)kj −
1

2
[(γµ)il(γ

µ)kj + (γµγ5)il(γ
µγ5)kj ] . (3.38)

This procedure is called Fierz transformation. Note that there is also a tensor channel

σµν =
i

2
[γµ, γν ] (3.39)

such that in total the 16 basis elements of the Clifford algebra can be written [39]

{1, γµ, γ5, iγµγ5, σµν} . (3.40)

However, the corresponding coefficients for the tensor channel in the Fierz transforma-
tion are zero. It is not produced from the given vector channel. Due to this trans-
formation, one has to assume that such interactions that are not in the action in the
first place are generated dynamically from fluctuations. One can not directly match a
certain channel with an observation, e.g. a vector meson interaction, for this reason
(Fierz ambiguity). Before we perform a Fierz transformation in Dirac space, however,
we take care of the color current first. We see from the index structure in Eq. (3.38)
that the new structure again couples q̄q currents, but in color space one obtains another
index structure via a similar relation [64]:

(T ac )ij(T
a
c )kl =

1

2
δilδjk −

1

2Nc
δijδkl , (3.41)

which can, under the use of the ε tensor identity

εmikεmjl = δijδkl − δilδkj , (3.42)
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be brought into the form

(T ac )ij(T
a
c )kl =

1

2

[(
1− 1

Nc

)
δilδkj −

1

Nc
εmikεmjl

]
(Nc=3)

=
1

3
δilδkj +

1

6
εmikεmlj .

(3.43)
Comparing the indices, it becomes clear that the term with the deltas keeps a (q̄q)(q̄q)
type interaction, while the term with the epsilons couples q̄q̄ and qq. We call the first
one meson channel, the second one diquark channel. It is noteworthy that the diquark
channel is suppressed by a factor of 1/Nc (for high Nc) compared to the meson channel.
At Nc = 3, however, this suppression is only a factor of 1/2. We need to find suitable
relations with the same index structure in Dirac and flavor space for each of the two
channels individually. Eq. (3.38) already has the correct index structure for the mesons
channel. With the definition qc := Cq̄T , q̄c := qTC where C is the charge conjugation
matrix with the property CγµC = (γµ)T , the diquark channel relation is

(γµ)ij(γµ)kl = (γµ)ijClm(γµ)mnCnk

= CikClj − (γ5C)ik(Cγ5)lj −
1

2
[(γµC)ik(Cγ

µ)lj + (γµγ5C)ik(Cγ
µγ5)lj ] .

(3.44)

The flavor space relations are

δijδkl = 2(T af )il(T
a
f )kj (3.45)

in the meson channel and

δijδkl =
1

2
(δijδkl − δilδkj) +

1

2
(δijδkl + δilδkj) = −1

2
εmikεmlj + sniksnlj (3.46)

in the diquark channel. s are the six symmetric basis matrices in three dimensions

s1 =

1 0 0
0 0 0
0 0 0

 , s2 =

0 0 0
0 1 0
0 0 0

 , s3 =

0 0 0
0 0 0
0 0 1

 , (3.47)

s4 =
1√
2

0 1 0
1 0 0
0 0 0

 , s5 =
1√
2

0 0 1
0 0 0
1 0 0

 , s6 =
1√
2

0 0 0
0 0 1
0 1 0

 . (3.48)

The short-hand definitions

Γ :=

{
1, iγ5,

i√
2
γµ,

i√
2
γµγ5

}
, T̃f :=

{
i√
2
εm, sn

}
(3.49)

allow us to write

jµa j
a
µ = −2

3

(
q̄Γd1cT

a
f q
) (
q̄Γd1cT

a
f q
)

+
1

6

(
q̄Γdεmc T̃

a
f q

c
)(

q̄cΓdε
m
c T̃

a
f q
)

. (3.50)

According to Ref. [16], the diquark channel with the strongest pairing interaction is
the color-antisymmetric, flavor-antisymmetric, spin-singlet channel, i.e.

− 1

12

(
q̄1dε

m
c ε

n
f q
c
) (
q̄c1dε

m
c ε

n
f q
)

. (3.51)



3 QUANTUM CHROMODYNAMICS 23

3.5 Partial Bosonization

As discussed in Sec. 3.3, at low energies the meson channel dominates over the diquark
channel and a diquark condensate is only expexted at high densities. By dropping the
diquark channel, we arrive at the (Euclidean) Lagrangian of NJL-type models [39]:

LNJL[q̄, q] = q̄(/∂E +m)q +
λ

2

[
(q̄T aq)2 − (q̄T aγ5q)

2 − 1

2
(q̄T aγµq)

2 − 1

2
(q̄T aγµγ5q)

2

]
.

(3.52)
As we will break chiral symmetry explicitly via an effective potential later, we set the
current quark masses m to zero. We focus on the scalar and pseudo-scalar channels,
but note that the (pseudo-)vector channels might be obtained from the (pseudo-)scalar
channels from a Fierz transformation as shown before. Thus our approach does not
yield a Fierz complete effective action. A typical ansatz for the effective action of the
NJL model entails point-like four-fermion interactions

ΓNJL =

∫
d4x

{
q̄ /∂Eq +

λ

2

[
(q̄T aq)2 − (q̄T aγ5q)

2
]}

. (3.53)

The problem with this approach is that the coupling diverges at the spontaneous chiral
symmetry breaking scale [39]. This can be explained at hand of a bosonized version
of the action. A bosonization procedure entails the use of a Hubbard-Stratonovich
transformation [65, 66] that introduces auxiliary scalar fields in a Gaussian form

N
∫
DσaDπa e−

1
2

∫
d4x (m2

σσ
2
a+m2

ππ
2
a) = 1 (3.54)

with the normalization N and flavor index a. The whole term is just identically mul-
tiplied with the partition function ZNJL. Then the fields can be shifted [67]

σa → σa +
hσ
m2
σ

(q̄T aq) , πa → πa +
hπ
m2
π

(q̄iγ5T
aq) (3.55)

such that

−1

2
(m2

σσ
2
a +m2

ππ
2
a)→−

1

2
(m2

σσ
2
a +m2

ππ
2
a)− hσσa(q̄T aq)− hππa(q̄iγ5T

aq)

− h2
σ

2m2
σ

(q̄T aq)2 +
h2
π

2m2
π

(q̄γ5T
aq)2 .

(3.56)

The choice

hσ = hπ =: hb , mσ = mπ =: mb , − h
2
b

m2
b

= λ (3.57)

cancels the four-fermion vertex in the NJL action exactly. The remaining terms give

Sbos.[q̄, q, σ, π] =

∫
d4x

{
q̄
[
/∂E + hbT

a (σa + iγ5πa)
]
q +

1

2
m2
b

(
σ2
a + π2

a

)}
. (3.58)

At this point, we can analyze the classical equations of motion:

δSbos.

δσa
= hb(q̄T

aq) +m2
bσa

!
= 0 ,

δSbos.

δπa
= hb(q̄iγ5T

aq) +m2
bπa

!
= 0 . (3.59)
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The classical solutions for σa and πa correspond to the amount we shifted them in Eq.
(3.55):

σa = − hb
m2
b

(q̄T aq) , πa = − hb
m2
b

(q̄iγ5T
aq) . (3.60)

This allows the interpretation of the fields σa and πa as scalar and pseudoscalar quark-
antiquark bound states, respectively. For Nf = 2, the only state that is compatible
with the vacuum 〈q̄q〉 is σ0 because T 0 ∼ 1. Hence, we treat all other field vacuum
expectation values as zero. With that in mind, the classical equation of motion for the
quark Dirac spinor is

δSbos.

δq̄
=
(
/∂E + hb〈σ0〉

)
q

!
= 0 . (3.61)

The mass-like term mq = hb〈σ0〉 signals that chiral symmetry must be broken for
〈σ0〉 6= 0 which means that in this formulation we have easily found an order parameter
for chiral symmetry breaking. On top of that, the problem with the diverging pointlike
four-fermion coupling at symmetry breaking is solved. One could just add a kinetic
term for the mesons. The four-fermion interaction is then transmitted via a meson field
coupling to each quark-antiquark pair in form of a Yukawa type interaction. Basically,
the formerly point-like vertex is now replaced by two Yukawa vertices and a meson
propagator which allows for momentum dependence. Note that the bound state reso-
nances mmes can now be determined as well. The meson propagators ∼ 1

p2−m2
mes

can

be approximated as momentum independent for m2
mes � p2 and the point-like approx-

imation is revocered [39]. At symmetry breaking scale, however, massless Goldstone
bosons emerge that push the p = 0 approximation of the propagator towards infinity.
The correlation length diverges and point-like interactions are not a good approxima-
tion anymore. It shall be noted that the advantage we gain in the description of phase
transitions comes at a trade-off. Firstly, the present action is derived from Fierz incom-
plete interactions. Secondly, effective four-fermion couplings are generated via meson
exchange diagrams, thus the cancellation of the interaction only works at the UV scale
of the theory and it has to be included in a complete ansatz for the effective action Γ.
We will not do this and argue that the strength of this re-generated coupling is expected
to be small compared to the rest [39]. A “dynamical hadronization” procedure could
remedy both of these problems [68] and is considered for future works.
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4 The Quark-meson Model

The quark-meson (QM) model is an effective theory that exhibits a first-order chiral
phase transition with a critical endpoint [53]. It describes unconfined constituents
quarks that couple to dynamical scalar and pseudoscalar meson degrees of freedom.
The QM model takes the bosonized NJL action [Eq. (3.59)] and adds a kinetic term
as well as a UV interaction potential UΛ for the mesonic fields. With some renamed
constants and the mesonic mass term absobed in UΛ the Lagrangian reads

LQM = q̄
[
/∂E + gTa (σa + iγ5πa)

]
q +

1

2
(∂µσa)(∂

µσa) +
1

2
(∂µπa)(∂

µπa) + UΛ . (4.1)

For finite quark densities, a chemical potential (which can also be flavor-dependent) is
added:

− q̄γ0µq . (4.2)

The meson fields can be encoded in the Nf ×Nf matrix

Φ := Taφa = Ta(σa + iπa) , Φ5 := Ta(σa + iγ5πa) . (4.3)

With Eq. (3.12) and

Tr
(
∂µΦ†∂µΦ

)
= ∂µφ

∗
a∂

µφbTr (TaTb) =
1

2
∂µφ

∗
a∂

µφa (4.4)

the Lagrangian becomes

LQM = q̄
[
/∂E + gΦ5

]
q + Tr

(
∂µΦ†∂µΦ

)
+ UΛ . (4.5)

Under chiral symmetry transformations, Φ has to transform like [69]

Φ −→ URΦU †L . (4.6)

for the quark interaction term to stay invariant. Of course, this is just conventional. We
could also regard the subspace where Φ → ULΦU †R. Starting from a chirally invariant
Lagrangian, UΛ is in general a function of chiral invariants ρn. In total, Nf chiral
invariants can be constructed the following way [50]:

ρn := Tr
[(

Φ†Φ
)n]

, n ∈ {1, . . . , Nf} . (4.7)

Employing the cyclic invariance of the trace, it can easily be checked that ρn indeed
stay invariant under transformation (4.6).

4.1 Explicit Symmetry Breaking

The experimentally observed differences in meson masses can be reproduced by adding
explicit breaking terms to the theory. As we will see, terms linear in the fields do not
change the evolution of the FRG flow and we can add

− Tr
[
H
(

Φ† + Φ
)]

= −haσa (4.8)

with H := haTa. A chiral transformation

− haTr
[
Ta

(
ULΦ†U †R + URΦU †L

)]
. (4.9)
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shows that any ha 6= 0 generally breaks SU(Nf )A and U(1)A. If h0 is the only non-
zero constant, T0 ∼ 1 implies that SU(Nf )V which rotates right- and left-handed
flavors equally stays preserved. This is the analogon to equal masses for all quark
flavors. Generally, only those ha that correspond to diagonal generators can be non-
zero because states that belong to non-diagonal generators are not flavor-neutral and
must have vanishing vacuum expectation value (VEV). On top of the explicit breaking
of chiral symmetry, the axial anomaly has influence on the meson masses. In particular,
the mass difference between the heavy η meson and the η′ meson can be correlated with
the anomalous breaking of U(1)A. The lowest order term that specifically breaks this
symmetry is

− c
[
Det

(
Φ†
)

+ Det (Φ)
]

(4.10)

which encodes the instanton-induces determinant found by ’t Hooft (cf Sec. 3.1). The
behavior of this term under chiral symmetry transformations can be easily checked:

−c
[
Det

(
ULΦ†U †R

)
+ Det

(
URΦU †L

)]
= −c

[
Det (UL) Det

(
Φ†
)

Det
(
U †R

)
+ Det (UR) Det (Φ) Det

(
U †L

)]
= −c

[
ei(αL−αR)Det

(
Φ†
)

+ ei(αR−αL)Det (Φ)
]

.

(4.11)

Pure U(1)V would rotate right- and left-handed particles by the same phase, αL = αR.
Special unitary transformations have determinant 1 and also keep this term invariant.
Hence, a U(1)A asymmetric phase is the only transformation that does not leave it
invariant. In total, we can write the Lagrangian

L(q̄, q,Φ) = q̄
(
/∂E + gTa (σa + iγ5πa)

)
q + Tr

(
∂µΦ†∂µΦ

)
+ UΛ(ρ1, ..., ρNf )

− c
[
Det

(
Φ†
)

+ Det (Φ)
]
− Tr

[
H
(

Φ† + Φ
)]

.

(4.12)

4.2 The Two-flavor QM Model

Due to their comparably very light and almost equal masses, u and d quarks determine
most of the thermodynamic processes at low energies and allow an isospin-symmetric
treatment. After all, particles that include strange or even heavier quarks are always
instable in the vacuum. Therefore, the Nf = 2 QM model allows for some great
simplifications and is expected to still deliver good first results. Here, Ta are the U(2)
generators

Ta =
τa
2

, (4.13)

where τ0 = 1 and ~τ are the Pauli matrices. The meson matrix Φ becomes

Φ =
1

2

(
σ0 + σ3 σ1 − iσ2

σ1 + iσ2 σ0 − σ3

)
+

i

2

(
π0 + π3 π1 − iπ2

π1 + iπ2 π0 − π3

)
(4.14)

Since the only scalar mesons on the flavor diagonal are σ0 and σ3, the explicit symmetry
breaking term condenses to −h0σ0 − h3σ3. σ3 treats the u and d sector antisymmet-
rically and breaks SU(2)V isospin symmetry. By setting h3 = 0, we preserve this
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symmetry which is only very mildly broken in nature and give u and d constituent
quarks equal masses. The axial anomaly term also allows for a large simplification:

− c
[
Det

(
Φ†
)

+ Det (Φ)
]

= − c
2

(
σ2

0 + ~π2 − π2
0 − ~σ2

)
. (4.15)

A comparison with the mass term

m2

2

(
σ2

0 + ~σ2 + π2
0 + ~π2

)
(4.16)

reveals that c must have the dimension of mass squared and adding up both terms
yields

m2 − c
2

(
σ2

0 + ~π2
)

+
m2 + c

2

(
π2

0 + ~σ2
)

. (4.17)

It is important that the determinant term has power Nf in the fields and only gives
a mass contribution at Nf = 2. Here, the axial anomaly is actually responsible for a
mass splitting between the flavor-neutral scalar meson and off-diagonal pseudoscalar
mesons on the one hand and the diagonal pseudoscalar meson and the off-diagonal
scalar mesons on the other hand. Because the description of heavier mesons would also
require the consideration of strange quarks, it is instructive in this model to leave the
heavier mesons out of the picture. This just corresponds to maximum axial symmetry
breaking where one sends m2 + c→∞ while keeping m2− c finite. m2− c can then be
renamed to m2. With infinite mass, the π0 and ~σ decouple from – and do not contribute
to – the thermodynamics, and only the σ0 and ~π dynamics remain. One can now pull
the remaining fields into a four-vector:

ϕ := (σ0, ~π)T . (4.18)

Since SU(2) transformations of Φ now just correspond to rotating the four fields, they
correspond to O(4) transformations of ϕ. Experimentally, the mesons are supposed to
describe the light pions and the broad σ resonance. The O(4) invariant Lagrangian is

L2f = q̄
(
/∂E + g (σ + iγ5~τ · ~π)

)
q +

1

2
(∂~ϕ)2 + UΛ(~ϕ2)− hσ , (4.19)

where the index has been stripped from σ0. The two chiral invariants are

ρ1 =
1

2
~ϕ2 , ρ2 =

1

2
ρ2

1 . (4.20)

The second chiral invariant is not independent from the first because half of the fields
have been neglected as a consequence of maximum axial symmetry breaking. Taking
fields up to fourth power, the UV potential reads

UΛ(~ϕ2) =
m2

2
~ϕ2 +

λ

4
~ϕ4 . (4.21)

4.3 The 2+1-flavor QM Model

The influence of strangeness fluctuations close to the chiral phase transition is an inter-
esting topic. At high temperatures and chemical potentials close to the transition, the
heavier constituent strange quarks and strange hadrons should play a role. Thus, the
inclusion of a third flavor is a sensible upgrade to the model. The isospin sub-symmetry
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between the u and d quark is kept intact as a good approximation, hence the model is
called 2+1-flavor QM model. We already introduced the SU(3) generators that build
upon the Gell-Mann matrices λa:

Ta =
λa
2
, λ0 =

√
2

3
1 . (4.22)

The scalar and pseudoscalar meson nonets now feature 18 fields in total [69]:

Taσa =
1√
2


1√
3
σ0 + 1√

2
σ3 + 1√

6
σ8

1√
2
(σ1 − iσ2) 1√

2
(σ4 − iσ5)

1√
2
(σ1 + iσ2) 1√

3
σ0 − 1√

2
σ3 + 1√

6
σ8

1√
2
(σ6 − iσ7)

1√
2
(σ4 + iσ5) 1√

2
(σ6 + iσ7) 1√

3
σ0 −

√
2
3σ8

 ,

(4.23)

Taπa =
1√
2


1√
3
π0 + 1√

2
π3 + 1√

6
π8

1√
2
(π1 − iπ2) 1√

2
(π4 − iπ5)

1√
2
(π1 + iπ2) 1√

3
π0 − 1√

2
π3 + 1√

6
π8

1√
2
(π6 − iπ7)

1√
2
(π4 + iπ5) 1√

2
(π6 + iπ7) 1√

3
π0 −

√
2
3π8

 .

(4.24)
These matrices allow us to make some identification with experimentally measured
resonances. The electrically neutral π0 has quark content ∼ uū − dd̄ and can thus
be identified with π3. π+ has ud̄ content and thus belongs to the entry 1√

2
(π1 +

iπ2) in the matrix, analog π− = 1√
2
(π1 − iπ2). The partners in the scalar meson

nonet are a
0/+/−
0 . The other off-diagonal elements can be identified with the Kaons

K0, K̄0,K+,K− (pseudoscalar) and the κ resonances κ0, κ̄0, κ+, κ− (scalar). We set
σ3 = 0 at the VEV and h3 = 0 in the explicit breaking term to preserve the isospin
SU(2)V (sub-)symmetry. σ0, which is multiplied with the identity in flavor space, and
σ8, which is responsible for the mass splitting between light and strange quarks, are the
only remaining scalar diagonal fields. Hence, only these can have a finite VEV. With
the rotation [70] (

σl
σs

)
=

1√
3

(√
2 1

1 −
√

2

)(
σ0

σ8

)
(4.25)

one can explicitly split the VEV into a light and a strange sector:

〈Φ〉 = diag

(〈σl〉
2
,
〈σl〉

2
,
〈σs〉√

2

)
. (4.26)

There are three independent chiral invariants. The terms are lengthy, but their VEVs
reduce to

〈ρ1〉 =
1

2

(
〈σl〉2 + 〈σs〉2

)
〈ρ2〉 =

1

8

(
〈σl〉4 + 2〈σs〉4

)
〈ρ3〉 =

1

32

(
〈σl〉6 + 4〈σs〉6

)
.

(4.27)

Because ρ3 already is of sixth power in the fields, its coupling is of negative mass di-
mension. We drop it and only consider relevant, traditionally renormalizable couplings
to the UV potential [71]. Furthermore, at the VEV 〈ρ3〉 can be expressed as a function
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of 〈ρ1〉 and 〈ρ2〉 because all three depend on only two variables, 〈σl〉 and 〈σs〉. The UV
potential becomes

UΛ = UΛ(ρ1, ρ2) = m2ρ1 + λ1ρ
2
1 + λ2ρ2 . (4.28)

In Nf = 3, the axial anomaly term has fields to the power of three. Its expectation
value can be calculated to be

− c
[
Det

(
〈Φ〉†

)
+ Det (〈Φ〉)

]
= − c

2
√

2
〈σl〉2〈σs〉 . (4.29)
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5 Mean Field Approximation

A first idea about the behavior of a system can be inferred from a mean field approxi-
mation (MFA). As the name suggests, thermal and quantum fluctuations of the bosonic
fields are neglected in this approach – they are treated as mean background fields the
fermions couple to. Technically, the path integral over the meson fields is dropped and
the only contribution to the partition function comes from the path Φ = 〈Φ〉 that will
be the VEV. In Nf flavors, the partition function of the QM model is

Z =

∫
Dq̄DqDΦ e−S[q̄,q,Φ] (5.1)

with

S[q̄, q,Φ] =

∫ β

0
dτ

∫
d3x

{
q̄
(
/∂E + gTa(σa + iγ5πa)

)
q +

(∂σa)
2

2
+

(∂πa)
2

2

+U(ρ1, . . . , ρn)− c
[
det
(

Φ†
)

+ det (Φ)
]
− haσa

}
.

(5.2)

At finite temperature, the integration of the Euclidean (imaginary) time is performed
up to the inverse temperature β. Now the mesonic path integral is just left out and
〈Φ〉 formally inserted:

Zmf = e−Smes[〈Φ〉]
∫
Dq̄Dq e−

∫ β
0 dτ

∫
d3x q̄(/∂E+〈M〉)q

= e−
∫ β
0 dτ

∫
d3xΩmes det

(
/∂E + 〈M〉

)
.

(5.3)

First of all, we have used that the thermodynamic grand canonical potential density is
given by [72]

Ω = − 1

βV
lnZ (5.4)

which allows the identification of the mesonic potential

Ωmes := U(〈ρ1〉, . . . , 〈ρn〉)− c
[
det
(
〈Φ†〉

)
+ det (〈Φ〉)

]
− ha〈σa〉 . (5.5)

Secondly, we have defined the matrix

M := gTa(σa + iγ5πa) (5.6)

that encodes the interaction of the quarks with the static mesons. At Nf = 2, only
〈σ0〉 is non-zero and

〈M〉2f = g diag

(〈σ0〉
2
,
〈σ0〉

2

)
(5.7)

while for Nf = 2 + 1 only 〈σ0〉 and 〈σ8〉 are non-zero, which means the VEV simplifies
to

〈M〉2+1f = g diag

(〈σl〉
2
,
〈σl〉

2
,
〈σs〉√

2

)
(5.8)

with the rotation into the light-strange sector given in Eq. (4.25). We see that at the
expectation value M serves as an effective mass term for the constituent quarks. Lastly,
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the Gaussian fermion term in Eq. (5.3) has been integrated out. It proves easier to
write (omitting the index E for the Euclidean derivative)

det
(
/∂ + 〈M〉

)
=
[
det
(
/∂ + 〈M〉

)
det
(
/∂ + 〈M〉

)]1/2
=
[
det
(
/∂ + 〈M〉

)
det(γ5) det

(
/∂ + 〈M〉

)
det(γ5)

]1/2
=
[
det
(
/∂ + 〈M〉

)
det
(
γ5

(
/∂ + 〈M〉

)
γ5

)]1/2
=
[
det
(
/∂ + 〈M〉

)
det
(
−/∂ + 〈M〉

)]1/2
=
[
det
(
−/∂2

+ 〈M〉2
)]1/2

=
[
det
(
ω2
n + p2 + 〈M〉2

)]1/2
(5.9)

The last line follows from the expression of the derivative operator in momentum space
/∂

2 → −/p2. Now we can use the identity ln detA = Tr lnA:[
det
(
ω2
n + p2 + 〈M〉2

)]1/2
= exp

{
ln
[
det
(
ω2
n + p2 + 〈M〉2

)]1/2}
= exp

{
1

2
Tr ln

(
ω2
n + p2 + 〈M〉2

)}
.

(5.10)

The trace gives a factor of 4 from Dirac space, a factor of Nc from color space, a
sum in flavor space and an integral over position and momentum space. In total, the
thermodynamic potential is

Ω = Ωquark + Ωmes = − 1

βV
lnZ (5.11)

which cancels the position space integral and yields (in the Matsubara formalism as
defined in App. A)

Ωquark = −2Nc

∑
f

T
∑
n

∫
d3p

(2π)3
ln
(
ω2
n + p2 +m2

f

)
. (5.12)

m2
f are just the Nf eigenvalues of 〈M〉2 that can easily be read off of Eq. (5.7) or (5.8),

respectively. In order to solve the Matsubara sum, we can make use of the identity

ln
(
ω2
n + p2 +m2

f

)
=

∫ p2+m2
f

0
dα2 1

ω2
n + α2

+ ln(ω2
n) . (5.13)

The second term just gives a diverging constant that changes the potential equally at
each point in meson field space (it does not depend on the quark masses) and hence has
no physical relevance. We will only consider the first term. The Matsubara sum can
be pulled into the integral and can be solved there. After adding a chemical potential

ωn → ωn + iµ (5.14)

the Matsubara sum can be solved with the residue theorem (cf. Ref. [73]) and yields

T
∑
n

1

(ωn + iµ)2 + α2
=

1

4α

[
tanh

(
α− µ

2T

)
+ tanh

(
α+ µ

2T

)]
(5.15)
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for fermionic frequencies ωn = (2n+ 1)πT . The dummy integral can be solved analyt-
ically:∫ p2+m2

f

0
dα2 1

4α

[
tanh

(
α− µ

2T

)
+ tanh

(
α+ µ

2T

)]
=

∫ Ef :=
√

p2+m2
f

0
dα

1

2

[
tanh

(
α− µ

2T

)
+ tanh

(
α+ µ

2T

)]
= T

[
ln cosh

(
Ef − µ

2T

)
− ln cosh

(−µ
2T

)
+ (µ→ −µ)

]
= T

[
ln
(

e(Ef−µ)/(2T ) + e−(Ef−µ)/(2T )
)

+ (µ→ −µ)
]

+ const.

= T

[
Ef
2T

+ ln
(

1 + e−(Ef−µ)/T
)

+ (µ→ −µ)

]
+ const.

= Ef + T

[
− ln

(
e(Ef−µ)/T

1 + e(Ef−µ)/T

)
+ (µ→ −µ)

]
+ const.

= Ef − T [ln (1− nf (Ef , µ, T )) + ln (1− nf (Ef ,−µ, T ))] + const. .

(5.16)

The symbol (µ→ −µ) means that all other terms in the large bracket are to be summed
up again, replacing µ with −µ this time.

nf (Ef , µ, T ) :=
1

1 + exp
(
Ef−µ
T

) (5.17)

is the Fermi-Dirac statistics and the expression “const.” includes all terms that are
independent of the meson fields and can be dropped. The same result can be obtained
by using

tanh

(
α− µ

2T

)
= 1− 2nf (α, µ, T ) . (5.18)

The quark potential now reads

Ωquark = 2Nc

∑
f

∫
d3p

(2π)3
[−Ef + T ln (1− nf (Ef , µ, T )) + T ln (1− nf (Ef ,−µ, T ))]

=
Nc

π2

∑
f

∫ ∞
0

dp p2 [−Ef + T ln (1− nf (Ef , µ, T )) + T ln (1− nf (Ef ,−µ, T ))]

=: Ωvac + Ωq

(5.19)

with the vacuum term

Ωvac := −Nc

π2

∑
f

∫ ∞
0

dp p2
√
p2 +m2

f (5.20)

and the thermodynamic contribution

Ωq :=
Nc

π2
T
∑
f

∫ ∞
0

dp p2 [ln (1− nf (Ef , µ, T )) + ln (1− nf (Ef ,−µ, T ))] . (5.21)
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The vacuum term is divergent and would be obtained in a vacuum calculation in
Minkowski space as well while the thermal fluctuations are finite additional contri-
butions that vanish for T → 0 [72]. In the standard mean field approximation (sMFA),
the vacuum contribution is just ignored as it does not explicitly depend on T . How-
ever, the quark masses mf are temperature dependent and give the vacuum term an
implicit T -dependence which has an effect on the thermodynamics of the theory. We
will employ both a sMFA and a mean field approach that follows from the functional
renormalization group flow and includes the vacuum term in a fully renormalized fash-
ion (see Sec. 6.4). The correct vacuum field configuration 〈σ0〉 (analog 〈σl〉, 〈σs〉 in 2+1
flavors) can be found by minimizing Ω with respect to the fields.
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6 Functional Renormalization Group Approach

The non-perturbative renormalization group goes back to the works of Kenneth Wilson
in 1971 [74, 75]. In contrast to the formerly known perturbative renormalization group,
the new idea is that a quantum field theory should not be understood as a fundamental
theory that must hold at infinitely small distances, but rather as an effective description
of the interactions at a given length scale. This can be derived from the path integral
by a momentum shell transformation where all interactions of momenta that are higher
than a given ultraviolet (UV) cutoff scale Λ are assumed to be already integrated out
[76]. By successively including additional fluctuations in momentum shells, the effective
couplings of the theory change. This change is given by the beta functions that are
already known from perturbative calculations. However, the modern approach is not
restricted to perturbative applications and also allows for a more general definition
of renormalizability. A theory is renormalizable if only a finite number of RG-relevant
couplings exists. RG-relevant couplings are those that are unstable at a given fixed point
where the beta functions vanish. In this understanding, the renormalization group is
the theory of scales and it allows for treatment of critical phenomena like continuous
phase transitions [77]. The implementation of this framework in functional language is
titled “functional renormalization group” (FRG). One usually obtains a flow equation
that defines the change of some functional quantity under a change of the RG scale.
This was first done by Polchinski who showed the connection between perturbative
renormalizability and renormalizability according to Wilson’s criterion [78]. In modern
applications, the Wetterich equation [79–81], a flow equation for the effective action, is
usually applied.

6.1 Wetterich Equation

The Wetterich equation introduces an RG-scale-dependent effective action Γk that in-
terpolates between the classical action of a theory and the quantum effective action.
Given a scalar field ϕ(x), we denote its expectation value in the presence of a source
term J(x) as φ(x) = 〈ϕ(x)〉J [49]. The classical action S[φ] does not include any fluctu-
ations, while the full quantum effective action Γ[φ] includes all (thermodynamic and/or
quantum) fluctuations. A scale dependence is introduced by means of an additional
action term in the integrand of the partition function:

Zk[J ] :=

∫
Dϕ e−S[ϕ]−∆Sk[ϕ]+

∫
Jϕ . (6.1)

In order to follow Wilson’s idea of successively including fluctuations, ∆Sk should look
like a scale-dependent mass term that becomes infinitely large for k = Λ. The infinite
mass suppresses all field dynamics around its expectation value and the classical equa-
tion of motion follows. At k = 0, ∆Sk must vanish to recover the original generating
functional, Zk=0[J ] = Z[J ], which generates all quantum fluctuations. In momentum
space the mass term of a scalar field has the form

1

2

∫
d4p

(2π)4
ϕ̃(−p)m2 ϕ̃(p) , (6.2)
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hence ∆Sk is defined

∆Sk[ϕ] : =
1

2

∫
d4p

(2π)4
ϕ̃(−p)Rk(p) ϕ̃(p)

=
1

2

∫
d4x

∫
d4y ϕ(x)Rk(x− y)ϕ(y) .

(6.3)

Rk(p) is a dynamical regulator function that takes on the role (and dimensionality) of a
squared mass and cuts off low-momentum fluctuations in a scale-dependent way. It has
to fulfill several conditions that are given in Ref. [82]. Specifically, the regulator does
not necessarily have to be sharp, i.e. it does not have to regulate all momenta p2 < k2

by an infinite mass term and include all fluctuations p2 > k2 without modifications.
Some degree of smearing around the momentum shell is allowed as long as the respective
conditions are fulfilled. The choice of regulator can be understood as a choice of path
in theory space. While both the starting point with the given UV couplings and the
end point with the physical interactions are fixed, the trajectory between these points
is up to the regulator [49]. Note that the choice of regulator, even though the physical
results should not depend on it, plays an important role in practice. The reason for this
can be found in deviations from the exact flow. Such deviations always persist because
of necessary truncations and approximations, but cutoff effects that arise e.g. when the
temperature or chemical potential come too close to the UV scale Λ also play a role
[83]. The impact of such errors depends on the chosen trajectory and gives rise to the
requirement of a regulator with good convergence properties. An optimized regulator
is given by the three-dimensional bosonic version of the Litim regulator [82]

RBk (p) = (k2 − p2) θ

(
1− p

2

k2

)
(6.4)

that we will employ. From the modified partition function, we find the generator of
connected diagrams in the usual way,

Wk[J ] = lnZk[J ] , (6.5)

and with φ(x) = δWk[J ]/δJ(x) the effective action is the modified Legendre transform

Γk[φ] :=

∫
Jφ−Wk[J ]−∆Sk[φ] (6.6)

that can be shown to yield the classical action S[φ] at k = Λ and the full quantum
effective action Γ[φ] for k = 0. The strength of the approach is that the inclusion
of quantum fluctuations which is commonly described by a path integral can now be
expressed via a functional differential equation. The flow is evolved by infinitesimal
steps in k. With the definition of the dimensionless “RG time” t := ln k/Λ, the effective
action can be worked out to change under a scale transformation like

∂tΓk[φ] =
1

2

∫
x

∫
y

(
Γ

(2)
k +Rk

)−1
(y − x) ∂tRk(x− y)

=
1

2
βV

∫
p

(
Γ

(2)
k +Rk

)−1
(p) ∂tRk(p)

=
1

2
Tr

[(
Γ

(2)
k +Rk

)−1
∂tRk

]
.

(6.7)
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The second line follows from a Fourier transformation to momentum space and the trace
includes a sum over all subspaces of the field that have been left out in the notation.
For the description of fermions, we define

Zk[χ, χ̄] :=

∫
DΨ̄DΨ e−S[Ψ̄,Ψ]−∆Sk[Ψ̄,Ψ]+

∫
χ̄Ψ+

∫
Ψ̄χ (6.8)

with the regulator term

∆Sk[Ψ̄,Ψ] =

∫
d4p

(2π)4
Ψ̄(−p)Rk(p)Ψ(p) . (6.9)

Here, the regulator has to have the dimension of mass, not mass squared. We employ
the fermionic three-dimensional Litim regulator

RFk (p) = p · γ
(√

k2

p2
− 1

)
θ

(
1− p

2

k2

)
. (6.10)

Working out the scale derivative of the fermionic modified effective action and taking
care of the Grassmann nature of the fields, we find

∂tΓk[ψ̄, ψ] = −βV
∫
p

tr

[(
Γ

(1,1)
k +Rk

)−1
(p) ∂tRk(p)

]
= −Tr

[(
Γ

(1,1)
k +Rk

)−1
∂tRk

] (6.11)

with the definition

Γ
(1,1)
k (x− y) :=

(
δ

δψ̄(x)

)(
− δ

δψ(y)

)
Γk[ψ̄, ψ] (6.12)

where both derivatives act from the left. The general case of mixed scalar and spin-
1/2-fields is then given by the full Wetterich equation

∂tΓk =
1

2
Tr

[(
Γ

(2)
k +RBk

)−1
∂tR

B
k

]
− Tr

[(
Γ

(1,1)
k +RFk

)−1
∂tR

F
k

]
. (6.13)

Because (Γ
(2)
k + Rk)

−1 is just the effective scale-dependent propagator, diagrammatic
representations of the trace terms look like one-loop diagrams with insertions of ∂tRk.
In contrast to a perturbative one-loop approximation, however, this propagator is not
the bare propagator but the full effective version. Hence, the Wetterich equation is
a functional partial differential equation that allows the successive integration of fluc-
tuations in an exact way, given a theory that is defined at a UV momentum scale
Λ.

6.2 Local Potential Approximation

Because of infinitely many possible field configurations, the solution of functional equa-
tions always requires a truncation that approximates the given functional. Here, the
Wetterich equation has the advantage of being a flow equation for the quantum effec-
tive action. Already from its definition, the possibility of expanding Γ similarly to the
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action of the theory comes to mind. The couplings in the vertex expansion are effec-
tive position-/momentum-space-dependent interaction vertices encoding all quantum
fluctuations. As an example, the expansion for φ4 theory in momentum space reads
[32]

Γ[φ] =
1

2

∫
d4k

(2π)4
φ̃(−k)(k2 +m2)φ̃(k) +

∞∑
n=4

1

n!

∫
d4k1

(2π)4
. . .

∫
d4kn
(2π)4

(2π)4δ4(k1 + · · ·+ kn)Vn(k1, . . . , kn)φ̃(k1) . . . φ̃(kn) .

(6.14)

The first term is the inverse exact propagator (with m2 denoting the physical mass
in this case) and the Vn are the 1PI vertex functions. Another approximation of the
effective action is the derivative expansion. The functional is summed in increasing
order of derivative operators, e.g. for a real scalar field

Γ[φ] =

∫
d4x

[
U(φ) +

1

2
Z(∂φ)2 +O(∂4)

]
. (6.15)

U(φ) is the effective potential and Z, which couples to the kinetic term, is the wave-
function renormalization. Its advantage is that many relevant interactions are already
encoded in the first term which becomes clear in the application to thermodynamics.
To make this connection, we use the fact that in the Matsubara formalism the gener-
ating functional at vanishing external source is equal to the thermodynamic partition
function: Z[0] = Z. The grand canonical potential density is then given by [72]

Ω = − 1

βV
lnZ = − 1

βV
W =

1

βV
Γ (6.16)

where Γ := Γ[φ0] and

φ0(x) :=
δW [J ]

δJ(x)

∣∣∣∣
J=0

. (6.17)

Given a constant, spacetime-independent field VEV φ0 as it is expected for an isotropic
thermodynamic ensemble, Eq. (6.15) becomes

Γ[φ0] = βV U(φ0) . (6.18)

This allows the identification
Ω = U(φ0) (6.19)

where φ0 also minimizes the effective potential. In general, U is a function of the
invariants of a given theory such that all fluctuations that respect its symmetries can
be included. Of course, the derivative expansion can also be applied to the scale-
dependent modified effective action Γk:

Γk[φ] =

∫
d4x

[
Uk(φ) +

1

2
Zk(∂φ)2 +O(∂4)

]
. (6.20)

Uk(φ0) then goes to Ω in the limit k → 0. The local potential approximation (LPA)
utilizes the derivative expansion, but only allows a scale-dependence in the lowest order
term, the potential Uk. The running of the wavefunction renormalization is neglected
and it is kept at the bare UV value Zk ≡ 1. In this work we employ the local poten-
tial approximation and state that future investigations of the phase diagram at high
densities beyond LPA are planned.
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6.3 Application to Quark-meson Model

In our FRG approach towards high-density area of the QCD phase diagram, we proceed
to calculate the flow equation for the quark-meson model in Nf flavors as given in Eq.
(4.12). Therefore, we take the ansatz for the modified effective action in LPA:

Γk =

∫
d4x

[
q̄
(
/∂E + gTa (σa + iγ5πa)

)
q +

1

2
(∂σa)

2 +
1

2
(∂πa)

2 + Ũk(σa, πa)

]
(6.21)

with

Ũk(σa, πa) = Uk(ρ1, . . . , ρNf )− c
[
Det

(
Φ†
)

+ Det (Φ)
]
− haσa . (6.22)

Note that now all fields are classical fields. Furthermore, in the fermionic sector the
ansatz consists of a kinetic term with the Yukawa type coupling g from the Lagrangian
which is taken to be scale-independent in LPA. The explicit symmetry breaking terms
in Ũk have constant coefficients as well. The actual k-dependent effective potential Uk
is, as mentioned in the last section, a function of the invariants of the theory. In the
quark-meson model, those are the Nf chiral invariants which in turn depend on the
meson fields σa and πa. At the UV scale Λ, the effective potential Uk just becomes the
initial potential UΛ of the quark-meson model. Because the Wetterich equation gives
the partial derivative ∂tΓk[φ], we can evaluate the differential equation for a given field
configuration φ(x) down to k = 0. At the vacuum expectation value, we already know
that all pseudoscalar meson condensates must vanish, as well as any scalar mesons
that are non-diagonal in the generators. We denote the Nf diagonal generators Td,
d ∈ {1, . . . , Nf}. In practice, this means that the second functional derivative has to
be taken from the full effective action given in Eq. (6.21) and then evaluated at the
VEV. In the fermionic sector, Γ(1,1) in momentum space becomes

Γ(1,1)(p) = i/pE + gTdσd . (6.23)

We use the fermionic regulator given in Eq. (6.10) and add it to the functional deriva-
tive. On top of that, we introduce a chemical potential in the same fashion as in the
mean field approximation in Sec. 5:

Γ
(1,1)
k +RFk = i(ωn + iµ)γ0 + ip · γ

√
k2

p2
θ

(
1− p

2

k2

)
+ gTdσd . (6.24)

The Dirac space inverse of this expression is given by

(
Γ

(1,1)
k +RFk

)−1
=
−ip0γ0 − ip · γ

√
k2

p2 + gTdσd

p2
0 + k2 + g2(Tdσd)2

(6.25)

where p0 = ωn + iµ. Note that the matrix expression (Tdσd)
2 in the denominator

is not a problem because the Td are diagonal in flavor space and thus the inverse is
also diagonal. The θ-stepfunction has been omitted since it appears again in the scale
derivative of the regulator in the Wetterich equation and cuts out all momenta higher
than k, effectively rendering the θ-function in this expression equal to 1 in the area of
interest. The regulator scale derivative reads

∂tR
F
k = kip · γ

[
1

|p|θ
(

1− p
2

k2

)
+

(
k

|p| − 1

)
δ

(
1− p

2

k2

)
2
p2

k3

]
= ip · γ

[
k

|p|θ
(

1− p
2

k2

)
+

(
|p| − p

2

k

)
δ(p− k)

]
.

(6.26)
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The last term is always zero in the integral and hence does not contribute. We can
make use of the trace identity

tr (γµγν) = 4δµν (6.27)

and the fact that the trace over a product of an uneven number of gamma matrices is
zero to see that the only contributing term in the product of the effective propagator
[Eq. (6.25)] and the regulator derivative [Eq. (6.26)] is

k2θ
(

1− p2

k2

)
p2

0 + k2 + g2(Tdσd)2
. (6.28)

The trace over color, flavor, Dirac, and phase space yields

Tr

[(
Γ

(1,1)
k +RFk

)−1
∂tR

F
k

]
= 4Nc

∑
f

∫
d4xT

∑
n

∫
d3p

(2π)3

k2θ
(

1− p2

k2

)
(ωn + iµ)2 + k2 +m2

f

= βV
2Nc

12π2

∑
f

k5

Ef

[
tanh

(
Ef − µ

2T

)
+ tanh

(
Ef + µ

2T

)]
.

(6.29)

The Matsubara sum is the same sum we encountered in the mean field approximation,

c.f. Eq. (5.15). Furthermore, we have defined Ef :=
√
k2 +m2

f where m2
f are the

corresponding diagonal entries of the matrix g2(Tdσd)
2. Continuing with the meson

sector, the second functional derivative for each meson reads in momentum space

Γ
(2)
k (p) = p2 + Ũ

(2)
k . (6.30)

With the bosonic regulator given in Eq. (6.4) the sum becomes (setting the theta
function to one)

Γ(2) +RBk = p2
0 + k2 + Ũ

(2)
k (6.31)

and the non-vanishing part of the regulator derivative is

∂tR
B
k = 2k2θ

(
1− p

2

k2

)
. (6.32)

We use the notation Eb := k2 +m2
b and m2

b := Ũ
(2)
k,bb, where the index b denotes the 2N2

f

meson fields and Ũ
(2)
k,bb is the second derivative with respect to the corresponding field.

Due to the meson-meson interactions, the meson terms in the effective action are mixed.

This means that the meson mass matrix Ũ
(2)
k,ab is not necessarily diagonal. The actual

meson resonances are found by diagonalizing this matrix. Due to the cyclic invariance
of the trace, this diagonalization does not change the evolution of the flow. Therefore,
we proceed with m2

b now denoting the entries of the diagonalized mass matrix. Taking
the trace in phase and meson space, the mesonic part of the Wetterich equation becomes

1

2
Tr

[(
Γ

(2)
k +RBk

)−1
∂tR

B
k

]
=

1

2

∫
d4xT

∑
n

∫
d3p

(2π)3

∑
b

2k2θ
(

1− p2

k2

)
ω2
n + k2 +m2

b

= βV
k5

12π2

∑
b

1

Eb
coth

(
Eb
2T

) (6.33)
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with the solution of the Matsubara sum without chemical potential at bosonic frequen-
cies ωn = 2πnT :

T
∑
n

1

ω2
n + E2

=
1

2E
coth

(
E

2T

)
. (6.34)

Going back to Eq. (6.21) and inserting the vacuum expectation value of constant fields
〈σd〉, we see that

∂tΓk[〈σd〉] =

∫
d4x ∂tUk(〈ρ1〉, . . . , 〈ρNf 〉) = βV ∂tUk(〈ρ1〉, . . . , 〈ρNf 〉) . (6.35)

The volume factor βV cancels on both sides and the full flow equation for the effective
potential Uk is

∂tUk =
k5

12π2

{∑
b

1

Eb
coth

(
Eb
2T

)

− 2Nc

∑
f

1

Ef

[
tanh

(
Ef − µ

2T

)
+ tanh

(
Ef + µ

2T

)] .

(6.36)

It is worth pointing out that in this truncation all quantum fluctuations are dynamically
encoded in the chirally symmetric meson potential Uk. Nevertheless, the derivation
shows that the potential Ũk which additionally includes the explicit breaking terms

determines the meson masses. However, since the so-called curvature masses Ũ
(2)
k,bb are

the second derivatives with respect to the fields (while the physical pole masses are at
the poles of the meson propagator), the linear chiral symmetry breaking term −haσa
does not contribute. Only the U(1)A breaking term modifies the meson masses on top
of the potential Uk. For k = 0, the meson potential including the static symmetry
breaking terms Ũ := Ũk=0 can be identified with Ω when evaluated at the vacuum
configuration that minimizes Ũ :

Ω = Ũ(〈σd〉) . (6.37)

6.4 Renormalized Mean Field Approximation

In the derivation of the standard mean field approximation in Sec. 5 we dropped a
divergent vacuum term with implicit dependence on temperature and chemical poten-
tial. Instead of regularizing and subsequently renormalizing this term by hand, one can
just take the fermionic part of the given flow equation and drop the mesonic quantum
fluctuations. Because of the exactness of the Wetterich equation, the vacuum term is
included in fully renormalized form. It shall also be noted that due to the simple Gaus-
sian structure in the fermionic Lagrangian in mean field approximation, the currently
employed LPA treatment solves the fermionic path integral exactly and does not give
an additional error. We take the ansatz

Ω = Ωmes + Ωq (6.38)

for the grand canonic potential density with the meson potential defined in Eq. (5.5).
The quark potential is equal to the effective fermion potential Uq,k at scale k = 0 which
can be written

Ωq = Uq,k=0 = Uq,k=Λ −
∫ Λ

0
dk ∂kUq,k (6.39)
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with Uq,k=Λ = 0 as the UV potential is given by the static meson potential and (with
∂t = k∂k)

∂kUq,k = −k
4Nc

6π2

∑
f

1

Ef

[
tanh

(
Ef − µ

2T

)
+ tanh

(
Ef + µ

2T

)]
. (6.40)

Unlike the meson masses, the fermion masses are static for a given vacuum configuration
and do not depend on Uq,k or its derivatives. Hence, the differential equation can just
be integrated out as the integral sign suggests. Nevertheless, k is still the artificial
RG scale and not necessarily equal to the momentum p found in the integral of the
standard mean field approximation. We call this improved approach renormalized mean
field approximation (rMFA).
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7 Numerical Implementation

The given integrals and differential equations require a numerical solution. The greatest
obstacle in that regard are the renormalization group flow equations. Even though we
have reduced them from a functional partial differential equation (PDE) to a common
PDE for each possible field configuration in Uk, solution techniques for such equations
are still not very evolved. In particular, at a given field configuration a way must be
found to determine the second derivative of Ũk with respect to the fields in order to
determine the meson curvature masses m2

b in the equation. For the explicit symmetry
breaking terms, this is not a problem as they can be calculated analytically beforehand,
cf. App. C. The second derivatives of Uk, however, require a knowledge of the potential
in an area around the given point. Among the solution techniques, various Taylor
approximations either at (and moving with) the minimum of the potential (co-moving)
or static expansions close to the expected minimum or even at two separate points [84]
have been established. Furthermore, the flow can be discretized on a grid where each
point stands for a possible field configuration [85, 86]. This approach is utilized here.

7.1 One- and Two-dimensional Grid

In Sec. 4 the possible non-zero meson fields at the expectation value have been reduced
to a single field 〈σ〉 in the two-flavor case and the light and strange condensates 〈σl〉
and 〈σs〉 in the 2+1-flavor case. For Nf = 2, the potential is a function of one chiral
invariant:

Uk = Uk(ρ) . (7.1)

This means that at the expectation value where Uk = Uk(〈ρ〉), the second derivative of
Uk with respect to some field πa is given

U
(2)
k,πaπa

=

[
∂Uk
∂ρ

∂2ρ

∂π2
a

+
∂2Uk
∂ρ2

(
∂ρ

∂πa

)2
]∣∣∣∣∣
ρ=〈ρ〉

. (7.2)

In this case, 〈ρ〉 = 1
2〈σ〉2. This shows that the expectation values of the chiral invariants

are in direct correspondence with the condensates (this is why we could write Uk(〈σd〉)
before). The derivatives and second derivatives of the analytically known chiral invari-
ants with respect to all meson fields can just be calculated and the expectation value
inserted, which makes them known functions of the condensate. At this point, we use
the fact that at ρ = 〈ρ〉, the derivative of Uk is analytically equivalent to

∂Uk(ρ)

∂ρ

∣∣∣∣
ρ=〈ρ〉

=
∂Uk(〈ρ〉)
∂〈ρ〉 =

∂Uk
∂〈σ〉2

∂〈σ〉2
∂〈ρ〉 = 2

∂Uk
∂〈σ2〉 =: 2U ′k . (7.3)

In this manner, all masses can be obtained as derivatives of Uk with respect to 〈σ〉2 to
first or second order. By putting Uk on a grid, one determines an array of N points

{〈σ〉21, . . . , 〈σ〉2N} (7.4)

where Uk is known and couples the points in a way that Uk can be determined as
a continuous function of the variable 〈σ〉2 which is differentiable up to second order
at the grid points. In this work, we use a cubic spline interpolation which allows for
an uncomplicated extraction of the first and second derivative directly at the N fixed
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points. The derivatives at the outermost left and right points are determined by a
finite difference formula. Note that at high chemical potential and T = 0, the fermionic
threshold function becomes a theta function ∼ θ(Ef − µ) as shown in App. B. This
sudden stop in the running of the potential at grid points that lie below this fermi sur-

face (where the quark mass m2
f ∼ σ2 is so small that the energy Ef =

√
k2 +m2

f drops

below the chemical potential) means the first derivative U ′k gets a delta distribution
peak ∼ δ(Ef − µ) at the respective point at the scale k where Ef = µ. As laid out in
App. B, such a delta distribution can be integrated out in an infinitesimal interval and
adds a finite contribution to the potential derivative at the given grid point. This is of
relevance in another grid coupling scheme given in Ref. [85] that uses Taylor expansions
at the grid points has the first derivative U ′k running on the grid as well. At decreasing
k, more and more derivatives experience a delta jump. On the one hand, it can be ar-
gued that this scheme is more accurate than a spline interpolation that washs out these
jumps because the first derivative is only approximately determined from the function
Uk itself. On the other hand, in the calculations for this work the approach given in
Ref. [85] broke down exactly at the scale k where the onset of these phenomena was
expected for the leftmost grid point. This can be associated to instabilities in the grid
coupling that are especially vulnerable to fluctuations in the outermost derivatives. It
can be argued that adding a hard contribution from a continuous theory like a delta
distribution to a certain grid point while running a discretized, approximate system is
not a reasonable choice. Hence, we use a spline interpolation in favor of higher stability
and note that some non-analyticities might be washed out. It shall be mentioned that
a coordinate transformation as given in Ref. [87] might circumvent this problem, but
it only works for one chiral condensate in LPA so far. In order to attain comparable
results, the approach taken here is extended to Nf = 2 + 1. Because we allow for two
distinct condensates now, the grid must be set up in two dimensions. Instead of taking
〈σl〉2 and 〈σs〉2, the variables

x = 〈σl〉2 , y = 2〈σs〉2 − 〈σl〉2 (7.5)

as employed in Ref. [71] are used. In this setup, the minimum of the potential will
always be close to the starting value in y-direction. Furthermore, we modify the second
chiral invariant such that

ρ̃2 := ρ2 −
ρ1

3
. (7.6)

This yields the expectation values

〈ρ1〉 =
1

4
(3x+ y) , 〈ρ̃2〉 =

1

24
y2 =⇒ x =

1

3

(
4〈ρ1〉 −

√
24〈ρ̃2〉

)
, y =

√
24〈ρ̃2〉 .

(7.7)
Picking up the example of a meson field πa, the second derivative of the chirally sym-
metric potential is

U
(2)
k,πaπa

=

[
∂Uk
∂ρ1

∂2ρ1

∂π2
a

+
∂2Uk
∂ρ2

1

(
∂ρ1

∂πa

)2

+ 2
∂2Uk
∂ρ1∂ρ̃2

∂ρ1

∂πa

∂ρ̃2

∂πa

+
∂2Uk
∂ρ̃2

2

(
∂ρ̃2

∂πa

)2

+
∂Uk
∂ρ̃2

∂2ρ̃2

∂π2
a

]∣∣∣∣∣
ρ1=〈ρ1〉 , ρ̃2=〈ρ̃2〉

.

(7.8)
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Again, the derivatives of the chiral invariants can be calculated and evaluated at the
expectation value. The derivatives of the potential are determined in the following
fashion:

∂Uk
∂〈ρ1〉

=
∂Uk
∂x

∂x

∂〈ρ1〉
+
∂Uk
∂y

∂y

∂〈ρ1〉
, (7.9)

similarly for the other derivatives. The grid now consists of two arrays of points, one
with Nx points in x-direction and one with Ny points in y-direction. Each of the NxNy

grid points is thus given by a touple (xi, yj). The splines are set up the following way:
for each constant yc, there is a cubic spline interpolating over all Nx points (xi, yc) in
x-direction. Similarly, for each value xc, a cubic spline interpolates over the Ny points
(xc, yj) in y-direction. This gives all first and second derivatives with respect to x and
y at each grid point. Note that we also need a mixed derivative

∂2Uk
∂x∂y

. (7.10)

This is obtained from a finite difference three-point formula that interpolates the x-
derivative in y-direction or vice versa. Concerning the stability of the approach, it has
to be noted that the placement and spacing of grid points is of significant importance.
For good accuracy, it is reasonable to place many grid points at low values of x because
this is where the minimum will land in the chirally restored phase. Then again, there
have to be enough points at high values of x and y such that the increase of the potential
in that region stabilizes the second derivatives in the area of low condensates. This is
due to the fact that some inverse meson energies that occur in the flow equation run

very closely to the poles at k2 + Ũ
(2)
k = 0. For some of those mesons Ũ

(2)
k has non-

vanishing contributions from the second derivatives with respect to x and y. Especially
in the region of low T and high µ, the solution of the differential equation has been
experienced as very unstable and only possible for certain grid point arrangements.
The first configuration we use in this work entails

Nx = 35 , Ny = 20 (7.11)

grid points, respectively, in a range xmin = 1 MeV2, xmax = (170)2 MeV2 and ymin =
(50)2 MeV2, ymax = (180)2 MeV2. Grid spacing is chosen linearly in

√
x and linearly in

y, respectively. The second configuration works with less points in the y-direction and
reduces the numerical effort. It utilizes

Nx = 35 , Ny = 10 , (7.12)

in a range xmin = 1 MeV2, xmax = (170)2 MeV2 and ymin = (75)2 MeV2, ymax =
(155)2 MeV2 with the same spacing as before. For Nf = 2, the configuration N = 40,
σ2

min = 1 MeV2, σ2
max = (170)2 MeV2 has been chosen with a linear spacing in σ.

Note that depending on the context we will denote the grid variable in Nf = 2 as
σ, glossing over the fact that it is an expectation value. In this work, we use a UV
cutoff of Λ = 1 GeV. Appropriate starting values are given in App. D. The solution
of the coupled ordinary differential equations that are obtained from the grid ansatz
is acquired with the help of a Dormand-Prince solver which is a Runge-Kutta type
algorithm [88]. Furthermore, the flow equation is only evaluated up to an IR scale
kIR = 100 MeV. At this point, the position of the minimum of the potential is expected
to be static and independent of k such that further evaluation of the flow does not
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change the physics. In sMFA, the integral is evaluated for the full range of possible
momenta up to a point where the integrand falls under a predetermined numerical
value [e.g. for values lower than exp(−30)]. This is done with a Romberg integration
routine. In rMFA, the computation is performed up to kIR = 1 MeV with the same
stepper used in the FRG flow. The minimum of the potential is determined by finding
the roots of the derivatives of the potential which proofs to be more accurate than a
direct minimization. The derivatives are either inferred from the derivatives at the grid
points or, in mean field approximation, calculated directly from the integral equation
via differentiation, see App. B.

7.2 Calculating the Equation of State

In order to compute the TOV equation, the equation of state (EoS) p(ε) of matter
at low temperature and high density must be known. In this work, we restrict our-
selves to the determination of the EoS as generated from the quark-meson model.
Despite the fact that it neither incorporates confinement (which gives rise to nucleonic
degrees of freedom at finite chemical potential) nor gluon interactions (which should
become important in the deconfined region), we believe that the effective interactions
of constituent quarks and mesons yields qualitative results. From a phenomenological
perspective, the applicability of the quark-meson model should be restricted to the
description of quark matter in the inner core. Thus, a quantitative treatment entails
the usage of a nucleonic model for the outer parts of the compact object as laid out
in Sec. 2. With the study of a two-flavor as well as the 2+1-flavor model, we aim at
gaining insights into the impact of the existence of strange quarks on the equation of
state. Furthermore, a comparison of the mean field solution with the FRG solution that
includes full meson dynamics can give helpful information on the influence of quantum
fluctuations in dense matter. To extract the equation of state from the model, it suf-
fices to regard the grand canonical potential density Ω that has been determined in all
approximations. We use the thermodynamic relation [72]

Ω = − 1

βV
lnZ = −p . (7.13)

Note that in our approaches Ω is not normalized and can be shifted by a constant
without changing the physics. In order to determine the correct pressure, we take into
consideration that Ω = Ω(T, µ) is a function of temperature and chemical potential.
Then we demand that the vacuum pressure at vanishing temperature and chemical
potential pvac is zero. This is done by the constant shift

p = Ω(0, 0)− Ω(T, µ) . (7.14)

On top of that, the definition of the grand canonic potential density is utilized:

Ω(T, µ) = ε− Ts− µn . (7.15)

s denotes the entropy density and n the particle density. In case of the quark-meson
model, n is the asymmetric quark density. These two quantities can be inferred from

s = −∂Ω

∂T
, n = −∂Ω

∂µ
. (7.16)
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The inverted EoS is thus given by

ε(p) = −p+ Ts+ µn = −p− T ∂Ω(T, µ)

∂T
− µ∂Ω(T, µ)

∂µ
. (7.17)

The derivatives of Ω can either be obtained numerically by slightly shifting T or µ, re-
spectively, or analytically from the relation Ω = Ũ(〈σd〉) where 〈σd〉 , d ∈ {1, . . . , Nf} ,
is the vacuum configuration that minimizes Ũ . As a consequence, the derivative with
respect to T or µ has to take into account the running minimum as well:

∂Ω

∂T
=
∂U(〈σd〉)

∂T
+

Nf∑
a=1

∂Ũ(σd)

∂σa

∣∣∣∣∣
σd=〈σd〉

d〈σa〉
dT

. (7.18)

Luckily, at the minimum the derivative of Ũ in each direction trivially vanishes:

∂Ũ(σd)

∂σa

∣∣∣∣∣
σd=〈σd〉

= 0 ∀a ∈ {1, . . . , Nf} . (7.19)

This means that only the explicit T - and µ-dependence of U has to be taken into account
(the symmetry breaking terms do not depend on T or µ and vanish). In standard mean
field approximation, this yields [cf. Eq. (5.21)]

∂Ωq

∂T
= −Nc

π2

∑
f

∫ ∞
0

dp p2 {ln (1 + exp(−(Ef − µ)/T )) + ln (1 + exp(−(Ef + µ)/T ))

+
1

T

(
Ef − µ

1 + exp((Ef − µ)/T )
+

Ef + µ

1 + exp((Ef + µ)/T )

)
} .

(7.20)

The derivative with respect to the chemical potential is

∂Ωq

∂µ
= −Nc

π2

∑
f

∫ ∞
0

dp p2 (nf − n̄f ) (7.21)

with nf := nf (Ef , µ, T ) and n̄f = nf (Ef ,−µ, T ) as defined in Eq. (5.17). Here
the quark density is just proportional to the integral of quark occupation number
minus antiquark occupation number over all spatial momenta. Similarly, the FRG flow
equation follows

∂t
∂Uk
∂T

=
∂

∂T
∂tUk (7.22)

with
∂Ω

∂T
=
∂Uk=0

∂T
(7.23)

evaluated at the configuration that minimizes Uk=0. Analog relations hold for the
derivative with respect to the chemical potential. In the renormalized mean field ap-
proximation the integration of the flow yields for the temperature derivative of the
quark potential

∂Ωq

∂T
= − Nc

6π2

∑
f

∫ Λ

0
dk

k4

2T 2Ef

 Ef − µ
cosh2

(
Ef−µ

2T

) +
Ef + µ

cosh2
(
Ef+µ

2T

)
 (7.24)
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and for the derivative with respect to µ:

∂Ωq

∂µ
= − Nc

6π2

∑
f

∫ Λ

0
dk

k4

2TEf

 1

cosh2
(
Ef−µ

2T

) − 1

cosh2
(
Ef+µ

2T

)
 . (7.25)

The meson potentials are static and independent of T and µ, hence the full entropy
and particle density in mean field are the respective expressions multiplied by −1.
The flow equations for the derivatives of the effective potential in the full functional
renormalization group approach read

∂t
∂Uk
∂T

=
k5

12π2

∑
b

1

2T 2

1

sinh2
(
Eb
2T

) −
 1

2T

1

sinh2
(
Eb
2T

) +
1

Eb
coth

(
Eb
2T

) 1

2E2
b

∂m2
b

∂T

+2Nc

∑
f

1

2EfT 2

 Ef − µ
cosh2

(
Ef−µ

2T

) +
Ef + µ

cosh2
(
Ef+µ

2T

)


(7.26)

and

∂t
∂Uk
∂µ

= − k5

12π2

∑
b

 1

Eb
coth

(
Eb
2T

)
+

1

2T

1

sinh2
(
Eb
2T

)
 1

2E2
b

∂m2
b

∂µ

+2Nc

∑
f

1

2TEf

− 1

coth2
(
Ef−µ

2T

) +
1

coth2
(
Ef+µ

2T

)
 .

(7.27)

Because of the meson sector that introduces back-coupling via the second derivatives
of Uk in the meson masses m2

b , the dependence of those masses on T and µ must be
taken into account, e.g. via

∂m2
b

∂T
=
∂Ũ

(2)
k,bb

∂T
=

(
∂Uk
∂T

)(2)

bb

. (7.28)

The last step follows since the partial derivative does not touch the fields and the
explicit breaking terms in Ũk do not run with T or µ. As explained in App. C and
the previous section, the second derivatives with respect to the fields are determined
directly from the potential Uk in the numerical setup, in which case this is equivalent
to

∂m2
b

∂T
=
∂m2

b

∂Uk

∂Uk
∂T

. (7.29)

Many of the given expressions do not have a trivial limit for T → 0. Nevertheless,
smooth limits must exist for observable quantities and thermodynamic potentials. Es-
pecially, the entropy density should go to zero at vanishing temperature. All analytic
limits of the given (and some additional) expressions can be found in App. B. In
the FRG approach, the additional flow equations for s and n given here are numer-
ically solved simultaneously with the flow equation for the potential (as they require
the derivatives of the potential at each grid point as well and therefore couple to the
original flow equation). In other words, there are now three ordinary differential equa-
tions per grid point, i.e. 3N equations for Nf = 2 and 3NxNy coupled equations for
Nf = 2 + 1.



7 NUMERICAL IMPLEMENTATION 48

7.3 Solving the Tolman-Oppenheimer-Volkoff Equation

The TOV equation setup consists of the two coupled ordinary differential equations
given in Eq. (2.28). The equation of state in its inverted form, ε(p), is given discretely
through the computation in the quark-meson model as described in the previous section.
Both ε and p are calculated for a series of chemical potentials and the discrete points are
connected via a linear interpolation. Note that one could just as well use a smooth cubic
spline interpolation, but the great number of computed points should allow a connection
of the points by straight lines. This also has the advantage that the first order chiral
phase transition, which is signified by a jump in energy density, is not washed out as
much. The differential equations are then solved by the Dormand-Prince stepper for
various central pressures p0 with m(0) = 0. In order to obtain physical results, we
restore factors of c2 such that the TOV equation reads

dp(r)

dr
= −G

c2

(ε(r) + p(r))
[
m(r) + 4πr3p(r)/c2

]
r [r − 2Gm(r)/c2]

,

dm(r)

dr
= 4πr2ε(r)/c2 .

(7.30)

We work in cgs units

[G] =
cm3

g · s2
, [c] =

cm

s
. (7.31)

r is inserted in cm, m in g, ε and p are inserted in erg/cm3 where

1 erg = 1
g · cm2

s2
. (7.32)

From the calculation of the equation of state in natural units, pressure and energy
density are given in MeV4 which can be converted (by multiplying factors of h̄ and c)
with

1 MeV4 =̂ 2.085× 1026 erg

cm3
. (7.33)

In this setup, the three constants in use are

G = 6.6732×10−8 cm3

g · s2
, c = 2.9979×1010 cm

s
, M� = 1.987×1033 g . (7.34)

The results are then converted to suitable units, e.g. km for radii and MeV/fm3 for
pressures and energy densities. The TOV equation is evaluated until p hits a small
minimum pressure pmin. On the one hand, this small absolute value helps to constrain
neutron star radii as the pressure usually tends to decay very slowly and never com-
pletely hits the p = 0 line. On the other hand, it could be observed from the equations
of state of the quark-meson model that the calculated pressure first dips into negative
values, after which it increases with increasing ε. This very small regime of negative
pressures which occurs close to the first-order phase transition could be a numerical
error or a peculiarity of the model. Nevertheless, the absolute value of the negative
pressure stays of order . 0.1 MeV/fm3. Consequently, we choose pmin = 0.1 MeV/fm3

in order to always deal with positive pressures at a level above the order of uncertainty.
This choice also limits the central pressures to values of 10 MeV/fm3 and above such
that the pressure at which the evaluation of the TOV equation is stopped is always less
than 1% of p0 and the compact object can be assumed to be largely integrated out.
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8 Numerical Results

With the necessary tools at hand, the dynamics of the quark-meson model can now be
studied numerically. Specifically, the impact of mesonic quantum fluctuations becomes
evident from a comparison between mean field and FRG results. Furthermore, the
role of strangeness in the thermodynamics of the theory can be inferred since both
Nf = 2 and Nf = 2 + 1 calculations are presented. After an initial study of the order
parameters of the model, we focus on fluctuations at low T and high µ. The equation
of state in that regime of the phase diagram is utilized in the TOV equation to yield
mass-radius relationships for neutron stars.

8.1 Chiral Condensates

As shown in the previous sections, non-vanishing vacuum meson condensates corre-
spond to a non-trivial minimum of the effective potential which breaks chiral symmetry
and renders the constituent quarks massive. Therefore, they are order parameters for
chiral symmetry breaking. At vanishing temperature and chemical potential, chiral
symmetry is spontaneously broken and the parameters of the theory have been fixed to
yield physical values for σl and σs, cf. App. D. As shown in Fig. 3, at increasing tem-
perature the condensates decay and chiral symmetry is restored. This behavior is most
prominent in the light sector, while the strange condensate only decays slowly. Due
to explicit symmetry breaking, the condensates do not vanish at finite T but asymp-
totically go to zero. In mean field as well as FRG calculations, the phase transition
is a smooth crossover. Without explicit symmetry breaking (chiral limit), this would
become a second-order phase transition.
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Figure 3: Light and strange condensates in 2+1 flavors at vanishing chemical potential.

While the qualitative behavior is similar for all solution schemes employed in this work,
there are significant quantitative differences between standard mean field, renormalized
mean field, and FRG solutions. The difference between the sMFA and rMFA approach
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can generally be attributed to the inclusion of the vacuum term in rMFA, in this case
its implicit temperature dependence. This holds up to the point where UV cutoff effects
play a role in rMFA. This happens because we defined the rMFA approach based on
the fermionic part of the FRG flow. This flow equation comes with a UV cutoff Λ and
as soon as T or µ come close to the cutoff in order of magnitude, the UV potential
should become dependent on T or µ. Neglecting this dependence causes regulator-
dependent cutoff effects at the IR scale [83] and both rMFA and FRG are expected to
suffer from this phenomenon, especially since this work considers chemical potentials
up to µ = 500 MeV with a UV cutoff of only 1 GeV. Since in the LPA truncation
the fermionic part of the effective actions does not have a running coupling and all
quantum fluctuations are encoded in the meson potential, it should be expected that
one can relate the FRG scale k to the momentum variable p in the sMFA integral [cf.
Eq. (5.21)] and safely push the rMFA UV cutoff to higher values. Taking the same
cutoff as the FRG approach, however, allows us to directly attribute any differences
between rMFA and FRG solutions to mesonic fluctuations which are neglected in the
mean field approximation.
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Figure 4: Light and strange condensates in 2+1 flavors at vanishing temperature.

Fig. 4 depicts the light and strange condensates at vanishing temperature up to a
chemical potential of 500 MeV. As expected, the condensates stay constant until the
chemical potential hits the order of the light quark mass of ml = 300 MeV. Note that
the Silver Blaze rule forbids a smooth change in the vacuum of the theory until µ hits
ml, thus only a sudden first-order transition (to a new vacuum) is possible for µ < ml.
Hence, only the rMFA solution where the transition happens at µ > ml exhibits a
smooth decay of the condensate before the first order jump. Since all approaches show
a clear first-order transition at vanishing T , but a crossover transition at vanishing µ,
the existence of a critical endpoint in the phase diagram is always implied. The exact
position of this endpoint has been found to depend on the fitted sigma mass in mean
field approximation [70]. The proximity of the critical endpoint (CEP) to the T = 0
line in the phase diagram is usually related to the magnitude of the first-order jump
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and the critical chemical potential thereby depends on it as well. Specifically, the very
large jump in the light condensate in sMFA indicates that the transition is still far
from a crossover transition and the CEP is at high T , while the small jump in the FRG
solution suggests a CEP at low T . It can also be observed in Fig. 4 that the first order
transition in the light chiral condensate also slightly modifies the strange condensate,
after which the latter stays on an almost constant plateau in all solution schemes.
At µ ∼ 400 MeV, the strange condensate starts dropping off smoothly which can be
interpreted as a second, smooth (chiral) phase transition in the strange sector. This also
shows in a comparison of the light condensate in 2+1 flavors with the only condensate
of the two-flavor model as depicted in Fig. 5. In the FRG solution, the 2+1-flavor light
condensate starts deviating from the two-flavor condensate at the exact same scale of
above ∼ 400 MeV where the strange condensate begins to undergo a smooth decay.
This might be the case in the rMFA and sMFA solutions, too, but the light condensate
is already too low to display that kind of behavior.
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Figure 5: Light condensate in two and 2+1 flavors at vanishing temperature.

8.2 Meson Masses

Since the (inverse) meson energies give essential contributions to the FRG flow equation,
it makes sense to study the meson masses in the thermodynamic regime of interest, i.e.
at T = 0 and high chemical potential. Fig. 6 displays all non-degenerate meson
masses at Nf = 2 + 1. Again, the qualitative behavior is already captured by the
mean field solutions concerning e.g. the jumps in the meson masses at the first-order
transition. The most interesting masses are those of the scalar flavor-diagonal mesons
σ and f0. Note that there is light-strange flavor mixing both in the diagonal scalar
and pseudoscalar sector. Furthermore, the scalar flavor-diagonal masses are the only
ones that generally depend on the second and mixed derivatives with respect to the
grid variables, because they are a mixture of the only mesons that do not vanish at
the VEV, σl and σs (c.f. App. C). During the evolution of the FRG flow, σ and f0
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are experienced to render the meson energies very close to zero at some points on the
grid for high µ (in contrast to the pion poles that also occur at high T ) . They vastly
contribute to the instability of the flow equation at low T and high µ. This can be
observed in the oscillatory behavior of the f0 mass when it dips to lower values around
µ ∼ 400 MeV. Interestingly, the mean field solutions experience a sudden drop in the f0

mass, too, but well before the chemical potential where the strange condensate starts
melting down. Another peculiar feature of sMFA is that the σ and f0 meson seem to
switch places at µ ≈ 430 MeV. The σ meson mass continues the original path of the f0

meson mass and the f0 meson mass extends the path of the original σ meson mass.
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Figure 6: 2+1 flavor meson masses as a function of µ at T = 0. Top left: scalar singlets
σ, f0. Top right: pseudoscalar singlets η, η′. Bottom left: scalar flavor off-diagonal
states a0, κ. Bottom right: pseudoscalar states π,K.

This idea is confirmed by Fig. 7 which compares the sigma and pion masses of the
two-flavor and 2+1-flavor models. The sMFA solution experiences a sudden strong
deviation of the sigma mass in 2+1 flavors from the two-flavor mass at the chemical
potential mentioned before. Aside from this, all calculations show a slight deviation
of the masses in both models beginning at some chemical potential above 400 MeV,
respectively. This can probably be attributed to the second chiral phase transition in
the strange sector which already shifted the condensates at that scale. The deviations
in the sigma and pion masses in rMFA at the first-order transition should be related to
the shift of the first-order line from two to 2+1 flavors which can be observed in Fig.
5. In the FRG case, Fig. 7 shows a different oscillatory behavior for the sigma mass
when comparing the two- and 2+1-flavor results close to the first-order jump. In both
Nf = 2 and Nf = 2+1, the sigma mass first increases before dipping to Mσ ≈ 200 MeV.
This initial increase before the first-order transition is unphysical and can be explained
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with the grid setup. Because at T = 0 the threshold function of the fermionic sector
of the flow equation becomes a theta function, cf. App. B, the fermionic flow becomes

zero for
√
k2 +m2

l < µ or
√
k2 +m2

s < µ, respectively. Of course, for a fixed µ this

happens at higher k for grid points at low values of σl and σs (as ml and ms are
proportional to the condensates). Hence, the potential already changes its shape “left”
of the vacuum configuration at increasing µ (as more and more points stop running
at some k) while the minimum still lies stable at the constant vacuum condensate.
The spline interpolation now takes into account all grid points, also those with lower
masses than the the vacuum configuration, and yields a different second derivative at
e.g. µ = 250 MeV than at µ = 0 while the minimum is still in the right place. The
second derivative, however, influences the sigma mass and already modifies it before the
first-order transition. In other words, this effect is an artifact of the spline interpolation
because contributions of a local analytic cutoff from the theta function are smeared out
by an interpolation on a finite number of points. The difference between the two-flavor
and 2+1-flavor oscillations then lies in the different grid setups, i.e. N = 40 grid points
are used in two flavors while Nx = 35 grid points in the light direction are utilized in
the 2+1-flavor case.
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Figure 7: Light meson masses as a function of µ at T = 0 for Nf = 2 and Nf = 2 + 1.
Left panel: σ meson. Right panel: π.

8.3 Influence of Grid Configuration

While we can assume that the small overshooting of the sigma mass at µ close to the
first-order phase transition only has a negligible effect and the 35 and 40 grid points,
respectively, give a good interpolation of the potential, the situation looks different
for the f0 mass in 2+1 flavors. As the heavier meson, it has the higher portion of
strangeness. The strange condensate is encoded in the y-direction on the grid, conse-
quently one might expect a dependence of the f0 mass on the number of grid points in
y-direction Ny. Indeed, Fig. 8 shows that from the point where the strange condensate
begins to melt, µ & 400 MeV, there is also a strong oscillatory behavior in the f0 mass
that heavily depends on Ny. The single sharp dip the f0 mass exhibits in the Ny = 10
configuration is reminiscent of the behavior of the sigma mass at the light chiral phase
transition and one might tend to give that configuration more credit. However, a study
of both configurations at higher temperatures seems to indicate that the Ny = 20 con-
figuration with two equal minima is closer to the truth. On top of that, more grid



8 NUMERICAL RESULTS 54

points should lead to better accuracy (at least with the low number of points given
here) and the Ny = 20 curve gives a more stable impression. Unfortunately, numeri-
cal difficulties are encountered at chemical potentials close to the first-order transition
in this configuration as soon as the T - and µ-derivatives of the effective potential are
put onto the grid as well. Due to the high numerical effort in this case, the Ny = 10
configuration had to be utilized for all computations that include entropy and particle
density. Concerning the influence of the grid configuration on the physical results, we
will see that the meltdown of the strange condensate significantly reduces the stiffness
of the equation of state in the 2+1-flavor FRG approach. Hence, stable neutron stars
lie at µ . 400 MeV where both grid configurations yield stable results.
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Figure 8: Flavor diagonal scalar mesons σ, f0 in FRG as a function of µ at T = 0.
Shown are two different grid configurations with Ny = 10 and Ny = 20, where Ny

denotes the number of grid points in y-direction.

8.4 Phase Diagram

The quark-meson model exhibits two phases, a phase of spontaneously broken chiral
symmetry at low energies and a chirally restored phase at high energies. The transi-
tion lines are depicted in the phase diagram, Fig. 9. The given phase diagram of the
two-flavor model shows that both mean field and FRG calculations feature a smooth
crossover transition at low chemical potential and high temperature. This result is in
agreement with lattice QCD calculations as mentioned in Sec. 3. At low tempera-
ture and high chemical potential, mean field and FRG results agree on a first-order
transition to chirally symmetric matter. The end of the first-order line is marked by
a critical endpoint. As discussed before, the existence and position of such a point in
the phase diagram of quantum chromodynamics is still under investigation. Note that
the crossover line is determined by the inflation point of the light condensate of the
explicitly broken model. This point is not as strongly determined as the first-order
jump, i.e. the exact trajectory of the crossover line depends on the direction in the
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T -µ-plane that is taken in the computation of the diagram. In this work, we determined
the inflation point by going radially outwards from the origin of the T -µ-plane. The
phase diagram can be used to give us a better idea of the role of quantum fluctuations
on the thermodynamics of the theory. In sMFA, the first order region is very large,
in rMFA the CEP is significantly closer to the T = 0 axis. In FRG, the CEP goes
to even lower temperatures, which agrees with our findings from the magnitude of the
first-order jump in Fig. 4. The vacuum fluctuations already significantly modify the
phase diagram, while the meson fluctuations give another important contribution. On
top of the new position of the CEP, we see in Fig. 9 that the FRG curve exhibits a
back-bending behavior at low T , whereas the mean field results show a curve that hits
the µ axis at a 90 degree angle as expected. This back-bending behavior is actually
unphysical, as it implies a negative entropy density (for positive particle density) via
the Clausius-Clapeyron relation [89]

dTc
dµc

= −∆n

∆s
. (8.1)

The observation of negative entropy densities will be explicitly confirmed and discussed
in the next section.
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Figure 9: Phase diagram of the two-flavor quark-meson model. Shown are the FRG,
rMFA, and sMFA solution which each exhibit a first-order and a crossover region. The
critical endpoints (CEPs) are marked with black dots.

As this work also studies the role of strangeness at high densities, next to the impact
of mesonic and vacuum fluctuations, we compare the FRG transition lines of the two-
flavor and the 2+1-flavor model in Fig. 10. On the one hand, including strange mesons
results in a crossover line that bends more strongly to lower temperatures. On the
other hand, the position of the critical endpoint and the first-order line stays fixed.
Thus, strange quarks and mesons do not have an impact on the position of the phase
transition at low T and high µ. This, however, does not mean that they do not have an
impact on the equation of state. After all, the strange mesons are additional summands
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in the flow equation that directly determines the pressure of the system and, via its T
and µ derivatives, the entropy and quark density as well.
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Figure 10: Phase diagram of the two-flavor and the 2+1-flavor quark-meson model in
FRG. The (common) critical endpoint is marked with a black dot.

8.5 Thermodynamic Properties

In order to determine the influence of (strangeness) fluctuations on the equation of
state, we calculate the pressure, energy density, entropy density, and particle density
as laid out in Sec. 7.2. The entropy and particle density are determined from their
analytic flow equations which are solved on the grid simultaneously to the solution
of the effective potential. For Nf = 2 and vanishing temperature, all quantities are
given (in scaled form) in Fig. 11. Due to vanishing temperature, the entropy density
is always zero. The thermodynamic relation for the energy density degenerates to

ε = µn− p . (8.2)

This is reflected in Fig. 11 where the scaled pressure matches the gap between the
scaled energy and particle density. Up to the first-order transition, all properties are
those of the T = 0, µ = 0 vacuum which can be understood in the way that the
chemical potential is smaller than the light quark mass of the respective vacuum state
and no net quark density can be achieved. After the transition, the particle density in
standard mean field approximation immediately exhibits constant scaling n ∼ µ3. In
renormalized mean field approximation, n also quickly converges to the same scaling
behavior and even displays the same scaling constant. This is no surprise because at
T = 0 the expressions for the particle density in rMFA and sMFA both degenerate
to the same term as shown in Eq. (B.13) and (B.12). From the given expression, an
asymptotic scaling factor of 2/π2 ≈ 0.2 for Nf = 2 immediately follows. In the FRG
approach, n seems to asymptotically converge to the ∼ µ3 scaling behavior as well.
This should be expected for high µ from dimensional analysis, but for the given range



8 NUMERICAL RESULTS 57

of chemical potentials in this work we observe significant differences as compared to the
mean field solutions. These differences are due to meson fluctuations which means those
contributions are expected to have an impact on the properties of compact objects.
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Figure 11: Pressure p, energy density ε, entropy density s, and particle density n of
the two-flavor QM model at T = 0, scaled by powers of µ to make them dimensionless.
Solutions are given for FRG, rMFA, and sMFA.

Contributions from non-zero entropy can only be observed at finite temperature. Con-
sequently, we repeat the analysis at a constant, low temperature. All scaled properties
for Nf = 2 and T = 5 MeV are displayed in Fig. 12. In terms of pressure, energy
density, and particle density, there are no significant differences to the T = 0 case, as
expected. While in sMFA and rMFA, a small positive entropy density emerges, we find
a large negative entropy density in the full FRG solution. We have already followed
a negative entropy density from the back-bending behavior of the FRG transition line
in the phase diagram. We can now observe that s stays negative up to high chemical
potentials, while it seems to asymptotically vanish. Unfortunately, it has not been
possible to go to much higher µ due to numerical difficulties, but at a UV cutoff of
1 GeV cutoff effects should dominate the behavior at some point in any case. This
unphysical peculiarity of the low-temperature dynamics of the quark-meson model has
only recently been described in Ref. [89]. Multiple reasons for the negative entropy
density are currently under discussion. Reminding ourselves that in the derivation of an
effective low-energy description of QCD (cf. Sec. 3) we dropped the diquark interaction
terms, it could well be that Cooper pairs that lead to color superconductivity should
form already from the fermion interactions at the Fermi surface in the quark-meson
model [89]. Disallowing a diquark condensate thus pushes the theory into the wrong
vacuum state. Another possibility is the emergence of inhomogeneous phases. Again,
we only allow for a certain vacuum configuration, i.e. a spatially homogeneous chiral
condensate. Removing the condition of spatial homogeneity would allow the formation
of complex structures at high density and low temperature, but requires new solution
techniques and high numerical effort [89]. Next to the possibility of an unphysical vac-
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uum, the errors that are induced by the lowest order truncation (LPA) of the derivative
expansion of the effective action (cf. Sec. 6) could also play a role.
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Figure 12: Pressure p, energy density ε, entropy density s, and particle density n of the
two-flavor QM model at T = 5 MeV, scaled by powers of µ to make them dimensionless.
Solutions are given for FRG, rMFA, and sMFA.

To study the effects of the inclusion of strange quarks and the behavior of the entropy
at different temperatures at the same time, we plot the scaled versions of p, ε, s, and
n at T = 1 MeV for Nf = 2 + 1 in Fig. 13. In mean field approximation, the particle
density again rises to the constant scaling with a factor of ≈ 0.2 up to a chemical
potential of about 400 MeV. Then it slowly increases and will eventually scale with the
Nf = 3 factor of 3/π2 ≈ 0.3. Because the strange condensate melts down much more
slowly, however, ms stays finite even for high µ and the scaling factor is not reached
in the given range of chemical potentials. In the FRG solution, the picture is slightly
different. Here, the onset of the meltdown of the strange condensate is more sudden and
causes a kink in the curves for s, n, and ε. Interestingly, this happens at µ ≈ 420 MeV.
In the vacuum, the mass of the strange constituent quarks is fixed to

ms =
g〈σs〉√

2
≈ 430 MeV (8.3)

with the parameters given in App. D. The difference of about 10 MeV between the
onset of the phase transition in the strange sector and the vacuum mass of the strange
quarks is explained by Fig. 4. At the first-order transition of the light condensate,
the strange condensate already jumps to a slightly lower value. Hence, the onset of
a second, smooth chiral transition happens at the scale of the strange quark mass.
Concerning the entropy density in Fig. 13, it assumes a very small positive value in
sMFA and rMFA, which is expected at T = 1 MeV. The absolute value of the negative
entropy of the FRG solution has increased compared to the solution at T = 5 MeV.
Note that before the kink, the two-flavor and 2+1-flavor models should allow for this
comparison. After the onset of the effects of strangeness, the entropy density does not
fall off smoothly as it does in Fig. 12.
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Figure 13: Pressure p, energy density ε, entropy density s, and particle density n of the
2+1-flavor QM model at T = 1 MeV, scaled by powers of µ to make them dimensionless.
Solutions are given for FRG, rMFA, and sMFA.
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Figure 14: Entropy density as a function of µ in units of 106 MeV3. Shown are T =
1 MeV and T = 5 MeV results in two and 2+1 flavors.

A more direct comparison of s in two and 2+1 flavors at T = 1 MeV and T = 5 MeV
is given in Fig. 14. Here, it becomes clear that at very low temperatures the absolute
value of the entropy density does not decrease, but even increases with higher chemical
potentials. This also occurs in the two-flavor model that shows a slowly vanishing s
at T = 5 MeV. In total, this suggests that in the phase diagram at low T the region
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of negative entropy is not bounded from the right. Furthermore, the meltdown of
the strange condensate and the consequential emergence of additional light (strange)
mesons significantly push the entropy to even more negative values. Note that the
contribution of the entropy to the equation of state is very small at these temperatures,
because s goes in multiplied by T , whereas n is multiplied by the much larger chemical
potential. Thus, the unphysical negative entropy contributions to the equation of state
of compact objects at almost zero temperature are expected to be negligible.
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Figure 15: Equations of state of the two- and 2+1-flavor QM models at T = 0 in FRG,
rMFA, and sMFA.

With the particle and entropy density as well as the pressure at hand, the energy density
ε can be calculated according to Eq. (7.17). Taking the pressure as a function of ε, we
have found the equation of state. For T = 0, it is shown for all solution schemes in Fig.
15. In general, it can be observed that for high ε the two-flavor and the 2+1-flavor EoS
split up. The two-flavor equations keep up their original slope while the effective theory
with strange degrees of freedom assumes a lower slope. While this happens gradually
in sMFA and rMFA, the 2+1-flavor FRG curve stays on top of the two-flavor curve up
to pressures p . 100 MeV/fm3. Then, the 2+1-flavor curve deviates and becomes quite
flat, after which it assumes a slope comparable to the mean field 2+1-flavor equations
of state. Clearly, this behavior can be associated with the onset of effects from the
second phase transition and meltdown of the strange condensate which has previously
been observed to happen more gradually in mean field calculations and more rapidly in
FRG calculations. Regarding the low pressure region, is is found that the sMFA curve
hits the p = 0 axis in a straight line whereas the rMFA curve features a more gradual
onset of pressure. This is directly related to the fact that in sMFA the light condensate
immediately jumps to a new vacuum state in a strong first-order transition, cf. Fig. 4.
Hence, there are no non-zero data points from the chirally broken regime and after the
transition the vacuum state only weakly shifts to lower σl at increasing µ. In rMFA, the
condensate first continuously melts down and yields data points with low values for p
and ε before the first-order phase transition occurs. In the EoS, such a phase transition



8 NUMERICAL RESULTS 61

manifests itself by a jump in energy density at constant pressure. Note that this jump
is not visible in Fig. 15 because it happens at very low pressures. The more gradual
onset that is visible is rather related to the smooth decay of the light condensate in
the chirally symmetric regime after the first-order transition. As the phase transition
is not as strong as the on in sMFA, it leaves σl at a higher value (which initially yields
lower pressures at a given ε as compared to sMFA results) and the condensate decays
more slowly. Of course, the first-order transition is even weaker in FRG, which is why
its equation of state features a very early and gradual onset of pressure. Up to the
scale where the strange condensate begins to melt, p ≈ 100 MeV/fm3, the FRG curve
is dominated by the almost constant decay rate of the light condensate after the chiral
phase transition as displayed in Fig. 5. Regarding the stiffness of the equations of state,
it is clear that in mean field approximation the 2+1-flavor curves are less stiff than the
two-flavor EoS. Furthermore, the rMFA curve is less stiff than the sMFA curve even
though at high energies, they attain the same slope which is very well visible in parallel
two-flavor curves. In the functional renormalization group approach, the 2+1-flavor
curve only loses stiffness at p & 100 MeV/fm3. Hence, it can be expected that the
maximum neutron star mass that can be obtained at Nf = 2 + 1 stems from a central
pressure of less than this value.

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400

2 flavors
2+1 flav.

p
[M

e
V
/
fm

3
]

ε [MeV/fm3]

FRG

T = 0 MeV
T = 5 MeV

Figure 16: Equations of state of the two- and 2+1-flavor QM model FRG solutions at
T = 0 and T = 5 MeV.

To summarize our results to this point, we have seen that in mean field approximation
both the inclusion of vacuum fluctuations as well as the consideration of strange de-
grees of freedom reduce the stiffness of the equation of state. The inclusion of meson
fluctuations in the full FRG approach, however, significantly modifies the equation of
state and yields finite pressures already at low energy densities. On top of that, it
allows for a regime up to a certain pressure where the equation of state is insensitive
to strangeness and a reduction of stiffness does not occur. In order to determine the
influence of temperature fluctuations, we compare the EoS in FRG at T = 5 MeV with
the T = 0 results as depicted in Fig. 16. It becomes clear that higher temperatures also
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result in lower pressures at a given energy density and therefore reduce the stiffness of
the equation of state. Concerning the restrictions we imposed on possible equations of
state in Sec. 2, we e.g. in Fig. 11 that

∂n

∂µ
> 0 (8.4)

is always the case. From Fig. 15 it is evident that the causality condition

∂p

∂ε
< 1 (8.5)

is fulfilled at each point as well.

8.6 Application to Neutron Stars

In order to obtain the mass-radius relationships for compact objects, the Tolman-
Oppenheimer-Volkoff equation (7.30) is solved for a variety of central pressures p0.
The functions of the TOV equation depend on the radial coordinate r. They are the
pressure p(r) and the mass m(r) that is enclosed within the sphere of radius r. When
the pressure reaches zero (or a small numerical value, cf. Sec. 7.3), the evaluation
of the differential equation is stopped and the neutron star radius is determined as
R = r(p = 0) and the mass is given by M = m(R). For an exemplary central pressure
of p0 = 50 MeV/fm3, the pressure and enclosed mass are depicted as functions of r in
Fig. 17.
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Figure 17: Neutron star pressure p(r) and enclosed mass m(r) as functions of the radial
coordinate r in two-flavor and 2+1-flavor FRG, rMFA, and sMFA for an exemplary
central pressure of p0 = 50 MeV/fm3.

With physical equations of state that include nucleonic degrees of freedom, one usually
finds that the pressure has an inflation point after which it gradually goes to zero, while
similarly the mass slowly saturates at increasing r. This is partly visible in the FRG
solution whereas the standard mean field approximation does not exhibit this behavior
at all. That can be explained by the sharp onset of finite pressures with constant slope
in the sMFA equation of state when the FRG equation of state displays a gradual
increase in slope. In rMFA, a sudden kink is visible in the p(r) curve at low p as well
as in the m(r) curve at the corresponding r. After this kink, the pressure only slowly
decays and the mass saturates. An explanation of this effect is given by our previous
observation that at increasing µ the light condensate first smoothly melts down a few
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MeV until the first-order jump occurs. The evolution after the kinks in Fig. 17 is based
on data points from the chirally broken regime (before the first order transition). Hence,
the first-order chiral transition actually directly influences the low-pressure behavior of
the star in our model.
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Figure 18: Mass-radius relationships for 2-flavor and 2+1-flavor FRG, rMFA, and sMFA
equations of state at T = 0. The green band is the mass 2.01(4)M� of the pulsar
J0348+0432 [10]. The black hole area encloses all R ≤ 2GM/c2, causality violation is
assumed for R ≤ 2.87GM/c2, cf. Sec. 2.4.

The computed neutron star M -R-relationships are displayed in Fig. 18. In sMFA,
both the two-flavor and the 2+1-flavor graph manage to achieve a maximum mass of
more than 2M�. As expected, the inclusion of strange matter reduces the maximum
possible mass both in sMFA and rMFA. Apparently, vacuum fluctuations account for
a significant reduction in stiffness of the equation of state such that two solar masses
cannot be achieved in rMFA. The 2+1-flavor curve is found to bend towards higher
radii at low masses. This makes sense since the data points from the chirally broken
regime significantly flatten the p(r) line as shown in Fig. 17. At low central pressures,
that regime makes up larger parts of the neutron star and the radius where the pressure
hits (almost) zero increases. At increasing central pressures, one moves upwards in the
curves towards higher masses. As soon as the masses start decreasing for increasing
p0, the stability criterion defined in Sec. 2 is violated. Hence, the downwards bends at
the top of the given curves belong to unstable stars. It shall also be noted that since
a minimum central pressure of 10 MeV/fm3 is employed as explained in Sec. 7.3, the
lower parts of the curve are not shown. Already at this minimum central pressure, shifts
in the low mass regimes of the given curves can be observed upon e.g. manipulating
the minimum pressure at which the evolution of the TOV equation is stopped. The
high mass regimes of the curves, however, are found to be stable under slight variations
of such parameters. After all, we can only provide a qualitative analysis at this point
because the given equation of state does not include nucleonic degrees of freedom and
can not serve as a realistic model going to low pressures and densities. Nevertheless,
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it is a very interesting result that the two-flavor and 2+1-flavor curves are nearly
identical in the FRG solution. This means that the part of the equation of state that
is insensitive to strangeness, at p . 100 MeV/fm3, is the only relevant part already at
Nf = 2. Consequently, the emergence of strangeness does not have the dreaded effect
of reducing the stiffness of the EoS as found in the mean field studies. Hence, in our
model compact stars live in a phase of partially restored chiral symmetry in the light
sector, whereas the strange sector still exhibits heavy constituent quarks and mesons.
With a pure QM model equation of state, the full FRG mass-radius curve yields up
to M ≈ 2.5M�, but lies at radii of R ≈ 17 km which is about 1.5 times the radius
obtained in typical calculations.
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Figure 19: Mass-radius relationships for the 2-flavor FRG, rMFA, and sMFA solutions
as depicted in Fig. 18, for T = 0, T = 1 MeV, and T = 5 MeV.

At temperatures below 1 MeV [16], neutron stars are cold objects in the context of
the strong interaction. Thus, it is expected that the T = 0 data gives a very good
approximation to the dynamics at the actual temperature of a given neutron star.
To confirm this expectation, the mass-radius relationships at Nf = 2 and multiple
temperatures are compared in Fig. 19. Almost no difference can be observed between
T = 0 and T = 1 MeV results which gives confirmation. However, at T = 5 MeV already
significant effects can be found in rMFA and FRG calculations. In sMFA, temperature
variations in this regime do not seem to have a large impact on the solution of the TOV
equation.

8.7 Influence of Infrared Cutoff

Due to the high demands on computation power of the two-dimensional grid and the
increasingly low step sizes of the Runge-Kutta type ordinary differential equation solver
at low values of k, we have employed an infrared cutoff of 100 MeV throughout this
work. In order to test the reliability of the calculated data, the influence of the IR cutoff
on the results shall be examined. Therefore, the Nf = 2 FRG starting parameters have
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been slightly amended (with the differential evolution algorithm, cf. App. D) such
that they yield the same physical vacuum observables at an IR scale of 90 MeV as they
did for kIR = 100 MeV. With the new parameters, the T = 0 M(R) curve has been
recalculated and a comparison is shown in Fig. 20. While there is a slight variation in
the low-mass regime of the graph, both solutions follow the same qualitative behavior.
While a cutoff of 90 MeV or lower should prove to be better suited for a quantitative
study, IR cutoff effects can be rated as insignificant for the purpose of this work.
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Figure 20: Mass-radius relationships for the two-flavor FRG solution as depicted in
Fig. 18 for two different IR cutoffs kIR = 100 MeV and kIR = 90 MeV.
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9 Summary and Outlook

In this work, the role of high density fluctuations in compact stellar objects has been
studied. Therefore, the equation of state of cold and dense strongly interacting matter
is required. Because there are no first principle calculations of QCD in that regime to
this day, the quark-meson model, an effective theory that incorporates the low-energy
degrees of freedom of QCD, is utilized. It exhibits spontaneous chiral symmetry break-
ing in the vacuum and a phase transition to chirally symmetric matter at increasing
T and µ. In order to study the influence of quantum fluctuations, the quark-meson
model has been solved both in mean field approximation and in an FRG approach fea-
turing the LPA (local potential approximation) truncation. The mean field study has
been further split into a standard mean field approximation (sMFA) which neglects the
vacuum contribution to the grand canonical potential and a renormalized mean field
approximation (rMFA) that includes the vacuum term in renormalized form. Addi-
tionally, the QM model has been studied with only two degenerate light quark flavors
and under the inclusion of heavier strange quarks. In both cases, an explicit symme-
try breaking term has been added to account for finite current quark mass effects like
non-zero pion masses. An axial symmetry breaking term in Nf = 2 + 1 allows for a
realistic meson spectrum.

It has been found that at low temperatures, both mean field solutions as well as the
FRG calculation display a first-order chiral phase transition. The 2+1-flavor model
shows that this phase transition predominantly occurs in the light chiral condensate
and that the strange condensate remains largely intact. Only at chemical potentials
of the order of the strange constituent quark mass, the condensate of strange quarks
begins to slowly melt down. This effect could be observed in mean field approximation
as well as FRG. Other than the fact that the transition line in rMFA is slightly shifted
in 2+1 flavors compared to the two-flavor version, the inclusion of strange degrees of
freedom has been found to have negligible impact on the thermodynamics of the theory
up to the scale of the onset of the meltdown of the strange condensate. At this scale,
the f0 scalar meson mass has been observed to exhibit a similar behavior to that of
the sigma mass at the first-order transition. That can be interpreted as another hint
to the fact that the gradual meltdown of the strange condensate should be treated as a
second, washed-out crossover phase transition. Furthermore, the effects of the second
phase transition significantly weaken the equation of state which could be inferred from
a comparison to two-flavor results. In our findings, the inclusion of vacuum fluctua-
tions also weakens the EoS, as do higher temperatures. Concerning finite temperatures,
negative entropy densities have been found at low, non-zero T in the FRG solution.
Possible explanations of this unphysical behavior are still under discussion and may
be investigated in the future. One of the possibility to remedy this effect is the al-
lowance for a diquark condensate. This can be done in form of a quark-meson-diquark
model as proposed in Ref. [90, 91]. After the determination of the equation of state,
the Tolman-Oppenheimer-Volkoff (TOV) equation has been solved and neutron star
mass-radius relationships have been determined. While the onset of strangeness ef-
fects at high chemical potentials is more gradual in mean field approxmation, the FRG
solutions shows identical two-flavor and 2+1-flavor equations of state up to a sudden
onset of said strangeness effects. It is found that in FRG, stable neutron stars live at
pressures where these effects do not play a role, hence both two-flavor and 2+1-flavor
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curves display identical mass-radius relationships. Neutron star radii are determined
to be higher that typical calculations suggest, but neutron star masses of up to 2.5M�
can be achieved. In mean field approximation, both sMFA and rMFA solution show
that strange quarks lead to lower maximal neutron star masses. Thus, we can con-
clude that the inclusion of quantum fluctuations, specifically meson fluctuations in our
model, plays a significant role both for neutron star masses and radii as well as the
effects of strangeness on compact objects. This result is especially interesting regarding
the hyperon puzzle as most models predict a weakening of the equation of state due to
strangeness effects. It also stands in contrast to the recent result given in Ref. [92]. In
this publication, the effects of quantum fluctuations are determined to be only at the
5% level in a similar one-flavor model.

Regarding future works, a more quantitative treatment could be performed. To this
end, the given EoS of the QM model must be combined with the EoS of a well-
understood nucleonic model. Of course, further questions in relation to the QM model
EoS have to be answered as well. One of them is the influence of ultraviolet (UV)
cutoff effects on the solution. This could be achieved by varying the UV cutoff of the
FRG solution and comparing several results. That question is of significance because
e.g. in rMFA we have observed that the position of the critical endpoint is sensitive
to the UV cutoff. Specifically, at Λ = 5 GeV the transition line has been found to be
a pure crossover line without a critical endpoint. Another question is the impact of
truncation effects. Going to better truncations than the LPA in the FRG approach
is planned for future works, as well as the incorporation of dynamical hadronization.
Finally, it shall be mentioned that the quark-meson model misses important degrees
of freedom of QCD at high densities and low temperatures. As already mentioned,
baryonic degrees of freedom definitely play an important role and even gluonic degrees
of freedom should emerge at some point. Thus, even though this study gives a first
impression of the importance of mesonic fluctuations and the role of strangeness in a
setup of interacting quarks and mesons, a solution of the pending question of the QCD
phase diagram in the regime of compact objects will require the inclusion of all relevant
effects.
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A Matsubara Formalism

The Matsubara formalism makes a connection of quantum field theory to statistical
mechanics and therefore allows the study of QFT at finite temperature as a functional
field theory in Euclidean space with compactified (imaginary) time. This formalism is
convenient as long as no real-time observables must be computed, in which case some
application of a real-time formalism [93, 94] comes into place. To make the connection,
we remember that the partition function of statistical mechanics is defined as

Zstat = Tr e−βH =
∑
α

〈α|e−βH |α〉 . (A.1)

For time independent Hamiltonians H and β := i∆t the definition of the quantum
mechanical path integral reveals that

Zstat =

∫
α(0)=α(−iβ)

Dα ei
∫−iβ
0 dt L =

∫
α(τ=0)=α(τ=β)

Dα e
∫ β
0 dτ L . (A.2)

The temperature takes on the role as an imaginary time with τ := it (Wick rotation).
The trace demands the state |α〉 to be reached periodically after the imaginary time
interval β. It also has to be pointed out that the path integral now includes all physical
paths featuring periodic boundary conditions with periodicity β from all starting points
due to the sum in the trace, not just one specific state. A dimension that does not
stretch from −∞ to ∞ but is finite and periodic is called compact. Going back to a
field formalism, one has (writing Z for Zstat from now on) [72]

Z =

∮
Dϕ e

∫ β
0 dτ

∫
d3xL . (A.3)

The loop integral sign stands for the periodic boundary conditions in the path integral.
It will be omitted from now on. Of course, the Lagrangian density also has to be
adjusted to the rotation in the complex plane of the x0 component. For a free scalar
field this is

L =
1

2

(
∂ϕ

∂t

)2

− 1

2
(∇ϕ)2 − 1

2
m2ϕ2 = −

[
1

2

(
∂ϕ

∂τ

)2

+
1

2
(∇ϕ)2 +

1

2
m2ϕ2

]

= −
[

1

2
(∂Eϕ)2 +

1

2
m2ϕ2

]
=: −LE

(A.4)

where the index E hints at the now Euclidean metric in the derivative term. In total,
we have

Z =

∫
Dϕ e−

∫ β
0 dτ

∫
d3xLE =:

∫
Dϕ e−SE . (A.5)

For fermions, the same procedure can be done [72]. The Lagrangian density

L = ψ̄
(
i/∂ −m

)
ψ = ψ̄ (i∂µγ

µ −m)ψ = ψ̄ (i∂tγ0 − i∂iγi −m)ψ (A.6)

becomes

− LE = ψ̄ (−∂τγ0 − i∂iγi −m)ψ = −ψ̄ (∂µγ̃µ +m)ψ = −ψ̄
(
/∂E +m

)
ψ (A.7)

where
γ̃µ := (γ0, iγ) (A.8)
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and ∂0 := ∂τ . Using γ̃µ additionally has the advantage of Euclidean anticommutation
relations:

{γ̃µ, γ̃ν} = 2δµν1 . (A.9)

In this work, we will exclusively utilize Euclidean field theory. Note that the Lagrangian
now has a structure that would resemble T + V in classical mechanics. Reintroducing
a source term, the partition function acts as the generating functional

Z[J ] =

∫
Dϕ e−S+

∫ β
0 dτ

∫
d3x J(τ,x)ϕ(τ,x) =:

∫
Dϕ e−S+

∫
Jϕ . (A.10)

The generating functional for connected diagrams in Euclidean field theory is defined

W [J ] := lnZ[J ] . (A.11)

Furthermore, there is one major difference between bosons and fermions in this for-
malism due to periodicity. It can be shown from the anticommutation relations of the
fermion field operators in the propagator that

ψ(0,x) = −ψ(β,x) . (A.12)

The anti-periodicity of ψ(x) has consequences that become apparent under a Fourier
transformation to momentum space. For a scalar field where ϕ(x) is periodic in τ , the
Fourier integral becomes a sum divided by the period length:

ϕ(τ,x) =
1

β

∞∑
n=−∞

∫
d3k

(2π)3
ei(k·x+ωnτ)ϕn(k) = T

∞∑
n=−∞

∫
d3k

(2π)3
eik·xϕ(ωn,k) (A.13)

where ωn = (2π/β)n = 2πTn. The anti-periodicity can be understood as adding an
additional phase shift π/β that gives a half rotation π in the complex plane, which is
just a minus sign, under τ → τ + β. Therefore it suffices to have ωn = (2n+ 1)πT and
fermion fields can be Fourier transformed just like above. For the purpose of encoding
all fluctuations in an effective action, the quantum effective (or average) action Γ[φ]
can be defined as the functional Legendre transform of W [J ]:

Γ[φ] := −W [J ] +

∫
d4xJ(x)φ(x) . (A.14)

Taking into consideration that the derivative of W [J ] with respect to the source J gives
the field expectation value 〈ϕ〉J and the natural variable of the Legendre transform is
exactly the derivative of the original function, we can make the identification φ = 〈ϕ〉J .
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B Analytic Limits

In this appendix, the derivatives of the effective potential with respect to the fields
in mean field approximation are determined. Furthermore, analytic limits T → 0 are
given for the expressions found in Sec 5, 6, and 7.2. In mean field approximation, the
derivative of the total potential with respect to a field consists of the derivative of the
meson potential Ωmes plus the contribution of the quark flow. The shape of the meson
potential in Nf = 2 and Nf = 2 + 1 is given in App. D. The quark contribution follows
from the differentiation of the quark potential integral. In sMFA, it reads

∂Ωq

∂σi
=

Nc

2π2
g2σi

∫ ∞
0

dp
p2

Ei
(nf (Ei, µ, T ) + n̄f (Ei,−µ, T )) i ∈ {l, s} (B.1)

with σi the possible condensates in Nf flavors. In the limit of vanishing temperature,
the fermi statistics only gives a contribution for µ > mi which is

∂Ωq

∂σi

∣∣∣∣
T=0

µ>mi
=

Nc

4π2
g2σi

µ√µ2 −m2
i −m2

i ln


√
µ2 −m2

i + µ

mi

 . (B.2)

In rMFA, the derivative of the quark potential is

∂Ωq

∂σi
=

Nc

6π2
g2σi

∫ Λ

kIR

dk k4

(
− 1

2E3
f

[
tanh

(
Ef − µ

2T

)
+ tanh

(
Ef + µ

2T

)]

+
1

4TE2
f

 1

cosh2
(
Ef−µ

2T

) +
1

cosh2
(
Ef+µ

2T

)
 .

(B.3)

Note that in the limit of vanishing temperature the last part produces a delta distri-
bution

1

4T cosh2
(
Ef−µ

2T

) T→0−→ δ(Ef − µ)
µ>mf

=
Ef
k
δ(k −

√
µ2 −m2

f ) . (B.4)

Therefore, the limit can be evaluated to be

∂Ωq

∂σi

∣∣∣∣
T=0

=
Nc

6π2
g2σi

(
I1 +

{
(µ2−m2

f )3/2

µ µ > Eend

0 else

})
(B.5)

with

I1 : = −
∫ x1

x2

dk
k4

E3
f

= −1

2

3m2
fx1 + x3

1√
x2

1 +m2
f

−
3m2

fx2 + x3
2√

x2
2 +m2

f

− 3m2
f ln

x1 +
√
x2

1 +m2
f

x2 +
√
x2

2 +m2
f

 .

(B.6)

Here, x1 = Λ and

x2 =

{
kIR µ < mf

max
(
kIR,

√
µ2 −m2

f

)
else .

(B.7)

The analytic limits of the equations given in the thesis are listed below.
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• Eq. (5.21):

Ωq|T=0 =
Nc

π2

∑
f

∫ ∞
0

dp p2 (Ef − µ) θ(µ− Ef )

=
Nc

π2

∑
f

0 µ ≤ mf∫√µ2−m2
f

0 dp p2 (Ef − µ) µ > mf

(B.8)

with∫ √
µ2−m2

f

0
dp p2 (Ef − µ)

=
1

24

µ√µ2 −m2
f (5m2

f − 2µ2)− 3m4
f ln


√
µ2 −m2

f + µ

mf

 .

(B.9)

• Eq. (6.36):

∂tUk|T=0 =
k5

12π2

∑
b

1

Eb
− 4Nc

∑
f

1

Ef
θ(Ef − µ)

 . (B.10)

• Eq. (6.40):

Ωq|T=0 =
Nc

6π2

∑
f

∫ x1

x2

dk
k4

Ef

=
Nc

6π2

1

4

∑
f

{
√
x2

1 +m2
f (2x3

1 − 3m2
fx1)−

√
x2

2 +m2
f (2x3

2 − 3m2
fx2)

+ 3m4
f ln

x1 +
√
x2

1 +m2
f

x2 +
√
x2

2 +m2
f

} .

(B.11)

with the definitions of x1 and x2 as given above.

• Eq. (7.21):

∂Ωq

∂µ

∣∣∣∣
T=0

= − Nc

3π2

∑
f

{
0 µ ≤ mf

(µ2 −m2
f )3/2 µ > mf

. (B.12)

• Eq. (7.25):

∂Ωq

∂µ

∣∣∣∣
T=0

= − Nc

3π2

∑
f

{
(µ2 −m2

f )3/2 µ > EIR

0 else
. (B.13)

This is the same contribution that is given in the standard mean field case just
above, only corrected for a finite value of kIR.
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• Eq. (7.26):

∂t
∂Uk
∂T

∣∣∣∣
T=0

= − k5

12π2

∑
b

1

2E3
b

∂m2
b

∂T

∣∣∣∣
T=0

. (B.14)

• Eq. (7.27):

∂t
∂Uk
∂µ

∣∣∣∣
T=0

= − k5

12π2

∑
b

1

2E3
b

∂m2
b

∂µ

∣∣∣∣
T=0

− 2Nc

∑
f

2

k
δ
(
k −

√
µ2 −m2

f

) ,

(B.15)

In sMFA and rMFA, the temperature derivatives can both be shown to vanish in
the limit T → 0. This corresponds to vanishing entropy as expected. Note that
Eq. (B.14) suggests that this is also the case for the FRG approach if the starting
values are ∂Uk/∂T = 0 at each point. Of course, the UV potential is inserted
as temperature independent and renders vanishing entropy. If this was not the
case, a finite entropy would be produced. Hence, this starting value looks like
a (possibly unstable) fixed point of the differential equation which could explain
the negative entropies at T → 0 while still rendering vanishing entropy at T = 0,
cf. Sec. 8. Concerning Eq. (B.15), it has to be noted that the delta distribution
gives a contribution to the flow. For each grid point, the flow is halted at the
relevant value of k and a finite contribution that stems from integrating the delta
distribution out in an infinitesimal interval is added. This contribution is exactly
the complete contribution of the mean field approaches, given in Eq. (B.13).
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C Meson Masses

Under meson masses we understand the curvature masses Ũ
(2)
bb where Ũ is the effective

potential including explicit breaking terms. The derivatives have to be evaluated at
the VEV.

C.1 Mean Field Approximation

In mean field approximation, we get a contribution from the static meson potential
Ωmes and the fermionic integral. The meson potential derivatives read in two flavors〈

∂2Ωmes

∂σ2

〉
= m2 + 3λσ2 ,

〈
∂2Ωmes

∂π2
i

〉
= m2 + λσ2 . (C.1)

where the meson potential is equal to the UV potential given in Eq. (4.21). In 2+1
flavors, the potential given in Eq. (4.28) (with the axial symmetry breaking term
added) renders〈

∂2Ωmes

∂σ2
0

〉
= m2 +
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3
(7σ2
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√
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(C.2)

Note that all mixed second derivatives but the ones in the 0− 8-sector (scalar as well
as pseudo-scalar) vanish at the VEV. For the quark contribution, we have to consider
the field dependence of the eigenvalues m2

f of the quark mass matrix M2
q := g2Φ†Φ and
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take the derivatives from Eq. (5.21). In sMFA we conclude [70]〈
∂2Ωq

∂φa∂φb

〉
=
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2
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] (C.3)

where nf := nf (Ef , µ, T ), n̄f := nf (Ef ,−µ, T ), bf := nf (1 − nf ), b̄f := n̄f (1 − n̄f ),

m2
f,ab :=

∂2m2
f

∂φaφb
, and m2

f,a :=
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f

∂φa
, all mass eigenvalue derivatives are evaluated at the

expectation value. For T = 0 the integral vanishes for µ < mf . We get the limit
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(C.4)

In rMFA, the corresponding integral at finite temperature is〈
∂2Ωq
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(C.5)

At T = 0, the last term behaves like the derivative of a delta distribution and we have
to partially integrate to obtain〈

∂2Ωq

∂φa∂φb

〉∣∣∣∣
T=0

=
Nc

6π2

∑
f

[
m2
f,abI1 +

3m2
f,am

2
f,b

2
I2

+

m
2
f,ab

(µ2−m2
f )3/2

µ −m2
f,am

2
f,b

(
1
2

(µ2−m2
f )3/2

µ3
+ 3

2

√
µ2−m2

f

µ

)
µ > EIR

0 else




(C.6)
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with the conventions from App. B, I1 from Eq. (B.6) and

I2 :=

∫ x1

x2

dk
k4

E5
f

= −1

3

[
x1(3m2

f + 4x2
1)

(m2
f + x2

1)3/2
−
x2(3m2

f + 4x2
2)

(m2
f + x2

2)3/2

−3 ln

x1 +
√
x2

1 +m2
f

x2 +
√
x2

2 +m2
f

 .

(C.7)

For Nf = 2, the derivatives of the isospin symmetric quark mass m2
q can easily be

evaluated with the definition of Φ given in Eq. (4.14):

m2
q,σ =

1

2
g2σ , m2

q,σσ =
1

2
g2 , m2

q,πi = 0 , m2
q,πiπi =

1

2
g2 . (C.8)

The VEV of the mass is 〈m2
q〉 = g2〈σ〉2/4 and all mixed derivatives vanish. For Nf =

2 + 1, the eigenvalue derivatives are more complicated to obtain. One can e.g. use an
algorithm for the derivatives of the eigenvalues with respect to a parameter as given in
Ref. [95]. This algorithm only requires a diagonalization to be known at the point of
derivative, i.e. at the VEV where the matrix is already diagonal:

〈M2
q 〉 =

m2
l 0 0

0 m2
l 0

0 0 m2
s

 . (C.9)

Special care has to be taken for the first two degenerate eigenvalues because any linear
combination of eigenvectors gives another eigenvector and hence the actual eigenvector
basis (for general values of fields, not necessarily at the VEV) is not known. The
necessary procedure is outlined in Ref. [95] as well. For the light and strange mass
VEVs we here find [cf. Eq. (5.8)]:

〈m2
l 〉 = g2 〈σl〉2

4
, 〈m2

s〉 = g2 〈σs〉2
2

. (C.10)

The non-zero eigenvalue derivatives are tabulated in Tab. 1 and agree with Ref. [70].
In order to connect the derivatives to meson masses in the 2+1-flavor case, we have to
find a base where all mixed derivatives vanish. The fields we then obtain represent the
physical meson states. We only have non-vanishing mixed derivatives in the 0−8-sector
(or light-strange sector under rotation) because here we have quark-antiquark states
with vacuum quantum numbers and the mixing of the two scalar and two pseudoscalar
mesons in terms of light and strange content is not uniquely determined. We define
the scalar and pseudoscalar mixing angles θS and θP as the field rotation angles for
diagonalization:(

f0

σ

)
=

(
cos θS − sin θS
sin θS cos θS

)(
σ0

σ8

)
,

(
η
η′

)
=

(
cos θP − sin θP
sin θP cos θP

)(
π0

π8

)
. (C.11)

Define 〈∂2Ũ/∂φi∂φj〉 := m2
φiφj

. A simple use of chain rule and diagonalization condi-
tions delivers the formulas for the mixing angle,

tan 2θS =
2m2

σ0σ8

m2
σ0σ0 −m2

σ8σ8

, tan 2θP =
2m2

π0π8

m2
π0π0 −m2

π8π8

, (C.12)
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and the diagonalized masses [70]:

m2
σ =

1

2
(m2

σ0σ0 +m2
σ8σ8 + ∆S) , m2

f0 =
1

2
(m2

σ0σ0 +m2
σ8σ8 −∆S) (C.13)

m2
η′ =

1

2
(m2

π0π0 +m2
π8π8 + ∆P ) , m2

η =
1

2
(m2

π0π8 +m2
σsσs −∆P ) (C.14)

with

∆S :=
√

(m2
σ0σ0 −m2

σ8σ8)2 + 4m4
σ0σ8 , ∆P :=

√
(m2

π0π0 −m2
π8π8)2 + 4m4

π0π8 .

(C.15)

2m2
l,αm

2
l,β/g

4 2m2
l,αβ/g

2 m2
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2
s,β/g

4 m2
s,αβ/g

2

σ0 σ0
1
3σ

2
l

2
3

1
3σ

2
s

1
3

σ1 σ1
1
2σ

2
l 1 0 0

σ4 σ4 0 σl
σl−
√

2σs
0

√
2σs√

2σs−σl
σ8 σ8

1
6σ

2
l

1
3

2
3σ

2
s

2
3

σ0 σ8

√
2

6 σ
2
l

√
2

3 −
√

2
3 σ

2
s −

√
2

3

π0 π0 0 2
3 0 1

3

π1 π1 0 1 0 0

π4 π4 0 σl
σl+
√

2σs
0

√
2σs

σl+
√

2σs

π8 π8 0 1
3 0 2

3

π0 π8 0
√

2
3 0 −

√
2

3

Table 1: Quark mass derivatives in Nf = 2+1 evaluated at the expectation value. The
light sector is multiplied by two due to the up-down-degeneracy.

C.2 Functional Renormalization Group

In the full FRG flow, the meson fluctuations are included in the flow, thus there is no
static contribution from the meson sector. The derivatives of Ũk are obtained from the
spline-interpolation on the grid. For Nf = 2, the grid is one-dimensional and the grid
variable is 〈σ2〉 [cf. Sec. 7]. The masses are therefore

∂2U

∂σ2

∣∣∣∣
〈σ〉

=
∂

∂σ

∂U

∂ρ

∂ρ

∂σ

∣∣∣∣
〈σ〉

=

[
∂U

∂ρ

∂2ρ

∂σ2
+
∂2U

∂ρ2

(
∂ρ

∂σ

)2
]∣∣∣∣∣
〈σ〉

= 2U ′ + 4σ2U ′′ (C.16)

and

∂2U

∂π2

∣∣∣∣
〈σ〉

=
∂

∂π

∂U

∂ρ

∂ρ

∂π

∣∣∣∣
〈σ〉

=

[
∂U

∂ρ

∂2ρ

∂π2
+
∂2U

∂ρ2

(
∂ρ

∂π

)2
]∣∣∣∣∣
〈σ〉

= 2U ′ (C.17)

where the primes denote a derivative with respect to the grid variable 〈σ2〉. For Nf =
2 + 1, however, the two-dimensional grid is set up in the variables x and y as outlined
in Sec. 7. In short, we pick up the definition

Ũ := U(ρ1, ρ̃2)− cξ − hlσl − hsσs (C.18)



C MESON MASSES 77

with
ξ := det

(
Φ†
)

+ det (Φ) . (C.19)

The linear terms at the end will not contribute to the second derivatives and are dropped
here. Then the chain rule yields e.g. for the first derivative (implicitly assuming the
expression to be evaluated at the VEV in the end)

∂Ũ

∂φi
=
∂U

∂ρ1

∂ρ1

∂φi
+
∂U

∂ρ̃2

∂ρ̃2

∂φi
− c ∂ξ

∂φi

=
∂U

∂x

(
∂x

∂ρ1

∂ρ1

∂φi
+
∂x

∂ρ̃2

∂ρ̃2

∂φi

)
+
∂U

∂y

(
∂y

∂ρ1

∂ρ1

∂φi
+

∂y

∂ρ̃2

∂ρ̃2

∂φi

)
− c ∂ξ

∂φi
.

(C.20)

This is worked out more precisely in Sec. 7. For the derivatives of x and y with respect
to ρ1 and ρ̃2 (again, implicitly at the VEV) we follow from Eq. (7.7)

∂x

∂ρ1
=

4

3
,

∂x

∂ρ̃2
= −4

y
,

∂y

∂ρ1
= 0 ,

∂y

∂ρ̃2
=

12

y
. (C.21)

Calculating the derivatives of the chiral invariants and the axial breaking term at the
minimum, we get in total:

∂2Ũ

∂σ2
l

= 2Ux − 2Uy + 4xUxx + 4xUyy − 8xUxy −
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∂π2
4

= 2

√
x(x+ y)− x

y
Ux +

(
4 + 6

x−
√
x(x+ y)

y

)
Uy −

c

2

√
x

(C.22)

with

Ua :=
∂U

∂a
, Uab :=

∂2U

∂a∂b
a, b ∈ {x, y} . (C.23)
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D Parameter Fixing

The input parameters of the UV potential ŨΛ as well as the Yukawa coupling of the
quark-meson model have to be fixed in the vacuum at T = 0, µ = 0. Fixing those
values to physical observables allows us to predict the behavior of the theory at finite
temperature and chemical potential. Therefore, we remember that in 2+1 flavors we
use a potential of the form

ŨΛ = UΛ(ρ1, ρ2)− cξ − hlσl − hsσs (D.1)

where in mean field approximation

UΛ(ρ1, ρ2) = m2ρ1 + λ1ρ
2
1 + λ2ρ2 . (D.2)

In the FRG formalism we define the UV couplings

UΛ(ρ1, ρ̃2) = a10ρ1 +
a20

2
ρ2

1 + a01ρ̃2 (D.3)

with the modified second chiral invariant defined in Eq. (7.6). For mean field ap-
proximations, the meson potential is static (no fluctuations are included). The quark-
potential has to be added to obtain the full potential. Note that for the sMFA the
quark contribution to the vacuum is zero, while it becomes finite in the rMFA(FRG)
case (as the vacuum term is included). Hence, the parameters have to differ in order to
render the same physical results. Including the full FRG flow, there are also vacuum
contributions from the mesons. Thus, the FRG UV couplings turn into starting values
for the FRG flow that renders the physical couplings for k = 0. The gap equations

∂Ũ

∂σl

∣∣∣∣∣
σl=〈σl〉,σs=〈σs〉

= 0 ,
∂Ũ

∂σs

∣∣∣∣∣
σl=〈σl〉,σs=〈σs〉

= 0 (D.4)

render hl and hs, respectively:

hl =
∂U(ρ1, ρ̃2)− cξ

∂σl

∣∣∣∣
〈σl〉,〈σs〉

, hs =
∂U(ρ1, ρ̃2)− cξ

∂σs

∣∣∣∣
〈σl〉,〈σs〉

. (D.5)

The derivatives can be directly translated into physical observables (cf. Ref. [70, 69],
and App. C):

hl = fπm
2
π , hs =

√
2fKm

2
K −

1√
2
fπm

2
π . (D.6)

The pion mass is taken to be mπ = 138 MeV, the Kaon mass mK = 496 MeV, the
decay constants are fπ = 92.4 MeV and fK = 113 MeV. This gives hl = (120.73 MeV)3

and hs = (336.41 MeV)3. It has also been used that (PCAC relations)

〈σl〉 = fπ = 92.4 MeV , 〈σs〉 =
1√
2

(2fK − fπ) = 94.5 MeV . (D.7)

In sMFA, c = 4807.84 MeV can be determined analytically by fixing the sum of the
squared masses of η and η′ [70], but the same value will be used for rMFA and full FRG
as well [71]. In the case of rMFA and full FRG, the chosen UV cutoff is Λ = 1 GeV. In
the FRG flow, we use kIR = 100 MeV and in rMFA we integrate down to kIR = 1 MeV.
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Furthermore, we use the Yukawa coupling strength g = 6.5 which gives constituent
quark masses of

ml =
g

2
〈σl〉 ≈ 300 MeV , ms =

g√
2
〈σs〉 ≈ 434 MeV . (D.8)

The sigma meson mass has been set to 560 MeV in this work. There is still no clarity
from the experimental side on the exact value of the sigma resonance. Consequently,
many figures seen in literature include results that are fitted to various sigma masses
of the possible spectrum. The corresponding full FRG starting values are taken from
Ref. [71], the sMFA values from Ref. [84], the rMFA starting values have been fitted
via a differential evolution (DE) global minimization algorithm [96]. For Nf = 2, the
obvious simplifications happen (all parameters related to strangeness drop out) and we
have less starting parameters:

ŨΛ = UΛ(ρ)− hlσ (D.9)

with
UΛ(ρ) = m2ρ+ λρ2 (D.10)

in mean field approximation and

UΛ(ρ) = a1ρ+
a2

2
ρ2 (D.11)

in the FRG solution. All other parameters have the same value as the corresponding
ones in the 2+1-flavor case. All two-flavor couplings have been fitted via the differential
evolution algorithm. The couplings and starting parameters are displayed in Tab. 2.

Nf = 2 m2 [MeV2] λ

sMFA −(358.1)2 17.25

rMFA 901.092 −5.38

Nf = 2 a1 [MeV2] a2

FRG 711.982 10.11

Nf = 2 + 1 m2 [MeV2] λ1 λ2

sMFA 384.712 −0.36 46.48

rMFA 1040.892 −2.65 11.73

Nf = 2 + 1 a10 [MeV2] a20 a01

FRG 542.222 36 50

Table 2: Couplings for different approaches towards the QM model with mσ = 560 MeV
and explicitly broken U(1)A symmetry.
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[92] P. Pósfay, G. G. Barnaföldi, and A. Jakovác, “The effect of quantum fluctuations
in compact star observables”, 1710.05410v1.

[93] C. G. van Weert, “Statistical Field Theory - An Introduction to Real- and
Imaginary-time Thermal Field Theory”. Lecture Notes, 2001.
https://staff.fnwi.uva.nl/c.g.vanweert/Lecnotes/thermal_notes.pdf.

[94] M. Laine and A. Vuorinen, “Basics of Thermal Field Theory - A Tutorial on
Perturbative Computations”, Springer, 2016.

[95] N. P. van der Aa, H. G. ter Morsche, and R. R. M. Mattheij, “Computation of
eigenvalue and eigenvector derivatives for a general complex-valued eigensystem”,
Electronic Journal of Linear Algebra 16 (2007) 300–314, https://www.emis.de/
journals/ELA/ela-articles/articles/vol16_pp300-314.pdf.

[96] R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces”, Journal of global optimization 11
(1997), no. 4, 341–359.

http://xxx.lanl.gov/abs/hep-th/9507093
http://xxx.lanl.gov/abs/1312.3850v1
http://xxx.lanl.gov/abs/1604.01717v1
http://xxx.lanl.gov/abs/1709.05991v1
http://xxx.lanl.gov/abs/1112.5401
http://xxx.lanl.gov/abs/1306.2897
http://xxx.lanl.gov/abs/1710.05410v1
https://staff.fnwi.uva.nl/c.g.vanweert/Lecnotes/thermal_notes.pdf
https://www.emis.de/journals/ELA/ela-articles/articles/vol16_pp300-314.pdf
https://www.emis.de/journals/ELA/ela-articles/articles/vol16_pp300-314.pdf


 

 

 

Selbstständigkeitserklärung 

Hiermit versichere ich, die vorgelegte Thesis selbstständig und ohne unerlaubte fremde Hilfe 

und nur mit den Hilfen angefertigt zu haben, die ich in der Thesis angegeben habe. Alle 

Textstellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen sind, 

und alle Angaben die auf mündlichen Auskünften beruhen, sind als solche kenntlich 

gemacht. Bei den von mir durchgeführten und in der Thesis erwähnten Untersuchungen 

habe ich die Grundsätze gute wissenschaftlicher Praxis, wie sie in der ‚Satzung der Justus-

Liebig-Universität zur Sicherung guter wissenschaftlicher Praxis‘ niedergelegt sind, 

eingehalten. Gemäß § 25 Abs. 6 der Allgemeinen Bestimmungen für modularisierte 

Studiengänge dulde ich eine Überprüfung der Thesis mittels Anti-Plagiatssoftware. 

 

   

Datum  Unterschrift 

 


	Introduction
	Neutron Stars
	Properties
	Tolman-Oppenheimer-Volkoff Equation
	Stability
	Restrictions on Equation of State

	Quantum Chromodynamics
	Chiral Symmetry
	Asymptotic Freedom and Confinement
	Phase Diagram
	Effective Low-energy Description
	Partial Bosonization

	The Quark-meson Model
	Explicit Symmetry Breaking
	The Two-flavor QM Model
	The 2+1-flavor QM Model

	Mean Field Approximation
	Functional Renormalization Group Approach
	Wetterich Equation
	Local Potential Approximation
	Application to Quark-meson Model
	Renormalized Mean Field Approximation

	Numerical Implementation
	One- and Two-dimensional Grid
	Calculating the Equation of State
	Solving the Tolman-Oppenheimer-Volkoff Equation

	Numerical Results
	Chiral Condensates
	Meson Masses
	Influence of Grid Configuration
	Phase Diagram
	Thermodynamic Properties
	Application to Neutron Stars
	Influence of Infrared Cutoff

	Summary and Outlook
	Matsubara Formalism
	Analytic Limits
	Meson Masses
	Mean Field Approximation
	Functional Renormalization Group

	Parameter Fixing

