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1. Introduction

The interaction between nucleons, the nuclear force, is one of the main problems in
nuclear physics. Yukawa made the first attempt to explain the nature of this force. His
idea was that the interaction between two nucleons (NN interaction) is mediated via a
third particle, called exchange boson [29]. This was the origin of a huge family of NN
potential models, which are constructed out of potentials of the Yukawa type and called
one-boson-exchange (OBE) models.

Nucleons are baryons and consist of three quarks, two up (u) and one down (d) quark
form a proton while one u and two d quarks form a neutron. The interaction between the
quarks is described by quantumchromodynamics (QCD), which is highly non-perturbative
for the energy scale of nuclear physics. However, for this scale of low energies, QCD
predicts the confinement of quarks into hadrons. OBE potentials are very successful
in describing the experimental data, even though the coupling between nucleons (and
all other hadrons) is not fundamental [18]. In recent years, chiral perturbation theory
has been developed as an interesting QCD-inspired alternative approach, providing in
principle a systematic ordering scheme for the various classes of diagrams contributing
to baryon-baryon (BB) interactions [14].

Another type of baryons are the hyperons. They belong to the same flavor octet as the
nucleons but have a different quark content: one of the u or d quarks is substituted by a
strange (s) quark. An extension of the interaction model to hyperons is eligible, because
strangeness-rich systems are important in understanding relativistic heavy-ion collisions,
hypernuclei and astrophysical problems [28]. The scattering data for NN interaction
are rich and accurate, as well are the NN potential models. Since there is less data for
hyperon-nucleon (Y N) scattering, the empirically best-known strong interaction is the
NN interaction [18], but OBE models can be used for describing the Y N interaction
as well as the NN interaction [28]. Hence, a OBE model will be used for constructing
a Y N potential in this work. A clear advantage of OBE models, e.g. over the present
day chiral approaches, is their very transparent operator structure dictated by basic
requirements of Lorentz-invariance and the symmetries of strong interaction physics.

The second main research question of this work is the in-medium interaction of hyperons
and nucleons, which is of interest e.g. for the study of hypernuclei. An simple way
to include in-medium effects can be performed by assuming the interaction to occur
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1. Introduction

in infinite nuclear matter. The effect of infinite nuclear matter can be included in the
scattering integral equation in terms of a Pauli projection operator [15].

This work is organized as follows: In the first chapter, the idea of two particle scattering
will be introduced and a scattering integral equation, namely the R-matrix equation
will be derived. Then, in the second chapter, a non relativistic NN potential for singlet
scattering in momentum space will be derived from the Bonn potential. The derived
potential and the R-matrix equation will be tested and compared to experimental data
and theoretical predictions of other OBE models. In the third chapter, this potential is
used as basis in order to obtain a Y N potential. The Y N potential will be constructed
via fitting the modified NN potential on phase shift predictions of the Jülich group [16].
In the last chapter, the in-medium interaction is treated via including a two particle
Pauli projection operator in the scattering equation. Finally, the results for in-medium
Y N interaction are given.
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2. Scattering Theory

In this section, a short introduction to scattering processes will be given. First, the
scattering in laboratory frame and the Mandelstam variable are introduced briefly.

In the main part, an integral equation for two-particle scattering is derived. Starting
from a four-dimensional Bethe-Salpeter equation for the complex invariant scattering
amplitude, we will achieve a one-dimensional Lippmann-Schwinger equation for a real
scattering matrix in partial wave decomposition taking into account couplings between
states of different particles and different quantum numbers. Emphasis is put on the
structure of the propagator, while the other components of the scattering equations (i.e.
potential and scattering matrix) will be discussed in detail in subsequent chapters. We
follow the explanations in [18] and [15] closely, where a detailed derivation of integral
equations for two particle-scattering can be found.

Finally, the main properties (e.g. cross sections and low energy parameters) for comparing
theoretical calculations to the experiment as well to each other will be introduced.

2.1. Kinematics

Observing the scattering process in labora-
tory frame as shown in fig. 2.1, we find one
particle moving with momentum ~pLab (parti-
cle 1, called projectile), while the other par-
ticle is at rest (particle 2, called target). Af-
ter the scattering, both particles are moving
with momenta ~p′1,2 in an angle ϑ1,2 relative
to the direction of ~pLab.

Figure 2.1.: Scattering of two particles
in laboratoy frame [10].

The four-momenta of particle 1 and 2 are:

p1 =
(
E1 (~pLab)
~pLab

)
, p2 =

(
E2
(
~0
)

~0

)
(2.1)
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2. Scattering Theory

Ei denotes the relativistic energy of particle i:

E2
i (~p) = ~p2 +M2

i (2.2)

A conserved quantity of the scattering process is the squared total energy, i.e. the
Mandelstam variable s. For scattering of particle 1 and 2 in the initial state into particle
3 and 4 in the final state it is defined as

s = (p1 + p2)2 = (p3 + p4)2 . (2.3)

The total energy then is defined as
√
s.

For convenience, especially in transformations between different reference frames, we
define the laboratory frame properties in terms of s and find for the absolute value of
the momentum of the projectile

pLab =

√√√√(s−M2
1 −M2

2
2M2

)2

−M2
1 (2.4)

and its kinetic energy

TLab = E1 (~pLab)−M1 = s− (M1 +M2)2

2M2
. (2.5)

2.2. Bethe-Salpeter Equation

The Bethe-Salpeter (BS) equation is utilized to describe two particle scattering covariantly.
It is a four-dimensional integral equation and can be written in operator notation as

T = V + VGT (2.6)

Here, T is the invariant amplitude, G is the relativistic propagator of the scattering
process and V is the sum of all connected two particle irreducible diagrams [18]. In an
arbitrary frame the BS equation can be written as

T (q′, q|P ) = V (q′, q|P ) +
∫ d4k

(2π)4V (q′, q|P )G (k|P ) T (k, q|P ) (2.7)

with initial, intermediate, and final relative four-momenta q, k and q′ in center-of-mass
(c.m.) frame, which is defined as the frame, where the sum over the momenta of all
particles equals zero.

The total four-momentum P is directly related to the Mandelstam variable by

s = P 2. (2.8)

The BS equation is a four-dimensional integral equation. As such it is difficult to solve.
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2.2. Bethe-Salpeter Equation

2.2.1. Three-Dimensional Reduction

We want to solve the BS equation numerically, thus three-dimensional reductions are
sufficient. They should be covariant and satisfy relativistic elastic unitarity as the original
BS equation does. These reductions are not unique, but they usually are derived by
decomposing 2.6 into the two coupled equations

T =W +WgT (2.9)
W =V + V (G − g)W . (2.10)

Here, g is the covariant three-dimensional propagator with same elastic unitarity as G in
the physical region [18]. By dropping the second term in the right hand side of 2.10, we
achieve a simplification of the problem and can write

T = V + VgT . (2.11)

2.2.2. Blankenbecler-Sugar Propagator

The Blankenbecler-Sugar (BbS) propagator [4] is a possible choice for g:

gBbS(k, s) =−
∫ ∞

(M1+M2)2

ds′

s′ − s− iε
· δ
(
k2

1 −M2
1

)
δ
(
k2

2 −M2
2

)
Λ+ (k1,M1) Λ+ (k2,M2) (2.12)

Here, the integration variable s′ is the total energy of the intermediate state and s is
the total energy of the initial state. The δ-functions project the intermediate off-shell
four-momenta ki on the mass-shells Mi, and Λ+ (ki,Mi) is the positive-energy projection
operator for particle i with mass Mi.

The intermediate off-shell four-momenta ki are defined as

k1 =x1P + k (2.13)
k2 =x2P − k. (2.14)

with the invariant weights given in the c.m.-frame as

xi = xi
(
~k
)

=
Ei
(
~k
)

E1
(
~k
)

+ E2
(
~k
) . (2.15)

The weights fulfill x1 + x2 = 1 and are composed of the relativistic energies (eq. 2.2).
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2. Scattering Theory

Additionally, the weights are related to arbitrary s′ 6= s through

P 2 = (k1 + k2)2 = s′, P =
(
P0
~0

)
, P0 =

√
s′. (2.16)

This choice gives for the ki and the relative intermediate off-shell four-momentum k

k1 =
(
x1P0
~k

)
, k2 =

(
x2P0

−~k

)
(2.17)

k =x2k1 − x1k2 =
(
P0 (x2x1 − x1x2)

~k

)
=
(

0
~k

)
. (2.18)

Thus, k is a space-like four-vector and P is a time-like four-vector, which is consistent
with our desired description in c.m. frame. Evaluation of the delta functions gives the
requirements

k2
1 = (x1P + k)2 = x2

1s
′
1 − ~k2 != M2

1 (2.19)

k2
2 = (x2P + k)2 = x2

2s
′
2 − ~k2 != M2

2 . (2.20)

Solving these equations for s′ we find using eq. 2.15

s′i =
E2
i

(
~k
)

x2
i

(
~k
) =

[
E1
(
~k
)

+ E2
(
~k
)]2

= s′. (2.21)

But at this point we stay at the notation of the s′i rather than substituting all of them
by s′. Using this result leads to the following form of the propagator:

gBbS(k, s) =− δ (k2
1 (s′2)−M2

1 )
s′2 − s− iε

Λ+ (k1 (s′2) ,M1) Λ+ (k2 (s′2) ,M2)

− δ (k2
2 (s′1)−M2

2 )
s′1 − s− iε

Λ+ (k1 (s′1) ,M1) Λ+ (k2 (s′1) ,M2) (2.22)

In the next step we have to evaluate the remaining δ-functions. The evaluation is carried
out using a relative four-momentum with non-zero time-like component: k =

(
k0, ~k

)
.

Consequently, we reformulate the ki, again:

k2
1 (s′2) = (x1P + k)2 = x2

1P
2
0 + 2x1k0P0 + k2

0 − ~k2

=k0
[
k0 + 2E1

(
~k
)]

+M1 (2.23)

k2
2 (s′1) = (x2P + k)2 = x2

2P
2
0 − 2x2k0P0 + k2

0 − ~k2

=k0
[
k0 − 2E2

(
~k
)]

+M2 (2.24)
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2.2. Bethe-Salpeter Equation

Where eqs. 2.15, 2.2 and 2.16 have been used. Now we can evaluate the δ-functions and
we find (using the familiar properties of the δ-function):

δ
(
k2

1 (s′2)−M2
1

)
=δ

(
k0
[
k0 + 2E1

(
~k
)])

= 1
2E1

(
~k
)δ (k0) (2.25)

δ
(
k2

2 (s′1)−M2
2

)
=δ

(
k0
[
k0 − 2E2

(
~k
)])

= 1
2E2

(
~k
)δ (k0) (2.26)

Which is in agreement with our previous assumption of a space like k. Inserting this
results and now substituting s′i = s′ (eq. 2.21), we find the propagator

gBbS(k, s) =− δ (k0)
2

1
s′ − s− iε

 1
E1
(
~k
) + 1

E2
(
~k
)
Λ+ (k1,M1) Λ+ (k2,M2)

= δ (k0)
2ε12

(
~k
) 1
s−

[
E1
(
~k
)

+ E2
(
~k
)]2
− iε

Λ+ (k1,M1) Λ+ (k2,M2) (2.27)

=δ (k0) gBbS
(
~k, s

)
with the reduced energy

εij
(
~k
)

=
Ei
(
~k
)
Ej
(
~k
)

Ei
(
~k
)

+ Ej
(
~k
) k→0−→ MiMj

Mi +Mj

= µij. (2.28)

2.2.3. Reduced BS Equation

We now can write the BS equation in the three dimensional reduction as

T
(
~q′, ~q |

√
s
)

= V
(
~q′, ~q

)
+
∫ d3k

(2π)3V
(
~q′, ~q

)
gBbS

(
~k , s

)
T
(
~k, ~q |

√
s
)
. (2.29)

After taking the matrix elements between positive-energy spinors and executing the
Λ+ (ki,Mi) we find

T̂
(
~q′, ~q

)
= V̂

(
~q′, ~q

)
+
∫ d3k

(2π)3 V̂
(
~q′, ~q

) 1
2ε12

(
~k
) 1
s−

(
E1
(
~k
)

+ E2
(
~k
))2

+ iε
T̂
(
~k, ~q

)
.

(2.30)
With the total energy s = (E1 (~q) + E2 (~q))2 of the initial state. The spin, helicity, and
isospin indices are suppressed at this point.

7



2. Scattering Theory

Figure 2.2.: ĝ
(
~k, ~q

)
for NN → NN , ΛN → ΣN , and ΣN → ΛN scattering.

Thus, the propagator reads

ĝ
(
~k, ~q

)
= 1

2ε12
(
~k
) 1

(E1 (~q) + E2 (~q))2 −
(
E1
(
~k
)

+ E2
(
~k
))2

+ iε
(2.31)

In fig. 2.2 the propagator ĝ
(
~k, ~q

)
is plotted for NN → NN , ΛN → ΣN , and ΣN → ΛN

scattering as function of the initial as well as the final momenta.

2.3. Lippmann-Schwinger Equation

The poles of the propagator ĝ
(
~k, ~q

)
are on different positions, depending on the mass

difference between initial and final channel. Only if the masses of initial and final channel
are identical (e.g. for NN → NN) the pole is placed on |~q| =

∣∣∣~k∣∣∣ and thus can be treated
easily in numerical calculations. Henceforth, we want to solve the scattering equation
in shape of a Lippmann-Schwinger (LS) equation. That means we want to have the

8



2.4. R-Matrix Equation

propagator in a shape that satisfies a dispersion relation in the momentum rather than
in s. In order to achieve this, we follow the description in [20] and define T and V as

〈f |V | i〉 = 1√
4µ34 (E3 (q′) + E4 (q′))

〈f
∣∣∣V̂ ∣∣∣ i〉 1√

4µ12 (E1 (q) + E2 (q))
(2.32)

〈f |T | i〉 = 1√
4µ34 (E3 (q′) + E4 (q′))

〈f
∣∣∣T̂ ∣∣∣ i〉 1√

4µ12 (E1 (q) + E2 (q))
. (2.33)

Here, i (f) denotes the initial (final) state with particles 1 and 2 (3 and 4) and relative
momentum q (q′). The reduced mass is defined as

µij = MiMj

Mi +Mj

. (2.34)

Now choosing the propagator to be

g
(
~kn, ~qn

)
= 1

2
1

En1

(
~kn
)

+ En2

(
~kn
) 1
~q2
n − ~kn

2
+ iε

(2.35)

we find the LS equation

〈3, 4, q′ |T | 1, 2, q〉 = 〈3, 4, q′ |V | 1, 2, q〉+
∑
n

∫ d3~k

(2π)3 〈3, 4, q
′ |V |n1, n2, kn〉

· 2µn1n2

~qn
2 − ~kn

2
+ iε
〈n1, n2, kn |T | 1, 2, q〉.

(2.36)

The poles of the propagator g
(
~kn, ~qn

)
have moved to |~qn| =

∣∣∣ ~kn∣∣∣. Subsequently, the
treatment of the poles is more easy.

2.4. R-Matrix Equation

We want to solve the LS equation numerically. Hence, it is desirable to use only real
numbers, because it allows for calculating a lot faster [18]. In order to achieve a description
through real numbers, we express the T -matrix in terms of the R-matrix:

T = R

1− iR (2.37)

The LS equation for the R-matrix for a given s is [18]:

R
(
~q′, ~q

)
= V

(
~q′, ~q

)
+ P

∑
n

∫ d3~k

(2π)3 V
(
~q′, ~kn

)
G
(
~kn, ~qn

)
R
(
~kn, ~q

)
(2.38)
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2. Scattering Theory

Here, q′, q, and k denote the relative four-momenta of the particles in the initial,
intermediate, and final state, again. P denotes the principal value. Its treatment is
described in detail in appendix A. In operator notation this equation reads

R = V + V GR. (2.39)

G
(
~kn, ~qn

)
is the Green’s function. It has the shape

G
(
~kn, ~qn

)
= 2µn1n2

~qn
2 − ~kn

2 (2.40)

Here, µn1n2 is the reduced mass of the intermediate system (eq. 2.34). qn denotes the
on-shell momentum and kn the intermediate momentum in intermediate state n.

2.4.1. Uncoupled Channels

If initial, intermediate, and final state have the same particle content, i.e. f = i =
(n1, n2) = (1, 2), we find

T
(
~q′, ~q

)
= V

(
~q′, ~q

)
+ P

∫ d3~k

(2π)3 V
(
~q′, ~k

)
G
(
~k, ~q

)
T
(
~k, ~q

)
(2.41)

with the Green’s function
G
(
~k, ~q

)
= 2µ12

~q2 − ~k2
. (2.42)

2.5. Decomposition in Partial Waves

Strong interaction conserves total angular momentum J and parity π = (−1)L. There-
fore, transitions between different Jπ are prohibited and these channels can be treated
separately. For short range interactions only the lower partial waves are important. The
decomposition of a potential is exemplified in appendix D.

The Y N interaction is spin dependent, therefrom non central and spin-dependent forces
occur. Furthermore, orbital angular momentum and spin are not conserved individually.
However, the sum ~J = ~L+ ~S is conserved.

In order to keep the notation simple, we perform the following derivations for an uncoupled
channel, i.e. eq. 2.41. The calculations for coupled channels can be done in an analogous
way.

The next step is aiming at solving the R-matrix equation for certain values of L, S and
J . First we consider the spin of the particles. Since only baryons are involved, only a
particle spin of 1

2 occurs. We start with writing the LS-equation in helicity basis.
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2.5. Decomposition in Partial Waves

2.5.1. Helicity Basis

The helicity H of a particle is defined by the component of its spin ~S in direction of its
motion with momentum ~p [10]:

H =
~S · ~p∣∣∣~S∣∣∣ · |~p| (2.43)

This means a particle with spin parallel to the direction of its momentum has positive
helicity (denoted by +) and is called “right-handed”. If the spin is antiparallel to the
direction of motion, the helicity is negative (−) and the particle is called “left-handed”.

We now can write the R-matrix equation in partial wave decomposition with respect to
all possible combination of helicities before, during and after the scattering process:

〈λ′1λ′2
∣∣∣RJ (q′, q)

∣∣∣λ1λ2〉 =〈λ′1λ′2
∣∣∣V J (q′, q)

∣∣∣λ1λ2〉

+
∑
h1h2

P
∫ dk

2π2 〈λ
′
1λ
′
2

∣∣∣V J (q′, k)
∣∣∣h1h2〉G (k, q) 〈h′1h′2

∣∣∣RJ (k, q)
∣∣∣λ1λ2〉

(2.44)

The angle integration has been executed, leading to a factor 4πk2. The integration now
is one dimensional, and the remaining dependence on k has been moved into the Green’s
function:

G (k, q) = 2µk2

q2 − k2 (2.45)

Here RJ is the R-matrix with the total angular momentum J , h1 and h2 are the
intermediate helicities of particle 1 and 2, λ1 and λ2 the initial and λ′1 and λ′2 the final
helicities. Throughout the rest of the chapter only absolute three-momenta are needed.
They are denoted by

∣∣∣~k∣∣∣ = k, |~q| = q,
∣∣∣~q′∣∣∣ = q′, for simplicity.

Ignoring antiparticles, 〈λ′1λ′2
∣∣∣RJ(q′, q|P )

∣∣∣λ1λ2〉 includes 24 = 16 different helicity am-
plitudes. Due to parity conservation, total spin conservation, and the time reversal
invariance, they can be reduced to 6 independent amplitudes (which are partly decou-
pled):

0RJ =〈+ +
∣∣∣RJ

∣∣∣+ +〉 − 〈+ +
∣∣∣RJ

∣∣∣−−〉 (2.46)
1RJ =〈+−

∣∣∣RJ
∣∣∣+−〉 − 〈+− ∣∣∣RJ

∣∣∣−+〉 (2.47)
12RJ =〈+ +

∣∣∣RJ
∣∣∣+ +〉+ 〈+ +

∣∣∣RJ
∣∣∣−−〉 (2.48)

34RJ =〈+−
∣∣∣RJ

∣∣∣+−〉+ 〈+−
∣∣∣RJ

∣∣∣−+〉 (2.49)
5RJ =〈+ +

∣∣∣RJ
∣∣∣+−〉 (2.50)

6RJ =〈+−
∣∣∣RJ

∣∣∣+ +〉 (2.51)

11



2. Scattering Theory

For 〈λ′1λ′2
∣∣∣V J(q′, q|P )

∣∣∣λ1λ2〉 we introduce corresponding definitions. We could solve the
R-matrix equation in helicity basis at this point, but usually this is done in another basis,
the LSJ basis.

2.5.2. LSJ Basis

The representation of two baryon systems in terms of |LSJM〉 states is more common in
nuclear physics than the representation in helicity space. Here, L denotes the relative
orbital angular momentum, J the total angular momentum with projection M , and S
the total spin. The channels are named 2S+1LJ . Hence the uncoupled state with the
lowest numbers is called 1S0, this means S = 0, J = 0, and L = 0. The only other state
with J = 0 is named 3P0 in this convention; here the quantum numbers are S = 1, J = 0,
and L = J + 1 = 1.

Transformation from helicity basis to LSJ basis yields coupling between channels of same
total angular momentum J and parity π, written as Jπ. However, the orbital angular
momentum of the coupled channels is not identical, but has a difference of 2 (L = J ± 1).
The R-matrix elements are denoted by L′LRJ = 〈L′SJM

∣∣∣RJ
∣∣∣LSJM〉, here + refers to

L,L′ = J + 1, − refers to L,L′ = J − 1. The unitary transformation can be described by
[18]:

0RJ =0RJ (2.52)
1RJ =1RJ (2.53)

++RJ = 1
2J + 1

[
(J + 1) 12RJ + J 34RJ − 2

√
J (J + 1)

(
5RJ + 6RJ

)]
(2.54)

−−RJ = 1
2J + 1

[
J 12RJ + (J + 1) 34RJ + 2

√
J (J + 1)

(
5RJ + 6RJ

)]
(2.55)

+−RJ =− 1
2J + 1

[√
J (J + 1)

(
12RJ − 34RJ

)
+ 2 (J + 1) 5RJ − 2J 6RJ

]
(2.56)

−+RJ =− 1
2J + 1

[√
J (J + 1)

(
12RJ − 34RJ

)
− 2J 5RJ + 2 (J + 1) 6RJ

]
(2.57)

Thus, the uncoupled channels 0RJ and 1RJ remain unchanged and the R-matrix equation
in LSJ basis of these channels can be written in the familiar form as

0RJ(q′, q) = 0V J(q′, q) + P
∫ dk

2π2
0V J(q′, k)G(k, q)0RJ(k, q) (2.58)

for the singlet and

1RJ(q′, q) = 1V J(q′, q) + P
∫ dk

2π2
1V J(q′, k)G(k, q)1RJ(k, q) (2.59)

12



2.5. Decomposition in Partial Waves

for the uncoupled triplet, while for the coupled triplet we find the coupled equations

++RJ(q′, q) = ++V J(q′, q) + P
∫ dk

2π2

[
++V J(q′, k)G(k, q)++RJ(k, q)

++−V J(q′, k)G(k, q)−+RJ(k, q)
]

(2.60)

−−RJ(q′, q) = −−V J(q′, q) + P
∫ dk

2π2

[
−+V J(q′, k)G(k, q)+−RJ(k, q)

+−−V J(q′, k)G(k, q)−−RJ(k, q)
]

(2.61)

−+RJ(q′, q) = −+V J(q′, q) + P
∫ dk

2π2

[
−+V J(q′, k)G(k, q)−+RJ(k, q)

+−−V J(q′, k)G(k, q)−+RJ(k, q)
]

(2.62)

+−RJ(q′, q) = +−V J(q′, q) + P
∫ dk

2π2

[
++V J(q′, k)G(k, q)+−RJ(k, q)

++−V J(q′, k)G(k, q)+−RJ(k, q)
]
. (2.63)

For coupled channels, the R-matrix equation can be written in operator notation as(
++RJ +−RJ

−+RJ −−RJ

)
=
(

++V J +−V J

−+V J −−V J

)
+
(

++V J +−V J

−+V J −−V J

)(
G 0
0 G

)(
++RJ +−RJ

−+RJ −−RJ

)
.

(2.64)

Now we can write the LS equation for scattering in singlet and triplet partial waves
including the coupling between different orbital angular momenta as well as coupling
between different particle channels. All of these can be solved using the Fredholm method,
which is described in appendix A.
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2. Scattering Theory

2.6. Phase Shifts

Phase shifts describe the modification of the wave function through the scattering process.
They can be expressed in terms of the on-shell R-matrix elements. For an uncoupled
channel the relation is [18]:

δJ = arctan
(
−q µ2πR

J
)

(2.65)

Here q is the on-shell momentum and µ the reduced mass of the channel.

For coupled channels the Blatt-Biedenharn eigenphase shifts [5] can be related to the
on-shell R-matrix elements through the relations [18]

δJ+ = arctan
(
−q+

µ+

4π

(
−−RJ + ++RJ −

−−RJ − ++RJ

cos (εJ)

))
(2.66)

δJ− = arctan
(
−q−

µ−
4π

(
−−RJ + ++RJ +

−−RJ − ++RJ

cos (εJ)

))
(2.67)

εJ =1
2 arctan

(
−2

+−RJ

−−RJ − ++RJ

)
. (2.68)

Another convention for the phase shifts of coupled channels are the bar-phase shifts or
Stapp phase shifts [26]. They are related to the Blatt-Biedenharn eigenphase shifts as

ε =1
2 arcsin [sin (δ+ − δ−) sin (2ε)] (2.69)

δ1 =1
2

[
δ+ + δ− + arcsin

(
tan (2ε)
tan (2ε)

)]
(2.70)

δ2 =δ+ + δ− − δ1. (2.71)

If the coupling ε is small, the bar and eigenphase shifts show only a small difference. For
uncoupled channels, bar and eigenphase shifts become identical:

ε
ε→0−→ 0, δ1

ε→0−→ δ+, δ2
ε→0−→ δ− (2.72)

The scattering matrix (or S-matrix) can be parameterized in terms of both phase shift
conventions [21]:

S =
(

cos ε − sin ε
sin ε cos ε

)(
e2iδ+ 0

0 e2iδ−

)(
cos ε sin ε
− sin ε cos ε

)
(2.73)

=
 e2iδ1 cos (2ε) iei(δ1+δ2) sin (2ε)
iei(δ1+δ2) sin (2ε) e2iδ2 cos (2ε)

 . (2.74)

For the uncoupled case we find
S = e2iδ. (2.75)
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2.7. Cross Sections

2.7. Cross Sections

We will concentrate on scattering in the singlet-even (SE) channel (1S0 in LSJ notation).
The cross section for this channel can be calculated as [10]

σij = 4π
q2
i

|Cij|2 . (2.76)

The Cij are the elements of the scattering amplitude T and related to the S-matrix
through

Cij = Tij = 1
2i (Sij − δij) . (2.77)

For the uncoupled case we find
σ = 4π

q2
i

sin2 (δ) . (2.78)

2.8. Low-Energy Parameters

An important and convenient measure of the interaction is obtained from the effective-
range (ER) expansion. For q → 0 the S-wave R-matrix elements behave as tan 0δ0

q
, and

can be expanded as
q

tan 0δ0 = q cot 0δ0 ≈ − 1
as

+ 1
2rsq

2 (2.79)

with the low-energy (LE) parameters as and rs, the scattering length and the effective
range. as is positive, if a bound state exists and negative, if that is not the case. The
relation of the low energy parameters to the cross section is [25]

lim
q→0+

σ = 4πa2 +O
(
k2
)
. (2.80)

The cross section for low momenta thus is dominated by the scattering length.

The LE parameters are determined from the phase shifts by applying the method of least
squares (described in more detail e.g. in [6]) in an interval of about q = 0.1− 1.0 MeV
with the polynomial

f (x) =
∑
n

znx
n, x = q2, n = 0, ..., N. (2.81)

N has to be chosen depending on the desired precision, but should be 1 or greater to
include rs.
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3. Nucleon-Nucleon Interaction

This chapter focuses on nucleon-nucleon (NN) interaction. We will use the results of
this chapter to describe hyperon-nucleon (Y N) interaction in the next chapter.

In the first part of this chapter, an introduction to the characteristics of the NN
interaction will be given and the model of interaction via exchange mesons will be
introduced. Afterwards, a non relativistic NN potential for scattering in momentum
space will be derived, using the Bonn potential [19] as the starting point. Emphasis will
be put on the potential for scattering in singlet states. In the last part the derived NN
potential for singlet-even (SE) scattering will be compared with experimental values and
theoretical predictions from other models.

3.1. Isospin

Since nucleons have isospin I = 1
2 , the total isospin |I1 − I2| ≤ T ≤ I1 + I2 of a two

nucleon system is either 0 or 1. The third isospin component is Iz = ±1
2 for protons p

and neutrons n, respectively. Thus, we find the total isospin three component of a two
nucleon system Tz = Iz1 ± Iz2 to be −1, 0, 1 for nn, pn and pp systems. As Tz can have
the values −T,−T + 1, ..., T − 1, T we find the nn and pp systems to consist of T = 1
alone, while the pn system can be composed of both total isospin values.

In case of treating the NN interaction in isospin space, both particles are identified
as nucleons N rather than as proton and / or neutron and thus have to be treated as
identical particles with Iz = 1

2 and s = 1
2 . This leads to the requirement of a quantum

number which guarantees the wave function of this system to be antisymmetric. Thus,
the total isospin T is no longer an independent quantum number, but has to fulfill the
following condition [18]

(−1)L+S+T = −1. (3.1)

That means, L+ S + T has to be an odd number.
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3.2. General Ansatz for the NN Potential

We will solve the R-matrix equation for cer-
tain partial waves. However, we need to
know which partial wave belongs to which
isospin. By using eq. 3.1 we can determine
the isospin for each partial wave. The results
for low partial waves are shown in tab. 3.1.

T partial waves
0 3S1, 1P1, 3D1, 3D2,...
1 1S0, 3P0, 1D2, 3P2,...

Table 3.1.: Isospin values T for NN -
partial waves in LSJ notation.

The potential, R-matrix equation, and all other quantities mentioned before can be calcu-
lated either in isospin or in particle base. In isospin space n and p are not distinguished,
but treated as identical nucleons. Therefore, there are only two cases; T = 0, 1. That
makes the calculation in isospin base simple and comfortable. On the other hand, the
calculation in particle base has the advantage, that physical particle masses are included.
Furthermore, it is possible to include coulomb interaction because of distinction of chan-
nels after total charge. Additionally, one can compare the results with the experimental
values and add the in-medium interaction.

We will use the isospin basis in this chapter because it allows for comparison of the
results of our model with other theoretical models which are using the isospin basis.

3.2. General Ansatz for the NN Potential

In 1935, Hideki Yukawa found a potential which describes the NN interaction via
exchange mesons [29]. He postulated the existence of an exchange meson, which later
was identified as the pion. In fig. 3.1 the Feynman diagrams for NN interaction via
virtual pions are shown.

Figure 3.1.: Strong interaction via exchange of virtual pions [10].

In coordinate space the Yukawa potential has the shape

V (r) = V0
e−r/R

r/R
; R = ~c

m
; V0 = −mg

2

4π . (3.2)
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3. Nucleon-Nucleon Interaction

The potential describes the interaction between two particles in a distance r mediated
through the exchange of a meson with the mass m.

0 1 2 3 4
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Figure 3.2.: V (r) for m = mπ, g = gπ
values taken from tab. 3.2.

A Yukawa potential for exchange of a
pion is shown in fig. 3.2. The coupling
strength g determines the strength of
the interaction, and thus the amplitude
of the potential. R denotes the effective
range of the potential. It decreases with
increasing m. As a result, heavy mesons
have a shorter range than light mesons.

The scattering equation is formulated in momentum space. We have to perform a Fourier
transform to obtain the potential in momentum space. For a spheric symmetric potential
this can be done via

f
(
~k
)

= 1∣∣∣~k∣∣∣ 2π2

∫ ∞
0

sin
(∣∣∣~k∣∣∣ r) f(r) r dr. (3.3)

For a detailed explanation of this procedure, see e.g. [22]. We find for the Yukawa
potential in momentum space:

V
(
~k
)

= 4π
(2π)3V0R

3 m2

~k2 +m2
= − g2

~k2 +m2

(
~c
2π

)3

(3.4)

Here, ~k denotes the interchanged momentum.

Assuming the NN interaction is mediated through mesons, the NN potential can be
determined by fitting the coupling constants of several Yukawa potentials with different
coupling strengths gi and masses mi to experimental data.

In fig. 3.3 the shape of the SE-NN potential in coordinate space is shown. The potential
can be divided in three parts with different properties: In the short range part (dark
shaded area), the potential is highly repulsive. This part is called the hard core. In the
intermediate range (light shaded area), the potential is attractive and approaches zero
with increasing radius r in the long range part.
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3.3. Bonn Potential
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Figure 3.3.: Schematic plot of the SE-NN
potential constructed of three exchange
mesons (see text).

As can be seen easily, a single Yukawa
potential does not fit the NN potential
shown in fig. 3.3 on the full range, but
the part where the potential becomes
less attractive. Thus we will use a One-
Boson-Exchange (OBE) potential. This
type of potentials is made up of a sum
of one-particle exchange amplitudes of
several bosons, the interchanged mesons.
The meson exchange picture for NN -
interactions has been applied success-
fully by various groups, e.g. the Ni-
jmegen models [27].

3.3. Bonn Potential

A well established and highly optimized OBE-model potential for NN -scattering is the
Bonn potential [18, 19]. It assumes the exchange of six non strange mesons with masses
below 1 GeV/c2 to be relevant for the NN interaction. Consequently, the potential is
constituted by summing up the potentials of the participating mesons:

V =
∑
β

Vβ, β = π, ρ, η, ω, δ, σ (3.5)

These mesons can be categorized within three groups with properties as shown in tab.
3.2:

Pseudoscalar Mesons Jπ = 0− (i.e. zero spin J = 0 and negative parity π = −):

π The pion is the lightest meson included in the model and thus provides the long
range part of the potential.

η The η-meson is the second lightest meson. It has a small coupling and provides
a less important part of the potential.

Scalar Mesons Jπ = 0+:

σ is a fictitious meson, which is a parameterization of the 2π exchange and provides
the attractive potential at intermediate range.

δ is the heaviest meson in the model. It has a weak coupling.
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3. Nucleon-Nucleon Interaction

Vector Mesons Jπ = 1−:

ω is a 3π resonance and responsible for the strong repulsive force of short range.

ρ is a 2π resonance.

The π, δ and ρ mesons are isovector mesons (I = 1). They have three charge states (+,
0 and −) and their potentials gain an additional factor τ1 · τ2, which leads to a factor −3
for T = 0 states [19].

Meson Jπ IG m [MeV] g2
NN

4π
fNN
gNN

Λ [MeV]
η 0− 0+ 548.8 3 − 1500
π 0− 1− 138.03 14.9 − 1300
σ 0+ 0+ 550 (715) 7.7823 (16.2061) − 2000
δ 0+ 1− 983 2.6713 − 2000
ω 1− 0− 782.6 20 0 1500
ρ 1− 1+ 769 0.95 6.1 1300

Table 3.2.: Properties of the mesons and parameters of the Bonn potential [19]. Values
in brackets apply to T = 0 states.

3.4. Non-Relativistic Momentum-Space Potential

Since the R-matrix equation is solved in momentum space, the potential has to be
displayed in momentum space too. Following [19], we therefore introduce two new
variables: the interchanged momentum ~k and the average momentum ~p. They are related
to the incoming and outgoing relative momenta ~q and ~q′ (which are defined in the same
way as in the previous chapter) by

~k =~q′ − ~q (3.6)

~p =1
2
(
~q′ + ~q

)
(3.7)

For the squared quantities two relations follow directly (k, p, q, and q′ marking absolute
values of three-momenta in the further description):

k2 =q′2 + q2 − 2q′q cosϑ (3.8)

p2 =k
2

4 + q′q cosϑ (3.9)
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3.5. Spin Dependence

A non-relativistic reduction of the Bonn NN potential can be achieved by expanding the
relativistic energies of the Bonn full model [19] in powers of k2 and q2 and keeping only
the lowest order. From [19] we take the expressions for the interaction via pseudoscalar
(ps), scalar (s), and vector (v) mesons:

Vps
(
~k, ~p

)
=−

g2
ps

4M2

(
σ1 · ~k

) (
σ2 · ~k

)
k2 +m2

ps

(3.10)

Vs
(
~k, ~p

)
=− g2

s

2M2
1

k2 +m2
s

[
2M2 − p2 + k2

4 − iS ·
(
~k × ~p

)]
(3.11)

Vv
(
~k, ~p

)
= 1
k2 +m2

v(
g2
v

2M2

[
2M2 + 3p2 − k2

4 + 3iS ·
(
~k × ~p

)
− σ1 · σ2

k2

2 + 1
2
(
σ1 · ~k

) (
σ2 · ~k

)]

+ gvfv
2M2

[
−k2 + 4iS ·

(
~k × ~p

)
− σ1 · σ2k

2 +
(
σ1 · ~k

) (
σ2 · ~k

)]
+ f 2

v

4M2

[
−σ1 · σ2k

2 +
(
σ1 · ~k

) (
σ2 · ~k

)])
(3.12)

Here, gi and fi are the coupling constants, M is the mass of the nucleon, and mi is the
mass of meson i.

3.5. Spin Dependence

The potentials in eqs. 3.10-3.12 include the spin dependence within four operators (shown
in tab. 3.3) and can be written as a sum of these. According to [15], the potential reads

V
(
~k, ~p

)
=
∑
α

ΩαVα, α = c, σ, SL, σk. (3.13)

Here, σi is the spin operator for baryon i and ~S = 1
2 (~σ1 + ~σ2) is the total spin operator.

central force Ωc = 1
spin-spin force Ωσ = ~σ1 · ~σ2

spin-orbit force ΩSL = −i S ·
(
~k × ~p

)
tensor force Ωσk =

(
~σ1 · ~k

) (
~σ2 · ~k

)
Table 3.3.: Operators of the NN potential.
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3. Nucleon-Nucleon Interaction

Ωσk can be decomposed into operators of good tensorial rank [19]

Ωσk = k2
(
S12 + 1

3~σ1 · ~σ2

)
(3.14)

with the rank-2 tensor S12 = 1
3

(
3(~σ1·~k)(~σ2·~k)

~k2 − ~σ1 · ~σ2

)
and the scalar (rank-0 tensor)

σ1σ2.

From comparison of eqs. 3.10-3.12 to eq. 3.13 and tab. 3.3 we find for the potential
factors Vα:

V ps
σk = −

g2
ps

4M2
1

k2 +m2
ps

,

V s
c = − g2

s

8M2
8M2 − 4p2 + k2

k2 +m2
s

, V s
SL = − g2

s

2M2
1

k2 +m2
s

,

V v
c = g2

v

M2

(
M2 + 3p2

2 −
k2

8 −
k2fv
2gv

)
1

k2 +m2
v

, V v
σ = −(gv + fv)2

4M2 k2 1
k2 +m2

v

,

V v
SL = −3g2

v + 4gvfv
2M2

1
k2 +m2

v

, V v
σk = (gv + fv)2

4M2
1

k2 +m2
v

V ps
c = V ps

σ = V ps
SL = V s

σ = V s
σk = 0 (3.15)

The Vα are dependent on k2 and p2 and thus on the absolute values of q′, q and cosϑ,
where ϑ is the angle between ~q′ and ~q.

3.6. Partial Wave Decomposition

In order to achieve a description of the NN potential in LSJ basis, we have to follow the
same procedure as we did for the R-matrix equation in section 2.5.

3.6.1. Helicity Basis

Following [15] and determining the helicities of baryon i before (λi) and after (λ′i) the
scattering, the six coupled potentials in helicity basis can be decoupled in a similar way
as we found for the the R matrix (eqs. 2.46-2.51):

0V J =〈+ +
∣∣∣V J

∣∣∣+ +〉 − 〈+ +
∣∣∣V J

∣∣∣−−〉 (3.16)
1V J =〈+−

∣∣∣V J
∣∣∣+−〉 − 〈+− ∣∣∣V J

∣∣∣−+〉 (3.17)
12V J =〈+ +

∣∣∣V J
∣∣∣+ +〉+ 〈+ +

∣∣∣V J
∣∣∣−−〉 (3.18)

34V J =〈+−
∣∣∣V J

∣∣∣+−〉+ 〈+−
∣∣∣V J

∣∣∣−+〉 (3.19)

22



3.6. Partial Wave Decomposition

5V J =〈+ +
∣∣∣V J

∣∣∣+−〉 (3.20)
6V J =〈+−

∣∣∣V J
∣∣∣+ +〉 (3.21)

In helicity space the potential can be written as

〈λ′1λ′2
∣∣∣V J

∣∣∣λ1λ2〉 =
∑
α

〈λ′1λ′2
∣∣∣W J

α

∣∣∣λ1λ2〉, α = c, σ, SL, σk (3.22)

The helicities λi and λ′i can be either positive or negative, which is denoted by + and
−. Thus there are sixteen helicity state amplitudes of 〈λ′1λ′2

∣∣∣V J
∣∣∣λ1λ2〉. Because of

time-reversal invariance, parity and spin conservation we need only six independent
matrix elements [15]:

〈+ +
∣∣∣W J

α

∣∣∣+ +〉 =1
2

∫ 1

−1
d cosϑ dJ00 (ϑ) 〈+ + |Ωα|+ +〉Vα (3.23)

〈+ +
∣∣∣W J

α

∣∣∣−−〉 =1
2

∫ 1

−1
d cosϑ dJ00 (ϑ) 〈+ + |Ωα| − −〉Vα (3.24)

〈+−
∣∣∣W J

α

∣∣∣+−〉 =1
2

∫ 1

−1
d cosϑ dJ11 (ϑ) 〈+− |Ωα|+−〉Vα (3.25)

〈+−
∣∣∣W J

α

∣∣∣−+〉 =1
2

∫ 1

−1
d cosϑ dJ−11 (ϑ) 〈+− |Ωα| −+〉Vα (3.26)

〈+ +
∣∣∣W J

α

∣∣∣+−〉 =1
2

∫ 1

−1
d cosϑ dJ10 (ϑ) 〈+ + |Ωα|+−〉Vα (3.27)

〈+−
∣∣∣W J

α

∣∣∣+ +〉 =1
2

∫ 1

−1
d cosϑ dJ01 (ϑ) 〈+− |Ωα|+ +〉Vα (3.28)

The Jacobi functions dJij (ϑ) can be expressed by the familiar Legendre polynomials
PJ (x). (For a short description of their properties see appendix C.)

dJ00 (ϑ) =PJ (cosϑ) (3.29)

dJ11 (ϑ) =
PJ (cosϑ) + J+1

2J+1PJ−1 (cosϑ) + J
2J+1PJ+1 (cosϑ)

1 + cosϑ (3.30)

dJ−11 (ϑ) =
−PJ (cosϑ) + J+1

2J+1PJ−1 (cosϑ) + J
2J+1PJ+1 (cosϑ)

1− cosϑ (3.31)

dJ10 (ϑ) =

√
J (J + 1)
2J + 1

PJ+1 (cosϑ)− PJ−1 (cosϑ)
sinϑ (3.32)

dJ01 (ϑ) =− dJ10 (ϑ) (3.33)
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3. Nucleon-Nucleon Interaction

In the next step we have to evaluate the mean values of Ωα in helicity basis. Following
[15] we can write the mean values of these operators in helicity basis:

〈λ′1λ′2 |Ωc|λ1λ2〉 =
(∣∣λ′1 + λ1

∣∣ cos ϑ2 +
(
λ′1 − λ1

)
sin ϑ2

)(∣∣λ′2 + λ2
∣∣ cos ϑ2 −

(
λ′2 − λ2

)
sin ϑ2

)
(3.34)

〈λ′1λ′2 |Ωσ|λ1λ2〉 =−
((
λ′1 + λ1

)
sin ϑ2 +

∣∣λ′1 − λ1
∣∣ cos ϑ2

)((
λ′2 + λ2

)
sin ϑ2 −

∣∣λ′2 − λ2
∣∣ cos ϑ2

)
−
(∣∣λ′1 + λ1

∣∣ sin ϑ2 − (λ′1 − λ1
)

cos ϑ2

)(∣∣λ′2 + λ2
∣∣ sin ϑ2 +

(
λ′2 − λ2

)
cos ϑ2

)
−
((
λ′1 + λ1

)
cos ϑ2 −

∣∣λ′1 − λ1
∣∣ sin ϑ2

)((
λ′2 + λ2

)
sin ϑ2 +

∣∣λ′2 − λ2
∣∣ sin ϑ2

)
(3.35)

〈λ′1λ′2 |ΩSL|λ1λ2〉 =− 1
2q
′q sinϑ[(∣∣λ′1 + λ1

∣∣ sin ϑ2 − (λ′1 − λ1
)

cos ϑ2

)(∣∣λ′2 + λ2
∣∣ cos ϑ2 −

(
λ′2 − λ2

)
sin ϑ2

)
+
(∣∣λ′1 + λ1

∣∣ cos ϑ2 +
(
λ′1 − λ1

)
sin ϑ2

)(∣∣λ′2 + λ2
∣∣ sin ϑ2 +

(
λ′2 − λ2

)
cos ϑ2

)]
(3.36)

〈λ′1λ′2 |Ωσk|λ1λ2〉 =− 4
(
λ′1q
′ − λ1q

) (
λ′2q
′ − λ2q

)(∣∣λ′1 + λ1
∣∣ cos ϑ2 +

(
λ′1 − λ1

)
sin ϑ2

)(∣∣λ′2 + λ2
∣∣ cos ϑ2 +

(
λ′2 − λ2

)
sin ϑ2

)
(3.37)

The mean values of 〈λ′1λ′2 |Ωα|λ1λ2〉 for the relevant helicity combinations in eqs. 3.23 -
3.28 are given in tab. 3.4.

Ωc Ωσ ΩSL Ωσk

〈+ + |Ωα|+ +〉 cosϑ+1
2

−3+cosϑ
2 − q′q

2 sin2 ϑ − (q′−q)2

2 (cosϑ+ 1)
〈+ + |Ωα| − −〉 cosϑ−1

2
3+cosϑ

2 − q′q
2 sin2 ϑ − (q′+q)2

2 (cosϑ− 1)
〈+− |Ωα|+−〉 cosϑ+1

2
1+cosϑ

2 − q′q
2 sin2 ϑ (q′−q)2

2 (cosϑ+ 1)
〈+− |Ωα| −+〉 cosϑ−1

2
1−cosϑ

2
q′q
2 sin2 ϑ − (q′+q)2

2 (cosϑ− 1)
〈+ + |Ωα|+−〉 − sinϑ

2 − sinϑ
2 − q′q

2 cosϑ sinϑ q′2−q2

2 sinϑ
〈+− |Ωα|+ +〉 sinϑ

2
sinϑ

2
q′q
2 cosϑ sinϑ q′2−q2

2 sinϑ

Table 3.4.: Mean values of the spin dependence operators (eqs. 3.34-3.37) for relevant
helicity combinations in eqs. 3.23 - 3.28.
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3.7. Singlet Potential

3.6.2. LSJ-Basis

The transformation from helicity basis in LSJ-basis can be performed analogous to eqs.
2.58-2.63:

0V J =0V J (3.38)
1V J =1V J (3.39)

++V J = 1
2J + 1

(
(J + 1) 12V J + J 34V J − 2

√
J (J + 1)

(
5V J + 6V J

))
(3.40)

−−V J = 1
2J + 1

(
J 12V J + (J + 1) 34V J + 2

√
J (J + 1)

(
5V J + 6V J

))
(3.41)

+−V J =− 1
2J + 1

(√
J (J + 1)

(
12V J − 34V J

)
+ 2 (J + 1) 5V J − 2J 6V J

)
(3.42)

−+V J =− 1
2J + 1

(√
J (J + 1)

(
12V J − 34V J

)
− 2J 5V J + 2 (J + 1) 6V J

)
(3.43)

The six potentials are diverted in singlet (S = 0) and triplet (S = 1) channels. The
triplet channels can be divided in the uncoupled triplet channel 1V J and the coupled
channels ±±V J . In the further calculations we will concentrate on the singlet channel.
the calculation for the triplet potential can be done analogously.

3.7. Singlet Potential

Using eqs. 3.22-3.24, 3.16 and tab. 3.4 we find for the singlet potential

0V J = 1
2

∫ 1

−1
d cosϑ

(
Vc − 3Vσ − k2Vσk

)
PJ (cosϑ) . (3.44)

The spin-orbit force gives no contribution to the singlet potential; only central, spin-spin
and the scalar component of tensor interactions remain in the formula. Inserting the
relations for the potential factors (eq. 3.15) gives the singlet potential for each kind of
mesons, respectively:

0V J
ps (p, k) =1

2

∫ 1

−1
d cosϑ

(
g2
ps

4M2
k2

k2 +m2
ps

)
PJ (cosϑ) (3.45)

0V J
s (p, k) =1

2

∫ 1

−1
d cosϑ

(
− g2

s

8M2
k2 − 4p2 + 8M2

k2 +m2
s

)
PJ (cosϑ) (3.46)

0V J
v (p, k) =1

2

∫ 1

−1
d cosϑ

 g2
v

8M2

[
4
(
f2
v

g2
v

+ fv
gv

)
+ 3

]
k2 + 8M2 + 12p2

k2 +m2
v

PJ (cosϑ) (3.47)
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3. Nucleon-Nucleon Interaction

The pseudoscalar mesons contribute only through the tensor force and the scalar mesons
contribute only through the central force, while the vector mesons give a contribution to
all three remaining forces.

We want to write the potential as function of q and q′ only, therefore we insert the
relations for k2 and p2 (eqs. 3.8 and 3.9) into eqs. 3.45-3.47, but keep the vertices as
they are for simplicity. We find:

0V J
ps (q′, q, k) =1

2
g2
ps

4M2

∫ 1

−1
d cosϑq

′2 + q2 − 2q′q cosϑ
k2 +m2

ps

PJ (cosϑ) (3.48)

0V J
s (q′, q, k) =1

2
g2
s

4M2

∫ 1

−1
d cosϑ2q′q cosϑ− 4M2

k2 +m2
s

PJ (cosϑ) (3.49)

0V J
v (q′, q, k) =1

2
g2
v

4M2

∫ 1

−1
d cosϑ[

2
(
f2
v

g2
v

+ fv
gv

)
+ 3

]
(q′2 + q2) + 4M2 − 4

(
f2
v

g2
v

+ fv
gv

)
q′q cosϑ

k2 +m2
v

PJ (cosϑ)

(3.50)

We now have to carry out two different integrals for every kind of meson: One integral is
proportional to 1

k2+m2 and the other is proportional to cosϑ
k2+m2 . In the further calculation

we write:

0V J (q′, q, k) = 1
2
g2

4M2

∫ 1

−1
d cosϑ

(
0V0

1
k2 +m2 + 0V1

cosϑ
k2 +m2

)
PJ (cosϑ) (3.51)

with the factors
0V ps

0 = q′2 + q2, 0V ps
1 = −2q′q, 0V s

0 = −4M2, 0V s
1 = 2q′q,

0V v
0 =

[
2
(
f 2
v

g2
v

+ fv
gv

)
+ 3

] (
q′2 + q2

)
+ 4M2, 0V v

1 = −4q′q
(
f 2
v

g2
v

+ fv
gv

)
(3.52)

3.8. Cutoffs

The NN potential composed of Yukawa potentials becomes infinite for r → 0. To
prevent this, a so called cutoff is used. This suppresses the contribution of high momenta
(corresponding to small distances) and is done by multiplying a form factor F2 at each
meson-nucleon vertex:

F2
(
~k
)

=
(

Λ2 −m2

Λ2 + k2

)2n

(3.53)

The cutoff mass Λ determines the range of suppression and is adjusted to fit the empirical
data. The exponent n = 1, 2 depends on the coupling, but is set to 1 for simplification
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3.8. Cutoffs
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Figure 3.4: Repulsive part of
an NN potential made up of
Yukawa potentials (brown) and
the potential modified with cut-
offs (orange).

in the further calculations [19]. In fig. 3.4 the effect of applying the form factors to a
coordinate space potential is shown schematically.

3.8.1. Reformulation of the Vertex

The cutoffs can be included in the potential by replacing the vertex with

1
k2 +m2 −→

1
k2 +m2

(
Λ2 −m2

Λ2 + k2

)2

= 1
k2 +m2 −

1
k2 + Λ2 −

Λ2 −m2

(Λ2 + k2)2 (3.54)

We now have two terms which are of the familiar Yukawa type. One of them has the
same meson mass as before and the other one has the cutoff mass instead. The rightmost
term has a different structure. Using the relation for k2 (eq. 3.8) it can be reformulated
as a derivation

1
(Λ2 + k2)2 = −

(
1

2q′q

)2
∂

∂ZΛ

1
ZΛ − cosϑ (3.55)

with the abbreviation
ZM = q′2 + q2 +M2

2q′q (3.56)

Equation 3.56 is plotted in fig. 3.5 for interaction via pion exchange.

Reformulating the other terms of eq. 3.54 in a similar way, we find

1
k2 +m2 −→

1
2q′q

1
Zm − cosϑ −

1
2q′q

1
ZΛ − cosϑ +

(
1

2q′q

)2
∂

∂ZΛ

Λ2 −m2

ZΛ − cosϑ. (3.57)
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3. Nucleon-Nucleon Interaction

Figure 3.5.: Zmπ

ZM has its minimal value for a given
q at the onshell point

ZM
q′→q−→ 1 + M2

2q2

and the absolute minimum is found
to be

ZM
q′=q→∞−→ 1.

It follows that the integration∫ 1
−1 d cosϑ will not cause any prob-
lems.

3.8.2. Executing the Angular Integration

We now insert the correction for the cutoff masses (eq. 3.57) in the integral and rewrite
the formula substituting f (ϑ) = 1, cosϑ:

∫ 1

−1
d cosϑ f (ϑ)

k2 +m2PJ (cosϑ)

−→ 1
2q′q

∫ 1

−1
d cosϑf (ϑ)PJ (cosϑ)

Zm − cosϑ − 1
2q′q

∫ 1

−1
d cosϑf (ϑ)PJ (cosϑ)

ZΛ − cosϑ

+
(

1
2q′q

)2 (
Λ2 −m2

) ∂

∂ZΛ

∫ 1

−1
d cosϑf (ϑ)PJ (cosϑ)

ZΛ − cosϑ (3.58)

Integration and derivation can be executed in arbitrary order, because ZΛ is not dependent
on ϑ. We have to carry out the integration over two different types of integrands and
find:

∫ 1

−1
d cosϑ PJ (cosϑ)

ZM − cosϑ = 2QJ (ZM) (3.59)∫ 1

−1
d cosϑcosϑPJ (cosϑ)

ZM − cosϑ = 2ZMQJ (ZM)− 2δJ0 (3.60)

With the Legendre functions of the second kind QJ (x). Following [2] they are defined
recursively by

QJ (x) = 2J − 1
J

x QJ−1 (x)− J − 1
J

QJ−2 (x) (3.61)
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3.8. Cutoffs

with the first two Legendre functions

Q0 (x) =1
2 ln x+ 1

x− 1 (3.62)

Q1 (x) =x Q0 (x)− 1. (3.63)
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Figure 3.6.: Legendre functions QJ (x) and their derivatives Q′J (x) for total angular
momenta 0 ≤ J ≤ 3.

We need the derivation of the integrals also, and therefrom the derivatives Q′J (x). They
are defined by

Q′J (x) = J

x2 − 1 [x QJ (x)−QJ−1 (x)] (3.64)

Q′0 (x) =1
2

( 1
x+ 1 −

1
x− 1

)
(3.65)

Q′1 (x) =Q0 (x) + x Q′0 (x) . (3.66)

The Legendre functions of the second kind and their derivatives are plotted in fig. 3.6.
For x→ 1+ they are approaching ±∞, while for x→∞ they are approaching 0. The
treatment of these functions in the numerical calculations is described in appendix B.

Using our results for the integrals together with eq. 3.58 in eq. 3.51 we find for the
singlet partial wave (L = J)

0V J (q′, q) = g2

4M2

(
0V0 RJ (q′, q) + 0V1 TJ (q′, q)

)
(3.67)

with

RJ (q′, q) = 1
2q′q

(
QJ (Zm)−QJ (ZΛ) + Λ2 −m2

2q′q Q′J (ZΛ)
)

(3.68)

TJ (q′, q) = 1
2q′q

(
Zm QJ (Zm)− ZΛ QJ (ZΛ) + Λ2 −m2

2q′q ZΛ Q′J (ZΛ)
)
. (3.69)
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3. Nucleon-Nucleon Interaction
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Figure 3.7.: RJ (q, q) and TJ (q, q) for interaction via exchange of a pion (mπ = 138.03
MeV, Λπ = 1300 MeV) for total angular momenta 0 ≤ J ≤ 3.

In fig. 3.7 these expressions for interaction via exchange of one pion are plotted for J ≤ 3.
We find the main contribution being due to the S-wave (J = 0), while the higher partial
waves contributions are decreasing with increasing J . Another interesting point is that
ZM is not sensitive to exchange of q and q′. Thus RJ (q′, q) and TJ (q′, q) behave in the
same way and are symmetric to the on-shell line (q′ = q).

3.9. Singlet-Even-NN Potential

We now can calculate the singlet potential for all mesons using eqs. 3.67-3.69, 3.52
and the values of tab. 3.2. The resulting SE-NN potential is plotted in fig. 3.8. The
main contribution to the potential in the plotted energy range is provided by the σ
meson and the vector mesons. The pseudoscalar mesons and the δ meson provide smaller
contributions.
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Figure 3.8.: SE-NN potential 0V 0 (q′, q).
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3.10. Results

3.10. Results

In this section, we want use to the SE-NN potential as test for our numerics and code.
The results of our calculations will be compared to theoretical predictions of other models
and some experimental values.

3.10.1. Phase Shifts

The phase shifts for the SE-NN potential are calculated using the on-shell R-matrix of
the uncoupled channel (eq. 2.58). Inserting the nucleon mass MN = 938.919 MeV leads
to the NN propagator

G (k, q) = MN
k2

q2 − k2 (3.70)

In fig. 3.9 the result of this calculation is plotted in comparison to a relativistic Bonn
potential (BonnB) [19] and a Nijmegen potential (Nijm93) [27]. The numbers are taken
from [1]. Our results are close to the other phase shifts for small momenta, but for higher
momenta the deviation from the relativistic BonnB model increases. The consistency with
the Nijm93 model is higher, and has the highest deviation for momenta in intermediate
range.
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Figure 3.9.: SE-phase shift of NN potentials. Red: Nijm93 [27], dots: BonnB [19],
brown: our model.
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3. Nucleon-Nucleon Interaction

3.10.2. Cross Sections

The cross section for the SE channel can
be calculated using eq. 2.78. The result is
plotted in fig. 3.10. Experimental data gives
a much higher value: The experimental cross
section is 30−70 MeV for TLab ≥ 100 MeV [1].
But this is caused by contributions of higher
partial waves, which we did not include in
our calculation.
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Figure 3.10.: SE-cross section of the
NN interaction.

3.10.3. Low-Energy Parameters

The singlet LE parameters were determined by performing a least square fit (as described
in section 2.8) over an interval 0.1 ≤ q ≤ 1.0 MeV. The numbers are smaller than the
experimental values and the theoretical predictions of the relativistic BonnB model. The
deviation from the experimental values is 0.84 % for a and 2.8 % for r.

a [fm] r [fm]
Experiment [19] −23.748(10) 2.75(5)
BonnB [19] −23.75 2.71
non relativistic −23.5481 2.6731

Table 3.5.: The table shows low-energy parameters. Parentheses indicate one-standard-
deviation uncertainties in the last digits of experimental values.

3.10.4. Quality of Potential and Numerical Calculation

The results of our model are close to the results of other models for the phase shift
as well as the experimentally measured low energy parameters. The results could be
optimized by using more integration points in the integration procedure for solving the
R-matrix equation and optimizing the least square fit interval as well as the degree of
the polynomial, but this will not be part of this work. A comparison of cross sections is
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3.10. Results

not eligible, because the total cross section includes a sum over all partial waves, but
only the SE channel is considered in this work.

By now, we find the non-relativistic SE-NN potential of adequate quality and will use it
as basis of an Y N potential in the next chapter.
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4. Hyperon-Nucleon Interaction

This chapter includes the derivation, fitting and test of a Y N potential from the NN
potential we derived in the previous section. First, the main changes in comparison to
the NN potential are pointed out and the characteristics of the treatment of coupled
channels are discussed. In the next step, the R-matrix equation is solved in isospin basis
and the potential is fitted to the results of the Jülich group [16]. Afterwards, the results in
isospin basis are discussed. In the last section, the potential in particle basis is calculated
from the isospin basis results and the calculated cross sections as well as the low energy
parameters are both discussed and compared to experimental data. The investigations
in this section are highly exploratory. In the first place, they are intended as feasibility
studies, serving as a foundation for more detailed investigations in the future.

4.1. Hyperons

We want to describe the interaction of nucleons (N) and hyperons (Y ) with strangeness
S = −1, i.e. the Λ and Σ baryons. Nucleons and hyperons both are baryons. Their
properties are given in tab. 4.1. In our model we include the same six mesons as in the
Bonn model for NN interaction: π, η, ω, ρ, σ, δ. As discussed in the previous chapter,
the nucleons are an isodoublet (I = 1

2 , Iz = ±1
2). The Λ is an isosinglet (I = 0, Iz = 0),

and the Σ baryons build up an isotriplet (I = 1, Iz = −1, 0, 1).

As in NN interaction, the isospin factors of the isovector mesons have to be taken into
account. We use the values given in [28] and [24] (tab. 4.2).

4.2. Ansatz

For describing the interaction Y N → XN in isospin basis, we use potentials with the
same structure as the NN potential known from the previous section, but with different
coupling strengths. The general formula is:

g2
NN

4π →
gNNgXY

4π ,
fNN
gNN

→ fXY√
gNNgXY

(4.1)
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4.3. Masses

Baryon Particle I Mass [MeV]
Nucleon N 1

2 938.919
n 1

2 938.27231
p 1

2 939.56563
Hyperon Λ 0 1115.684

Σ 1 1193.12
Σ+ 1 1189.37
Σ0 1 1192.55
Σ− 1 1197.436

Cascade Ξ 1
2 1318.11

Ξ0 1
2 1314.90

Ξ− 1
2 1321.32

Table 4.1.: Properties of some baryons [28].
The average masses of multiplets are de-
noted by N , Σ and Ξ.

T η, σ, ω π, δ, ρ
NN → NN 0 1 −3

1 1 1
ΛN → ΛN 1

2 1 0
ΛN → ΣN 1

2 0
√

3
ΣN → ΣN 1

2 1 −2
3
2 1 1

Table 4.2.: Factors, indicating whether
isoscalar mesons are included in the
potential, and isospinfactors τ1 · τ2 for
isovector mesons [24, 28].

Additionally, the cutoffs of the potential could be varied. Since the variation of couplings
and cutoffs would be too extensive for this work, we use a more simple way for obtaining
a Y N potential. Indeed, as a first ansatz we multiply the NN potential by overall
factors:

0V J
XN→Y N (q′, q)→ bXY

0V J
NN (q′, q) (4.2)

It should be highlighted in this place, that 0V J
NN (q′, q) includes the correct isospin factors

of the Y N interaction given in tab. 4.2. In this work, the latter ansatz is used. We will
determine the bXY by fitting theoretical predictions for the phase shifts of the Jülich
group [16].

4.3. Masses

In the potential derived in the previous chapter, the masses of the particles are included
as M = MN because only NN scattering is considered. Since our goal is to describe Y N
interaction, we have to take into account the possibility of different masses. Thus we
substitute the original simple expression by another one which includes the masses of the
baryons before (M1 and M2) and after (M ′

1 and M ′
2) the scattering as

M2 =
√
M1M ′

1M2M ′
2 (4.3)

For uncoupled channels, i.e. Mi = M ′
i , we find M2 = M1M2. For the scattering of

identical particles the relation M2 = M2
1 is valid and we find a result consistent with the

Bonn potential as it is described in [19].
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4. Hyperon-Nucleon Interaction

4.4. Conservation of s and Kinematics of Coupled
Channels

The coupling between channels of different particle content and different masses is
performed over the conserved quantity s (eq. 2.3), which in c.m. frame can be calculated
as

s = (E1 + E2)2 , Ei =
√
q2 +M2

i (4.4)
Since s is conserved, it has the same value in both channels. The on-shell momenta are
depending on the masses in the channels:

q2
s = q2

1s = q2
2s = 1

4s

(
s−

(
M2

1 −M2
2

)2
) (

s− (M1 +M2)2
)

(4.5)

The threshold for each channel is determined by the minimal value of qs = 0. The
minimal s is then given by

sij = (Mi +Mj)2 ⇔ √
sij = Mi +Mj (4.6)

During the calculation we have to take care, which channel we are actually calculating. s
is always defined by the elastic entrance channel, containing asymptotically an incoming
plane wave. The appropriate on-shell momentum has to be used, e.g. V I

XY means that
the initial momentum has to be in XN channel, while the final momentum is in Y N
channel.

Additionally, in the parts of the system of equations, which is describing the interaction
in the channel with heavier particle content, the integration has to be executed over
sampling points in the heavier system, while in the parts with interaction in the channel
with lighter particle content the corresponding on-shell momenta of the lighter channel
must be used. The transformation can be performed using eq. 4.5.

4.5. Isospin Basis

Sorting the possible NN and Y N combinations after total isospin T and strangeness S
gives the four possible isospin values T = 0, 1

2 , 1,
3
2 , 2 with −4 ≤ S ≤ 0 as shown in tab.

4.3. We will concentrate on the channels with one strange quark (i.e. S = −1), where
two values of isospin are possible (i.e. T = 1

2 ,
3
2). Since the Λ hyperon is an isosinglet, a

ΛN system can couple only to a total isospin of 1
2 , while ΣN scattering is possible in

both isospin channels. In fig. 4.1 the on shell momenta for isospin channels with S ≥ −1
are plotted in dependency of s, their thresholds are given in tab. 4.4.
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4.5. Isospin Basis

T = 0 T = 1
2 T = 1 T = 3

2 T = 2
S = 0 NN NN
S = −1 ΛN, ΣN ΣN
S = −2 ΛΛ, ΞN, ΣΣ ΞN, ΣΛ, ΣΣ ΣΣ
S = −3 ΞΛ, ΞΣ ΞΣ
S = −4 ΞΞ ΞΞ

Table 4.3.: Channels in isospin basis [28], blue: this section
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Figure 4.1.: Relation between total energy
√
s

and on-shell momentum qY s. Brown: NN ,
orange: ΛN , yellow: ΣN .

Channel s [106 MeV2]
√
s [MeV]

NN 3.52528 1877.84
ΛN 4.22139 2054.60
ΣN 4.54558 2132.04

Table 4.4.: Thresholds for isospin
channels with S ≥ −1.

4.5.1. T = 3
2 Channel

In the T = 3
2 channel only ΣN scattering is possible, thus we can solve the R-matrix

equation in the same way as before and write in operator notation according to 2.39:

R
3
2
ΣΣ = V

3
2

ΣΣ + V
3
2

ΣΣGΣR
3
2
ΣΣ (4.7)

Here, we only wrote the isospin and the hyperons before and after the scattering as
subscripts, neglecting the nucleons: V T

XY means the potential for reaction XNX → Y NY

with isospin T and X, Y = Λ,Σ (accordingly for RI
XY ).

The parameters for this channel now can be determined by comparing our calculations
to the results of other groups, especially the Jülich group (Haidenbauer et al., [16]), who
did similar calculations in isospin basis.
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4. Hyperon-Nucleon Interaction

The parameters of the NN poten-
tial were used as starting values, i.e.
bΣΣ = 1. The only difference to
the original NN potential are the
isospin factors (tab. 4.2). For the
ΣN 3

2 channel these factors have the
same values as for the NN channel
with T = 1. We find the overall scal-
ing factor to be bΣΣ = 0.79. The
result is plotted in fig. 4.2. Figure 4.2.: SE-phase shifts in ΣN 3

2 channel.
Brown line: Jülich group [16], yellow shaded
area: fit.

4.5.2. T = 1
2 Channels

In the T = 1
2 channel the so called ΛΣ coupling occurs. This means the transition

ΛN ↔ ΣN is available and a separate treatment of the channels in the form

R
1
2
ΣΣ =V

1
2

ΣΣ + V
1
2

ΣΣGΣR
1
2
ΣΣ (4.8)

R
1
2
ΛΛ =V

1
2

ΛΛ + V
1
2

ΛΛGΛR
1
2
ΛΛ (4.9)

is no longer sufficient. In order to account for including the ΛΣ-coupling, we must change
to matrix formulation and write for R, V and G in 2.39

R→

R 1
2
ΛΛ R

1
2
ΛΣ

R
1
2
ΣΛ R

1
2
ΣΣ

 , V →
V 1

2
ΛΛ V

1
2

ΛΣ

V
1
2

ΣΛ V
1
2

ΣΣ

 , G→ (
GΛ 0
0 GΣ

)
. (4.10)

Where V T
ΛΣ and V T

ΣΛ are the transition potentials between the channels, causing corre-
sponding non-diagonal terms in the R-matrix.

By executing the matrix multiplications we arrive atR 1
2
ΛΛ R

1
2
ΛΣ

R
1
2
ΣΛ R

1
2
ΣΣ

 =
V 1

2
ΛΛ V

1
2

ΛΣ

V
1
2

ΣΛ V
1
2

ΣΣ

+
V 1

2
ΛΛ V

1
2

ΛΣ

V
1
2

ΣΛ V
1
2

ΣΣ

(GΛ 0
0 GΣ

)R 1
2
ΛΛ R

1
2
ΛΣ

R
1
2
ΣΛ R

1
2
ΣΣ

 (4.11)

=
V 1

2
ΛΛ V

1
2

ΛΣ

V
1
2

ΣΛ V
1
2

ΣΣ

+
V 1

2
ΛΛGΛ V

1
2

ΛΣGΣΣ

V
1
2

ΣΛGΛ V
1
2

ΣΣGΣΣ

R 1
2
ΛΛ R

1
2
ΛΣ

R
1
2
ΣΛ R

1
2
ΣΣ


=
V 1

2
ΛΛ V

1
2

ΛΣ

V
1
2

ΣΛ V
1
2

ΣΣ

+
V 1

2
ΛΛGΛR

1
2
ΛΛ + V

1
2

ΛΣGΣR
1
2
ΣΛ V

1
2

ΛΛGΛR
1
2
ΛΣ + V

1
2

ΛΣGΣR
1
2
ΣΣ

V
1
2

ΣΛGΛR
1
2
ΛΛ + V

1
2

ΣΣGΣR
1
2
ΣΛ V

1
2

ΣΛGΛR
1
2
ΛΣ + V

1
2

ΣΣGΣR
1
2
ΣΣ

 .
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4.5. Isospin Basis

This expression can be written as two systems of coupled R-matrix equations, which
are

R
1
2
ΛΛ =V

1
2

ΛΛ + V
1
2

ΛΛGΛR
1
2
ΛΛ + V

1
2

ΛΣGΣR
1
2
ΣΛ (4.12)

R
1
2
ΣΛ =V

1
2

ΣΛ + V
1
2

ΣΛGΛR
1
2
ΛΛ + V

1
2

ΣΣGΣR
1
2
ΣΛ (4.13)

and

R
1
2
ΛΣ =V

1
2

ΛΣ + V
1
2

ΛΛGΛR
1
2
ΛΣ + V

1
2

ΛΣG
1
2
ΣR

1
2
ΣΣ (4.14)

R
1
2
ΣΣ =V

1
2

ΣΣ + VΣΛGΛR
1
2
ΛΣ + V

1
2

ΣΣGΣR
1
2
ΣΣ. (4.15)

The numerical values of the thresholds in isospin bases are given in table 4.4. According
to this results we have to perform the transitions of eq. 4.10 at s = sΣN . Below that
value, it is sufficient to calculate the uncoupled ΛN channel alone, i.e. using eq. 4.9.

4.5.3. Fitting Procedure

The fit of the coupled T = 1
2 channels is performed as follows. In the first step the ΛN

interaction is fitted for lower energies, where ΛΣ-coupling does not occur. The NN
coupling values are chosen as starting point, i.e. bΛΛ = 1. A good description of the
Jülich data below the threshold is achieved for bΛΛ = 0.86 (fig. 4.3).

Figure 4.3.: Fitting the SE-eigenphase shifts and mixing parameter in T = 1
2 channel.

Brown line: Jülich group [16], orange: fit for δ+, yellow: fit for δ− and ε.

In the second step the ΣN coupling constants already known from the ΣN 3
2 fit are used

and the ΛΣ transition parameters are varied, starting at bΛΣ = 1 and leading to an
overall scaling of bΛΣ = 0.02. Here the fit was done to the ΣN phase shift as well as the
mixing parameter ε. The fit shows a larger deviation from the data, especially the ΣN
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4. Hyperon-Nucleon Interaction

phase shift shows a much larger value than the predictions from [16]. The absolute value
of δ− could be lowered by increasing bΛΣ, but this would result in an larger deviation in
ε at the same time.

4.6. Results

Using the results for the scaling factors
given in tab. 4.5, we can plot the Y N
potential in isospin base and calculate
cross sections and low energy parame-
ters. The outcome of this calculations is
discussed in this section.

Channel XN → Y N Scaling factor bXY
ΛN → ΛN 0.86
ΣN → ΣN 0.79
ΛN → ΣN 0.02

Table 4.5.: Scalings of the YN potential.

4.6.1. Potential

The SE-ΛN potential is plotted in fig. 4.4. The contributions come from the isoscalar
mesons only. The shape of the potential is similar to the SE-NN potential, but for low
momenta the SE-ΛN potential is negative.
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Figure 4.4.: SE-ΛN potential 0V 0 (q′, q).

The SE-ΣN 1
2 potential is shown in fig. 4.5. It is negative for small momenta and has an

amplitude in the order of 10−3 MeV−2. Hence, it is three times larger than the SE-ΛN
potential. In turn, the SE-ΣN 3

2 potential (plotted in fig. 4.6) is positive and has a
smaller amplitude, which is in the order of the SE-ΛN potential. The difference between
the ΣN potentials of different isospin is caused by the isospin factors. In T = 1

2 channels
they are two times larger than in the ΣN 3

2 channel and have a negative sign.
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4.6. Results
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Figure 4.5.: SE-ΣN 1
2 potential 0V 0 (q′, q).
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Figure 4.6.: SE-ΣN 3
2 potential 0V 0 (q′, q).

The ΛΣ transition potential is plotted in fig. 4.7. The on-shell potential here is not given
by same values for q and q′, but by the on-shell momenta belonging to the same total
energy

√
s in the two systems before and after the scattering. Therefore, the on-shell

potential decreases as qs increases, although the potential has its minimum for q = q′ = 0
MeV.
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Figure 4.7.: SE-ΛΣ transition potential 0V 0 (q′, q). Black lines are marking the on-shell
potential.
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4. Hyperon-Nucleon Interaction

4.6.2. Cross Sections

The cross sections can be determined from the eigenphase shifts and the mixing parameter
as described in section 2.7. The results for the T = 1

2 channels are shown in fig. 4.8.

Figure 4.8.: SE-cross sections of the ΛN ↔ ΣN 1
2 system.

As long as no ΛΣ coupling occurs, the ΛN → ΛN cross section is decreasing continuous.
At the coupling threshold of

√
s = 2132.04 MeV, which is corresponding to a laboratory

energy of the incoming Λ of TLab = 172.644 MeV, there is a kink where the cross section
decreases instantaneous. At the same moment the threshold is achieved, the ΛN → ΣN
cross section increases and reaches its maximum at an laboratory energy of about 280
MeV, but keeps less then 10−2 mb. The minimal value of the ΛN → ΛN cross section is
found to be at an TLab of about 320 MeV, where the cross section is almost zero.

The cross sections of the ΣN 1
2 system show less structure. The ΣN 1

2 → ΣN 1
2 cross

section as well as the ΣN → ΛN cross section have the highest values for TLab = 0 MeV
and are decreasing continuous from there. Moreover, the ΣN → ΛN cross section is
more than three orders of magnitude smaller than the ΣN 1

2 → ΣN 1
2 cross section. In

short, the coupling between ΛN and ΣN channels is small.
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4.6. Results

Figure 4.9.: ΣN 3
2 SE cross section.

The ΣN 3
2 cross section as shown in

fig. 4.9 has a similar shape as the
ΛN → ΛN cross section, but does
not have a kink.

4.6.3. LE Parameters

For uncoupled channels, we can calculate the LE parameters as introduced in section 2.8.
For the ΣN 1

2 channel the calculation is more complicated, because the LE parameters
have to be calculated from physical phase shifts instead of eigenphase shifts. The
calculation is not as simple as for the uncoupled channels and the LE parameters become
complex above the threshold. In this work, we restrict our selves to calculating the so
called eigen-LE parameters. In order to do this, we use the eigenphase shift δ− instead
of the physical phase shift δΣΣ in eq. 2.79.

Our notation is as follows: The eigen-LE parameters calculated from δ− are named by
the channel opening at the threshold when δ− occurs, and marked with the prefix eigen.
Results are given in tab. 4.6.

The scattering length (as) of the Y N isospin
channels is found to have lower absolute values
than in NN scattering. The ΛN channel and
the ΣN 3

2 channel have negative scattering length.
The eigen scattering length of the ΣN 1

2 channel
is positive.

a [fm] r [fm]
ΛN −2.4037 2.5745
ΣN 1

2 eigen 1.2480 −1.052
ΣN 3

2 −4.7493 3.3596

Table 4.6.: (Eigen-) LE parame-
ters for Isospin channels

The effective ranges (rs) of the ΛN channel and the T = 3
2 channel are positive and in

the same order of magnitude than the NN effective range. The eigen-effective range of
the ΣN 1

2 channel is a negative, in contrast. Since we are comparing eigen and physical
LE parameters, the deviant behavior of the eigen-LE parameters is not unreckoned.
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4. Hyperon-Nucleon Interaction

The intervall and degree of the fitting polynomial in the least square fit are optimized for
NN interaction. Thus, the results for Y N interaction may not be as accurate as they
are for NN interaction and further studies on this topic are needed.

4.7. Particle Basis

In the particle basis the physical particles are combined and sorted after total strangeness
S and total charge Q, as shown in tab. 4.8. This results in 4 channels with S = −1.
Two of them are uncoupled, two are coupled. The on-shell momenta in dependency of
s and the thresholds of the S = −1 channels are given in fig. 4.10 and tab. 4.7. An
advantage of the particle basis is the possibility to include the Coulomb interaction,
which is neglected in our calculations. An additional advantage is the possibility to
compare the results to experimental cross sections immidiatly.
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Figure 4.10.: Relation between mandelstam s
and on shell momentum qY s in particle basis.

Channel s [106 MeV2]
√
s [MeV]

pp 3.52142 1876.54
np 3.52628 1877.84
nn 3.53113 1879.13
Λp 4.21874 2053.96
Λn 4.22405 2055.25
Σ+p 4.52686 2127.64
Σ+n 4.53237 2128.94
Σ0p 4.5404 2130.82
Σ0n 4.54592 2132.12
Σ−p 4.56125 2135.71
Σ−n 4.56678 2137.00

Table 4.7.: Thresholds of channels
in particle basis.

We find an drawback, because we now have up to three channels, which can couple and
thus the system of equations to be solved becomes more complicated. We will avoid this
by approximating three channel coupling by two channel coupling.

Since the Y N potential is defined in isospin basis, it has to be transformed into the
particle basis by performing an isospin rotation. We will use the transformations as given
in [24].
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4.7. Particle Basis

Q = −2 Q = −1 Q = 0 Q = 1 Q = 2
S = 0 nn np pp
S = −1 Σ−n Λn,Σ0n,Σ−p Λp,Σ+n,Σ0p Σ+p
S = −2 Σ−Σ− Ξ−n,Σ−Λ,Σ−Σ0 ΛΛ,Ξ0n,Ξ−p,Σ0Λ,Σ0Σ0,Σ−Σ+ Σ+Σ+

S = −3 Ξ−Σ− Ξ−Λ,Ξ0Σ−,Ξ−Σ0 Ξ0Λ,Ξ0Σ0,Ξ−Σ+ Ξ0Σ+

S = −4 Ξ−Ξ− Ξ−Ξ0 Ξ0Ξ0

Table 4.8.: Channels in particle basis [28], blue: part of this section.

4.7.1. Uncoupled Channels

The Q = −1 and the Q = +2 channels do not couple with any other channel and thus
only consist of the T = 3

2 part of the ΣN potential [24]. The only difference to the T = 3
2

calculations in the previous chapter is the substitution of the physical particle masses.
For the Q = −1 channel we find the formulas:

VΣ−Σ− = V
3
2

ΣΣ, MΣ →MΣ− , MN →Mn (4.16)

RΣ−Σ− = VΣ−Σ− + VΣ−Σ−GΣ−RΣ−Σ− (4.17)

totally analogous, we find for the Q = +2 channel:

VΣ+Σ+ = V
3
2

ΣΣ, MΣ →MΣ+ , MN →Mp (4.18)

RΣ+Σ+ = VΣ+Σ+ + VΣ+Σ+GΣ+RΣ+Σ+ (4.19)

The potentials are very similar to the ΣN 3
2 potential. This can be understood by

comparing the masses of the channels in isospin and particle basis:

MΣMN

MΣ−Mn

= 0.995709, MΣMN

M+
ΣMp

= 1.00384 (4.20)

From this calculation we find a difference of about four percent to the isospin basis
potential. The main difference between the isospin and particle basis potentials is caused
by different on shell momenta belonging to the same s.

From there, the phase shifts and cross sections of the uncoupled particle basis channels
are found to be almost identical to the results for the T = 3

2 channel in isospin basis, as
shown in figs. 4.11 and 4.12.
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4. Hyperon-Nucleon Interaction

Figure 4.11.: Q = −1 SE-phase shifts and cross section (Σ−n interaction).

Figure 4.12.: Q = 2 SE-phase shifts and cross section (Σ+p interaction). Data taken
from [1], brown: DO66 [11], orange: CH70 [7].

For Σ+p scattering experimental data is available. The experimental values are taken
from [1] and named in the same way as there. The cross section in fig. 4.12 is much larger
than the experimental data for low laboratory energies and to low for higher energies.
On the one hand, this is caused by the fact that only the SE channel has been taken
into account. The inclusion of higher partial waves would lead to an increase of the cross
section for higher energies. On the other hand, we determined our Y N potential by
fitting to theoretical predictions of phase shifts. A fit to the cross section probably would
lead to a better description of these data.

The results for the low-energy parameters are
given in tab. 4.9. They are found to be close to
the ΣN 3

2 results in the isospin basis (tab. 4.6).
The Nijmegen models NSC97a-f [24] predict as ≈
−4.3 fm for Σ+p and as ≈ −6 fm for Σ−n.

Channel a [fm] r [fm]
Σ−n −4.7551 3.3096
Σ+p −4.7441 3.3235

Table 4.9.: Low-energy parameters
of uncoupled channels
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4.7. Particle Basis

4.7.2. Q = 1 Channels

For the Q = 1 state, three different
particle combinations are possible:

Λp, Σ+n, and Σ0p.

The thresholds are given in 4.7 while
the on-shell momenta for Q = 1 a
shown in fig. 4.13. Since the Λ
is about 77 MeV lighter than the
Σs, but Σ+ and Σ0 show a mass
difference of about 3 MeV, only, the
Λp channel opens at a by far lower
total energy while the ΣN channels
open short after another.
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Figure 4.13.: Relation between total energy s
and on-shell momentum qY s forQ = 1 channels.
Legend as in 4.1.

As for the uncoupled channels, the potential again has to be determined in terms of an
isospin rotation. According to [24] this yields:

 VΛΛ VΛΣ+ VΛΣ0

VΣ+Λ VΣ+Σ+ VΣ+Σ0

VΣ0Λ VΣ0Σ+ VΣ0Σ0

 =


VΛΛ

√
2
3VΛΣ −

√
1
3VΛΣ√

2
3VΣΛ

2
3V

1
2

ΣΣ + 1
3V

3
2

ΣΣ

√
2

3

[
V

3
2

ΣΣ − V
1
2

ΣΣ

]
−
√

1
3VΣΛ

√
2

3

[
V

3
2

ΣΣ − V
1
2

ΣΣ

]
1
3V

1
2

ΣΣ + 2
3V

3
2

ΣΣ

 (4.21)

Since the channels are opening successive one after another, we find a matrix structure
in the R-matrix equation:

VΛΛ
s≥sΣ+n−→

(
VΛΛ VΛΣ+

VΣ+Λ VΣ+Σ+

)
s≥sΣ0p−→

 VΛΛ VΛΣ+ VΛΣ0

VΣ+Λ VΣ+Σ+ VΣ+Σ0

VΣ0Λ VΣ0Σ+ VΣ0Σ0

 (4.22)

RΛΛ
s≥sΣ+n−→

(
RΛΛ RΛΣ+

RΣ+Λ RΣ+Σ+

)
s≥sΣ0p−→

 RΛΛ RΛΣ+ RΛΣ0

RΣ+Λ RΣ+Σ+ RΣ+Σ0

RΣ0Λ RΣ0Σ+ RΣ0Σ0

 (4.23)

GΛ
s≥sΣ+n−→

(
GΛ 0
0 GΣ+

)
s≥sΣ0p−→

GΛΛ 0 0
0 GΣ+ 0
0 0 GΣ0

 (4.24)
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4. Hyperon-Nucleon Interaction

As long as only two channels are involved, we can solve the R-matrix equation and
calculate the phase shifts, cross sections, and low energy parameters as before. For the
part, where three channels are allowed, we approximate their coupling by two channel
coupling. Thus, we introduce three subsystems:

Λp↔ Σ+n Coupling

The first subsystem includes the Λp↔ Σ+n coupling and gives a correct treatment of the
Q = 1 channel for total energies below 2130.82 MeV. The R-matrix equation in operator
notation reads:(

RΛΛ RΛΣ+

RΣ+Λ RΣ+Σ+

)
=
(
VΛΛ VΛΣ+

VΣ+Λ VΣ+Σ+

)
+
(
VΛΛ VΛΣ+

VΣ+Λ VΣ+Σ+

)(
GΛ 0
0 GΣ+

)(
RΛΛ RΛΣ+

RΣ+Λ RΣ+Σ+

)
(4.25)

The cross sections of the Λp ↔ Σ+n channels are shown in fig. 4.14. The Λp → Λp
cross section is greater than the experimental values for small momenta and lower for
large momenta. Overall, the structure and thus the reason of the error seems to be the
same as for the Σ+p interaction. In the data base of [1] one data point for Λp→ Σ+n
scattering can be found: the cross section is measured to be 30 ± 20 mb in an energy
range of 240± 17 MeV [9]. Hence, the Λp→ Σ+n cross section seems to be too small by
a factor 103 at least.

The LE parameter for Λp ↔ Σ+n scattering
are given in tab. 4.10. The absolute value of
the Λp scattering length is slightly smaller than
the number found for the ΛN scattering and
consistent with the Nijmegen models NSC97a-f
[24]. These predict −2.51 fm ≤ as ≤ −0.71 fm
for Λp scattering. The effective range is of the
same size as for ΛN scattering, as well.

Channel a [fm] r [fm]
Λp −2.4021 2.5287
Σ+n eigen −8.7759 0.5615

Table 4.10.: (Eigen) low energy
parameters for Λp↔ Σ+n.

The absolute value of the Σ+n eigen-scattering length is higher than the ΣN 3
2 scattering

lengths by a factor of almost 2. But one has to keep in mind that the eigen-LE parameter
are not completely comparable to the LE parameters obtained from physical phase
shifts.
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4.7. Particle Basis

Figure 4.14.: Λp↔ Σ+n SE-eigenphase shifts, mixing parameter, and cross sections.
Data taken from [1], brown: CL67 [8], orange: CH70 [7], yellow: AL68 [3].
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4. Hyperon-Nucleon Interaction

Λp↔ Σ0p Coupling

The second subsystem includes the Λp ↔ Σ0p coupling. The R-matrix equation in
operator notation for this subsystem reads:(

RΛΛ RΛΣ0

RΣ0Λ RΣ0Σ0

)
=
(
VΛΛ VΛΣ0

VΣ0Λ VΣ0Σ0

)
+
(
VΛΛ VΛΣ0

VΣ0Λ VΣ0Σ0

)(
GΛ 0
0 GΣ0

)(
RΛΛ RΛΣ0

RΣ0Λ RΣ0Σ0

)
(4.26)

The phase shifts shown in fig. 4.15 have a similar structure as in the Λp↔ Σ+n case,
but the mixing parameter is negative, here. Additionally, the mixing is starting less
strongly. For the Λp→ Λp cross section we find a similar picture as before. Again, the
experimental values found in [1] are much larger than our results for the transition cross
section Λp→ Σ0p. All these points can be explained by the obviously very small coupling
between ΣN and ΛN channels. The structure of the Σ0p→ Σ0p cross section is similar
to the other cross sections discussed before, but the Σ0p→ Λp cross section is increasing
slowly, in contrast.

The LE parameters are given in tab. 4.11. For
the Λp the results are identical to the Λp↔ Σ+n
LE parameters, of course. The Σ0p eigen-LE
parameters have similar values.

Channel a [fm] r [fm]
Λp −2.4021 2.5287
Σ0p eigen −2.0214 2.4805

Table 4.11.: (Eigen-) LE parame-
ters for Λp↔ Σ0p.
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4.7. Particle Basis

Figure 4.15.: Λp ↔ Σ0p SE-eigenphase shifts, mixing parameter, and cross sections.
Data taken from [1], brown: CL67 [8], orange: CH70 [7], yellow: AL68 [3].
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4. Hyperon-Nucleon Interaction

Σ+n↔ Σ0p Coupling

The third, and last, subsystem of the Q = 1 channel includes the Σ+n↔ Σ0p coupling.
The R-matrix equation in operator notation for this subsystem reads:(
RΣ+Σ+ RΣ+Σ0

RΣ0Σ+ RΣ0Σ0

)
=
(
VΣ+Σ+ VΣ+Σ0

VΣ0Σ+ VΣ0Σ0

)
+
(
VΣ+Σ+ VΣ+Σ0

VΣ0Σ+ VΣ0Σ0

)(
GΣ+ 0

0 GΣ0

)(
RΣ+Σ+ RΣ+Σ0

RΣ0Σ+ RΣ0Σ0

)
(4.27)

The phase shifts of the Σ+n ↔ Σ0p coupling are shown in fig. 4.16. Since the mixing
parameter ε is large, both channels influence each other more than they do influence the
Λp channel in the other subsystems. Accordingly, the Σ+n→ Σ+n cross section shows a
kink when the Σ0p channel becomes available. Another effect of the large mixing is the
fact that the transition cross sections between both channels are of the same order of
magnitude as the cross sections for scattering in the same state as the initial.

The LE parameters of the Σ+n channels are
nearby the eigen-LE parameters calculated in
the Λp ↔ Σ+n system. The deviation is less
than 5 % for rs and less than 1 % for as. The
Σ0p eigen-LE parameters show a different behav-
ior: The effective range is larger by far then in
the Λp↔ Σ0p system. This could be caused by
numerical errors in the fitting procedure.

Channel a [fm] r [fm]
Σ+n −8.7103 0.5846
Σ0p eigen −2.3954 6.4034

Table 4.12.: (Eigen-) LE parame-
ters for Σ+n↔ Σ0p.
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4.7. Particle Basis

Figure 4.16.: Σ+n↔ Σ0p SE-eigenphase shifts, mixing parameter, and cross sections.
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4. Hyperon-Nucleon Interaction

4.7.3. Q = 0 Channels
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Figure 4.17.: Relation between mandelstam s
and on shell momentum qY s for Q = 0 channels.
Legend as in 4.1.

The treatment of the Q = 0 channel
can be executed analogous to that
of the Q = 1 channel. The possible
particle combinations are

Λn, Σ0n, and Σ−p.

The corresponding thresholds and
kinematics are shown in fig. 4.17.

Again, an isospin rotation is needed in order to achieve the potential in particle basis.
According to [24], we use:

 VΛΛ VΛΣ0 VΛΣ−

VΣ0Λ VΣ0Σ0 VΣ0Σ−

VΣ−Λ VΣ−Σ0 VΣ−Σ−

 =


VΛΛ

√
1
3VΛΣ −

√
2
3VΛΣ√

1
3VΣΛ

1
3V

1
2

ΣΣ + 2
3V

3
2

ΣΣ

√
2

3

[
−V

1
2

ΣΣ + V
3
2

ΣΣ

]
−
√

2
3VΣΛ

√
2

3

[
−V

1
2

ΣΣ + V
3
2

ΣΣ

]
2
3V

1
2

ΣΣ + 1
3V

3
2

ΣΣ

 (4.28)

The successive opening of the channels leads to the structure

VΛΛ
s≥sΣ0n−→

(
VΛΛ VΛΣ0

VΣ0Λ VΣ0Σ0

)
s≥sΣ−p−→

 VΛΛ VΛΣ0 VΛΣ−

VΣ0Λ VΣ0Σ0 VΣ0Σ−

VΣ−Λ VΣ−Σ0 VΣ−Σ−

 (4.29)

RΛΛ
s≥sΣ0n−→

(
RΛΛ RΛΣ0

RΣ0Λ RΣ0Σ0

)
s≥sΣ−p−→

 RΛΛ RΛΣ0 RΛΣ−

RΣ0Λ RΣ0Σ0 RΣ0Σ−

RΣ−Λ RΣ−Σ0 RΣ−Σ−

 (4.30)

GΛ
s≥sΣ0n−→

(
GΛ 0
0 GΣ0

)
s≥sΣ−p−→

GΛ 0 0
0 GΣ0 0
0 0 GΣ−

 . (4.31)

From here, the calculations are done in a completely similar way as for the Q = 1 channel.
Thus, only the results of the calculations are discussed in this work.
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4.7. Particle Basis

Λn↔ Σ0n Coupling

The overall structure of this subsystem is very
similar to the of the Q = 1 Λp↔ Σ0p subsystem.
Results are shown in fig. 4.18 and tab. 4.13. The
Nijmegen models NSC97a-f predict −2.68 fm ≤
as ≤ −0.76 fm for the Λn channel [24], which
coincides with our result.

Channel a [fm] r [fm]
Λn −2.4053 2.4349
Σ0n (eigen) −2.0240 2.4762

Table 4.13.: (Eigen-) LE parame-
ters for Λn↔ Σ0n.

Figure 4.18.: Λn↔ Σ0n SE-eigenphase shifts, mixing parameter, and cross sections.
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4. Hyperon-Nucleon Interaction

Λn↔ Σ−p Coupling

Figure 4.19.: Λn↔ Σ−p SE-eigenphase shifts, mixing parameter, and cross sections.
Data taken from [1], brown: EI71 [12], orange: CH70 [7], yellow: DO66 [11].

The Λn ↔ Σ−p results are shown in fig. 4.19. They resemble the Λp → Σ+n results.
Experimental values for the Σ−p→ Λn cross section are much higher than the results
of our calculation. Experimental measured cross sections are higher than 100 mb for
momenta below 10 MeV [13]. Thus, our results are about a factor of 102 too low.

The Σ−p→ Σ−p fits to the experimental data points as good as the other cross section
for scattering in the same state as the initial state do.
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4.7. Particle Basis

The overall structure equates the structure of the
Q = 1 Λp ↔ Σ+n subsystem even in terms of
the LE parameters (shown in tab. 4.14).

Channel a [fm] r [fm]
Λn −2.4053 2.4349
Σ−p (eigen) −8.6470 0.6011

Table 4.14.: (Eigen-) LE parame-
ters for Λn↔ Σ−p.

Σ0n↔ Σ−p Coupling

Figure 4.20.: Σ0n↔ Σ−p SE-eigenphase shifts, mixing parameter, and cross sections.
Data taken from [1], brown: EI71 [12], orange: CH70 [7], yellow: DO66 [11], blue:
EN66 [13].
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4. Hyperon-Nucleon Interaction

Here, the structure is very similar to the third subsystem of the Q = 1 channel. In
comparison to the other channels, our results give a good description of the data points.
The coupling of the Σ−p state to the Σ0n state seems to be slightly to strong, but the
error is much smaller than for the coupling between ΣN and ΛN states.

The LE parameters of the Σ0n channel (tab. 4.15)
are changed by less then 3 % in comparison to
the Λn↔ Σ0n system. The results for the Σ−p
eigen LE parameters seem to be influenced by
numerical inaccuracy.

Channel a [fm] r [fm]
Σ0n −2.0243 2.5022
Σ−p eigen −0.2579 121.1809

Table 4.15.: (Eigen-) LE parame-
ters for Σ0n↔ Σ−p.

4.7.4. Quality of the Potential

Summarized, the Y N potential derived from a NN potential seems to give possibility to
describe the Y N data, but needs further improvements. The inclusion of higher partial
waves and scattering in triplet states could help to find a better description of the data.
Another possible improvement could be achieved by fitting to cross section instead of
fitting to theoretical predictions. Additionally, more fitting parameters could improve
the Y N potential, e.g. using the ansatz of eq. 4.1.
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5. In-Medium Interaction

After constructing a Y N potential and discussing its quality, we now want to describe
in-medium scattering. In the first part of this chapter, the Pauli exclusion principle is
introduced. Afterwards, the Pauli projection operator for two particles of different kinds
is derived and results for scattering in symmetric nuclear matter are given.

5.1. Pauli Exclusion Principle in the R-matrix
Equation

According to the Pauli exclusion principle, two identical fermions are not allowed to
occupy the same quantum state, or in other words, the total wave function of two identical
particles has two be antisymmetric under particle exchange.

The Pauli exclusion principle can be used to describe in-medium effects in scattering
processes. This is done in terms of the Pauli projection operator, which prevents the
scattering in quantum states that are forbidden by the Pauli exclusion principle.

In quantum mechanical systems, e.g. an atom, the quantum states are filled beginning
at those with the lowest energy. The energy of the highest occupied quantum state is
called Fermi energy [10]:

EFi = ~2

2mkFi (5.1)

The Fermi momentum kFi is related to the density ρi of particle type i through

ρi (kFi) = k3
Fi

3π2 ⇔ kFi (ρi) = 3
√

3π2ρi. (5.2)

Scattering in states with laboratory momenta below the Fermi momentum are prohibited
because all those states are already occupied.

We want to describe interaction in nuclear matter and therefore are interested in cal-
culating scattering especially at nuclear density (i.e. ρ0 = 0.16 fm−3) and half nuclear
density. If we assume symmetric nuclear matter, the numbers of protons and neutrons
per volume are identical and ρp0 = ρn0 = ρ0

2 = 0.08.
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5. In-Medium Interaction

ρi [fm−3] kFi [MeV]
0.04 208.778
0.08 263.043
0.16 331.414
0.32 417.555
0.64 526.086

Table 5.1.: Fermi-
momenta for some
density values. 0.0 0.1 0.2 0.3 0.4 0.5
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Figure 5.1.: Fermi-momentum kFi as function of density
ρi.

The in-medium effects can be included in the R-matrix equation by multiplying the Pauli
projection operator Q (k, P ) with every Green’s function [15]. The resulting equation is
called Bethe-Goldstone (BS) equation and reads for uncoupled channels:

RJ(q′, q) = 0V J(q′, q) + P
∫
dkV J(q′, k)G (k, P )Q (k, P )RJ(k, q) (5.3)

Since the major part of the in-medium effects are produced by the Pauli projection
operator, we solve this equation without taking into account the baryonic self-energies
evolving in the medium. As a highly appreciated side effect this approximation also leads
to considerable numerical simplifications.

5.2. Pauli Projection Operator

The Pauli projection operator for one particle is defined as Q = Θ (k2 − k2
F ). For a

system of two particles with momenta k1,2 in laboratory frame and Fermi-momenta kF1,2
it can be written as [17]:

QF = Θ
(
k2

1 − k2
F1

)
Θ
(
k2

2 − k2
F2

)
(5.4)

5.2.1. Transformation to c.m. Frame

The R-matrix equation is solved in c.m. frame, henceforth we have to write the Pauli
projection operator in c.m. frame. The relation between laboratory and c.m. frame
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5.2. Pauli Projection Operator

parameters are

~k1 =~q + x2 ~P (5.5)
~k2 =− ~q + x1 ~P . (5.6)

Where ~P is the conserved c.m. momentum and ~q the relative momentum:

~P =~k1 + ~k2 = ~k′1 + ~k′2 (5.7)
~q =x1 ~k1 − x2 ~k2 (5.8)

The c.m. momentum is given by the momentum of the projectile in laboratory system
pLab (eq. 2.4). Inserting eq. 5.5 and eq. 5.6 in eq. 5.8 one finds x1 + x2 = 1. the
Lorentz-invariant choice for the weights is [17]:

x1 = 1
2

(
m2

2 −m2
1

s
+ 1

)
and x2 = 1

2

(
m2

1 −m2
2

s
+ 1

)
(5.9)

Here s denotes the total energy squared and Ei the particle energy, which in the c.m.
frame are given by:

s = (E1 (~q) + E1 (~q))2 (5.10)

Ei (~q) =
√
m2
i + q2 (5.11)

For identical particles the weights
are 1

2 . If the particles have differ-
ent masses, the weights will have
the largest difference for q = 0 and
are approaching 1

2 as q grows big-
ger.This is shown in fig. 5.2 for the
Σ+p channel. It will be taken as an
example in the following description
of this section.
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Figure 5.2.: x1 (brown) and x2 (orange) for Σ+p
scattering. m1 = mΣ+ , m2 = mp.
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5. In-Medium Interaction

Inserting eq. 5.5 and eq. 5.6 into eq. 5.4 gives

QF =Θ
(
q2 + x2

2P
2 − k2

F1 + 2x2qP cosϑ
)

Θ
(
q2 + x2

1P
2 − k2

F2 − 2x1qP cosϑ
)

=Θ (Z1 + cosϑ) Θ (Z2 − cosϑ) (5.12)

with

Z1 = q2 + x2
2P

2 − k2
F1

2x2Pq
and Z2 = q2 + x2

1P
2 − k2

F2
2x1Pq

. (5.13)

These quantities can only be negative if the Fermi momenta are both positive and big
enough (as shown in fig. 5.3).
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Figure 5.3.: Z1 (brown) and Z2 (orange) as function of q for Σ+p scattering (m1 = mΣ+ ,
m2 = mp). Solid lines P = 50 MeV, dashed P = 100 MeV, dashed-dotted P = 200
MeV.

We follow the common practice [23] and use the angle-averaged Pauli projection operator.
For this purpose we integrate the Pauli projection operator over the unit sphere and find
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5.2. Pauli Projection Operator

the angle averaged Pauli projection operator QF :

QF = 1
4π

∫
QFdΩ

=1
2

∫ 1

−1
QFd cosϑ

=1
2Θ (Z1 + Z2) Θ (1 + Z1) Θ (1 + Z2)

[2Θ (−1 + Z1) Θ (−1 + Z2) + (1 + Z2) Θ (−1 + Z1) Θ (1− Z2)
+ (Z1 + Z2) Θ (1− Z1) + (1− Z2) Θ (1− Z1) Θ (−1 + Z2)] (5.14)

=Q (k, P )

The shape of QF plotted as function of Z1 and Z2 is simple, as can be seen in fig. 5.4.
Basically it consists of four planes.

Plotting Q (k, P ) as a function of q for fixed values of mi, kFi and P gives a slightly more
complicated picture as shown in fig. 5.5. It can be seen that Q (k, P ) no longer is linear
and has kinks at some points. To better understand this behavior of Q (k, P ), the curves
from fig. 5.5 are plotted in comparison to QF in 5.4. The curves are bend and cross
several planes of the Pauli projection operator in Z1-Z2 space. Additionally, the Zi are
not linear in q. Altogether this gives the shape shown in 5.5.
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Figure 5.4.: QF as function of Z1 and Z2 for Σ+p scattering. Legend as in 5.5. Dark
gray points mark values for q = 300 MeV, light gray points mark values for q = 400
MeV.
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Figure 5.5.: Q (k, P ) as function of q for Σ+p scattering. Solid lines P = 50 MeV,
dashed P = 100 MeV, dashed-dotted P = 200 MeV.

5.3. Results

We will concentrate on scattering in symmetric nuclear matter, i.e. kFp = kFn and set
the Fermi momenta of all other particles equal zero. Even though the derived Pauli
projection operator in the used definition is valid for arbitrary Fermi momenta of each
particle, only the described case is subject matter of the actual study.

Since the results for the effective range rs seemed to be influenced by numerical inaccura-
cies even for vacuum interaction, we will concentrate on discussing the results for the LE
parameter as.

5.3.1. Uncoupled Channels

The impact of in-medium interaction on the phase shift and cross section of the uncoupled
channels is shown in figs. 5.6 and 5.7. The results are nearly identical for both channels.
The scattering in half nuclear density is influenced by in-medium effects almost as
strongly as at nuclear density. This is due to the fact that not the density, but the Fermi
momentum enters the Pauli projection operator and the Fermi momentum is proportional
to the third root of the density. The phase shifts as well as the cross section of both
channels are reduced by in-medium effects, especially at small momenta.

In fig. 5.8 the scattering length as for both channels is shown. Over all, the structures of
the two channels are very similar. as is negative over the plotted range with decreasing
absolute value.
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5.3. Results

Figure 5.6.: Σ−n phase shift and cross section. Solid line: vacuum interaction, dashed:
ρp = ρn = 0.04 fm−3, dotted: ρp = ρn = 0.08 fm−3.

Figure 5.7.: Σ+p phase shift and cross section. Solid line: vacuum interaction, dashed:
ρp = ρn = 0.04 fm−3, dotted: ρp = ρn = 0.08 fm−3.

Figure 5.8.: as in dependency of Fermi momentum for the uncoupled channels. Yellow:
Σ+p, red: Σ−n.
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5. In-Medium Interaction

5.3.2. Q = 1 Channels

Λp↔ Σ+n Coupling

Like for the uncoupled channels, the in-medium effects lead to a decrease in phase shifts
as well as in the cross sections. The kink in the Λp→ Σ+n cross section is suppressed in
medium and the cross section is increasing slowly instead. This effect is observed in the
Σ+n→ Λp cross section as well.

Figure 5.9.: Σ+n SE-phase shifts, mixing parameter and cross sections. Solid line:
vacuum interaction, dashed: ρp = ρn = 0.04 fm−3, dotted: ρp = ρn = 0.08 fm−3.
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5.3. Results

Λp↔ Σ0p Coupling

In-medium effects in this subsystem result in an decrease of phase shifts and cross sections,
as shown in fig. 5.10. The consequences of the in-medium calculations are very similar
to the results found for the uncoupled channels.

Figure 5.10.: Σ0p SE-phase shifts, mixing parameter and cross sections. Solid line:
vacuum interaction, dashed: ρp = ρn = 0.04 fm−3, dotted: ρp = ρn = 0.08 fm−3.
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5. In-Medium Interaction

Σ+n↔ Σ0p Coupling

In the Σ+n↔ Σ0p system, the in-medium effects influence the structure in particular
for the Σ+n↔ Σ+n cross section. Here the kink, which is caused by the opening of the
Σ0p channel in vacuum vanishes and the whole cross section increases for small energies.
Another interesting point is that the mixing parameter is oscillating for small energies.
This could be caused by numerical inaccuracies.

Figure 5.11.: Σ0p SE-phase shifts, mixing parameter and cross sections. Solid line:
vacuum interaction, dashed: ρp = ρn = 0.04 fm−3, dotted: ρp = ρn = 0.08 fm−3.
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5.3. Results

LE Parameter

The scattering length as is increasing with increasing Fermi momenta for all Q = 1
channels (fig. 5.12). The scattering length for Λp and Σ+n are not as influenced by the
chosen subsystem as the eigen-scattering length of the Σ0p. Additionally, in the Σ0p
scattering length calculated in the Σ+n↔ Σ0p subsystem a change in the sign appears.
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Figure 5.12.: as as function of Fermi momenta. Brown: Λp, light blue: Σ+n, dark
blue: Σ0p. Calculated in the subsystems as follows: Solid line: Λp ↔ Σ+n, dashed:
Λp↔ Σ0p, dotted: Σ+n↔ Σ0p.
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5. In-Medium Interaction

5.3.3. Q = 0 Channels

Λn↔ Σ0n Coupling

The in-medium effect in the Λn↔ Σ0n subsystem are similar to that of the Λp↔ Σ0p
subsystem. Hence, we do not need to discuss the results in more detail.

Figure 5.13.: Σ0n SE-phase shifts, mixing parameter and cross sections. Solid line:
vacuum interaction, dashed: ρp = ρn = 0.04 fm−3, dotted: ρp = ρn = 0.08 fm−3.
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5.3. Results

Λn↔ Σ−p Coupling

This subsystem is influenced more by in medium effects than the previous subsystem is.
As discussed for the Λp↔ Σ+n coupling, the kinks of the transition cross sections are
suppressed.

Figure 5.14.: Σ−p SE-phase shifts, mixing parameter and cross sections. Solid line:
vacuum interaction, dashed: ρp = ρn = 0.04 fm−3, dotted: ρp = ρn = 0.08 fm−3.
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5. In-Medium Interaction

Σ0n↔ Σ−p Coupling

In this subsystem, an additional structure in the Σ0n↔ Σ0n cross section is found. The
kink caused by the opening of the Σ−p channel becomes more visible with increasing
density. As we found for the Σ+n↔ Σ0p channel, the mixing parameter oscillates for
small energies.

Figure 5.15.: Σ−p SE-phase shifts, mixing parameter and cross sections. Solid line:
vacuum interaction, dashed: ρp = ρn = 0.04 fm−3, dotted: ρp = ρn = 0.08 fm−3.
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5.3. Results

LE Parameter

From the scattering length shown in fig. 5.16, only the Σ−p eigen-scattering length shows
a change in the sign. Besides, the subsystem in which the calculation has been carried
out has the strongest input in this channel. All as are increasing with increasing Fermi
momenta, as we found for the Q = 1 channels.

0 50 100 150 200 250

-8

-6

-4

-2

0

kFp=kFn @MeVD

a s
@fm

D

Figure 5.16.: as as function of fermi momenta. Orange: Λn, purple: Σ0n, pink: Σ−p.
Calculated in the subsystems as follows: Solid line: Λn↔ Σ0n, dashed: Λn↔ Σ−p,
dotted: Σ0n↔ Σ−p.

5.3.4. Summary

The uncoupled channels are influenced in terms of lower phase shifts, cross section and
increasing scattering length. The results of the ΛN ↔ ΣN channels where no charge
transfer between hyperon and nucleon occurs, show a similar structure.

Looking at the transition cross sections of the coupled channels, we find the cross sections
from a ΛN system into a ΣN system with charge transition between hyperon and nucleon
to be influenced by in medium effects strongly. In nuclear matter the kinks in the
Λp→ Σ+n cross section as well as the Λp→ Σ+n cross section are suppressed.
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5. In-Medium Interaction

The subsystems treating ΣN ↔ ΣN coupling, are influenced in a different way. In
Σ+n → Σ+n the kink is suppressed with increasing density, in Σ0n ↔ Σ0n the kink
becomes stronger with increasing density.
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6. Summary and Outlook

The goal of this work was to describe hyperon-nucleon (YN) interaction in medium. In
order to achieve this, first the principles of scattering theory were introduced and a
scattering equation for singlet-even (SE) scattering has been derived. The next step was
finding an adequate potential model, from which a YN potential could be constructed.
Therefore, the Bonn potential [19] was used, a one-boson-exchange (OBE) model. The
non-relativistic reduction of the Bonn potential for SE scattering was derived. Results
from solving the scattering equation for this potential were compared to free-space NN
data and theoretical predictions.

The YN potential then was obtained by fitting the NN potential to isospin basis YN
data of the Jülich group [16] using overall factors. These factors turned out to be 0.86
for ΛN scattering, 0.79 for ΣN scattering and 0.02 for the transition between ΛN and
ΣN states.

Afterwards the YN potential was used to solve the scattering equation in the particle
basis, including coupling of two channels. Where the coupling of three channels is possible,
this was approximated by calculation of two channel coupling in three subsystems. The
agreement with the data was found to be improvable. The cross sections for small energies
turned out to be too high, while they were too low for higher energies. This problem
could be solved by fitting the potential to experimental data, while using different scaling
factors for each component of the model, instead of the overall factors. Additionally
higher partial waves should be included in further studies. However, the results for the
scattering length were found to be in accordance with other theoretical predictions.

In order to include the in-medium interaction a two particle Pauli projection operator
was derived. This allows for calculating scattering in medium with arbitrary density
of each involved baryon. Then the results for scattering in symmetric nuclear matter
were discussed. In further studies, the YN interaction in asymmetric matter and matter
including hyperons could be studied. This possibility is already included in the code.
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A. Solving the R-Matrix Equation

In this chapter the approach for solving the R-matrix equation is displayed. We follow
the explanations in [18] closely.

Integral equations of the shape

φ(x) = f(x) + λ
∫ b

a
K(x, y)φ(y)dy (A.1)

are called Fredholm integral equations of the second kind. They can be displayed as a
system of linear equations and solved numerically under the prerequisite that K(x, y)
and f(x) are steady for a ≤ x ≤ b, a ≤ y ≤ b and solved by Fredholm’s Method [6].

Comparing eq. A.1 to the R-matrix equation (eq. 2.58), we find

φ(x) = 0RJ(q′, q) (A.2)
f(x) = 0V J(q′, q) (A.3)

K(x, y) = 0V J(q′, k)G(k, q) (A.4)

λ = 1
2π2 . (A.5)

Though, y corresponds to the intermediate momentum k, over which the integration has
to be performed and x corresponds to q′.

Because the integrand should be steady, we have to eliminate the principle value. This
can be achieved by adding a zero term:

0RJ(q′, q) = 0V J(q′, q)+
∫ dk

2π2
µ

q2 − k2

[
k2 0V J(q′, k)0RJ(k, q)− q2 0V J(q′, q)0RJ(q, q)

]
.

(A.6)

In the next step the integral is approximated by a quadrature formula according to

∫ ∞
0

f(k) =
N∑
i=1

f(ki)si. (A.7)
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with the integration points ki and weights si. These are calculated from the familiar
Gaussian integration points xi and weights wi using the relations

ki = C tan
(
π

4 (xi + 1)
)

(A.8)

si = C
π

4
wi

cos2
(
π
4 (xi + 1)

) (A.9)

with C = 400 MeV.

We rearrange the integral equation as follows:

0RJ(q′, q)−
∫ dk

2π2
µ

q2 − k2

[
k2 0V J(q′, k)0RJ(k, q)− q2 0V J(q′, q)0RJ(q, q)

]
= 0V J(q′, q)

(A.10)
Now the R-matrix equation can be solved in terms of N + 1 linear equations. These can
be solved using standard methods [18].

We write the system of equations in matrix notation

0AJ 0RJ = 0V J (A.11)

with the N + 1 dimensional vectors 0RJ and 0V J and the (N + 1)(N + 1) matrix 0AJ ,
which is constructed by

0AJij = δij + uj
0V J(ki, kj). (A.12)

Its elements are calculated as

uj =µk2
j

sj
k2
j − q2 , for 1 ≤ j ≤ N (A.13)

uN+1 =− µq2
N∑
i=1

sj
k2
j − q2 . (A.14)

For calculating the phase shifts, we need the on-shell R-matrix 0RJ
N+1,N+1 only.
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B. Approximation of the Legendre
Functions

We have to approximate Q0 (x) and Q1 (x) in the regions where x becomes very small or
very large, because we have to calculate differences and sums of these functions (during
the calculation of the potentials) which can cause huge numerical errors. First, we
reformulate

Q0 (x) =1
2 ln (1 + 2u) = 1

2 ln
(

1 + 2
v

)
(B.1)

Q1 (x) =
1 + 1

u

2 ln (1 + 2u)− 1 = 1 + v

2 ln
(

1 + 2
v

)
− 1 (B.2)

with u = 1
x−1 and v = 1

u
and expand these expressions for v ≤ 10−2 (u ≤ 10−2). This

corresponds to small (large) x. We find for the power series around u, v = 0 [6]:

Q0 (x) =u− u2 + 4u3

3 − 2u4 + · · · (B.3)

Q0 (x) =1
2 log 2

v
+ v

4 −
v2

16 + v3

48 − · · · (B.4)

Q1 (x) =u
2

3 −
2u3

3 + 6u4

5 −
32u5

15 + · · · (B.5)

Q1 (x) =1
2

(
−2 + log 2

v

)
+ 1

4

(
1 + 2 log 2

v

)
v + 3v2

16 −
v3

24 + 5v4

384 − · · · (B.6)

The expansion of Q′0 (x) for large x is done by substituting x = 1
z
and expanding around

z = 0:
Q′0 (x) = z2

z2 − 1 = −z2 − z4 − z6 − z8 − · · · (B.7)
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C. Properties of the Legendre
Polynomials

In this section the properties of the Legendre polynomials used in our calculations are
given in short. A detailed discussion can be found in [6].

The Legendre polynomials are defined by the recursion formula

Pn+1 (x) = (2n+ 1)xPn (x)− nPn−1 (x)
n+ 1 , n ≥ 1 (C.1)

with the first two polynomials

P0 (x) =1 (C.2)
P1 (x) =x. (C.3)

The Legendre polynomials are orthogonal, i.e.∫ 1

−1
Pl(cosϑ)Pl′(cosϑ)d cosϑ = 2

2l + 1δll
′ . (C.4)
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D. Partial-Wave Decomposition

A partial-wave decomposition of a potential can be performed as

V
(
~k
)

=
∞∑
l=0

(2l + 1)Pl(cosϑ)Vl (D.1)

with the lth Legendre polynomial Pl(cos θ) and where Vl is the desired potential in the
lth partial wave. In order to obtain a formula for Vl, we multiply eq. D.1 with Pl′(cos θ)
and integrate over cos θ from −1 to 1:

∫ 1

−1
V
(
~k
)
Pl′(cosϑ)d cosϑ =

∞∑
l

(2l + 1)Vl
∫ 1

−1
Pl(cosϑ)Pl′(cosϑ)d cosϑ (D.2)

Using the orthogonality of the Legendre polynomials (eq. C.4) we find:

Vl′ = 1
2

∫ 1

−1
V
(
~k
)
Pl′(cosϑ)d cosϑ (D.3)

A detailed discussion of this procedure can be found e.g. in [25].
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