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1 Introduction

The anomalous magnetic moment of the muon a, is one of the most precisly mea-
sured observables of the Standard Model of particle physics. The high precision of
measurement, as well as theoretical prediction, renders a, a very interesting test of
our understanding of the microscopic world.

The Standard Model consists of three fundamental interactions. The most com-
monly known of them is the electromagnetic interaction, described by the quantum
field theory we call Quantum Electro Dynamics (QED). The current value of the
anomalous magnetic moment of the electron a,. is completly mediated by this inter-
action. It can be treated perturbatively and is calculated straight forward. The two
other interactions are the weak and the strong force.

a, is sensitive to all three interactions of the Standard Model. The precision of
its extraction allows us to study effects mediated by these forces. The impact of the
weak force is small but traceable. However, the strong force, described by Quantum
Chromo Dynamics (QCD), yields considerable contributions to a,. These hadronic
contributions are divided in two classes. The bigger QCD contribution is called
hadronic vacuum polarization (HVP). The other class was named hadronic light-by-
light scattering (HLbL). Due to the non-perturbative nature of QCD, the calculation
of its physics is quite involved. That is why most groups resort to effective field
theories that use, e.g., mesons as degrees of freedom.

We want to apply an approach to the hadronic light-by-light scattering contribu-
tion, based on the functional method of Dyson-Schwinger Equations (DSE). This
formulation uses non-perturbative quarks and gluons as degrees of freedom. A great
advantage of the functional approach, compared to effective field theories, is the fact
that we do not need to seperate high and low energy QCD contributions. That
would give rise to complications since the photon four-point function is involved.
This quantity cannot be clearly assigned to a specific scale. The HLbL contribution
in general is an intricated affair. It cannot be related to experimental data, so we
are not able to compare results.

The functional approach we use has already been used to calculate the HVP and
parts of the HLbL contribution [1-4]. In this thesis, we focus on a class of diagrams
we identify with the pion-loop in effective field theories. We investigate the behav-
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ior of the contribution to a,, depending on mmy-vertices dressed with different form
factors. We want to study the impact of vector meson dominance (VMD) models
without and with dependence on the relative pion momentum and compare them to
the form factor motivated by our approach. If not stated otherwise, we use Euclidean
metric and natural units in all our calculations.

The structure of the thesis is as follows: In the remains of this chapter, we proceed
to give a general overview of the history and the basic concepts of the magnetic mo-
ment of the muon. Then, we give an example on an experimental extraction method.

Chapter 2 is a compilation of the contributions present in the Standard Model and
gives a synopsis of the current values of said contributions. We introduce and moti-
vate a method to theoretically extract a, in the Standard Model.

In chapter 3, we present the framework of Dyson-Schwinger (DSE) and Bethe-
Salpeter Equations (BSE). We explain the truncation used to solve these equations.
Furthermore, we introduce objects like the T-matrix and Bethe-Salpeter amplitudes
(BSA) and the approximations we apply.

Chapter 4 is the main part of the thesis. It elaborates on general aspects of the
hadronic light-by-light contribution to a,, and the photon four-point functon II,,g.
We explain the steps we took to implement a program to extract the anomalous
magnetic moment. We present the findings of the thesis and discuss their behavior.

A short summary and conclusion of the thesis is given in chapter 5.



1.1 History of a,

1.1 History of a,

The following explanations are based on [5] and [6]. We will not quote all original
sources. These can be found in the references of the cited overviews.

Historically, the anomalous Zeeman effect lead to the discovery of an intrisic electron
spin, corresponding to g = 2 in 1925 [7]. In 1928, the Dirac theory predicted the
same value for g, valid for any spin 1/2 paricle [8]. An experiment in 1947 was the
first discovery of an anomalous contribution to the magnetic moment of leptons [9].
Shortly after, theoretical considerations by Schwinger lead to the famous Schwinger
correction [10], describing the QED one-loop correction to a,.

Later, in 1956, it was found that the sensitivity of leptons to quantum-fluctuations
from heavier particles and energy scales, e.g. Agcp, scales with the leptons squared

mass,
2

my
5(1/[ = W (11)
This strenghtened the intrest of the anomalous magnetic moment of the muon, since
its mass is approximatly two hundred times the mass of the electron. At this time,
the problem was the production of polarized muons. However, with the discovery of

parity violation in pion decays [11], it was possible to extract a,,.

The opportunity to investigate possible mew physics’ contributions, where 'new’
described everything beyond QED at that time, triggered an experimental intrest.
At CERN, measurements of the anomalous magnetic moment of the muon were con-
ducted with the cern cyclotron (1958-1962), and a muon storage ring from 1962 until
1968. The measurements with the storage ring produced a deviation 1.7 ¢ between
theory and experiment, which made it necessary to include higher QED loop orders in
the calculation. A second muon storage ring at CERN, operation during 1969-1976,
was precise enough to measure the first hadronic contribution to a,, the hadronic
vacuum polarization. With the experiment E821 at Brookhaven, running until 2003,
the precision reached a point where even weak interaction contributions needed to
be included.

The theoretical precision will be discussed in chapter 2, and a comparision of the
current values is presented.
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1.2 Magnetic Moments

As in the last section, we follow [5], summarizing the basic understanding of the
property 'magnetic moment’ and ’anomalous magnetic moment’.

Classically, any particle with charge ¢ and mass m traveling an orbit possesses a
magnetic dipole moment fi,, and possibly an electric moment d.. These moments
give rise to electromagnetic interaction terms that constitute the Hamitonian,

H = —fi, B+ d.E, (1.2)

with magnetic and electric fields B and E. The classical form of a magnetic moment
is given by
— q r
=—1L, 1.3
1297 om (1.3)
with the angular momentum L. If we now consider a particle with intrinsic spin S ,

we have q

[ = g—0S. 1.4

fim = 95 (1.4)
The gyromagnetic ratio g is defined by (1.4) and is a ’container’ for dynamical infor-
mation. Dirac theory predicts that fermionic g-factors should give the value g = 2.
We will come back to this in chapter 2. However, experiments found a deviation.
Further treatment lead to the anomaly

g—2

@ =7, (1.5)
which we call the anomalous magnetic moment. In the Standard Model, the anomaly
arises from corrections in the muon-photon-vertex. We will discuss the contributing
effects in more detail in chapter 2.

This anomaly, particularly the anomalous magnetic moment of the muon a,, is per-
fect to do high precision tests of our physical framework, the Standard Model. The
muon magnetic moment is better suited than the electron magnetic moment, since
heavier particles’ contributions to a; scale with the lepton mass squared. If a precise
measurement of the 7 magnetic moment would be available, the resulting anomality
would be even better suited to investigate anomalous contributions to the magnetic
moment.



1.3 Experiment

1.3 Experiment

The measurement of the anomalous magnetic moment is one of the most precisely
known physical quantities in particle physics. For a measurement, one needs polar-
ized muons. They are generally produced by weak pion decays,

™ = uF . (1.6)

Here v, is the muon neutrino or anti-neutrino. Since the neutrino handedness is
fixed in the Standard Model, it is possible to produce highly polarized muon beams,
that can be trapped in storage rings. In Fig.1.1 we show a schematic view of the
Brookhaven g — 2 experiment, employing the mentioned storage ring.

Storage
Ring

momentum

Figure 1.1: Schematic view of the spin precession of polarized muons in a constant
magnetic field. (Taken from [5])
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The muon is exposed to a magnetic field B. With B = |B|, the anomalous magnetic
moment triggers a Larmor precession. The frequency w,,

B

7
my

(1.7)

We = ay

describes the Larmor precession frequency of the muon spin. While the muon moves
with the cyclotron frequency w,, the spin has the angular frequency ws, where v is
the relativistic Lorentz factor.

B

we = (1.8)
myy
B B

W = — ta,—. (1.9)
myy my,

In addition, a transversal electric quadrupole field E is needed to permanently focus
the muons in the storage ring. This field modifies w, to

(& —

1 B
5=~ (a,B—la,— ——|Gx E), 1.10
W o (a# [a# e J 7 X ) ( )

where ¥ is the velocity of the muon. At the “magic Energy” E,,., = ym =~ 3.098
GeV, the contribution to w, depending on the electric field E vanishes. This renders
Eqg @ natural choice for the experiment. With this, the necessary quantities to
extract a, are the magnetic field and w,, which is obtained by measuring the decay
products of the muon that decays via

pE = et + v, + v, (1.11)

with the corresponding neutrino and anti-neutrino. From this, the experimental
value of a, is extracted [12,13].

ai™ = 116592089(63) x 10~ (1.12)

In chapter 2, we will compare this value to the theoretical result to further motivate
the investigation of the hadronic contributions to a,,.
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In this chapter, we give an overview of different contributions to the magnetic mo-
ment of the muon, considering the Standard Model of particle physics as a frame of
reference. We show where the magnetic moment appears in the Standard Model, and
intruduce the up to date values for QED-, weak interaction- and QCD-contributions.
Finally, we compare the extracted values from experiment and theory.

From the theoretical point of view, the magnetic moment is part of the muon in-
teraction with an external magnetic background field. For a relativistic quantum
field theory, that means we have to start with the muon-muon-photon vertex I'y,
defined by

u(p) Tau(p) =u(p) | ey (K?) + 2;1 Tapd” Fy (K2) | u (p) (2.1)

“w
where u(p) is the muon spinor, & is the photon momentum and o,5 = i [Ya, V5] /2.
p and p’ are the incoming and outgoing muon momenta. Fj is the Dirac- or electric
form factor and F;, the Pauli- or magnetic form factor. Charge renormalization leads
to

F(0) =1. (2.2)

From the magnetic form factor at zero momentum, we can extract the anomalous

magnetic moment.

F(0) = a, = 47 2.3

To come to this conclusion, we take a quick look at the matrix element M. We
consider a classical background field Aff,

A (z) = (o,/f (f)) (2.4)
and, with the help of (2.1), define M:
M =ea(p)Tu(p) A%(k), (2.5)

with the Fourier transform Azl(l;) of the field. We can interprete the interaction as
a magnetic field B(k) with

B (k) = —ie* kA (k). (2.6)
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Using the non-relativistic limit

(1—=p-6/2my,)¢
u(p) = /m L. , 2.7
=y “((1+p-o—/2mu>s &0
and the limit £ — 0, we arrive at
k
M = 2m,—— [Fy(0) + F3(0)] <”—> B (k). (2.8)
my 2
We can identify this as a Born approximation with the potential V|
V(%) = — (i) B(&), (2.9)

where

—

(i) = = [F(0) + F0) (5 ). (210

2
m
Comparing this to equation (1.4) with § = /2 and using (2.2), we find

g =2[Fi(0) + F3(0)] = 2 + 2F(0). (2.11)
This is equivalent to (2.3). In Dirac theory, the vertex I', is solely given by
@ (p) Tau(p) = (p) vaFr (K*) u(p). (2.12)

With F3(0) = 0, we do not have any anomaly, and we have g = 2, as mentioned in
section 1.2. A more detailed explanation on this comparision can be found in [14] or
other text books.

The main tasks are now to extract Fy from equation (2.1) and to identify all contribu-
tions. Projecting out F, will be explained for the hadronic light-by-light contribution
in section 4.1. In the Standard Model, the contributions to the vertex can be divided
in QED-, weak-interaction- and QCD-parts. The biggest share to a, is given by the
electromagnetic parts, so it is natural to start with QED.

Figure 2.1: QED one-loop diagram. The Schwinger result is the largest correction
to the magnetic moment of the muon. It is a general correction, that
appears in the magnetic moments of all leptons.



Since QED is weakly coupled, we can sort the QED diagrams by the number of loops,
with higher order contributions becoming less significant. The one-loop diagram leads
to the famous Schwinger result [10],

QDAL — & (2.13)

extracted from Fig.2.1. For higher loop orders, the number of diagrams grows very
fast. At two-loop order, nine diagrams contribute, shown in Fig.2.2. At three-loop
order, there are already 72 and at four-loop order around one thousand. Even with
this high amount of diagrams, the calculation of the contributions is straight forward.
The results are listed in table I.

4)

T
7)

Figure 2.2: QED two-loop diagrams. (Taken from [5])
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Loop order | a¥?PP[x10M"] |

2 413217.621(14)
3 30141.902(1)
4 380.807(25)

Table I: Results for the QED contributions to a, for two-, three- and four-loop order
diagrams.

Recently, even the five-loop order has been published [15], with the result
5
a@FPSE — 753.29(1.04) (3> ~ 5% 1071 (2.14)
T

In equation (2.14) we see, that the five-loop diagrams are suppressed by a factor
(a/7)” and we can say that QED is under control.

b) c)

Z H

Figure 2.3: Weak one-loop order diagrams. (Taken from [5])

Next, we consider the weak contributions. They are known to two-loop order plus
some leading three-loop parts. The value given in [16] is:

a*™* = 153.5(1.0) x 107", (2.15)

m

The one-loop order is displayed in Fig.2.3.

The QCD diagrams can be decomposed in two different types of contributions, the
hadronic vacuum polarization (HVP) and the hadronic light-by-light scattering. We
will discuss the HVP contribution briefly in chapter 3. The HLbL contribution is
treated in chapter 4. To summarize the full theoretical value for aﬁM in the Standard
Model, we give their values here and discuss them later. The published values [17,18]
are

aVPO = 6949.1(58.2) x 107, (2.16)
a VPO = —98.4(1.0) x 107, (2.17)
aPPPEET = 105(26) x 1071, (2.18)

for the HVP leading order, the HVP higher orders and the HLbL contributions from
effective field theories. Adding up all of these values we arrive at the Standard Model
value

aM = 116591827(64) x 107, (2.19)

w

10



compared to the experimental value
a™ = 116592089(63) x 107, (2.20)

which leaves an unexplained difference of Aa, = 262(89) x 10~ ™. This difference
is one of the main reasons why the anomalous magnetic moment is and will be in
the next years, a very interesting field of study. It probes the borders of our under-
standing of particle properties in the Standard Model. If this difference cannot be
resolved within the Standard Model, we need to look for new physics contributions,
not covered by QED, QCD and weak interaction.

The biggest fraction of the theoretical uncertainty is the hadronic correction. Be-
lieving in the errors given in (2.16) to (2.18), the HVP contribution is the most
problematic part, but since it can be related to experimental data, we assume that
its precision will improve a lot in the future. The biggest problem will then be the
HLbL contribution. It cannot be related to experimental data, and the obtained re-
sults so far have been calculated in effective field theories. That motivates alternative
approaches, like functional methods.

11






3 Framework

This chapter gives a short overview of the used method, as well as an idea of the used
notation. Firstly, we present a schematic manual to calculate the quark propagator
and then our truncation. We introduce some objects calculated from Bethe-Salpeter
Equations (BSE). Finally, as an example of how to use this framework to calculate
contributions to a,, we look at the hadronic vacuum polarization (HVP).

The technique we use is a functional method. It generates Dyson-Schwinger Equa-
tions (DSE) for propagators and BSEs for vertices and bound state amplitudes. A
detailed explanation can, e.g., be found in [19,20]. DSEs and BSEs are exact, but
a problem arises as they are in fact infinite towers of equations. To evaluate them,
we have to resort to truncations. A truncation describes a simplification that re-
stricts the calculation to a finite number of equations in order to solve them. The
requirement is that it obeys and preserves the given symmetries of the theory. It is
important, that we get full non-perturbative propagators and vertices.

3.1 Quark DSE

Since it is one of the main ingredients to calculate hadronic diagrams, we will outline
the calculation of the quark propagator in RL truncation.

For the inverse dressed quark propagator, we have to solve the DSE shown in Fig.3.1.
In Euclidean metric, we can decompose the inverse quark propagator as given by

S7Hp) =27 () (—ip + M (p7)) (3.1)

with the quark wave-function renormalization Z; (p?) and the quark mass function
M (p?). This leads to the DSE, which is the equation of motion of the Green’s
function for the quark,

SHp) = Z255 ' (p) + 2(p) (3.2)
with the self energy
4

9D 0 - ST (0,p). (3.3)

Y(p) = gQleCf/ 2n)"

13
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Z is the quark and Z;p the quark-gluon vertex renormalization factor. The Casimir
Cy = 4/3 comes from the color trace. The inverse bare quark propagator S; '(p) and
the gluon propagator D, (p) in Landau gauge are denoted by

Sy H(p) = —ip + mo. (3.4)
DMV (p> = <5uu - p;fv) Z]()];Q) (35)

where my is the bare quark mass. For the fully dressed quark-gluon vertex I',,, and the

Figure 3.1: Dyson-Schwinger Equation for the quark propagator. The right quark-
gluon-vertex as well as the quark and gluon propagator are fully dressed.

gluon dressing, the RL truncation with the M'T model is used. Now we can project
out Z; (p?) and M (p?) from equation (3.1), and solve the equation numerically.

14
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3.2 Rainbow-Ladder Truncation

A full quark-gluon vertex can be decomposed in twelve Dirac covariants. The T
are the tensor structures and the A(¥) are their dressing functions.

12
Lu(p.a) = Y TN (p, q). (3.6)

However, in the Rainbow-Ladder (RL) truncation, the vertex is given only by the
bare’ structure denoted by

L, (k) =7 (k) (3.7)

with the scalar dressing function I'YM as a function of the squared gluon momentum
k* = (p— q)2. We employ the Maris-Tandy (MT) model to express the phenomeno-
logically observed effective coupling, which is defined by equation (3.8).

acrs (V) = 7 () T (12) 3.5)
_ T 4 ox _k_2 27Ym[1 — exp (-k;?/ (4mf))] 3.8
_wﬁDk p( w2) lOg (T<1+k2/AQCD>2) )

with w = 0.4 GeV and D = 0.93 GeV2. Z (k?) is the gluon dressing function.
The other parameters are 7, = 12/(33 — 2N;), m; = 0.5 GeV, 7 = €? — 1 and
Agep = 0.234 GeV, where Ny is the number of quark flavors. The basic idea of the
model is, that it should provide an interaction that is strong enough in the infrared
to reproduce dynamic chiral symmetry breaking and at the same time aproaches the
one-loop coupling of QCD for k&% >> Agcp. In the standard setting, the parameters
w and D are used to fit the model to the physical pion decay constant f.

For some applications it is useful to define the RL interaction kernel K,

aerr (K2
Krs,tu (k’) - 47T—f22( )Tuy(k‘)[')/u]rt[’}/u]usa (39)
where T),,,
k. k,
Tﬂu(k) = <5MV - 22 ) ) (310)

is the transverse projector. We use this Kernel in BSE calculations later on.

The Rainbow-Ladder truncation got its name from the fact that the diagrams in
RL only consist of planar diagrams without crossing gluons. Pictorial, this results in
either rainbow-like, or ladder-like structures. A diagram in RL-truncation is shown
later on in Fig.3.8.

15
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3.3 Bethe-Salpeter Equations and T-Matrix

To calculate the HLbL contributions to a,, we will employ the T-matrix, Bethe-
Salpeter Amplitudes (BSA) and vertices derived from BSEs. In the following, we
introduce these objects.

We want to describe a quark-antiquark bound state, so we start with the Green’s
function

G(x1,22,1,42) = (01T (1) (22) (1)1 (y2)0) (3.11)

which contains four external (anti-)quark legs. It can be decomposed in a connected
and a disconnected part, as shown in Fig.3.2 for momentum space. In a very short-
hand notation, suppressing the indices, it can be written as

G =SS + SSTSS, (3.12)

with S denoting quark porpagators. As we can see in equation (3.12), the T-matrix

= e

Figure 3.2: This figure shows the decomposition of the G-matrix in a disconnected
part and a connected part. The disconnected part consists of two non-
interacting dressed quarks. In equation (3.12), it is denoted by SS. The
connected part defines the 7T-matrix, when the dressed quark-legs are
amputated. The notation for the connected part in equation (3.12) is

SSTSS.

is defined as the amputated, connected part of G. To determine T, we use the
inhomogeneous BSE for the G-matrix [21],

G =SS+ GKSS, (3.13)

where K is the interaction kernel. This equation can be diagrammatically expressed
as Fig.3.3. We combine the equations (3.12) and (3.13), to arrive at the inhomoge-
neous BSE

T=K+TSSK, (3.14)

shown in Fig.3.4. Now we use, here in Dirac-metric, the pole-approxmiation

16
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@ _ 6L

Figure 3.3: Pictorial representation of the inhomogeneous G-matrix BSE. As in
Fig.3.2, the disconnected, dressed quarks are denoted SS. The blue
box represents the interaction Kernel K. We use the Kernel defined
by equation (3.9). The diagram containing the G-matrix and the Kernel
is denoted by GKSS in equation (3.13).

ToRS BN |

Figure 3.4: The combination of (3.12) and (3.13) lead to the inhomogeneous BSE for
the T-matrix. The right hand side of the equation consists of a ’bare’
interaction Kernel denoted by K, and a T-matrix connected to a Kernel
via dressed quarks, TSSK.

L(Pk)L(P,q)

T(Pk,q) ~ —i JEop—

(3.15)

I" is the Bethe-Salpeter amplitude, and T its conjugate. The mass of the meson pole
we want to treat is denoted by m. The pole-approxmiation assumes that the physical
particle masses appear in the T-matrix as poles. These poles are the dominant
contributions, so we neglect other terms. Using this expression for 7' in equation
(3.14), we get the homogeneous BSE for I', shown in Fig.3.5,

I = ['SSK. (3.16)

As a homogeneous equation, we need another normalization condition, that can be
retrieved from the G-matrix BSE (3.13). This can be found in [22]. The BSA is an
on-shell object. Since the mesons in our calculations are not on-shell, it is necessary
to use an off-shell prescription. This was done using the axial-vector WTT (AXWTTI)
in the chiral limit as a starting point, e.g. in [6].

Another important object that can be calculated in form of a BSE is the quark-

17
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Figure 3.5: Meson bound state BSE, derived from the T-matrix BSE. The green
blob represents the Bethe-Salpeter amplitude I'. In equation (3.16), the

diagram containing the dressed quarks and the interaction Kernel K is
denoted by 'SSK.

photon vertex I',,. Its BSE is given by equation (3.17),
Th — 74 4 THSSK, (3.17)

and pictorial in Fig.3.6. We find this equation by closing the G-matrix BSEs left side
with an outgoing photon. Its tensor structure is the same as the quark-gluon vertex.
We can start with equation (3.6) and sort it in transverse and non-transverse parts,

12 4 12
Lu(p.a) = > TN (p,q) = > TN (0,0) + D TR (0, 9). (3.18)

i=1 =5

The four longitudinal components, denoted by the index L, are fixed by WTIs. A
discussion of the importance of the transverse parts, denoted by 7', can, e.g., be found
in [23]. The results obtained by our method do not only reproduce the commonly
used Ball-Chiu vertex [24] in its non-transverse part, it also generates transverse
structures and satisfies the WT1Is.

Il
+

Figure 3.6: This equation describes the inhomogeneous BSE for the quark-photon
vertex. The pink blob denotes the vertex. The right side contains a
diagram with dressed quarks and the interaction Kernel K. As in the
other BSEs, we use the Kernel introduced in equation (3.9).

18
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3.4 Example: Hadronic Vacuum Polarization

As an example of how to use functional methods to calculate g — 2, we summarize
the calculation of the HVP componente, as published and discussed in [3].

The leading order HVP in the DSE/BSE approach is defined as shown in Fig.3.7.
Its main component is the photon polarization tensor II,,. Although this object can
be directly related to experimental data of eTe~—annihilation and 7—decays by the
use of dispersion relations, it is a very convenient test to the expected accuracy of
results obtained in the HLbL sector with the same approach. In higher order con-
tributions two or more II,, tensors appear. The tensor itself is given by equation

Figure 3.7: Leading order HVP contribution to a,,.

(3.19), or in terms of diagrams by Fig.3.8. With the help of the propagators S(p)
and the quark-photon vertex I, calculated as explained in section 3.3, II,, can be
determined.

1, (P) = 7 [ 5T [S( TP.)S(a )3 (3.19)
with g+ = ¢ = P/2. From the WTI
p,u]:[,uu (p) =0 (320)

we know that II,, is transversal. Thus we can write it in terms of a scalar dressing
function as in Eq. (3.21).

M, (p) = (% . p;f”) T (p?) (3.21)

gV = %/01 dz(1 — ) {—621_[3 (;fwmuﬂ (3.22)

19
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Figure 3.8: Photon self energy tensor in DSE/BSE formalism in RL, as well as in
exact notation, without any applied truncation. The left vertex and both
quark propagators are fully dressed.

With this, the contribution to a, can be extracted from (3.22). Since II diverges
logarithmically, I1g, the scalar renormalized photon polarization function is used in
this equation. For the renormalization, a reasonable choice is

g (p°) =11 (p*) —11(0). (3.23)

To get an idea of the dependence of a, on the quark masses, two different settings
were used. Setting I was tuned to reproduce the physical pseudoscalar, and setting
11 the vector meson masses. The values obtained by these calculations are

all VPl = 7440 x 107, (3.24)
alVPIT = 6760 x 107" (3.25)

In comparision, the value derived from dispersion relations, (2.16), is
allV AP = 6949.1(58.2) x 1071

The result with quark masses adjusted to the more relevant vector meson sector is
in good agreement with the experiment, which supports the believe that the model
is applicable to calculate hadronic contributions of a,. Higher order contributions
that are so far quoted as (2.17), a//""#9 = —98.4(1.0) x 10~"!, were not considered
yet, however calculations would be feasible.
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4 Hadronic Light-by-Light

In this chapter, we want to give an idea of the calculations used to extract the contri-
butions to the anomalous magnetic moment of the muon from hadronic light-by-light
scattering. We shortly consider the finiteness of the photon four-point function Iz,
which plays a major role in the calculations. We compare the effective field theory
expansion of the four-point function to the functional expansion. For completeness,
the quark-loop is discussed. Afterwards, we elaborate on the pseudoscalar exchange
contribution, since we apply an analog strategy for the charged pion-loop contribu-
tion. We then proceed to explain our numerics. Finally, we apply the mentioned
strategy to the charged pion-loop and elaborate on the diagrams included in this
contribution. Afterwards we extend the explanations of our numerics to the new
four-point function. In the concluding section, we present and discuss the results we
obtained.

4.1 Projection

The starting point for our calculation is the muon-muon-photon vertex I',, as intro-
duced in equation (2.1),

i (p') Lau (p) = u (p') |vaFr (K°) + 27; 0apd’ Fa (K*) | u(p).

"

We consider the muon being in its rest frame, so the muon-momentum p in Euclidean
metric is

p= : (4.1)

Furthermore, & is the external photon and p’ is the resulting muon-momentum after
the scattering. In the case of HLbL contributions, the vertex corresponds to Fig.4.1.
To extract a,, we need to project out Fy (k?).
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4 Hadronic Light-by-Light

- i
- -

Figure 4.1: The HLbL diagram. From left to right, the internal photon momenta
denote ¢1,92,q3, the external momentum is k.

A direct projection method is, for example,
Fy (K*) = T [(p +mp) AD (¢ + my) Ta] (4.2)

with the projector AY [25] given by

m?2 k* + 2m?
AP = = o L (pf : 4.3

Considering (2.3), we have to evaluate Fy at zero momentum. It is necessary to take
the limit 42 — 0. A calculation with k2 = 0 is not possible, because of the structure
of the projector. Another problem with this projection is the behavior of the photon
four-point function for large photon momenta. We will come to that later. For now,
it is important that this projection method is numerically quite involved because of
possible divergences in loop contributions.

A method to evade that problem is the usage of the Ward-Takahashi Identities

1

g 11(g1, g2, G3) jwap
0P (q1, 420 43) e =
Ti( )

( )

q

— T~
l\’)t

» R

IT
IT

(4.4)

0
0
41,92, 93) pvap 0
0

>~

w1841, 92, 93 ) pvap

As long as they hold, they allow us to write [26]

0
Ho‘uaﬁ(Qla qo, Q3) = —ku%Huuaﬁ(QD q2, QS> (45)

and .
I'y=—-kT,, (4.6)
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4.1 Projection

with
L= d'q d'qs
ief', — / — / Do (0) D02 D0
x (ie)S(p — g3 — a2) (ieva) S (p — a3) (ieys) (4.7)

a0
X |:(Z€)4%Huya,8 (01, G2, %)} :

S(p) is the perturbative muon propagator

i+ my
S(p) =+ 2 4.8
D)= (43)
and D, the photon propagator
_ pupv\ 1 Pubv
D,uzl (p) - (5ul/ - p2 ) p_2 "‘f p4 . (49)

¢ is the gauge parameter. We use Landau gauge and Feynman gauge in our calcu-
lations, corresponding to £ = 0 and £ = 1. Using the equations (4.7)-(4.9), we are
able to directly fix £ = 0 and extract a,,

a, = Tr [(zp +mu) o vl (i +my) fou] : (4.10)
48m,,
Since we work with an object like a photon five-point function now, divergences in

loops are not present anymore.
We solved this equation numerically for different contributions to II,,6s(¢1, g2, ¢3)-

We tried the direct method as an independent cross check as well, but due to numer-
ical instabilities, an extraction of reasonable results was not possible.
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4 Hadronic Light-by-Light

4.2 Photon Four-Point Function

In Fig.4.2 the idea of a diagrammatical expansion of II,,.s motivated by large-N.
expansion and chiral effective theories [27] is shown. Previous approaches claimed
that the individual contributions are different approaches to the same effect and
should not be added. In our approach, this question does not arise, since the contri-
butions are generated simultaneously. The expansion displayed in Fig.4.2 has been
used to calculate the HLbL contribution to a, in the extended Nambu-Jona-Lasinio
(ENJL), Hidden Local Symmetry (HLS), vector meson dominance (VMD) and non-
local chiral quark models. A summary can be found in Ref. [18]. These models give
allPPPET = 105(26) x 107, as already quoted in chapter 2.

% «
i

Figure 4.2: Diagrammatical expansion of II,,,,5. From left to right, the quark-loop,
the pseudoscalar meson exchange and the charged pion-loop are shown.

This value is not without controversy. A known and widely discussed problem [5]
is the fact that it is necessary to describe the mesons as off-shell particles. This
precedure can lead to effective results that are highly model dependent. It is therefore
not possible to determine an adequate error. This motivates further investigations
with a wide range of different methods. Our fundamental degrees of freedom are

L S A0S

Figure 4.3: Photon four-point function extracted by ’gauging’ the hadronic vacuum
polarization tensor in RL truncation. The factors indicate the number of
permutations we have to consider in the explicit calculation. All quarks
and quark-photon vertices are dressed.

dressed quarks and gluons. The photon four-point function is extracted from taking

two derivatives of the photon DSE with respect to the photon. This leads to a
diagrammatical expression shown in Fig.4.3. The factors indicate how many different
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4.2 Photon Four-Point Function

permutations of the object have to be considered. A derivation can be found in [6].
The first diagram in our expansion, Fig.4.4, is the quark-loop. Even though we do
not use the calculation of the quark-loop to test our numerics or explain aspects
of the process of the calculations used in this thesis, we at least want to mention
it for completeness. It can be calculated with the knowledge of the dressed quark
propagator and the dressed quark-photon vertex. With this it is possible to extract
the aflFbla—Loop contribution. A detailed discussion of the latest efforts to calculate
it can be found in [6]. Since we want to focus on the charged pion-loop, we do not
further elaborate on the quark-loop. The second diagram in our expansion will be
adressed later.

Figure 4.4: The quark-loop part of the photon four-point function, HZ;C%OP . All quark

propagators and all quark-photon vertices are fully dressed.

Figure 4.5: The pion-loop contribution shown here is not part of the expansion of
the photon four-point function in RL-truncation. For reasons explained
in the text, it is reasonable to consider this type of diagram anyway.
Because of the limited space, the dressig of the quarks in this figure is
omitted. The grey ovals denote T-matrices and the pink dots dressed
quark-photon vertices.
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4 Hadronic Light-by-Light

What we are interested in is the charged pion-loop shown in Fig.4.5. As we can see,
it is not realized in the four-point function in the RL truncation. It would be, if we
would consider higher order interactions. Since we know that it will be generated in
more realistic approximations, it is nontheless interesting to calculate its contribu-
tion to a,, even with an approach that does not generically generate it.

A more general aspect of the four-point function is its structure. Its general ten-
sor structur can be written as [2§]

1)(915 2, 43) G Gas + i2)(q1, 42 G3) Gua s
(Ch, q2, Q3)9u69ua

(a1, 42, 43) 9w @l @y + T (a1, 42, 43) 9t 0
( )

5 )

Huyaﬁ(qlv q2, (]3) (
Is)
7%
Iy,
Eé, 0, 42, 43) 9000 + Ty (01, 42, 43) 9vadqy  (4.11)

0, 42, 43) Gl @l + T (a1, G2, 43) 9pd, 00

+ o+ o+ + +

H
Y (a1, 92, 434,904

Here the three momenta ¢1, ¢2, g3 are the independent internal photon momenta. The
external momentum is defined by 0 = k+q;+¢2+¢3. All combinations i, 7, k, [ =1,2,3
are possible, so the overall number of tensor structures is 138. In fact these structures
are not fully independent. With the help of the WTIs (4.5), it is possible to express
the complete four-point function as a linear combination of Hi{kl. The importance
of this feature becomes clear, if we consider the canonical dimension D of I, qg.
Since D = 0, we naively expect divergences in loop contributions. But since HZ('{])CZ
is accompained by four momenta ¢;, the amplitudes dimension is supposed to be
D = —4. Thus the result is finite. This is one way to express the decrease of the
naive degree of divergence via gauge symmetry effects.

As mentioned in section 4.1, loop contributions pose a numerical problem because
of naive divergences. In the case of the quark-loop, we have to consider six different
possible permutations of the diagram and all of them diverge logarithmically in the
direct projection method. However, the sum of these diagrams is supposed to be
finite. The need to work with diagrams with canceling divergences renders these
calculations numerically difficult. We will consider the situation for the pion-loop in
section 4.5.
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4.3 Pseudoscalar Exchange

4.3 Pseudoscalar Exchange

In section 4.2 we explained which HLbL contributions we want to consider. Next,
we show how to apply the approximation for the T-matrix, and arrive at diagrams
similar to effective field theories with PS4y form factors. Since we employ a similar
strategy for the charged pion-loop, we roughly explain the necessary steps for the
pseudoscalar exchange.

Figure 4.6: PS exchange diagram in the DSE/BSE approach. Pink blobs are dressed
quark-photon vertices. All quarks are dressed.

The second diagram in Fig.4.3 has been calculated in the DSE/BSE approach [1,2].
The corresponding four-point function is represented by Fig.4.6. With the T-matrix
approximation (3.15), we can draw the diagram as depicted by Fig.4.7. We can see
the similarity to effective field theories when we introduce the PS~v~v form factor,
pictorial represented by Fig.4.8. With this notation, the four-point function can be
drawn as Fig.4.9. This corresponds basically to an effective field theory diagram with
a form factor.

Figure 4.7: PS exchange diagram with applied pole-approximation for the T-matrix.
The green blobs are Bethe-Salpeter amplitudes. All quarks are dressed.
The pink blobs are dressed quark-photon verices.
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4 Hadronic Light-by-Light

Figure 4.8: PS~~ form factor. We collect the Bethe-Salpter amplitude, the dressed
quarks and the dressed vertices and define a form factor.

Figure 4.9: PS exchange diagram with PS5y form factors, represented by light green
blobs. What is left, is a diagram with two PS~v~vy-vertices, dressed with
the form factors.

The extracted value for the PS-exchange contribution to a,, is
a® = (80.7+12.0) x 107", (4.12)

As we identified the contribution as PS-exchange, we can compare the result with
previous calculations in other approaches. Typical results in the HLS or the ENJL
model are [28,29]

a7t = 85(15) x 1071 (4.13)
al™® = 83(6) x 107" (4.14)

We see that the DSE/BSE results are consistent with other models. A comparision
with more effective field theory results can be found in [6].
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4.4 Numerical Implementation I

4.4 Numerical Implementation |

Since all HLbL contributions have the same structure except for the four-point func-
tion, the PS exchange gives us the possibility to test our numerics even if we recal-
culate effective theory diagrams.

Following [30], we evaluated a7 for lowest meson dominance (LMD) and a vector
meson dominance form factor (VMD), involving either one or two vector resonances
in the photons. Sticking to the notation in [30], we write all expressions in terms of
¢1 and ¢». However, in our calculations, we use ¢; and g3 as independent momenta,
with the relation

@ =—(+qg+k), (4.15)

since this momentum routing lead to the quickest numerical convergence of all tested
scenarios. The form factors, as well as the derivative of the four-point function, are
given in the Dirac metric,

2 2
T + q5 — Cvy
FED (43, 43) = fo__ a1t : 1.16
o (o ) =5 (= 0mg) (D (410
Ne M2 M2

FaMD (4,43) =

TOY*Y*

— . 4.17

2°F, (-~ M7) (-~ M) e
N¢ is the number of colors used. My = M, is the vector meson mass used in the
dominance models, and the constant ¢y, appearing in (4.16) is given by

Ne My

= . 4.18
v 472 f2 ( )

We will not discuss the behavior of these form factors in detail, since we only use
them to test the numerics of our code up to the four-point function with the well
known results for the pion exchange. In the case of the pion-loop, the derivative of
I1,,0p is taken numerically but for the pion exchange, Ref. [30] gives an analytical
function

9 o (q1,q2, k) = j T (41, 63) Froner (91 + 42)°, 0)
akp 2N ) 44 (q1 +Q2)2 _ ME

Frgyer (0150) Frgyen (q%, (¢ + Q2)2)

Euuaﬁngge)\opr ((]1 + Q2)T

. a, B

4 q% — Mﬁ €uorpqdl €vrapqy 42

.fﬂ_ o (q%7 (QI + QQ>2) Fﬂ * K (q%; O) T

4 0Y*Y q% — Mg oY v EMAO‘B(]?QQBEVU;)TQQ
+ O(k).

(4.19)
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4 Hadronic Light-by-Light

Since we only evaluate the derivative of the four-point function at k£ = 0, the addi-
tional terms O(k) are not relevant. The results for the pion exchange contribution
to a, given in [30] are

aMP =73 x 107, (4.20)
ay MP =56 x 107" (4.21)

We can test our numerics by comparing our results to these values. Later, we can use
the same code to evaluate the pion-loop with a simple change of the used derivative
of the four-point function.

First we have to convert form factors and four-point function in Euclidean met-
ric. The integration is supposed to cover the entire momentum space of ¢; as well

as ¢q3. It is convenient to use hyperspherical coordinates, so that the integration to
infinity has to be considered only for the radii 7y and r3. The integration measure of

a four momentum g,
\/1 — zg\/l — Y2 sin(¢,)

q=1, \/1 ~ \/1 ~ g 08(24) (4.22)

,/1—23 Yq

zZ,

q

in hyperspherical coordinates is given by

/ g ! /Ood 3/1(1 1 2/1d /%d (4.23)
= Tog T Z —Z . .
en)t ot ) ) Yo 0 %

Since in fact only five independent variables appear, it is possible to evaluate three
integrals trivially. We choose

0
\/1 —Z§\/l — Y5
qs = T3 (424)

g1 =T 5 | )
= \/1—Z§y3

21 %

so our free variables are rq, 73, 21, 23 and y3. For the integration, we use the Monte
Carlo integrator VEGAS [31]. It integrates functions over the unit cube of the
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4.4 Numerical Implementation I

choosen dimension. To cover the Euclidean momentum space, we need to use a
coordinate transformation, specified by

A

ri = Ajexp |log | = |2, (4.25)
LA

21 = 21’2—1, (426)
A

rs = Ajexp |log |—|xz3], (4.27)
| [A] T

23 = 2554—1, (428)

The x; are the VEGAS internal Cartesian coordinates. If we want to use the trans-

formation, we have to include its Jacobian determinant %YIJEGAS
VEGAS 3 A\’
T e =2 |log A STy T (4.30)

A; and Ay are infrared and ultraviolet cutoffs, necessary to integrate the interval zero
to “infinity” logarithmically. Values A; = 1076 — 1072 and Ay = 10® — 10° have been
tested and no relevant deviations in the results were noticed.

The additional factor ¢; for the neglected variables z1, ¢ and ¢3 results in
¢ = (27)% 2. (4.31)

Summarizing all of this, we have to evaluate (4.10),

ap = 48m,, Ir [(m + mu) Yors Vul (W) + mu) fau] ;

again with (4.15)
@ =—(q1 + g+ k),

5 1
iely, = (26;)8 H </o dmi) r:frg’\/l - zf\/l — 22
i=1
X LZXinASDW’ (Q1)Daa’<Q2)D,B,B’(QB)
x (1€7)S(p — a3 — q2)(ievar)S(p — g3) (ievp)

and (4.7)

, 0
X |:(Z€)4%H,uyaﬂ(QI7 q2, Q3):|

and the derivative of the four-point function given by (4.19), translated to Euclidean
metric. For the calculations, we used the definition of the electromagnetic coupling
a to express the elementary charge e. We are left with

e® =2%. (21)% . 2. (4.32)
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4 Hadronic Light-by-Light

The results lead to
ayMP =173.3(0.1) x 1071, (4.33)

a;MP =56.4(0.1) x 107 (4.34)

As one can see, the values are in very good agreement with the reference values (4.20)
and (4.21), even though Ref. [30] performed the angular integrations with the help
of Gegenbauer polynomials. We consider this as a check of the basic validity of our
code. The errors given for our results merely represents the numerical uncertainty of
the integration. It does not represent the accuracy of the used method to calculate
ay.
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4.5 Charged Pion-Loop

4.5 Charged Pion-Loop

In this section we consider the charged pion-loop. As mentioned before, the only
change to the previous situation is the four-point function.

Figure 4.10: This diagram, already shown in Fig.4.5, correponds to the part of the
pion-loop diagrams we are able to solve at the moment.

The diagram we can solve at the moment is shown in Fig.4.10. As before, we use
the T-matrix approximation motivated in section 3.3. We can seperate the T-matrix
in its poles for different physical masses m. Since the pole with the lowest possible
mass is the pion, we assume, that

L(P k)L(P,q)

(4.35)

is a reasonable approximation. With this representation, we can combine two T-
matrices as illustrated in Fig.4.11.

rwatee

Figure 4.11: Combination of two T-matrices in pole-approximation. When we apply
it to the diagram Fig.4.10, we end up with a pion-loop. The green blobs
represent Bethe-Salpeter amplitudes. All quarks are dressed, as well as
the quark-photon vertex, depicted as a pink blob.
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4 Hadronic Light-by-Light

Now we absorb BSAs pairwise into a 7wy form factor, see Fig.4.12. The vertex
stucture with the form factor is

TR (p1,p2) = F1 0 (pryp2) - (1 +p2)! + F3 7 (1, p2) - (p1 — p2) (4.36)

However, the numerical values for Fy was so small that we neglected it in further
calculations. What we are left with is, up to the form factor, the same expression as
the pion propagator S, in scalar QED (sQED),

—1

Sx(p) = N VPN (4.37)

This theorie describes charged scalar fields. An example for these fields are the pions.
In this case, the theorie contains 7+, 7~ and photons. The only vertices that can
exist are the m7y-, and the mmyvy-vertex. The expressions for the vertices are given
in section 4.4.

()
-/

Figure 4.12: We define the mmy form factor, dark green blob. It consists of two
Bethe-Salpeter amplitudes (green blobs) connected by dressed quarks
and a dressed quark-photon vertex (pink blob).

A diagrammatical illustration is shown in Fig.4.13. This is why we identify Fig.4.10
as the pion-loop. Because of the similarity, it is useful to first calculate and compare
results with sQED, where the pion is treated as a fundamental particle.
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4.5 Charged Pion-Loop

l I \
I\I~'.\ .l\/\,
Figure 4.13: With the help of the wrvy-vertex, we are able to consider Fig.4.10 as a

pion-loop in scalar QED with an additional form factor for every wmy-
vertex.

In sQED, we have a total of 21 diagrams contribution to aH IOL - containing a pion-

loop. These diagrams can be decomposed into three gauge invariant groups, as
done in [32]. These groups A, B and C (corresponding to (a),(b),(c)) are shown
in Fig.4.14. The factors arise from charge-conjugation and time-reversal invariance.
The diagrams that are most important for us are C'3 and C'4. These are the contribu-

i
S pe)
Q1

Figure 4.14: Contribution to a), containing the charged pion-loop in scalar QED.
The diagrams C'3 and C4 are important for us, since the diagrams we
can solve reduce to them in the case of bare vertices. (Taken from [32])

{a)

(C) ) *@»

HLbL

tions that corresponde to our diagrams, assuming the wmy-vertices to be bare. The
rest of the diagrams contain a wryvy-vertex, we cannot yet include in our calculation.
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4 Hadronic Light-by-Light

These diagrams are important to preserve gauge invariance. We will come to this
problem in section 4.7.

For the group C, the aquired values in [32] are
c a3 ~11
aC = 0.3737(35) <E> ~ 468.7 x 10 (4.38)
with the use of Feynman parametrisation integrals, and
c a3 —11
o€ = 0.3772(18) <;> ~ 473.1 x 10 (4.39)

with the same method, applying the WTT (4.5) as we did, for bare vertices. How-
ever, because of the derivative, we cannot use the time-reversal invariance for every
momentum routing carelessly. With, e.g., a routing as depicted in Fig.4.15, the
derivative of diagram C2a is zero, since the external photon does not enter the cal-
culation. Therefore diagram C2b has to be calculated seperatly. In this case, the
calculation is not time-reversal invariant.

This similarity provides another tool to test our numerics. Therefore, we include
the bare four-vertex diagrams for the moment. The four-point function for all dia-
grams in C' is then

d"l
0C,05(01, 42, 03, 1) Zm / Dl (1,42, 3,1), (4.40)

where the Dzmﬁ represent the four-point functions of the different diagrams, and 7,
the multiplicity. The additional momentum [ is the loop momentum. The expres-
sions for the diagrams will be discussed in the next section.

Before we start with further explanations of the performed work, we want to discuss
the divergence behavior of the pion-loop. Naively, we start with counting powers of
momentum. Every propagator contributes

Sp X —, 4.41
- (4.41)
every bare sQED vertex
I' x p, (4.42)
and the integration measure M of the loop integral
M o p’. (4.43)
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P2 _»~ < P~ P2
/ N \
k A \
\
Pl /;3 s /p3 \
q3
al T q2 T q2
Cl C2b
<y
p3 p2
pZ{ \\p3 P Y o
\
/ k / k
/ 102 p4= / 1p1 p3}
/ A Y, \ p / \ P \ \
pl N ’,04 -~ e - -~ o -
pl p4
gl Tg q2 a3 ql q2 / a3 gl \: q2 a3
C3 C4a C4b

Figure 4.15: This is an example, how routing can affect the time-reversal invariance
in the calculation of the pion-loop contribution to a, with the derivative
of the photon four-point function. With this routing, we have to consider
both diagrams C'2a and C2b because of the derivative, since the diagram
C2a is independent of the external momentum k. The dark green blobs
are mry-vertices dressed with the different form factors, and the smaller
black dots represent the bare mmy~y-vertices.

Considering the whole pion-loop diagram, we end up with

\* , 5 1

Do (=) -p*p* =, (4.44)
p p

thus we expect logarithmical divergence. If we now include form factors, the vertices

contributions to the power counting change. In fact, we can assume, that at least

one of the four vertices provides a dimensionality of 1/p? or better. That is enough

to arrive at a finite result.
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4.6 Numerical Implementation |l

As stated in section 4.4, we use the same code as for the pion exchange. The only
thing we have to change is the derivative of the four-point function. To calculate it,
we use (4.37) for the pion propagators. The wmy-vertex is given by

L7 (1, p2) = F7 (p1, p2) - (p1 + p2)*, (4.45)

where p; and ps denote the pion momenta. In sQED, the form factor does not exist,
so we write

Feorp(p1,p2) =1 (4.46)
for now. The momentum independent sQED wry~-vertex is given by

[T = 25,,,. (4.47)

With this, we can calculate the four-point functions of the diagrams. One possible
momentum routing is given by

Dves(@1, 42,03, 1) = Sc(DTT7 (1,1 + q1) S (1 + )57 (U + a1, 1+ a1+ g3)

X Se(l+q +a)T", (4.48)
D2 os(@, @2, 03,1) = Se(MTT7 (L 1+ q1)Se(l+ q)T5 " Se(l + g1 + g3 + k)
X Fgﬂ"y(l +q+q3+ k? l)a (449)

Se(OTT (L4 q)Sx(U+ q)T (L + g1, L+ qu + k)
Sel+q+ R+ q+k1+q+qs+k) (4.50)
Se(l+q+ g+ k)T +qu + g3 + k1),
SW(Z)FZ”(Z, L+ E)S:(I+ k)T (1 + kL4 q + k)
(
(

Diuaﬁ(Qh q2, 43, l)

X

X

waaﬁ((hv q2, 43, l)

X

Se(l+q +R)TE7 (U +q +kl+aq +g+k) (4.51)
X Sel+q+ g+ R)IT7( 4+ g3+ k1),

With this routing, we do not have the mentioned problem with the derivative. It
is shown in Fig.4.16. To arrive at the full pion-loop four-point function, we have
to integrate over the loop momentum. We do this in hyperspherical coordinates via
VEGAS. [ is given by

\/1—212\/1—yl2sin (1)
(=g | VIV eostan | 452
\/1—27
2l
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pz/ P )‘ -~ p2 P )‘ <~ k
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Figure 4.16: We used this momentum routing in our calcuations. Time-reversal in-
variance is no problem here, since we do not use it for diagram C'1,
which we choose to be independent of k. The dark green blobs are w7y-
vertices dressed with the different form factors. We represent the bare
mryy-vertices with smaller black dots.

As for the previous integrations, we transform into hyperspherical coordinates, and
then into VEGAS-coordinates, z;. The [-integral then is

(]

dil 1 1
=6
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with the transformation specification

A
r = Ajexp {log [—2} xﬁ} : (4.54)
Ay
2 = 2w7—1, (4.55)
u = 2zs—1, (4.56)
& = 2mwy, (4.57)
and the Jacobian determinant
A
JVECAS — 92 97 . log [A—Z} 7. (4.58)
1
The A are the same as before. We take the derivative numerically, using
0 05,5 (g2 + eeo) — 1,5 (02 — €e,)
—HC _ _paf pvaf 4
ko pyaﬁ(q2) % ) ( 59)

where € = 1075, e, is the unit vector in o-direction. The dependences on ¢,q3 and [
in equation (4.59) are omitted to save space.

With this, we have all necessary expressions to calculate the pion-loop contribu-
tion to a, in sQED. Comparing the obtained result to (4.39), we now know that the
four-point function was properly included as well. We will show the calculated values
in section 4.7.

Now, we are able to change form factors without risking to endanger our numer-
ics. We cannot include the wmyvy-vertex in our approach yet, so we have to restrict
our calculations to the diagrams C'3 and C'4. For this, we only consider D' and D?.
Since this subgroup is gauge dependent, we have to keep in mind that all results we
produce can only be considered interim results that will become meaningful, when
we include the missing diagrams C'1 and C2.

Before we calculated the a, contribution with our approach, we wanted to observe
the behavior of the result for different form factors. We performed calculations with
M
P2 —p1)? + M

Fvarpi (P1,p2) = ( (4.60)

and
M2 M2

pe—m)*+ M2 . M—i—M‘%'

Fripe (D1, p2) = ( (4.61)

The first form factor corresponds to a VMD model where ony the photon momen-
tum dependence is considered. For the additional dependence on the relative pion

40



4.6 Numerical Implementation I1

momentum, we use Fi3/ - Qualitatively, this form factor is very close to our form

factor Fgr /psp> corresponding to the dark green blob in Fig.4.12.

Finally, we calculated a?+“* with F7c, /psp- The form factor was evaluated on
a grid and fitted. We used a linear fit and a spline interpolation in the calculations.

The results we obtained are presented and discussed in the next section.
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4.7 Results and Discussion

Before we present our results, we want to give a short overview of the values we cal-
culate. First we consider the subgroup C' of the scalar QED pion-loop diagrams with
bare vertices to test our numerics. For this we include the bare wryy-vertex. Then
we continue with a subgroup consisting of the diagrams C3 and C4, since these are
the diagrams we are able to evaluate in our approach at the moment. We try to apply
a simple VMD model, depending on the photon momenta ¢; and k. Then we extend
that model with a dependence on the relative pion momenta (p; + p2)/2. Finally we
deploy the DSE/BSE form factors. We performed all calculations in Landau and in
Feynman gauge.

The first result we want to present is the full group C' contribution to a, in sQED.
This value has to be compared to (4.39). Our result for C' with the 77y form factor
]:sQED is

a = 452.6(1.7) (4.62)

in Landau gauge, and
af = 453.6(2.8) (4.63)

in Feynman gauge. As before, the errors given for all of our results merely represents
the numerical uncertainty of the integration, and do not represent the accuracy of
the used method to calculate a,,.

The comparision of (4.62) and (4.63) with (4.39) shows a reasonable good agree-
ment. The difference to (4.39) is less than four percent. Since Ref. [32] did not
specify their input parmeters, we are not able to compare them. However, it is possi-
ble that, for very high values for the radii of ¢;,q3 and [ at the same time, the precision
of our code is exceeded. It is possible that this is the reason for the discrepancy. We
tested two different code implementations and this behavior was only found in one
of them. The results for the DSE/BSE form factor were the same for both codes, so
we assume that the problem does not arise in these calculations, and the discrepancy
is not important for our further analysis.

Now we restrict our calculations to the C'3 and C4 contributions. Again, we start
with the bare vertex, respective with the form factor Fsorp. The obtained values
are listed in table I. We clearly see that gauge invariance is broken for all tested
form factors. However, the behavior when we compare the results obtained by using
different form factors is the same. The results for Landau gauge are always bigger
than the results in Feynman gauge by a factor of approximatly five.

Since both sQED results for C'3 + C4 are smaller than the full group C' result,
but rise with a lower gauge fixing parameter £, we assume that a gauge exists, where
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4.7 Results and Discussion

Form factor F a,[x101]

=1 | ¢=0 [¢&=-301
FQED 18.6(1.8) | 101.5(1.2) | 447.7(4.9)
Fvmpi -670.1(1.2) | -525.0(1.0) || 1258.8(2.2)
Fyamp2 8.1(0.2) | 27.3(0.2) || 147.5(0.5)
F o o nsE 6.6(0.2) | 34.1(0.2) || 224.0(0.7)
F e nen 7.3(0.4) | 34.5(0.4) | 222.5(1.1)

Table I: Results for the C3 and C'4 contributions to a, in Landau (§ = 0), Feynman
(¢ = 1) and the special gauge ¢ = —3.01, where C'3 and C4 reproduce the
whole result for C, for different form factors. .

the full C' result is reproduced by C'3 and C'4. We tested different parameters £, see
Fig.4.17, and found £ = —3.01. This gauge produces the result

C3+C4

a, o5 = 447.7(4.9) x 1071, (4.64)

which overlaps with (4.62) and (4.63), if we include the errors. Now, we can neglect
the contributions of C'1 and C2. The obtained results in this gauge should be rep-
resentative for the whole group C', so we tested all form factors with £ = —3.01 as well.

The simple VMD ansatz Fyyp1 shows catastrophic behavior in all gauges. We
clearly see that the results have the wrong sign in Landau and Feynman gauge, and
that the obtained values are too large. The ansatz breaks the WTI (4.5), so any
value extracted by using the derivative of the four point function is random.

We try to improve the situation by extending the form factor with a second fac-
tor, depending on the relative momentum (p; + po)/2. It is a reasonable assumption
that this produces a more realistic behavior than the simple VMD model, since the
full form factor includes this dependence. The form factor Fyy;p2 behaves better
than the previous result by far. The sign got fixed and the order of the contributions
seems more reasonable. As expected in a VMD model, the numerical value is sup-
pressed compared to the case of bare vertices.

The values obtained by applying the DSE/BSE form factor are basically the same
for both the linear fit and the spline interpolation of the calculated data points. We
see that the findings for the extended VMD model are already in a range comparable
to our result. We interprete the behavior as an indication that it is important to
include the relative momentum dependence.
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Figure 4.17: Behavior of a$**“*, depending on the gauge parameter £. We plot
results in different gauges versus the negative gauge parameter. The
errors of the calculated a, are omitted. At approximatly £ ~ —3.01,
the full value of ag, represented by the red line, is reproduced by the
subgroup C3 + C4.

For now, we treat the result af3+04 [€ = —3.01] as the full contribution af in our
approach.
a = aPTe = —-3.01] = 222.5(1.1) (4.65)

We take the spline interpolated result since we it provides a more accurate represen-
tation of the form factor than the linear fit. Compared to the bare sQED result, the
value is suppressed, as expected. However, the overall contribution of all pion-loop
diagrams in sQED [32] is smaller by at least one order of magnitude, even for bare
vertices, and most importantly negative,

a3

am i — —0.0383(20) ( ) ~ —48.0 x 1071, (4.66)

™
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4.7 Results and Discussion

To compare results with this quantity and arrive at a final result a;ggoEp /BsEr We

would first have to include group A and B.

Another manifestation of the gauge dependence that should be mentioned, is the
fact that our results depend on the momentum routing. We already mentioned two
different possible routings, depicted in Fig.4.15 and Fig.4.16. When we are able to
include the diagrams C'1 and C2, and calculate C' directly, we will use these routings
to test the gauge invariance of the group. This dependence renders it almost impos-
sible to compare the obtained results to any reference values. This is one reason, why
we had to take so many steps to check our numerics. To be sure about the results
in our approach, we used two independent code implementations.

In near future, we are going to be able to include the missing groups A, B and
the diagrams C'1, C'2 and compare results to other approaches, with the help of an
approach to Compton scattering of baryons, which we will apply to pions [33, 34].
We will present a more detailed explanation of the expansion of the photon four-
point function, where we will further elaborate on the pion-loop diagrams we have
to include in our calculations. Because of the limited time for this thesis, it was not
possible to include these necessary tasks yet.
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5 Conclusion

In this thesis, we wanted to investigate the pion-loop contribution to the anoma-
lous magnetic moment of the muon, a,. Firstly, we elaborated on the historical
background of the particle property ’anomalous magnetic moment’. Afterwards, we
wanted to give a brief reminder of the property magnetic moment. Next, we gave an
example of an experimental extraction method, and an experimental value for a,,.

Then, we summarized the contributions to the anomalous magnetic moment in the
Standard Model, and give reference values for all components considered so far. We
compared the experimental and currently accepted theoretical results.

With the current situation outlined, we proceeded to explain the framework we used.
We gave a schematic road map of how to calculate the quark propagator in Rainbow-
Ladder truncation and briefly explained the truncation we apply. We introduced the
Bethe-Salpeter Equation for the G-matrix and outlined the steps necessary to ex-
tract the BSEs for the T-matrix, the Bethe-Salpeter amplitude and the quark-photon
vertex. Concluding chapter 3, we outlined the calculation of the hadronic vacuum
polarization as an example of calculations related to a, in the DSE/BSE framework.

The next step was to address the real topic of this thesis, the hadronic light-by-
light scattering contribution to the anomalous magnetic moment of the muon. We
started with an explanation of the projector used to extract the anomalous magnetic
moment from the muon-muon-photon vertex. To define the projection method, we
introduced Ward-Takahashi Identities. We compared the expansion of the photon
four-point function in effective field theories to our approach and motivated the anal-
ysis of the pion-loop contributions, even though they are not generically generated
in our scheme to express the four-point function. We considered its finiteness and
used the WTTs, to lower the naive degree of divergence of the photon four-point func-
tion. For completeness, we discussed the quark-loop contribution. We proceeded to
explain the strategy we used to apply the pole-approximation for the T-matrix and
identified our diagrams with contributions present in effective field theories, dressed
with photon-meson form factors. We used the opportunity to explain and test part
of our numerics with the known result of the pion exchange contribution. After this
preparatory work, we finally elaborated on the charged pion-loop. We introduced
the DSE/BSE form factor Fpsg/pse and laid out the used numerical extensions
compared to the pion exchange. To study the impact of VMD form factors without
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5 Conclusion

and with dependence on the relative momentum of the pion, we calculated a, with
Fvupr and Fyarpe. We found that the breaking of the WTI by the form factor
F1 lead to highly unreasonable results. However, the extended VMD ansatz showed
acceptable behavior in both Landau and Feynman gauge. The value extracted from
calculations with the form factor Fpgr/psr were close to the extended VMD result
and reinforces our believe that the impact of the relative momentum is important.
We used the broken gauge invariance to find a gauge, where the full value of the
contribution af is produced by the diagram subgroup C'3+ C'4. In this gauge, we re-
peated the calculations for all form factors, and regard the results for the DSE/BSE
form factor as our final result in this first approach for C'. We compared it with the
full group C' of scalar QED and discussed its meaning in the full pion-loop contribu-
tion to the anomalous magnetic moment of the muon.

As a conclusion, we state that we are aware of the fact that we calculate only a
subgroup of the pion-loop diagrams we should consider, and that this subgroup is
not gauge invariant. We use this to extract a result for the full group C, even though
we cannot calculate C'1 and C2 yet. We also know, that, at the moment, the obtained
results depend on the momentum routing. However, this problems will be resolved
when we include the missing diagrams. The current results show the expected be-
havior when we include different form factors. Even though the interim results are
not meaningful on their own, we can use them later on to extract the full pion-loop
contribution to a,. We are confident that we can find a consistent approach to the
mryy-vertex and resolve the problems stated here.
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