Bestimmung der Lebensdauer von Myonen

P. Drexler, M. Kotulla, J. Weiß, II. Physikal. Institut Uni Gießen

Physikalisches Praktikum für Fortgeschrittene: Versuch 2.5 (22. Oktober 2004) Die aktuelle Version dieses Dokuments kann von http://pcweb.physik.uni-giessen. de/taps/sua/fprakt/myonen.html als PS- oder PDF-Datei heruntergeladen werden. (http://pcweb.physik.uni-giessen.de/taps/sua/fprakt/myonen.ps oder http:// pcweb.physik.uni-giessen.de/taps/sua/fprakt/myonen.pdf)

1 Geschichte und Einleitung

Die Erde wird fortwährend von hochenergetischen Teilchen aus den Tiefen des Alls getroffen. Dieses Phänomen wurde 1912 vom österreichischen Physiker Viktor Franz Hess entdeckt. Zuvor war die natürliche Radioaktivität bereits bekannt und man ging davon aus, daß die an der Erdoberfläche gemessene ionisierende Strahlung von radioaktiven Nukliden in der Erdkruste verursacht wird. In einem Heißluftballon stieg Hess bis auf Höhen von 5000 m auf. Er führte mehrere Elektrometer zur Messung der Intensität von ionisierender Strahlung mit und entdeckte, daß die Intensität der Strahlung mit zunehmender Höhe ansteigt. Er folgerte daraus, daß uns diese Strahlung aus den tiefen des Universums erreicht und gab ihr den Namen kosmische Strahlung. Für seine Untersuchungen wurde er 1936 mit dem Nobelpreis für Physik ausgezeichnet.

Beim Aufprall auf die Erdatmosphäre erzeugt das primäre hochenergietische Teilchen einen großen Schauer.

Ein großer Anteil der sekundären dabei erzeugten Teilchen sind Myonen. Bei unserem Praktikumsversuch verwenden wir daher die kosmische Höhenstrahlung als "Myonenquelle". Das Myon, der schwere Bruder des Elektrons, wurde 1947 von Powell und Mitarbeitern erstmals entdeckt.

Die Bestimmung der Lebensdauer der Myonen stellt einen idealen Versuch dar, in die Welt der Elementarteilchen hineinzuschnuppern. Der apparative Aufwand ist gering, bietet aber trotzdem einen guten Einblick in die Methoden der experimentellen Teilchenphysik.

2 Aufgabenstellung

Die Lebensdauer kosmischer Myonen, die in einem Szintillationsdetektor gestoppt werden, wird mit Hilfe eines einfachen elektronischen Aufbaus bestimmt. Dies geschieht in folgenden Schritten:

- 1. Aufnahme des Energiespektrums einer 60 Co Quelle und Energieeichung
- 2. Bestimmung der Energiedeposition minimal ionisierender Myonen in dem verwendeten NaJ-Szintillationsdetektor
- 3. Aufbau des endgültigen Versuchsaufbaus, Durchführung einer Zeiteichung
- 4. Durchführung der Messung (ca. 1 Woche Datenaufnahme)

3 Versuchsvorbereitung

Für den Versuch sollten die folgenden Themen in einer schriftlichen Ausarbeitung knapp behandelt werden (ca. 4 DIN A4-Seiten).

- Charakterisierung der Myonen anhand ihrer Eigenschaften, Platz im Standardmodell der Elementarteilchen
- Entstehung der Myonen aus der kosmischen Strahlung; Reaktionen und Erhaltungssätze, die bei diesen Prozessen eine Rolle spielen
- zurückgelegte Strecke während der Lebensdauer, relativistische Effekte
- Prozesse bei in Materie gestoppten Myonen (unterschiedlich je nach Ladung)
- Zerfallsgesetz, Halbwertszeit, mittlere Lebensdauer
- Abschätzung folgender Werte (dazu sollen die im Anhang angegebenen Tabellen und Diagramme verwendet werden):
 - Zählrate im Detektor (ca. $12\times 12cm^2$ Fläche) aus der integralen Energieverteilung der Myonen in Meereshöhe
 - Grenzenergie, bis zur der Myonen in 10 cm NaI gestoppt werden können
 - mittlere Energie, die ein durchfliegendes minimal ionisierendes Myon im Detektor deponiert

- Funktionsweise eines Szintillationsdetektors (Szintillator und Photomultiplier) erläutern, auf Unterschiede beim Nachweis von geladenen Teilchen und Photonen eingehen.
- Wechselwirkung von Teilchen (insbesondere Myonen) mit Materie
- Beschreibung des prinzipiellen Meßaufbaus und des Meßprinzips

4 Versuchsdurchführung

4.1 Nal-Szintillator, Photomultiplier

Die Betriebsspannung des Szintillators liegt bei U = +750 V während der gesamten Meßzeit. Der Spannungsteiler (Base) des Photomultipliers besitzt 2 Eingänge und 2 Ausgänge. Die beiden Eingänge sind für die Spannungsversorgung einmal des Photomultipliers (750 V) und zum anderen eines eingebauten Vorverstärkers (25 V). Dementsprechend gibt es zwei Ausgänge, einmal das Signal direkt nach dem Photomultiplier, und zum anderen das Signal nach dem Vorverstärker. Während des Versuches wird der eingebaute Vorverstärker nicht benutzt.

4.2 Messung der Energiespektren einer ⁶⁰Co-Quelle und von minimal ionisierenden Myonen

Dieser Teil des Versuchs dient hauptsächlich dazu sich mit der Elektronik des Versuchs vertraut zu machen. Im Gegensatz zu der Lebensdauermessung ist die Messdauer sehr kurz, so daß mögliche Probleme sofort erkannt werden können.

Der schematische Aufbau für die Aufnahme des Energiespektrums ist in Abbildung 1 gegeben. Das Ausgangssignals des Photomultipliers wird auf den Hauptverstärker gegeben und invertiert (der ADC besitzt einen positiven Eingang). Die Shaping-Time ist so einzustellen, daß sie den gesamten Anstieg der Kante des Eingangssignals umfast, d.h. sie muß mindestens der Signaldauer des originalen Signals hinter dem Photomultiplier entsprechen. Das Ausgangssignal (Unidirektional) des Hauptverstärkers wird auf den Eingang der ADC-Karte gegeben und die Datenaufnahme gestartet.

Abbildung 1: Aufbau zur Energiemessung

Das ⁶⁰Co-Spektrum soll zweimal aufgenommen werden. Einmal ist die Verstärkung so einzustellen, daß das Ausgangssignal den Akzeptanzbereichs des ADC möglichst gut abdeckt. Das andere Mal soll das aufgenommene Spektrum zur Energieeichung verwendet werden. Dabei ist die in Abschnitt 3 angeschätzte Energiedeposition der minimal ionisierenden Myonen zu beachten und die entsprechende Verstärkung zu wählen.

4.3 Prinzip der Lebensdauermessung

Das Prinzip des Versuches besteht darin, einfallende kosmische Myonen in einem Szintillationsdetektor zu stoppen und die Zeit bis zum Zerfall zu messen. Dabei wird die Zeitdifferenz der Signale ermittelt, die beim Stoppen und beim Zerfall erzeugt werden. Man erhält so ein Diagramm $\frac{dN(t)}{dt}$, aus dem man die Lebensdauer ermitteln kann. Die prinzipielle Schaltung ist in Abbildung 2 dargestellt. Da es nicht möglich ist, die ankom-

Abbildung 2: Prinzip der Zeitmessung

menden Signale nach Start und Stopp individuell zu selektieren (zu unterscheiden), muß jedes ankommende Signal sowohl als Start als auch als Stopp dienen. Die Anzahl der gestoppten Myonen ist klein im Vergleich zu der Anzahl aller Teilchen (Myonen), die den Szintillationskristall passieren. Das Delay im Startzweig dient dazu, die unnötige Digitalisierung von Zeitdifferenzen von durchfliegenden Myonen zu vermeiden.

Abbildung 3: Signalfolge bei der Lebensdauermessung. Für gestoppte Myonen erfolgt nach dem Stoppimpuls ein zweiter Impuls aus dessen Verzögerung die Lebensdauer bestimmt werden kann.

4.3.1 Aufbau der Zeitmessung

Die Lebensdauermessung wird mit der Schaltung nach Abbildung 4 durchgeführt. Statt des Ausgangs des Vorverstärkers wird nun direkt das noch unverstärkte Signal benutzt. Warum, wird deutlich, wenn man sich den zeitlichen Verlauf der Signale anschaut (Zeitauflösung). Dieses Signal wird an den Timing Filter Amplifier (TFA) gelegt. Die Verstärkung sollte klein gehalten werden, um das Signal nicht unnötig zu verzerren, da damit die Zeitauflösung beeinträchtigt wird. Aus dem gleichen Grund sollten die Einstellungen von Integrationszeit und Differentiationszeit (zum Glätten des Signals) nicht zu groß gewählt werden (klein genug gegenüber der Anstiegszeit des Signals). Das Ausgangssignal des TFA wird auf einen Diskriminatorkanal gegeben, der so eingestellt wird, daß der natürliche radioaktive Untergrund abgetrennt wird. Für eine definierte Einstellung bietet sich die Summenlinie des 60 Co Energiespektrums an.

Abbildung 4: Aufbau zur Lebensdauermessung. Die Funktionsweise der Elektronikmodule ist im Anhang beschrieben.

Das verzögerte Startsignal wird nach dem 150 ns Delay ebenfalls noch einmal über einen Diskriminatorkanal geführt. Das geschieht deswegen, da das Kabeldelay das durchlaufende Signal verzerrt. Dies kann man für das benutzte logische NIM-Signal rückgängig machen, indem man einen Diskriminator mit verschwindender Schwelle nachschaltet. Die Breite muß wieder auf den richtigen Wert reguliert werden.

Der Ausgang des TPC wird an den ADC gelegt, der TRUE START Ausgang auf den kaskadierten Scaler, um die Zahl der Starts zu zählen.

4.3.2 Einstellung der Diskriminatorschwelle

Die Diskriminatorschwelle läßt sich am besten mit folgender Methode einstellen. Man gibt das Detektorsignal auf einen Kanal des Oszilloskops und den Ausgang des Diskriminators auf einen zweiten Kanal. Den Trigger stellt man nun auf den zweiten Kanl ein. Dadurch erreicht man, daß nur Signale, die den Diskriminator passieren (also oberhalb der Schwelle liegen) auf dem Oszi dargestellt werden. Die Schwelle stellt man nun so ein, daß die Summenlinie gerade verschwindet. Der Scaler sollte nun mit einer Frequenz von ca. 6 Hz zählen. Wieviele zeitzufällige Ereignisse würde man bei dieser Rate in einer Woche Meßzeit unter Verwendung eines Zeitintervals von 0 bis 5 μ s erwarten?

4.3.3 Zeiteichung

Zur Ermittlung der Lebensdauer muß die Zeitmessung erst noch geeicht werden. Ausserdem muß ein vernünftiger Meßbereich des ADCs selektiert werden, d.h. die maximale Ausgangsspannung des TPC muß dementsprechend gewählt werden. Bei der Einstellung des TPC sind folgende Punkte zu beachten:

1. Die maximal zu messende Zeitspanne (Range) sollte einige wenige Lebensdauern betragen.

2. Die dazugehörige Ausgangsspannung ist so zu wählen, daß eine vernünftige Zahl von Kanälen abgedeckt wird. Dabei ist abzuwägen zwischen einer genügend hohen Zahl von Counts in einem Kanal (statistischer Fehler) und einer ausreichenden Zahl von Kanälen (Zeitauflösung). Zur Abschätzung dieser Einstellung sei die Information gegeben, daß man während der Messung pro 100 Sekunden Meßzeit ca. 1 Eintrag im Spektrum erhält.

Zur eigentlichen Zeiteichung werden die vorhandenen Delays benutzt und für verschiedene Delays der jeweilige Kanal im Zeitspektrum notiert. Dazu wird nun nicht der Starteingang, sondern der Stoppeingang um die jeweilige Delayzeit verzögert. Zur Einstellung des Meßbereichs wird zunächst das gesamte zur Verfügung stehende Delay verkabelt und die Ausgangsspannung des TPC so eingestellt, daß das Signal in den richtigen Kanal läuft. Um hinreichend Zählrate zu erhalten, kann kurzfristig die Verstärkung des TFA hochgedreht werden und die Quelle wieder vor den Detektor gebracht werden. Nach der Zeiteichung aber nicht vergessen, den Ausgangszustand wiederherzustellen!

4.3.4 Starten und Beenden der Messung

Nach diesen Vorbereitungen kann die Messung gestartet werden. Scaler und ADC/MCA müßen vorher zurückgesetzt werden. Die Uhrzeit soll ebenfalls notiert werden (zur Bestimmung der Meßzeit). Die Zählrate im Spektrum sollte nun in der Gegend von 1 Count pro 100 Sekunden liegen. Wie groß ist der Anteil zeitzufällige Ereignisse?

Nach ca. einer Woche (nach Rücksprache mit dem Betreuer sind auch längere Meßzeiten möglich) wird die Datenaufnahme des ADCs und der Scaler gestoppt. Dabei soll die Uhrzeit und die Anzahl der Starts aufgeschrieben werden, um daraus später den zeitzufälligen Untergrund bestimmen zu können. Die Daten können auf Diskette mit nach Hause genommen werden.

4.3.5 Bemerkung zum Versuchsprotokoll

Zuletzt einige Bemerkung zum Versuchsprotokoll:

- alles direkt ins Protokollheft schreiben
- sämtliche Signale, die von den einzelnen Modulen verarbeitet werden, sowie die dazugehörigen Ausgangssignale während des Versuchsaufbaus mittels eines Oszilloskops anschauen und **mitprotokollieren**

5 Auswertung

5.1 Aufbereitung der Daten

Da die Daten vom Meßprogramm in einem Binärformat abgespeichert werden, das die Standardprogramme nicht lesen können, ist zur Konvertierung in eine ASCII-Datei ein kleines Programm nötig (wird vom Betreuer gestellt).

5.2 Zeiteichung

Die Gerade zur Zeiteichung kann mit einer "normalen" linearen Regression gebildet werden (Fehler nicht vergessen), entweder von Hand mit den üblichen Formeln (siehe z.B. Lichten) oder auf dem Rechner mit entsprechender Software.

Die Regression der logarithmischen Darstellung der Lebensdauermessung sollte allerdings mit einer Methode durchgeführt werden, die die Fehler der einzelnen Meßpunkte wichtet! Dazu können Standardprogramme wie Excel oder Origin, etc. benutzt werden (gewichtete Regression siehe Angang).

Bitte bei der Angabe von Zwischen- und Endresultaten, sowie bei den Meßergebnissen überlegen wieviele Nachkommastellen sinnvoll sind und wie man den Fehler am besten angibt.

5.3 Untergrundabschätzung

Um den zeitzufälligen Untergrund der Messung abschätzen und von der Zählrate abziehen zu können, muß aus der Gesamtzahl der "True Starts" und der Meßdauer die Zählrate ausgerechnet werden. Daraus kann dann die Wahrscheinlichkeit bestimmt werden, mit der zwei unkorrelierte Signale innerhalb der Meßzeit des TPC eintreffen können. Mit dieser Zahl, die für ein Ereignis gilt, kann dann wiederum die Anzahl der Untergrundereignisse der gesamten Messzeit berechnet werden.

Diese Zahl wird soll dann von den gemessen Zählraten abgezogen.

5.4 Grafische Darstellung

Die gemessenen Werte sollen zuallererst grafisch dargestellt werden. Um statistische Schwankungen in den einzelenen Kanälen zu verkleinern, ist es im allgemeinen notwenig, Kanäle zusammenzufassen. Fassen Sie soviele Kanäle zusammen, bis der Verlauf der Zerfallskurve gut zu erkennen ist. Wenn die Daten eine Abweichung vom exponentiellen (bzw. vom linearen) Verhalten zeigen (z.B. Spitzen, die von Reflektionen im ADC-Kabel kommen können), lassen Sie bei der Auswertung diesen Bereich des Spektrums unberücksichtigt¹.

5.5 Fehlersuche

Wenn am Ende der Auswertung ein Resultat rauskommt, daß sich um Größenordnungen vom Literaturwert unterscheidet, dann kann davon ausgegangen werden, daß die Auswertung noch Fehler enthält. (Dies ist ein sehr dankbarer Versuch, bei dem selten etwas schief geht!) Gehen Sie dann schrittweise die Auswertung nochmal durch: stimmen die Formeln, die Summen, sind die Einheiten konsistent...

6 Fragen, die man sich stellen sollte

- Beeinflussen die Zerfallsprozesse myonischer Atome² die Lebensdauermessung?
- Wenn jedes Signal gleichzeitig Start und Stopp ist, werden dann pro Ereignis immer zwei Einträge ins ADC-Spektrum gefüllt?
- Nach welcher Statistik sind Zählraten verteilt? Wie kann man den Fehler (eigentlich: die Standardabweichung) dieser Verteilung bestimmen?
- Warum ist es sinnvoll, die Lebensdauer mit einer gwichteten Regression zu bestimmen? Und warum genügt für die Zeiteichung eine "normale" Regression?

¹Eigentlich müsste man in einem solchen Fall versuchen, den Fehler herauszufinden und den Meßaufbau verbessern, aber angesichts der langen Meßzeit muß man sich wie hier dargestellt behelfen.

²siehe theoretischer Teil: gestoppte Myonen in Materie

- Ändert sich der Zählratenfehler durch das Logarithmieren?
- Woher kommt der zeitzufällige Untergrund? Kann man etwas dagegen tun?

Anhang

A.1 Literatur

Frauenfelder Henley, Teilchen und Kerne, R.Oldenbourg Verlag

G. Musiol et al., Kern- und Elementarteilchenphysik, VCH S.980

E. Lohrmann, Hochenergiephysik, Teubner

J. Orear, Physik, Carl Hanser Verlag

W. Greiner, Theoretische Physik Mechanik I, Harri Deutsch

- H.U. Schmidt, Meßelektronik in der Kernphysik, Teubner
- W.R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer Verlag

W. Lichten, Scriptum der Fehlerrechnung, Springer Verlag

Diese Bücher sind in der Bibliothek des 2. Physikalischen Instituts vorhanden und können dort eingesehen werden (Bitte im Sekretariat der 2. Physik nachfragen – Raum 131/132) oder aber in der Fachsbereichsbibliothek Physik (5. Stock). Letztere hat ein Regal zum Thema "Astrophysik, Geophysik, Raumfahrt", in dem auch ein paar Bucher zum Thema "Cosmic Ray Physics" stehen.

Informationen zu Myonen gibt es natürlich auch im WWW, z.B. auf der Seite der Particle Data Group (deren Mirror am Cern: http://www.cern.ch/pdg/).

A.2 Beschreibung der verwendeten Elektronik

In diesem Teil sollen die verwendeten Geräte und das Prinzip dieses Versuches erläutert werden. Da sich für einige der benutzten Geräte in der Literatur nur schwer eine Beschreibung finden läßt, ist in diesen Fällen im nächsten Kapitel eine kurze Anleitung angegeben (diese Beschreibung der Funktionsweise der Elektronik braucht nicht ins Protokollheft übernommen werden).

• Amplifier (Hauptverstärker)

Er dient dazu, ein Eingangssignal um ein Vielfaches zu verstärken, welches er vorher über eine einstellbare Zeit (Shaping-Time) integriert. Dies ist für eine Energiemessung notwendig, da das Ausgangssignal eines Szintillators so beschaffen ist, daß die abgegebene Ladungsmenge und nicht die Höhe des Signals proportional zur Energie ist.

• Timing Filter Amplifier (TFA)

Der Unterschied zum vorhergehenden Typ besteht hauptsächlich in der niedrigeren Verstärkung und den kleineren einstellbaren Zeitkonstanten für Integration und Differentiation. Diese liegen im Bereich bis einige 100 Nanosekunden. Man benutzt dies zur Glättung von Signalen ohne die generelle Form dieses Signals zu verändern.

• Diskriminator

Der von uns verwendete Diskriminator gibt auf seinem Ausgang ein definiertes logisches Signal (NIM-Signal) aus, wenn das Eingangssignal eine einstellbare Schwelle überschreitet. Sowohl diese Schwelle als auch die Breite des Ausgangssignals können über eine Stellschraube justiert werden. Die Breite der benutzten Ausgangssignale sollte etwa 150 ns betragen, da dies der Norm eines logischen NIM-Signales entspricht.

• Delay

Unter einem Delay versteht man eine Vorrichtung, mit der ein Signal um eine gewisse Zeit verzögert werden kann. Uns stehen zwei verschiedene Arten von Delays zur Verfügung. Dies ist einmal ein Delay, welches aus aufgerollten Kabeln besteht, so daß das Eingangssignal um die Kabellaufzeit verzögert wird (dies ist die einzige Möglichkeit analoge Signale zu verzögern, deren Form man nicht kennt), zum anderen gibt es ein logisches Delay, welches dazu dient, definierte logische Signale (hier NIM-Signale) zu verzögern. Da man die Signalform kennt, kann dies elektronisch geschehen, so daß am Ausgang wieder ein frisches Signal zur Verfügung steht.

• Time to Pulse Height Converter (TPC)

Ein TPC macht nichts anderes als die zeitliche Differenz zwischen einem Startund einem Stoppsignal in ein Signal umzuwandeln, dessen Höhe proportional dieser Zeitdifferenz ist. Hier können die maximale Zeitspanne in einem weiten Bereich sowie die Amplitude, die diesem Zeitintervall entsprechen soll, eingestellt werden. Zusätzlich zu diesem Ausgangssignal stellt der TPC noch ein logisches TTL-Signal zur Verfügung, welches das Starten einer Zeitmessung anzeigt (TRUE START). An diesen Ausgang kann man einen Zähler (Scaler) anschließen, um später Abschätzungen für den Untergrund machen zu können.

• Analog to Digital Converter (ADC)/Multi Channel Analyzer (MCA)

Der ADC/MCA ist im unserem Fall auf einer Steckkarte eines PCs untergebracht. Er wandelt die Höhe des Eingangssignals in einen dazu proportionalen digitalen Wert um. Der benutzte ADC/MCA hat einen eingestellten Messbereich von 1024 Kanälen. Dies entspricht etwa einem dynamischen Bereich des Eingangssignals von 8 Volt. Diese Spannung sollte nicht überschritten werden. Zusätzlich zum Analog-Eingang besitzt dieser ADC noch einen sogenannten GATE-Eingang, über den dieser gesteuert werden kann. Über einen Schalter kann zwischen drei Modi gewählt werden: (1) Umwandlung nur, wenn ein GATE-Signal anliegt (Koinzidenzmode), (2) Umwandlung nur, wenn kein GATE-Signal anliegt (Antikoinzidenzmode), (3) Umwandlung immer möglich (Koinzidenzmode off). Der Versuch wird im Modus 3 durchgeführt.

Die Auslesesoftware Maestro besitzt die Eigenart, nur Bufferwerte abzuspeichern. Kurzanleitung für die Datenaufnahme:

- Stop Datenaufnahme: Menu Acquire, Stop
- Daten löschen: Menu Acquire, Clear
- Start Datenaufnahme: Menu Acquire, Start
- Daten abspeichern: Menu Acquire, MBC to Buffer, dann Menu File, Save

• Scaler

Ein Scaler ist einfach nur ein Zähler, der die eingehenden (TTL-)Signale zählt. Uns stehen zwei zur Verfügung, die kaskadiert werden können.

A.3 Gewichtete Regression³

Diese ist die genauste Methode, Messwerte eines exponentiellen Zusammenhangs zu behandeln.

Dabei werden wie üblich die y-Werte (in diesem Fall sind das die Zählratenwerte) logarithmiert und es wird eine lineare Regression für diesen Zusammenhang durchgeführt. Alle Daten erhalten dabei jedoch einen Gewichtsfaktor w, der mit dem jeweiligen Fehler zusammenhängt. In den Ausdrücken für die statistischen Standardgrößen (Mittelwert, Steigung, Achsenabschnitt und alle Standardabweichungen) werden die Summen nun mit einer Gewichtung der Summanden versehen, indem der Gewichtsfaktor folgendermassen eingeführt wird:

$$\begin{array}{ccc} N \rightarrow \sum w & \sum x \rightarrow \sum wx & \sum x^2 \rightarrow \sum wx^2 \\ \sum y \rightarrow \sum wy & \sum y^2 \rightarrow \sum wy^2 & \sum xy \rightarrow \sum wxy \end{array}$$

Die Gewichtsfaktoren sind dem Quadrat der Fehler in y umgekehrt proportional:

$$w = (y/\sigma_y)^2$$

Diese Berechnungen können z.B. in einer Tabellenkalkulation (Excel, StarCalc) durchgeführt werden, es darf aber auch ein eigenes Programm geschrieben werden (FORT-RAN, C, ...). Wichtig ist, daß die einzelen Summen und Zwischenwerte als Ausdruck mit ins Protokoll aufgenommen werden, um etwaige Fehler im Nachhinein verfolgen zu können.

A.4 Tabellen und Plots

³aus: William Lichten, Skriptum Fehlerrechnung

Densities and refractive indices without parentheses or brackets are for solids or liquids, or are for cryogenic liquids at the indicated boiling point (BP) at 1 atm. Refractive indices are evaluated at the sodium D line. Data for compounds and mixtures are from Refs. 1 and 2.											
Material	Ζ	A	$\langle Z/A \rangle$	Nuclear ^a collision length λ_T {g/cm ² }	Nuclear ^a interaction length λ_I $\{g/cm^2\}$	$\frac{dE/dx _{\min}}{\left\{\frac{\mathrm{MeV}}{\mathrm{g/cm^2}}\right\}}$	^b Radiat	ion length ^c X ₀ 2} {cm}	$\begin{array}{l} \text{Density} \\ \{\text{g/cm}^3\} \\ (\{\text{g}/\ell\} \\ \text{for gas}) \end{array}$	Liquid boiling point at 1 atm(K)	$\begin{array}{c} {\rm Refractive} \\ {\rm index}\ n \\ ((n-1) \times 10^6 \\) \\ {\rm for\ gas}) \end{array}$
H_2 gas	1	1.00794	0.99212	43.3	50.8	(4.103)	$61.28 \frac{d}{d}$	(731000)	(0.0838)[0.0899]		[139.2]
H_2	1	1.00794	0.99212	43.3	50.8	4.045^{e}	61.28 d	866	0.0708	20.39	1.112
D ₂	1	2.0140	0.49652	45.7	54.7 er 1	(2.052) (1.027)	122.4	724	0.169[0.179]	23.65	1.128 [138]
пе Li	2	4.002002	0.49908	49.9	00.1 73.4	(1.957) 1.639	94.52 82.76	155	0.1249[0.1780]	4.224	1.024 [34.9]
Be	4	9.012182	0.44384	55.8	75.2	1.594	65.19	35.28	1.848		_
С	6	12.011	0.49954	60.2	86.3	1.745	42.70	18.8	2.265 f		
N_2	7	14.00674	0.49976	61.4	87.8	(1.825)	37.99	47.1	0.8073[1.250]	77.36	1.205 [298]
O 2	8	15.9994	0.50002	63.2	91.0	(1.801)	34.24	30.0	1.141[1.428]	90.18	1.22 [296]
F_2	9	18.9984032	0.47372	65.5	95.3	(1.675)	32.93	21.85	1.507[1.696]	85.24	[195]
Ne	10	20.1797	0.49555	66.1	96.6	(1.724)	28.94	24.0	1.204[0.9005]	27.09	1.092 [67.1]
Si	13	20.981009	0.4 01 01	70.6	106.4	1.015	24.01 21.82	0.9	2.70		3.95
Ar	18	39.948	0.45059	76.4	117.2	(1.519)	19.55	14.0	1.396[1.782]	87.28	1.233 [283]
Ti	22	47.867	0.45948	79.9	124.9	1.476	16.17	3.56	4.54		
Fe	26	55.845	0.46556	82.8	131.9	1.451	13.84	1.76	7.87		_
Cu	29	63.546	0.45636	85.6	134.9	1.403	12.86	1.43	8.96		—
Ge	32	72.61	0.44071	88.3	140.5	1.371	12.25	2.30	5.323		—
Sn N-	50	118.710	0.42120	100.2	163	1.264	8.82	1.21	7.31	105.0	[701]
w	04 74	131.29	0.41130	102.8	185	(1.200)	0.40 6.76	2.40	2.955[5.656] 10.3	105.0	[701]
Pt	78	195.08	0.39984	113.3	189.7	1.149	6.54	0.305	21.45		
Pb	82	207.2	0.39575	116.2	194	1.123	6.37	0.56	11.35		_
U	92	238.0289	0.38651	117.0	199	1.082	6.00	pprox 0.32	$\approx \! 18.95$		_
Air, (20°C, 1 atm.), [STP]			0.49919	62.0	90.0	(1.815)	36.66	[30420]	(1.205)[1.2931]	78.8	(273) [293]
H_2O			0.55509	60.1	83.6	1.991	36.08	36.1	1.00	373.15	1.33
CO ₂			0.49989	62.4	89.7	(1.819)	36.2	[18310]	[1.977]		[410]
Shielding con	crete ⁹	\ h	0.50274	67.4	99.9	1.711	26.7	10.7	2.5		1 474
SiO ₂ (fused quartz)			0.49707	66.5	97.0	1.095 1.70^{i}	20.0 27.05	12.7	2.23 2.20 <i>j</i>		1.474
Dimethyl ether, (CH ₃) ₂ O			0.54778	59.4	82.9		38.89			248.7	
Methane, CH.	4	-	0.62333	54.8	73.4	(2.417)	46.22	[64 850]	0.4224[0.717]	111.7	[444]
Ethane, C ₂ H ₆	5		0.59861	55.8	75.7	(2.304)	45.47	[34035]	0.509(1.356)	184.5	$(1.038)^{k}$
Propane, C ₃ H	I 8		0.58962	56.2	76.5	(2.262)	45.20	· _ ·	(1.879)	231.1	
Isobutane, (CH ₃) ₂ CHCH ₃			0.58496	56.4	77.0	(2.239)	45.07	[16930]	[2.67]	261.42	[1900]
Octane, liquio	$d, CH_3(C)$	$H_2)_6 CH_3$	0.57778	56.7	77.7	2.123	44.86	63.8	0.703	398.8	1.397
Farann wax,		12)n≈230113	0.51215	50.9	10.2	2.081	44.71	40.1	0.93		
Nylon, type 6 Polycarbonat)' o (Lovan') <i>m</i>	0.54790	505	81.5	1.974	41.84	36.7	1.14		_
Polyethylene t	e (Lexan) terenhthl) ate (Mylar) ⁿ	0.52037	59.5 60.2	85.7	1.848	39.95	287	1.20		_
Polvethylene '	o	uto (111)101)	0.57034	57.0	78.4	2.076	44.64	≈ 47.9	0.92-0.95		_
Polyimide filn	n (Kapto	n) <i>p</i>	0.51264	60.3	85.8	1.820	40.56	28.6	1.42		_
Lucite, Plexig	glas ^q		0.53937	59.3	83.0	1.929	40.49	≈ 34.4	1.16 - 1.20		≈ 1.49
Polystyrene, s	scintillato	or ^r	0.53768	58.5	81.9	1.936	43.72	42.4	1.032		1.581
Polytetranuor Polytetranuor	foethylen long sein	e (Tenon) "	0.47992	04.2 58.3	93.0 81.5	1.071	34.84 43.83	10.8	2.20		_
Donium du:	de (DeF	.)	0.04100	02.0	145	1 202	40.00	2.05	1.002		1 56
Barium nuori Bismuth germ	ue (Dar 2 nanate (F	() 3GO) ^u	0.42207	92.0	145 157	1.303	9.91 7.97	2.05	4.69		2.15
Cesium io di de	e (CsI)	/	0.41569	102	167	1.243	8.39	1.85	4.53		1.80
Lithium fluor	$i\dot{de}$ (LiF)		0.46262	62.2	88.2	1.614	39.25	14.91	2.632		1.392
Sodium fluori	de (NaF)		0.47632	66.9	98.3	1.69	29.87	11.68	2.558		1.336
So dium io di d	e (NaI)		0.42697	94.6	151	1.305	9.49	2.59	3.67		1.775
Silica Aerogel	v		0.52019	64	92	1.83	29.83	≈ 150	0.1-0.3		$1.0\!+\!0.25 ho$
NEMA G10 p	olate ^w			62.6	90.2	1.87	33.0	19.4	1.7		_

6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

Table 6.1. Revised April 1998 by D.E. Groom (LBNL). Gases are evaluated at 20°C and 1 atm (in parentheses) or at STP [square brackets].

Abbildung 5: Atomic and nuclear properties of materials (Quelle: Particle Physics Booklet der Particle Data Group (July 1998) oder http://www.cern.ch/pdg/)

Abbildung 6: Bremsvermögen verschiedener Teilchen in NaI

Abbildung 7: Reichweiten verschiedener Teilchen in NaI

Abbildung 8: Absoluter vertikaler Myonenfluß auf Meereshöhe in Kiel (O. C. Allkofer et al. Phys. Lett. 36 B (1971) 425)