
Background Document, UNECE Workshop "Establishing Ozone Critical Levels II", Göteborg, Sweden, 19-22 November, 2002

1

An O3 flux-based risk assessment for wheat

Ludger Grünhage

Institute for Plant Ecology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany

Introduction

As a consequence of the discussions about the reasons of the so-called 'Neuartige Waldschäden'
(forest die-back) ground-level ozone (O3) and its impact on human health and vegetation has come
into focus more and more within the UNECE (United Nations Economic Commission for Europe)
and the European Union since the mid eighties of the last century. While at the first European
workshop on critical levels for O3 to protect vegetation in Bad Harzburg, Germany, 1988 a long-
term critical level for O3 was defined as a 7-hour mean of 25 ppb over the vegetation/growing
period (UN-ECE 1988), at the second workshop in Egham, UK, 1992 a change to an Accumulated
exposure index Over a certain Threshold, AOTx, was recommended (Ashmore & Wilson 1992). At
the UNECE workshops in Bern, Switzerland, 1993 and Kuopio, Finland, 1996 critical levels for O3

to protect crops, semi-natural vegetation and forest trees using an AOT40 exposure index were
defined (Fuhrer & Achermann 1994, Kärenlampi & Skärby 1996), which are the basis for the
current European Convention on Long-Range Transboundary Air Pollution to Abate Acidification,
Eutrophication and Ground-level O3 (UNECE 1999) and the European Directive on Ground-level
O3 (EU 2002).

Because the only adequate tool to ensure effective protection against adverse effects of O3 on
vegetation is the derivation of critical
cumulative fluxes/stomatal uptake (critical
loads) for sensitive vegetation types similar to
the critical loads for acidification and
eutrophication as determined in accordance
with the Convention's Manual on
Methodologies and Criteria for Mapping
Critical Levels/Loads (UBA 1996), a
reorientation from cumulative exposure index-
based critical levels to flux-based limiting
values took place (cf Grünhage & Jäger 2002).

Data base

At present, the data base for the derivation of
critical loads for O3 is extremely insufficient.

For spring wheat, a flux (stomatal uptake) -
 response (relative yield) relationship was
deduced by Pleijel et al. (2000) from 5 open-

top chamber experiments with two wheat varieties only (Fig. 1).

Fig. 1: Relative yield of spring wheat vs cumula-
tive stomatal uptake of O3 (CFO3) by the flag leaf
during grain filling (Pleijel et al. 2000, modified)
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Brief model description

For the estimation of O3 stomatal
uptake, the big-leaf model
WINDEP (Worksheet-INtegrated
Deposition Estimation Program-
me; Grünhage & Haenel 2000)
was adapted. WINDEP is based
on the soil-vegetation-atmos-
phere-transfer (SVAT) model
PLATIN (PLant-ATmosphere
INteraction; Grünhage & Haenel
1997).

The resistance network (Fig. 2)
allows to partition the total at-
mosphere-canopy flux Ftotal(O3)
into the fluxes reaching the
stomatal caves (Fabsorbed), the
external plant surfaces
(Fexternal plant surfaces) and the soil
beneath the canopy (Fsoil):

soilsurfacesplant  externalabsorbed3total             )(O FFFF ++=

The integral of Fabsorbed over time t is the pollutant absorbed dose, PAD(O3) [µg⋅m-2], (Fowler &
Cape 1982):

tFPAD
t

t
d    )(O    )(O
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1

3absorbed3 ⋅= ∫
The calculation of the aforementioned resistances, i.e. the exchange of O3 between phytosphere and
atmosphere near the ground, requires the following measured input parameters:

- ozone concentration ρO3 [µg⋅m-3] at a reference height zref, O3

- horizontal wind velocity u [m⋅s-1] at a reference height zref, u

- global radiation St [W⋅m-2]
- air temperature ta [°C] at a reference height zref, T

- air humidity rH [%] at a reference height zref, rH

- air pressure p [hPa] at a reference height zref, p

Stomatal uptake by the flag leaf was parameterised as described in Pleijel et al. (2000), the
development of spring wheat canopy during the grain filling period (phenological stage codes 61 to
87; after Zadoks et al. 1974 and Tottman 1987) as described in Grünhage et al. (1999; Fig. 3) in
addition with an up-scaling from leaf to canopy according to eq. (36) in Grünhage et al. (2000).

Fig. 2: A deposition resistance analogy for ozone
(modified from PORG 1997)
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The WINDEP model version used
can be downloaded from:

http://
www. uni-giessen.de/~gf1034/

ENGLISH/WINDEP.htm

Taking into account the statistical
uncertainties indicated by the
confidence interval in Fig. 1,
stomatal uptake above 1 mmol⋅m−2

O3 is linked with a yield loss
deviating significantly from a 100 %
yield. To avoid an overestimation of
risk, i.e. yield loss, it seems to be
reasonable to subtract this threshold
from the modelled O3 absorbed dose,
PAD(O3), which then results in:

( ) ( )[ ]{ }  
2

3
12 mmmol 1)(O  mmolm 4.314   100.11    100    −− ⋅−⋅⋅−−= PADloss yield relative

with PAD(O3) on a unit leaf area basis in mmol⋅m−2

Model application

The big-leaf model was applied for
for a representative agricultural site
in Hesse in central Germany. As
shown in Fig. 4 more than 10 %
yield loss due to O3 stomatal uptake
could be estimated for 1994 only.
According to the experimental
conditions, optimal water supply,
i.e. soil moisture at field capacity,
was assumed. Moderate water stress
reduces the impact of O3

significantly due to reduced
stomatal aperture. Comparisons of
diurnal variation of stomatal uptake
and AOT40 showed that 36 − 46 %
(median: 38 %) of stomatal O3

absorption (assuming optimal water
supply) occurred before noon

whereas the AOT40 values were dominated by O3 concentrations during afternoon (69 − 87 %;
median: 79 %).
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Fig. 3: Mean development of leaf area index (LAI) of
spring wheat (after Grünhage et al. 1999)

(DOYstart = 99; DOYcode 31 = 134; DOYcode 51 = 163;
DOYcode 87 = 207; DOYharvest = 220)
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Fig. 4: Temporal variation in potential relative yield loss
(%) due to O3 stomatal uptake under optimal water supply
and moderate water stress (Jarvis factor for soil moisture
1 and 0.7) for a representative Hessian agricultural site

(fixed growing season; Grünhage & Jäger 2002)

http://www.uni-giessen.de/~gf1034/
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Remarks

This example demonstrates the applicability of the flux approach for site and local scale risk
assessments in principle. On the other hand the application of the aforementioned flux-response
relation in a risk assessment for Germany can be criticised due to the small number of experiments
with two "old" wheat varieties from the late eighties and mid nineties at one site in Sweden only.
Meanwhile, the parameterisation of stomatal conductance was improved for Nordic conditions
(Pleijel et al. 2002). Because the parameterisation has not been validated for climate conditions in
Central or Southern Europe, a European wide application is questionable.

Another problem arises from the fact that the application of the above mentioned flux-effect
relationship needs an up-scaling from the flag leaf to the canopy (bottom-up approach). At the
beginning of the grain filling period, the leaf area of the flag leaf exhibits of a fraction between 20
and 25 % of the non-senescent leaf area of the canopy only (Pleijel et al. 2000). Therefore, it is
questionable to what extent the flag leaf gas exchange parameterisation is representative of the gas
exchange of the whole canopy. Additionally, the parameterisation of non-stomatal O3 deposition is
presently not solved. Because any administrative/political measure on European level must be based
on risk evaluations as accurate as possible, flux model parameterisations need a validation in two
steps:

 validation of the parameterisation of stomatal conductance via micrometeorological flux
measurements of water vapour

 validation of the parameterisation of O3 stomatal uptake and non-stomatal deposition via
micrometeorological O3 flux measurements

This concept requires a limited number of micrometeorological flux measurements sites distributed
over Europe. For Germany, one or two crop sites and two or three extensively managed grassland
sites seem to be adequate.
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Fig. 5: Conceptual degree of uncertainty in flux-based risk assessments for crops and semi-natural
vegetation using measured data (Grünhage et al. 2002)

As mentioned by Grünhage and Jäger (2002) flux-response relationships based on chamber
experiments are biased in principle. Therefore, future relationships should be derived from
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experiments under chamber-less conditions. Here, a top-down approach seems to be more
appropriate than a bottom-up approach. Taking into account NO emissions from fertilised arable
land and their impacts on O3 deposition, it might be reasonable to improve gas exchange
parameterisations based on the big-leaf approach by multi-layer models at some flux measurements
sites (Fig. 5).
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