

CarbX – An evaluation programme for wide-angle x-ray (WAXS) and neutron (WANS) scattering data of non-graphitic carbons (NGCs)

Torben Pfaff, Bernd M. Smarsly

Introduction

• Structure of NGCs, a promising material class for several applications: • Small stacks of graphene layers, distorted and displaced to each other. • Termed turbostratic arrangement of graphene layers in stacks (Fig. 1). \rightarrow No long range crystallographic order leading to diffuse scattering patterns with broad, asymmetric and overlapping maxima (Fig. 2). • Structure determination not possible with standard approaches like Scherrer equation or profile analysis (separation of size and disorder). • Microstructure of NGCs has to be known to link macroscopic (electrical, mechanical) properties to it and to tune production processes properly.

• Microstructure determination possible by acquiring wide-angle x-ray scattering or neutron scattering data and subsequently fitting the whole scattering curve using an algorithm published in 2002.^[1] • Basic idea: theoretically observable intensity *I*_{theoretical} described to be proportional to the sum of coherent scattering I_{coh} and incoherent scattering I_{incoh} : $I_{theoretical} \propto (I_{coh} + I_{incoh})$

• Coherent scattering: scattering on the hexagonal structure of each graphene layer (intralayer scattering) and on each stack of graphene layers (interlayer scattering), see Fig. 3.

• Incoherent scattering: Inelastic Compton scattering by carbon atoms. • Scattering by impurities (sp³ carbon, oxygen) has to be considered, too. • Further mathematical details can be found in reference [1], [3] and [4]. • CarbX has been developed to improve the usability of this algorithm. • CarbX is an unique solution for the microstructural analysis of NGCs. CarbX hides the complex mathematics required behind an "easy to use" GUI (graphical user interface), which is depicted in Fig. 4. • The steps required for fitting scattering data and CarbX' unique features are listed below, Figs. 5 and 6 show reproductions of some fits.

	minimum	(start) value	maximum	minimum	(start) value	maximum		main window		
	✓ a3	a3 take over value from the main windo		Icc take over value from the m		the main window				
	3.33000	3.49000	4.00000	1.40000	1.41163	1.44000		display		
	minimum	(start) value	maximum	minimum	(start) value	maximum		results		
	✓ da3	take over value from	m the main window	v q	take over value from the main window					
	0.00000	1.50000	1.00000	0.00000	0.10000	1.00000	Ξ	take over		
	minimum	(start) value	maximum	minimum	(start) value	maximum		(start) values from the		
				_				main window		
	✓ sig3	sig3 take over value from th		📃 dan	take over value from the main window			once again		
	0.00000	0.24000	2.00000	-	25.86060					
	minimum	(start) value	maximum	F	value					
	V 113	take over value from	m the main window		take over value from	the main window		fit automatically using		
	0.00000 0.00070		0.00001		445.00000					
	minimum	(start) value	maximum		value		-	Wolfram Mathemetica		
	autofit sequence			autofit steps	utofit steps		additional conditions			
	Standard / def	fault 🔻 🛽	nterlayer Pars		step	a3-da3	3>3	condition		
	add sequence save sequence rename sequence		ntralayer Pars Normalization	1	add	da3/sig	g3>0.3	add		
			сс					change delete		
			lles / complete	• 🗋 🗋	rename dele	te	ţ	thin out data		
	delete sec	uence			disable execu	ite only	use each x. data point: x = 🛛 🚺 🚔			

				u/	C/	
	a)	Coal tar pitch (800 °C) (with photograph)	1.415	19	13	3.44
b)		Activated carbon (with photograph)	1.409	32	7.4	3.60
	c)	Polymerized ionic liquid carbon fibre (with SEM image)	1.411	21	11	3.63
	d)	Carbonized furfuryl	1.409	24	8.0	3.59

Features of CarbX

- Complex mathematical calculations hidden behind an "easy to use" GUI.

Conclusion

CarbX - an unique software solution for easy analysis of the microstructure of NGCS - has been developed.

- Determination of up to 14 microstructural parameters, e.g.
 - L_a (average graphene layer extent) and L_c (average stack height).
 - a_3 (average interlayer spacing) and several disorder parameters.
- Consideration of several correction terms and support for different X-ray wavelengths. •
- Support for both wide angle X-ray and neutron scattering data if supplied as X-Y-file. •
- Thinning factor for both faster calculation of fit curve and faster automatic fitting.
- Separate window to display the deviation between data and fit (customizable). •
- Several export possibilities (XY-data, graphs, result list) for data, fit and deviation. •
- Support for templates and automatic fitting via Mathematica (customizable). •
- Data display completely customizable and programme available in German and English. •
- CarbX will be available as open-source software after publication to be submitted to the J. Appl. Cryst.
- CarbX will be the first programme available free of charge in this field offering a convenient GUI.
- CarbX has been used successfully for reproduction of fits of both WAXS and neutron scattering data.
- Further development steps planned:
 - Support for two NGC phases in one material.
 - Access of remote Wolfram Mathematica kernels.
 - Range selection for automatic fitting.
 - Cutting out of artefacts for automatic fitting.
 - Self-written routines for automatic fitting.
 - \rightarrow eliminate the need of third party software.

References

[1] W. Ruland & B. Smarsly, J. Appl. Cryst. 2002, 35, 624 [2] P. Adelhelm et al., *Sci. Technol. Ad. Mater.* **2012**, *13*, 015010 [3] K. Faber et al., J. Phys. Chem. C 2014, 118, 15705 [4] K. Faber et al., Z. Anorg. Allg. Chem. 2014, 640, 3107 [5] M. Einert et al., *Macromol. Chem. Phys.* **2015**, *216*, 1930

The authors would like to thank **Patrick Weisbecker** for supplying the neutron scattering data, **Pascal Vöpel** for creating the logo of CarbX and **Ulrike Pfaff** for giving the programme its name.

Physikalisch-Tel.: +49 641 99 34588 Fax: +49 641 99 34599 Chemisches http://www.uni-giessen.de/pci **Institut** Torben.Pfaff@phys.Chemie.uni-giessen.de

Research Group of Prof. Dr. Bernd Smarsly Institute of Physical-Chemistry Justus-Liebig-University Heinrich-Buff-Ring 17 35392 Giessen

