

E.Azadniya, G. Morlock

Content RA

No.

Samples

Justus Liebig University Giessen, Germany

Study life Explore the world

Improvement

JUSTUS-LIEBIG-

Food Science

Food Science

UNIVERSITÄT

GIESSEN

Introduction

NMR spectroscopy is one of the most powerful analytical techniques for structural elucidation of chemicals. The aim of the current project was to develop an HPTLC-NMR workflow at the analytical scale in the field of medicinal herbal extracts. The common sage (*Salvia officinalis*) and red sage (*Salvia miltiorrhiza*) were used as botanical sources, belonging to the *Lamiaceae*, which family has been studied as a source of natural antioxidants. Rosmarinic acid (RA), the most abundant natural antioxidant in *Lamiaceae* species [1-2], was used to optimize the analytical workflow. ¹H-NMR requires the lowest substance amount and gives quantitative information based on a linear correlation between signal intensity and sample amount. This unique property makes NMR a versatile quantitative detector. Using online zone elution via the TLC-MS Interface, hyphenation of HPTLC to NMR is less contaminationprone and more simple, without any investment in hardware, if compared to conventional scrape-off of the zone. This makes HPTLC-NMR coupling a reliable tool to investigate bioactive compounds in herbal extracts [3].

A) HPTLC method

Quantification of RA in herbal extracts

C) Zone elution

HPTLC-NMR workflow

D) Matrix interference

B) NMR method

NMR parameters were optimized via RA in deuterated solvents

Deuterated solvents

among CD_3OD and D_2O , CD_3OD due to less capillarity

- Filling height and volume of solution in different NMR tubes
- height \geq 3.50 cm to be covered by NMR coil and probe
- 3.0 mm tube 150 μ L, 1.7 mm tube 50 μ L, and 1.0 mm tube 10 μ L
- Size of NMR microtubes
- among 3.0 mm , 1.7 mm (best), and 1.0 mm NMR microtube
- Effect of solvent suppression

substantially improved signal to noise ratio \rightarrow crucial for low concentration NMRs

To reach an adequate amount of RA for NMR detection, high volumes of the herbal extract had to be applied. To avoid matrix interferences, a combination of area application and 2D-TLC was used.

Workflow:

100 μL extract as 30 x 3 mm area (15 μg/band RA)
Development with Tol-EtOAc-FA, 7:3:1 (V/V/V)

• Plate cut below 1.5 cm

- Development with Tol-EtOAc, 7:3 (V/V)
- Development with Tol-EtOAc-FA , 7:3:0.2 (V/V/V)
- Cut upper part (above RA)
- Development in second dimension with Tol-EtOAc-FA-water, 3:4:1:0.4 (V/V/V/V)

E) Conclusions

- Set up a fast and reliable hyphenation between HPTLC with NMR
- Benefits from flexibility and matrix-robustness of HPTLC that avoided any further sample preparation steps for isolation, fractionation and purification, such as column chromatography, dialysis and solid phase extraction
- Optimized parameters (solvent, flow rate and band width) of online zone elution via TLC-MS Interface to collect most of the band
- Analyzing RA by HPTLC-NMR hyphenation as example for a fast and accurate quantification as well as identification of unknown bioactive compounds in herbal extracts.

Acknowledgement Thank is owed to Dr. Heike Hausmann for NMR measurements.

References

D. Bandoniene, M. Murkovic, P.R. Venskutonis, Journal of Chromatographic Science 43 (2005) 372-376.
 M.A. Hossain, Z. Ismail, Indonesian Journal of Chemistry 9 (2009) 137-141.
 A. Gössi, U. Scherer, G. Schlotterbeck, Chimia 66 (2012) 347-349.

International Giessen Graduate Centre for the Life Sciences

Interdisziplinäres Forschungszentrum Giessen Research Centre for BioSystems, Land Use and Nutrition

Food Sciences, Justus Liebig University Giessen, Institute of Nutritional Science, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany