
Bioassay-DART-MS on HPTLC plates USTUS-LIEBIG-Food Science Food Science Evoq 2cleuce T. Häbe, M. Jamshidi-Aidji, J. Macho, G. E. Morlock

Introduction

The hyphenation of high-performance thin-layer chromatography (HPTLC), direct bioautographic assay (DB) and structure elucidation methods offers a promising possibility directly to screen and identify bioactive substances of complex samples. Contamination and ion suppression of MS-system is a significant challenge in hyphenation of HPTLC-DB with structure elucidation methods using elution-based TLC-MS, since most of the bioassay-matrix is eluted into the MS-system. In this context, applying direct analysis in real time mass spectrometry (DART-MS) could be more effective, since the desorption-based DART-MS method discriminates most compounds of the matrix in the desorption and ionization process. HPTLC-DB-DART-MS enable to record the mass spectra from bioactive zones after DB with low contamination of the bioassay-matrix. In this study, the possibility of Bioassay-DART-MS on HPTLC plates in case of parabens in cosmetics was demonstrated for the first time. Chemical preservatives like parabens (methyl-, ME; ethyl-, EE; propyl-, PE; butylparaben, BE) were widely utilised in food and cosmetic products due to their strong antimicrobial activity. Although they have relatively less hazardous to health in comparison to other preservatives[1], the *Bundesinstitut für Risikobewertung* (BfR) recommends, based on entire toxicological data of *in vivo* assays, that the level limit in cosmetic products be lower than 0,4 % for ME and EE and lower than 0,19 % for PE and BE. A time-saving approach to screen, characterize and identify parabens in complex samples is thus of interest.

Results and discussion

Aliivibrio fischeri-DART-MS

A 8 band (8 mm) pattern of ME, EE, PE and BE (each 3 – 960 ng/band) were applied on RP18 WF₂₅₄s and Si60 F₂₅₄ plates and immersed into the bacteria suspension of *A. fischeri*. Each pattern was scanned by DART-MS without bioassay and one afterwards. DART interface settings were: source angle: 60° ; gas heater: 500 $^{\circ}$ C; gas flow 3 L/min; Cap ID: 1.0 mm; and carrier movement: 0.2 mm/s. DART-MS scan showed that the background signals of Si60 F₂₅₄ plates with only applied parabens was comparable to the background after *A. fischeri* assay. Whereas the background of RP18 WF₂₅₄s plates was lower after *A. fischeri* assay (Figure 1 a-c). Detectable substance amount without *A. fischeri* was similar between Si60 F₂₅₄ and RP18 WF₂₅₄s plate, MS signal was a little stronger on RP18 WF₂₅₄s plate. But there was a difference of MS signals after immersing plate into *A. fischeri* between RP18 W_{F254}s and Si60 F₂₅₄ plate. MS signal suppression on Si60 F₂₅₄ plate was strong, therefore small substance amount of ME and EE could not be detected by DART-MS.

pYES-DART-MS

pYES assay was performed on RP18 W plate. DART-MS showed that background of RP18 W plate was lower without pYES. MS signal was detectable at every application volume, but after immersing plate into pYES suspension MS signal suppression was strong.

<i>A. fischeri</i> on Si60 F ₂₅₄		
Signal area [cps]		
without	after	Remaining signal [%]
bioassay	bioassay	
-	-	-
-	_	-
30850	-	-
241505	-	-
2532815	-	_
15959559	-	_
45750439	473128	0.8
113650688	31081785	19.5
A. fischeri on RP18 WF ₂₅₄ s		
Signal area [cps]		Bomoining
without	after	Remaining signal [%]
bioassay	bioassay	Signal [70]
1246643	-	-
4336887	23170	0.5
14891683	40412	0.3
72853610	101088	0.1
118792156	168206	0.1
196620367	419802	0.2
298707388	3565439	1.2
447750357	11121570	2.5
pYES on RP18 W		
Signal area [cps]		Remaining
without	after	signal [%]
bioassay	bioassay	
1246643	-	-
4336887	-	-
14891683	495119	3.3
72853610	1449382	2.0
118792156	11207224	9.4
196620367	30051376	15.3
298707388	62880939	21.1
447750357	122055019	27.3

A. fischeri-DART-MS of PE on the Si60F254

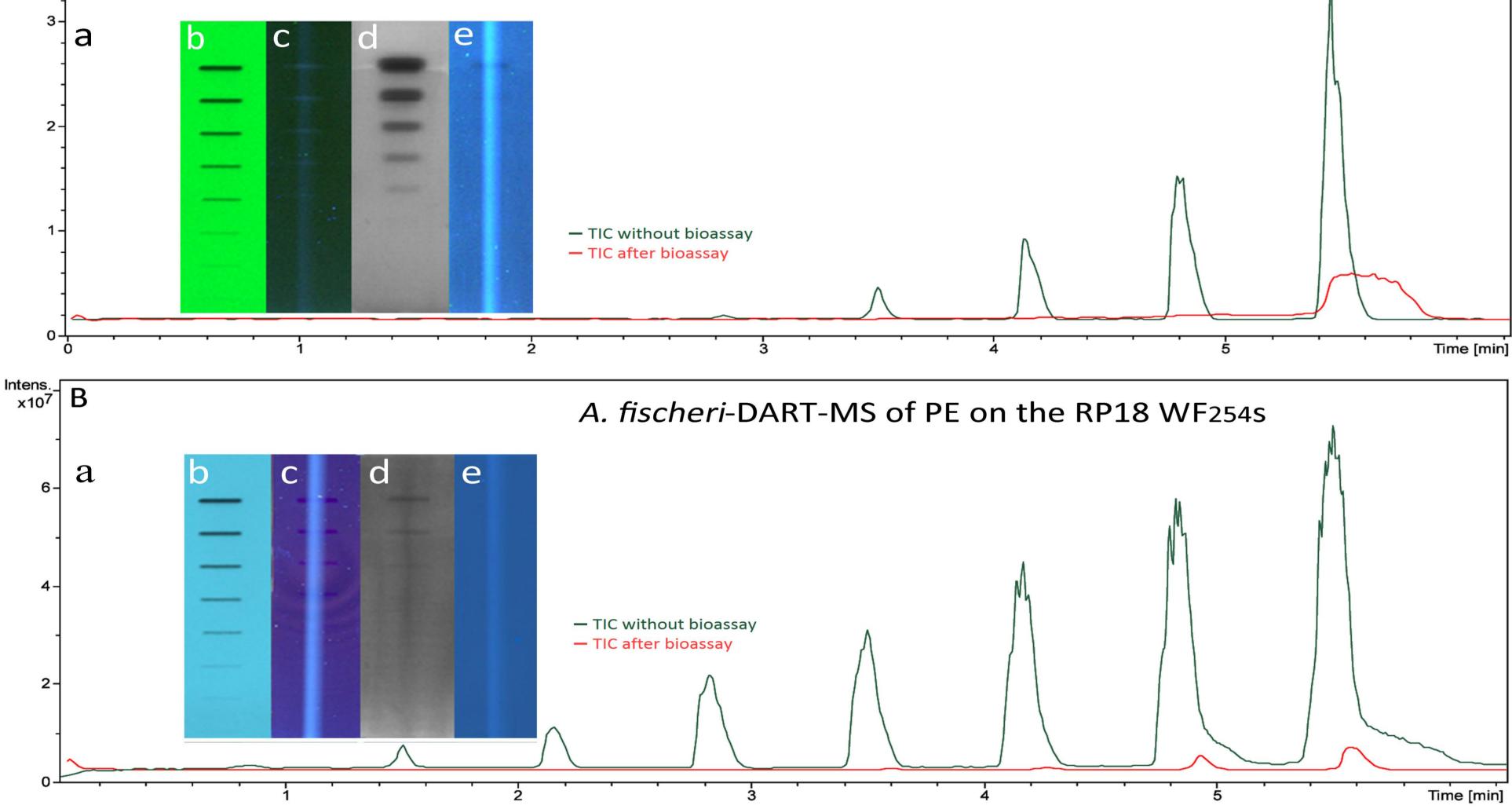


Fig. 1 A. fischeri- DART-MS of PE on Si60 F254 (A) and RP18 WF254s (B) plates. DART-MS spectrum (a), natively pattern of PE on the plates at UV 366 nm (b), inhibition activity of A.fischeri under BioLuminizer (d). The plate after DART-MS measurement before (c) and after bioassay (e) at UV 366 nm.

Table 1 Comparison of remaining signal of DART-MSbased on signal areas of PE pattern on the differentplates before and after bioassays

pYES-DART-MS of PE on RP18 W

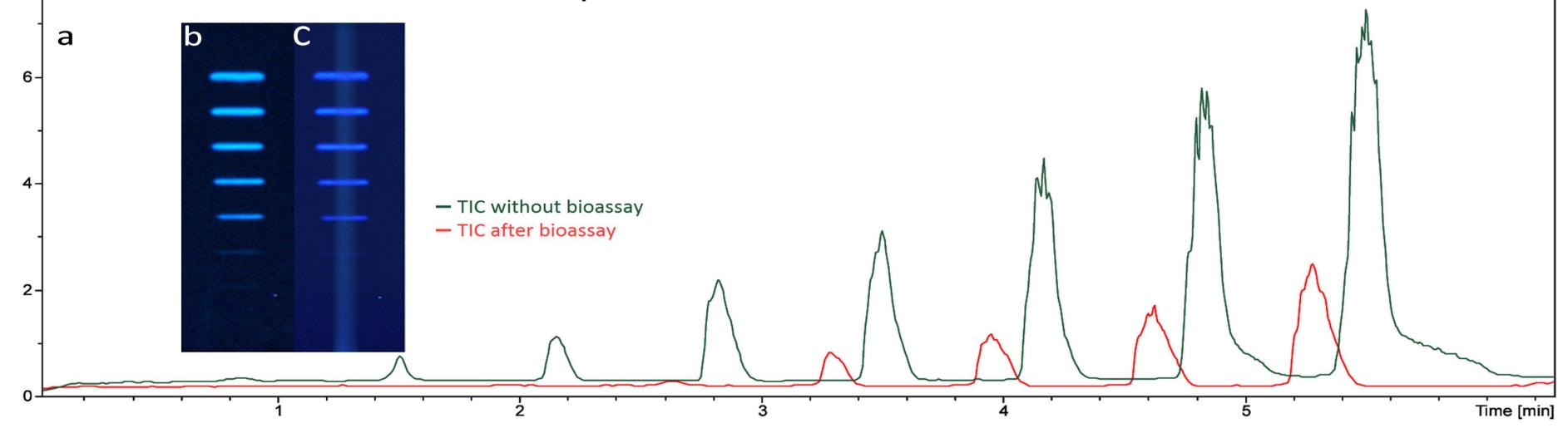


Fig. 2 pYES-DART-MS of PE on RP18 W. DART-MS spectrum (a), natively bioactivity of PE pattern (b) and after DART-MS measurement (b) at UV 366 nm

References [1] M.G. Soni, S.L. Taylor, N.A. Greenberg, G.A. Burdock, Food and Chemical Toxicology 40 (2002) 1335–1373 **Thanks to** Merck Millipore, Darmstadt, Germany, and CAMAG, Muttenz, Switzerland, for support with regard to layer material and instruments

Perspective

As it was shown, although MS signal suppression after different bioassays was strong, it still was possible to detect parabens by DART-MS. In future also cosmetic products should be scanned after biossay by DART-MS. This makes it possible to identify directly substances, after they showed

bioactive reaction in real time.

JUSTUS-LIEBIG UNIVERSITAT Food Science

Food Science, Justus Liebig University Giessen, Institute of Nutritional Science, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany