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NOTE

Crop domestication has had a narrowing eff ect on the 
genetic variation existing in many species, to the point that 

harnessing the natural variation prevalent in nonadapted exotic 
germplasm is increasingly important for improving yield, qual-
ity, and resistance (Gur and Zamir, 2004; McCouch, 2004). To 
uncover and exploit trait variation in exotic by elite crosses, near-
isogenic line (NIL) libraries, also referred to as introgression 
libraries, are a powerful tool in plant breeding. Near-isogenic 
line libraries have proven useful for investigating yield in rice 
(Oryza sativa L.) (Cheema et al., 2008) and tomato (Lycopersicon 
esculentum Mill.) (Eshed and Zamir, 1995), disease resistance in 
wheat (Triticum aestivum L.) (Leonova et al., 2007) and barley (Hor-
deum vulgare L.) (Schmalenbach et al., 2008), drought tolerance in 
wheat and barley (review, Nevo and Chen, 2010), metabolites in 
tomato (Rousseaux et al., 2005) and maize (Zea mays L.) (Yang 
et al., 1995), quality traits in barley (Schmalenbach and Pillen, 
2009) and rye (Secale cereale L.) (Falke et al., 2009), fl owering time 
in maize (Szalma et al., 2007), and agronomic traits in barley 
(Schmalenbach et al., 2009) and rye (Falke et al., 2009).

Introgression libraries consist of NILs that contain donor 
segments in a background of recurrent parent genome. The 
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the heritability was 0.9 or lower. We conclude that 

the linear model test is superior to the Dunnett 
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0.9, as usually occur. Analysis of a rapeseed 

(Brassica napus L.) library revealed two other 

major advantages of the linear model test. First, 
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introgressed segments are typically short stretches of donor 
genome, which may overlap in successive NILs depending 
on the aims of library construction. An alternative to typical 
NIL libraries is the stepped aligned inbred recombinant 
strains, or STAIRS, library (Koumproglou et al., 2002). 
The STAIRS library contains donor segments of increasing 
size, starting from small donor segments to entire donor 
chromosomes. This pattern is repeated for each chromosome. 
The advantage of this design is that it is easier to produce 
than typical NIL libraries. However, to our knowledge 
no one has investigated the performance of QTL analysis 
in STAIRS libraries compared with conventional NIL 
libraries with smaller targeted introgressions.

Analysis of introgression libraries typically involves a 
series of pairwise tests between the NILs and the recipient 
parent for the trait in question (Eshed and Zamir, 1995; 
Rousseaux et al., 2005; Eduardo et al., 2007; Schmalenbach 
and Pillen, 2009; Falke et al., 2009). A recent paper by Falke 
and Frisch (2011) proposed an alternative testing procedure, 
in which a linear model was used to estimate the eff ects of 
the segments directly. The study examined the diff erences 
in sums of correctly detected eff ects and false positive eff ects 
in NIL libraries with either nonoverlapping or overlapping 
segments. Results were based solely on the proposed linear 
model test but do not include a comparison with the 
pairwise tests that have been previously used. However, 
the effi  ciency of QTL detection might well depend on 
the statistical test used. While methods employing linear 
models and regression methods have been previously used 
to locate QTL in introgression libraries (Wang et al., 2006; 
Wang et al., 2007; Coles et al., 2011), the eff ect of the type 
of test used to identify QTL in NIL libraries has not yet 
been investigated.

The objectives of this study were to (i) compare the 
sums of correctly detected and false positive eff ects for 
pairwise t tests, the Dunnett test, and the linear model test 
in QTL detection with introgression libraries, (ii) compare 
the statistical properties of the tests for overlapping and 
nonoverlapping NIL libraries and STAIRS libraries, (iii) 
propose suitable tests that may enhance the precision 
of QTL detection in NIL libraries depending on the 
heritability and the amount of segment overlap, and (iv) 
validate our simulation results with experimental data of a 
rapeseed (Brassica napus L.) introgression library.

MATERIALS AND METHODS

Simulations
A model of the maize genome comprising 10 chromosomes of 

160 cM length was used for our simulations. Linkage maps with 

marker distances (d) of 20, 10, and 5 cM were investigated for 

three types of introgression libraries: nonoverlapping libraries, 

overlapping libraries, and STAIRS libraries (Fig. 1). Nonover-

lapping libraries contained donor segments that are contiguous 

but do not overlap. Overlapping libraries contain segments that 

are each present in two NIL lines. For STAIRS libraries, each 

chromosome was divided in parts of equal length. The fi rst of 

the lines that covered the genome of a chromosome carried 

one such segment located at the telomere. The second line car-

ried in addition the chromosome segment directly adjacent to 

the fi rst one. For each subsequent line, a further segment was 

added, such that the last line contained the donor genome of the 

entire chromosome. Ten recipient parent plots per replication 

were included in phenotyping, as justifi ed in Falke and Frisch 

(2011). The software Plabsoft (Maurer et al., 2008) was used for 

the simulations. Each simulation run was repeated with heri-

tabilities of 0.5, 0.6, 0.7, 0.8, 0.9, and 0.9999. Therefore each 

simulation run incorporated the type of introgression library, 

marker distance d, quantitative genetic scenario, and heritabil-

ity. All simulations were repeated 5000 times to ensure high 

numerical accuracy and reduce the eff ects of sampling.

Quantitative Genetic Models
We considered a polygenic trait and assumed that the geno-

typic value of the donor parent is 100 units superior to that of 

the recipient parent. The trait was controlled by major genes, 

minor genes, and genes with small eff ects. In all scenarios, 10 

genes with small eff ects of size 1 were assumed. The remaining 

diff erence between donor and recipient was assigned to major 

and minor genes in four diff erent scenarios (Table 1). These dif-

fered in the number n
a
 of major and n

i
 of minor genes, and their 

eff ect sizes s
a
 and s

i
, respectively. The genes with small eff ects 

were included as background or stochastic noise, as it is unreal-

istic to assume that all genetic eff ects underlying a quantitative 

trait can be modeled and/or detected. The sizes of major and 

minor eff ects intended to model oligogenic resistance or quality 

traits. For each simulation run, genes were assigned to a diff er-

ent set of random locations in the genome.

QTL Detection
We employed pairwise tests and a linear model test to investigate 

the presence of QTL on donor segments in the NIL libraries. 

The pairwise testing methods consisted of comparisons between 

each NIL and the recipient parent. The rationale is that since 

each NIL contains a single donor segment, diff erences in pheno-

type between each NIL and the recipient parent can be attributed 

to the presence of the donor segment. Pairwise testing consisted 

of two methods, t tests and the Dunnett test (Dunnett, 1955). 

Pairwise t tests were performed with and without adjustment for 

multiple testing. In unadjusted tests, the per-comparison type I 

error rate was 0.05. Multiple comparison adjustment of tests fol-

lowed two procedures: (i) the Bonferroni-Holm (BH) procedure 

proposed by Holm (1979) for an experiment-wise type I error 

rate of 0.05 and (ii) the procedure proposed by Benjamini and 

Hochberg (1995) for a false discovery rate (FDR) of 0.05. For 

STAIRS libraries, we used the standard error of a diff erence of 

treatment means for a Dunnett type comparison of two subse-

quent lines. Line genotypic values (and by extension the eff ect of 

the segment in the line) were calculated from genotypic values of 

previous lines in the library. To calculate p values for the Dunnett 

test, we used the density function of the multivariate normal dis-

tribution provided by the R package mvtnorm (Genz et al., 2011).

The linear model test consisted of estimating the eff ects of 

donor segments with a linear model. An F test was subsequently 
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sampling” due to QTL located on chromosomal segments adja-

cent to the target regions is also present in our measurements for 

success or failure of QTL detection.

Validation with Experimental Data
To validate our results from simulations, we analyzed an intro-

gression library in rapeseed using the Dunnett test and the linear 

model. The rapeseed introgression library was contributed by 

KWS SAAT AG, Einbeck, Germany. The library is a BC
4
 double 

conducted for every segment to determine signifi cance. Mul-

tiple testing adjustments for results from the linear model test 

were made using the BH procedure. The linear model test pro-

cedure was used in total as described by Falke and Frisch (2011).

For our analysis, we determined the sum of correctly 

detected eff ects and the sum of false positive eff ects (false positive 

rate) of each test to have measures of their effi  ciency. The sum of 

correctly detected eff ects, our measure of test detection power, 

was calculated by summation of the true QTL eff ects of segments 

for which the null hypothesis was correctly rejected and was col-

lected for the total, major, minor, and small eff ect QTL. True 

QTL eff ects were used rather than the estimated eff ects to avoid 

bias due to overestimation of QTL eff ects. The false positive rate 

was calculated by the summation of all detected QTL eff ects of 

segments for which the null hypothesis was incorrectly rejected. 

A false positive for the Dunnett test was declared when a NIL 

was found signifi cant despite containing no QTL. We avoided 

using the terms type I and type II error because not only statisti-

cal sampling contributes to these errors. In addition, “genetical 

Figure 1. Genomic composition of the different types of near-isogenic lines libraries. Donor segments are indicated with black and 

recipient parent genome with gray lines. The dashed lines fl anking the donor segments are genomic segments of unknown parental 

origin, located between markers at the end of the donor segment and fl anking markers. Marker distance is 5 centiMorgans (d).

Table 1. Quantitative genetic scenarios. Number (n
a
 and 

n
i
) and effect size (s

a
 and s

i
) of major and minor genes, 

respectively, for four scenarios.

Major Genes Minor Genes
Scenario n

a
s

a
n

i
s

i

I 3 30 – –

II 2 30 3 10

III 1 30 6 10

IV – – 9 10
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haploid (DH) population created from the crossing of the winter 

rapeseed varieties ‘Mansholt’s Hamburger Raps’ and ‘Samourai’ 

and was grown in randomized fi eld trials over 3 yr. The same 

parental cross combination has been previously investigated for 

various trait QTL (Uzunova et al., 1995; Marwede et al., 2005). 

Glucosinolate content (μmol/g), measured using near-infrared 

spectroscopy, was collected from fi ve locations each in 2006 and 

2007 and a single location in 2008. The heritability was above 

0.9, which is in accordance with previous studies (Marwede et al., 

2004). The recipient parent was included repeatedly in fi eld tri-

als. The linkage map consisted of 176 amplifi ed fragment length 

polymorphic markers and had a length of 1361 cM, resulting in 

an average marker distance of 6.8 cM. The NIL library contained 

127 lines. Each NIL carried at least one donor segment, the aver-

age number of donor segments was between two and three. The 

average segment length was 21.6 cM and the donor genome cov-

erage of the library was 87.7%. Regarding comparison with our 

simulation libraries, the rapeseed library would most resemble an 

overlapping library, though it also has aspects of the nonoverlap-

ping (segments present in only a single line) and STAIRS (seg-

ments present in multiple lines) libraries.

The model used for the Dunnett analysis was:

Y
ijk

 = μ + G
i
 + L

j
 + Y

k
 + e

ijk

where Y
ijk

 is the glucosinolate content of genotype G
i
 at loca-

tion L
j
 in year Y

k
, with a grand mean of μ and residual error e

ijk
. 

The Dunnett test was incorporated using PROC GLM of SAS 

software version 9.2 (SAS Institute Inc.). A detailed description 

of the linear model that was used to estimate and test the eff ects 

of individual chromosome segments was presented by Falke 
and Frisch (2011). Calculations were performed with R (R 

Development Core Team, 2011).

RESULTS
Total detection power was similar for the linear model and 
Dunnett tests for each of our three simulation sets. The t tests, 
which were included only in the nonoverlapping set, also had 
similar detection power (results not shown). The Dunnett 
test generally had a higher power of detection in the overlap-
ping library set. Overall, detection power was directly related 
to heritability and QTL eff ect size, an expected result. Power 
decreased overall as the QTL component of the libraries 
moved from a few large-eff ect QTL (major QTL; Scenario 
I) to many QTL with smaller eff ects (minor QTL; Scenario 
IV). Within each scenario, the presence of major QTL low-
ered the power of both tests at low heritabilities. As the num-
ber of major QTL decreased across scenarios, detection of 
major QTL increased at these low heritabilities. Detection 
power of minor QTL also increased overall as major QTL 
number decreased. For both tests, increasing degree of intro-
gression overlap negatively aff ected power of detection.

In the nonoverlapping library set, false positives 
decreased across all tests with decreasing marker distances 
d (Table 2). Increasing heritabilities caused consistent 
decreases in the false positives for the FDR adjusted and 
the unadjusted pairwise tests across all marker distances 
and scenarios. At small marker distances (d = 5 cM), 

the pairwise tests showed decreasing false positives with 
increasing heritabilities. In contrast, the linear model 
test showed an increase in false positives as heritabilities 
increased, though these values were much lower than 
those of the pairwise tests at low heritabilities. At the 
highest heritabilities, false positive rates were similar for 
all tests. The t tests were excluded from comparison in the 
overlapping and STAIRS library sets because of their high 
false positive rates in the nonoverlapping library set.

Overall, false positives generally decreased with 
decreasing genetic variance, for example as QTL eff ect 
sizes decreased and as heritability increased, with the 
exception of the linear model test (Fig. 2). The linear 
model showed generally lower false positive rates than 
the Dunnett test in the nonoverlapping library and the 
overlapping library excluding high heritabilities, with 
similar rates as the Dunnett test found in the STAIRS 
library. Marker density also aff ected false positives, as the 
introgressed segments can be more clearly defi ned (Table 
2). This lowers the chance that a QTL will be outside the 
marker-defi ned segment to which the QTL is ascribed.

In the rapeseed library, the Dunnett test detected 
26 NILs that had a signifi cantly diff erent glucosinolate 
content than the recipient parent (Table 3). Eight of those 
carried a single donor introgression. The remaining 
carried between two and six introgressions, with the 
most common number of introgressions being three. All 
signifi cant lines had glucosinolate contents greater than 
that of the recurrent parent, with an average diff erence 
in means of 22.6. The linear model test found 15 separate 
signifi cant donor introgressions, varying in length from 
one to four markers. One to six introgressions were present 
in 54 NILs. On four occasions, positive and negative QTL 
located in close proximity were detected with the linear 
model test. Most of the lines containing these contrasting-
eff ect QTL were not signifi cant in the Dunnett test results.

DISCUSSION

Statistical Tests
Our results confi rm that the Dunnett test is better suited 
for analyzing NIL libraries than pairwise t tests. Even with 
adjustment for multiple testing, the t tests had a consider-
ably greater false positive rate (Table 2). A further increase 
in the precision of QTL detection is expected with the 
linear model analysis, in particular for libraries with some 
chromosome regions duplicated in more than one NIL, as 
in the libraries of previous studies (Eduardo et al., 2007; 
Falke et al., 2008). The advantage of the linear model test 
is likely due to a more precise estimation of the residual 
variance by using the entire library rather than the recipi-
ent parent and the introgression line under consideration.

Detection of a QTL depends on the amount of genetic 
variance that can be attributed to the QTL compared with 
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the total variance in the experiment. The four scenarios 
(Table 1) show a progression from few QTL of large eff ect 
to many QTL of smaller eff ect. As the individual QTL 

decrease in eff ect size and increase in number, the variance 
explained by a single QTL decreases. Likewise, decreasing 
heritability also decreases the relative variance that a single 

Table 2. Sum of false positive effects in maize (Zea mays L.) near-isogenic lines libraries with nonoverlapping donor segments 

for varying marker distances (d), heritabilities (h2), and quantitative genetic scenarios (I–IV). The testing methods are as follows: 

LM, linear model test; DT, Dunnett test; PW
n
, unadjusted pairwise t test; PW

fdr
, pairwise t test adjusted using false discovery 

rate; PW
bh

, pairwise t test adjusted using Bonferroni-Holm. Each sum of false positive effects is a mean value from 5000 

simulation runs.

h2 h2

d Test 0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1

Scenario I Scenario II

20 LM 48.0 62.8 71.9 75.5 77.3 85.0 39.0 47.2 52.6 58.5 68.8 81.3

DT 85.2 87.1 91.3 91.7 87.5 85.7 71.1 72.5 74.1 75.7 78.4 82.7

PW
n

371.3 325.3 278.0 226.1 179.4 87.5 324.7 275.8 242.0 200.2 161.8 84.7

PW
fdr

215.8 203.7 179.4 160.5 130.5 86.8 191.5 166.5 156.1 141.6 125.1 83.9

PW
bh

92.1 95.6 98.9 94.2 90.8 84.3 82.9 80.3 82.8 81.8 83.7 83.7

10 LM 28.7 34.2 36.7 37.5 37.6 41.3 22.0 25.3 27.7 30.5 34.8 39.7

DT 55.5 55.0 55.1 49.9 47.0 41.4 47.2 47.1 45.3 42.8 42.6 40.2

PW
n

304.7 259.1 218.2 171.0 127.9 43.6 265.3 227.3 187.6 151.2 114.8 42.2

PW
fdr

172.1 148.0 128.4 108.3 83.6 42.9 147.6 122.3 106.4 94.5 77.1 41.2

PW
bh

67.9 61.7 59.3 54.5 49.0 41.1 56.9 54.8 50.7 47.4 45.4 40.3

5 LM 15.5 17.8 18.6 18.7 18.6 20.3 12.3 13.5 14.5 16.1 18.1 20.3

DT 39.4 39.0 35.5 31.3 27.8 21.3 33.8 32.8 28.8 27.6 25.0 20.2

PW
n

275.2 221.1 182.1 144.1 103.0 23.2 233.5 196.5 160.2 126.1 91.6 22.4

PW
fdr

136.1 112.2 99.6 83.8 63.3 21.9 120.7 100.5 85.6 76.1 56.3 21.6

PW
bh

50.8 45.0 42.8 36.8 30.6 21.4 40.6 39.2 34.7 31.4 27.8 20.4

Scenario III Scenario IV

20 LM 27.9 33.6 41.2 52.9 68.5 80.4 17.6 27.1 40.9 58.6 69.7 78.8

DT 54.4 57.9 60.9 65.7 74.7 80.6 42.3 48.5 56.5 66.5 74.7 78.6

PW
n

274.5 233.0 208.4 176.6 143.8 82.9 218.3 194.1 168.9 148.1 123.1 79.9

PW
fdr

152.6 141.5 132.3 124.4 115.0 82.6 124.3 123.6 120.1 115.8 105.4 79.4

PW
bh

65.5 66.9 69.8 72.8 79.2 80.9 51.9 54.8 62.3 69.8 78.4 78.8

10 LM 15.1 17.7 21.6 28.1 33.9 38.3 10.1 15.9 23.8 31.6 34.5 38.3

DT 38.1 36.8 37.8 38.9 41.0 39.7 29.4 31.0 34.4 37.4 39.1 38.3

PW
n

221.0 187.1 155.1 130.3 99.0 40.6 173.0 149.3 124.2 106.4 82.3 39.3

PW
fdr

117.4 102.7 93.7 84.5 72.5 40.5 95.3 87.8 83.3 75.1 64.0 38.8

PW
bh

45.6 44.8 42.2 43.6 42.5 39.1 35.9 36.8 37.5 41.3 40.7 38.0

5 LM 8.5 9.8 12.2 15.6 18.0 19.9 5.8 9.0 13.5 16.8 17.6 19.4

DT 27.7 27.3 24.5 25.3 23.6 19.8 22.3 21.9 22.9 23.4 22.4 19.5

PW
n

192.6 162.3 135.4 106.2 77.4 21.6 150.7 123.6 103.7 84.8 62.6 20.5

PW
fdr

101.9 84.0 76.9 65.4 49.6 20.5 83.2 71.3 66.1 56.6 44.3 20.1

PW
bh

35.0 32.1 29.1 28.1 26.0 20.1 27.9 26.3 25.7 26.7 24.2 19.5

Figure 2. Sums of correctly detected effects (solid line) and false positive effects (dotted line) in different maize (Zea mays L.) introgression 

library types (d = 5 cM) and across four genetic scenarios. The graphs compare the linear model test (circle) with the Dunnett test (triangle).
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QTL explains. This decrease in the variance explained by 
individual QTL is a contributing reason for the observed 
decrease in power. Our results indicate that these factors, 
as well as the number of times a QTL is present in the 
library, all contribute to the variance and therefore aff ect 
detection. For instance, power of detection was highest 
with nonoverlapping NIL libraries and few major 
genes (Scenario I) for both the linear model test and the 
Dunnett test (Fig. 2). Although overlapping NIL libraries 
and STAIRS libraries may have advantages owing to the 
reduced eff orts for establishing the library, we conclude 
that these advantages come at the cost of a considerably 
lower power of QTL detection. This is especially true for 
minor-eff ect QTL, which in some cases may be the focus 
of introgression line population development. Falke and 
Frisch (2011) reported a considerable lower power of QTL 
detection with overlapping rather than with nonoverlapping 
NIL libraries employing the linear model test, and our 
fi ndings extend those results also to STAIRS libraries.

With increasing heritability, the false positive rate 
increased for the linear model test and decreased for the 
Dunnett test in nonoverlapping and overlapping NIL 
libraries. The increase observed for the linear model test 
is due in part to a higher power to detect QTL located 
between the marker at the end of the target segment and 
the fi rst fl anking marker at which selection is performed for 
the recipient genome, that is, QTL between known donor 
DNA and known recipient DNA. This trend may also 
refl ect detection of adjoining segments that do not contain 
QTL but are being declared signifi cant because of low 
residual variance present at high heritabilities. The decrease 
observed for the Dunnett test can be explained with the 
decrease in the residual variance caused by increasing 
heritability, which reduces spurious QTL detections. For 
low heritabilities in the nonoverlapping library and the 
overlapping library, the false positive rate of the Dunnett 
test was considerably higher than the linear model test. For 
instance, at marker distance of 0.05 cM, the false positive 
rate for the Dunnett test was more than twice as high as the 
linear model test for low heritabilities in the nonoverlapping 
library. In overlapping NIL libraries, Dunnett test power 
was slightly greater than the linear model test power, but 
cannot be exploited because of the infl ated false positives. 
To further investigate false positive rates in the Dunnett test, 
additional simulations were run in overlapping libraries. In 
these simulations, false positives were only declared when 
both lines with non-QTL-containing donor segments 
were declared signifi cant. While this lowered false positive 
rates, the linear model test generally still outperformed the 
Dunnett test regarding false positives.

Evaluating overall test performance by incorporating 
both the detection power and false positive rate provides a 
more defi nitive answer. One way to synthesize the results 
of type I and type II error rates is to calculate the ratio of 

Table 3. Lines containing donor segments found to be signifi -

cant for glucosinolate content in the rapeseed (Brassica napus 

L.) introgression library. Linear model: All lines carrying sig-

nifi cant segments are listed and the signifi cant segments are 

shown. Dunnett test: All signifi cant lines are presented and all 

donor segments that are contained in those lines are shown. 

Linear model Dunnett test

Line Segments Line Segments

9 98,119,142 9 98,119–125,142

44 142 – –

47 128 47 127–128

50 119,142 50 119–127,142

55 98,119,142 55 98,119–128,142

58 162–163,165–166 – –

59 162,165–166 – –

117 153,163,165–166 117 34–35,153,163–166

124 82 124 82

172 98 – –

189 142 – –

203 119 203 56–57,62,119–125

212 80–82 – –

227 165–166 227 56–57,62,165–166

257 163,165–166 257 83–85,163–166

258 163,165–166 258 149,163–166

260 163,165–166 260 163–166

261 119,142 – –

262 98,119,142 – –

263 98,158 263 98,158

264 119,128 264 119–128

265 119 265 119

280 153 – –

287 153 – –

293 48,80–82,165–166 293 48,80–82,112–115,165–166

294 153,163,165–166 294 87–91,132,134,136–

137,153,163–166
296 128,142 296 128,142

367 98 – –

387 165–166 387 53,55–57,62,165–166

430 153,163,165–166 430 32,112,149,153,163–166

496 80–82 – –

498 80–82,153,163,165–166 498 80–91,153,163–166

499 163,164–165 499 34–35,83–88,90–91,163–166

576 163,164–165 576 163–166

578 38–41 – –

641 48 – –

789 38–41 – –

814 158 – –

842 38–41 – –

864 163,165–166 864 83–85,149,163–166

873 38–41 – –

875 80–82 – –

877 80–82,128 – –

1036 48 1036 48,111,113–115

1150 4,39–40,48,60,103–

106,108–110

– –

1155 39–40,82,108–110 – –

1157 103–106,108–110 – –

1158 48,103–106,108–110 – –

1196 48,80–82,128 – –

1204 142 – –

1332 48 – –

1373 48 – –

– – 1395 159–161

– – 1397 159–161

1433 142 – –

1548 48,103–106,108–110 – –
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test power to false positive rate. We performed a similar 
calculation with our values of sum of correctly detected 
eff ects vs. the sum of false positive eff ects. The ratio of 
major and minor QTL detection power to false positives 
generally increased for both tests as genetic variance 
decreased, proceeding from Scenario I to Scenario IV. 
Within each scenario, major QTL detection ratio of the 
linear model test peaked at low heritabilities and decreased 
at high heritabilities while the Dunnett test peaked at 
high heritabilities. This was true in the nonoverlapping 
and overlapping libraries, with both tests peaking at high 
heritabilities in the STAIRS library. The ratio was higher 
for the linear model overall than for the Dunnett test, as both 
tests had similar power but the Dunnett test had generally 
higher false positives. The largest diff erence between the 
two tests occurred in the overlapping library. At the lowest 
heritabilities, the linear model test ratio was over 6:1 for 
detection power to false positive rate for Scenarios I to III 
and over 4:1 for Scenario IV. The Dunnett test was below 
1:1 for Scenarios I and IV and slightly above 1:1 for Scenarios 
II and III at those same heritabilities.

To summarize, the sum of correctly detected eff ects 
identifi es neither the Dunnett test nor the linear model test 
as the superior method in every case. Lower false positives 
may be regarded as an advantage of the linear model test in 
most instances. In overlapping NIL libraries, the Dunnett 
test is in particular not suitable if heritabilities are low; 
with heritabilities between 0.9 and 1 it can be a favorable 
alternative to the linear model test. An additional point to 
consider is the fl exibility allowed by using a linear model 
approach. Model building is possible, as well as interactions 
of genetic eff ects. Using introgression libraries, linear 
model methods could uncover and investigate epistasis 
with precision that is hard to achieve in segregating 
populations. Using mixed models is also possible, as done 
in a recent publication by Coles et al. (2011).

Rapeseed Introgression Library
A principal diff erence between the Dunnett test and the 
linear model test is that the linear model is testing for the 
presence of QTL on individual chromosome segments, 
whereas the Dunnett test is testing NILs as a whole. For 
example, line 203 was found to be signifi cant using the 
Dunnett test, and it contains three separate introgressed 
donor segments (Table 3). This includes segment 119, 
which was found to be signifi cant using the linear model 
test. The remaining segments, however, were not declared 
signifi cant with this test. Using the linear model test was 
able to provide much more information on the location 
of the QTL than could be determined with the Dunnett 
test. Similar results were obtained for lines 227, 387, and 
1036. We conclude that the linear model test is of great 
advantage for NIL libraries with lines that carry multiple 
introgressions, because it can detect those introgressions 

that are responsible for the diff erences in the phenotype of 
the NIL and the recipient parent. Additional simulations 
support the results, indicating that the linear model test 
has higher power than the Dunnett test when multiple 
QTL are on separate introgressions in the same line.

Of the 30 NILs containing segments detected with 
the linear model but not determined to be signifi cant 
with the Dunnett test, 17 carried QTL with both positive 
and negative eff ects. This includes nearly every NIL 
containing multiple signifi cant segments detected with 
the linear model. For example, two QTL with diff erent 
signs and similar eff ect size appear in segments 38 to 41. 
These segments are not present in any NILs detected with 
the Dunnett test. In conclusion, a second big advantage of 
the linear model test is that it is able to fi nd QTL in lines 
that carry more than one QTL with diff erent signs on 
diff erent chromosome segments.

To investigate the transferability of our results we 
performed simulations with a model of the barley genome. 
The detection power and false positive rates diff ered, 
but the trends observed for diff erent types of libraries, 
quantitative genetic scenarios, heritabilities, and the 
choice of tests were similar. We conclude that our results 
are robust with respect to the number and length of the 
chromosomes and should serve as reliable guidelines for 
introgression libraries in other crops.
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