Genomic prediction in hybrid breeding: II. Reciprocal recurrent genomic selection with full-sib and half-sib families

Albrecht E. Melchinger and Matthias Frisch

Supplementary Tables and Figures

Species	Trait	${\sigma^2_{gca}}^\dagger$	$\sigma_{sca}^2{}^{\ddagger}$	τ	Source
Barley	Yield	0.36	0.04	10.0%	Philipp et al. (2016)
Rapeseed	Yield	546720	14833	2.7%	Hu et al. (2021)
Rice	Yield Yield Plant height	$0.430 \\ 14.81 \\ 0.61$	$0.347 \\ 11.79 \\ 8.44$	43.0% 44.3% 93.3%	Beukert et al. (2017) Gramaje et al. (2020) Gramaje et al. (2020)
Triticale	Yield Plant height	$63.85 \\ 58.23$	$\begin{array}{c} 1.28 \\ 0.07 \end{array}$	2.0% 1.2%	Oettler et al. (2003) Oettler et al. (2003)
Wheat	Yield Plant height Heading date Yield Yield	0.058 17.86 2.05 0.200 0.03	$\begin{array}{c} 0.028 \\ 1.16 \\ 0.05 \\ 0.082 \\ 0.02 \end{array}$	$\begin{array}{c} 32.6\% \\ 6.1\% \\ 2.4\% \\ 29.1\% \\ 50.0\% \end{array}$	Longin et al. (2013) Longin et al. (2013) Longin et al. (2013) Gowda et al. (2012) Zhao et al. (2015)

Table S1: Survey for estimates of general combining ability (GCA, σ_{gca}^2) and specific combining ability (SCA, σ_{sca}^2) variances for hybrids of (partially-)autogamous species for important agronomic traits reported in the literature.

 † Sum of σ^2_{gcaF} and σ^2_{gcaM} if presented separately in the reference

[†] $\tau = 100\% \times \frac{\sigma_{sca}^2}{\sigma_{gcaF}^2 + \sigma_{gcaM}^2 + \sigma_{sca}^2}$ is the proportion of SCA variance in the total genetic variance among hybrids

Figure S1: Schematic representation of selection cycle C_1 with (i) model training and genomic selection $(C_{1,0})$, (ii) subsequent subcycles $C_{1,1}$ to $C_{1,4}$ of genomic selection, and (iii) generating in sub-cycle $C_{1,4}$ the material used for re-training the model in cycle $C_{2,0}$.

Figure S2: Prediction accuracy r_{gca} for GCA averaged over populations Π_F and Π_M for full-sib and half-sib reciprocal recurrent genomic selection (RRGS). Results for 10 selection cycles, each consisting of four subcycles, based on SNP data from maize. Scenarios differed in the heritability h^2 and the proportion $\tau = 100\% \times \sigma_{sca}^2 : \sigma_G^2$ of the trait. The training set size was $N_{TS} = 190$.

Figure S3: Prediction accuracy r_{gca} for GCA averaged over populations Π_F and Π_M for full-sib and half-sib reciprocal recurrent genomic selection (RRGS). Results for 10 selection cycles, each consisting of four subcycles, based on SNP data from wheat. Scenarios differed in the heritability h^2 and the proportion $\tau = 100\% \times \sigma_{sca}^2 : \sigma_G^2$ of the trait. The training set size was $N_{TS} = 190$.

Figure S4: Genetic variances σ_G^2 , GCA variances $\sigma_{gcaF}^2 + \sigma_{gcaM}^2$, and SCA variances σ_{sca}^2 among hybrids for full-sib and half-sib reciprocal recurrent genomic selection (RRGS). Results for 10 selection cycles based on SNP data from wheat. Scenarios differed for the training set size N_{TS} , heritability h^2 , and proportion $\tau = 100\% \times \sigma_{sca}^2 : \sigma_G^2$ of the trait.

Figure S5: Proportion $\tau_t = 100\% \times \sigma_{sca}^2$: σ_G^2 for full-sib and half-sib reciprocal recurrent genomic selection (RRGS). Results for 10 selection cycles based on SNP data from maize. Scenarios differed for the training set size N_{TS} , heritability h^2 , and proportion $\tau = 100\% \times \sigma_{sca}^2$: σ_G^2 of the trait.

Figure S6: Proportion $\tau_t = 100\% \times \sigma_{sca}^2$: σ_G^2 for full-sib and half-sib reciprocal recurrent genomic selection (RRGS). Results for 10 selection cycles based on SNP data from wheat. Scenarios differed for the training set size N_{TS} , heritability h^2 , and proportion $\tau = 100\% \times \sigma_{sca}^2$: σ_G^2 of the trait.

Figure S7: Ratio of genetic to genic variances $\sigma_G^2 : \tilde{\sigma}_G^2$, of genetic to genic GCA variances $(\sigma_{gcaF}^2 + \sigma_{gcaM}^2) : (\tilde{\sigma}_{gcaF}^2 + \tilde{\sigma}_{gcaM}^2)$, and genetic to genic SCA variances $\sigma_{sca}^2 : \tilde{\sigma}_{sca}^2$ among hybrids for full-sib and half-sib reciprocal recurrent genomic selection (RRGS). Results for 10 selection cycles based on SNP data from wheat. Scenarios differed for the training set size N_{TS} , heritability h^2 , and proportion $\tau = 100\% \times \sigma_{sca}^2 : \sigma_G^2$ of the trait.

Figure S8: Prediction accuracy for testcross performance $r_{u,\hat{u}}(\text{TC})$ and for GCA $r_{gca}(\text{TC})$ in halfsib reciprocal recurrent genomic selection, and for GCA in full-sib reciprocal recurrent genomic selection $r_{gca}(\text{SC})$. Results for selection cycle $C_{1,0}$. Scenarios differed for the training set size N_{TS} , heritability h^2 , proportion $\tau = 100\% \times \sigma_{sca}^2$: σ_G^2 of the trait, and the crop from which the SNP data were used for the simulations.

References

- Beukert U, Li Z, Liu G, Zhao Y, Ramachandra N, Mirdita V, Pita F, Pillen K, Reif JC (2017) Genome-based identification of heterotic patterns in rice. Rice 10:1-10
- Fischer S, Maurer HP, Würschum T, Möhring J, Piepho H-P, Schön C-C, Thiemt EM, Dhillon BS, Weissmann EA, Melchinger AE, Reif JC (2010) Development of heterotic groups in triticale. Crop Science 50:584-590
- Gowda M, Longin CFH, Lein V, Reif JC (2012) Relevance of specific versus general combining ability in winter wheat. Crop science 52:2494-2500
- Gramaje LV, Caguiat JD, Enriquez JOS, dela Cruz QD, Millas RA, Carampatana JE, Tabanao DAA (2020) Heterosis and combining ability analysis in CMS hybrid rice. Euphytica 216:1-22
- Hu D, Zhao Y, Shen J, He X, Zhang Y, Jiang Y, Snowdon R, Meng J, Reif JC, Zou J (2021) Genome-wide prediction for hybrids between parents with distinguished difference on exotic introgressions in Brassica napus. The Crop Journal 9:1169-1178
- Longin CFH, Gowda M, Mühleisen J, Ebmeyer E, Kazman E, Schachschneider R, Schacht J, Kirchhoff M, Zhao Y, Reif JC (2013) Hybrid wheat: quantitative genetic parameters and consequences for the design of breeding programs. Theoretical and applied genetics 126:2791-2801
- Oettler G, Burger H, Melchinger A (2003) Heterosis and combining ability for grain yield and other agronomic traits in winter triticale. Plant breeding 122:318-321
- Philipp N, Liu G, Zhao Y, He S, Spiller M, Stiewe G, Pillen K, Reif JC, Li Z (2016) Genomic prediction of barley hybrid performance. The Plant Genome 9:plantgenome2016.2002.0016
- Zhao Y, Li Z, Liu G, Jiang Y, Maurer HP, Würschum T, Mock H-P, Matros A, Ebmeyer E, Schachschneider R et al. (2015) Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proceedings of the National Academy of Sciences 112:15624-15629