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Stacked ensembles on basis of
parentage information can
predict hybrid performance with
an accuracy comparable to
marker-based GBLUP

Philipp Georg Heilmann1, Matthias Frisch1, Amine Abbadi2,
Tobias Kox2 and Eva Herzog1*

1Institute of Agronomy and Plant Breeding II, Justus Liebig University, Gießen, Germany, 2NPZ
Innovation GmbH, Holtsee, Germany
Testcross factorials in newly established hybrid breeding programs are often

highly unbalanced, incomplete, and characterized by predominance of special

combining ability (SCA) over general combining ability (GCA). This results in a low

efficiency of GCA-based selection. Machine learning algorithms might improve

prediction of hybrid performance in such testcross factorials, as they have been

successfully applied to find complex underlying patterns in sparse data. Our

objective was to compare the prediction accuracy of machine learning

algorithms to that of GCA-based prediction and genomic best linear unbiased

prediction (GBLUP) in six unbalanced incomplete factorials from hybrid breeding

programs of rapeseed, wheat, and corn. We investigated a range of machine

learning algorithms with three different types of predictor variables: (a)

information on parentage of hybrids, (b) in addition hybrid performance of

crosses of the parental lines with other crossing partners, and (c) genotypic

marker data. In two highly incomplete and unbalanced factorials from rapeseed,

in which the SCA variance contributed considerably to the genetic variance,

stacked ensembles of gradient boosting machines based on parentage

information outperformed GCA prediction. The stacked ensembles increased

prediction accuracy from 0.39 to 0.45, and from 0.48 to 0.54 compared to GCA

prediction. The prediction accuracy reached by stacked ensembles without

marker data reached values comparable to those of GBLUP that requires

marker data. We conclude that hybrid prediction with stacked ensembles of

gradient boosting machines based on parentage information is a promising

approach that is worth further investigations with other data sets in which SCA

variance is high.

KEYWORDS

machine learning, stacked ensembles, gradient boosting, genomic prediction, general
combining ability, specific combining ability, hybrid breeding, hybrid prediction
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1 Introduction

Hybrid breeding programs have been a decade-long success

story in corn, but are also increasingly implemented in crops that

have previously been commercialized as homozygous line varieties,

such as wheat (Schulthess et al., 2017), barley (Philipp et al., 2016)

or rapeseed (Stahl et al., 2017). By implementing hybrid breeding,

breeders hope to improve performance, resilience and yield stability

of their varieties. For maximizing heterosis and hybrid

performance, the hybrid breeding material is usually arranged in

so-called heterotic groups of individuals with similar combining

ability and heterotic response when crossed to individuals from

genetically distinct germplasm groups (Melchinger and Gumber,

1998). Two heterotic groups used in a specific hybrid breeding

program are referred to as a heterotic pattern. Breeding progress

and establishment of novel heterotic patterns is based on constant

selection for hybrid performance, heterosis and combining ability in

test crosses between the parent groups. In most breeding programs,

the number of potential hybrid combinations of the parental lines

from the heterotic groups exceeds the number of hybrids that can be

evaluated in field trials by far.

By estimating the general combining ability (GCA, Hallauer

et al., 2010) of the parental components, the performance of the

resulting hybrids can be predicted using the sum of both parental

GCA values. GCA estimates can be obtained by testing only a part

of all possible crosses of parental lines from two different genetic

groups in the field. If heterotic patterns have been established,

candidates for hybrid parents can be very efficiently identified with

only one or a few testers from the opposite heterotic group due to

the high accuracy and predominance of GCA variance over special

combining ability (SCA) variance (Melchinger and Gumber, 1998).

The GCA prediction approach is simple, yet in many breeding

programs surprisingly precise. For decades, it has formed the

backbone of successful hybrid breeding programs.

However, newly established hybrid breeding programs usually

cannot rely on established heterotic patterns. These hybrid

programs are often characterized by a predominance of SCA

variance over GCA variance, which complicates GCA-based

testing strategies. Due to the high costs of evaluating large

numbers of potential hybrid combinations in the field, genetic

bottlenecks in one or both parent germplasm groups, and

unsuccessful crosses without viable offspring, testcross factorials

in these hybrid programs are often highly unbalanced and consist

only of a small fraction of all possible hybrid combinations between

the parent groups. As a consequence, new prediction methods that

enhance the accuracy of hybrid prediction in sparse unbalanced

factorials with high relevance of SCA are continually sought after to

increase the efficiency of selection in newly established hybrid

breeding programs.

Genomic prediction models for hybrid performance are able to

incorporate information of genome-wide marker data in addition to

phenotypic estimates collected in the field. These genomic

prediction models have been successfully used to predict the

testcross performance of untested parental lines (Albrecht et al.,

2011; Hofheinz et al., 2012). For parent groups with a high ratio of

SCA over GCA variance, as frequently observed in newly
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established hybrid breeding programs, modifications of the

genome-wide BLUP (GBLUP) model incorporating both GCA

and SCA components have been shown to increase prediction

accuracy over models considering additive GCA effects only

(Technow et al., 2012; Technow et al., 2014).

The term machine learning (ML) summarizes a large number of

comparatively new predictionmethods in statistics, mathematics, and

computer science (Domingos, 2012). These methods have gained a

lot of popularity due to their proven ability to solve problems in many

different fields of research more effectively than classical approaches

(Butler et al., 2018; Abbas et al., 2019; Dargan et al., 2020), but have

not yet been widely implemented in hybrid breeding programs. A

common feature of ML algorithms is that they are able to model non-

linear interactions, and thus find complex underlying patterns within

data better than other algorithms (Bishop, 2006; Hastie et al., 2009).

Each algorithm has a wide variety of parameters that have to be

manually defined by the user, so-called hyperparameters. Thus, an

important part of the application of ML is the search for the optimal

hyperparameters, which is generally known as hyperparameter

optimization (Probst et al., 2019). This process requires

knowledge on ML and, depending on the task and data set, a lot of

computational resources.

Among the most popular ML algorithms are decision-tree

based methods. Most commonly used are gradient boosting (GB,

Friedman, 2001), which consists of several decision trees trained

after another, extreme gradient boosting (XGB, Chen and Guestrin,

2016) which is a computationally more efficient version of GB and

specialized in handling sparse data, and Random Forests (RF,

Breiman, 2001), where multiple decision trees are trained in

parallel. There is also the field of deep learning centered around

the application of artificial neural networks (ANN, Goodfellow

et al., 2016) that gained major popularity in the recent years. A

classic type of ML algorithm are support vector machines (SVM,

Cortes and Vapnik, 1995), which were first introduced as a

classification algorithm but have later been adapted to regression

tasks (Hastie et al., 2009). Reproducing kernel hilbert spaces

(RKHS, Perez and de los Campos, 2014) are similar to SVM and

are additionally already quite common in plant breeding. A very

simple and fast algorithm focused on filling out sparse matrices is

matrix factorization (MF, Koren et al., 2009), most commonly used

in recommender systems. Stacked ensembles (SE, Breiman, 1996;

Van Der Laan et al., 2007) utilize the output of already existing

models to train a new model on top. This model combines aspects

of all models it incorporates.

Recent studies have started to investigate the potential of ML for

tasks related to plant breeding. ML has been used for handling

genotype-by-environment interactions in multi-environmental

trials (Montesinos-López et al., 2018b; Gillberg et al., 2019;

Washburn et al., 2021; Westhues et al., 2021), the identification of

the optimal set of markers used for prediction (Li et al., 2018a;

Gabur et al., 2022), phenomic prediction and image classification

(Mohanty et al., 2016; Nagasubramanian et al., 2018; Cuevas et al.,

2019; Nagasubramanian et al., 2019) as well as genomic prediction

(Ma et al., 2018; Azodi et al., 2019; Banerjee et al., 2020;

Montesinos-López et al., 2021). The majority of recently

published studies rely on genomic data as the basis of their
frontiersin.org
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predictions. Studies without genomic data usually incorporate other

forms of complex data or prove the concept of a single specific

algorithm without conducting a broad investigation of the potential

of available algorithms (Montesinos-López et al., 2018a; Khaki and

Wang, 2019; Khaki et al., 2020). To our knowledge, a comparison of

ML methods under the same conditions as GCA-based hybrid

prediction with real-life data from ongoing breeding programs has

not yet been investigated.

Our goal was to investigate the suitability of the ML algorithms

GB, RF, XGB, ANN, MF, RKHS, SVM, and an SE based on GB

machines (GB-SE) for prediction of hybrid yield in six unbalanced

factorials of different structure and size from hybrid breeding

programs of rapeseed, wheat, and corn. In particular, our

objectives were (i) to compare the prediction accuracy of ML

algorithms based on hybrid parentage and phenotypic field data

to classical GCA-based prediction, (ii) to test if the best ML

algorithm from objective (i) can compete with marker-based

predictions from a GBLUP model incorporating GCA and SCA

components, (iii) to investigate if ML algorithms based on

genotypic data or a combination of genotypic data and parentage

information can outperform a GBLUP model incorporating GCA

and SCA components, (iv) and to develop a user-friendly

standardized procedure for hyperparameter optimization that is

applicable in a wide range of hybrid breeding programs.
2 Material and methods

2.1 Software

All analyses were conducted in R 4.0.3 (R Core Team, 2022).

For analysis of field data, GCA and SCA effects, GBLUP and

implementation of the ML algorithms, we used the R packages

‘lme4 1.1-31’ (Bates et al., 2015), ‘emmeans 1.7.3’ (Lenth, 2021),

‘sommer 4.2.0’ (Covarrubias-Pazaran, 2016; Covarrubias-Pazaran,

2018), ‘h2o 3.38.0.1’ (LeDell et al., 2020; Chen et al., 2022), ‘kernlab

0.9-31’ (Karatzoglou et al., 2004), ‘mlr 2.19.0’ (Bischl et al., 2016),

‘parallelMap 1.5.1’ (Bischl et al., 2020), ‘BGLR 1.1.0’ (Perez and de

los Campos, 2014), and ‘recosystem 0.5’ (Qiu et al., 2021), which are

available from the Comprehensive R Archive Network (CRAN).

Additionally, we used the package ‘SelectionTools 21.3’ which is

freely available under http://population-genetics.uni-giessen.de/

software/. For which algorithms the specific packages were used is

described in detail below. A working R code example for tuning GB

models with random grid search and building the GB-SE is

provided for data set Co1 as PDF in the supplementary material,

and as an R script under https://github.com/PGHeilmann/

Minimalist-ML-frontiers.
2.2 Experimental data sets

We investigated six experimental data sets of hybrid yield which

comprised incomplete factorials of two unbalanced parent groups.

Descriptive statistics for the investigated factorials are summarized

in Table 1. A graphical overview of the crossing matrices and the
Frontiers in Plant Science 03
realized hybrid combinations for the six factorials is given in Figures

S1, S2.

The phenotypic and genotypic data of rapeseed factorials Ra1 -

Ra3 was provided by Norddeutsche Pflanzenzucht Hans-Georg

Lembke KG. Factorial Ra1 consisted of 746 realized hybrids

derived from two parent groups with 381 and 14 inbred lines.

Factorial Ra2 consisted of 1621 realized hybrids derived from two

parent groups with 756 and 24 inbred lines. Factorial Ra3 consisted

of 1081 realized hybrids derived from two parent groups with 516

and 29 inbred lines. Phenotypic yield data was provided as adjusted

entry means for each hybrid.

The phenotypic and genotypic data of wheat factorial Wh1 was

published in Zhao et al. (2015) and Gowda et al. (2014). Factorial

Wh1 consisted of 1604 realized hybrids derived from two parent

groups with 120 and 15 inbred lines. Phenotypic yield data was

provided as adjusted entry means for the hybrids in 11

environments. We calculated adjusted entry means for hybrid

yield over environments with the mixed linear model yij = m + gi +

ej + ϵij, where m is the population mean, gi is the fixed effect of the i

-th hybrid genotype, ej the random effect of the j-th environment,

and ϵij is the residual error. We did not include a genotype-by-

environment interaction term, as the published data consisted of

environment-specific adjusted entry means of the hybrids, which

already included the replications within environments. We used the

R packages ‘lme4 1.1-31’ (Bates et al., 2015) and ‘emmeans

1.7.3’(Lenth, 2021) for fitting the model and calculating the

adjusted entry means.

The phenotypic and genotypic data of corn factorial Co1 was

published in Technow et al. (2014) and accessed through the R

package ‘sommer 4.2.0’(Covarrubias-Pazaran, 2016). Factorial Co1

consisted of 1254 hybrids derived from two parent groups with 123

and 86 inbred lines. Phenotypic yield data was provided as adjusted

entry means for each hybrid.

The phenotypic and genotypic data of corn factorial Co2 was

published in Schrag et al. (2018). Factorial Co2 consisted of 550

hybrids derived from two parent groups with 50 and 41 inbred lines.

Phenotypic yield data was provided as adjusted entry means for

each hybrid.
2.3 Pre-processing of genotypic
marker data

Genotypic marker data was only available for factorials Ra1,

Wh1, Co1 and Co2. For all four factorials, genotypic data consisted

of single nucleotide polymorphisms (SNPs). The original marker

data consisted of 52157 (Ra1), 1280 (Wh1), 35478 (Co1), and 37392

(Co2) SNP markers, respectively. Markers were removed from a

data set if expected heterozygosity was below 10%, or if more than

1% of entries were missing. The remaining missing data was

imputed using the mean of the respective marker. ‘SelectionTools

21.3’ was used for filtering and ‘sommer 4.2.0’ for imputing the data.

For all data sets, it was checked that genetic markers evenly covered

the whole genome. After pre-processing, 10880 (Ra1), 1264 (Wh1),

26069 (Co1) and 33666 (Co2) SNP markers remained for

further analysis.
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http://population-genetics.uni-giessen.de/software/
http://population-genetics.uni-giessen.de/software/
https://github.com/PGHeilmann/Minimalist-ML-frontiers
https://github.com/PGHeilmann/Minimalist-ML-frontiers
https://doi.org/10.3389/fpls.2023.1178902
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Heilmann et al. 10.3389/fpls.2023.1178902
2.4 Linear model for GCA and SCA effects

The GCA of the parents GCA1i and GCA2j, and the SCA of the

hybrids SCAij were predicted by BLUP with the mixed linear model

yij = m + GCA1i + GCA2j + SCAij

where yij is the (adjusted) treatment mean of the hybrid of the i-th

parent from parent group 1 and the j -th parent from parent group 2, m
is the population mean, GCA1i is the random GCA effect from the i-th

parent from parent group 1, GCA2i is the randomGCA effect from the

j-th parent from parent group 2, SCAij is the SCA effect. We also used

this model for estimating the GCA and SCA variances. We used the R

package ‘lme4 1.1-31’ (Bates et al., 2015) for fitting the model and

predicting the GCA and SCA as well was the corresponding

variance components.

To evaluate the relevance of GCA and SCA for hybrid yield in

the single factorials, we calculated the sum GCA1i + GCA2j for each

realized hybrid, the Pearson correlations r(GCA1i + GCA2j,

Hybrid yield) and r(SCAij, Hybrid yield) for al l rea l ized

hybrids, and the proportion of the contribution of the SCA
Frontiers in Plant Science 04
variance to the total genetic variance in the factorial t = s2
SCA=(

s2
GCA1

+ s 2
GCA2

+ s 2
SCA) (Table 1).
2.5 Mixed model for GBLUP

Using the adjusted entry means for the hybrids from field trial

analysis as phenotypic inputs y, we fitted a GBLUP model including

GCA and SCA effects (Technow et al., 2014):

y = 1b0 + Z1g1 + Z2g2 + ZSs + e

where b0 is a fixed intercept, Z1 and Z2 are the incidence

matrices for the parents from parent groups 1 and 2, ZS is the

incidence matrix for the hybrids, g1 and g2 are vectors of random

GCA effects from the parental lines from group 1 and 2, s is the

vector of the random SCA effects for the hybrids, end e is the vector

of residual errors. The genomic relationship matrices G1 and G2 for

g1 and g2 were calculated as G1 = W1 W
0
1 = c and G2 = W2 W

0
2 = c,

where wuv = xuv + 1 − 2pv and c = 2o
v
pv(1 − pv), where u is the

index of the parent, v is the index of the marker, xuv the coding
TABLE 1 Descriptive statistics, variance components and proportion of SCA variance of the total variance t for the six experimental data sets.

data set Ra1 Ra2 Ra3 Wh1 Co1 Co2

No. of parents in group 1 381 756 516 120 123 50

No. of parents in group 2 14 24 29 15 86 41

Ratio group 1/group 2 27.2 31.5 17.8 8.0 1.4 1.2

No. of possible hybrids 5334 18144 14964 1800 10578 2050

No. of realized hybrids 746 1621 1081 1604 1254 550

Fraction of realized hybrids 14.0% 8.9% 7.2% 89.1% 11.9% 26.8%

Group 1: no. of crosses per parent

Mean 2.0 2.1 2.1 13.4 10.2 11.0

Median 2.0 2.0 2.0 14.0 7.0 11.0

Range 1-6 2-5 1-6 3-15 2-55 3-26

Group 2: no. of crosses per parent

Mean 53.3 67.5 37.3 106.9 14.6 13.4

Median 34.5 22.5 6.0 107.0 13.0 13.0

Range 2-140 2-247 1-222 91-117 1-99 2-42

Heterotic pools No No No No Yes Yes

r(GCA1i + GCA2j , Hybrid yield) 0.67 0.82 0.92 0.76 0.91 0.94

r(SCAij , Hybrid yield) 0.93 0.88 0.69 0.70 0.49 0.40

Variance components

 s2
GCA1

0.516 5.50 12.95 0.048 43.21 73.05

 s2
GCA2

0.774 3.32 2.20 0.024 20.25 24.39

 s2
SCA 2.663 9.35 5.90 0.051 17.47 15.78

t = s 2
SCA=(s

2
GCA1 + s 2

GCA2 + s 2
SCA) 0.67 0.51 0.28 0.44 0.22 0.14
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number of the genotype of parent u at marker locus v, i.e. -1 or 1,

and pv the allele frequency of the 1 allele in the respective parent

group (Endelman and Jannink, 2012). The genomic relationship

matrix S for s was calculated as the Kronecker product G1 ⊗G2 in

accordance to Stuber and Cockerham (1966). We used the R

package ‘sommer 4.2.0 ’ 2 (Covarrubias-Pazaran, 2016;

Covarrubias-Pazaran, 2018) for fitting the GBLUP model and

predicting hybrid yields.
2.6 ML algorithms

2.6.1 Input variables
For the ML algorithms, we investigated three different

scenarios: prediction of hybrid yield without genotypic

information, prediction of hybrid yield with genotypic marker

data, and a combined set of variables. For prediction without

genotypic information, we investigated two different sets of input

variables. The parentage-based set of input variables consisted of

the nominal parent factor levels, i.e. names or barcodes of the parent

lines. For each hybrid, the only available information were the

names of its parents. Thus, the original set of input variables

consisted of only two variables, which for some algorithms were

converted to binary variables via one-hot encoding.

For the second set of input variables, we again determined the

two parents of each hybrid. The input variables consisted of the

hybrid yields of each parent from the available crosses with all

parents from the opposite parent group. Thus, this set of continuous

input variables consisted of as many variables as the sum of the

number of parents in the two parent groups. The hybrid yield in the

response variable in a specific row of the data set was always deleted

from the input variables in this row.

For prediction with genotypic marker data, we used the

incidence matrix of the virtual hybrid genotypes for the pre-

processed marker data coded with -1, 0, and 1 for homozygous

for the first allele, heterozygous, and homozygous for the second

allele as input variables.

For the combined set of variables, we merged the parentage-

based set of input variables with the genotypic marker data and used

all available information as input variables for the models.

2.6.2 Investigated ML algorithms for different
sets of input variables

The algorithms MF, SVM, GB, RF, ANN, and GB-SE were

investigated with the parentage and the hybrid yields input variable

sets. The algorithms XGB, XGB-SE, RKHS and SVM were

investigated with genotypic marker data as input variables.

2.6.3 Hyperparameters
A comprehensive overview over all the hyperparameter values

considered for each ML algorithm is given in Table S1.

For GB, we tuned the number of decision trees (n_trees), the

maximum depth of the trees (max_depth), the minimum number of

observations per split (min_rows), the sample rate of observations

per tree (sample_rate), and the number of bins for categorical
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variables (nbins_cats). We manually set the learning rate

(learn_rate) to a constant value of 0.1 and used the default

settings for all other hyperparameters.

For XGB, we essentially tuned the same hyperparameters as for

GB, but used a fixed number of trees and tuned the learning rate.

When XGB was only used with genotypic marker data, the

hyperparameter nbins cats was removed. In this case the pruning

parameter g (gamma) was added instead. To handle the high

dimensionality of the markers, random column sampling per tree

(col sample rate by tree) was introduced.

Early stopping was used to reduce the computational

time required.

For RF, we considered the same hyperparameters as for GB,

with the exception that a learning rate does not exist for RF.

For ANN, we used the classical multilayer perceptron

architecture for ANN (Goodfellow et al., 2016). We tuned the

number of hidden layers and nodes within the hidden layers

(hidden), the learning rate (rate), the number of iterations

(epochs) and added input dropout (input_dropout) to some

models. We used the rectified linear unit activation function for

all models. The categorical variables of the parentage variable set

were by default converted to binary variables by one-hot encoding.

For the GB-SE, we used ridge regression as the super learner

and a certain optimal number of GB models selected by the grid

search procedure and criteria described below as inputs.

The algorithms GB, XGB, RF, ANN and GB-SE were

implemented using ‘h2o 3.38.0.1’ for R (LeDell et al., 2020; Chen

et al., 2022).

For SVM, we tuned the hyperparameters ϵ (epsilon) and C (C).

We considered three different kernels: linear, polynomial and radial.

For the polynomial kernel, the degree of the polynomial was tuned.

SVM was implemented using the R package ‘kernlab 0.9-31’

(Karatzoglou et al., 2004) with packages ‘mlr 2.19.0’ (Bischl et al.,

2016) and ‘parallelMap 1.5.1’ (Bischl et al., 2020) for tuning

and parallelization.

For RKHS, we used three gaussian kernels with bandwidth

parameters 0.1, 0.5 and 2.5, respectively. We used the default

function settings for all other parameters. RKHS was calculated

using the package ‘BGLR 1.1.0’ [54]. RKHS did not require

hyperparameter tuning.

For MF, we tuned the number of latent variables (dim), and

used l1 regularization for some models during training, (costq_l1,

costp_l1). The learning rate (lrate) was manually set to a constant

value of 0.05 and the number of iterations (niters) to 500.

Categorical variables were encoded as numbers before being

passed to the algorithm. MF was implemented using the package

‘recosystem 0.5’ (Qiu et al., 2021).
2.7 Random grid search

In order to determine the optimal set of hyperparameters for a

given data set and ML algorithm, we performed a random grid

search over a large hyperparameter space (Table S1) for every ML

algorithm except RKHS, which did not require tuning. As a
frontiersin.org
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stopping criterion, we set a maximum number of 50 models. Thus,

for each ML algorithm that required tuning, 50 models were

trained, each with a randomly chosen set of hyperparameters

from the hyperparameter space. The performance of these 50

models within the gridsearch was evaluated with a 10-fold cross

validation for the respective training set. We used the mean squared

error (MSE) to evaluate the 50 hyperparameter combinations, since

this metric was available for all algorithm implementations we used.

The hyperparameter combination with the lowest MSE was

considered optimal and used to predict the hybrid yields of the

test set.

We used the 50 models created in the random grid search for

GB to build the GB-SE. To choose the optimal number of models to

include in the GB-SE, we used an iterative process where the best

5, 10,…, 50 models were included in the GB-SE, and thenevaluated

with the Pearson correlation r(yij, ŷ ij) between the observed and

predicted yield in a 10-fold cross validation. The optimum number

of models to include in the final GB-SE was chosen according to the

highest value of r(yij, ŷ ij).
2.8 Cross validation, pre-processing of
training sets and test sets, and prediction
of test set hybrids

All investigated prediction models and ML algorithms were

tested in a cross validation procedure in order to evaluate the

generalizability and stability of the predictions, and to evaluate the

consistency of the applied grid search procedure for model

selection. For cross validation, the respective factorial was

randomly split into a training set consisting of 90% of the

available hybrids, and a test set consisting of the remaining 10%

of hybrids. This random split was repeated 100 times for each

factorial. We removed all hybrids from the test set for which only

one or none of the parents were represented in the training set as

GCA estimation requires both parents to be available in the training

set. If hybrid yields were used as input variables, all hybrid yields

from the test set hybrids were removed from the training set.

After pre-processing, each of the investigated prediction models

and ML algorithms was trained on the 100 training sets. The

resulting models were used to predict the hybrid yields of the test

set hybrids. For GCA prediction, the yield of the test set hybrids was

predicted as ŷ ij = m + GCA1i + GCA2j . For GBLUP and the ML

algorithms, the yield of the test set hybrids ŷ ij was predicted with

the respective prediction routines implemented in the R packages.
2.9 Evaluation criteria for model
performance and comparisons
across algorithms

To evaluate and compare model performance across prediction

models and ML algorithms, we calculated the Pearson correlation

r(yij, ŷ ij) between the observed and predicted yield of the test set

hybrids. This correlation is referred to as “prediction accuracy”. For

each method and factorial, we also compared the 20 best predicted
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hybrids to the 20 best observed hybrids and determined the

percentage of overlap, since accurate identification of the best

hybrids is more relevant to breeders than accurate predictions of

low performing hybrids.
3 Results

3.1 Predictions based on parentage
information and hybrid yields

We investigated two different sets of input variables without

genotypic information: parentage information, and yields of all

other realized crosses of the parents of a specific hybrid. For

algorithms using the parentage information as input variables, we

observed a wide range of median prediction accuracies for the

different crops and factorials (Figure 1, red and grey boxplots). The

lowest overall prediction accuracieswere observed for the factorials

Ra1 and Ra2, the median prediction accuracies ranging between

0.14 and 0.45, and between 0.42 and 0.54, respectively. The

factorials Ra3 and Wh1 resulted in intermediate median

prediction accuracies between 0.68 and 0.75,and 0.69 and 0.72,

respectively. The factorials Co1 and Co2 resulted in the highest

median prediction accuracies, ranging between 0.80 and 0.87, and

0.89 and 0.91, respectively.

GB was the best single ML algorithm for most investigated

factorials with the exception of Ra1 and Co1, where RF and SVM

performed better. MF resulted in the lowest median prediction

accuracies for all factorials except Ra1. None of the investigated

single ML algorithms resulted in higher median prediction

accuracies than classical GCA prediction (Figure 1, red vs. grey

boxplots). The GB-SE increased median prediction accuracies in the

factorials with the overall lowest prediction accuracies Ra1 and Ra2

from 0.39 to 0.45, and from 0.48 to 0.54, respectively. For all other

factorials, the median prediction accuracy of the GB-SE was

equivalent to or only marginally better than GCA prediction.

Algorithms using hybrid yields as input variables increased

computation time in comparison to algorithms based on parentage,

but resulted in slightly lower median prediction accuracies (Figure

S3). The algorithm ANN did not converge for all factorials with this

set of input variables.
3.2 Comparison of GCA prediction,
GB-SE and GBLUP

GBLUP was only investigated for the factorials Ra1, Wh1, Co1

and Co2 with available marker data (Figure 1, blue boxplots).

Median prediction accuracies of GBLUP were equivalent to GCA

prediction and the GB-SE in the factorials Co1 and Co2. In factorial

Wh1, GBLUP slightly improved median prediction accuracy from

0.71 with GCA and 0.72 with the GB-SE to 0.74. In factorial Ra1,

GBLUP increased median prediction accuracy from 0.39 with GCA

to 0.44, and resulted in an equivalent prediction accuracy as the GB-

SE with 0.45. Neither ML algorithms nor GBLUP did reduce the

variation of prediction accuracies across cross validation splits in
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comparison to GCA prediction. Variation was generally low across

cross validation splits for all investigated algorithms in factorials

Wh1,Co1 and Co2, and largest in factorial Ra1 (Figure 1). For data

sets Ra1, Ra2, Ra3, and Co1, GB-SE showed the highest percentage

of overlap between the 20 best predicted and observed hybrids

(Figure S9). For Wh1 and Co2, GBLUP showed the highest

percentage of overlap. However, this percental overlap between

the 20 best predicted and observed hybrids was generally similar for

most algorithms with the exception of SVM and MF, which also

performed poorly overall.
3.3 Effects of structure and composition of
experimental data sets

The experimental data sets varied considerably in size,

unbalancedness of the parent groups, percentage of realized

hybrid combinations and relevance of GCA and SCA for hybrid

yield (Table 1). As general trends, we observed that median

prediction accuracies were high if the factorials relied on a

heterotic pattern (Co1 and Co2), if percentage of realized hybrid

combinations was high, i.e. if the factorial was almost complete

(Wh1), if parent groups were more balanced, and if parentlines

were represented in many hybrid crosses (Wh1, Co1 and Co2,

compare Table 1 with Figure 1). Importantly, GBLUP and the GB-

SE increased prediction accuracy considerably in comparison to

GCA prediction for the factorials with the highest proportion of

SCA variance in the total variance (Ra1 and Ra2). For these

factorials, the correlation of SCA with hybrid yield was higher

than the correlation of GCA with hybrid yield (Table 1), and overall

prediction accuracy was low (Figure 1). For all other factorials, there

was no improvement in comparison to classical GCA prediction.
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3.4 Performance of ML algorithms with
genotypic information

For data set Ra1 with the highest improvement of median

prediction accuracy with ML algorithm GB-SE and GBLUP

(Figure 1), we investigated four additional algorithms specifically

tuned for marker data: XGB, RKHS, SVM and an XGB-SE

(Figure 2), and a combined set of input variables including

marker data and parentage information for the best ML

algorithms, XGB-C and XGB-SE-C. With marker data only, XGB

and the XGB-SE resulted in the highest prediction accuracies of 0.44

and 0.45, but did not improve prediction accuracy compared to the

GB-SE based on parentage information and GBLUP. For the

algorithms based on a combination of marker data and parentage

information, XGB-C and XGB-SE-C, prediction accuracy was

increased slightly to 0.46. The ensemble did not show any

improvement over the single algorithm anymore. In spite of the

marginal increase in prediction accuracy, the ML methods based on

marker data or the combination of marker data and parentage

information did not result in a higher percental overlap of the

predicted and observed 20 best hybrids (Figure S9).
3.5 Tuning and importance of different
hyperparameters for ML algorithms

The random grid search approach we used for model tuning

yielded overall consistent results for the same data set across cross

validation splits, as reflected in the heatmap in Figure 3 and Table

S3. For most factorials, the same modelswere identified as the best

and worst model in the majority of the cross validation splits.

Where several models were identified as best, they were often
FIGURE 1

Boxplots of observed prediction accuracies in 100 cross validation splits for six different data sets (Ra1, Ra2, Ra3, Wh1, Co1, Co2) using eight different
algorithms (GCA, GBLUP, MF, SVM, GB, RF, ANN, GB-SE). Median prediction accuracy is displayed above each boxplot. Median prediction accuracy
of the baseline algorithms are represented by a dotted red (GCA) and blue (GBLUP) line. n.a., not available.
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similar for the most important hyperparameters. As a stopping

criterion for random grid search, we set a maximum number of 50

models, which in the case of GB also formed the basis for building

the GB-SE. With the exception of factorials Co1 and Co2, which in

most cases used less than 25 models, the GB-SE was for most

factorials and cross validation splits build from 30 or more models

(Figure S10). The factorials Ra2 and Ra3 even required 40-50

models in the majority of cross validation splits.

For evaluating the importance of different hyperparameters, we

calculated correlations between hyperparameter levels and MSE

(Table 2) and created ridge line plots for each hyperparameter level

and the scaledMSE (Figures S4-S8).We also compared the best models
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for the different data sets from the random grid search approach (Table

S2). For conciseness, we only looked at the hyperparameters for the

most successful single ML algorithm GB, which also formed the basis

for building the GB-SE. The hyperparameters with the greatest effect on

the MSE were the number of bins for partitioning the data before

determining the tree’s best split point, and the maximum depth of the

decision trees. As general trends, we observed that choosing an

intermediate number of bins, ranging between 25-50% of the

number of parents in the data set, resulted in the lowest MSE (Table

S2). With respect to the maximum depth of the decision trees, we

observed that the factorials Ra1-3 required deeper trees than the

factorials Wh1, Co1 and Co2.
FIGURE 3

Selection of 50 models used in 100 cross validation splits for each data set using GB. Each model is corresponding to a unique random hyperparameter
combination. Heatmap with green and red indicating how often a model was found to be the best or worst model over all iterations.
FIGURE 2

Comparison of observed prediction accuracies in 100 cross validation splits of marker-based ML algorithms for data set Ra1. Median prediction
accuracy displayed above each boxplot. ’C’ indicating models were trained on the combined variable set.
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4 Discussion

The present study is a case study exploring the potential of ML

algorithms for prediction of hybrid yield in small unbalanced factorials.

In accordance with the “No Free Lunch” theorem, implying that there

is no single optimal algorithm for all problems and data sets, we tested a

variety of single ML algorithms (MF, SVM, RF, GB, ANN, XGB,

RKHS), as well as stacked ensembles of gradient boosting machines

(GB-SE and XGB-SE) with optimized hyperparameters in comparison

to the well-established approaches GCA prediction and GBLUP. The

experimental data sets consisted of six unbalanced factorials from four

different self-pollinating and outcrossing crops, and varied considerably

in structure and size (Table 1, Figures S1 and S2). The parent groups

were highly unbalanced with respect to the number of parent lines in

the groups for some of the factorials, while the parent groups were

almost balanced in size for other factorials, the ratios of group sizes

ranging between 1.2-31.5. Moreover, the factorials were also

unbalanced with respect to the number of crosses per parent line,

which could range between 1 and 247 crosses per line. Some factorials

such as Ra2 and Ra3 were very sparse, the percentage of realized hybrid

combinations of all possible combinations being lower than 10%, while

the factorial Wh1 was almost complete with almost 90% of realized

hybrid combinations. The corn factorials Co1 and Co2 were created

from the heterotic patterns of Flint and Dent (Technow et al., 2014;

Schrag et al., 2018), while no heterotic pools were available for the

wheat factorialWh1 (Zhao et al., 2015) and the rapeseed factorials Ra1-

3 (NPZ Innovation GmbH, personal communication). This is also

reflected by the high contribution of SCA variance to total variance,

and in the correlations of SCA and GCA with hybrid yield. As

expected, we observed a higher relevance of SCA variance, and

higher correlations of SCA with hybrid yield in the factorials for

which no heterotic pools were available. Our initial research hypothesis

was that ML algorithms might improve prediction accuracy in sparse,

highly unbalanced factorials with a high relevance of SCA in

comparison to GCA prediction based on a mixed linear model, and

might even outperform GBLUP if genetic marker data is available.
4.1 Performance of ML algorithms based
on parentage information and hybrid yields

We investigated three different scenarios, prediction without

genotypic information, genomic prediction based on genotypic

markers and a combination of both. In the first scenario, the only
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available information for predicting hybrid yields were the names of

the hybrid parents, which we refer to as parentage information, and

the hybrid yields from crosses with other parent lines from the

factorial. For ANN, the parentage information was converted to

binary variables indicating if a parent was used in a cross via one-

hot encoding, all other algorithms used actual categorical variables

with high cardinality. Using hybrid yields from crosses with other

parent lines as predictors resulted in as many predictor variables as

there were parent lines in the factorial, each variable being labeled

with the name of a parent line and containing the information what

yield was observed for the respective hybrid parents in a cross with

this parent. Due to the unbalancedness and sparsity of the

investigated factorials with respect to realized hybrid

combinations, this led to predictor variables with a high

percentage of missing values for rarely used parent lines, and

numerous constant or almost constant variables for parent lines

which were frequently used in crosses. Overall, the percentage of

missing values in the predictor variables was way over 75% for most

factorials in the cross validation splits, where all information from

the validation set had to be removed from the training sets. As a

consequence, some algorithms such as ANN did not converge for

some of the factorials with this set of predictors, even if constant

variables were dropped (Figure S3). For algorithms that converged,

the use of hybrid yields as predictors considerably increased

computation time, but never outperformed algorithms using

parentage information only (Figure S3). We therefore focused our

analysis on comparing ML algorithms based on parentage

information to GCA prediction and GBLUP.

ML studies predicting yield without genotypic information have

so far mostly focused on yield prediction for specific environments,

using yield, parental and environmental information as well as

management data as predictors. Shahhosseini et al. (2021) used GB,

XGB and different ensembles for predicting corn yield of larger

areas in the US corn belt with promising results. Khaki and Wang

(2019) successfully designed a complex neural network for yield

prediction in specific environments based on existing yield,

environment and management data. The only other study using

only parental information together with location and genetic

clusters of the parents as input information to predict hybrid

yield is the study of Khaki et al. (2020). However, this study was

conducted using an exceptionally large data set of 294,128 hybrids

provided by a large breeding company and a highly complex neural

network approach. Babaie Sarijaloo et al. (2021) used the same

dataset to compare different decision tree-based algorithms and
TABLE 2 Correlations between numerical hyperparameter levels and MSE of the models in the grid search.

Experiment nbins_cats max_depth ntrees sample_rate min_rows

Ra1 0.62 -0.01 0.41 0.00 -0.08

Ra2 0.70 0.01 0.39 0.03 -0.09

Ra3 -0.33 0.00 0.21 -0.25 -0.11

Wh1 -0.38 0.06 0.07 -0.25 -0.34

Co1 -0.09 -0.03 0.19 -0.16 0.00

Co2 -0.22 -0.11 0.24 0.00 -0.18
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neural networks and found XGB to be the best, due to its

regularization and handling of sparse data. This effect may be

weaker in our study since data of Babaie Sarijaloo et al. (2021)

was even sparser than ours, with only 4% of all possible

combinations available. No other study has to our knowledge

investigated the use of ML algorithms with parentage information

in small unbalanced factorials.
4.2 Performance of ML algorithms based
on parentage in comparison to GCA
prediction and GBLUP

GB was the best single ML algorithm for all data sets except Ra1

(best algorithm RF) and Co1 (best algorithm SVM, Figure 1). While

ANN excel at complex tasks such as processing images, text or

speech, tree-based methods such as GB, XGB and RF often perform

better in tasks with structured, tabular data (Shwartz-Ziv and

Armon, 2022) and thus might be especially suitable for predicting

unbalanced factorials with potentially extreme under-/

overrepresentation of some parent lines. Additionally, due to the

slow and stepwise fitting process, GB has a low tendency to overfit

the data (James et al., 2013). In factorials with a high relevance of

SCA for yield, the superior performance of GB might be due to the

fact that every new tree in a GBmachine will fit to the residual of the

previous trees, thus potentially improving the accuracy of the SCA

component of prediction in comparison to linear model

approaches. However, in the present study none of the single ML

algorithms MF, SVM, RF, GB, ANN could outperform classical

GCA prediction based on a mixed linear model to a meaningful

extent (Figure 1), irrespective of the investigated data set.

The GB-SE was the only ML algorithm which performed better

than GCA prediction in the factorials with the overall lowest

prediction accuracies Ra1 and Ra2, increasing median prediction

accuracy from 0.39 to 0.45, and from 0.48 to 0.54, respectively

(Figure 1). For all other data sets, the performance of the GB-SE was

equal to or only marginally better than GCA prediction. GBLUP

was only investigated for the four data sets with available genotypic

information (Figure 1). GBLUP resulted in median prediction

accuracies equivalent to GCA prediction and the GB-SE in data

sets Co1 and Co2. In data sets Ra1 and Wh1, GBLUP increased

median prediction accuracy from 0.39 to 0.44 and from 0.71 to 0.74

in comparison to GCA prediction, and resulted in approximately

equivalent prediction accuracies as the GB-SE. When considering

the best 20 hybrids only, GB-SE resulted in the highest percental

overlap between the predicted and observed 20 hybrids for

factorials Ra1, Ra2, Ra3 and Co1, and GBLUP resulted in the

highest overlap for factorials Wh1 and Co2 (Figure S9). Thus, GB-

SE and GBLUP had the highest ability to predict the top 20 hybrids

correctly, but the differences between both methods were small in

all investigated data sets. Neither ML algorithms nor GBLUP did

reduce the variation of prediction accuracies across cross validation

splits in comparison to GCA prediction. Variation was generally

low across cross validation splits for all investigated prediction

models in factorial Wh1, which was an almost complete factorial,

and in factorials Co1 and Co2 with a more balanced representation
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of parent groups and single parent lines (Table 1). Both factors most

likely resulted in less extreme random splits for cross validation, in

which many parent lines from the validation set were under-

represented in the training set. From these findings, we conclude

that the applicability of single ML algorithms in small unbalanced

factorials is limited. GB-SEs might be a viable alternative where

GCA prediction and GBLUP result in low prediction accuracies, or

where no genotypic data is available, but the performance

apparently depends on the structure and composition of the

investigated factorials.
4.3 Effects of structure and composition of
experimental data sets

While it is difficult to draw generally valid conclusions from a

limited number of very diverse experimental data sets, we observed

some trends: For the two corn factorials Co1 and Co2, all algorithms

yielded high prediction accuracies ranging between 0.80 and 0.91

(Figure 1). Neither the ML algorithms nor GBLUP outperformed

GCA prediction. In contrast to rapeseed and wheat, hybrid breeding

with selection for GCA in corn has been established for decades,

resulting in the two genetically diverse Flint and Dent pools. If heterotic

pools exist, hybrid performance of heterotic traits is to a large extent

explained by GCA effects, which can be accurately estimated from

crosses with few testers from the opposite pool. This is also reflected in

the high correlations of GCAwith hybrid yield of 0.91 and 0.94 that we

observed for these data sets (Table 1). The wheat data set Wh1 is a

published data set from a study with the objective of establishing a new

heterotic pattern (Zhao et al., 2015). Even though the two parent

groups consequently form no heterotic pools, prediction accuracy with

GCA effects was high with 0.71 (Figure 1). GBLUP and the GB-SE

yielded slightly higher and comparable prediction accuracies with 0.74

and 0.72, respectively (Figure 1). In comparison to the other data sets,

Wh1 is the smallest and most complete factorial with a percentage of

realized hybrid combinations of 89.1% of all possible combinations

(Table 1), which were evaluated in 11 environments (Zhao et al., 2015).

The correlation of GCA with grain yield was comparatively high with

0.76, and higher than the correlation of SCA with grain yield (Table 1).

We conclude that in crops with established heterotic pools such as

corn, or in almost complete factorials with highly accurate phenotypic

data, the potential of ML algorithms and even GBLUP for increasing

prediction accuracy is limited, and hybrid yield can be efficiently

predicted with GCA effects.

In the rapeseed data sets Ra1-Ra3, the overall levels of prediction

accuracy as well as the potential for improvement with more complex

algorithms varied considerably (Figure 1). In data sets Ra1 and Ra2,

even though overall prediction accuracy was low, the GB-SE increased

prediction accuracy by 14.5% from 0.39 to 0.45, and by 12.9% from

0.48 to 0.54 in comparison to GCA. GBLUP could, due to the

unavailability of genotypic data, only be investigated in Ra1, and

resulted in a prediction accuracy of 0.44 that was almost equivalent

to the value of the GB-SE. In contrast to the results of Ra1 and Ra2,

prediction accuracies in factorial Ra3 were comparatively high with

values of 0.74 for GCA and 0.75 for the GB-SE. The three rapeseed

factorials were to our knowledge not based on a heterotic pattern of the
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parent groups, but were pre-selected by the breeding company with the

purpose to maximize hybrid yield (NPZ Innovation GmbH, personal

communication). It is possible that parent groups for Ra3 were

genetically more homogeneous within and more diverse between

parent groups as was the case for Ra1 and Ra2. Factorials Ra1 and

Ra2 are more sparse than Wh1 and Co2, with a percentage of realized

hybrid combinations of 14.0% and 480 8.9% (Table 1), which might in

part explain the overall low prediction accuracies. However, data set

Ra3 is the sparsest of the investigated factorials, with a percentage of

realized hybrid combinations of only 7.2%, and still resulted in

prediction accuracies almost as high as the most complete factorial

Wh1 (Figure 1). Moreover, Co1 with 11.9% of realized hybrid

combinations is almost as sparse as Ra1 and Ra2 and still produced

accurate GCA-based predictions and high prediction accuracies with

the investigated ML algorithms.
4.4 Ratio of SCA to GCA effects

The major factors determining the overall level of prediction

accuracy in the investigated factorials was t describing the

contribution of SCA variance to total variance, and the strength of

the correlation of the SCA with hybrid yield. In the factorials Ra1 and

Ra2 with overall low prediction accuracy, we observed very high

correlations of hybrid yield with SCA of 0.93 and 0.88, while

correlations of hybrid yield with GCA effects were lower in these

data sets (Table 1). Conversely, in factorials with overall intermediate to

high prediction accuracies in Figure 1, relevance of SCA variance and

correlations of hybrid yield with SCA were always lower than

correlations with GCA. This was most pronounced in the corn

factorials Co1 and Co2 relying on the heterotic pattern of Flint and

Dent. It also explains the high prediction accuracy observed in factorial

Ra3 in comparison to factorials Ra1 and Ra2. In factorial Ra3, the

correlation of hybrid yield with SCA amounted only to 0.69, while the

correlation with GCA amounted to 0.92. The percentage of SCA

variance in the total variance was low with 28% in factorial Ra3, and

similar to the shares of 22% and 14% observed in factorials Co1 and

Co2. In factorials Ra1 and Ra2, these proportions amounted to the

highest with 67% and 51%of the total variance, respectively. The

factorial Ra3 is exceptional, as in the absence of genetically diverse

heterotic pools, hybrid performance is typically explained to a major

extent by SCA. As the GB-SE was the best algorithm in factorials Ra1

andRa2 with high ratios of SCA variance to GCA variance, leading to

considerable increases in prediction accuracy compared to GCA and

equivalent values as GBLUP (Figure 1), we conclude that a potential

field of application of ML algorithms in hybrid breeding programs is

hybrid prediction in sparse unbalanced factorials with a high relevance

of SCA effects.
4.5 Performance of ML algorithms with
genotypic information

A major limitation of classical GCA prediction and the GB-SE

based on parentage information compared to marker-based

approaches is that hybrids for which only one or none of the
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parents have been tested before cannot be predicted. On the other

hand, prediction accuracies are generally low for these so called

type-1 and type-0 hybrids even with markers or more complex

omics data (Zenke-Philippi et al., 2016, 511 Zenke-Philippi et al.,

2017; Zhao et al., 2021). The potential to predict type-0 hybrids with

marker-based ML in sufficiently large data sets remains to

be investigated.

GBLUP did not increase prediction accuracy in comparison to

classical GCA prediction based on phenotypic data and a mixed

linear model in factorials Co1 and Co2 (Figure 1). In contrast, in

factorials Ra1 and Wh1 GBLUP increased prediction accuracy from

0.39 to 0.44, and from 0.71 to 0.74 in comparison to GCA

prediction. In all four factorials with available marker data,

GBLUP resulted in comparable prediction accuracies as the GB-

SE (Figure 1). From this, we conclude that a state-of-the-art GBLUP

model is a perfectly suitable and efficient tool for predicting yield

performance in sparse factorials with a high relevance of SCA. The

GB-SE is a viable alternative to GBLUP, and can save the costs for

genotyping the parent lines.

We expected that using marker data or a combination of marker

data and parentage information with ML algorithms might further

increase prediction accuracy in factorial Ra1, as genetic markers

should contain much more detailed information on similarities

between parent lines than parentage information alone, and might

pick up non-additive effects and relationships between parent lines

that are beyond the scope of the GBLUP model. ML algorithms

should in theory be able to exploit also non-linear relationships and

interactions between markers. We investigated four additional

algorithms specifically tuned for marker data: XGB, RKHS, SVM

and an XGB-SE (Figure 2). XGB and the XGB-SE resulted in the

highest prediction accuracies of0.44 and 0.45, underlining again the

superiority of GB machines for hybrid prediction in sparse

unbalanced factorials.

Xu et al. (2021) have shown that combining phenotypic data of

the parent lines with omics data improves the prediction accuracy.

Similarly, other studies have combined genomic and pedigree

information to outperform GBLUP (Sood et al., 2020). We

therefore also considered a combined set of input variables

including both marker data and parentage information for Ra1

and the best ML algorithms, XGB and XGB-SE. The prediction

accuracies of the algorithms XGB-C and XGB-SE improved only

slightly to 0.46 for both the single model and the ensemble

(Figure 2). We therefore assume that with the investigated

factorials, the ML algorithms mainly exploit the same

information, i.e. the genetic similarity of the parents, and little

additional information is gained when combining parentage

information with marker data.

Other recent studies have observed that ML algorithms

sometimes outperform the classical methods of genomic prediction

based onmixed-model equations, but with an overall high variance in

prediction accuracy across different traits and data sets (Azodi et al.,

2019; Montesinos-López et al., 2019). Among the many ML

algorithms available, those based on decision trees show promising

results in many scenarios. Banerjee et al. (2020) found that tree-based

algorithms such as RF, GB and XGB outperform classical genomic

prediction algorithms. Westhues et al. (2021) used GB and XGB to
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improve yield prediction accuracy for genotypes across locations and

years. Abdollahi-Arpanahi et al. (2020) also found that GB performs

well when non-additive effects are important. Liang et al. (2021)

achieved higher accuracies for three different animal data sets

combining three different algorithms into an SE. Azodi et al. (2019)

benchmarked several different algorithms on six different data sets

with several traits each and also found that algorithm performance

varied between data sets but an ensemble of different algorithms

performed consistently equal or better than classical linear

approaches. Yan et al. (2021) advocate the use of LightGBM, which

is a more efficient type of GB due to building trees leave-wise instead

of depth-wise. In their study, LightGBM also outperformed ridge

regression BLUP for soybean and rice data. These results are in

accordance with our finding that GB-SEs are more successful than

single ML algorithms. However, in our study the use of XGB and an

XGB-SE with genetic markers considerably increased computation

time, but did not improve prediction accuracy compared to the GB-

SE with parentage information (compare Figure 2 with Figure 1). It is

possible that the factorials were too small for effective pattern

recognition in marker data, as the number of predictors was far

higher than the number of hybrids. In factorial Ra1, 10880 markers

were available after pre-processing for only 756 hybrids. In the case of

comparatively small sparse factorials the positive effects of more

detailed genetic information could be counter-balanced by

increased dimensionality and noise, resulting in overfitting and

spurious associations.
4.6 Hyperparameter optimization with
random grid search

Selecting the best possible set of hyperparameters is crucial for

maximizing prediction accuracy for a given data set. We used

random grid search to test different hyperparameter combinations

over a large hyperparameter space. In contrast to cartesian grid

search, which tests all possible combinations of different values for

each hyperparameter, the random grid search samples uniformly

from the set of all possible hyperparameter combinations and stops

when a user-specified criterion, e.g. a fixed number of models, is

met. In most cases, random grid search performs as well as cartesian

grid search while considerably reducing the computation time

(Bergstra and Bengio, 2012). The frequency of how often a model

was chosen as best or worst in a grid search for GB with parentage

information is shown in Figure 3. For most of the investigated

factorials, the best and worst grid search models accumulated on

one or very few models. When considering the information given in

Table S2, we can see that in the case where a few models have equal

share in being the best, these models are similar in their

hyperparameters. For example, the best combinations for factorial

Ra2 all share the same value for the number of bins and an overall

small sample rate. When only one or very few similar

hyperparameter combinations repeatedly performed best in all

cross validation splits of a given factorial, we assumed that these

were very close to a theoretical ‘optimum’ hyperparameter

combination for this scenario. If the selected hyperparameter

combinations of the best models were far away from the
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optimum, we should observe more variation in the selected sets

of hyperparameters across cross validation splits. We therefore

conclude that the random grid search approach is a user-friendly,

efficient and consistent approach for the identification of a suitable

set of hyperparameters for all factorials investigated in the present

study. We expect it to perform well in a wide range of crops

and scenarios.

The fifty tuned GBs from the random grid search also formed

the basis for building the GB-SE. We observed that some GB-SEs

used all 50 models of the grid search (Figure S10). Thus, models that

perform badly on their own might add some value when used

within an ensemble, and a reduction in the number of investigated

models for the random grid search might impair prediction

accuracy. More efficient grid search methods such as hyperband

search (Li et al., 2018b) and Bayesian optimization (Snoek et al.,

2012) exist but have not yet been implemented in the software we

used. Implementations of these might reduce the required

computation time or find even better hyperparameter

combinations. Galli et al. (2022) used an automated model

training process to choose the best of 50 neural networks. This

approach is even easier to apply than random grid search, with the

downside that the hyperparameter space is always predefined and

cannot be modified. Liang et al. (2022) propose a ‘tree-structured

Parzen estimator’ that automatically tunes the hyperparameters.

However, random grid search also performed well in this study.
4.7 Importance of different
hyperparameters for ML algorithms

We focused our investigation on the hyperparameters for GB,

which was the most successful single ML algorithm, and formed the

basis for building the GB-SE. The most important hyperparameters

with the greatest effect on reducing the MSE in GB with parentage

information were the number of bins for partitioning the data

before determining the tree’s best split point, and the depth of trees.

Binning of factor levels for GB is also known as ‘histogram-based

GB’. Table 2 shows that for Ra1and Ra2 the number of bins is

strongly correlated with the error. Setting a value for the number of

bins that is smaller than the number of factor levels will group factor

levels together into the specified number of groups (bins). For

unordered nominal predictor variables as the parentage

information investigated in the present study, these groups are

somewhat arbitrary. Nevertheless, it seems that the number of bins

has a large impact on the generalization error rate (Malohlava and

Candel, 2022). As a tendency, reducing the number of bins for

factors with high cardinality adds randomness to the splits in the

decision trees, which seems to increase the generalizability of the

model, while selecting a higher number of bins increases model fit

to the training data and can lead to overfitting. When taking the

ridge line plots in Figure S4 into account, it seems that the

relationship between the number of bins and the error is not

linear. Too many as well as too few bins both increase the error.

Selecting a medium number of bins had a positive effect on the

prediction accuracy, especially for data sets Ra1 and Ra2 with

overall low prediction accuracy. This is also reflected in Table S2,
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where we listed the hyperparameters for the best models

investigated in the random grid search. As trees for GB always

need to be trained sequentially, model training is slow in

comparison to other models such as RF, for which trees can be

trained in parallel. As a desirable side effect, binning will

considerably speed up model training. We therefore recommend

tuning of the number of bins if many parents, i.e. many factor levels,

have to be included in the model in order to increase efficiency and

performance of GB. It remains to be investigated if ordered binning,

e.g. by clustering genetically similar parents together, can further

increase prediction accuracy.

With respect to the depth of the decision trees, we observed that

the factorials Ra1-3 required deeper trees than the factorials Wh1,

Co1 and Co2 (Table S2). Usually the depth of the trees is related to

the complexity of the task. We observed high accuracies of GCA

effects for factorials Wh1, Co1 and Co2, indicating that hybrid

performance can be accurately represented by the additive parent

GCA effects. Consequently, fewer splits per tree are also needed in

GB. For the rapeseed factorials Ra1 and Ra2 with a high relevance of

SCA for hybrid yield, deeper trees might be able to capture non-

additive SCA effects. We saw little room for reducing the

computation time of the random grid search by a more limited

search space when initially looking for the best model for the

investigated factorials, since hyperparameters from the upper and

the lower end of our search space were considered best in

some cases.
4.8 Implementation of machine learning
algorithms in hybrid breeding programs

The required know-how and computational power is a major

obstacle for the implementation of more complex ML algorithms in

hybrid breeding programs. In particular, feature selection, model

implementation in languages such as Python or Julia, the tuning of

hyperparameters and the composition of ensembles of models are

tasks which may seem daunting for breeders without solid

background in data science. Our study has shown that successful

prediction of hybrid yield does not necessarily rely on very large

datasets and expert-designed models. Here, we present a fairly

automated random grid search approach for building GB-SEs

with the parentage information as a predictor, implemented in a

user-friendly software package with an R interface. The well-

documented Rcode for our procedure is available in the

supplementary material, and can be tested with the publicly

available experimental data sets investigated in our study. Many

breeders are already familiar with analysis of field trials and

genomic selection in R, and can thus easily adapt the code for

their own breeding programs and purposes.

We expect that ML algorithms will only be widely implemented

in practical breeding programs if they offer advantages over well-

established prediction models such as GCA prediction and GBLUP

in real-life data sets from ongoing breeding programs. In the

present study, we observed potential for ML algorithms in

comparatively small, sparse unbalanced factorials with high
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relevance of SCA effects. The GB-based SE with parentage

information increased prediction accuracy considerably in these

specific factorials in comparison to classical GCA prediction, and

resulted in equivalent prediction accuracies in comparison to

GBLUP for all other investigated factorials. Moreover, the

random grid search approach for tuning the basic GBs delivered

consistent sets of hyperparameters across cross-validation splits in

reasonable computation time. In comparison to GBLUP and other

marker-based approaches, the simple use of parents as predictors

can also save the cost of genotyping. We therefore expect that our

suggested procedure is applicable in wide range of crops and

breeding programs, and can be considered as an alternative

to GBLUP.

For the present study, we decided to test the ML algorithms in

crops of major commercial importance, because high-quality

genotypic and phenotypic data was easily accessible, and we were

able to compare long-established hybrid breeding programs with

high relevance of GCA with newly established programs with high

relevance of SCA. However, we do not expect that large hybrid

breeding programs with well-established genomic selection

pipelines represent the main field of application for our method.

A recent review on hybrid breeding from the perspective of

commercial breeders has pointed out that breeding targets shift

and change over time, and that older cultivars and selection

candidates form an important secondary breeding pool that

might contain useful variation for new traits of interest (Steeg

et al., 2022). One potential application of the GB-SE based on

parentage information might be to pre-screen older field trials

without ad-hoc available genotypic data and pre-select interesting

candidates for such novel breeding targets for future testing. The

same paper has also pointed out that on a world-wide level about

6000 plants are currently under cultivation. Only about 50 of those

are currently bred as hybrids, exploiting hybrid vigor and other

advantages for both commercial breeders and consumers. This

suggests great future potential for establishment of hybrid

breeding also in crops of minor commercial importance. New

hybrid breeding programs have been established in crops such as

guava, onion, eggplant, potato, triticale etc. Such newly set-up

hybrid programs are often characterized by a high relevance of

SCA. Many of these minor crops with high relevance for food

diversity are bred in small breeding programs with very low budget,

restricted number of field plots, and very limited staff. Not for all of

these breeding programs high-throughput genotyping is readily

available at the moment. For these breeding programs, the GB-SE

with parentage information could provide a viable short-term

alternative to genomic prediction.
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Suárez, C. M., and Martıń-Vallejo, J. (2018a). Multi-trait, multi-environment deep
learning modeling for genomic-enabled prediction of plant traits. G3: Genes Genomes
Genet. 8, 3829–3840. doi: 10.1534/g3.118.200728
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