
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Valerio Hoyos-Villegas,
McGill University, Canada

REVIEWED BY

Prabina Kumar Meher,
Indian Council of Agricultural Research,
India
Tian Li,
Chinese Academy of Agricultural Sciences,
China

*CORRESPONDENCE

Carola Zenke-Philippi

biometry.popgen@uni-giessen.de

RECEIVED 17 February 2023

ACCEPTED 17 April 2023
PUBLISHED 09 May 2023

CITATION

Difabachew YF, Frisch M, Langstroff AL,
Stahl A, Wittkop B, Snowdon RJ, Koch M,
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Genomic prediction with
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Haplotype blocks might carry additional information compared to single SNPs

and have therefore been suggested for use as independent variables in genomic

prediction. Studies in different species resulted in more accurate predictions than

with single SNPs in some traits but not in others. In addition, it remains unclear

how the blocks should be built to obtain the greatest prediction accuracies. Our

objective was to compare the results of genomic prediction with different types

of haplotype blocks to prediction with single SNPs in 11 traits in winter wheat. We

built haplotype blocks from marker data from 361 winter wheat lines based on

linkage disequilibrium, fixed SNP numbers, fixed lengths in cM and with the R

package HaploBlocker. We used these blocks together with data from single-

year field trials in a cross-validation study for predictions with RR-BLUP, an

alternative method (RMLA) that allows for heterogeneous marker variances, and

GBLUP performed with the software GVCHAP. The greatest prediction

accuracies for resistance scores for B. graminis, P. triticina, and F.

graminearum were obtained with LD-based haplotype blocks while blocks

with fixed marker numbers and fixed lengths in cM resulted in the greatest

prediction accuracies for plant height. Prediction accuracies of haplotype blocks

built with HaploBlocker were greater than those of the other methods for protein

concentration and resistances scores for S. tritici, B. graminis, and P. striiformis.

We hypothesize that the trait-dependence is caused by properties of the

haplotype blocks that have overlapping and contrasting effects on the

prediction accuracy. While they might be able to capture local epistatic effects

and to detect ancestral relationships better than single SNPs, prediction accuracy

might be reduced by unfavorable characteristics of the design matrices in the

models that are due to their multi-allelic nature.
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Highlights
Fron
• Use of haplotype blocks instead of single SNP markers leads

to greater accuracy of genomic prediction of quantitative

and qualitative traits in wheat.
1 Introduction

Haplotype blocks, most often defined as a set of adjacent

markers on a chromosome, were originally proposed as a means

of reducing the number of single-nucelotide polymorphisms (SNPs)

required to infer the genotype of an individual by the use of tag

SNPs (van den Oord and Neale, 2004). This was particularly

important when genotyping costs were still very high. More

recently, “haplotype stacking”, i.e. the combination of favorable

haplotype blocks, has been suggested as a promising way for

breeders to exploit available genetic variation (Voss-Fels et al.,

2019). Moreover, haplotype blocks can identify relationship

structures in breeding material and founder lines (Coffman et al.,

2020). Functional haplotypes use additive and epistatic marker

effects to combine SNPs into haplotype blocks, rather than

combining consecutive SNPs. They were shown to identify more

candidate regions in a genome-wide association study (GWAS)

than single SNPs or other types of haplotype blocks (Liu et al.,

2019). Other studies focused on the use of haplotype blocks in

genomic prediction. Observed increases in prediction accuracy

compared to single SNPs were usually attributed to either local

epistasis which is by default captured by haplotype blocks (Jiang

et al., 2018; Da et al., 2022) or to the fact that the LD between

quantitative trait loci (QTL) and haplotype blocks might be greater

than the LD between QTL and single SNPs (Hess et al., 2017).

Additionally, it was argued combining SNPs into haplotype blocks

can reduce the parameter space in genomic prediction by covering

genome stretches that are in linkage disequilibrium (LD)

(Cuyabano et al., 2014).

Studies on genomic prediction with haplotype blocks have been

conducted for different species, different traits, different types of

haplotype blocks and different estimation methods. Investigations

have been carried out primarily in animal data sets. In six traits in

sheep, prediction accuracies with a GBLUP model which used

haplotype blocks were either greater than or similar to the

prediction accuracies observed with SNPs only (Araujo et al.,

2022). In the three carcass traits liveweight, dressing percentage,

and longissimus dorsi muscle weight in beef cattle, haplotype blocks

based on either LD or 5, 10, or 20 different SNPs were used in

predictions together with either genomic best unbiased prediction

(GBLUP) or Bayesian models. It depended on the combination of

the trait, the type of haplotype blocks, and the prediction model

whether prediction accuracies were greater than, similar to or

smaller than the respective reference with single SNPs only (Li

et al., 2022). In a Duroc population, the prediction accuracies with

GBLUPmodels that incorporated either haplotype blocks with fixed

sizes of 50 to 5000 kilobases per block or haplotype blocks based on
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the location of genes were up to 7.4% greater than with models that

used SNPs only (Bian et al., 2021). In seven traits in humans,

increases in prediction accuracies of 1.86 to 8.12% were shown for

GBLUP with haplotype blocks with either fixed numbers of SNPs or

fixed chromosome distances, or gene-based haplotype blocks (Liang

et al., 2020). In Korean cattle, GBLUP with haplotype blocks built

from either a fixed number of SNPs, a fixed length in base pairs, or

agglomerative hierarchical clustering based on LD showed

increased accuracy compared to SNPs for carcass weight and eye

muscle area, but found small or no increases in accuracy for backfat

thickness (Won et al., 2020). For three traits in three different breeds

of dairy cattle, using haplotype blocks of fixed lengths in kb rather

than SNPs increased prediction accuracy with different Bayesian

methods, with the exception of long (> 500 kb) haplotype blocks.

Moreover, increases could only be observed in some combination of

traits and breeds but not in others (Hess et al., 2017). In a dairy

cattle population, genomic prediction of milk protein, fertility, and

mastitis was carried out with LD-based haplotype blocks and either

GBLUP or a Bayesian mixture model. An average LD threshold of

D’ > 0.45 increased the prediction accuracies for all three traits. For

the other LD thresholds, it depended on the combination of trait

and prediction model whether the prediction accuracies for

haplotype blocks were greater than those for single SNPs

(Cuyabano et al., 2014).

Fewer studies are available for genomic prediction with

haplotype blocks in plants. GBLUP with haplotype blocks of 5,

10, 15, or 20 adjacent SNPs resulted in greater prediction accuracies

than GBLUP with single SNPs for genomic prediction of yield, test

weight, and protein content in a set of wheat lines (Sallam et al.,

2020). The use of LD-based haplotype blocks in genomic prediction

with different Bayesian models led to greater prediction accuracies

compared to single SNPs in Eucalyptus globulus (Ballesta et al.,

2019). In two data sets with rice genotypes and doubled-haploid

maize lines, only a small subset of the traits showed an increase in

prediction accuracy with GBLUP based on haplotype blocks with

fixed lengths of 2 to 10 SNPs compared to GBLUP with SNP

markers (Jiang et al., 2018). Genomic prediction with Bayesian

methods was carried out for haplotype blocks built based on LD or

with the four-gamete method in rice and maize. The use of

haplotype blocks led to greater prediction accuracies in the maize

breeding population while in rice, the use of single SNPs was more

efficient (Matias et al., 2017).

The simplest ways of constructing haplotypes blocks is to group

a fixed number of SNPs or all SNPs within a certain genetic or

physical distance on the chromosome into a block. More

sophisticated methods employ the LD between SNPs and built

haplotype blocks out of those SNPs which are commonly inherited

together, shifting the meaning of the block from distance on the

chromosome to joint inheritance of SNPs within a block. Some

procedures aim to exploit the haplotype diversity across genotypes

and result in a haplotype block library that is representative for

most of the original SNP data (Zhang et al., 2002; Pook et al., 2019).

Other authors built haplotype blocks based on identified genes

(Bian et al., 2021) or local genealogy (Edriss et al., 2013).

For wheat, results for genomic prediction with haplotype blocks are

available only for blocks with a fixed number of SNPs (Sallam et al.,
frontiersin.org
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2020). Our goal was to compare the accuracy of genomic prediction

with haplotype blocks to the standard prediction with single SNPs in 11

traits in winter wheat. In particular, our objectives were to compare (1)

different types of block-building methods, (2) different prediction

models, and (3) the interaction between both with each other and to

a baseline scenario (GBLUP with single SNP markers).
2 Materials and methods

2.1 Field data

378 elite wheat lines were evaluated in a one-year field trial in

2020. We evaluated the resistances against Septoria tritici, Fusarium

graminearum, Puccinia triticina (brown rust), Blumeria graminis

(mildew), and Puccinia striiformis (yellow rust). Resistances were

scored in observation plots in one replication at one (S. tritici, F.

graminearum), two (P. triticina), or three locations (B. graminis, P.

striiformis). In case there was more than one location, the arithmetic

mean of the two or three observations was used as the resistance

score. In order to improve the readability of the manuscript, we use

only the name of the disease instead of the full term for the trait, e.g.

“S. tritici” instead of “S. tritici resistance score”.

A p-rep design with 54 genotypes in the second replication was

conducted at six locations in Germany (Asendorf, Niedersachsen;

Böhnshausen, Sachsen-Anhalt; Granskevitz, Mecklenburg-

Vorpommern; Groß-Gerau, Hessen; Hovedissen, Nordrhein-

Westfalen; Leutewitz, Sachsen) and one location in Poland (Gola)

for the quantitative traits grain yield, protein concentration, starch

concentration, hectoliter weight, and plant height. Results from

Böhnshausen and Groß-Gerau were removed from the analysis due

to extreme weather conditions. The remaining field data were

analyzed with the mixed linear model

g = m + l + e + l : e + r : e + b : r : e + ϵ

where l is the effect of the line, e is the effect of the environment

(location), l:e is the genotype-by-environment interaction, r:e is the

replication-within-environment effect, b:r:e is the block effect nested

within replication and environment, and ϵ is the residual. The

genotype was analyzed as a fixed factor, the remaining factors of the

model were random. The adjusted entry means were used in further

calculations. Protein yield was calculated as the product of yield and

protein concentration.
2.2 Genotypic data

All wheat lines were genotyped with the 25k Illumina iSelect

SNP array (SGS TraitGenetics, Gatersleben, Germany). All SNP

markers with more than two recorded alleles, more than 10%

missing values and an expected heterozygosity of < 5% as well as

all individuals with more than 10% missing marker information

were excluded from the analysis. As a result, 16,667 SNP markers

and 361 genotypes remained for further analysis. We used this data

set for all further calculations.
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2.3 Methods for building haplotype blocks

Haplotype blocks were built with the following methods:

LD-AVERAGE-0, LD-AVERAGE-1, LD-FLANKING-0, LD-

FLANKING-1: LD-based haplotype blocks were based on r2 as a

measure of LD (Zhao et al., 2005). r2 was calculated between all

SNPs on each chromosome. Haplotype blocks were then built based

on different threshold values t = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

and 0.9 for r2. For methods LD-AVERAGE-0 and LD-AVERAGE-

1, t was compared to the new average LD between each of the

marker pairs within the block if a new SNP was added. For methods

LD-FLANKING-0 and LD-FLANKING-1, t was compared to the

LD between the new SNP and the SNP flanking the block. In each

case, the new SNP was added if the threshold t was exceeded. Blocks

were built for tolerance values of zero (all SNPs in the block must

meet the criterion; LD-AVERAGE-0 and LD-FLANKING-0) or one

(one SNP in the block may fail to meet the criterion; LD-

AVERAGE-1 and LD-FLANKING-1). SNPs that could not be

assigned to any block were treated as haplotype blocks with just

one SNP. An example for how LD-based haplotype blocks were

built can be found in Supplementary File S2.

FIXED-SNP: n = 5, 10, 20, 50, or 100 adjacent SNPs were

grouped into haplotype blocks. An example for how haplotype

blocks were built with method FIXED-SNP can be found in

Supplementary File S2.

FIXED-CM: Adjacent SNPs within window sizes of 5, 10, or 20 cM

were grouped into haplotype blocks.

HAPLOBLOCKER: The R package HaploBlocker (Pook et al.,

2019) starts with haplotype blocks built from windows with a fixed

number of SNPs. These blocks are then clustered and merged.

Blocks are identified, filtered and extended in an iterative procedure

(Pook et al., 2019). The result is a library of blocks that are most

representative of the data set. Each block can be either present or

absent in each genotype but no variants are defined. In the default

setting, overlapping blocks are possible. The percentage of the SNP

markers that is covered by the blocks in the final haplotype block

library is the target coverage (Pook et al., 2019). We used different

combinations of a target coverage of 0.90 or 0.95, a starting window

size of 5 or 12 SNPs and either overlapping or non-overlapping

blocks (Table 1).

Additionally, we investigated subsets of the marker data with

n = 500, 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000,

10,000, 11,000, and 12,000 randomly selected SNPs. A different set

of n SNPs was used in each cross-validation run.
2.4 Genomic prediction of marker and
haplotype block effects

We used ridge regression best linear unbiased prediction (RR-

BLUP) of marker and haplotype block effects (Meuwissen et al.,

2001), which was technically implemented using a transformation

to an animal model (Shen et al., 2013). It was chosen as a baseline

scenario since it has proved to be relatively robust in many

circumstances (VanRaden, 2008; Clark and Werf, 2013). In order
frontiersin.org
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to get robust results for singular design matrices that may occur

during the simulation replications we used method 2 of Nazarian

and Gezan (2016). The method is available in our software package

SelectionTools (http://population-genetics.uni-giessen.de/

software0/). For comparison, we used estimation of the error and

genetic variance components with restricted maximum likelihood

and partitioning according to ANOVA variance components

(RMLA) (Hofheinz and Frisch, 2014) which allows for

heterogeneous marker variances.

Both RR-BLUP and RMLA are based on the assumption of bi-

allelic SNPs. Since haplotype blocks are multi-allelic by nature, we

had to re-parametrize the marker matrices to allow for the

application of both methods, resulting in a design matrix Z with

one column per haplotype block variant (cf. Jiang et al. (2018); Hess

et al. (2017); Matias et al. (2017); Cuyabano et al. (2014); Villumsen

et al. (2009)). An example can be found in Supplementary File S2.

Haplotype blocks built with method HAPLOBLOCKER are

encoded as either present or absent and do not have variants. The

resulting presence-absence matrix for the blocks was treated as a re-

parametrized marker matrix in these cases.

We used the software GVCHAP (Prakapenka et al., 2020) for a

multi-allelic haplotype model (Da, 2015) which performs genomic

best linear unbiased prediction (GBLUP) with a genomic additive

relationship matrix ZGVCHAP based on haplotype blocks. ZGVCHAP is

the design matrix Z from above, transposed, scaled (Hayes and

Goddard, 2010), multiplied by -1 and with one column eliminated

for a “reference variant” for each of the haplotype blocks. The mixed

linear model that was then used for GBLUP included additive effects

for the haplotype blocks only (Model 4 in Prakapenka et al. (2020)).

GVCHAP was not used for haplotype blocks built with

method HAPLOBLOCKER.
2.5 Assessment of prediction accuracy

Haplotype blocks were built based on the complete data set with

361 genotypes. Cross-validation was then employed in order to
Frontiers in Plant Science 04
assess the prediction accuracy. In each of 1000 cross-validation

runs, the data set was randomly divided into a training set with 289

genotypes and a validation set with 72 genotypes. The same splits

into training and validation set were used for all the sets of

predictors. The prediction accuracy r(y,y)̂ was calculated as the

correlation between the actual phenotypic values y and the

predicted phenotypic values y ̂ in the validation set.
2.6 Software

We used R version 4.0.3 for all calculations. The adjusted

entry means of the genotypes were estimated with ASReml-R

4.1.0.110. Haplotype blocks were built with either the R package

SelectionTools version 22.1 or with HaploBlocker version

1 . 6 . 06 . RR-BLUP and RMLA were ca l cu l a t ed wi th

SelectionTools version 22.1. GBLUP was calculated with

GVCHAP version 2.1.
3 Results

3.1 Statistics of haplotype blocks built with
different methods

For LD-based blocks with an average r2 of at least 0.1 between

all SNPs within a block and zero tolerance (method

LD-AVERAGE-0), 210 haplotype blocks with an average number

of 79 SNPs and an average of 186 variants were identified (Table 2).

The greatest number of SNPs in one block was 671, the greatest

number of variants was 360. 177 SNPs remained unassigned so that

the total number of haplotype blocks and unassigned SNPs was 387.

When the threshold was raised to 0.9, 2,214 haplotype blocks with

an average of 3 SNPs and 17 variants were identified. The maximum

numbers were 21 SNPs and 19 variants per block. With 9,694

unassigned SNPs, the total number of haplotype blocks and

unassigned SNPs was 11,908 (Table 2).
TABLE 1 Methods for building haplotype blocks with method HAPLOBLOCKER and statistics of the resulting haplotype blocks.

Version

HB1 HB2 HB3 HB4 HB5 HB6 HB7 HB8

Window size 5 5 5 5 12 12 12 12

Target coverage 0.90 0.90 0.95 0.95 0.90 0.90 0.95 0.95

Overlapping blocks no yes no yes no yes no yes

Haplotype blocks 5,818 4,725 8,239 7,612 7,594 7,753 7,967 12,499

SNPs per block

Average 8 24 7 23 13 37 13 37

Maximum 95 308 85 411 132 471 96 471

Distinct variants per block

Average 1 1 1 1 1 1 1 1

Maximum 1 1 1 1 1 1 1 1
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TABLE 2 Statistics of haplotype blocks (with ≥2 SNPs) built based on linkage disequilibrium (LD).

LD threshold

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LD-AVERAGE-0

Haplotype blocks 210 639 1,160 1,680 2,100 2,333 2,443 2,414 2,214

Unassigned SNPs 177 898 2,022 3,329 4,515 5,673 6,757 7,971 9,694

Total 387 1,537 3,182 5,009 6,615 8,006 9,200 10,385 11,908

SNPs per block

Average 79 25 13 8 6 5 4 4 3

Maximum 671 260 150 93 82 57 44 31 21

Distinct variants per block

Average 186 72 35 22 17 15 15 15 17

Maximum 360 354 303 236 140 78 64 36 19

LD-AVERAGE-1

Haplotype blocks 204 611 1,085 1,583 2,012 2,268 2,403 2,400 2,199

Unassigned SNPs 171 803 1,789 2,928 4,185 5,478 6,609 7,895 9,632

Total 375 1,414 2,874 4,511 6,197 7,746 9,012 10,295 11,831

SNPs per block

Average 81 26 14 9 6 5 4 4 3

Maximum 671 252 150 95 82 66 44 31 21

Distinct variants per block

Average 190 75 38 23 18 16 15 15 18

Maximum 360 354 303 264 246 161 64 36 19

LD-FLANKING-0

Haplotype blocks 2,252 2,611 2,784 2,836 2,828 2,795 2,749 2,603 2,294

Unassigned SNPs 3,324 4,215 4,911 5,525 6,061 6,716 7,431 8,404 10,020

Total 5,576 6,826 7,695 8,361 8,889 9,511 10,180 11,007 12,314

SNPs per block

Average 6 5 4 4 4 4 3 3 3

Maximum 67 45 32 32 32 28 28 21 18

Distinct variants per block

Average 15 13 13 13 13 13 13 14 17

Maximum 87 64 45 39 38 36 36 20 15

LD-FLANKING-1

Haplotype blocks 1,363 1,769 2,032 2,187 2,262 2,314 2,346 2,275 2,056

Unassigned SNPs 1,556 2,250 2,926 3,634 4,152 4,991 5,819 6,933 8,759

Total 2,919 4,019 4,958 5,821 6,414 7,305 8,165 9,208 10,815

SNPs per block

Average 11 8 7 6 6 5 5 4 4

Maximum 123 76 76 64 56 56 56 34 34

(Continued)
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A tolerance level of one (method LD-AVERAGE-1) which

allows for one SNP per block that does not fulfill the criterion

changed these numbers only slightly (Table 2). For an average r2 of

at least 0.1 between all SNPs within a block, 204 haplotype blocks

with an average number of 81 SNPs and an average of 190 variants

were found. The maximum numbers were 671 SNPs and 360

variants per block. Since 171 SNPs remained unassigned, the total

number of haplotype blocks and unassigned SNPs was 375. When

the threshold was raised to 0.9, 2,199 haplotype blocks with an

average of 3 SNPs and 18 variants were identified. At most, there

were 21 SNPs and 19 variants per block, and 9,632 SNPs remained

unassigned (Table 2).

The influence of the tolerance parameter was much greater for

methods LD-FLANKING-0 and LD-FLANKING-1 in which the

LD of the new SNP with the SNP flanking the block is compared to

the threshold value. Also, the blocks for comparable r2 thresholds

were much smaller than those for methods LD-AVERAGE-0 and

LD-AVERAGE-1 (Table 2).

With a tolerance of zero (method LD-FLANKING-0) and an r2

threshold value of 0.1, 2,252 haplotype blocks with an average

number of 6 SNPs and an average of 15 variants were identified

(Table 2). The maximum values were 67 SNPs and 87 variants per

block and 3,324 SNPs remained unassigned, resulting in a total

number of 5,576 haplotype blocks and unassigned SNPs. With an r2
Frontiers in Plant Science 06
threshold of 0.9, 2,294 haplotype blocks were found. They had 3

SNPs and 17 variants on average and 18 SNPs and 15 variants

maximum. Together with 10,020 unassigned SNPs, there was a total

of 12,314 haplotype blocks and unassigned SNPs (Table 2).

When one SNP per block was allowed to not exceed the

threshold value (method LD-FLANKING-1), 1,363 haplotype

blocks with an average number of 11 SNPs and 29 variants were

identified for an r2 threshold of 0.1 (Table 2). The greatest number

of SNPs in one block was 123, the greatest number of variants was

242. Since 1,556 SNPs remained unassigned, there were 2,919

haplotype blocks and unassigned SNPs total. When the threshold

was raised to 0.9, 2,056 haplotype blocks with an average of 4 SNPs

and 18 variants were identified. The maximum numbers were 34

SNPs and 32 variants per block, and 8,759 SNPs remained

unassigned so that the total number of haplotype blocks and

unassigned SNPs was 10,815 (Table 2).

For a fixed block size of n = 5 SNPs (method FIXED-SNP),

3,339 haplotype blocks were found with an average of 14 variants

and a maximum of 47 variants (Table 3). The number of haplotype

blocks reduced to 178 for a block size of n = 100 SNPs. The average

variant number was 262, the maximum number was 356 (Table 3).

For method FIXED-CM, The number of haplotype blocks reduced

from 1,400 to 535 when the window size of each block increased

from 5 to 20 cM. On average, there were 12 and 31 SNPs and 35 and
TABLE 2 Continued

LD threshold

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Distinct variants per block

Average 29 21 18 16 16 15 15 16 18

Maximum 242 168 150 109 106 91 99 82 32
frontie
For methods LD-AVERAGE-0 and LD-AVERAGE-1, the average r2 between all SNPs within a haplotype block including the new SNP is compared to the LD threshold. For methods LD-
FLANKING-0 and LD-FLANKING-1, r2 between the new SNP and the SNP flanking a haplotype block is compared to the LD threshold. Either all SNPs within a block must fulfill the criterion
(LD-AVERAGE-0, LD-FLANKING-0) or there may be one SNP that does not fulfill the criterion (LD-AVERAGE-1, LD-FLANKING-1
TABLE 3 Statistics of haplotype blocks built based on a fixed number of SNPs per haplotype block (FIXED-SNP) or a fixed window size in cM (FIXED-CM).

FIXED-SNP FIXED-CM

Number of SNPs per block Window size in cM

5 10 20 50 100 5 10 20

Haplotype blocks 3,339 1,676 843 344 178 1,400 897 535

Unassigned SNPs 4 3 2 0 0 0 1 1

Total 3,343 1,679 845 344 178 1,400 898 536

SNPs per block

Average 5 10 20 48 94 12 19 31

Maximum 5 10 20 50 100 100 165 272

Distinct variants per block

Average 14 31 71 172 262 35 58 98

Maximum 47 177 311 348 356 248 318 350
r

Each haplotype block consists of ≥2 SNPs.
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98 variants per block, respectively. The maximum numbers were

100 SNPs and 248 variants for blocks with a length of 5 cM and 272

SNPs and 350 variants for blocks with a length of 20 cM (Table 3).

For both methods, FIXED-SNP and FIXED-CM, there were almost

no unassigned SNPs (Table 3).

Blocks built with method HAPLOBLOCKER (Pook et al., 2019)

varied in three parameters: the starting window size (5 or 12 SNPs),

the target coverage of the final haplotype block library (0.90 or

0.95), and the possibility for overlapping blocks (yes or no)

(Table 1). The number of haplotype blocks was between 4,725

and 12,499 across all investigated versions (Table 1). When

overlapping blocks were allowed, the number of haplotype blocks

was always smaller than with non-overlapping blocks while the

average and maximum numbers of SNPs per block were greater.

The number of haplotype blocks was also greater with a greater

target coverage and with a starting window size of 12 SNPs when

compared to the alternative version with all the other parameters

constant. The target coverage did not influence the average and

maximum numbers of variants per block. Both numbers were

greater for a starting window size of 12 (Table 1).
3.2 Genomic prediction with a reduced set
of SNPs

RR-BLUP with reduced SNP numbers achieved the same level

of prediction accuracy as the full set of SNPs with at least 3,000

(yield, B. graminis), 4,000 (S. tritici, P. striiformis, F. graminearum),

5,000 (protein concentration, protein yield, starch concentration,

hectoliter weight, P. triticina), or 6,000 (plant height) SNPs,

respectively (Supplementary Figure S1).
3.3 RR-BLUP with haplotype blocks

RR-BLUP with the full set of SNPs (baseline) had greater

prediction accuracies than all block-based predictions for yield

(Figure 1) , prote in y ie ld , and starch concentra t ion

(Supplementary Figures S4, S5). For all other traits, there was at

least one type of haplotype block for which the prediction

accuracies were greater than the baseline (Supplementary Figures

S2, S3, S6–S12). Yield, plant height and hectoliter weight and the

resistance scores for B. graminis, P. striiformis, and P. triticina were

chosen as illustrative examples for quantitative and qualitative

traits, respectively (Figures 1, 2). Results for all investigated traits

can be found in the Supplementary Figures S2–S12.

Haplotype blocks with 5, 10, or 20 SNPs (method FIXED-

SNP) or with a fixed length of 5, 10, or 20 cM (method FIXED-

CM) showed prediction accuracies above baseline for plant height

(Figure 1). Haplotype blocks with a fixed number of 5 SNPs and

some block types built with method HAPLOBLOCKER resulted in

prediction accuracies above baseline for hectoliter weight

(Figure 1). In the case of B. graminis, LD-based haplotype

blocks led to greater prediction accuracies than single SNPs.

This was the case for all haplotype blocks built with methods

LD-FLANKING-0 and LD-FLANKING-1 and for those blocks
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built with methods LD-AVERAGE-0 and LD-AVERAGE-1 and

an LD threshold of r2 > 0.3. In this trait, haplotype blocks built

with method HAPLOBLOCKER based on a starting window size

of 5 SNPs also led to greater prediction accuracies compared to the

baseline (Figure 2).

In P. striiformis, all haplotype blocks types built with method

HAPLOBLOCKER resulted in greater prediction accuracies than

single SNPs. Prediction accuracies for LD-based haplotype blocks

were only greater than the baseline when the haplotype blocks were

built with methods LD-FLANKING-0 or LD-FLANKING-1 and a

low LD threshold of r2 > 0.1 or 0.2, which was also the case for P.

triticina (Figure 2).

Some patterns were observed independent of the trait. For LD-

based haplotype blocks built with methods LD-AVERAGE-0 and

LD-AVERAGE-1, r2 had to be at least 0.2 or 0.3 to lead to

meaningful predictions. Similarly, prediction accuracies declined

considerably for haplotype blocks with a fixed SNP number of 50 or

sometimes 20 (method FIXED-SNP), and a length of more than 10

or 20 cM (method FIXED-CM). For LD-based haplotype blocks

built with methods LD-FLANKING-0 and LD-FLANKING-1, the

influence of the threshold value on the prediction accuracies was

smaller than for methods LD-AVERAGE-0 and LD-AVERAGE-1

(Figures 1, 2).

Wi th in the hap lo type b locks bu i l t w i th method

HAPLOBLOCKER, different patterns became apparent. In yield

and P. striiformis, all prediction accuracies were on the same level

(Figures 1, 2). In plant height, the non-overlapping blocks resulted

in greater prediction accuracies than the overlapping blocks with

the same parameters (Figure 1). In B. graminis and P. triticina,

haplotype blocks based on a starting window size of 5 SNPs

showed greater prediction accuracies than haplotype blocks

based on a starting window size of 12, regardless of the other

parameters (Figure 2).
3.4 Alternative genomic prediction
methods

It was dependent on the trait whether ridge regression with

homogeneous (RR-BLUP) or heterogeneous (RMLA) marker

variances resulted in greater prediction accuracies. In B. graminis,

RR-BLUP showed greater prediction accuracies than RMLA

(Figure 2). RR-BLUP and RMLA resulted in similar prediction

accuracies for yield, plant height, and P. striiformis (Figures 1, 2).

RMLA showed greater prediction accuracies than RR-BLUP in P.

triticina and hectoliter weight (Figures 1, 2).

Prediction accuracies obtained with GBLUP with GVCHAP

were mostly similar to those with RR-BLUP (Figures 1, 2). The only

exceptions were the haplotype blocks with a fixed number of 50 or

100 SNPs (method FIXED-SNP) and sometimes fixed block lengths

of 10 or 20 cM (method FIXED-CM) where GBLUP with GVCHAP

showed greater prediction accuracies than the other estimation

methods (Figures 1, 2). These were also the only instances in which

the overall ranking of the estimation methods changed. In all other

cases, the ranking of the methods remained the same across all types

of haplotype blocks (Figures 1, 2).
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4 Discussion

4.1 Genomic prediction with
haplotype blocks

4.1.1 Number of haplotype blocks
The different procedures for building haplotype blocks resulted

in vastly varying number of haplotype blocks and unassigned SNPs

that were used for the predictions (Tables 1–3). We determined the

minimum number of SNPs required for accurate predictions in

order to determine whether changes in prediction accuracy were

related to the coverage of the genome with SNPs. Across all traits,

RR-BLUP with 3,000 through 6,000 SNPs randomly selected SNPs

resulted in prediction accuracies comparable to that of the full set of

16,667 SNPs (baseline) (Supplementary Figure S1). It has to be

noted that the number of haplotype blocks does not directly
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translate into the dimensions of the design matrices in the mixed

linear models. In RR-BLUP with m bi-allelic SNP markers, the

design matrix Z for the genotypic effects has m columns. The

number of columns of the design matrix Z in a haplotype model

depends on (a) the number of haplotype blocks and unassigned

SNPs, and (b) the number of variants at each haplotype block. We

found that very often, even though there were fewer haplotype

blocks than there were single SNPs in the full marker data set, the

dimensions of the resulting design matrix Z in the reparameterized

case were roughly the same because of the high number of variants

at some of the haplotype blocks. These dimensions were reduced

when monomorphic block-variant combinations were eliminated in

the training set. For example, building LD-based blocks with

methods LD-FLANKING-0 and an r2 threshold of 0.1, 2,252

haplotype blocks and 3,324 unassigned SNPs were identified.

They translated in a design matrix Z with 18,330 columns (block/
FIGURE 1

Prediction accuracies for genomic prediction of yield, hectoliter weight, and plant height with different types of haplotype blocks and estimation
methods. The plots show the medians of the correlations r(y,y)̂ between the observed phenotypic values y and the predicted phenotypic values y ̂ in
the validation set for 1000 cross-validation runs. Haplotype blocks were built based on linkage disequilibrium (LD-AVERAGE-0, LD-AVERAGE-1, LD-
FLANKING-0, LD-FLANKING-1) with different threshold values t=0.1,0.2,…0.9 for r2, with fixed numbers of SNPs per block (FIXED-SNP), with a fixed
block length in cM (FIXED-CM), or with the R package HaploBlocker (HAPLOBLOCKER). Red dotted lines: Quartiles from RR-BLUP with 16,667 SNPs
(baseline). Gray dashed lines: Quartiles from RMLA with 16,667 SNPs. The number of predictors is the combined number of haplotype blocks and
unassigned SNPs.
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SNP-variant combinations), which were reduced to 13,803 in the

first cross-validation run after eliminating those block-variant

combinations with an expected heterozygosity of less than 5% in

the training set. These observations show that haplotype blocks do

not reduce the parameter space, as has been claimed to be the case if

they are used in genomic selection (Cuyabano et al., 2014).

In all cases in which the block-building methods resulted in less

than 500 haplotype blocks and unassigned SNPs, for example with

LD-based blocks built with methods LD-AVERAGE-0 and

LD-AVERAGE-0 and low LD thresholds or with method FIXED-

SNP and 50 or 100 SNP markers per block, the prediction

accuracies were much smaller than in the baseline scenario

(Figures 1, 2). Conversely, 536–898 haplotype blocks and

unassigned SNPs led to prediction accuracies above baseline for

plant height when haplotype blocks were built with methods

FIXED-SNP and FIXED-CM (Figure 1), an increase which could
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not be achieved by simply reducing the number of SNPs in the

predictions (Supplementary Figure S1). These findings confirm that

haplotype blocks do more than just eliminate noise in the form of

redundant information from the SNP data since that reduction

should also be achievable by a simple reduction in the number of

SNPs used for the predictions.

Some authors claim that the additional information carried by

haplotype blocks is mainly local epistatis (Jiang et al., 2018; Da et al.,

2022). Other hypotheses include that ancestral relationships might

be detected better by haplotype blocks and that the LD between

causal mutations and haplotype variants might be greater than for

single SNP markers (Hess et al., 2017). It is possible that this

additional information content is outweighed by the properties of

the design matrices because the large number of columns that

belong to the variants of a single haplotype block might introduce

multicollinearity and estimation errors (Matias et al., 2017). A
FIGURE 2

Prediction accuracies for genomic prediction of resistance scores for B. graminis, P. striiformis, and P. triticina with different types of haplotype
blocks and estimation methods. The plots show the medians of the correlations r(y,y)̂ between the observed phenotypic values y and the predicted
phenotypic values y ̂ in the validation set for 1000 cross-validation runs. Haplotype blocks were built based on linkage disequilibrium (LD-AVERAGE-
0, LD-AVERAGE-1, LD-FLANKING-0, LD-FLANKING-1) with different threshold values t=0.1,0.2,…,0.9 for r2, with fixed numbers of SNPs per block
(FIXED-SNP), with a fixed block length in cM (FIXED-CM), or with the R package HaploBlocker (HAPLOBLOCKER). Red dotted lines: Quartiles from
RR-BLUP with 16,667 SNPs (baseline). Gray dashed lines: Quartiles from RMLA with 16,667 SNPs. The number of predictors is the combined number
of haplotype blocks and unassigned SNPs.
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further decrease might be caused by the substantial number of

haplotype block variants that is removed when filtering out

monomorphic loci.

4.1.2 Block-building methods
It depended on the trait whether adding SNPs based on the

average LD in the block (methods LD-AVERAGE-0 and

LD-AVERAGE-1) or based on their LD with the flanking SNP of

a block (methods LD-FLANKING-0 and LD-FLANKING-1)

resulted in greater prediction accuracies (Figures 1, 2). Similarly,

allowing for no (tolerance zero) or one (tolerance one) SNP in each

block that does not fulfill the LD threshold made in a difference in

some cases while in others it did not. For example, there was no

difference between the prediction accuracies of haplotype blocks

built with methods LD-AVERAGE-0, LD-AVERAGE-1, LD-

FLANKING-0, and LD-FLANKING-1 in the prediction of plant

height (Figure 1). In B. graminis and P. striiformis, prediction

accuracies for haplotype blocks built with methods LD-

AVERAGE-0 and LD-AVERAGE-1 increased with an increase in

the LD threshold while they decreased for haplotype blocks built

with methods LD-FLANKING-0 and LD-FLANKING-1. In P.

triticina, haplotype blocks built with method LD-FLANKING-1

resulted in much greater prediction accuracies than single SNPs

while this increase was not observed for haplotype blocks built with

the other methods (Figure 2). Overall, thresholds for r2 of 0.4 for

haplotype blocks built with methods LD-FLANKING-0 and

LD-FLANKING-1 and 0.6 for haplotype blocks built with

methods LD-AVERAGE-0 and LD-AVERAGE-1 led to prediction

accuracies comparable to that of the baseline, indicating that the

information content was similar (Figures 1; 2, Supplementary

Figure S1). These haplotype blocks did not lead to greater

prediction accuracies than single SNPs in any of the cases.

Prediction with haplotype blocks with a fixed number of SNPs

(method FIXED-SNP) resulted in a decrease in prediction

accuracies in most traits (Figures 1, 2). The most notable

exception was plant height which showed an increase in

prediction accuracy for RR-BLUP (Figure 1). For the other traits,

predictions of P. striiformis, P. triticina, and hectoliter weight could

be increased compared to the baseline with either one or several

types of haplotypes blocks built with method FIXED-SNP

(Figures 1, 2). The same was observed for haplotypes blocks built

with method FIXED-CM: The prediction accuracies for plant height

were substantially greater (Figure 1). In the other traits, prediction

accuracies for haplotype blocks built with methods FIXED-SNP or

FIXED-CM were smaller than those for haplotype blocks built

based on LD (Figures 1, 2). A possible reason for this finding could

be that blocks with a fixed number of SNPs or fixed window size

combine SNPs arbitrarily while LD-based blocks take into account

information from the data set regarding the recombination

frequencies. This is reflected in the finding that a relatively high

number of SNPs remains unassigned with the LD-based block-

building methods (Table 2). It can therefore be expected that LD-

based blocks should capture more or less the same information

about QTL for the trait even with low LD thresholds while marker-
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trait associations might be broken for blocks with a fixed number of

SNPs or fixed length in cM.

Prediction accuracies increased slightly for B. graminis, P.

striiformis, and P. triticina for haplotype blocks built with method

HAPLOBLOCKER. For plant height, prediction accuracies for non-

overlapping haplotype blocks were always greater than their

counterparts with overlapping blocks, even though none of the

versions led to prediction accuracies greater than RR-BLUP with

the full set of SNPs. For B. graminis and P. triticina, the greatest

differences within the haplotype blocks built with method

HAPLOBLOCKER were between the starting window sizes 5 and

12. Prediction accuracies were comparable to that of single SNP

markers for window size 5 but much smaller for window size

12 (Figure 2).

Trait-dependence of prediction accuracies with different block-

building methods was also observed in pigs (Bian et al., 2021),

humans (Liang et al., 2020), cattle (Cuyabano et al., 2014; Won

et al., 2020), eucalyptus (Ballesta et al., 2019), wheat (Sallam et al.,

2020) and rice and maize (Matias et al., 2017). Other authors

studied the optimal haplotype block length required for estimation

of the genomic relationship matrix and also arrived at the

conclusion that it depends on the trait which block length is best

(Ferdosi et al., 2016). Apparently, there is no single method that can

generally be recommended for building meaningful blocks. If, as

proposed by some authors (Jiang et al., 2018; Da et al., 2022), greater

prediction accuracies are mostly due to local epistasis that is

captured by the haplotype blocks, these findings raise the

question if the optimal choice of haplotype blocks depends on the

exact structure of “local” epistatis exhibited for the trait.

It is also possible that the genetic architecture of the trait

influenced whether haplotype blocks led to greater prediction

accuracies than single markers. In our data set, we observed

greater prediction accuracies for haplotype blocks than for single

SNPs in the prediction of oligogenic traits like the resistance scores

for B. graminis, P. striiformis, and P. triticina. In contrast, there was

no obvious and consistent advantage of using haplotype blocks for

the prediction of polygenic traits like yield, hectoliter weight, and

plant height (Figures 1, 2).

Haplotype blocks divide the chromosome into segments and

effects are then assigned to these chromosome segments rather than

distributed over many markers. This approach might be beneficial

for the prediction of oligogenic traits because it reduces the noise

caused by a great number of markers that are not linked to genes

that are causal for the trait. Additionally, haplotype blocks with a

positive effect can then be used to combine favorable chromosome

stretches via haplotype stacking (Voss-Fels et al., 2019). For highly

polygenic traits, grouping markers into chromosome segments and

assigning effects to segments rather than to single markers is not

expected to lead to greater prediction accuracies because is it

precisely the distribution of effects over many markers that

corresponds to their polygenic nature. The effect of the haplotype

block would then be a “net effect” that is roughly equal to the sum of

the effects of the single markers in this block, not adding any

additional or removing redundant information.
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4.2 Investigating alternative genomic
prediction methods

4.2.1 Assumption of heterogeneous
marker variances

Using a the RMLA model with heterogeneous marker variances

(Hofheinz and Frisch, 2014) instead of the baseline (RR-BLUP with

homogeneous marker variances) with all available SNP markers

resulted in increases of prediction accuracies for P. triticina and

hectoliter weight, decreases in prediction accuracies for B. graminis

and equal prediction accuracies for all other traits (Figures 1, 2). We

had hypothesized that RMLA might be beneficial particularly for

resistance traits which tend to be oligogenic rather than polygenic

and might therefore benefit from the modeling of marker effects

with heterogeneous variances. However, the possible advantage in

the estimation of more accurate marker effects (Hofheinz and

Frisch, 2014) did not translate into greater prediction accuracies

for most of the traits we investigated. In most cases, prediction

accuracies for genomic prediction with RMLA were either smaller

than the corresponding version with RR-BLUP or the same. The

overall tendencies (decreases or increases within a particular block-

building method) were roughly the same as for RR-BLUP but the

deviations from RR-BLUP were greater than those with GVCHAP.

Greater r2 thresholds for the LD-based haplotype blocks were

required for RMLA to obtain the same prediction accuracies for

plant height as RR-BLUP (Figure 1). It depended on the trait

whether the influence of the estimation method, as shown for

eucalyptus (Ballesta et al., 2019), or the influence of the block

building method on the prediction accuracies was greater

(Figures 1, 2). We cannot make a general recommendation for

the use of either RR-BLUP or RMLA for the investigated traits.

4.2.2 Multi-allelic GBLUP with GVCHAP
The main difference between RR-BLUP with SelectionTools and

GBLUP with GVCHAP is the construction of the genomic relationship

matrix G. In SelectionTools, G=ZZ’ with Z the re-parametrized design

matrix. Z is subjected to several transformations, including centering

with the allele frequencies, to arrive a realized relationship G in

GVCHAP (Da, 2015). Results for RR-BLUP and GVCHAP were

very similar with the exception of the long haplotype blocks built

with a fixed number of n = 50 or 100 SNPs or with a fixed length of 10

or 20 cM (Figures 1, 2). In these special cases, GVCHAP showed

greater prediction accuracies than RR-BLUP even though the

prediction accuracies were smaller than for RR-BLUP with 16,667

SNPs. The genomic relationship that is captured by both methods is

apparently mostly the same and a difference arises only when the

blocks become relatively long (Figures 1, 2, Table 2). These instances

were also the only ones in which the ranking of the prediction methods

(RR-BLUP, RMLA, GBLUP with GVCHAP) changed. In all other

cases, their ranking remained the same over all types of haplotype

blocks used for the predictions (Figures 1, 2).
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4.3 Conclusions

Prediction accuracies for most traits in our data set were greater

when haplotype blocks were used instead of single SNP markers in

genomic prediction. The ranking of the block-building methods was

trait-dependent, with some methods leading to greater prediction

accuracies than single SNPs in some traits and to smaller prediction

accuracies in others. The greatest prediction accuracies for

resistance scores for B. graminis, P. triticina, and F. graminearum

were obtained with LD-based haplotype blocks while blocks with

fixed marker numbers and fixed lengths in cM resulted in the

greatest prediction accuracies for plant height. Prediction accuracies

of haplotype blocks built with the R package HaploBlocker (Pook

et al., 2019) were greater than those of the other methods for protein

concentration and resistances scores for S. tritici, B. graminis, and P.

striiformis. For the resistance scores for B. graminis, prediction

accuracies were greater than for standard RR-BLUP if marker

variances were assumed to be heterogeneous (Hofheinz and

Frisch, 2014). Results for multi-allelic prediction with software

GVCHAP (Prakapenka et al., 2020) were similar to those from

RR-BLUP in most cases. The dependence of prediction accuracies

on trait and estimation method was also observed in other studies

(Ballesta et al., 2019; Liang et al., 2020; Sallam et al., 2020; Won

et al., 2020; Bian et al., 2021). It is important to note that all these

studies used different species, blocking methods, and marker effect

estimation procedures and do not allow for direct numerical

comparison of the results. Nevertheless, their findings support

our conclusions that (1) haplotype blocks have the potential to

increase the accuracy of genomic prediction in winter wheat, and

(2) the choice of the best block-building method is trait-dependent.

It is likely that the trait-dependence is caused by properties of the

haplotype blocks that have overlapping and contrasting effects on

the prediction accuracy. While they might be able to capture local

epistatic effects and to detect ancestral relationships better than

single SNPs, prediction accuracy might be reduced by unfavorable

characteristics of the design matrices in the models that are due to

their multi-allelic nature. Additionally, haplotype blocks might be

better suited for the prediction of oligogenic than polygenic traits.

In oligogenic traits like resistances, they might improve the correct

assignment of effects to the underlying genes, while in polygenic

traits, the precision of marker effect estimates cannot be improved.

Our results suggest that building haplotype blocks allows efficient

haplotype stacking for oligogenic resistances in wheat.
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