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Training set designs for
prediction of yield and moisture
of maize test cross hybrids with
unreplicated trials

Jérôme Terraillon1, Frank K. Roeber2, Christian Flachenecker3

and Matthias Frisch1*

1Institute of Agronomy and Plant Breeding II, Justus Liebig University, Giessen, Germany, 2Corteva
AgriScience, Munchen, Germany, 3Eckernförde, Germany
Unreplicated field trials and genomic prediction are both used to enhance the

efficiency in early selection stages of a hybrid maize breeding program. No

results are available on the optimal experimental design when combining both

approaches. Our objectives were to investigate the effect of the training set

design on the accuracy of genomic prediction in unreplicatedmaize test crosses.

We carried out a cross validation study on basis of an experimental data set

consisting of 1436 hybrids evaluated for yield and moisture for which genotyping

information of 461 SNP markers were available. Training set designs of different

size, implementing within environment prediction, within year prediction, across

year prediction, and combinations of data sources across years and

environments were compared with respect to their prediction accuracy.

Across year prediction did not reach prediction accuracies that are useful for

genomic selection. Within year prediction across environments provided useful

correlations between observed and predicted breeding values. The prediction

accuracies did not improve when adding to the training set data from previous

years. We conclude that using all data available from unreplicated tests of the

current breeding cycle provides a good accuracy of predicting test crosses,

whereas adding data from previous breeding cycles, in which the genotypes are

less related to the tested material, has only limited value for increasing the

prediction accuracy.

KEYWORDS

unreplicated trials, training set, maize, cross validation, genomic prediction
1 Introduction

Genomic prediction of the performance of selection candidates has the potential to

increase the selection intensity and the selection gain in breeding programs (cf de los

Campos et al., 2013; Wang et al., 2018; Fritsche-Neto et al., 2021).

Choosing a suitable training set to estimate genetic effects affects the accuracy of the

genomic predictions. With simulations Hickey et al. (2014) derived guidelines for the

design of the training set used to predict the performance of genotypes derived from
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biparental populations. In maize, Technow et al. (2012) investigated

the use of combined vs. separated training set for the heterotic

groups. Incorporating dominance effects and using population

specific marker effects in the prediction model was investigated by

Technow et al. (2013). Lorenz and Smith (2015) concluded that in

barley the accuracy of genomic prediction benefits from focusing on

small training sets closely related to the prediction set. Brauner et al.

(2020) found that using unrelated genotypes in the training set can

even have negative effects on prediction accuracy. The efficiency of

genomic selection in highly structured populations was investigated

by Rincent et al. (2012). Training set composition in maize breeding

programs with repeated field trials was investigated by Albrecht

et al. (2011) and Schrag et al. (2019). Genomic prediction of single

crosses in multiple environments in early stages of a maize breeding

program was investigated by Massman et al. (2013).

Integrating genomic prediction in breeding programs and at the

same time reducing the expenses for field trials was the subject of

recent studies. Jarquin et al. (2020) conducted genomic prediction

with reduced multi-environment breeding trials in which not all

genotypes of interest are grown in each environment. Verges and

Van Sanford (2020) investigated genomic prediction with wheat

lines evaluated in a few environments with one plot per

environment. Across year prediction was used to add field trial

data from previous years to the training set for predicting the

genotypes of the current year (Wang et al., 2020). This approach

increased the prediction accuracy while limiting the amount of trials

in the actual year. Training set optimization with historical data was

investigated in wheat (Sarinelli et al., 2019). However common

genotypes have to be tested each year to ensure a good prediction

accuracy (Auinger et al., 2016).

Unreplicated trials can be used in early stages of a breeding

program, when either the amount of seeds available is limited or

when a given number of selection candidates have to be tested

with limited resources. In unreplicated trials, the effect of the

genotype is confounded with the genotype by environment

interaction effect. This confounding reduces the efficiency of

selection. However, a prerequisite of a successful variety is, that

its performance is high across environments. Therefore a superior

genotype should be among the best selection candidates in any of

the evaluation environments. In addition to those genotypes that

show a high performance due to their high genotypic value,

genotypes that perform well due to a favorable genotype by

environment interaction or a large experimental error are

selected. The latter genotypes will be selected out in later stages of
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the breeding program due to their weaker performance in the

additional environments.

Application of unreplicated trials was suggested in cereal

breeding programs by Endelman (2014) and the first results are

promising (Michel et al., 2017; Michel et al., 2019; Terraillon et al.,

2022). To our knowledge, no concepts are available for

implementing genomic pre-selection in a maize breeding program

that uses unreplicated test crosses.

Our goal was to use a data set of 1436 test cross hybrids

evaluated in unreplicated field trials for yield and moisture in a

cross validation study to investigate the design of the training set for

genomic prediction. In particular, our objectives were to compare

training set designs implementing (a) within environment

prediction, (b) within year prediction, (c) across year prediction,

and (d) combinations of data sources across years and

environments with respect to their prediction accuracy.
2 Material and methods

2.1 Genetic material, phenotyping
and genotyping

The genetic material used for this study consisted of 1436 Dent

x Flint test cross hybrids from a commercial breeding program. The

parental components were doubled haploid lines. The hybrids were

evaluated in an unreplicated trial in years 2013, 2014, and 2015 at

seven locations for yield and moisture. We use the term

unreplicated trial in this study for a trial, in which a selection

candidate was evaluated in one single plot at one environment. No

control or standard genotypes were used across trials. The number

of hybrids tested in an environment ranged from 89 to

110 (Table 1).

Markers have been obtained by a custom Illumina chip. The

number of 481 SNPs markers were assessed for the 726 parental

lines of the 1436 hybrids. We preprocessed the data so that all SNPs

had exactly two variants, a minimum expected heterozygosity

(1 − f 21 − f 22 , where f1 and f2 are frequencies of the two SNP

variants in the set of parental lines) of 10%, and were available

for at least 90% of the parental lines. The frequency of missing SNPs

in a parental line did not exceed 10%. The preprocessing of the data

reduced the number of SNPs to 461. The distribution of the markers

on the chromosomes as well as their average and maximum

distance per chromosome are presented in the Table 1 of the
TABLE 1 Number and type of hybrids tested at locations 1 to 7 in years 2013 to 2015.

Year LOC1 LOC2 LOC3 LOC4 LOC5 LOC6 LOC7

2013 DT1 x 103 DT6 x 109
DT11 x 1

DT7 x 89 FT4 x 96 FT5 x 94 FT11 x 94

2014 FT2 x 106 FT12 x 106 FT9 x 106 FT10 x 106

2015 DT13 x 106 DT3 x 10 FT9 x 88
FT12 x 19

FT10 x 75
FT12 x 32
fro
For each set of hybrids the tester as well as the number of test cross candidates is given. FT is a Flint tester and DT is a Dent tester. For example, in year 2013 at location 1, the Dent tester DT1 was
crossed with 103 Flint test cross candidates.
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supplementary material (Supplementary Table S1). These markers

allow the distinction between the Flint and Dent pools as shown by

a PCA and a heatmap analysis of the lines based on the SNPs

(Supplementary Figures S1, S2). Additionally, the LD decay was

investigated for both pools (Supplementary Figures S3, S4). Pairwise

genetic distances between hybrids in one environment, and

distances between all pairs of hybrids in two environments have

been calculated based on the SNPs markers using the Roger’s

distance. A table presenting these results is available in the

supplementary material (Supplementary Table S2). Corteva

AgriScience owns the tested germplasm and has conducted the

field experiments and marker analysis.
2.2 Phenotypic values adjusted for
environmental effects

In a first analysis step, we adjusted the phenotypic data for

environmental effects (for convenience we omit indices and present

the formulas for scalar values). We estimated with analysis of

variance methodology the year effects q and the environmental

effects p(q) from the fixed effects model

y = m + q + p(q) + e (1)

where y are the unreplicated plot values, m is the general mean

and e is the experimental error. Then we calculated adjusted plot

values

y* = y − q − p(q) : (2)

The estimated effects for years and environments are presented

in Supplementary Tables S3, S4.
2.3 Prediction model

Genomic prediction was carried out with the model

y* = 1b0 + Zf uf + Zdud + e = 1b0 + (Zf Zd)
uf

ud

 !
+ e (3)

where y* is the vector of adjusted plot means, b0 is the intercept, Zf
and Zd are the design matrices linking the marker effects to

genotypes and uf,ud are the marker effects vectors for testcross

performance for the Flint and Dent parental components,

respectively, of which the elements are N(0,s 2
TC) distributed, and

e is the vector of residuals. The marker effects were estimated with

the ridge regression best linear unbiased prediction (RR-BLUP)

method (Whittaker et al., 2000; Meuwissen et al., 2001) using the R

package rrBLUP (Endelman, 2011).

We further investigated the methods Bayes A, Bayes B

(Meuwissen et al., 2001), and Bayesian ridge regression (BRR, de

los Campos et al., 2009) using the R package BGLR Perez and de los

Campos (2014). The BGLR package uses a Gibbs sampler to draw

samples from posterior density, which we have set up the to
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perform 10000 iterations. The first 1000 iterations were used as

burn-in. In the main part of this article we focus on the RR-BLUP

method, a figure comparing the results obtained for complete set of

methods is presented in the supplementary material

(Supplementary Figure S5).
2.4 Training set designs

We used a re-sampling procedure to investigate different

training set designs. In a first step, a random sample of 80

hybrids from each environment was drawn. We call these 80

hybrids the complete set for a certain environment. Each

complete set was then divided randomly in two parts: a set called

training set of size 60 and a set called prediction set of size 20. The

complete set, training set, and prediction set were used according to

the subsequently described designs for genomic prediction. The

correlation between the predicted and observed performance of the

hybrids was used as a measure for the prediction accuracy. To avoid

stratification effects, correlations were computed independently at

each environment using the Pearson’s correlation. For each

investigated design the prediction was replicated for 100 cross

validation runs. In each replication, the assignment of hybrids to

the training set and the prediction set was the same for all designs.

We investigated three groups of designs: Across year designs,

within environment designs, and within year designs (Figure 1).

The across year designs comprised designs CV1and CV2. In CV1,

the design of a model consisted of the complete set of a certain

location in one or two previous years. The model was used to

predict the complete set of the respective location. In CV2, the

design of a model consisted of all the complete sets from one or two

previous years. The model was used to predict all complete sets of

the current year.

The within environment designs comprised designs CV3, CV4,

and CV5. In CV3, the design of a prediction model consisted of the

training set of a certain environment. The model was used to predict

the prediction set of the respective environment. CV4consisted of

the design of CV3completed by the complete set of the same

location in one or two previous years. The model was used to

predict the prediction set of the respective location. CV5consisted of

the design of CV3completed by the complete sets from one or two

previous years. This model was used to predict the prediction set of

the current year.

The within year designs comprised designs CV6, CV7, and

CV8. In CV6, the design of a model consisted of all training sets

from one year. The model was used to predict the prediction sets of

the respective year. CV7consisted of the design of CV6completed by

the complete set of a certain location in one or two previous years.

The model was used to predict the prediction set of the same

location in the current year. CV8consisted of the design of

CV6completed by the complete sets from one or two previous

years. These models were used to predict the prediction sets of the

current year.
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3 Results

The prediction accuracy, assessed by the median of the correlation

between predicted and observed phenotypes obtained in 100 cross

validation runs, reached for the training set design CV3(within

environment with no previous data) values between 0.03 and 0.52

for yield and between 0.27 and 0.59 for moisture using the RR-BLUP

prediction method (Figure 2). A prediction accuracy greater than 0.5

was reached for yield in one and for moisture in three out of 14

environments. With the training set design CV6(within year with no

previous data), prediction accuracies between 0.30 and 0.71 were

reached for yield and prediction accuracies between 0.49 and 0.83

were reached for moisture. In seven out of 14 environments for yield,

and in 13 out of 14 for moisture prediction accuracies greater than 0.5

were reached. The training set design CV6reached higher prediction

accuracies than the design CV3in all environments for both traits.
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When one previous year of data was used in the designs,

prediction accuracies of the across year design CV1(across year

with one previous location) ranged between 0 and 0.04 for both

traits (Figure 3). Design CV2(across year with all previous

locations) reached prediction accuracies between 0.06 and 0.29

for yield, and between 0.09 and 0.34 for moisture. The within

environment designs CV3, CV4, and CV5reached prediction

accuracies between 0.29 and 0.45 for yield and between 0.33 and

0.45 for moisture. The prediction accuracies of design CV4(within

environment with one previous location) were slightly below those

of design CV3(within environment with no previous data), except

for yield in year 2015. The prediction accuracies of design CV5

(within environment with all previous locations) were greater than

those of design CV3in 2014 (+0.03 for yield and +0.10 for moisture)

and lower in 2015 (-0.10 for yield and -0.03 for moisture). The

within year designs CV6, CV7, and CV8reached prediction
FIGURE 1

Schematic representation of the investigated training set designs for the prediction of location 1.
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accuracies between 0.34 and 0.68 for yield and between 0.52 and

0.62 for moisture. Design CV7(within year with one previous

location) reached greater prediction accuracies than CV6(within

year with no previous data) for moisture in 2015 (+0.05). Design

CV8(within year with all previous locations) reached greater

prediction accuracies than design CV6only for moisture

prediction in 2014 (+0.01). All within environment designs

reached prediction accuracies greater than 0.5 except for yield in

the year 2015. In all environments, within year designs

outperformed within environment designs. Training set designs

containing no genotypes from the predicted year were

outperformed by both, within year and within environment designs.

When two previous years of data were available in year 2015, we

compared the effect of using data from one or two previous years in

the training set (Figure 3). Prediction accuracy of design CV1

(across year with one previous location) increased by 0.29 for

yield and by 0.18 for moisture when using data from 2013 in

addition to data from 2014 in the training set. Prediction accuracy

of design CV2(across year with all previous locations) increased by

0.09 for yield and by 0.13 for moisture. For design CV4(within

environment with one previous location) the prediction accuracy

decreased by 0.01 for yield and stayed the same for moisture. For

design CV5(within environment with all previous locations), the
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prediction accuracies for moisture did not change, while prediction

accuracies for yield decreased by 0.09. For design CV7(within year

with one previous location), prediction accuracies decreased by 0.01

for both yield and moisture. For design CV8(within year with all

previous locations), the prediction accuracies decreased by 0.04 for

yield and by 0.01 for moisture. Across years designs benefited from

the additional year while other designs remain unchanged or

slightly decreased.

The results presented in Figures 2, 3 did not depend on the

statistical prediction model. Similar results were observed for Bayes

A, Bayes B, BRR and RR-BLUP effect estimation (Supplementary

Figure S5 for a design without previous year data and

Supplementary Figure S6 for a design with previous year data).
4 Discussion

4.1 Structure of the data set

The structure of our data set is characterized by the rather low

number of 481 SNPs employed. These SNPs provided in previous

cycles of the investigated breeding program prediction accuracies

that were considered as sufficient by practical breeders (results not
A

B

FIGURE 2

Correlation between observed and predicted yield (A) and moisture (B) for training set designs CV3(within environment with no previous data) and
CV6(within year with no previous data) in years 2013 to 2015 at locations 1 to 7. The median of 100 simulations for the prediction method RR-BLUP
is shown on top of the respective boxplots.
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shown). This observation is supported by theoretical

considerations. The lines used as parents of the investigated

hybrids are related, as they are belonging to a heterotic pool of a

hybrid breeding program. They consist of full-sibs (both crossing

partners are the same) and half-sibs (one common crossing partner)

derived from related crossing partners. Per definition, on a

chromosome segment of 100 cM there occurs on average one

crossing-over per meiosis. The maize chromosomes have lengths

between 150 and 250 cM on most linkage maps. Consequently,

common chromosome stretches that are shared by the hybrids are

expected to be long and cover considerable parts of the

chromosomes. For example, if a chromosome of length 200 cM

consists of four long stretches in LD, then a marker distance of

about 5 cM is expected to cover the recombination events on that

chromosome with sufficient precision. Adding further markers is

expected to increase the costs of genotyping without resulting in a

substantial increase in the prediction accuracy. The average marker

distances in our data set (Supplementary Table S1) and the LD

decay plots (Supplementary Figures S3, S4) support these

considerations. The average distance between two markers is

around 5 to 6 cM on all chromosomes, and for marker distances

around 5 cM strong LD is observed, with r2 values around 0.3. We
Frontiers in Plant Science 06
conclude that for the presented investigation the linkage map is

sufficiently dense for precise genomic predictions.

The Roger’s distance is a measurement of the genetic distance

between two populations based on the SNP composition of the

individuals. It indicates how genetically close two populations are

from each other and is related to heterosis and therefore often used

in studies on hybrid breeding (Reif et al., 2005). On average, the

pairwise Roger’s distance between hybrids in one location is

between 0.125 and 0.140 except for the two locations 6 and 7 in

2015 (Supplementary Table S2). These two environments have the

specificity to contain hybrids from two different testers (Table 1)

which explain the highest average distance. The highest average

pairwise Roger’s distance between the hybrids of two environments

is 0.388. This is roughly twice the Roger’s distance observed within

an environment. The reason is that in one location, hybrids share

the same tester while when two locations are considered, two testers

are involved. This statement is sustained by the average distance

within one location for locations 6 and 7 in 2015. In these locations

two testers have been used and the average distance is similar to the

average distance of the hybrids in two locations.

The prediction accuracies observed for the CV6designs ranged

mostly between 0.5 and 0.8 (Figures 2, 3) and can be regarded as
A

B

FIGURE 3

Correlation between observed and predicted yield (A) and moisture (B) for training set designs CV3(within environment with no previous data) and
CV6(within year with no previous data) for one year, and training set designs CV1to CV8across one or two years. The median of 100 simulations for
the prediction method RR-BLUP is shown on top of the respective boxplots.
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high and suitable for genomic selection of breeding material. A

putative reason for the high prediction accuracy is that the lines are

derived as doubled haploids from related crosses, resulting in rather

long chromosome stretches which are identical by descent that can

be marked by few genetic markers. Similar conclusions were drawn

by Hickey et al. (2014). The unreplicated trial allows to test a large

number of selection candidates, resulting in a greater selection

intensity than that of replicated trials.

We conclude that unreplicated tests of small training sets and

genotyping with a rather low number of markers allowed the

screening of large numbers of selection candidates in our data set

from early stages of a maize breeding program. Compared to

phenotyping with replicated tests, the combination of

unreplicated tests with genomic prediction seems to be a

promising strategy for increasing the selection intensity.
4.2 Model used for estimating adjusted
treatment values

In genomic prediction with replicated trials the phenotypic

values are usually adjusted with a linear model. The resulting

BLUPs of the genotypes (when regarding genotype as a random

factor) or the least square means (LSMeans, for models with

genotype as fixed factor) are used for the subsequent genomic

prediction. Such a procedure is not possible for unreplicated trials,

because if each genotype is evaluated only in one plot, the genotypic

effect cannot be separated from the error term, and neither BLUPs

nor LSMeans can be estimated. We therefore estimated the effects of

year and environment within year with Equation 1 using standard

analysis of variance methodology, and then adjusted the

unreplicated phenotypes for each hybrid with the effects of years

and environments. This is a common procedure in evaluating

unreplicated trials.
4.3 Model used for genomic prediction

The statistical model in Equation 3 is a marker-based model

that estimates testcross effects. Testcross effects cover additive gene

effects and in addition a part of the dominance gene effects. The

degree to which dominance effects are covered depends on the

genetic separation of the two breeding pools. If the allele frequencies

in the pools are differing to a large extent, then large portions of the

dominance effects are included in the testcross effects. The fact that

testcross effects include dominance is the backbone of hybrid

breeding, and the only reason why hybrid breeding programs that

employ testcrosses in early stages can successful realize selection

gain. Our data set is from an ongoing commercial hybrid breeding

program that employs testcrosses in early stages and the two pools

are genetically separated (Supplementary Figure S1). Hence, in our

dataset testcrosses are expected to cover a large part of the dominant

gene action.

In experiments where all pairwise crosses of two sets of lines are

carried out, the main effects of the lines are called general

combining ability (GCA) effects and the interaction effects
Frontiers in Plant Science 07
between fathers and mothers are called specific combining ability

(SCA) effects. The GCA and SCA effects of such a factorial can be

predicted with so called ‘animal models’ where the marker

information is used to establish genomic relationship matrices

(VanRaden, 2008), an example for the method is presented by

[29]. Our data set consists of testcrosses of sets of candidate lines

with inbred testers, in most instances a tested line is crossed to one

tester only. This results in a confounding of GCA and SCA effects in

the testcross effects. However, the SCA effects in ongoing hybrid

breeding programs in maize are typically small (cf Schrag et al.,

2009) and for this reason testcross values are used in many breeding

programs as an approximation of the GCA values. Hence, including

a SCA component in our model is not possible due to the structure

of our experimental design. However, even if it were possible to add

SCA effects to the model, an increase in prediction accuracy is not

expected with the plant material of the invest igated

breeding program.

Interaction effects between SNPs and environment were not

included in our genomic prediction model. Omitting the correction

for environmental effects (Equation 1) and including environmental

effects on the individual level and genotype by marker interaction

effects in the genomic prediction model could accomplish this. Such

an analysis would require that all different chromosome stretches in

linkage disequilibrium that are occurring in the plant material are

tested in a comparable replication number in all environments.

Only then the unconfounded estimation of marker effects,

environmental effects and marker × environment interaction

would be possible. Such an analysis would need a planned

balanced experiment, specifically designed to detect marker ×

environment interactions. In our data set such a balancedness is

not guaranteed, neither for the tested lines nor for the testers.

Employing a model as described above to our data would result in a

strong confounding of genetic, environmental and interaction

effects. Due to the rather high environmental effects this could

result in severe under- or overestimation of the performance of the

hybrids. We therefore decided to employ a correction for

environmental effects (Equation 1) and to not include

environmental effects and their interaction with genomic effects

in the model.
4.4 Interaction between training set design
and prediction method

The effect of the prediction model on the accuracy of genome

wide prediction was investigated in numerous studies (e.g., Piepho,

2009; Li et al., 2020; Rolling et al., 2020) but without clear

conclusions on the general preferability of a certain model.

Comparing prediction models is not an objective of our paper,

but we nevertheless wanted to check whether there is an interaction

between the training set design and the employed prediction model.

To accomplish this, we combined all training set designs with the

prediction models Bayes A, Bayes B, BRR, and RR-BLUP and

evaluated the prediction of yield and moisture in 2014 and 2015.

To a large extent no differences in prediction accuracy were

observed. Results for the design CV6are presented in the
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supplementary material (Supplementary Figure S5). Similar results

were observed for all other training set designs (results not shown).

Therefore we conclude that we have not detected an interaction

between training set design and statistical model. We decided to use

the RR-BLUP method for our investigations, as it is conceptually

and computationally simpler than the other Bayes methods and it

can be implemented using the fast and numerically stable R

package rrBLUP.
4.5 Data used for model training

Test cross trials for the two heterotic pools of a hybrid breeding

program are typically carried out in parallel. For example, in 2015

we tested at each of locations 1 and 2 the number of 106 Flint lines

with a Dent tester. At locations 6 and 7 a total of 206 Dent lines were

tested with four Flint testers (Table 1). Such data structures do allow

two options for the tester side of the prediction model (Eq. 3). The

first is to restrict the prediction model to the data points from a

certain tester/test cross candidate pattern, i.e., to predict

experiments with a pattern Flint tester/Dent test cross candidates,

only with data from trials with this pattern. The second is to use in

addition data points from the opposite tester/test cross pattern, i.e.,

to predict experiments with a pattern Flint tester/Dent test cross

candidates, with experiments of both patterns, Flint tester/Dent test

cross candidates, and Dent tester/Flint test cross candidates. We

used the CV6training set design in years 2013 and 2015 to compare

these alternatives and observed only marginal differences in

prediction accuracy (results not shown). A study from Lorenzi

et al., 2022 shows that both approaches give mostly similar results

for sillage in maize. While these results does not point to obvious

advantages of using both testing patterns in a training set, the larger

amount of observations is expected to increase stability of

numerical approaches and precision in small data sets as

suggested by Technow et al. (2013). Therefore, we used both

tester/testcross patterns for all training set designs involving more

than one experiment.
4.6 Within year vs. within
environment prediction

In a stand-alone one year test, the training set designs CV3and

CV6are the only options that can be employed. From a quantitative

genetics point of view, these designs differ in the genetic meaning of

the estimated marker effects. In the design CV3, the marker effects

are estimating the genotypic effect plus the genotype by

environment interaction effect. In the design CV6, the effects

estimate the genotypic effect only (neglecting for both cases the

factor year and its interactions). While in replicated trials,

estimating the genetic effect only is expected to provide the more

precise estimation of genotypes, the situation in unreplicated trials

is different. Each hybrid is tested only in one location, and therefore

including the appropriate genotype by environment effect in the

marker estimate might result in more precise prediction of the

phenotype than the genetic effect alone. From a statistical point of
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view, the greater size of the training set for the CV6design is

expected to result in more precise estimates of the genetic effects,

which is expected to result in a more precise prediction of the

phenotypes ([13]). These considerations were the motivation to

compare the prediction accuracy of the CV6design with that of the

CV3design. The CV6training set design resulted for all

environments investigated in greater prediction accuracy than the

CV3training set design (Figure 2).

We conclude that the greater precision of the effects estimated

with the CV6training set design, consisting of several hundreds of

hybrids, outweighs a putative positive effect from inclusion of the

genotype by environment interaction in the CV3design. The

CV6training set design delivers a sufficient prediction accuracy to

be considered as an effective means to increase the selection gain in

an unreplicated test cross trial.
4.7 Across year prediction

Across year prediction using training data from previous years

is, under the condition of a sufficient prediction accuracy, an

efficient method for pre-selection of promising candidates before

testing them in the field (Wang et al., 2020). In the investigated data

set, the training set designs CV1and CV2that employ across year

prediction (Figure 1), resulted in the lowest prediction accuracies

among the investigated training set designs (Figure 3). In across

year predictions, environmental conditions of tested sets in two

years differ in the year effect and genotype by environment

interactions, while the phenotypic values from one year share the

same year effect and genotype by environment interactions. The

combination of both factors might serve as an explanation for the

low prediction accuracy observed for the training set designs

employing across year prediction. Our prediction accuracies are

lower than those reached by (Wang et al., 2020) using only one

previous year of data with multi-environment trials. However, as we

use unreplicated trials, a lower prediction accuracy is expected. We

found in barley (Terraillon et al., 2022) that even if prediction

accuracy is low, across year genomic prediction in unreplicated

trials might still be correlated to true genotypic values and therefore

useful in selection despite genotype by environment effects.

However this study is limited to a simulated barley dataset and

the results do not necessarily apply to maize.

We conclude that with a data structure similar to our

investigated experiment, the prediction accuracy reached with

across year prediction is not sufficient for effective pre-selection of

promising hybrids.
4.8 Adding data from one previous year
to the within environment and within
year designs

The training set designs CV3and CV6can be extended by

including into the training set data from one previous year, either

from the same location (training set designs CV4and CV7,

Figure 1), or by including data from all locations used in previous
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year (training set designs CV5and CV8). Considering design CV3as

a reference, both derived training set designs were not able to

consistently outperform the reference (Figure 3). We observe that

only in three cases over 12, the prediction accuracy is improved

when we use previous years data. Interestingly, using all locations in

2014 improved the prediction accuracy for both yield and moisture

in 2014 but it decreased it in 2015.

Considering CV6, the design CV8almost never reach a better

prediction accuracies than CV6prediction (Figure 3). For the year

2015 it even resulted in a lower prediction accuracies for yield than

CV3prediction. The design CV7reached in all investigated scenarios

either a comparable or a slightly better prediction accuracy than the

CV6design (Figure 3). However this increase is not consistent

enough to recommand CV7over CV6.

We observed different situations when choosing for adding data

from previous years to the training set. The prediction accuracies

for moisture are especially illustrative. Considering moisture in

2014, for both, within environment as well as within year designs,

adding data from previous years at the same location (Designs

CV4and CV7) decreases the prediction accuracy compared to the

initial training set design, while adding data from all locations

(Designs CV5and CV8) increased it. For moisture in 2015, the

situation is the opposite. For CV6based designs, adding same

location increases the prediction accuracy while adding all

locations decreases it. This increase can be explained by a more

precise estimation of the phenotypes due to a more precise

estimation of the marker by location effects. These results indicate

that prediction accuracy in unreplicated trials is highly influenced

by the year/environmental effects when considering across year

predictions. Depending on the importance of the genotype by

location effects in the considered years, adding one or all

locations could decrease instead of increase prediction accuracy.

Therefore there is a need to define in which conditions each

approach should be privileged. Auinger et al. (2016) proposed to

correct environmental/year effects using the same checks across

years and managed to obtain good prediction accuracy with this

method. Atanda et al. (2022) proposed sparse testing combined

with overlap of tested material to achieve optimal prediction

accuracy. These results were obtained in replicated trials however,

we would expect similar results in unreplicated trials.

Unfortunately, our experimental design did not include checks or

overlapping material to test these hypothesis.

From an application point of view, adding data from previous

years to the training sets of designs CV3or CV6seems not to be

advantageous due to the variability of its effect, which might

increase or decrease the prediction accuracy depending on

the situation.
4.9 Adding data from two previous years to
the training set

Extending the training set designs to incorporate two years of

previous data instead of one (Figure 3) resulted in no increase of the

prediction accuracy for the within environment and within year
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designs. For the across year designs CV1and CV2it resulted in an

improvement of the prediction accuracy.

When the environmental effects of the predicted year are not

available in the training population, then using multiple years of

previous data could have a similar effect than using multiple

locations. A similar result was observed by Wang et al. (2020).

However, the prediction accuracy remains lower than for within

environment and within year designs, as the genotype by

environment effect cannot be assessed. It is expected, that increasing

the number of years from which data is used in the training set can

result in a further improvement of the prediction accuracy (Auinger

et al., 2016). However, this applies only to situations where the genetic

material is sufficiently related across years. In commercial breeding

programs, this condition is often fulfilled, as selection candidates are

commonly derived from related parents.

The lack of improvement in precision for within environment

and within year designs could be explained by the major

contribution of the data from the current year to a precise

estimation of genome by environment effect. In comparison to

this major contribution, earlier years can only contribute marginally

to the prediction accuracy.
4.10 Impact of the training population size

The population size is often seen as one of the main

components contributing to a high prediction accuracy (Liu et al.,

2018; Sarinelli et al., 2019; Jarquin et al., 2020). However, in our

study it had only a limited effect on the results.

Designs CV4and CV5compared to design CV3, and designs

CV7and CV8compared to design CV6, have a much bigger

population sizes (80 genotypes more for CV4and CV7and

between 320 and 480 more for CV5and CV8) but show similar

prediction accuracies. This result is confirmed when we consider

prediction with data from two previous years. Here the number of

extra genotypes is doubled while the prediction accuracy remains

constant. Adding more genotypes from previous years to the

training set of Design CV3or CV6do not increase the prediction

accuracy, in most cases it even slightly decreases it.

These results suggest that for a precise prediction of

unreplicated test crosses in maize a high grade of relatedness

among the selection candidates and similar environmental

conditions are more important than the pure number of

genotypes in the training set. Including data from loosely related

material evaluated in environments with different genotype by

environment to the training set designs might even result in a

negative effect on the prediction accuracy.
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