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REVIEW & INTERPRETATION

Genetical and Mathematical Properties of Similarity and Dissimilarity Coefficients
Applied in Plant Breeding and Seed Bank Management

J. C. Reif, A. E. Melchinger,* and M. Frisch

ABSTRACT plasm in seed banks and breeding programs (cf., Brum-
mer, 1999), (ii) prediction of heterosis (cf., Melchinger,A proper choice of a dissimilarity measure is important in surveys
1999), (iii) search for promising heterotic groups forinvestigating genetic relationships among germplasm with molecular
hybrid breeding (cf., Reif et al., 2003), (iv) identificationmarker data. The objective of our study was to examine 10 dissimilarity
of duplicates in seed banks (cf., van Treuren et al., 2001),coefficients widely used in germplasm surveys, with special focus on

applications in plant breeding and seed banks. In particular, we (i) (v) assessment of the level of genetic diversity present
investigated the genetical and mathematical properties of these coeffi- in germplasm pools and its flux across time (cf., Dubreuil
cients, (ii) examined consequences of these properties for different and Charcosset, 1998; Labate et al., 2003), and (vi) iden-
areas of application in plant breeding and seed banks, and (iii) deter- tification of essentially derived varieties in plant variety
mined relationships between these 10 coefficients. The genetical and protection (cf., Smith et al., 1991; Lombard et al., 2000).
mathematical concepts of the coefficients were described in detail. In these various applications, a proper choice of aA Procrustes analysis of a published data set consisting of seven

similarity s or dissimilarity coefficient d � 1 � s (follow-CIMMYT maize populations demonstrated close affinity between
ing the terminology of Gower, 1985) is important andEuclidean, Rogers’, modified Rogers’, and Cavalli-Sforza and Ed-
depends on factors such as (i) the properties of thewards’ distance on one hand, and Nei’s standard and Reynolds dissimi-
marker system employed, (ii) the genealogy of the germ-larity on the other hand. Our investigations show that genetical and

mathematical properties of dissimilarity measures are of crucial impor- plasm, (iii) the operational taxonomic unit (OTU)
tance when choosing a genetic dissimilarity coefficient for analyzing (adopting the terminology of Sneath and Sokal, 1973)
molecular marker data. The presented results assist experimenters to under consideration (e.g., lines, populations), (iv) the
extract the maximum amount of information from genetic data and, objectives of the study, and (v) necessary preconditions
thus, facilitate the interpretation of findings from molecular marker for subsequent multivariate analyses.
studies on a theoretically sound basis. In a recent review, Mohammadi and Prasanna (2003)

discussed the use of six coefficients d for the analysis of
dichotomous molecular marker data, but ignored those

Quantifying the degree of dissimilarity among gen- coefficients based on allele frequencies, which are espe-
era, species, subspecies, populations, and elite breed- cially suitable for codominant marker data. Several au-

ing materials is of primary concern in population genet- thors (Goodman, 1972; Gower, 1985; Gower and Leg-
ics and plant breeding. Before 1970, measures of genetic endre, 1986) investigated the mathematical properties
dissimilarity between taxonomic units relied on pedi- and relationships among various coefficients d. How-
gree analysis and morphological, physiological, or cyto- ever, the above mentioned surveys disregarded coeffi-
logical markers, as well as biometric analyses of quanti- cients, which are based on specific genetic models and,
tative and qualitative traits, heterosis, or the segregation therefore, suitable for studies with seed bank or plant
variance in crosses (Melchinger, 1999). During the fol- breeding materials.
lowing two decades, isozymes have successfully been To successfully conduct molecular marker surveys
employed in numerous taxonomic and evolutionary with plant breeding and seed bank materials, a thorough
studies (Hamrick and Godt, 1990), but their use in other knowledge of genetical and mathematical properties of
applications was hampered by the small number of poly- coefficients d is of crucial importance. Therefore, the
morphic markers available. objective of our study was to examine 10 coefficients d

Molecular markers, such as restriction fragment length widely used in germplasm surveys, with special focus
polymorphisms (RFLPs), random amplified polymor- on applications in plant breeding and seed banks. In
phic DNA (RAPDs), amplified fragment length poly- particular, we (i) investigated the genetical and mathe-
morphisms (AFLPs), simple sequence repeats (SSRs), matical properties of these coefficients, (ii) examined
and single nucleotide polymorphisms (SNPs), have mean- consequences of these properties for different areas of
while replaced isozymes and are heavily used for (i) application in plant breeding and seed banks, and (iii)
detection of genetic relationships among different germ- determined relationships between these 10 coefficients.

Nature of Molecular Marker DataInstitute of Plant Breeding, Seed Science, and Population Genetics,
Univ. of Hohenheim, 70593 Stuttgart, Germany. Received 28 Jan. We suggest the term allelic informative if allele fre-
2004. *Corresponding author (melchinger@uni-hohenheim.de).

quencies can be determined from the molecular marker
Published in Crop Sci. 45:1–7 (2005).
© Crop Science Society of America Abbreviations: AFLP, amplified fragment length polymorphism; OTU,

operational taxonomic unit; SSR, simple sequence repeat.677 S. Segoe Rd., Madison, WI 53711 USA
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2 CROP SCIENCE, VOL. 45, JANUARY–FEBRUARY 2005

Table 1. Dissimilarity coefficients d for allelic informative marker data. pij and qij are allele frequencies of the jth allele at the ith locus
in the two operational taxonomic units under consideration, ni is the number of alleles at the ith locus, and m refers to the number
of loci.

Property

Dissimilarity coefficientVariable Range Distance Euclidean

dE ��m
i�1 �ni

j�1 (pij � qij)2 Euclidean 0, √2m yes yes

dR
1
m �m

i�1 �1
2�ni

j�1 (pij � qij)2 Rogers (1972) 0, 1 yes no

Modified Rogers’ (Wright, 1978; Goodman
dW

1

√2m ��m
i�1 �ni

j�1 (pij � qij)2 and Stuber, 1983) 0, 1 yes yes

dCE �1
m �m

i�1 (1 � �ni
j�1 √pijqij) Cavalli-Sforza and Edwards (1967) 0, 1 yes yes

dRE �ln(1 � �m
i�1 (a � b)/c) Reynolds et al. (1983) 0, ∞ no no

a � 1/2 �ni
j�1 (pij � qij)2

b � (1/(2(2n � 1)))(2 � �ni
j�1 (p2

ij � q2
ij))

c � �m
i�1 (1 � �j�1 pijqij)

dN72 Nei (1972) 0, ∞ no no
�ln �m

i�1 �ni
j�1 pijqij

��m
i�1 �ni

j�1 p2
ij �m

i�1 �ni
j�1 q2

ij

dN83 Nei et al. (1983) 0, 1 no no1
m �m

i�1 (1 � �ni
j�1 √pijqij)

data. Marker data are denoted as allelic noninformative d(i, j) � 0 and d(i, j) � 0 if and only if i � j, [1]
if this is not feasible. For instance, SSR data of individual

dij � dji, [2]genotypes are allelic informative. The AFLP data are
mostly allelic noninformative although Geerlings et al.

dik � dij � djk. [3](1999), Piepho and Koch (2000), and Jansen et al. (2001)
described methods to estimate allele frequencies and, Some simple but important properties follow from this
thus, score AFLP data as allelic informative in specific definition. All elements of a distance matrix with respect
situations. to a set of OTUs S must be defined and positive or

Provided that molecular marker data are allelic infor- zero. The matrix is symmetric and the triangle inequality
mative, the estimates of coefficients d between OTUs can (Eq. [3]) holds true for all triplets (i, j, k � S). The
be calculated from the difference in the allele frequencies latter means that the length of any side of a triangle
(Table 1). For allelic noninformative molecular marker constructed with the three elements (i, j, k � S) is less
data, coefficients d based on absence or presence of ob- than or equal to the sum of the lengths of the other two
servation of bands or signals must be applied (Table 2). sides, with equality occurring only when the triangle

degenerates to a line.Distance and Euclidean Properties The coefficient d is Euclidean if n points Pi � �n exist
such that the Euclidean distance between Pi and Pj isConsider a set of elements M and a function d: M �

M → �, assigning a real number to each pair of elements dij for all i, j, � M (Gower and Legendre, 1986). An
illustration of the Euclidean property is given by thesein M. A dissimilarity d is called a distance or metric, if

for each element i, j, k ε M the following three properties authors.
The Euclidean property is important because it ishold true (Gower, 1985):

Table 2. Similarity coefficients for allelic noninformative marker data, where vij refers to the bands in common between two operational
taxonomic units (OTUs) i and j, wij is the number of bands present in i and absent in j, xij is the number of bands present in j and
absent in i, and yij is the number of bands both absent in i and j.

Property

Similarity coefficient

1 � s √ 1 � s

Variable Range Distance Euclidean Distance Euclidean

sSM
vij � yij

vij � wij � xij � yij

simple matching 0, 1 yes no yes yes

sJ
vij

vij � wij � xij

Jaccard (1908) 0, 1 yes no yes yes

sD
2vij

2vij � wij � xij

Dice (1945) 0, 1 no no yes yes
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REIF ET AL.: COEFFICIENTS OF SIMILARITY AND DISSIMILARITY 3

an explicit or implicit assumption of many multivariate offspring derived from the F1 cross, Melchinger et al.
(1991) showed that dR fulfilled following two geneti-analysis methods such as principal coordinate analysis,

also known as classical multidimensional scaling, hierar- cal properties:
chical cluster analysis, classification, hierarchical classi-

dR(F1, P1) � dR(F1, P2) � dR(P1, P2)/2, [6]fication, and graph theory (Gower, 1985). However, if
a coefficient d is not Euclidean, then there exists a con-

dR(P1, O) � dR(P2, O) � dR(P1, P2). [7]stant b greater than some minimal value such that the
matrix with the elements (dij � b) is Euclidean (Cox The first property can be illustrated geometrically as
and Cox, 2000). The problem of finding such a constant three points F1, P1, and P2 forming a line with F1 lying
b has been referred to for many years, Messick and in its center.
Abelson (1956) being an early reference. Thus, the Eu- On the basis of these two properties, Melchinger et
clidean property is desirable but the main criteria for al. (1991) derived theoretical results that dR estimates
the choice of a coefficient d are its genetical properties. between two homozygous inbreds are linearly related
Both the Euclidean and genetical properties will be to the coancestry coefficient (Malecot, 1948). Conse-
investigated for the coefficients d (Tables 1 and 2). quently, dR is suitable for studying the relationship be-

tween the genetic dissimilarity of inbreds based on al-
lelic informative marker data and the coefficient ofGenetic Dissimilarity Coefficients for Allelic
coancestry (Malecot, 1948). This linear relationship isInformative Marker Data
also desired in surveys (i) investigating the assemblyEuclidean Distance and validation of core collections and the identification

The Euclidean distance is defined as: of duplicates in seed banks and (ii) uncovering pedigree
relationships among OTUs as needed for the detection
of essentially derived varieties in plant breeding.dE � ��

m

i�1
�
ni

j�1
(pij � qij)2, [4]

Modified Rogers’ Distance
where pij and qij are allele frequencies of the jth allele

Wright (1978, p. 91) and Goodman and Stuber (1983)at the ith locus in the two OTUs under consideration,
modified dR by assigning each allele one dimension inni is the number of alleles at the ith locus, and m refers to
the modified Rogers’ distance:the number of loci. The dE ranges from zero to √2m,

the limits being assumed when the two OTUs have
dW �

1

√2m ��
m

i�1
�
ni

j�1
(pij � qij)2. [8]identical allele frequencies or are fixed for different

alleles. Thus, an obvious disadvantage is that dE values
from different studies cannot be compared directly be-

Obviously, dW �
1

√2m
and as an Euclidean distance withcause dE depends on the number of marker loci assayed.

The dE is appropriate if allelic informative marker
values in [0, 1] it can be used for the same applicationsdata are available and the relationships between OTUs
as recommended for dE. Like dR, dW is not equal to one(populations or individuals) are investigated in combi-
in the case of multiple alleles, even if the two OTUsnation with multivariate methods that require dissimi-
have no allele in common.larities possessing the Euclidean property.

Consider two populations, �1 and �2, in Hardy-Wein-
berg equilibrium and their hybrid population �1 � �2.Rogers’ Distance
On the basis of results of Falconer and Mackay (1996),

Rogers’ distance (Rogers, 1972) is a modification of and assuming biallelism and absence of epistasis, Mel-
dE and was developed assuming no knowledge about chinger (1999) derived the following relationship be-
evolutionary forces diverging the OTUs under consid- tween the mean of these populations:
eration:

	H(�1 � �2) � 
�1��2 � (
�1 � 
�2)/2 � �
i

y2
i �i [9]

dR �
1
m �

m

i�1 �
1
2 �

ni

j�1
(pij � qij)2. [5]

� �
i

d 2
Wi(�1, �2)�i,

The dR is the average dE across all loci standardized with where 	H is the panmictic-midparent heterosis (Lam-
key and Edwards, 1999), �i is the dominance effect atthe factor √1/2 to restrict the values to the interval [0, 1].

It is one only if two OTUs are fixed for different alleles, QTL i, and yi is the difference in gene frequencies.
Consequently, a linear relationship between 	H andbut if one or both OTUs are not fixed and they have

no alleles in common, dR is not equal to one. dR fulfills d 2
W is expected under the above conditions. Therefore,

d 2
W is especially suitable in studies based on allelic infor-the distance properties (Nei et al., 1983), but it is not

Euclidean. This follows from the identity dR � 1 � sSM mative marker data for examining (i) the prediction of
heterosis with genetic dissimilarities or (ii) the establish-for homozygous inbred lines and the fact that 1 � sSM

is not Euclidean (Gower and Legendre, 1986). ment of heterotic groups. Furthermore, dW can be used
for the same applications as suggested for dE, owing toAssuming that (i) F1 was the cross between two homo-

zygous inbred lines P1 and P2 and (ii) O was an inbred its Euclidean property.



R
ep

ro
du

ce
d 

fr
om

 C
ro

p 
S

ci
en

ce
. P

ub
lis

he
d 

by
 C

ro
p 

S
ci

en
ce

 S
oc

ie
ty

 o
f A

m
er

ic
a.

 A
ll 

co
py

rig
ht

s 
re

se
rv

ed
.

4 CROP SCIENCE, VOL. 45, JANUARY–FEBRUARY 2005

Cavalli-Sforza and Edwards’ Chord Distance undefined. Thus, dRE is neither a distance nor Euclidean.
The dRE was developed assuming that an ancestral popu-Cavalli-Sforza and Edwards (1967) developed a ge-
lation was split into several subpopulations of the samenetic distance to analyze blood group allele frequencies
size, which subsequently diverged due to drift. In suchin human populations. In this coefficient, an OTU with
a situation, dRE is expected to increase linearly with theallele frequencies p1, p2, ..., pn is represented by the vector
time since the populations diverged (Weir, 1996, p. 91),(√p1, √p2, ..., √pn). Such a vector is always of unit length that is, dRE � t/2N, where N is the subpopulation sizeand, thus, the OTU is located on a surface of a hyper- and t the time measured in generations after divergencesphere with a radius of one considering one locus. The of the two populations. Thus, if mutation and selectiondistance between two OTUs is then directly propor-
can be neglected, and drift is the major evolutionarytional to the length of the chord connecting the points
force, then dRE is an appropriate dissimilarity coefficientrepresenting the OTUs. In particular, for two OTUs
for investigating the phylogenetic relationships amongwith no allele in common, dCE is equal to one (Wright,
populations based on allelic informative marker data.1978, p. 91). For multiple loci, the distances of all loci

A recent application of dRE was described by Labateare combined by applying the Pythagorean theorem in
et al. (2003), who examined relationships among U.S.many dimensions, so that the square of the distance
maize landraces with SSR markers and assumed thatbetween the OTUs is given by the sum of squared dis-
an ancestral population split into several subpopulationstances for each locus:
diverging mainly due to drift. Mutation is known to
have only small effects on genetic diversity compareddCE � �1

m �
m

i�1
(1 � �

ni

j�1
√pijqij). [10]

with other forces and, thus, can safely be ignored in
short-term evolution scenarios. However, neglecting se-
lection as an evolutionary force in plant breeding or inThe dCE ranges from zero to one even in the case of

multiple alleles, which is an advantage over dR and dW. seed bank populations seems questionable in most in-
It can be shown that: stances.

dCE �
1

√2m ��
m

i�1
�
ni

j�1
√pij � √qij)2. [11] Nei’s Standard Genetic Dissimilarity

In contrast to dCE and dRE, where it is assumed that
Thus, dCE is similar to dW except that it uses the square populations diverged due to random genetic drift, Nei
root of the allelic frequencies as coordinates and is con- (1972) suggested a dissimilarity coefficient based on mu-
sequently an Euclidean distance. The dCE was developed tation and drift, often referred to as Nei’s standard dis-
based on Kimura’s (1954) model of selective drift by similarity. This measure is intended to estimate the aver-
assuming that (i) the mutation rate is small and (ii) age number of codon substitutions per locus and was
variation in selection pressure is rapid and haphazard defined as:
(no constant direction in allele frequency changes). It
seems doubtful that seed bank and plant breeding mate- dN72 � �ln �m

i�1 �ni
j�1 pijqij

��m
i�1 �ni

j�1 p2
ij�m

i�1 �ni
j�1 q2

ij

. [14]
rials have evolved according to this model because selec-
tion pressure is rather directed than rapid and haphaz-
ard. However, if allelic informative marker data are
available and one can assume the selective drift model, Nei (1978) extended dN72 with a bias factor. If two OTUs
then dCE is a proper coefficient to investigate phyloge- differ in all alleles, dN72 is not defined, because it be-
netic relationships among populations. Because dCE is comes � ln 0. Thus, dN72 is neither a distance nor Euclid-
Euclidean, it can be used for the same tasks as proposed ean. dN72 was developed based on the infinite-allele
for dE. model (Kimura and Crow, 1964) assuming that an ances-

tral population split into various subpopulations, which
Reynolds’ Dissimilarity diverged due to drift and mutation. If (i) the mutation-

drift balance is maintained throughout the evolutionaryReynolds et al. (1983) used the coancestry coefficient
process, (ii) selection is absent, and (iii) the dissimilarity� (Malecot, 1948) as the basis for a measure of genetic
is not very large, then dN72 � 2vt, where v is the mutationdissimilarity for short-term evolution, when the diver-
rate per locus and generation and t is the time measuredgence between populations with a common ancestral
in generations after divergence of the two populationspopulation may be regarded as being caused solely by
(Nei et al., 1983). Under the above conditions, dN72 isdrift:
suitable for investigating phylogenetic relationshipsdRE � �ln(1 � �), [12] among populations based on allelic informative marker

where data but otherwise, the same constrains apply as for dRE.

Nei et al.’s (1983) Dissimilarity
� �

�m
i�1 �12�ni

j�1 (pij � qij)2 �
1

2(2n � 1)
[2 � �ni

j�1 (p2
ij � q2

ij)]�
�m

i�1 (1 � �j�1 pijqij)
[13]

Assuming the infinite allele model (Kimura and Crow,
1964), Nei et al. (1983) suggested in a simulation studyFor populations completely fixed at each locus (i.e., two

homozygous inbred lines) � is equal to one and dRE is a dissimilarity coefficient, which is quite efficient in recov-
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Table 3. Residual sum of square values obtained by a Procrustesering the true evolutionary tree when it is reconstructed
analysis with a published data set of seven CIMMYT maizefrom allele frequency data (Nei and Kumar, 2000): populations (Reif et al., 2003) for seven dissimilarity coeffi-
cients based on differences in allele frequencies [Euclidean
(dE), Rogers’ (dR), modified Rogers’ (dW), and Cavalli-SforzadN83 �

1
m �

m

i�1
(1 � �

ni

j�1
√pijqij), [15]

and Edwards’ (dCE) distance and Reynolds’ (dRE), Nei’s (1972)
(dN72), and Nei et al.’s (1983) (dN83) dissimilarity coefficient].

which equals d 2
CE. Nevertheless, the result of the simula- dE dR dW dCE dRE dN72

tion study depends heavily on the underlying evolution-
dR 0.0014ary model of the simulation scenario. The dN83 was not dW 0.0000 0.0014
dCE 0.0038 0.0047 0.0038developed based on a specific genetic model and it is
dRE 0.0592 0.0636 0.0592 0.0787neither a distance nor Euclidean. Thus, application of dN72 0.0307 0.0336 0.0307 0.0474 0.0103

dN83 in surveys for detecting phylogenetic relationships dN83 0.0209 0.0233 0.0209 0.0228 0.0281 0.0172
among populations seems questionable. For homozy-
gous inbred lines, dN83 � dR, and hence it could be used Relationships among Dissimilarity
for the same applications as dR. and Similarity Coefficients

If (i) band absence or presence can be interpreted
Genetic Dissimilarity Coefficients for Allelic as two alleles of one locus and (ii) the OTUs under

Noninformative Marker Data consideration are homozygous inbreds, then the follow-
ing relationships exist between the s and d coefficients:With allelic noninformative marker data and two OTUs

under consideration, one can form a 2 by 2 table with
dR � d W

2 � dN83 � d CE
2 �

1
2m

d E
2 � 1 � sSM. [19]entries vij (number of bands in common between both

OTUs), wij (number of bands present in the ith OTU
Gower (1975) proposed a method of comparing differ-and absent in the jth OTU), xij (number of bands absent
ent multivariate analyses of the same data set, alsoin the ith OTU and present in the jth OTU), and yij known as Procrustes analysis (Cox and Cox, 2000). We(number of bands absent from both OTUs).
used this approach to illustrate the differences betweenThe simple matching coefficient is one of the oldest the dissimilarity coefficients based on allele frequency

similarity coefficients (Sneath and Sokal, 1973): differences (Table 1).
The Procrustes analysis is based on the pairwise com-

sSM �
vij � yij

vij � wij � xij � yij

. [16] parison between two sets of dissimilarities, dij and d*ij
(i, j � 1, 2, ..., n), among the same sample of n OTUs.
Rather than concentrating on the distances themselves,For homozygous inbred lines, dSM � 1 � sSM � dR, and
geometric points Pi (i � 1, ..., n) of the n OTUs aretherefore can be used for the same applications as sug-
constructed to give rise to all the interdistances, dij. Thegested for dR.

Jaccard (1908) suggested the similarity coefficient:

sJ �
vij

vij � wij � xij

. [17]

The Dice coefficient (Dice, 1945) is defined as:

sD �
2vij

2vij � wij � xij

. [18]

The dissimilarity dD � 1 � sD is also called the Nei–Li
distance (Nei and Li, 1979) and is related to dJ � 1 �
sJ by a monotonic function.

In contrast to sSM, both sJ and sD do not involve nega-
tive matches (yij). For instance, if the probability of
nonamplification of bands is high and absence of bands
in both OTUs cannot be interpreted as a common char-
acteristic, it is appropriate to apply coefficients s exclud-
ing negative matches (sJ and sD).

In contrast to 1 � s, √1 � s is for all three presented
coefficients a distance and Euclidean (Gower and Leg- Fig. 1. First two principal axes (PA1 and PA2) of Kruskal’s nonmetric
endre, 1986). Thus, they could be used to examine rela- multidimensional scaling for comparison of Euclidean (dE), Rogers’

(dR), modified Rogers’ (dW) and Cavalli-Sforza and Edwards’ dis-tionships among OTUs based on allelic noninformative
tance (dCE), and Nei’s (1972) (dN72), Nei et al.’s (1983) (dN83), andmarker data in combination with multivariate methods,
Reynolds’ (dRE) dissimilarity coefficient based on a Procrustes anal-

the explicit or implicit assumption of which is a dissimilar- ysis with a published data set of seven CIMMYT maize populations
(Reif et al., 2003).ity coefficient with the Euclidean property (Gower, 1985).
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Table 4. Overview of the genetical and mathematical properties of dissimilarity coefficients based on allelic informative marker data:
Euclidean (dE), Rogers’ (dR), modified Rogers’ (dW) and Cavalli-Sforza and Edwards’ distance (dCE) and Nei’s (1972) (dN72), and Nei
et al.’s (1983) (dN83) and Reynolds’ (dRE) dissimilarity coefficient.

Dissimilarity
coefficient Properties

dE No underlying genetic concept. Suited to investigate relationships among operational taxonomic units (OTUs) with multivariate
methods that require Euclidean distances (principal coordinate analysis, hierarchical cluster analysis, classification,
hierachical classification, and graph theory).

dR Linearly related to coefficient of coancestry. Appropriate to examine (i) the assembly and validation of core collections and (ii)
the uncovering of pedigree relationships among OTUs such as the detection of essentially derived varieties in plant
breeding or the identification of duplicates and collection gaps in seed banks.

dW d 2
W is linearly related to panmictic-midparent heterosis. Therefore, d 2

W is appropriate to examine (i) the prediction of heterosis
with genetic distances or (ii) the establishment of heterotic groups.

dCE Based on Kimura’s (1954) model of selective drift. If one can assume the selective drift model, then dCE is a proper coefficient to
investigate the phylogenetic relationships among populations.

dRE Based on a model that an ancestral population splits into several subpopulations of the same size, which diverge due to drift.
Thus, if mutation and selection can be neglected and drift is the major evolutionary force, then dRE is suitable for investigating
the phylogenetic relationships among populations.

dN72 Based on the infinite-allele model (Kimura and Crow, 1964). If one can assume the infinite-allele model, then dN72 is suitable for
investigating phylogenetic relationships among populations.

dN83 For homozygous inbred lines, dN83 � dR and, hence, dN83 is also linearly related to the coancestry coefficient (Malecot, 1948).
Therefore, dN83 can be used for inbred lines for the same applications as dR.

coordinates of these points were obtained with Kruskal’s quently, our results indicate that the analogy of dN72 and
dRE in estimating the allele frequencies of the ancestralnonmetric multidimensional scaling (Cox and Cox, 2000).

Kruskal’s nonmetric multidimensional scaling is a tech- population has a stronger influence on the property
of the coefficients than the choice of the evolutionarynique to represent OTUs in a reduced space while pre-

serving the distance relationships among them with high model, assuming drift and mutation or only drift. Sum-
marizing, some coefficients are mathematically relatedfidelity. It is not limited to Euclidean distance matrices

and can produce ordinations of objects from any dissimi- or were developed assuming similar evolutionary models.
larity matrix. Similarly, the coordinates of the points
Pi(i � 1, ..., n) are found for the dissimilarities d*ij by CONCLUSIONS
applying again Kruskal’s nonmetric multidimensional

Our investigations show that genetical (Table 4) andscaling. The two configurations are then matched for
mathematical (Tables 1 and 2) properties of dissimilaritybest fit by means of translation, rotation, and reflection.
measures are of crucial importance when choosing aThe criterion of best fit adopted is the minimization of
genetic dissimilarity coefficient for analyzing molecularthe residual sum of squares R2 � �2

i�1d E
2 (Pi, P*i ), where

marker data. The presented results can assist experi-dE(Pi, P*i ) is the Euclidean distance between corre-
menters in the choice of dissimilarity measures thatsponding points Pi and P*i .
allow the extraction of the maximum amount of infor-We compared the seven coefficients d based on allele
mation from genetic data for given objectives. Thus,frequency differences (Table 1) of a published data set
they facilitate the interpretation of findings from molec-of seven tropical CIMMYT maize populations (Reif et
ular marker studies on a theoretically sound basis.al., 2003) by subjecting them pairwise to the Procrustes

analysis. The resulting R2 matrix (Table 3) was then
used as input for Kruskal’s nonmetric multidimensional REFERENCES
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