
Copyright � 2006 by the Genetics Society of America
DOI: 10.1534/genetics.106.057273

Marker-Based Prediction of the Parental Genome Contribution to
Inbred Lines Derived From Biparental Crosses

Matthias Frisch and Albrecht E. Melchinger1

Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany

Manuscript received February 17, 2006
Accepted for publication July 25, 2006

ABSTRACT

Molecular markers can be employed to predict the parental genome contribution to inbred lines. The
proportion a of alleles originating from parent P1 at markers polymorphic between the parental lines P1

and P2 is commonly used as a predictor for the genome contribution of parent P1 to an offspring line. Our
objectives were to develop a new marker-based predictor j for the parental genome contribution, which
takes into account not only the alleles at marker loci but also their map distance, and to compare the
prediction precision of j with that of alternative methods. We derived formulas for j for inbreds derived
from biparental crosses (F1 and backcrosses) with the single-seed descent or double-haploid method and
presented an extension j* possessing statistical optimum properties. In a simulation study, a showed a sys-
tematic overestimation of large parental genome contribution that was not observed for j. The mean
squared prediction error of j was at least 50% smaller than that of a for linkage maps with unequal distances
between adjacent markers. A data set from a study on plant variety protection in maize was used to illustrate
the application of j. We conclude that j provides substantially greater prediction precision than the com-
monly used predictor a in a broad range of applications in genetics and breeding.

GENETIC fingerprinting of inbred lines and their
crossing parents with molecular markers provides

a means to assess the parental origin of the genome of a
line. It is carried out routinely in basic genetic research
and applied breeding programs. Applications include,
for example, the prediction of the donor genome propor-
tion in inbred lines derived from backcross individuals
of a gene introgression program or in near-isogenic
lines of an introgression library developed either for
fine mapping of QTL or for identification of favorable
chromosome segments in genetic resources. In plant
variety protection, prediction of the parental genome
contribution is employed to decide whether or not a
line is derived essentially from a progenitor line. In
estimation of the breeding value of a line using phe-
notypic information from its crossing parents, marker-
based prediction of the parental genome contribution
can replace the assumption that each parent of a bi-
parental cross contributes one-half to the genome of an
offspring line.

In these applications, the proportion of marker al-
leles that are identical with the alleles of a parental line
is commonly used to predict the contribution of the
parental line to the genome of the derived inbred line
(cf. Bernardo et al. 2000; Heckenberger et al. 2005b).
The major shortcoming of this unweighted prediction is

that neither linkage between markers nor the stochastic
dependence between the parental origin of the marker
alleles and the parental origin of the adjacent genomic
regions is taken into account.

In the context of recurrent backcrossing, Visscher

(1996) suggested to predict the contribution of the do-
nor parent to the genome of a backcross individual by
assigning different weights to the markers. He treated
prediction of the parental genome contribution based
on linked markers analogously to prediction of the breed-
ing value of an individual based on different sources of
phenotypic information. Extending the previous work of
Hill (1993), he applied selection index theory (Hazel

1943) to derive weights depending on the recombina-
tion frequency between markers. However, for inbred
lines no advanced theory has been elaborated for molec-
ular marker-based prediction of the parental genome
contribution.

We focused on inbred lines developed from biparen-
tal crosses (F1 or backcrosses) with the single-seed de-
scent or double-haploid method. The objectives of our
research were to (1) develop a new marker-based pre-
dictor j for the parental genome contribution, which
takes into account not only the alleles at marker loci but
also their map distance, (2) present an extension j*,
which possesses statistical optimum properties, and (3)
compare the prediction precision of j with that of al-
ternative methods. Furthermore, various examples for
applications of the predictor j in genetics and breeding
are discussed.
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THEORY

Outline of the prediction approach: The parental ori-
gin of the genome in a derived inbred line can be traced
with molecular markers, which are polymorphic in the
parental lines P1 and P2. The markers can be regarded as
a sample of all loci in the genome and, therefore, the
parental genome contribution to marker loci can be
used as a predictor for the parental genome contribu-
tion to the entire genome. However, typically marker
maps are not equally spaced and the different lengths of
marker intervals are ignored in such a prediction. We
suggest a predictor j, which takes into account not only
the genotype at the marker loci, but also the map dis-
tance between adjacent markers. The principle of j is
to determine for each locus in the genome the con-
ditional expectation that it carries the allele of parent P1

under the condition of the observed genotype at flank-
ing markers. The genome is subdivided into nonover-
lapping chromosome intervals, of which the borders are
defined by the markers, and the conditional expecta-
tions are integrated along the chromosome intervals.
This yields a prediction of the parental genome con-
tribution of P1 to each chromosome interval. Subse-
quently, the predictions for the chromosome intervals
are weighted with the interval lengths and averaged to
obtain a predictor for the genome contribution of par-
ent P1 to the entire genome.

Notation and assumptions: Map positions, measuring
the distance of a locus from a telomere in morgan units,
are denoted by x. Indicator variables G take the value 1 if
the allele at the corresponding locus originates from
parent P1 and 0 otherwise. Realizations of G are denoted
with g. We subdivide the genome into n nonoverlapping
chromosome intervals. A chromosome interval i is de-
limited by either (1) two markers with map positions
xai

, xbi
or (2) a marker and a telomere. For case 2 we as-

sume without loss of generality that the telomere has
map position 0 and the distance between the marker
and the telomere is xai

. The length of a chromosome in-
terval is di ¼ xbi

� xai
(case 1) and di ¼ xai

(case 2). The
genome length is l ¼

P
i di .

We assume that the offspring are completely homo-
zygous lines, derived without selection from a biparental
cross or a backcross of completely homozygous parents
P1 and P2 that are polymorphic in at least one marker
per chromosome. We further assume absence of in-
terference (Stam 1979) in crossover formation such
that the recombination frequency ruv between two loci
with map positions xu # xv is calculated by Haldane’s
(1919) mapping function:

ruv ¼ ð1� e�2ðxv�xuÞÞ=2: ð1Þ
The predictor j: The predictor j of the genome

contribution of parent P1 to a derived line is defined as

j ¼
Xn

i¼1

di

l
ji ; ð2Þ

where ji is the prediction of the genome contribution
of parent P1 to the ith chromosome interval.

We consider at first a finite number w of loci equidis-
tantly distributed at positions x1, . . . , xw on a chromo-
some interval delimited by markers at positions xai

and
xbi

. We then have

ji ¼
1

w

Xw

s¼1

EðGs j gai
; gbi
Þ; ð3Þ

where E(Gs j gai
, gbi

) is the conditional expectation that
the locus at map position xs carries the allele of parent P1

under the condition that the genotypes gai
and gbi

were
observed at the two flanking markers with map positions
xai

and xbi
. Following the principle used by Franklin

(1977) and Hill (1993), Equation 3 can be extended to
an infinite number of loci at positions xs:

ji ¼
1

di

ðxbi

xai

EðGs j gai
; gbi
Þdxs: ð4Þ

For telomere chromosome intervals we have in analogy

ji ¼
1

di

ðxai

0
EðGs j gai

Þdxs: ð5Þ

The conditional expectation of Gs is (omitting the sub-
script i for the chromosome interval)

EðGs j ga ; gbÞ ¼ PðGs ¼ 1 j ga ; gbÞ

¼ PðGa ¼ ga ;Gs ¼ 1;Gb ¼ gbÞ
PðGa ¼ ga ;Gb ¼ gbÞ

ð6Þ

for xs in chromosome intervals flanked by two markers
and

EðGs j gaÞ ¼
PðGa ¼ ga ;Gs ¼ 1Þ

PðGa ¼ gaÞ
ð7Þ

for xs in chromosome intervals flanked by a marker and
the telomere.

Mating systems: We express the one-, two-, and three-
locus genotype frequencies required for Equations 6
and 7 in terms of

p ¼ PðGu ¼ 1Þ and quv ¼ PðGv ¼ 1 jGu ¼ 1Þ; ð8Þ

where xu, xv 2 {xa, xb, xs}. The values of p and quv depend
on the mating system used for deriving the inbred line
and the map distance between the markers at positions
xu and xv. In this study, we consider four mating systems:
(1) (F2)t-single-seed descent (SSD) lines are developed
by t (t $ 0) generations of random mating of an F2 pop-
ulation and subsequent application of the single-seed
descent method for line development; (2) (F1)t-double-
haploid (DH) lines are developed by t (t $ 0) gener-
ations of random mating of an F1 cross and subsequent
inbred line development with double haploids; and (3)
backcross (BC)t -SSD and (4) BCt -DH lines are devel-
oped from an F1 cross backcrossed t (t $ 1) times to
parent P2, with subsequent line development by the

796 M. Frisch and A. E. Melchinger



single-seed descent or double-haploid method, respec-
tively. Expressions for p and quv under these mating
systems are given in Table 1, and the corresponding
derivations are presented in the appendix.

Genotype frequencies: For the derivations a short-
hand notation is used. We omit the names of random
variables in definitions of multilocus genotype frequen-
cies and use only the value of the realizations. For ex-
ample, P(Ga ¼ 1, Gs ¼ 1) is abbreviated as P(11), and
P(Ga ¼ 1, Gs ¼ 1, Gb ¼ 1) as P(111). For the derivation
of three-locus genotype frequencies, two-locus geno-
type frequencies referring to subsets of the three loci
are required. In this case, the realization of the third
(not considered locus) is denoted with a ‘‘–,’’ e.g., P(Ga¼ 1,
Gb ¼ 1) is abbreviated as P(1–1).

The single-locus genotype frequencies follow directly
from the definition of p in Equation 8:

Pð1Þ ¼ p

Pð0Þ ¼ 1� p: ð9Þ

The two-locus genotype frequencies for two loci at
map positions xu, xv 2 {xa, xb, xs} can be written as

Pð11Þ ¼ pquv

Pð01Þ ¼ pð1� quvÞ
Pð10Þ ¼ pð1� quvÞ
Pð00Þ ¼ 1� 2p 1 pquv : ð10Þ

For deriving the three-locus genotype frequencies with
respect to three loci at map positions xa , xs , xb for
(F1)t-DH and (F2)t-SSD lines, we follow an approach
outlined by Haldane and Waddington (1931) and
recently developed by Broman (2005) for F2-SSD lines
(named two-way RILs in his article). We have

Pð111Þ1 Pð011Þ ¼ Pð--11Þ ¼ pqsb

Pð111Þ1 Pð101Þ ¼ Pð1--1Þ ¼ pqab

Pð111Þ1 Pð110Þ ¼ Pð11--Þ ¼ pqas

Pð010Þ1 Pð110Þ ¼ Pð--10Þ ¼ pð1� qsbÞ ð11Þ

and because of symmetry

Pð101Þ ¼ Pð010Þ: ð12Þ

Solving this system of linear equations and using p ¼ 1
2

yields

Pð111Þ ¼ ðqab 1 qas 1 qsb � 1Þ=4

Pð011Þ ¼ ð1 1 qsb � qas � qabÞ=4

Pð110Þ ¼ ð1 1 qas � qab � qsbÞ=4

Pð010Þ ¼ ð1 1 qab � qsb � qasÞ=4: ð13Þ

For BCt -DH and BCt -SSD lines we employ the system
of equations

Pð111Þ1 Pð011Þ ¼ Pð--11Þ ¼ pqsb

Pð011Þ1 Pð010Þ ¼ Pð01--Þ ¼ pð1� qasÞ
Pð010Þ1 Pð110Þ ¼ Pð--10Þ ¼ pð1� qsbÞ
Pð111Þ1 Pð110Þ ¼ Pð11--Þ ¼ pqas: ð14Þ

For BCt -DH lines we use

Pð111Þ ¼ ½ð1� rasÞð1� rsbÞ=2�t11 ¼ pqasqsb ð15Þ

to solve the system of equations in Equation 14 and obtain

Pð111Þ ¼ pqasqsb

Pð011Þ ¼ pðqsb � qasqsbÞ
Pð110Þ ¼ pðqas � qasqsbÞ
Pð010Þ ¼ pð1� qas � qsb 1 qasqsbÞ: ð16Þ

For BCt -SSD lines we have

Pð111Þ ¼ pbqb
asq

b
sbðqs

ab 1 qs
as 1 qs

sb � 1Þ=4; ð17Þ

where the superscript b refers to the parameters of a BCt

individual, which can be obtained from Equation 16 by
replacing t 1 1 with t, and superscript s refers to the
parameters of F2-SSD lines. Solving Equation 14 yields

Pð011Þ ¼ pqsb � Pð111Þ
Pð110Þ ¼ pqas � Pð111Þ
Pð010Þ ¼ Pð111Þ1 pð1� qas � qsbÞ: ð18Þ

Note that (1) the genotype frequencies obtained with
Equation 13 after inserting p and qab for F2-SSD lines
are identical to those of Broman (2005), and (2) the
genotype frequencies for BCt -DH lines are identical
with those obtained with the formulas of Visscher

and Thompson (1995) for BCt11 individuals.
Conditional expectation j*: The predictor j can be

extended by replacing E(Gs j ga, gb) (Equation 4) and
E(Gs j ga) (Equation 5) with

EðGs j giÞ ¼
PðGs ¼ 1; giÞ

PðgiÞ
; ð19Þ

where gi is a vector consisting of the marker genotype
of the markers on the ith chromosome. The resulting
predictor j* is the conditional expectation of the par-
ental genome contribution to an inbred line under
the condition of the observed marker genotype. For

TABLE 1

Definition of parameters p and quv for four mating systems

Mating system p quv

(F1)t-DH
1

2

1

2
1

1 � 2ruv

2
ð1� ruvÞt

(F2)t-SSD
1

2

1

2
1

1 � 2ruv

2 1 4ruv

ð1� ruvÞt

BCt -DH (1/2)t11 (1 � ruv)t11

BCt -SSD (1/2)t11
ð1 � ruvÞt

1 1 2ruv
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calculation of the multilocus genotype frequencies in
Equation 19, the recursion equations of Hospital et al.
(1996) can be employed. Further, the closed-form equa-
tions derived by Visscher and Thompson (1995) for
BCt individuals can be applied to BCt�1-DH lines.

DISCUSSION

Other predictors for the parental genome contribu-
tion: A commonly used predictor (cf. Bernardo et al.
2000; Heckenberger et al. 2005b) of the genome con-
tribution of parent P1 to an inbred line is the proportion
of marker alleles from P1 in the set of polymorphic
markers between P1 and P2,

a ¼ 1

m

Xm

j¼1

gj ; ð20Þ

where m is the number of markers and gj refers to the
genotypes at the marker loci. Major shortcomings of
the unweighted predictor a are that (i) the correlation
between markers due to linkage and (ii) the stochastic
dependence between the markers and the adjacent
genomic regions are not taken into account. The ad-
vantage of a is that no prior information about the mat-
ing system used to develop the line is required.

No previous studies exist about more efficient predic-
tors for the parental genome contribution to inbred lines.
However, Visscher (1996) developed an approach for
predicting the proportion of the genome originating
from the donor parent in backcross individuals, borrow-
ing ideas from selection index theory (Hazel 1943),

b ¼
Xc

i¼1

li
l
ðV�1

i yiÞ9gi ; ð21Þ

where c is the number of chromosomes, li is the length
of the ith chromosome, gi is a vector consisting of the
marker genotype of the markers on the ith chromo-
some, Vi is the covariance matrix of gi, and yi is a vector
consisting of the covariances between the donor ge-
nome at the markers and the donor genome on the
carrier chromosome of the markers.

Visscher’s (1996) approach can be extended to in-
bred lines derived from arbitrary mating systems by de-
fining for each chromosome (we omit the index for
the chromosome)

Vuv ¼ Duv

yu ¼
1

l

ðl

0
Dus dxs; ð22Þ

where Dus ¼ (qus� p)p is the expected gametic dis-
equilibrium between loci at map positions xu and xs

under the considered mating system, with expressions
for p and qus given in Table 1. For example, for BCt -DH
lines we have

Vuv ¼ 1
2

� �t11
½1� ruv �t11 � ð12Þ

t11
n o

yu ¼
1

4t11l

Xt11

n¼1

t 1 1

n

� �
1

2n
½2� e�2nxu � e�2nðl�xuÞ�:

ð23Þ

In comparison with the predictor a, the weighted
predictor b has the advantage that the markers contrib-
ute with different weights to b, depending on their link-
age; i.e., b takes into account the correlation between
the markers on a chromosome. However, it ignores the
stochastic dependence between the markers and the
adjacent genomic regions on a chromosome.

In contrast to a and b, the predictor j takes into
account both the correlation between markers and the
stochastic dependence between markers and the ad-
jacent genomic regions. The former is considered by
weighting ji with the distance di between adjacent mark-
ers (Equation 2) and the latter by the integration of
E(Gs j ga, gb) along the chromosome (Equations 4 and 5).

Conditional expectation j*: The predictor j* is un-
biased, and this can be shown using E(Gu) ¼ p and E
(E[Z jG])¼ E(Z) (Shao 1999, p. 33, Proposition 1.12.iv),
where the random variable Z denotes the parental ge-
nome contribution to an inbred line and the random
vector G its multilocus marker genotype. From j*¼
E(Z j g) it follows that j* is also unbiased in the sample
space Vg, which comprises the parental genome contri-
bution to all possible inbred lines having a certain
marker genotype g. From an applied point of view, this
means that j* is neither systematically overestimating
nor underestimating the parental genome contribution
for any given marker genotype g. It can be further shown
that the conditional expectation of a random variable
has minimum variance among all unbiased predictors
(Shao 1999, p. 33, Equation 1.40). In consequence, the
conditional expectation j* can be regarded as an opti-
mum predictor of the parental genome contribution.

For the F1-DH mating system (which is, for example,
often employed for the development of inbred lines in
hybrid maize breeding programs) the predictors j and
j* are identical under the assumption of no interfer-
ence in crossover formation. For other mating systems,
calculation of j* requires calculation of multilocus ge-
notype frequencies. In contrast to the relatively simple
calculations of two- and three-locus genotype frequen-
cies, which can easily be carried out with standard soft-
ware such as R (Ihaka and Gentleman 1996), calculation
of multilocus genotype frequencies requires extensive
programming (cf. Servin et al. 2002).

We compared j* and j for several special cases and
found only small numerical differences in the results.
We therefore conclude that the simple calculations re-
quired for j may outweigh the theoretical optimum
properties of j* in many practical applications. It could
be the subject of further research to investigate whether
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the substantially greater programming and computa-
tional effort, which is required for calculation of j* in
the general case, results in a significant improvement of
the prediction accuracy compared with j.

Systematic prediction error of a and b: Consider the
example of a 2-M chromosome of an F2-SSD line, on
which two markers located 0.5 and 1.5 M from the telo-
mere carry the allele of parent P1 (Figure 1A). Loci in
the genome region between the two markers are up to
0.5 M distant from the nearest adjacent marker. Owing
to the large recombination frequency between distant
loci, the markers predict only poorly the genotype at
these loci. The predictors a and b do not take this low
correlation into account and the genotype of all loci on
the chromosome is predicted to be the same as the
genotype of the markers: a ¼ b ¼ 1. We now focus on
a large number of chromosomes carrying the alleles
of parent P1 at the two markers. Only �70% of these
chromosomes carry the allele of parent P1 at a locus in
the center between the markers [E(Gs j ga, gb)� 0.7, see
Figure 1]. Hence, with respect to all possible chromo-
somes having the considered marker genotype, the pre-
dictors a and b are systematically overestimating the
genome proportion originating from parent P1.

For symmetry reasons, the genome contribution of
parent P1 to chromosomes carrying at both markers the
allele of parent P2 is systematically underestimated by
the predictors a and b. In contrast, a and b show no
systematic prediction error for chromosomes on which
recombination occurred (Figure 1B). Individuals hav-
ing no recombination between two markers with map
distance 1 M occur in an F2-SSD population with prob-
ability 0.54 (cf. Haldane and Waddington 1931).
Hence, a considerable systematic prediction error of a

and b is observed for more than half of the chromo-
somes of an F2-SSD population.

Systematic prediction error for the entire genome:
The above theoretical example illustrates that in prin-
ciple systematic prediction errors can occur when em-
ploying predictors a and b. To investigate whether the
extent of such systematic prediction errors is of rele-

vance in practical applications, we conducted a simula-
tion study with Plabsoft (Maurer et al. 2004). Simulated
data were used because they provide the ‘‘true’’ paren-
tal genome contributions z of parent P1 as well as the
predictions ẑ ¼ q (q 2 {a, j}) for each simulated inbred
line. This allows us to generate a large number of inbred
lines and determine the prediction errors e ¼ q � z.

For the simulation we employed a model of the maize
genome based on the study of Heckenberger et al.
(2005a). It consists of 10 chromosomes of length 1.70,
1.30, 1.06, 1.48, 1.28, 1.15, 1.14, 1.21, 0.99, and 0.91 M
and 100 SSR markers, which were chosen for good
coverage of the entire genome. We simulated 1000 F2-
SSD lines, for which we determined the prediction er-
rors of a and j. The correlation ra,e ¼ 0.36 between the
predicted genome proportions a and the correspond-
ing prediction errors e was highly significant (type I er-
ror rate 0.001), whereas no significant correlation was
observed for the predictor j (Figure 2).

We conclude that the extent of systematic overesti-
mation of large parental genome contributions and sys-
tematic underestimation of small ones by the predictor
a can cause serious problems with linkages maps com-
monly used in practical applications.

Precision of prediction: To assess systematically the
precision of prediction of a, b, and j in the four mating
systems under consideration, we conducted a simula-
tion study. We employed a model of the maize genome
with 10 chromosomes of length 1.6 M. Twenty to 200
markers were assumed to be (a) randomly distributed
and (b) equally spaced in the genome. In practice, the
marker distribution ranges between these two extremes,
which can be regarded as a ‘‘worst-case’’ scenario (a)
and a ‘‘best-case’’ scenario (b). For each combination of
marker density and spacing we simulated 500 F2-SSD,
F1-DH, BC1-SSD, and BC1-DH populations of size 100.
(For random spacing of markers, different maps were
used for each of the 500 populations.) The correla-
tions ra,e, rb,e, and rj,e between predicted values and
prediction errors as well as the mean squared prediction
errors

Figure 1.—Predictions a, b, and j for a 2-M
chromosome of an F2-SSD line on which two
markers are located 0.5 and 1.5 M from the telo-
mere. (A) Both markers carry the allele of parent
P1. (B) The first marker carries the allele of par-
ent P1 and the second marker that of parent P2.
The solid line denotes the conditional expecta-
tion E(Gs j ga, gb) that the locus at position xs car-
ries the allele of parent P1.
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Mq ¼
1

n

X
n

½q� z�2 q 2 fa;b; jg ð24Þ

were determined for each simulated population. The
results were then averaged over the 500 populations.

The correlations ra,e, rb,e were highly significant (type
I error rate 0.001) for all combinations of the investi-
gated parameters, while rj,e was not significantly different
from zero for any combination. The largest correlations,

amounting to 0.75, were observed for predictor a with
sparse maps and random marker positions (Table 2).
However, even with 200 equally spaced markers ra,e $

0.25 and rb,e $ 0.15. The mean squared prediction error
Mj was at least 50% smaller than Ma for randomly dis-
tributed markers, and Mb ranged in between and ap-
proached the values of Mj for $100 markers. With
equally spaced maps, the differences between Ma, Mb,
and Mj were negligible for .80 markers.

TABLE 2

Correlations ra,e and rj,e and mean squared prediction errors Ma, Mb, and Mj for simulated maize lines depending
on marker density and spacing for four mating systems

No. of randomly distributed markers No. of equally spaced markers

20 40 60 80 100 200 20 40 60 80 100 200

F2-SSD lines
ra,e 0.75 0.64 0.58 0.51 0.48 0.36 0.69 0.53 0.43 0.37 0.34 0.26
rb,e 0.73 0.58 0.50 0.42 0.38 0.23 0.69 0.52 0.41 0.34 0.30 0.18
Ma 0.0105 0.0059 0.0041 0.0030 0.0024 0.0012 0.0054 0.0017 0.0009 0.0005 0.0003 0.0001
Mb 0.0091 0.0042 0.0025 0.0016 0.0011 0.0004 0.0054 0.0017 0.0008 0.0005 0.0003 0.0001
Mj 0.0042 0.0027 0.0019 0.0013 0.0010 0.0003 0.0028 0.0013 0.0007 0.0004 0.0003 0.0001

F1-DH lines
ra,e 0.68 0.59 0.51 0.47 0.42 0.32 0.61 0.46 0.40 0.35 0.34 0.28
rb,e 0.64 0.51 0.41 0.35 0.30 0.17 0.61 0.44 0.35 0.29 0.25 0.15
Ma 0.0099 0.0059 0.0040 0.0031 0.0024 0.0012 0.0038 0.0011 0.0005 0.0003 0.0002 0.0001
Mb 0.0074 0.0035 0.0019 0.0012 0.0008 0.0002 0.0038 0.0011 0.0005 0.0003 0.0002 0.0000
Mj 0.0043 0.0025 0.0016 0.0011 0.0007 0.0002 0.0024 0.0008 0.0004 0.0002 0.0002 0.0000

BC1-SSD lines
ra,e 0.75 0.64 0.57 0.52 0.47 0.36 0.69 0.52 0.43 0.36 0.34 0.25
rb,e 0.73 0.59 0.50 0.43 0.37 0.23 0.69 0.51 0.41 0.33 0.30 0.17
Ma 0.0078 0.0044 0.0030 0.0023 0.0018 0.0009 0.0041 0.0013 0.0006 0.0004 0.0002 0.0001
Mb 0.0067 0.0031 0.0018 0.0012 0.0008 0.0003 0.0041 0.0013 0.0006 0.0004 0.0002 0.0001
Mj 0.0031 0.0020 0.0014 0.0010 0.0007 0.0002 0.0021 0.0010 0.0005 0.0003 0.0002 0.0001

BC1-DH lines
ra,e 0.72 0.61 0.53 0.49 0.44 0.34 0.64 0.48 0.41 0.36 0.33 0.26
rb,e 0.69 0.54 0.44 0.38 0.32 0.20 0.64 0.47 0.38 0.31 0.26 0.16
Ma 0.0078 0.0044 0.0029 0.0022 0.0018 0.0009 0.0034 0.0010 0.0005 0.0003 0.0002 0.0000
Mb 0.0064 0.0028 0.0015 0.0010 0.0007 0.0002 0.0034 0.0010 0.0004 0.0003 0.0002 0.0000
Mj 0.0033 0.0020 0.0012 0.0009 0.0006 0.0002 0.0020 0.0008 0.0004 0.0002 0.0002 0.0000

Figure 2.—Prediction error e of a and j in a
simulated maize data set. �a, j, and �e are mean val-
ues, and ra,e and rj,e are the correlations between
the predicted value and prediction error.
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We conclude that the superiority of j compared to
a and b with respect to the mean squared prediction er-
ror reduces with increasing numbers of equally spaced
markers. However, even for dense maps with equally
spaced markers, the correlations ra,e and rb,e between
predicted value and prediction error indicate that sys-
tematic prediction errors of a and b are to be expected,
with negative effects for practical applications.

Application to experimental data: Prediction of the
parental genome contribution is illustrated with exper-
imental data from a study on plant variety protection in
maize (Heckenberger et al. 2005a). The genotype of
100 SSR markers was assessed at 56 F2-SSD lines and
their crossing parents. For each inbred line, markers
not polymorphic between its crossing parents were dis-
carded. This resulted in different marker sets used for
the calculations in each line, with numbers of poly-
morphic markers m ranging between 38 and 67. From
the genotype at the polymorphic markers, the predic-
tors a, b, and j were calculated (Table 3 lists results for
the 12 lines with the largest and smallest values of j).

The differences between the predictors a and j were
mostly negative for small values of j and mostly positive
for large values, reaching up to 11% (line 1). Compar-
ing these values with simulation results for the same
linkage map (Figure 2) leads to the conclusion that the

differences observed for large and small parental ge-
nome contributions are partially caused by the system-
atic prediction error of a.

A method to detect essentially derived varieties is to
compare a prediction of the parental genome con-
tribution to an inbred line with a threshold value.
Heckenberger et al. (2005b) suggested to use as thresh-
olds the quantiles of the probability distribution of the
parental genome contribution to inbred lines under
an accepted breeding method. For the chromosome
lengths underlying the study of Heckenberger et al.
(2005a) we investigated this strategy and determined
with a simulation the 0.95 quantile of the parental ge-
nome contribution to F2-SSD lines as t ¼ 0.662. When
comparing the predictions of the parental genome con-
tribution to an F2-SSD population with this threshold
value, then it is expected that 5% of the F2-SSD lines are
classified incorrectly as essentially derived varieties. In
our experimental F2-SSD population a . t for 7 lines
(12.5% of the 56 lines) and b . t for 6 lines (10.7%),
but j . t only for 3 lines (5.4%) (Table 3).

Consequently, the systematic overestimation of large
parental genome contributions by a and b can result in a
greater error rate of incorrectly classifying a line as essen-
tially derived than is nominally associated with a chosen
threshold value. However, due to the stochastic nature of
meiosis, using a does not necessarily result in a greater
error rate in every experimental population. This can be
seen, for example, when comparing the lower tail of the
distribution of the experimental data with 1� t.

Summarizing, j allows prediction of the parental ge-
nome contribution with a much higher precision than
the unweighted predictor a commonly employed in
practice, in particular when extreme values of the pa-
rental genome contribution are of interest. Thus, using
j instead of a is clearly advantageous for obtaining reli-
able conclusions on the true parental genome contri-
bution to an inbred line.

Deviations from the assumptions: As applies to most
mathematical models of biological systems, the pre-
sented prediction method is not capable of capturing
every detail of the underlying biological process, and
the results should be interpreted with this in mind.
Among the assumptions made in our derivations, the
following seem of particular importance:

1. We assumed absence of interference in crossover for-
mation, although it is well known that interference
occurs (for a discussion on using noninterference
models, see Frisch and Melchinger 2001).

2. We assumed known map positions of the markers.
However, in practice, the linear order and map dis-
tances are estimated from mapping experiments with
one or several segregating populations. Depending
on the size and type of the mapping population(s),
the estimated map may deviate from the true map
due to sampling error or other causes.

TABLE 3

Predictors a, b, and j for the experimental data from maize

Line no. m a (%) b (%) j (%) a � j (%)

1 64 95.3a 91.3a 84.2a 11.1
2 62 85.5a 83.6a 78.2a 7.3
3 64 82.8a 81.1a 77.2a 5.6
4 48 68.8a 67.4a 65.8 3.0
5 48 68.8a 68.7a 65.4 3.4
6 48 68.8a 68.7a 65.4 3.4
7 58 58.6 64.9 63.7 �5.0
8 55 69.1a 63.4 62.5 6.6
9 51 62.7 64.0 61.6 1.1
10 48 58.3 63.1 60.8 �2.4
11 44 56.8 62.0 59.6 �2.8
12 38 57.9 57.4 59.5 �1.6

45 44 38.6 41.4 44.6 �5.9
46 54 40.7 42.5 44.5 �3.8
47 50 48.0 45.6 44.0 4.0
48 48 41.7 40.3 42.4 �0.7
49 39 35.9 39.1 41.9 �6.0
50 41 39.0 36.7 41.3 �2.3
51 58 36.2 38.3 41.0 �4.8
52 45 31.1 32.0 38.3 �7.2
53 57 36.8 34.5 37.3 �0.5
54 51 35.3 33.2 36.4 �1.1
55 48 27.1 25.1 32.5 �5.4
56 58 20.7 24.7 28.0 �7.3

m, the number of markers polymorphic between the paren-
tal lines.

a Predictor is greater than the threshold value of 66.2.
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3. We assumed absence of selection during backcross-
ing and inbred line development. If selection is car-
ried out, the probability that a certain locus carries
the allele of P1 may differ from our derivations.

If, for a certain study, one or several of these as-
sumptions do not hold true, the actual advantage in
precision of j compared with a and b may be smaller
than that under the idealized model, where all assump-
tions are fulfilled.

Applications in genetics and breeding: Being aware
of the above limitations, the presented results demon-
strate that the predictor j provides a substantial im-
provement in the precision of predicting the parental
genome contribution to inbred lines compared with the
commonly used unweighted predictor a. This improved
precision can be important in a broad range of practical
applications.

In inbred lines developed from backcross individuals
of a gene introgression program, exact prediction of the
parental contribution of the donor parent can help to
assess the risk of negative phenotypic effects caused by
the donor genome. The prediction of the parental ge-
nome contribution to inbred lines complements the
prediction of the donor genome proportion in back-
cross individuals described by Frisch and Melchinger

(2005). The combination of both approaches allows
monitoring of the parental genome proportion from
the first backcross generation until the converted in-
bred line is finally developed.

Introgression libraries of near-isogenic lines (Eshed

and Zamir 1995) are increasingly developed in various
crops, e.g., for fine mapping of QTL or for identification
of advantageous chromosome segments in exotic ge-
netic resources or landraces (Tanksley and Nelson

1996). The presented approach can be used to predict
the donor genome proportion in chromosome regions
where a line of an introgression library carries the
marker alleles of the recurrent parent. This can help
to assess the risk that the observed phenotypic effect is
not caused by the chromosome segment introgressed
on purpose but by other donor chromosome segments
not detected by the employed marker set.

In plant variety protection, exact prediction of the pa-
rental genome contribution to an inbred line is of crucial
importance to draw conclusions whether or not the line
(1) was developed with a generally accepted breeding
method or (2) has a parental genome proportion below a
generally accepted threshold. The predictor j can be em-
ployed, for example, to estimate precisely the parental
genome contribution of one parent, assuming a given
mating system, which can then be compared with thresh-
old values (Heckenberger et al. 2005b). In this con-
text, it is of particular interest that a is overestimating
systematically large parental genome contributions.

In quantitative genetic studies, the genome contri-
bution of a parent to a biparental crossing progeny is

usually assumed to be one-half. If j is employed instead,
this allows us to consider not only the expected relation
between two lines on the basis of the mating system,
but also the actual similarity at the level of the entire
genome. A possible application is, for example, the best
linear unbiased prediction of the breeding value of a
line employing phenotypic information from its cross-
ing parents.

Recurrent full-sib mating is used to generate homo-
zygous strains in animals such as mice. Employing re-
sults of Haldane and Waddington (1931), parameters
p and quv for recurrent full-sib mating can be derived
analogously to the derivations for recurrent selfing in
the appendix. Using this extension, the theory pre-
sented here can be used straightforwardly for applica-
tions in animal genetics.

Prediction of the parental genome proportion with j

can be interpreted as a ‘‘map-based genetic distance’’
between an inbred line and its crossing parent. It seems
promising for further research to investigate whether
the principle used in this study can be extended to pro-
vide map-based genetic distances for general pedigrees
and/or heterozygous individuals.

We thank the anonymous reviewers for their comments and
suggestions, which helped to improve the manuscript. In particular,
we are greatly indebted to an anonymous reviewer for pointing out a
major mistake in an earlier version of the manuscript.
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APPENDIX

We derive the probabilites p and quv for (F1)t-DH,
(F2)t-SSD, BCt-DH, and BCt-SSD lines. For the deriva-
tions we use the relationship

quv ¼ PðGv ¼ 1 jGu ¼ 1Þ
¼ PðGv ¼ 1;Gu ¼ 1Þ=PðGu ¼ 1Þ
¼ p 1 Duv=p;

where

Duv ¼ PðGv ¼ 1;Gu ¼ 1Þ � PðGv ¼ 1ÞPðGu ¼ 1Þ

is the expected gametic disequilibrium between two loci
at positions xv and xu in infinite populations.

(F1)t-DH lines: The probability that a locus of an (F1)t-
DH line carries the allele of parent P1 is p ¼ 1

2. The
expected linkage disequilibrium in an (F1)1 (i.e., an F2)
population is

Duv ¼ PðGv ¼ 1;Gu ¼ 1Þ � PðGv ¼ 1ÞPðGu ¼ 1Þ
¼ 1� ruv

2
� 1

4

¼ 1� 2ruv

4
:

Because (i) the expected gametic disequilibrium in an
(F1)t�1-derived DH line equals that of an (F1)t popula-
tion and (ii) in random mating populations, the link-
age disequilibrium decreases with ratio (1� ruv) per
generation (Falconer and Mackay 1996, p. 18), the
expected gametic disequilibrium for (F1)t-DH lines is

Duv ¼
1� 2ruv

4
ð1� ruvÞt : ðA1Þ

In consequence, we have

quv ¼ p 1 Duv=p

¼ 1

2
1

1� 2ruv

2
ð1� ruvÞt :

(F2)t-SSD lines: The probability that a locus in an
(F2)t-DH line carries the allele of parent P1 is p ¼ 1

2. The
linkage disequilibrium in SSD lines derived from a pop-
ulation in Hardy–Weinberg equilibrium with linkage
disequilibrium of D9uv is

Duv ¼
Duv9

1 1 2ruv

(Cockerham and Weir 1973). Because for an (F2)t

population (derivation in analogy to Equation A1)

Duv ¼
1� 2ruv

4
ð1� ruvÞt ;

we have for (F2)t-SSD lines

Duv ¼
1

1 1 2ruv

1� 2ruv

4
ð1� ruvÞt

and, therefore,

quv ¼ p 1 Duv=p

¼ 1

2
1

1� 2ruv

2 1 4ruv
ð1� ruvÞt :

BCt-DH lines: The probability that a locus of BCt-
derived DH line carries the allele of parent P1 is p ¼
(1/2)t11 and the probability that a locus at position xv

carries the allele of P1 under the condition that the locus
at position xu carries the allele of parent P1 is

quv ¼ PðGv ¼ 1 jGu ¼ 1Þ
¼ PðGv ¼ 1;Gu ¼ 1Þ=PðGu ¼ 1Þ

¼ 1� ruv

2

� �t11� 1

2

� �t11

¼ ð1� ruvÞt11:

BCt-SSD lines: The probability that a locus in a BCt-
derived SSD line carries the allele of parent P1 is p ¼
(1/2)t11. The probability that continued selfing of an
individual with genotype ABab results in an inbred with
one of genotypes AbAb or aBaB is

2ruv

1 1 2ruv

(Haldane and Waddington 1931). Consequently, for
BCt-SSD lines,

PðGv ¼ 1;Gu ¼ 1Þ ¼ 1� ruv

2

� �t1

2
1� 2ruv

1 1 2ruv

� �

and, therefore,

quv ¼ PðGv ¼ 1;Gu ¼ 1Þ=PðGu ¼ 1Þ

¼ ð1� ruvÞt
1 1 2ruv

:
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