

INSTITTUTE FOR NUTRITIONAL SCIENCES- WORKING GROUP INTERNATIONAL NUTRITION

Food and Nutrition Security – in times of climate change

	finitions of Food Security I Insecurity, 1975-1991	13. "An assured supply and distribution of food for all social groups and individuals adequate in quality and quantity to meet their nutritional needs" (Barraclough and Utting 1987)
1.	"Availability at all times of adequate world supplies of basic food-stuffs to sustain a steal basic food-stuffs, to production a	 "Both physical and economic access to food for all citizens over both the short and the long run" (Falcon et al 1987)
2.	"A condition in which the probability of a country's citizens falling below a	15. "A country and people are food secure when their food system operates efficiently in such a way as to remove the fear that there will not be enough to eat" (Maxwell 1988)
3.	minimal level of food consumption is low" (Reutlinger and Knapp 1980) "The ability to meet target levels of consumption on a yearly basis" (Siamwalla	 "Adequate food available to all people on a regular basis" (UN World Food Council 1988)
4.	"Everyone has enough to eat at any time — enough for life, healt	h and growth
5.	20. "Access to adequate food by and	for households over time" (Eide 1990)
6.	"Freedom from food deprivation for all of the world's people all of the time"	20. "Access to adequate food by and for households over time" (Eide 1990)
6.	"Freedom from food deprivation for all of the world's people all of the time"	20. "Access to adequate food by and for households over time" (Eide 1990)21. "Food insecurity exists when members of a household have an inadequate diet for
6. 7.	"Freedom from food deprivation for all of the world's people all of the time" "Ensuring that all people at all times hav the basic food they need" (FAO 1983)	21. "Food insecurity exists when members of a household have an inadequate diet for
6. 7. 9.	"Ensuring that all people at all times have	21. "Food insecurity exists when members of a household have an inadequate diet for
6. 7. 9.	"Ensuring that all people at all times have the basic food they need" (FAO 1983)	21. "Food insecurity exists when members of a household have an inadequate diet for we both physical and economic access to
6. 7. 9.	"A basket of food, nutritionally adequate, culturally acceptable, procured in	 21. "Food insecurity exists when members of a household have an inadequate diet for we both physical and economic access to 23. "The absence of hunger and malnutrition" (Kennes 1990) 24. "The assurance of food to meet needs throughout every season of the year"

12. "Always having enough to eat" (Zipperer 1987)

healthy lives" (Von Braun 1991)

Compiled by Max

What means food insecurity?

- In 1970s: "food security" matter of national or global food supplies
- In 1980: focus shifted towards: access to food at household and individual level

In 1980/90: introduction of nutritional and cultural aspects, human right to food

In 1990: perception matters, intra-household issues are central -> food security = multi-objective phenomenon, identified by food insecure people themselves

Definition in use:

"Food security exists when all people, at all times, have physical, social and economic access **to sufficient**, **safe and nutritious food** which **meets their dietary needs** and **food preferences** for an active and healthy life. The four pillars of food security are **availability**, **access**, **utilization and stability**." [FAO/CFS 2012]

Household food security is the application of this concept to the family level, with individuals within households as the focus of concern.

Terms..

Adequacy refers to the dietary needs of an individual which must be fulfilled not only in terms of quantity but also in terms of nutritious quality of the accessible food. It also includes the importance of taking into account non-nutrient-values attached to food, be they cultural ones or consumer concerns.

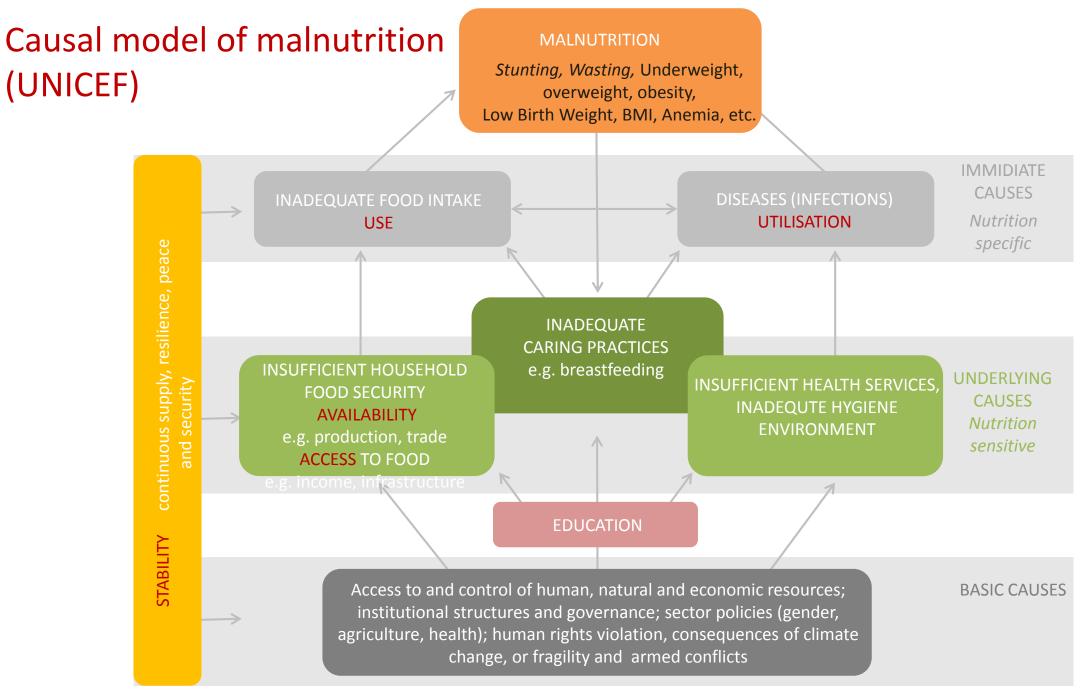
Availability refers to enough food being produced for both the present and the future generations, therefore entailing the notions of sustainability, or long-term availability, and the protection of the environment.

Accessibility (economic) implies that the financial costs incurred for the acquisition of food for an adequate diet does not threaten or endanger the realization of other basic needs (e.g housing, health, education).

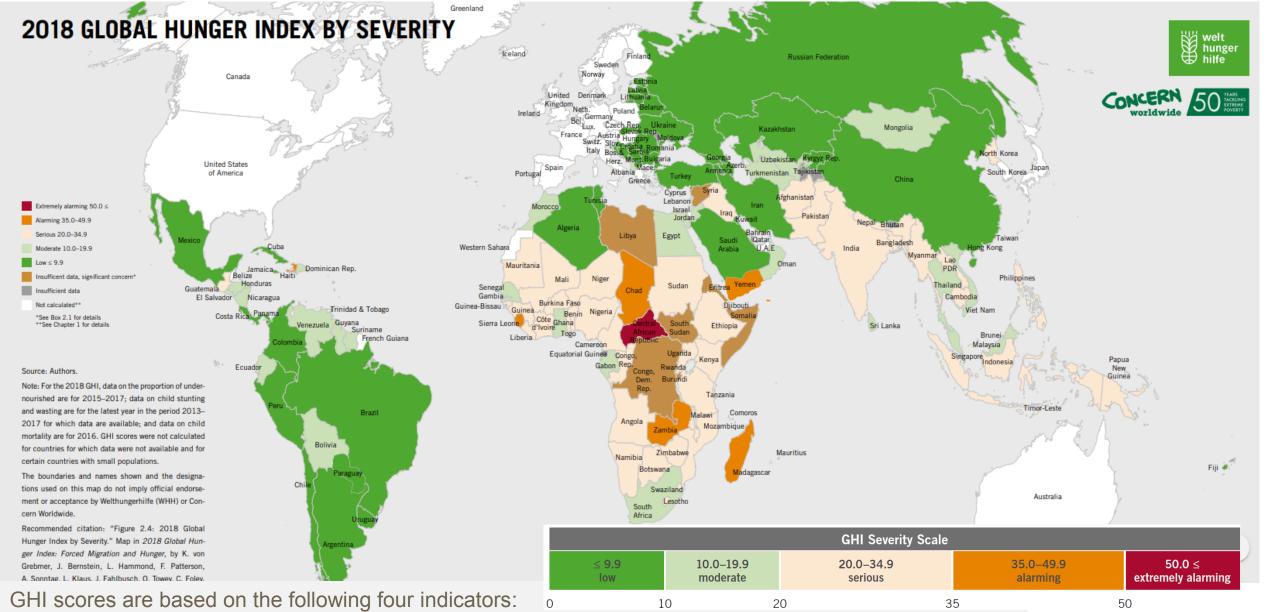
Physical accessibility implies that everyone, including physically vulnerable individuals, such as infants and young children, elderly people, the physically disabled, the terminally ill, and persons with persistent medical problems, including the mentally ill, should be ensured access to adequate food.

```
What is "nutrition"?
```

```
Nutrition = Food?
```


```
Nutrition = Health?
```

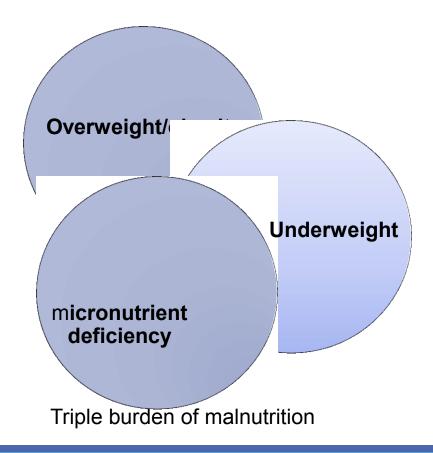
```
Nutrition = nice meal?
```


```
Nutrition = ?????
```

Def. of Food and Nutrition Security

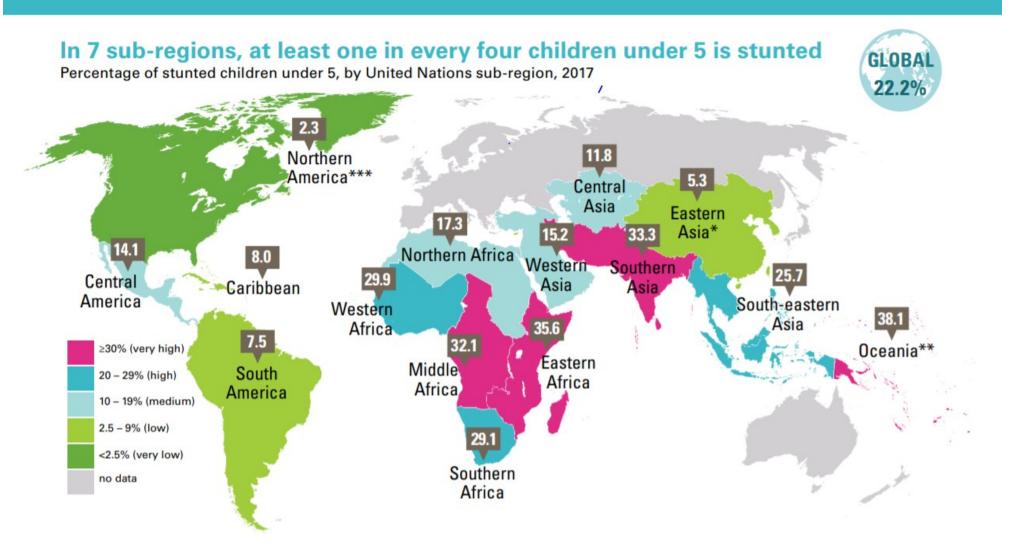
"Food and nutrition security exists when all people at all times have physical, social and economic access to food, which is consumed in sufficient quantity and quality to meet their dietary needs and food preferences, <u>and is supported</u> <u>by an environment of adequate sanitation, health services</u> and care, allowing for a healthy and active life."

Source: adapted from UNICEF (1991); slide prepared by and adopted from Ines Reinhard et al., GIZ

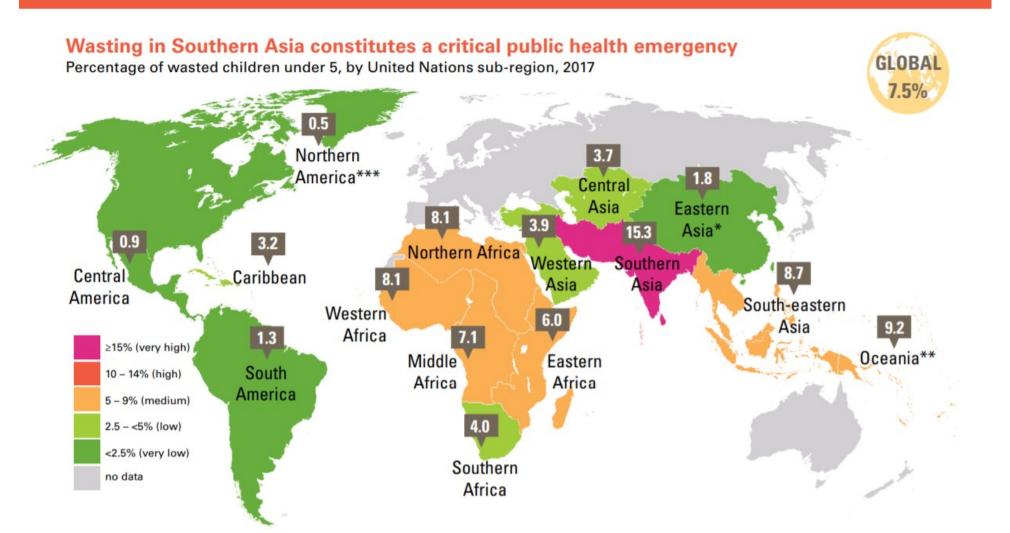


- Undernourishment (the proportion of undernourished people as a percentage of the population)
- Child stunting (the proportion of children under the age of five who are stunted)
- Child wasting (the proportion of children under the age of five who are wasted)
- Child mortality (the mortality rate of children under the age of five)

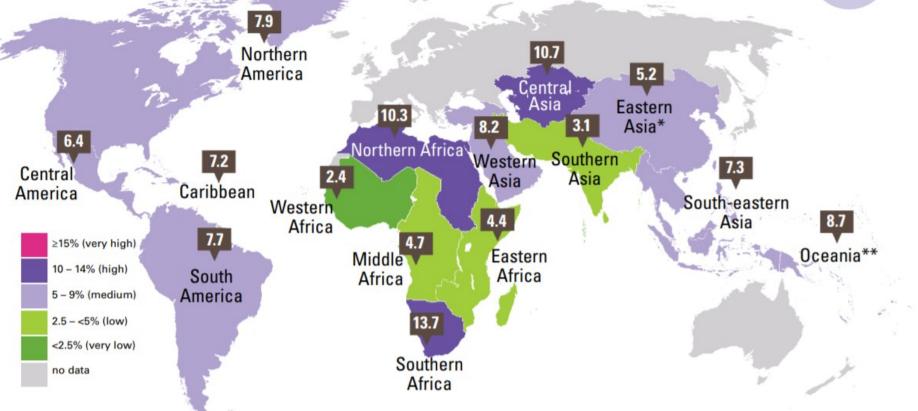
Welthungerhilfe, IFPRI, Concern Worldwide 2018.

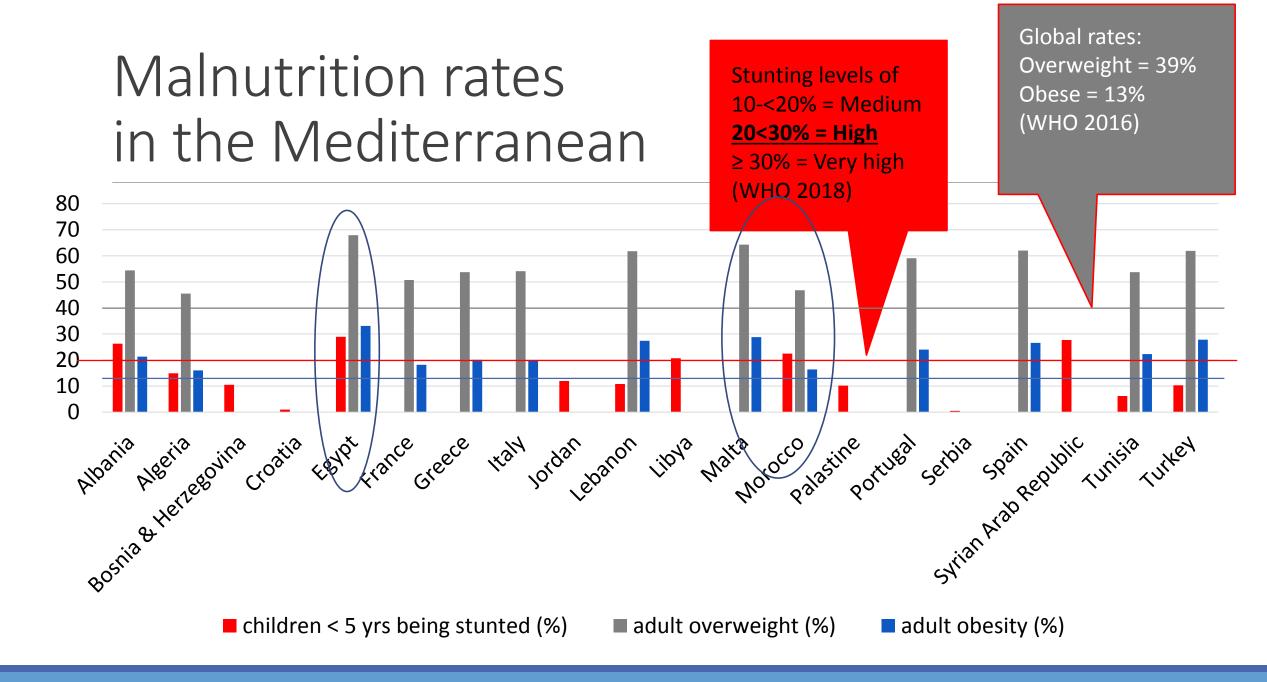

Malnutrition as a global challenge

- 821 million people suffer from hunger (SOFI 2018)
- 2 billion adults are overweight (GNR 2017) and 672 million obese (SOFI 2018)
- 2 billion suffer from micronutrient deficiency (GNR 2017)

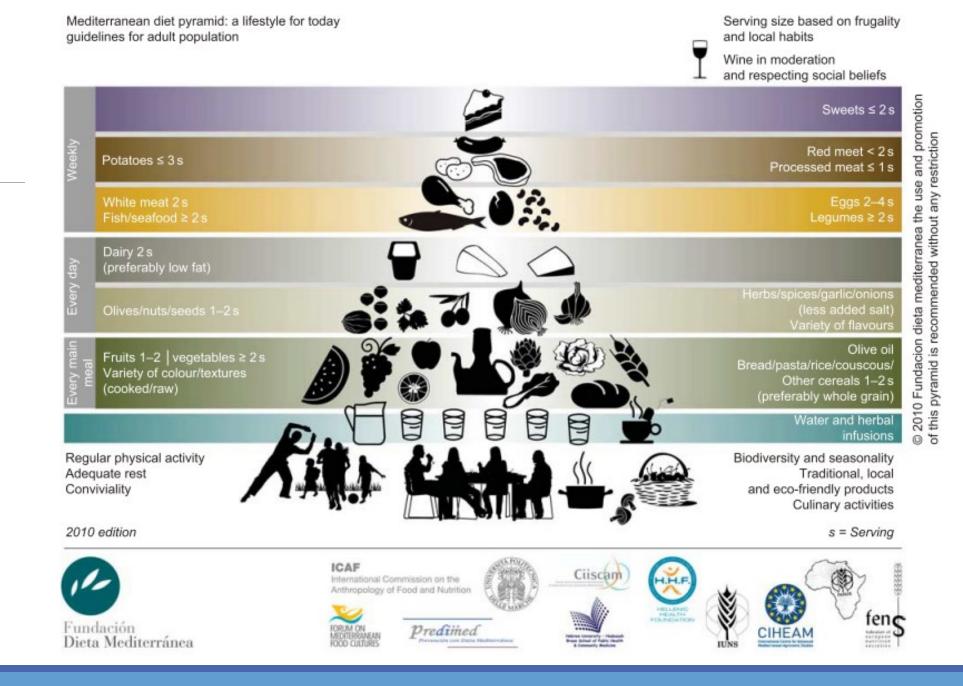


II




12

In three sub-regions, at least one in every ten children under five is overweight Percentage of overweight children under 5, by United Nations sub-region, 2017


WHO, UNICEF most recent data; based on national or internationally conducted surveys

In 2010, the inscription of the Mediterranean diet on the UNESCO Representative List of the Intangible Cultural Heritage of Humanity was approved with the following description:

"The Mediterranean diet constitutes a set of skills, knowledge, practices and traditions ranging from the landscape to the table, including the crops, harvesting, fishing, conservation, processing, preparation and, particularly, consumption of food. **The Mediterranean diet is characterized by** a nutritional model that has remained constant over time and space, consisting mainly of

olive oil, cereals, fresh or dried fruit and vegetables, a moderate amount of fish, dairy and meat, and many condiments and spices, all accompanied by wine or infusions, always respecting beliefs of each community. However, the Mediterranean diet (from the Greek diaita, or way of life) encompasses more than just food. It promotes social

interaction, since communal meals are the cornerstone of social customs and festive events." (UNESCO, 2010)

Bach-Faig et al. (2011) Public Health Nutrition: 14(12A), 2274–2284

Nutrition Education increases women's dietary diversity

in Karamoja, North-East Uganda

Presented by Tina Koch

4th FANUS Conference,

August 27th 2019, Kigali

Nutrition Education

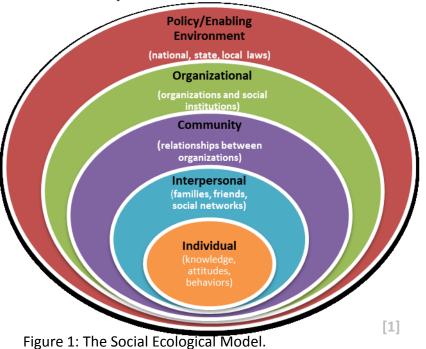
'(...) a combination of educational strategies, accompanied by environmental supports, designed to facilitate voluntary adoption of food choices and other food and nutrition-related behaviours conducive to health and well-being.'

Contento (2016, p.13)

Nutrition Education

((...) a combination of educational strategies, <u>accompanied by</u> <u>environmental supports</u>, designed to facilitate voluntary adoption of food choices and other food and nutrition-related behaviours conducive to health and well-being.'

Contento (2016, p.13)

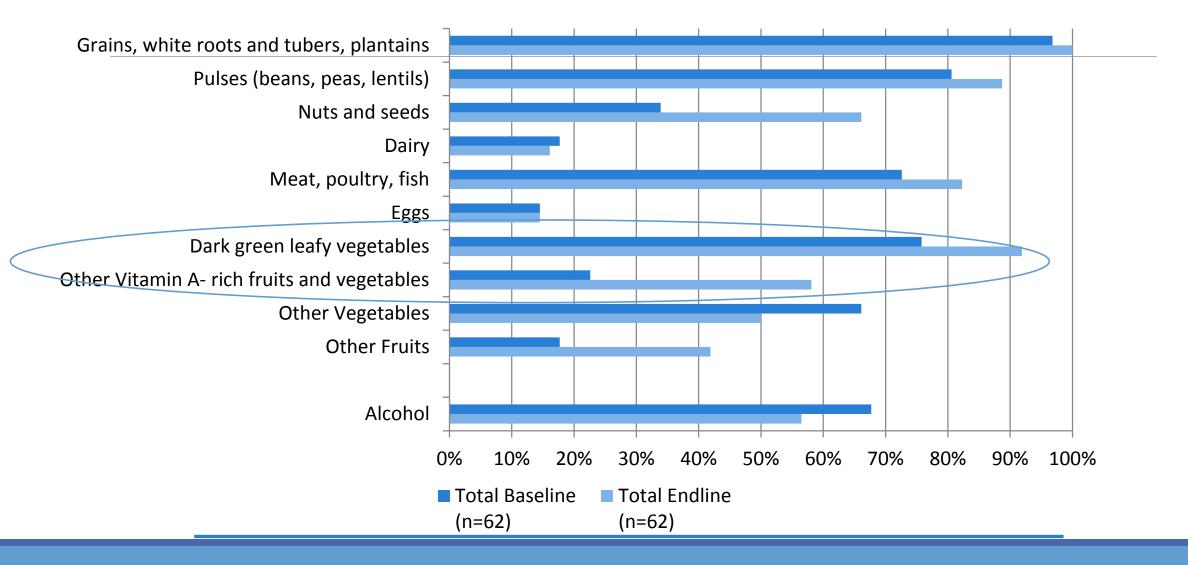

The Social Ecological Model

Theory-based framework

Understanding versatile and interactive effects of personal and

environmental factors of behaviour

- → Identification leverage points
- Context-specific interventions
 Here: individual, interpersonal and community level addressed


Stunting

= children below five years of age are too short for their age in comparison to the Global Standard (WHO)

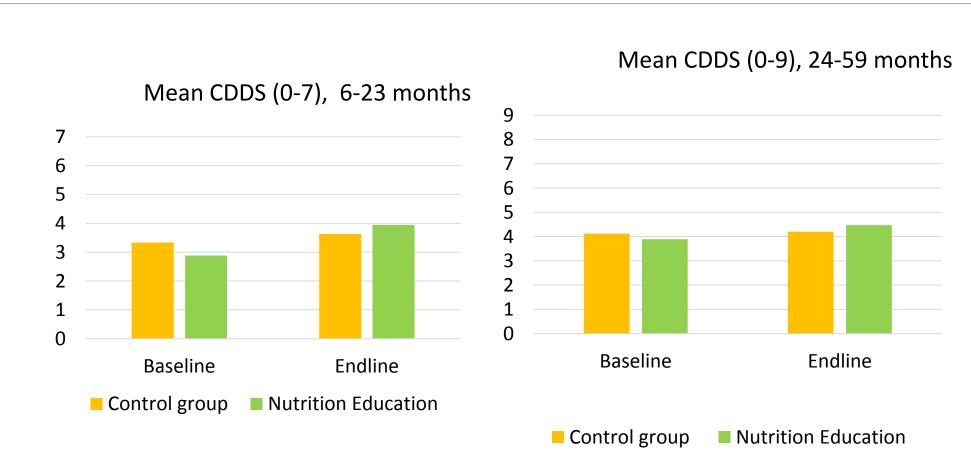
Consumption of food groups from women (%), using a 7-day recall.

Daily nutrient requirement

→ Adult female, 31-50 years old, not pregnant or lactating, sedentary lifestyle

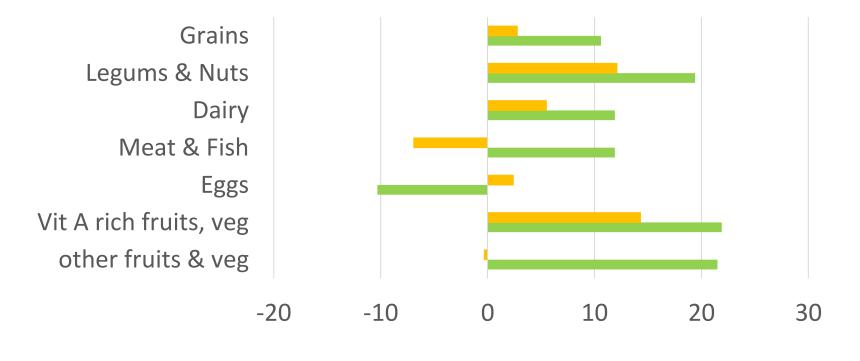
Macronutrients = 5	RDA	Vitamins = 14	RDA	Minerals = 12	RDA
Carbohydrate	130g	Vitamin A	500µg RE	Calcium	1000 mg
Dietary Fiber	25g	Vitamin C	50mg	Chromium	25 µg
Linoleic Acid	12g	Vitamin D	200IU	Copper	0.9 mg
Alpha-Linolenic		Vitamin E	15 mg	Flouride	3 mg
Acid	1g	Vitamin K	90µg	Iodine	150µg
Protein	47g	_ Thiamin	1.1mg	Iron	18 mg
RDA=Recommended dietary allowance		Riboflavin	1.1mg	Magnesium	320 mg
31 nutrients to be covered		Niacin	14 mg	Manganese	1.8 mg
		Vitamin B6	1.3 mg	Molybdenum	45 µg
		Folate	400µg	Phosphorus	700 mg
		Vitamin B12	2.4µg	Selenium	55 µg
		Pantothenic		Zinc	8mg
		Acid	5 mg		
		Biotin	30µg		
		Choline	425 mg		

Nutrition Education to enhance dietary diversity


a case study in Kapchorwa, Uganda

Irmgard Jordan

On behalf of the Nutrition Team



Child dietary diversity

Children 6-23 months at baseline

Food consumption per food group (7 Groups)

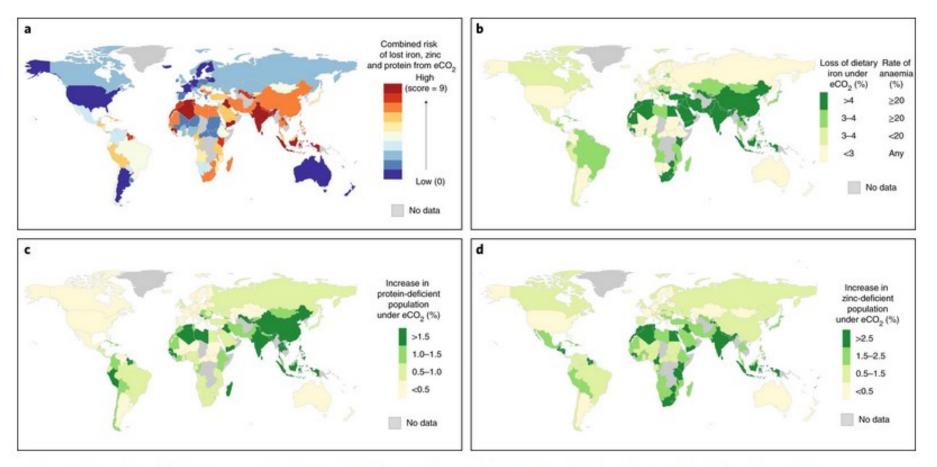
Difference in %

Control Intervention

Impact of severe drought on food composition

Findings from the HealthyLAND project Slides from Sahrah Fischer

Table 2

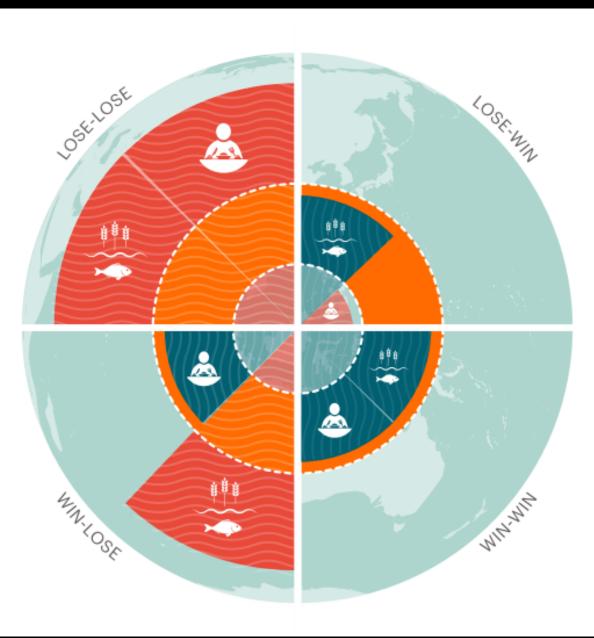

Percent differences between the means of first growing season 2016 (FGS) and second growing season 2016 (SGS) calculated for each nutrient per region and crop. Negative values indicate a decrease between the FGS and the SGS whereas positive values mark an increase between FGS and SGS. Table with detailed descriptive data can be found in the Supplementary material (Table S3).

% difference between	Variable	Teso Sou	uth, Kenya	Kapchorwa, Uganda		
FGS and SGS		Maize grain	Cassava tuber	Maize grain	Matooke fruit	
Yield	Yield	-2%	-67%*	-28%*	-1%	
Macronutrients	Mg	19%*	23%*	-12%	$-68\%^{***}$	
	P	49%**	52%***	-2%	-27%***	
	S	$-9\%^{*}$	59%**	-23%	-77%***	
	К	-6%	25%	-48%	-33%***	
	Ca	79% ***	60%**	-4%	-86%***	
Micronutrients	Fe	68% ***	15%	-67%*	-83%***	
	Cu	12%	8%	-89% **	4%	
	Zn	41%**	12%*	-17%	24%*	
	Mn	17%	-51%**	-81% **	-99%***	

Asterisks (*) signify level of significance, categorized into: $p < 0.05^*$; $p < 0.005^{**}$; $p < 0.0005^{***}$.

Fig. 2: Risk of inadequate nutrient intake from elevated atmospheric CO_2 concentrations of 550 ppm.

From: Impact of anthropogenic CO2 emissions on global human nutrition



a-d, Combined qualitative summed risk from all nutrients (a), and individually for iron (b), protein (c) and zinc (d).

Figure 1

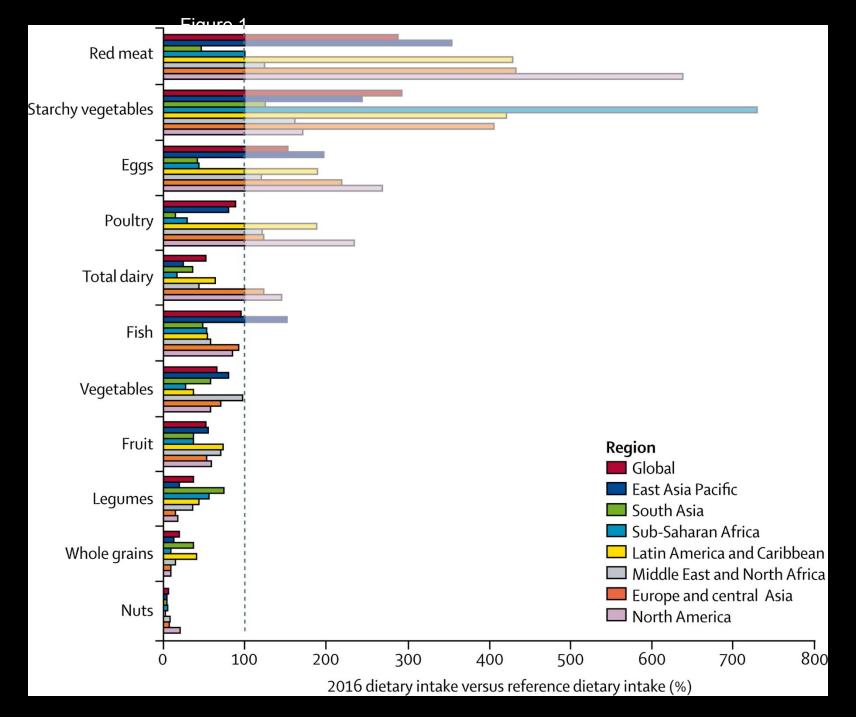
An integrated agenda for food in the Anthropocene recognizes that food forms an inextricable link between human health and environmental sustainability. The global food system must operate within boundaries for human health and food production to ensure healthy diets from sustainable food systems for nearly 10 billion people by 2050.

Figure 2

Scientific targets define the safe operating space for food systems and are represented here by the orange ring. The wedges represent either dietary patterns or food production, and together they reflect various dietary patterns that may or may not meet scientific targets for human health and environmental sustainability, i.e. outside of the safe operating space. These dietary patterns can be "healthy and unsustainable" (win-lose), "unhealthy and sustainable" (losewin), "unhealthy and unsustainable" (lose-lose) and "healthy and sustainable" (win-win).

Target 1 Healthy Diets

Healthy diets have an optimal caloric intake and consist largely of a diversity of plant-based foods, low amounts of animal source foods, contain unsaturated rather than saturated fats, and limited amounts of refined grains, highly processed foods and added sugars.


JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

	Macronutrient intake grams per day (possible range)	Caloric intake kcal per day
Whole grains Rice, wheat, corn and other	232	811
Tubers or starchy vegetables Potatoes and cassava	50 (0-100)	39
Vegetables All vegetables	300 (200–600)	78
Fruits All fruits	200 (100-300)	126
Dairy foods Whole milk or equivalents	250 (0–500)	153
 Protein sources Beef, lamb and pork Chicken and other poultry Eggs Fish Legumes Nuts 	14 (0-28) 29 (0-58) 13 (0-25) 28 (0-100) 75 (0-100) 50 (0-75)	30 62 19 40 284 291
Added fats Unsaturated oils Saturated oils	<mark>40</mark> (20–80) 11.8 (0-11.8)	354 96
Added sugars All sugars	31 (0–31)	120

Table 1

Scientific targets for a planetary health diet, with possible ranges, for an intake of 2500 kcal/day.

Figure 1: Diet gap between dietary patterns in 2016 and reference diet intakes of food Data on 2016 intakes are from the Global Burden of Disease database. 130 The dotted line represents intakes in reference diet (table 1).

The Lancet DOI: (10.1016/S0140-6736(18)31788-4) Copyright © 2019 Elsevier Ltd<u>Terms and Conditions</u> Figure 2: Projections of global emissions to keep global warming to well below 2°C, aiming for 1.5°C

Data are from Intergovernmental Panel on Climate Change fifth assessment report (RCP2.6 data for nitrous oxide and methane) and Rockström and colleagues 28 (for fossil-fuel emissions, land use, land-use change, and forestry, and biosphere carbon sinks).

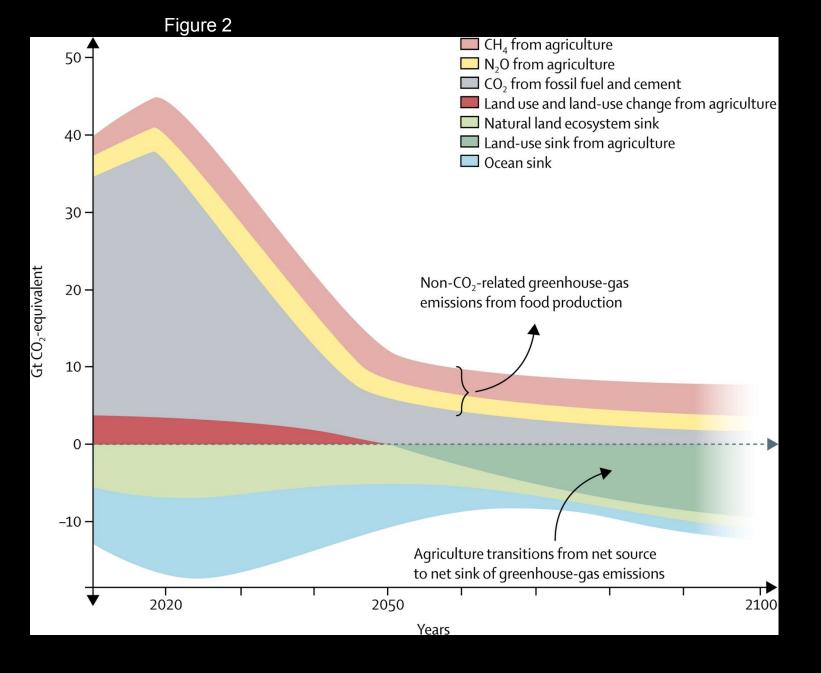


Figure 4

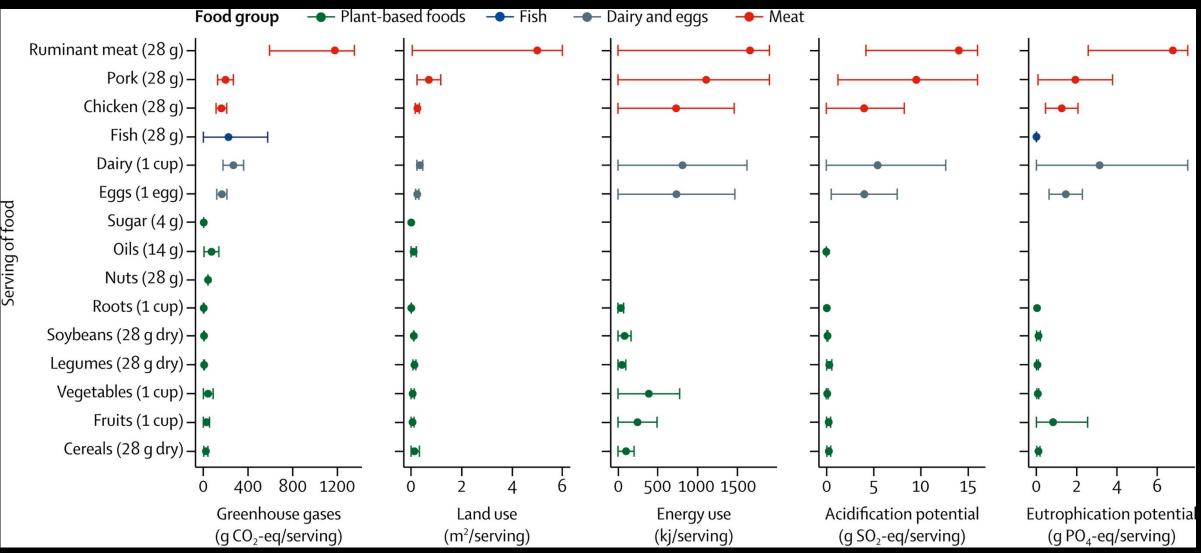
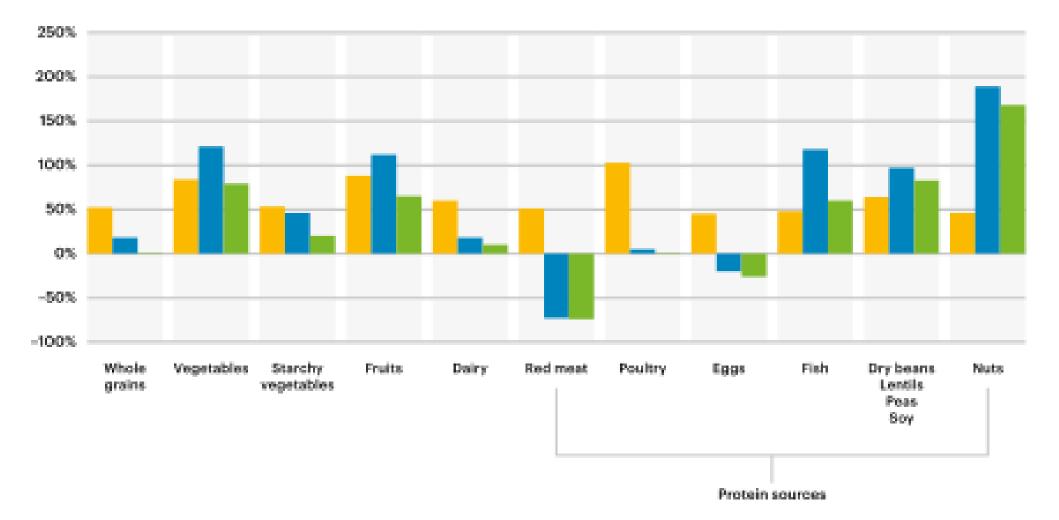


Figure 4: Environmental effects per serving of food produced

Bars are mean (SD). 5,216 Some results are missing for fish due to lack of data for some impact categories (eg, land use stemming from plant-based feeds in aquaculture).

This was, however, accounted for in the global food systems modeling framework used in Section 3. CO 2 = carbon dioxide.

			GHG emissions	Cropland use	() Water use	Nitrogen application	Phosphorus application	Biodiversity loss
Food production boundary			5.0 (4.7-5.4)	13 (11.0-15.0)	2.5 (1.0-4.0)	90 (65.0-140.0)	8 (6.0–16.0)	10 (1-80)
Baseline in 20	10		5.2	12.6	1.8	131.8	17.9	100-1000
Production (2050)	Waste (2050)	Diet (2050)						
BAU	Full waste	BAU	9.8	21.1	3.0	199.5	27.5	1,043
BAU	Full waste	Dietary shift	5.0	21.1	3.0	191.4	25.5	1,270
BAU	Halve waste	BAU	9.2	18.2	2.6	171.0	23.2	684
BAU	Halve waste	Dietary shift	4.5	18.1	2.6	162.6	21.2	885
PROD	Full waste	BAU	8.9	14.8	2.2	187.3	25.5	206
PROD	Full waste	Dietary shift	4.5	14.8	2.2	179.5	24.1	351
PROD	Halve waste	BAU	8.3	12.7	1.9	160.1	21.5	50
PROD	Halve waste	Dietary shift	4.1	12.7	1.9	151.7	20.0	102
PROD+	Full waste	BAU	8.7	13.1	2.2	147.6	16.5	37
PROD+	Full waste	Dietary shift	4.4	12.8	2.1	140.8	15.4	34
PROD+	Halve waste	BAU	8.1	11.3	1.9	128.2	14.2	21
PROD+	Halve waste	Dietary shift	4.0	11.0	1.9	121.3	13.1	19


Table 5

Various scenarios demonstrating the environmental impacts of implementing the action outlined in Table 4. The colors illustrate whether environmental impacts transgress food production boundaries: green - below lower range value; light green - below or equal to boundary but above lower range value; yellow - above boundary but below upper range value; red - above upper range value. BAU indicates business as usual scenario.

2050 BAU + full waste

2050 planetary health diet + full waste

2050 planetary health diet + halve waste

Table 6

Predicted change in food production from 2010 to 2050 (percent from 2010 scenario) for the business as usual (BAU) with full waste, the planetary health diet with full waste, and the planetary health diet with halve waste scenarios.

We thank **all students, PhD, MSc, BSc** for their contribution to this study and **especially the farm families** for their willingness to participate.

The project was financially supported

 by the German Federal Ministry of Food and Agriculture (BMEL) based on the decision of the Parliament of the Federal Republic of Germany through the Federal Office of Agriculture and Food (BLE). With support from

by decision of the German Bundestag

and also by the

Deutscher Akademischer Austauschdienst German Academic Exchange Service