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Abstract
Heat waves and drought are often considered the most damaging climatic stressors for wheat. In
this study, we characterize and attribute the effects of these climate extremes on wheat yield
anomalies (at global and national scales) from 1980 to 2010. Using a combination of up-to-date
heat wave and drought indexes (the latter capturing both excessively dry and wet conditions), we
have developed a composite indicator that is able to capture the spatio-temporal characteristics of
the underlying physical processes in the different agro-climatic regions of the world. At the global
level, our diagnostic explains a significant portion (more than 40%) of the inter-annual
production variability. By quantifying the contribution of national yield anomalies to global
fluctuations, we have found that just two concurrent yield anomalies affecting the larger
producers of the world could be responsible for more than half of the global annual fluctuations.
The relative importance of heat stress and drought in determining the yield anomalies depends
on the region. Moreover, in contrast to common perception, water excess affects wheat
production more than drought in several countries. We have also performed the same analysis at
the subnational level for France, which is the largest wheat producer of the European Union, and
home to a range of climatic zones. Large subnational variability of inter-annual wheat yield is
mostly captured by the heat and water stress indicators, consistently with the country-level result.
Introduction

Wheat, with about a 2.1 million km2 total harvested
area, is the most abundant crop in the world: it is the
first rain-fed crop after maize and the second irrigated
crop after rice (Portmann et al 2010). With a total
production that surpassed 700 million tons (MTons)
in year 2010, it is contributing to about the 20% of the
total dietary calories and proteins worldwide (Lobell
and Gourdji 2012, Shiferaw et al 2013).

Field studies of wheat yield variability have shown
that higher than optimal temperatures during the
growing season are generally accelerating the progress
of the plant phenological stages, affecting photosyn-
thesis and its balance with respiration, and reducing
the final yield (Lobell and Gourdji 2012, Rezaei et al
2015). Higher temperatures also increase the atmo-
spheric demand for water and reduce the crop water-
use efficiency (Ray et al 2002). Exposure to extremely
© 2017 IOP Publishing Ltd
high temperatures (i.e. heat stress) leads to plant
damages by inducing perturbations in cellular
structures and metabolic processes (Nakamoto and
Hiyama 1999). Isolated occurrences of extreme high
temperatures around a sensitive stage of crop
development, such as flowering and grain-filling,
can reduce grain yield considerably (Tashiro and
Wardlaw 1990, Ferris et al 1998, Porter and Gawith
1999, Luo 2011), while a prolonged period of extreme
high temperatures might result in almost total yield
loss (Semenov and Shewry 2011).

The detrimental effect of the heat stress on wheat
yield may worsen when coinciding with drought
(Pradhan et al 2012). Irrigation, to alleviate local water
stress, can also mitigate the impact of the highest
temperatures, by evaporative cooling, even at larger
spatial scales (Tack et al 2015, Troy et al 2015, Mueller
et al 2016). On the other hand, extreme amounts of
precipitation and water excess in the soil can also be
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responsible for wheat loss due to proliferation of pests
and diseases, leakage of nutrients, inhibition of oxygen
uptake by roots, and interference with agronomical
practices (e.g waterlogging during harvest). This may
have happened during the 2016 cropping season in
France, which showed a huge wheat yield anomaly that
has not been officially confirmed yet (MARS 2016,
Bloomberg 2016, France24 2016, Arvalis 2016).

Compared to other important crops, the main
wheat producing regions are characterized by ‘close-
to-average’ yield variability (Ben-Ari and Makowski
2014). However, increasing unfavorable conditions
under observed and projected climate change con-
ditions will probably impact wheat production
variability (Gourdji et al 2013, Deryng et al 2014,
Siebert and Ewert 2014, Asseng et al 2015, Ray et al
2015), especially because of the exacerbated effects of
heat stress on grain number and grain size (Lobell et al
2015).

Using an ensemble of crop model simulations,
Lobell et al (2015) estimated for the period 1980–2008
a 5.5% reduction of global wheat production due to
changes in temperature and precipitation. This
reduction occurred together with an increase in wheat
yield/production of about 50% over the same period,
mostly due to improved management and higher
yielding crop varieties. Therefore, considering that the
human population increased proportionally from 4.4
billion in 1980 to 6.9 billion in 2010 (UN 2015),
negative yield deviations from the mean trend can be a
potentially increasingly threat to food security. Indeed,
changes in wheat yield variability have already been
suggested as one of the primary factors influencing
global food prices, market stability and food security,
especially in developing countries (FAO 2011, OXFAM
2012, Porter et al 2014, Deryng et al 2014, GFS 2015).
Moreover, the current urbanization trend at the
expense of cropland area extent would imply, to be
sustainable, a further increase of crop yield (Bren
d’Amour et al 2016), and presumably an increased
sensitivity of food security to the climate induced yield
interannual variability.

The supporting evidence for these assertions is still
relatively weak, since only few recent studies have
addressed the relationships of the observed inter-
annual climate and wheat yield fluctuations at the
global scale. Lizumi and Ramankutty (2016) found
consistent increases in standard deviations of annual
yields and of an agro-climatic indicator accounting for
solar radiation, heat stress and drought. Ray et al
(2015), through an automatic spatial selection of
several agro-climatic indicators based on temperature
and precipitation anomalies (and using high resolu-
tion yield data), developed a statistical model
accounting for the sign of the fluctuations and
explaining about one third of the observed yield
variance. This is in line with the composite analysis by
Lesk et al (2016), based on an a priori knowledge of
extreme events, showing that droughts and extreme
2

heat could have reduced national annual yields by
9%–10%. No effects of floods and extreme cold events
were identified by Lesk et al (2016) on national data.

It is worth noting that none of aforementioned
studies explicitly considers the possible impact onwheat
yield of water excess events, which are not necessarily
only related to floods. Moreover, the indicator used by
Lizumi and Ramankutty (2016) accounts more for sub-
optimal climatic conditions, rather than for the
extremes. On the other hand, the indicators used by
Ray et al (2015) are computed using the seasonal mean
variables, which are not capturing the extremes
occurring on a sub-monthly scale as the heat waves.
Both of them are based on the exceedance of prescribed
thresholds that are not explicitly mentioned. Thismight
not be justified at the global scale, because of the
different climates and different agronomical practices
(such as irrigation and variety selection).

Here, we aim to model explicitly the effects of
temperature and soil moisture anomalies (either
positive and negative) on global and regional wheat
production anomalies. The proposed approach does
not require an a priori knowledge of extreme events
(as in Lesk et al 2016) and it has the clear advantage of
disentangling the different contributions of heat and
water anomalies, potentially resulting in stress for the
crop. Furthermore, it helps to better identify and
characterize the role of the major producers in driving
global yield anomalies, showing explicitly the effects of
the individual climatic anomalies and extremes for
each year in the period 1980–2010. Compared to Ray
et al (2015) and Lizumi and Ramankutty (2016), we
use the most up-to-date heat waves and water balance
indicators currently available. These are, namely, the
Heat Wave Magnitude Index daily (HWMId; Russo
et al 2015) and the Standardized Precipitation
Evaporation Index (SPEI; Vicente-Serrano et al
2010, 2013). Compared to previous studies, both
indexes have been developed to be generally applicable
under a wide range of conditions. They bear the great
advantage of allowing the diagnosis and the compari-
son of extreme events in different regions of the world
and time of the year on the basis of globally defined
thresholds (Zampieri et al 2016, Vicente-Serrano et al
2010, 2013, see Data and Methods section).

In this study, the HWMId has been slightly
modified in order to account for temperature
anomalies and heat waves events during the stages
of wheat growth that are sensitive to heat stress
(i.e. three months before harvesting, roughly corre-
sponding to the period including anthesis and grain
filling). Therefore, the new indicator bears some
analogy with the Growing Degree Day (DGG) index,
but instead of summing the daily temperature
anomaly w.r.t. a base value, it sums up the heat
wave magnitude function defined by Russo et al 2015
(see equation (1) in the Data and Methods section).
We refer to it as Heat Magnitude Day (HMD). While
the HWMId selects the maximum value of the
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summations computed on consecutive periods with
maximum daily temperature over a certain threshold
(i.e. a heat wave), the HMD integrates all of them
similarly to the GDD. Therefore, the HMD is able to
capture not only heat stress events, but also sub-
optimal conditions.

The SPEI is a multi-temporal-scale index that
quantifies persistent anomalies in the soil moisture
balance (i.e. precipitationminus potential evaporation)
over different time periods (1–24 months). We use the
SPEI6 computed during the previous sixmonths before
harvesting, and we refer to it simply as SPEI. The SPEI6
provides an estimate of the soilmoisture state during the
sensitive stage of wheat, as for the heat stress, but also
accounting for a preconditioning period of three
months before flowering consistently with the time-
scale of the root soil moisture dynamics (see e.g.
Zampieri et al 2009). Large negative values of the SPEI
indicate drought, while positive SPEI indicate wetter-
than-normal soil conditions.

In order to account for concurrent heat and water
stress events, we define a combined index as a simple
linear superpositionof the standardizedHMDandSPEI
(Combined Stress Index, CSI). We calibrate the CSI by
determining the coefficients that maximize the CSI
explanatory powerwith a bilinear ridge regressionof the
observed yield fluctuations at national level (FAOSTAT
data), accounting for the covariance of the two agro-
climatic indexes (see the Data and Methods section).
Thus, the resulting multiplicative coefficients combin-
ing the HMD and the SPEI into the combined index
depend on the country. The comparison between their
absolute values can be interpreted as our best statistical
estimate of the relative contribution of heat and water
stresses on the national yield anomalies. Moreover, the
sign of theparametermultiplying the SPEI indicates, for
each country, larger yield sensitivity either to drought or
to water excess.

We test the robustness of our proposed approach
by performing a specific case study at the subnational
level for France, where wheat is resulting to be more
sensitive to over-wet conditions. This country is
indeed characterized by pronounced heterogeneity of
agro-climatic zones and by the availability of both
high-quality yield data (from 1989 to 2014) and
meteorological data (updated in near real-time). This
allows us to discuss also the possible compensation
effects while aggregating the indexes over large
countries to compare with the FAOSTAT national
yield statistics. Finally, we demonstrate the usefulness
of the CSI to characterize the impact of climatic
extremes on wheat yield anomaly observed during the
2016 wheat-cropping season in France.
Data and methods

Most physiological processes responsible for the final
crop yield are negatively affected by maximum daily
3

temperatures above 30 °C (Porter et al 2014). Above
34 °C–35 °C, wheat reaches its limits for survival
(Porter and Gawith 1999, Hatfield et al 2011, Rezaei
et al 2015), the so-called ‘cardinal temperatures’ for
wheat (Porter and Gawith 1999).

To provide realistic estimates of fixed based
threshold estimators often used to characterize heat
stress on wheat, biases in temperatures need to be
corrected, especially when gridded temperature data
and/or reanalysis are used instead of local field
measurements. Furthermore, wheat physiology is
sensitive to the temperature of its canopy, which
might be higher than the 2m temperature (the
commonly available variable in the observational data
sets) in unstably stratified surface layers, especially
above arid soils (Siebert et al 2014). The thermal
vertical structure of the atmospheric surface layer can
also be altered by evaporative cooling due to irrigation
(Tack et al 2015, Troy et al 2015, Mueller et al 2016).
These issues, together with the lack of information
about the varieties and the detailed agronomical
practices that are implemented in the different regions,
raise some concerns about the uniform global
applicability of heat stress indicators based on the
cardinal temperature thresholds used in previous
studies (Lizumi and Ramankutty 2016, Ray et al 2015).

Here, we adopt indicators based on statistically
determined climate thresholds aiming to account for
the physiological effects of heat and soil moisture
anomalies (and, in principle, other correlated factors)
with respect to the local climate variability.

The heat analysis is inspired by the HWMId
(Russo et al 2015, Zampieri et al 2016). A heat wave is
defined as a consecutive period when Tmax exceeds
the 90th percentile of Tmax, computed for all days of
the year considering a 2 w time window (T90). Over
these periods, the HMWId is then defined as the sum
of the difference between Tmax and the 25th percentile
(T25) normalized by the interquantile temperature
range (i.e. the magnitude function Md, equation (1)),
computed in a similar manner to the 90th percentile.

MdðTÞ ¼ ðT � T25Þ=ðT75 � T25Þ if

T > T90; zero otherwise ð1Þ

This non-parametric approach (i.e. without prior
assumption on the statistical distribution of Tmax)
takes both the length and the intensity of the heat
waves into account. Whether a severe or a ‘close-to-
normal’ event is diagnosed depends on the numerical
value that the HWMId assumes. A great advantage is
that the severity of the events can be defined on the
basis of global thresholds, no more depending on the
region (Russo et al 2014, 2015, Zampieri et al 2016).

This definition of the HWMId is the same
described in Russo et al (2015). Here, we slightly
modify it to diagnose heat stress and temperature
anomalies that are relevant for crops. While the
original formulation of the HWMId is based on the
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maximum event over the whole year, we adapt it for
wheat crop by cumulating the magnitude function
over the last three months of the growing season
before harvesting similarly to the way the Growing
Degree Days (GDD) is defined. Therefore, the
modified index accounts for all events occurring
during the sensitive stage for the crop. We refer to this
modified index as HMD. Figure S9 in the online
supplementary information provides a visual repre-
sentation of the HMD computation, with respect to
the T90 and the interquartile temperature range
computed during 2003 growing season in central
France.

Daily Tmax data are retrieved from the AgMERRA
climate forcing dataset (Ruane et al 2015) that was
created to support the Agricultural Model Intercom-
parison and Improvement Project (AgMIP). The
AgMERRA dataset is available at a 0.25° � 0.25°
resolution from 1980 to 2010 globally. This dataset is
based on the NASA Modern-Era Retrospective
Analysis for Research and Applications (MERRA,
Rienecker et al 2011), blending models and observa-
tional data through a mathematical procedure called
‘data assimilation’, but it corrects biases in temperature
using CRU (Climate Research Unit) data. CRU data
are amongst the most widely used climatic datasets.
They consist of a gridded datasets derived from quality
checked station measurements, excluding time-series
that do not pass several quality and homogeneity tests
(see Osborn and Jones 2014, and references herein).
CRU data are defined on a monthly time-scale, while
the day-to-day variability is provided from the
MERRA reanalysis. We evaluated the HMD consider-
ing also AgCFSR, i.e. the other main agricultural
forcings dataset adopted in AgMIP (which is also
correcting the bias using CRU data, Ruane et al 2015),
finding almost equal results (see figure S7 of the
supplementary material, available at stacks.iop.org/
ERL/12/064008/mmedia).

The soil moisture analysis is tackled with the SPEI
(Vicente-Serrano et al 2010, 2013). The SPEI is a
multi-temporal-scale water balance index integrating
the precipitation and potential evapotraspiration
budget on the basis of CRU data, available at 0.5°
� 0.5° resolution from 1901 to 2014 globally (http://
spei.csic.es/). It can be used for determining the onset,
duration and magnitude of drought conditions with
respect to normal conditions in a variety of natural and
managed systems such as crops. SPEI anomalies are
considered large, or extreme when specific thresholds
(globally defined) are surpassed.

To compute the HMD and evaluate the SPEI over
the wheat growing season and production areas, we
use the global data set of monthly irrigated and rainfed
crop areas around the year 2000 (MIRCA2000,
Portmann et al 2010). MIRCA2000 integrates data
from several different sources, with the specific aim to
enhance the consistency with subnational statistics
collected by countries and by the FAO. It provides both
4

irrigated and rainfed crop areas of 26 crop classes for
each month of the year, and includes information on
the occurrence of multiple cropping systems allowing
to account for winter and spring sown wheat, or
irrigated and rainfed wheat when they coexist in the
same grid cell. Portmann et al (2010) also provide an
estimate of the uncertainties of MIRCA2000 in
comparison with other sources. MIRCA2000 is
available at various resolutions. Here, we use the
0.5 � 0.5 degrees resolution, which is compatible with
themeteorological data used in this study. MIRCA2000
is consistent with the only other global agricultural
calendar data available to our knowledge, as it is mostly
based on the same sources (Sacks et al 2010).

MIRCA2000 (online supplementary figure S1)
provides sowing dates but not the varieties. The
majority of the harvested areas correspond to rainfed
winter sown wheat (118 million hectares), especially in
the middle latitudes (in both hemispheres). Rainfed
spring sown wheat (30 million hectares) is dominant
mainly in the northwestern US and Canada, and it is
present in other regions (Spain, England, Poland and
India) as secondary crop. Irrigated winter sown wheat
(50 million hectares) is found mainly in India and
China, and it is characterized by the largest local
concentrations. Irrigated spring sown wheat (8 million
hectares) harvested areas are almost negligible with
respect to the other categories. Online supplementary
figures S2 and S3 show the sowing and harvesting
months, respectively, derived from the MIRCA2000
dataset.

Wheat is mostly sensitive to climatic extremes
during the three months period before harvesting
(Lobell and Tebaldi 2014). We define these periods for
each grid cell of the climatic data using MIRCA2000
(see figure S3). Accordingly, we compute the indexes
separately for each of the four wheat cropping
categories (i.e. irrigated and non-irrigated crops,
and double cropping), since the sowing and (most
importantly) the harvesting dates can be different. In
the grid boxes where different categories coexist, we
average the values of the indexes using the harvested
area of each wheat category as a weighting factor in
order to obtain one value of each index for each year
and each grid cell.

The HMD is computed for period 1980–2010 by
summing equation (1) over all relevant events during
the three months before harvesting. The SPEI, which
integrates the precipitation and evaporation anomalies
occurred earlier, is evaluated at the harvesting month.
The time scale (i.e. the number of months) defining it
has to be specified. Assuming that the crop is sensitive
to soil moisture anomalies in the same period as for
heat, but also accounting for the effects of the previous
precipitation and evaporation anomalies in determin-
ing the current soil moisture values, we used SPEI6. In
this way, we account for the water balance anomalies
during the three months sensitive period before
harvesting and also during an earlier preconditioning
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period of preceding three months, accordingly with
the typical time scales of soil moisture dynamics (see
e.g. Zampieri et al 2009).

Online supplementary figures S4 and S5 show the
daily maximum temperature 90th percentile (T90),
used as a threshold in the heat stress estimation,
corresponding to the beginning and to the end of the
three months period from harvesting. Notably, there
are regions where the T90 is above 30 °C already at the
beginning of the growing season, especially for
irrigated winter wheat in India, and for rainfed spring
wheat (figure S4). On the other hand, there are regions
as Canada, for instance, where T90 is relatively low
(this is confirmed by Jarvis et al 2008). T90 is above
30 °C in most regions at harvesting time (figure S5).

Global, national and subnational spatial aggrega-
tion are computed by averaging grid-point data, using
again the MIRCA2000 harvested area data as
weighting factors, so that the indexes can be compared
with FAOSTAT3 national statistics of wheat produc-
tion and yield (www.faostat3.fao.org/). The quality of
yield data represents a main issue in this kind of
studies, especially for countries where there are no
alternative estimations available (Desiere et al 2016).
The subnational analysis for France is based on winter
wheat yields from 92 French départements, provided
by AGRESTE Ministère de l’Agriculture (AGRESTE,
2015) and covering the period between 1989 and 2014.
Subnational crop yields have been quality controlled
(Ceglar et al 2016). Weather data for the computation
of the CSI has been obtained from the high-resolution
EOBS gridded weather dataset over Europe (Haylock
et al 2008).

Since most of the tendencies affecting yield
statistics are mostly due to improvement in the
agricultural practices, we adopt a non-linear detrend-
ing procedure, i.e. the locally weighted scatterplot
smoothing (LOESS, Cleveland and Devlin 1988) with
the ‘lambda’ (span) parameter equal to 0.75. This value
was optimized by trial-and-error procedure. However,
the linear correlation coefficient we obtain are only
weakly sensitive to changes of the span parameter
around this value. In fact, the final results are robust to
changes of the lambda parameter within a reasonable
range of values. Moreover, this technique yields
comparable results with respect to other analog
procedures (see e.g. Ben-Ari et al 2016). This
processing has been conducted with the R software
build-in loess function.

Having removed in this way also the part of the
signal that is potentially related to climate, we are
compelled to apply the same procedure also to the
HMD and SPEI time-series. This is performed only
when the time-series exhibit either a significant trend
(with the Mann–Kendall test), or a change point (Bai
and Perron 1998), using ‘Kendall’ and ‘strucchange’ R
libraries; otherwise, we just remove the mean. In such
a way, we can isolate the effects of climate anomalies
and extremes on the year-to-year wheat production
5

variability. Online supplementary figure S8 shows an
example of LOESS detrending (and mean removal) of
yield and of the indexes time-series.

Our analysis is based on the anomalies obtained
after such procedure. The CSI is then defined as a
simple linear combination of the standardized HMD
and SPEI (i.e. SPEI6) anomalies as expressed by
equation (2):

CSI ¼ a ⋅ HMDdetrend;std þ b ⋅ SPCIdetrend;std ð2Þ

where the subscripts indicate the fact that the time-
series are detrended and standardized. Standardization
of the SPEI is advisable for using it in period
1980–2010, consistently with the reference period used
to compute the HMD.

In equation (2), the a and b parameters are
estimated by ridge linear regression with the country
level FAOSTAT data (again after detrending, stan-
dardization and inversion [i.e. multiplication by −1]),
accounting for the co-linearities between heat stress
and drought. Therefore, the CSI is an estimate of the
standardized yield anomalies. The numerical values
(and sign) of the a and b parameters depend on the
country. The sign of a is always resulting positive, as
the CSI is defined such that positive values are
corresponding to negative yield anomalies, which is
the reason of the inversion of yield data. On the other
hand, the sign of the b parameter indicates if the
national yield is more affected by negative or positive
soil moisture anomalies. Since all time-series are
standardized, the comparison between the values of
the parameters provide a qualitative indication of the
relative importance of the two regressors in determin-
ing the yield anomalies. A quantitative indication
could be provided if no co-linearities between the two
regressors were present. In any case, the value of the a
parameter provides an estimate of the effects of heat
stress alone in determining the yield anomalies (i.e. by
imposing no soil moisture anomaly in equation (2)).
We refer to the a parameter as the heat sensitivity
parameter, and to the b parameter as to the soil
moisture sensitivity parameter.

Linear correlations between the individual regres-
sors and national yield data are computed as well, for
comparison with the CSI skill and to test the
robustness and consistency of the procedure. In all
three cases, Pearson linear correlations and tests (10%,
two-sided) are applied in order to compute the
statistical significance of the correlations coefficients.
Results and discussion

Global wheat production approximately doubled from
1970 to 2015 (figure 1(a)), and increased by about
50% in the period 1980–2010 (the one here considered
for the climatic analysis). The largest contributor to
the global inter-annual variability is the Russian

http://www.faostat3.fao.org/
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between the combined stress indicator and the national yield data over wheat planted areas (regions with small correlations, or not
passing a 10% two-sided correlation test are displayed in grey); (c) portion of the explained variability by heat anomalies alone (i.e. the
heat sensitivity parameter); (d) role of the water stress as accounted in the combined model (i.e. the sign of the soil moisture sensitivity
parameter, see Data and Methods for explanations).
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rainfed winter wheat production (see online supple-
mentary figure S1), characterized by a standard
deviation of the production anomalies of about 12
MTons corresponding to the 25% of the mean
national production of 48 MTons per year (2000–2015
average).

Wheat production interannual variabilities of EU
(rainfed, mainly winter wheat), China (mainly rainfed
and irrigated winter wheat) and USA (rainfed winter
wheat) are following in decreasing order. Standard
deviations consist of about 7 MTons that correspond
to the 5%, 6% and 11% of the averaged national
productions of 140, 107 and 57 MTons, respectively.
Ukraine (rainfed winter wheat), Australia (rainfed
winter wheat), Canada (rainfed spring wheat) and
India (all agro-management types) are characterized
by decreasing standard deviations (between 5 and
3 MTons) corresponding to the 27%, 19%, 14% and
4% of the averaged productions of 22, 24, 25 and
80 MTons, respectively.

These eight countries and regional aggregations
together produced, on average, 495 MTons of wheat,
corresponding to the 77% of the global amount of
640 MTons. The associated standard deviation almost
equals the global value of 22 MTons, which is 3.4% of
the total production (and the 4.4% of the sum of the 8
producers). Quantitative analysis of the fluctuations
attributable to the individual regions displayed in
figure 1(a) reveals that concurrent anomalies of two of
these producers are able to explain more than 50% of
the global inter-annual fluctuations in almost all years
6

considered, if no compensating anomalies of the
opposite sign are present.

Figure 1(a) also shows the occurrence of climatic
extremes in the wheat cropping regions, as represented
by the CSI. During the period 1980–2010, significant
negative production departures from the mean global
tendency are often captured by the CSI, especially in
the years 1987–1988, 1994, 2003, 2006–2007 and 2010,
coinciding with the observed spikes in cereal prices
(see figures 7-3 in IPCC-WG2). We observed a
significant level of consistency also in the years
characterized by positive production anomalies and
less frequent damaging climatic extreme events, like in
1986, 1992–1993, 1997, 2004–2005 and 2008–2009.
The abundant wheat production in 1990, being
characterized by moderate climate conditions, repre-
sents an outsider in our analysis. That was the last year
of intensive fertilization in Russia (Lioubimtseva et al
2015), which is the main contribution of the recorded
production anomaly.

Overall, most of the largest anomalies that could
be related to climate variability are induced by the
major producers, while smaller and/or compensating
positive and negative anomalies characterize the
‘normal’ years. This is partly expected because the
single CSI anomalies are weighted by the national
productions in figure 1(a). However, the ranking of
the anomalies contributions by region slightly differs
from the one of production: the largest contributor to
the variance of the CSI is Europe, followed by the US,
China, Russia and India.
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This difference could be a consequence of the
spatially variable performance of the CSI in capturing
the stress events for wheat, or to the different relative
importance of climate compared to other factors in
determining the production anomalies in the different
regions, or it could be an effect of the spatial
aggregations in large heterogeneous regions. Higher
resolution yield and production data at the global
scale, together with detailed agronomical information,
would very likely improve the general understanding
and ease the modeling of the yield anomalies.

The overall performance of the CSI is quantified by
the linear correlation coefficients with yield anomalies,
plotted in figure 1(b). We estimated significant linear
correlation coefficients for most countries. Among the
largest producers, US, China, India and Argentina
display smaller but statistically significant values. As
for the US, this result is likely to be caused by the
mitigation effect of large-scale irrigation that tends to
decouple yield anomalies from climate variability also
in regions where it is not applied directly (Tack et al
2015, Troy et al 2015, Mueller et al 2016).

The linear correlation between the total produc-
tion and the global averaged CSI computed for all
wheat cropping areas is �0.65, which corresponds to
the 42% of the total variability, strengthening the result
of Ray et al (2015).

The effects of heat stress are comparable or larger
than the effects of water stress in most countries (see
figure 1(c)). Water stress effects tend to be more
substantial in the Mediterranean region. NegativeWSI
can be associated to drought and related to negative
yield anomalies, especially in arid and semi-arid
7

regions. In the Tropics and the middle/high latitudes,
our statistical model suggests an opposite relation with
positive WSI being associated to negative yield
anomalies (see figure 1, bottom-right panel). This is
partly consistent with the findings of Vicente-Serrano
et al (2013) who showed a reduced sensitivity of
natural vegetation dynamics to drought in regions
characterized by climatological water excess. Our
study suggests that wheat may be, on average, more
sensitive to water excess extreme events than to
drought in these regions, and that dryer-than-normal
conditions could have, on the other hand, beneficial
effects.

Figure 2 shows the spatial and temporal character-
istics of the individual regressors forming the CSI, as
well as their direct relationships with the FAOSTAT
yield data.

At the global level, heat stress alone (HMD, figure
2(a)) has an explanatory power similar to the CSI, and
displays a larger trend. Linear correlation between total
wheat production and globally averaged HMD
anomalies is �0.57, slightly lower than the value of
�0.65 obtained for the CSI. HMD has the advantage,
w.r.t. to the CSI, that it does not need calibration with
yields data. However, including the SPEI integrating
the water balance in the six months prior to harvesting
(i.e. SPEI6, see Data and Methods) is necessary to
significantly explain the production variability in
India, China and France, and to improve the
correlation coefficients in several other countries
(compare figure 1(b) and figure 2(c)).

Given the dual role of the SPEI in the CSI (figure 1
(d)), the globally averaged SPEI (figure 2(b)) is not
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significantly correlated with the global wheat produc-
tion anomalies. With respect to the HMD, SPEI6 time-
series are less often significantly correlated with the
national productions (compare figure 2(c) and figure 2
(d)). In most of the countries the sign of the
correlation is positive, i.e. negative cumulated water
balance is associated with negative yield anomalies.
This is correctly accounted for in the combined index.
The CSI is always outperforming the individual
indexes such that it can be significantly correlated
with the national yield anomalies even if the HMD
and/or SPEI are not.

It is worth noting that heat and water anomalies are
significantly linearly correlated in several countries
(figure 2(e)), but there aremany regions where heat and
soil moisture anomalies and extreme events seem to be
more independent. While several authors suggested a
tight linkage between these two types of extreme events
in water limited regions (see e.g. Zampieri et al 2009,
Seneviratne et al 2010), our analysis suggests that this is
not often the case for most of the wheat producing
regions that are found to be more sensitive to water
excess than to drought (figure 1(d)).

France, with about 37 MTons of rainfed winter
wheat produced per year, is the largest producer of
the European Union (25%), and consequently it is
responsible for a corresponding fraction of the inter-
annual standard deviation. Therefore, EU and France
production variation are significantly correlated, with
a linear correlation coefficient of 0.49. However,
European climate is characterized by pronounced
spatial gradients and prominent production anomalies
8

of the individual countries (see figures 1(b)–(d)) that
can compensate at the European level. This compensa-
tion effect has been observed to moderate relatively
large anomalies preferably in the first part of the
time series, in particular in 1980, 1985, 1986, 1988. It
appears to be reduced towards the end of the
period. Consistently, the linear correlation of the
French and EU productions computed until the end
of the 1980s is reduced to 0.18. This implies that there is
a current tendency towards more coherent anomalies,
and, therefore, towards an increased threat to
food security. This shifting behavior might also be
manifested by other large countries and spatial
aggregations. Indeed, it is consistent with the emerging
global scale heat waves pattern observed recently
(Zampieri et al 2016).

According to our analysis at the national scale, the
linkage between climate and yield variability in France
is controversial. Although there is a significant
correlation between heat waves and drought (see
figure 2(e)), the heat and water stress indexes are not
directly correlated with the production anomalies and
the French production is more negatively affected by
water excess than drought. This motivated us to
conduct a deeper analysis for France.

Figure 3 represents the main results of the analysis
conducted for France at the subnational level. Yield data
are available from 1989 to 2014, while the meteorologi-
cal data are updated in near real-time, allowing the
evaluation of the indexes for more recent years.

The CSI is able to explain yield variations
significantly in a considerable part of the country
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(figure 3(a)), with a linear correlation coefficient of
about �0.5, especially in the central-northern part
where the main wheat producing areas are located. In
western France, facing the Atlantic, no significant
correlations are found. The analysis conducted for
heat (HMD) and water (SPEI) indexes alone (figures 3
(b) and (c)) shows interesting spatial variability. The
central part of France is significantly affected by heat
waves. Mediterranean France is more sensitive to
drought while the northern part results to be more
sensitive to water excess (consistently with Ceglar et al
2016). The CSI computed at the subnational level
indicates higher sensitivity to water excess than to
drought (i.e. negative ‘b’ parameters, see Data and
Methods) in the northern and central parts of the
country, where most of the wheat is grown. This is
consistent with the results obtained at country level.

We have used the CSI as a diagnostic tool to assess
the impact of weather events on French wheat yield in
2016, characterized by an extremely negative anomaly.
The indexes computed for 2016 (figure 3(e) and (f))
are diagnosing an excess of water in central, northern
and eastern parts of France (mainly due to heavy
precipitation in May), while drought occurred in the
southern part of the country. In addition, a moderate
heat wave influenced the western and southwestern
regions (towards the end of the growing season).
Therefore, the combined index computed for 2016
would have indeed suggested a negative yield anomaly
(figure 3(d)).

By using the CSI to estimate the production
anomaly at country level in 2016, we obtain a
reduction of about 1 MTon lower than the average,
corresponding to the 40% of the national production
standard deviation. Therefore, the CSI is probably
underestimating the actual anomaly. However, it
suggests that the adverse weather conditions respon-
sible for the water excess (possibly around the wheat
flowering stage) might have played a central role.

It is worth noting, however, that the CSI does not
capture the single precipitation events, nor their
timing, but it rather accounts for their cumulative
effect on the soil water balance. Therefore, while
the CSI would have predicted a negative yield
anomaly, the precise causes of the 2016 French yield
loss still have to be determined.
Conclusions

We have analyzed the historical global wheat produc-
tion annual anomalies computed from the FAOSTAT
data set from 1980 to 2010. During this period, few of
the major producing regions were responsible for
significant anomalies at the global level. Concurrent
anomalies of two of the major producers suffice to
explain more than 50% of the global inter-annual
fluctuations in almost all years, if no significant
9

compensating anomalies were present. Russia is the
largest contributor to the global annual variability.

The combined stress index (CSI), defined as a
linear superposition of the Standardized Precipitation
Evaporation Index (SPEI, Vicente-Serrano et al 2010)
and of the Heat Magnitude Day (HMD, this study),
allows explaining the 42% of the variability globally
(confirming and strenghtening the result of Ray et al
2015), and often at country level as well. Therefore,
accurate yield forecasts in the major producing
countries could provide useful insights in global
production, potentially increasing food security. In
fact, we are currently working on the application of the
CSI in a seasonal forecasts context (Ceglar et al
submitted).

Our result points to a clear role of climate
anomalies and extreme events on wheat yield
anomalies and enables identifying the relevant
contributors and the associated effects. Heat stress
is often the most important predictor, consistently
with field studies and future projections, and it is in
general as important as drought. As a prominent
exception, we have found that in the Mediterranean
countries drought carries a larger detrimental effect on
wheat yield than heat stress.

Heat stress over wheat cropping regions increased
significantly in the period 1980–2010, especially since
the mid-1990s. This produced less compensating and
more concurrent yield anomalies, motivating the
general concern about food security.

Our results also point to the sensitivity of wheat
yield to the water excess issue, rather than to drought,
especially in tropical regions and in some regions of
the mid/high latitudes. While heat stress globally
remains the most important factor determining the
yield anomalies (compare figure 2(c) and figure 2(d)),
our findings show that water stress, and in particular
water excess, is essential to explain yield anomalies of
important wheat producers such as China and India.

The results obtained at the subnational level for
France (the main European wheat producer) support
and strengthen our main findings. The combined
indicator was, indeed, able to capture sub-regional
yield anomalies, and provided consistent results with
the national scale analysis. This case study also showed
the importance of accounting for water excess to gain
some predictive skill for extreme events such as the
large wheat production reduction occurred in France
of 2016.
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