

Climate change and agriculture

Andrea Toreti *European Commission, Joint Research Centre (JRC), Ispra, Italy*

UN decade of action on nutrition 2016-2025

Source: WHO Department of Nutrition for Health and Development, 2018

Undernourished people

Source: FAO, SOFI2018

Source: UN, 2019

Annual rate of population change

Severe food insecurity

Source: FAO, SOFI 2018

Source: FAO, 2019

Damages and losses in agriculture

share of total damages/losses across all sectors

Source: FAO, SOFI2018

Drought and changes in the undernourished people

Source: FAO, SOFI2018

seculture CHC emissions by the page of th 3 CLIMATE

European Commission

Source: IPCC, 2014 Source: Eurostat, 2019

Data from FAOSTAT

GRAPH 2.22. Total imports and exports (million t) for wheat, by main importing/exporting region OI C/

Scientific knowledge and understanding

Policy Support

Support to farmers

Sustainable development

Past and current climate: observations, reanalysis, etc.

MarsMet: data from approx. 4000 stations

ERA5, AgMERRA, ERA5-Land, etc.

Satellite

Inhomogeneity and quality checks

Interpolation methods

Complex spatio-temporal processes

MARSMet since 1975

Obs vs Reanalysis

Blue, green, yellow and violet represent, respectively, winter, spring, summer and autumn

Source: Toreti et al., 2019

Reanalysis vs Reanalysis vs Observations

Source: Ceglar et al., 2017

Main wheat producing regions of the world

Source: Toreti et al., 2019

Sowing and harvesting

Source: Zampieri et al., 2017

More would be needed...

Source: Ceglar et al., in preparation

wheat yields in different climatic regions of the world

wheat yields as a function of average daily Tmax in grain filling in 3 time periods: 1980-9 (blue), 1990-9 (gold), 2000-9 (red)

Source: Toreti et al. 2019,

characterising crop growth and key factors

Source: Ceglar et al., in preparation

where at least 75% of the models pass the goodness-of-fit test (rematic urn levels in winter and summer over (c, d) northern Eurasia and (e, f) ith Others DE% of reliable grid points in the region.

Source: Toreti and Naveau, 2015

nce Zone Atlantic is strongly seasonally dependent as it almost dis-

Bias Adjustment

Source: Dosio, 2016

Bias Adjustment is not an easy task... especially when more variables are needed

Source: Toreti and Naveau, 2015

Climate predictions

Seasonal and decadal predictions

Source: Turco et al., 2017

Climate predictions

Seasonal predictions and soil moisture initialisation

Statistical Modelling

Wheat and climate Mucon (MTons)

Source: Zampieri et al., 2017

Statistical Modelling

Maize and climate

Statistical Modelling

Wheat and Climate in France

Source: Ceglar et al., 2016

Soil and agronomic information Daily Min and Max Temperatures Relative Humidity Global solar radiation

wind

Requirements	Representation by major crop models
Ambient [CO ₂] effect	All major crop models include [CO ₂] effect but often in simplified form and based on old experimental data or not tested
Temperature	All major crop models represent temperature effects at different levels of detail, though often not tested
Heat stress	Specific heat stress impacts (e.g. floret mortality leaf senescence) not considered explicitly (except for a few of the major models) and not tested vet
Early/Late frost	Some models consider frost damage
Tropospheric	Few of the major models explicitly
O_3 effect	includes O ₃ stress (except, AFRCWHEAT2-O3, LINTULCC)
Drought stress and excess water	All crop models include effect of water and drought stress. Lack of oxygen in the root zone is only considered by a few models (HERMES, MONICA, Lintul. WOFOST)
Diffuse radiation	Only considered in a few crop models (CERES, SUCROS)
Effect of snow and hail	Rarely taken into account, exceptions are available
Lodging due to strong winds and rain	Detailed models for cereal lodging exist, but rarely integrated in crop models

Source: Ewert et al., 2015

Source: Asseng et al., 2013

Maize

Source: Rosenzweig et al., 2014

-100 -50 0 50 100

Source: Deryng et al., 2014

Projections 2021-2050

Yield forecast for 45p water limited - Total wheat Relative differences - aggregated values at NUTS 0 level

Engage users and co-design targeted sectorial climate services

	Time scale	Decision type	Challenges	MED-GOLD climate service	Benefits
	Mid-term (e.g., 6-13 months)	Agro- management	 Better planning of soil tillage, fertilization, crop protection treatment and weed management Improve choice of variety and density at sowing Higher accuracy with sowing and harvest setting 	 Wheat phenological development Temperature Precipitation Hydrological balance Heavy rain during winter Useful rain for 	 Minimize exposure to weather extremes Cost reduction through optimal fertilization and agro- management planning Maximize crop yield and quality Optimize use of fertilizers
		Stock management	 Better contracts and price Better planning of supply chain 	fertiliser activationFrost risk indexHeat stress index	 Better planning of supply chain, contracts and prices
	Long- term (e.g., up to 30 years)	Long-term strategy	 Selection of future new cultivation areas Choice of new varieties, breeding and genetic improvement activities Monitoring of new pests, pathogens, weeds Anticipation of purchase needs 	 Projected yield changes Projected risk of climate extremes (i.e., heat stress, drought in critical phenological phases) Projected risk of quality and nutritional issues Feasible adaptation strategies 	 Indicate suitable cultivation areas Better estimation of production for market and food security Improve regional policy planning and development, national adaptation strategies and EU policies (e.g. CAP) Match adequate varieties to expected climate Prepare for crop protection and prevention of invasive species Better use of investments (e.g., machinery, irrigation)

Source: Ceglar et al., in preparation

Developing an integrated multi-scale system to allow for dynamic adaptation and mitigation as well as enhanced resilience

Source: Rosenzweig et al., 2014

The effects depend on crop type, variety, nutrients and water availability, climate conditions, etc.

Source: Kimball 2016

nonlinear response

Source: Myers et al., 2014

FACE experiments

Source:Gerald Moser

Early HW and durum wheat production

Large scale heat stress and drought events

Source: Toreti et al., 2019

Source: Chatzopoulos et al., 2019

Source: Toreti et al., 2019

spatial *pdf* of SPEI-6

Projections of the **2018-like** drought events till 2100 under RCP8.5 in seven climate model runs (HELIX)

Source: Toreti et al., 2019

Estimated frequency of occurrence of the projected **2018-like** drought events

Source: Toreti et al., 2019

The missing component

The missing component

Modelling human interaction with the agro-climatic system

Thanks

- @EU_ScienceHub
 - EU Science Hub Joint Research Centre
- in Joint Research Centre

andrea.toreti@ec.europa.eu

