

Der Präsident

Mitteilungen der Justus-Liebig-Universität Gießen

Ausgabe vom

7.35.07 Nr. 7

28.10.2022

Spezielle Ordnung für den Bachelorstudiengang "Angewandte Physik"

Erster Beschluss zur Änderung der Spezielle Ordnung für den Bachelorstudiengang "Angewandte Physik" des Fachbereichs 07 – Mathematik und Informatik, Physik und Geographie – der Justus-Liebig-Universität Gießen

Aufgrund von § 50 Abs. 1 Nr. 1 des Hessischen Hochschulgesetzes vom 14. Dezember 2021 haben der Fachbereichsrat des Fachbereichs 07 – Mathematik und Informatik, Physik und Geographie – der Justus-Liebig-Universität Gießen am 06.07.2022 die nachstehenden Änderungen beschlossen:

§ 1 Änderungen

Die Spezielle Ordnung für den Bachelorstudiengang Angewandte Physik vom 06.05.2022 wird wie folgt geändert:

1. Anlage 2 wird wie folgt gefasst:

"

Inhalt

-xperimentalphysik i – Mechanik, Warmelenre und Transportprozesse	3
Mathematische Methoden der Physik I	5
Grundlagen der Statistik	6
Experimentalphysik II – Elektrodynamik, Optik und Relativität	8
Mathematische Methoden der Physik II	10
Grundpraktikum Physik I	11
Numerische Verfahren in der Physik	12
Physikalische Grundlagen der Elektrotechnik	13
Experimentalphysik III – Atom- und Molekülphysik, Quantenphänomene	15
Theoretische Physik I – Höhere Mechanik und Quantenmechanik	17
Grundpraktikum Physik II	19
Grundlagen der Programmierung mit Python	21
Experimentalphysik IV – Festkörperphysik	22
Fheoretische Physik II – Elektrodynamik und Thermodynamik	24
Messtechnik und EDV	26
Experimentalphysik V – Kern-, Teilchen- und Astrophysik	28

Spezielle Ordnung für den Bachelorstudiengang	20.40.2022	7.25.07.N., 7
"Angewandte Physik"	28.10.2022	7.35.07 Nr. 7
Fortgeschrittenenpraktikum		30
Künstliche Intelligenz I		31
Übergreifende Zusammenhänge der Physik		32
Studienprojekt I		33
Studienprojekt II		34
Bachelorthesis		35
Quantenoptik und Laserspektroskopie		35
Quantenstrukturen		37
Dünne Schichten und Oberflächen		37
Grundlagen der Mikro- und Nanostrukturierung		39
Grundlagen der Quanteninformation		40
Kernphysikalische Messmethoden in Medizin und Technik		
Wahlpflichtfachbereich I - IV		43

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.35.07 Nr. 7

07-BAP-01	Experimentalphysik I – Mechanik, Wärmelehre und Transportprozesse Experimental Physics I – Classical Mechanics, Thermodynamics and Transport Phenomena	9 CP
	FB 07 / Physik	
Pflichtmodul	erstmals angeboten im Wintersemester 2022/23	1. Fachsemester

Die Studierenden sollen:

- Kenntnisse über die grundlegenden Phänomene und Prinzipien in den Teilgebieten der klassischen Mechanik, der Thermodynamik und von Transportprozessen besitzen,
- Grundbegriffe und die Konzepte der Newtonschen Bewegungsgleichungen und der Erhaltungssätze beherrschen,
- in der Lage sein, einfache physikalische Probleme in diesen Gebieten mathematisch zu beschreiben und im Team zu lösen.

Inhalte:

- Grundgrößen, Einheiten und Dimensionen
- Mechanik des Massenpunktes
- Mechanik des starren Körpers
- Mechanik deformierbarer Körper
- Phänomenologie der Wärmelehre, Hauptsätze
- Zustandsänderungen und Kreisprozesse
- Kinetische Gastheorie
- Reale Gase und Phasenübergänge
- Ströme, Kontinuitätsgleichung, Diffusion, Wärmeleitung

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Angewandte Physik oder des I. Physikalischen Instituts oder des II. Physikalischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Physik, B.Sc. Materialwissenschaft, B.Sc. Angewandte Physik, B.Sc. Physik und Technologie für Raumfahrtanwendungen, L3 Physik, Nebenfach Mathematik

Teilnahmevoraussetzungen: keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereit	
Vorlesung	60	60
Übung	30	60
Seminar	30	30
Summe:	270	

Prüfungsvorleistungen: 50 % der maximal erzielbaren Punkte aus Übungsaufgaben müssen erreicht werden. Im Verlauf der Vorlesungszeit werden im Rahmen der Übung Übungsaufgaben ausgegeben, die bewertet werden. Die max. erreichbare Gesamtpunktezahl wird zu Beginn des Semesters bekanntgegeben. Die Studierenden bekommen die Aufgaben i. d. R. mindestens fünf Tage vor dem Abgabetermin zur Verfügung gestellt und erhalten die Bearbeitung mit Angabe der erreichten Punkte zurück. Es werden 7-14 Übungszettel mit Übungsaufgaben im Semester ausgegeben.

Spezielle Ordnung für den Bachelorstudiengang	20 10 2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.35.07 Nr. 7

Modulprüfung:

- Prüfungsform: Klausur (90-120 min) zu den Inhalten von Vorlesung und Übung
- Wiederholungsprüfungen: Klausur (90-120 min) oder mündliche Prüfung (30-45 min), nach Entscheidung durch die Lehrperson

Unterrichts- und Prüfungssprache: Deutsch

<u>Literatur: Jedes gängige Lehrbuch zu o.g. Themen, z.B.</u> <u>Gerthsen Physik, Springer Spektrum</u>

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.55.07 NI. 7

07-BAP-02	Mathematische Methoden der Physik I	6 CP
07-BAI -02	Mathematical Methods in Physics I	0 CF
Pflichtmodul	FB 07 / Physik / Institut für Theoretische Physik	1. Fachsemester
Finchillodul	erstmals angeboten im Wintersemester 2022/23	1. Facilselliestel

Die Studierenden sollen den Umgang mit dem mathematischen Grundgerüst – eindimensionale Differentiation und Integration sowie Grundlagen der linearen Algebra – beherrschen.

Inhalte: Folgen und Reihen, elementare und spezielle Funktionen, Differentiation und Integration im Eindimensionalen, Integrationsmethoden, Taylor-Reihen, komplexe Zahlen und Funktionen, Vektoren, Matrizen, Determinanten, Eigenwerte und Eigenvektoren.

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Theoretische Physik

Verwendbar in folgenden Studiengängen: B.Sc. Physik, B.Sc. Materialwissenschaft, B.Sc. Angewandte Physik, B.Sc. Physik und Technologie für Raumfahrtanwendungen

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereit	
Vorlesung	45	45
Übung	30	60
Summe:	180	

Prüfungsvorleistungen: 50 % der maximal erzielbaren Punkte aus Übungsaufgaben müssen erreicht werden. Im Verlauf der Vorlesungszeit werden im Rahmen der Übung Übungsaufgaben ausgegeben, die bewertet werden. Die max. erreichbare Gesamtpunktezahl wird zu Beginn des Semesters bekanntgegeben. Die Studierenden bekommen die Aufgaben zur Verfügung gestellt und erhalten die Bearbeitung mit Angabe der erreichten Punkte zurück. Es werden 7-14 Übungszettel mit Übungsaufgaben im Semester ausgegeben.

Modulprüfung:

- Prüfungsform: Klausur (90-180 min) zu den Inhalten der Vorlesung und der Übung
- Wiederholungsprüfungen: Klausur (90-180 min) oder mündliche Prüfung (30-60 min), nach Entscheidung durch die Lehrperson

Unterrichts- und Prüfungssprache: Deutsch oder Englisch, nach Entscheidung durch die Lehrperson zu Beginn der Veranstaltung

<u>Literatur: Jedes gängige Lehrbuch zu o.g. Themen, z.B.</u>
Lang, Pucker, Mathematische Methoden in der Physik, Springer Spektrum

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.35.U7 NT. 7

07-BAP-03	Grundlagen der Statistik	6 CP	
07-BAF-03	Basic Statistics	0 CF	
Pflichtmodul	FB 07 / Mathematik / Mathematisches Institut	1. Fachsemester	
Filicitifiodul	erstmals angeboten im Wintersemester 2022/23	1. Facilisemester	

Qualifikationsziele: Die Studierenden sollen einerseits grundlegende Begriffe und Konzepte der angewandten Statistik kennen, numerische und grafische explorative Datenanalyse (EDA) für praxisrelevante Beispiele beherrschen und die Ergebnisse der EDA adäquat charakterisieren und interpretieren können, sowie andererseits grundlegende Konzepte der diskreten Stochastik kennen und praktisch anwenden können. Die Studierenden sollen grundlegende Begriffe und Konzepte der angewandten Statistik kennen, numerische und grafische explorative Datenanalyse (EDA) für praxisrelevante Beispiele beherrschen und die Ergebnisse der EDA adäquat charakterisieren und interpretieren können.

Inhalte: : Grundlegende Begriffe und Konzepte der angewandten Statistik, Methoden der numerischen und der grafischen EDA sowie deren Anwendung auf konkrete Datenbeispiele, grundlegende Begriffe der diskreten Stochastik, elementare Methoden der Kombinatorik, stochastische Unabhängigkeit, bedingte Wahrscheinlichkeit, Zufallsvariablen, Erwartungswert und Varianz, Tschebyschev-Ungleichung, Grundlagen des Testens. Grundlegende Begriffe und Konzepte der angewandten Statistik, Methoden der numerischen und der grafischen EDA sowie deren Anwendung auf konkrete Datenbeispiele.

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Mathematischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Data Science, B.Sc. Physik, B.Sc. Angewandte Physik

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Vorlesung	30	60
Übung	30	60
Summe:	180	

Prüfungsvorleistungen: 50 % der maximal erzielbaren Punkte aus Übungsaufgaben müssen erreicht werden. Im Verlauf der Vorlesungszeit werden im Rahmen der Übung Übungsaufgaben ausgegeben, die bewertet werden. Die max. erreichbare Gesamtpunktezahl wird zu Beginn des Semesters bekanntgegeben. Die Studierenden bekommen die Aufgaben i. d. R. mindestens fünf Tage vor dem Abgabetermin zur Verfügung gestellt und erhalten die Bearbeitung mit Angabe der erreichten Punkte zurück. Es werden 7-14 Übungszettel mit Übungsaufgaben im Semester ausgegeben.

Modulprüfung: Klausur (90-180 min) oder mündliche Prüfung (30-45 min), nach Entscheidung durch die Lehrperson

Unterrichts- und Prüfungssprache: Deutsch oder Englisch, nach Entscheidung durch die Lehrperson zu Beginn der Veranstaltung

Spezielle Ordnung für den Bachelorstudiengang	20 10 2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.35.07 Nr. 7

Literatur: Jedes gängige Lehrbuch zu o.g. Themen, z.B. Henze, Stochastik für Einsteiger, Springer Spektrum

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.33.07 NI. 7

07-BAP-04	Experimentalphysik II – Elektrodynamik, Optik und Relativität	9 CP
	Experimental Physics II – Electrodynamics, Optics and Relativity	
	FB 07 / Physik	
Pflichtmodul	erstmals angeboten im Sommersemester 2023	2. Fachsemester

Die Studierenden sollen:

- Kenntnisse über die grundlegenden Phänomene und Prinzipien in den Teilgebieten der klassischen Elektrodynamik, von Wellenphänomenen, der geometrischen Optik und der speziellen Relativitätstheorie besitzen,
- Grundbegriffe und Erhaltungssätze der Physik beherrschen,
- die F\u00e4higkeit besitzen, experimentelle Aufgabenstellungen eigenst\u00e4ndig zu bearbeiten, mathematisch zu behandeln und selbstst\u00e4ndig zu l\u00f6sen.

Inhalte:

- Elektrostatik
- Elektrische Ströme
- Magnetostatik
- Zeitlich veränderliche Felder
- Maxwell Gleichungen
- Konzept der Welle, Wellengleichung
- Akustik
- Elektromagnetische Wellen
- Wellenoptik und Fouriertransformation
- Geometrische Optik
- Optische Instrumente
- Spezielle Relativitätstheorie und Lorentztransformationen
- Relativistische Kinematik
- Relativistische Dynamik, Energien

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Angewandte Physik oder des I. Physikalischen Instituts oder des II. Physikalischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Physik, B.Sc. Materialwissenschaft, B.Sc. Angewandte Physik, B.Sc. Physik und Technologie für Raumfahrtanwendungen, L3 Physik, Nebenfach Mathematik

Teilnahmevoraussetzungen: keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereitung	
Vorlesung	60	60
Übung	30	60
Seminar	30	30
Summe:	270	

Prüfungsvorleistungen: 50 % der maximal erzielbaren Punkte aus Übungsaufgaben müssen erreicht werden. Im Verlauf der Vorlesungszeit werden im Rahmen der Übung Übungsaufgaben ausgegeben, die bewertet werden. Die max. erreichbare Gesamtpunktezahl wird zu Beginn des Semesters bekanntgegeben. Die Studierenden bekommen die Aufgaben i. d. R. mindestens fünf Tage vor dem Abgabetermin zur Verfügung

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.35.07 Nr. 7

gestellt und erhalten die Bearbeitung mit Angabe der erreichten Punkte zurück. Es werden 7-14 Übungszettel mit Übungsaufgaben im Semester ausgegeben.

Modulprüfung:

- Prüfungsform: Klausur (90-120 min) zu den Inhalten von Vorlesung und Übung
- Wiederholungsprüfungen: Klausur (90-120 min) oder mündliche Prüfung (30-45 min), nach Entscheidung durch die Lehrperson

Unterrichts- und Prüfungssprache: Deutsch

<u>Literatur: Jedes gängige Lehrbuch zu o.g. Themen, z.B.</u>

Gehrtsen Physik, Springer

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.33.07 NI. 7

07-BAP-05	Mathematische Methoden der Physik II	6 CP
Mathematical Methods in Physics II		U CF
Pflichtmodul	FB 07 / Physik / Institut für Theoretische Physik	2. Fachsemester
Filicitifiodul	erstmals angeboten im Sommersemester 2021	2. Facilisemester

Die Studierenden sollen den Umgang mit dem mathematischen Grundgerüst für mehrdimensionale Differentiation und Integration sowie dem für die Verwendung unterschiedlicher Koordinatensysteme beherrschen.

Inhalte: Differentialoperatoren, Wegintegrale, Volumenintegrale, Oberflächenintegrale, Koordinatensysteme, Differentiation und Integration in verschiedenen Koordinatensystemen, einfache lineare Differentialgleichungen, Skalarprodukte von Funktionen, Fouriertransformation.

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Theoretische Physik

Verwendbar in folgenden Studiengängen: B.Sc. Physik, B.Sc. Materialwissenschaft, B.Sc. Angewandte Physik, B.Sc. Physik und Technologie für Raumfahrtanwendungen

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereitung	
Vorlesung	45	45
Übung	30	60
Summe:	180	

Prüfungsvorleistungen: 50 % der maximal erzielbaren Punkte aus Übungsaufgaben müssen erreicht werden. Im Verlauf der Vorlesungszeit werden im Rahmen der Übung Übungsaufgaben ausgegeben, die bewertet werden. Die max. erreichbare Gesamtpunktezahl wird zu Beginn des Semesters bekanntgegeben. Die Studierenden bekommen die Aufgaben i. d. R. mindestens fünf Tage vor dem Abgabetermin zur Verfügung gestellt und erhalten die Bearbeitung mit Angabe der erreichten Punkte zurück. Es werden 7-14 Übungszettel mit Übungsaufgaben im Semester ausgegeben.

Modulprüfung:

- Prüfungsform: Klausur (90-180 min) über die Inhalte der Vorlesung und der Übung
- Wiederholungsprüfungen: Klausur (90-180 min) oder mündliche Prüfung (30-60 min), nach Entscheidung durch die Lehrperson

Unterrichts- und Prüfungssprache: Deutsch oder Englisch, nach Entscheidung durch die Lehrperson zu Beginn der Veranstaltung

<u>Literatur: Jedes gängige Lehrbuch zu o.g. Themen, z.B.</u>
<u>Lang, Pucker, Mathematische Methoden in der Physik, Springer Spektrum</u>

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	20.10.2022	7.33.07 NI. 7

07-BAP-06	Grundpraktikum Physik I	3 CP
U7-BAP-00	Physics Laboratory Course I	
	FB 07 / Physik / II. Physikalisches Institut	
Pflichtmodul	erstmals angeboten im Sommersemester 2023	2. Fachsemester

Die Studierenden sollen:

- Kenntnisse über die grundlegenden Messgeräte und Messtechniken erlangen,
- die F\u00e4higkeit besitzen, grundlegende Fragestellungen zu Themen der Vorlesungen Experimentalphysik I und II (Mechanik, W\u00e4rmelehre, Elektrodynamik, Optik) in Experimenten zu untersuchen, die Experimente aufzubauen und durchzuf\u00fchren, zu analysieren und klar und nachvollziehbar in Protokollen darzustellen,
- Messfehler erkennen, analysieren, sowie Verbesserungen vorschlagen,
- die Grundlagen dieser Experimente aus der Literatur erarbeiten,
- experimentelle Aufgaben im Team lösen,
- und experimentelle Ergebnisse darstellen können.

Inhalte:

- Experimente zu Themen der Vorlesung Experimentalphysik I und II (Mechanik, Wärmelehre, Optik)
- Statistische, systematische Fehler
- Darstellung von Ergebnissen in Diagrammen

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des II. Physikalischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Physik, B.Sc. Materialwissenschaft, B.Sc. Angewandte Physik, B.Sc. Physik und Technologie für Raumfahrtanwendungen, L3 Physik, Nebenfach Mathematik

Teilnahmevoraussetzungen: keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereitung	
Praktikum	30	60
Summe:	90	

Prüfungsvorleistungen: Zu jedem Versuch mündliche Abfrage zu Versuchsgrundlagen vor Versuchsantritt bestanden, alle Versuche erfolgreich praktisch durchgeführt

Modulprüfung:

- Prüfungsform: 5-10 Versuchsauswertungen zu den Praktikumsversuchen zu je 3-10 Seiten; werden freiwillig mehr Seiten verfasst, sind diese Teil der zu bewertenden Prüfungsleistung. Die genaue Anzahl der Versuchsauswertungen sowie deren Abgabefristen werden in der Praktikumsvorbesprechung bekanntgegeben.
- Wiederholungsprüfungen: Wiederholung des Praktikums inkl. Versuchsauswertungen
- Bildung der Modulnote: Ohne Benotung

Unterrichts- und Prüfungssprache: Deutsch

Literatur: Jedes gängige Lehrbuch zu o.g. Themen, z.B.

Gehrtsen Physik, Springer

Tipler, Mosca, Physik, Springer Spektrum

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	20.10.2022	7.33.07 NI. 7

07-BAP-07	Numerische Verfahren in der Physik	6 CP
U7-BAP-U7	Computational Physics	U Cr
Pflichtmodul	FB 07 / Physik / Institut für Theoretische Physik	2. Fachsemester
Pilicitifiodul	erstmals angeboten im Sommersemester 2023	z. raciiselliestei

Die Studierenden sollen:

- grundlegende numerische Verfahren und deren Anwendungen in der Physik kennenlernen,
- physikalische Problemstellungen aus den bisher bearbeiteten Themengebieten unter Verwendung von Software und numerischen Methoden auf dem Computer modellieren und selbstständig Lösungsstrategien entwickeln.

Inhalte: Grundlagen der Modellierung physikalischer Probleme; Elementare numerische Verfahren; prozedurale, funktionale und regelbasierte iterative Programmierung; Gleichungssysteme und Lineare Algebra; Numerische Differentiation und Integration; Gewöhnliche Differentialgleichungen, Anfangswertprobleme und Chaos; Partielle Differentialgleichungen und Randwertprobleme, Stabilitätsanalyse; Wärmeleitung, Wellen- und Schrödingergleichung, Poissongleichung Membranschwingungen; Monte-Carlo-Methoden und statistische Physik

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Theoretische Physik

Verwendbar in folgenden Studiengängen: B.Sc. Physik, B.Sc. Materialwissenschaft, B.Sc. Angewandte Physik, B.Sc. Physik und Technologie für Raumfahrtanwendungen L3 Physik

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Vorlesung	60	30
Übung	30	60
Summe: 180		30

Prüfungsvorleistungen: keine

Modulprüfung:

- Prüfungsform: mündliche Prüfung (30-45 min) in Kleingruppen und schriftliche Ausarbeitung des Projekts
 (3-10 Seiten; werden freiwillig mehr Seiten verfasst, sind diese Teil der zu bewertenden Prüfungsleistung)
- Wiederholungsprüfungen: mündliche Prüfung (30-45 min) in Kleingruppen
- Bildung der Modulnote: mündliche Prüfung (70 %) und schriftliche Ausarbeitung des Projekts (30 %); im Falle der Wiederholungsprüfung: 100 % mündliche Prüfung

Unterrichts- und Prüfungssprache: Deutsch

<u>Literatur:</u> Jedes gängige Lehrbuch zu o.g. Themen, z.B. Gerlach, Computerphysik, Springer Spektrum

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.33.07 Nr. 7

07-BAP-08	Physikalische Grundlagen der Elektrotechnik	- 6 CP	
07-BAI -00	Fundamentals of Electronics	o cr	
	FB 07 / Physik / II. Physikalisches Institut		
Pflichtmodul	erstmals angeboten im Sommersemester 2023	2. Fachsemester	

Die Studierenden sollen:

- die technischen Grundlagen der Elektrotechnik auf der Basis der zugrundeliegenden physikalischen Phänomene verstehen lernen und so an die für Physiker:innen und angrenzende Berufsgruppen in der wissenschaftlichen Arbeit und im Beruf relevanten Aspekte der analogen und digitalen Schaltungen herangeführt werden,
- selbständig einfache Schaltungen entwerfen und berechnen können,
- die Funktionsweise von Schaltungen analysieren und verstehen,
- einfache elektrische Messaufgaben selbständig bearbeiten lernen.

Inhalte:

- Physikalische Größen in der Elektrizitätslehre; Strom und Spannung, Gleich- und Wechselströme,
 Felder und elektromagnetische Wellen
- Leiter, Halbleiter, Isolatoren und ihre Anwendung in technischen Bauelementen; Eigenschaften von Bauelementen und deren Einsatz in Schaltungen
- Netzwerke und deren Berechnung; Systemgleichungen und Übertragungsfunktionen
- Grundzüge der Elektronik
- Signalausbreitung, Signalübertragung auf Leitungen
- Signalverarbeitung, -messung und -analyse

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des II. Physikalischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Physik, B.Sc. Materialwissenschaft, B.Sc. Angewandte Physik, B.Sc. Physik und Technologie für Raumfahrtanwendungen

Teilnahmevoraussetzungen: keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung	
Vorlesung	45	60	
Übung	30 45		
Summe:	180		

Prüfungsvorleistungen: 50 % der maximal erzielbaren Punkte aus Übungsaufgaben müssen erreicht werden. Im Verlauf der Vorlesungszeit werden im Rahmen der Übung Übungsaufgaben ausgegeben, die bewertet werden. Die max. erreichbare Gesamtpunktezahl wird zu Beginn des Semesters bekanntgegeben. Die Studierenden bekommen die Aufgaben i. d. R. mindestens fünf Tage vor dem Abgabetermin zur Verfügung gestellt und erhalten die Bearbeitung mit Angabe der erreichten Punkte zurück. Es werden 7-14 Übungszettel mit Übungsaufgaben im Semester ausgegeben.

Spezielle Ordnung für den Bachelorstudiengang	20 10 2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.35.07 Nr. 7

Modulprüfung:

- Prüfungsform: Klausur (90-120 min) zu den Inhalten von Vorlesung und Übung
 Wiederholungsprüfungen: Klausur (90-120 min) oder mündliche Prüfung (30-45 min), nach Entscheidung durch die Lehrperson

Unterrichts- und Prüfungssprache: Deutsch

Literatur: Jedes gängige Lehrbuch zu o.g. Themen, z.B. Horowitz, Hill, The Art of Electronics, Cambridge University Press

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	20.10.2022	7.55.07 NI. 7

07-BAP-09	Experimentalphysik III – Atom- und Molekülphysik, Quantenphänomene Experimental Physics III – Atomic and Molecular Physics, Quantum Phenomena	9 CP
	FB 07 / Physik / I. Physikalisches Institut	
Pflichtmodul	erstmals angeboten im Wintersemester 2023/24	3. Fachsemester

Die Studierenden sollen:

- grundlegende Experimente der Quantenmechanik kennen,
- in der Lage sein, die Strukturen in Wasserstoff-ähnlichen Atomen quantitativ zu beschreiben,
- den grundlegenden Aufbau sowie An- und Abregung von Atomen und Molekülen verstehen,
- die F\u00e4higkeit besitzen, experimentelle Aufgabenstellungen eigenst\u00e4ndig zu bearbeiten, mathematisch zu behandeln und im Team zu l\u00f6sen.

Inhalte:

- Materiewellen
- grundlegende experimentelle Befunde, Anregung, Emission von Licht
- Strahlungsgesetze und Laser
- Wasserstoffatom
- Wechselwirkung mit externen Feldern
- Spin und Feinstruktur
- Mehrelektronensysteme und Pauli-Prinzip
- Röntgenspektren
- Molekülbindung
- spezifische Anregungsmöglichkeiten in Molekülen

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des I. Physikalischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Physik, B.Sc. Angewandte Physik, B.Sc. Physik und Technologie für Raumfahrtanwendungen

Teilnahmevoraussetzungen: keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Vorlesung	60	90
Übung	30 90	
Summe:	270	

Prüfungsvorleistungen: 50 % der maximal erzielbaren Punkte aus Übungsaufgaben müssen erreicht werden. Im Verlauf der Vorlesungszeit werden im Rahmen der Übung Übungsaufgaben ausgegeben, die bewertet werden. Die max. erreichbare Gesamtpunktezahl wird zu Beginn des Semesters bekanntgegeben. Die Studierenden bekommen die Aufgaben i. d. R. mindestens fünf Tage vor dem Abgabetermin zur Verfügung gestellt und erhalten die Bearbeitung mit Angabe der erreichten Punkte zurück. Es werden 7-14 Übungszettel mit Übungsaufgaben im Semester ausgegeben.

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.35.07 Nr. 7

Modulprüfung:

- Prüfungsform: Klausur (90-120 min) zu den Inhalten von Vorlesung und Übung
- Wiederholungsprüfungen: Klausur (90-120 min) oder mündliche Prüfung (30-45 min), nach Entscheidung durch die Lehrperson

Unterrichts- und Prüfungssprache: Deutsch

<u>Literatur:</u> Jedes gängige Lehrbuch zu o.g. Themen, z.B. Haken, Wolf, Atom- und Quantenphysik, Springer

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.55.07 NI. 7

07-BAP-10	Theoretische Physik I – Höhere Mechanik und Quantenmechanik	8 CP
	Theoretical Physics I – Mechanics and Quantum Mechanics	
Pflichtmodul	FB 07 / Physik / Institut für Theoretische Physik	3. Fachsemester
Filicitifiodul	erstmals angeboten im Wintersemester 2022/23	J. I densemester

Die Studierenden:

- verstehen die Rolle der Mathematik in der Modell- und Theoriebildung des physikalischen Denksystems,
- kennen die mathematische Beschreibung der Mechanik des Massenpunktes bis hin zu den Bewegungen im Zentralfeld sowie die Lagrange- und Hamilton-Gleichungen,
- verstehen die Grenzen der klassischen Physik und die daraus folgende Notwendigkeit einer Quantenmechanik,
- beherrschen die mathematischen Methoden, die zur quantenmechanischen Beschreibung notwendig sind,
- können einfache quantenmechanische Probleme bearbeiten.

Inhalte:

Mechanik eines Massenpunktes: Schwingungen, Bewegungen im Zentralpotential; Dynamik von Punktteilchen; Extremalprinzip; Lagrange- und Hamilton-Dynamik; Symmetrien und Erhaltungssätze; Dynamik im Rahmen von Poisson-Klammern.

Quantenmechanik: Eigenwerte und Eigenfunktionen; Kommutator-Algebra; freie Schrödinger-Gleichung und Wellenpakete; Tunneleffekt; Einteilchenpotentiale und Quantisierung des harmonischen Oszillators; Störungsrechnung; Quantisierung des Drehimpulses, Elektronenspin; Energieniveaus des Wasserstoff-Atoms.

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Theoretische Physik

Verwendbar in folgenden Studiengängen: B.Sc. Materialwissenschaft, B.Sc. Angewandte Physik, B.Sc. Physik und Technologie für Raumfahrtanwendungen, L3 Physik

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereitu	
Vorlesung	60	60
Übung	30	90
Summe:	240	

Prüfungsvorleistungen: 50 % der maximal erzielbaren Punkte aus Übungsaufgaben müssen erreicht werden. Im Verlauf der Vorlesungszeit werden im Rahmen der Übung Übungsaufgaben ausgegeben, die bewertet werden. Die max. erreichbare Gesamtpunktezahl wird zu Beginn des Semesters bekanntgegeben. Die Studierenden bekommen die Aufgaben i. d. R. mindestens fünf Tage vor dem Abgabetermin zur Verfügung gestellt und erhalten die Bearbeitung mit Angabe der erreichten Punkte zurück. Es werden 7-14 Übungszettel mit Übungsaufgaben im Semester ausgegeben.

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.55.07 NI. 7

Modulprüfung:

- Prüfungsform: 2 Klausuren je 120-180 min
- Beide Klausuren müssen bestanden werden, da sie unterschiedliche Inhaltsbereiche abprüfen, zum einen klassische Mechanik und zum anderen Quantenmechanik; eine Kompensation ist ausgeschlossen.
- Wiederholungsprüfungen: Klausur (je 120-180 min) oder mündliche Prüfung (30-45 min), nach Entscheidung durch die Lehrperson
- Bildung der Modulnote: 1. Klausur (50 %) und 2. Klausur (50 %)

Unterrichts- und Prüfungssprache: Deutsch

Literatur: Jedes gängige Lehrbuch zu o.g. Themen, z.B.

Greiner, Klassische Mechanik I und II; Quantenmechanik, Verlag Harri Deutsch

Nolting, Grundkurs Theoretische Physik 1, 2, 5, Springer Spektrum

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.33.07 NI. 7

07-BAP-11	Grundpraktikum Physik II	3 CP
U7-BAP-11	Physics Laboratory Course II	3 CP
	FB 07 / Physik / II. Physikalisches Institut	
Pflichtmodul	erstmals angeboten im Wintersemester 2023/24	

Die Studierenden sollen:

- Kenntnisse über die grundlegenden Messgeräte und Messtechniken erlangen,
- die F\u00e4higkeit besitzen, grundlegende Fragestellungen zu Themen der Vorlesung Experimentalphysik II-V (Elektromagnetismus, Atom-, Kern- und Festk\u00f6rperphysik) in Experimenten zu untersuchen, die Experimente aufzubauen und durchzuf\u00fchren, zu analysieren und klar und nachvollziehbar in Protokollen darzustellen,
- die Fähigkeit besitzen, Messfehler zu erkennen, zu analysieren, sowie Verbesserungen vorzuschlagen,
- die Grundlagen dieser Experimente aus der Literatur erarbeiten,
- experimentelle Aufgaben im Team lösen können,
- experimentelle Ergebnisse darstellen können.

Inhalte:

- Experimente zu Themen der Vorlesungen Experimentalphysik II-V (Elektromagnetismus, Atom-, Kern- und Festkörperphysik)
- Statistische, systematische Fehler
- Darstellung von Ergebnissen in Diagrammen
- Computergestützte Auswertung mit Excel, Origin o.ä.

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des II. Physikalischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Physik, B.Sc. Angewandte Physik, L3 Physik, Nebenfach: Mathematik

Teilnahmevoraussetzungen: keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereitu	
Praktikum	30	60
Summe:	90	

Prüfungsvorleistungen: Zu jedem Versuch (5-10) mündliche Abfrage zu Versuchsgrundlagen bestanden, alle Versuche erfolgreich praktisch durchgeführt

Modulprüfung:

- Prüfungsform: 5-10 Versuchsauswertungen zu den Praktikumsversuchen zu je 3-10 Seiten; werden freiwillig mehr Seiten verfasst, sind diese Teil der zu bewertenden Prüfungsleistung. Die genaue Anzahl der Versuchsauswertungen sowie deren Abgabefristen werden in der Praktikumsvorbesprechung bekanntgegeben.
- Wiederholungsprüfungen: Wiederholung des Praktikums inkl. Versuchsauswertungen
- Bildung der Modulnote: Ohne Benotung

Unterrichts- und Prüfungssprache: Deutsch

Literatur: Jedes gängige Lehrbuch zu o.g. Themen, z.B.

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.33.07 Nr. 7

Gehrtsen Physik, Springer
Tipler, Mosca, Physik, Springer Spektrum

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	20.10.2022	7.33.07 NI. 7

07-BAP-12	Grundlagen der Programmierung mit Python	6 CP
07-BAF-12	Fundamentals of Programming with Python	U CF
Pflichtmodul	FB 07 / Physik / Institut für Theoretische Physik	3. Fachsemester
Pilicittiilodui	erstmals angeboten im Wintersemester 2023/24	5. Facilselliestei

Die Studierenden können einfache Programme unter Verwendung gängiger Kontroll- und Datenstrukturen in der Programmiersprache Python schreiben. Sie sind mit dem Umgang mit gängigen Python Bibliotheken zur Datenverarbeitung vertraut. Sie kennen grundlegende Werkzeuge der Unix-Kommandozeile und können diese in einfachen Fällen verwenden. Die Studierenden sind insbesondere in der Lage, Daten mit Programmen zu verarbeiten und zu visualisieren.

Inhalte: Grundlegende Werkzeuge der Unix Shell, Softwareentwicklungsumgebung, Python: Datentypen, Ausdrücke, Kontrollstrukturen, Funktionen, Klassen, sowie wichtige Bibliotheken (z.B. Numpy, Scipy, Matplotlib, Pandas)

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Theoretische Physik

Verwendbar in folgenden Studiengängen: B.Sc. Data Science, B.Sc. Angewandte Physik, andere B.Sc. Studiengänge der JLU

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereitun	
Vorlesung	30	30
Übung	30	90
Summe:	180	

Prüfungsvorleistungen: 50 % der maximal erzielbaren Punkte aus Übungsaufgaben müssen erreicht werden. Im Verlauf der Vorlesungszeit werden im Rahmen der Übung Übungsaufgaben ausgegeben, die bewertet werden. Die max. erreichbare Gesamtpunktezahl wird zu Beginn des Semesters bekanntgegeben. Die Studierenden bekommen die Aufgaben i. d. R. mindestens fünf Tage vor dem Abgabetermin zur Verfügung gestellt und erhalten die Bearbeitung mit Angabe der erreichten Punkte zurück. Es werden 7-14 Übungszettel mit Übungsaufgaben im Semester ausgegeben.

Modulprüfung: E-Klausur (60-120 min)

Unterrichts- und Prüfungssprache: Deutsch oder Englisch, nach Entscheidung durch die Lehrperson zu Beginn der Veranstaltung

<u>Literatur:</u> Jedes gängige Lehrbuch zu o.g. Themen, z.B. <u>Lutz, Learning Python, O'Reilly Media</u>

Martin, Clean Code, Pearson

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.55.07 NI. 7

07-BAP-13	Experimentalphysik IV – Festkörperphysik	9 CP
07-BAF-13	Experimental Physics IV –Solid-State Physics	9 CF
	FB 07 / Physik	
Pflichtmodul	erstmals angeboten im Sommersemester 2024	4. Fachsemester

Die Studierenden sollen:

- die grundlegenden Konzepte der Festkörperphysik kennen und anwenden können,
- die damit verbundenen mathematischen Methoden beherrschen,
- mit den in der Festkörperphysik verwendeten Größen sowohl qualitativ als auch quantitativ umgehen und argumentieren können,
- Erfahrungen in der Berechnung charakteristischer Größen anhand aktueller Beispiele besitzen.

Inhalte:

- Struktur des Festkörpers: Kristallstrukturen, amorphe Festkörper, Strukturuntersuchung mit Röntgenlicht / Neutronen / Elektronen, reziprokes Gitter
- Dynamik des Kristallgitters: Gitterschwingungen, Dispersionsrelation, Phononen, phononische
 Zustandsdichte, Boltzmann-Statistik, Temperaturabhängigkeit der Wärmekapazität, Debye-Waller-Faktor, thermische Ausdehnung, Wärmeleitfähigkeit
- Elektronen im Festkörper: Freies Elektronengas, elektronische Zustandsdichte, Fermistatistik, Blochwellen, Bandstruktur, Fermiflächen, Tight-binding, Leitfähigkeit, Boltzmann-Transportgleichung, Metall/Halbleiter/Isolator, Löcherkonzept
- Dielektrische Eigenschaften: Frequenzabhängigkeit der dielektrischen Funktion
- Magnetismus: Dia-/Paramagnetismus, Ferromagnetismus, Molekularfeldnäherung
- Supraleitung: Cooper-Paare, London-Gleichungen, Josephson-Effekte
- Besonderheiten niedrigdimensionaler Systeme

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Angewandte Physik oder des I. Physikalischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Physik, B.Sc. Materialwissenschaft, B.Sc. Angewandte Physik

Teilnahmevoraussetzungen: keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereitung	
Vorlesung	60	90
Übung	30	90
Summe:	270	

Prüfungsvorleistungen: 50 % der maximal erzielbaren Punkte aus Übungsaufgaben müssen erreicht werden. Im Verlauf der Vorlesungszeit werden im Rahmen der Übung Übungsaufgaben ausgegeben, die bewertet werden. Die max. erreichbare Gesamtpunktezahl wird zu Beginn des Semesters bekanntgegeben. Die Studierenden bekommen die Aufgaben i. d. R. mindestens fünf Tage vor dem Abgabetermin zur Verfügung gestellt und erhalten die Bearbeitung mit Angabe der erreichten Punkte zurück. Es werden 7-14 Übungszettel mit Übungsaufgaben im Semester ausgegeben.

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.35.07 Nr. 7

Modulprüfung:

- Prüfungsform: Klausur (90-120 min) zu den Inhalten von Vorlesung und Übung
- Wiederholungsprüfungen: Klausur (90-120 min) oder mündliche Prüfung (30-45 min), nach Entscheidung durch die Lehrperson

Unterrichts- und Prüfungssprache: Deutsch

<u>Literatur:</u> Jedes gängige Lehrbuch zu o.g. Themen, z.B. <u>Hunklinger, Festkörperphysik, De Gruyter</u>

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.33.07 Nr. 7

07-BAP-14	Theoretische Physik II – Elektrodynamik und Thermodynamik	
	Theoretical Physics II – Electrodynamics and Thermodynamics	
Pflichtmodul	FB 07 / Physik / Institut für Theoretische Physik	4. Fachsemester
i incircinodui	erstmals angeboten im Sommersemester 2024	4. 1 acrisemester

Die Studierenden:

- kennen die Grundlagen der theoretischen Elektro- und Thermodynamik,
- verstehen den Zusammenhang von elektrischen und magnetischen Feldern mit Ladungen und Strömen,
- beherrschen die mathematischen Methoden, die zur statistischen Beschreibung der Thermodynamik notwendig sind,
- kennen den Begriff der Entropie,
- können einfache Systeme im Rahmen der Boltzmann-Statistik berechnen.

Inhalte:

Elektrodynamik: Sätze von Gauß und Stokes; Kontinuitätsgleichung; Systeme von geladenen Massenpunkten und kontinuierlichen Ladungs- und Stromverteilungen; Maxwell-Gleichungen; elektromagnetische Felder; Polarisation des Mediums; Formen des Magnetismus; Verhalten der Felder an Grenzflächen.

Thermodynamik: Totale Differentiale; thermodynamische Potentiale; thermodynamische Hauptsätze; extensive und intensive Größen; Begriff der Entropie; Kreisprozesse und Maxwell-Relationen; Phasendiagramme; Phasenübergänge und kritische Phänomene; Anwendungen auf einfache Systeme.

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Theoretische Physik

Verwendbar in folgenden Studiengängen: B.Sc. Materialwissenschaft, B.Sc. Angewandte Physik, B.Sc. Physik und Technologie für Raumfahrtanwendungen, L3 Physik

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereit	
Vorlesung	60	60
Übung	30	90
Summe:	240	

Prüfungsvorleistungen: 50 % der maximal erzielbaren Punkte aus Übungsaufgaben müssen erreicht werden. Im Verlauf der Vorlesungszeit werden im Rahmen der Übung Übungsaufgaben ausgegeben, die bewertet werden. Die max. erreichbare Gesamtpunktezahl wird zu Beginn des Semesters bekanntgegeben. Die Studierenden bekommen die Aufgaben i. d. R. mindestens fünf Tage vor dem Abgabetermin zur Verfügung gestellt und erhalten die Bearbeitung mit Angabe der erreichten Punkte zurück. Es werden 7-14 Übungszettel mit Übungsaufgaben im Semester ausgegeben.

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.55.07 NI. 7

Modulprüfung:

- Prüfungsform: 2 Klausuren je 120-180 min
- Beide Klausuren müssen bestanden werden, da sie unterschiedliche Inhaltsbereiche abprüfen, zum einen Elektrodynamik und zum anderen Thermodynamik; eine Kompensation ist ausgeschlossen.
- Wiederholungsprüfungen: Klausur (je 120-180 min) oder mündliche Prüfung (30-45 min), nach Entscheidung durch die Lehrperson
- Bildung der Modulnote: 1. Klausur (50 %) und 2. Klausur (50 %)

Unterrichts- und Prüfungssprache: Deutsch

Literatur: Jedes gängige Lehrbuch zu o.g. Themen, z.B.

Greiner, Klassische Elektrodynamik; Thermodynamik und Statistische Mechanik, Verlag Harri Deutsch
Nolting, Grundkurs Theoretische Physik 3; 4/2, Springer Spektrum

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	20.10.2022	7.33.07 NT. 7

07-BAP-15	Messtechnik und EDV	5 CP
07-BAF-13	Data Acquisition and Processing	J Cr
	FB 07 / Physik / Institut für Angewandte Physik	
Pflichtmodul	erstmals angeboten im Sommersemester 2024	4. Fachsemester

Die Studierenden sollen:

- das Grundwissen der analogen und digitalen Messtechnik besitzen,
- die Kette von der Messung (mittels Sensorik) über die Signalerfassung und -verarbeitung bis zur Datenvisualisierung beherrschen,
- den Umgang mit moderner Computer-Hard- und -Software für spezielle messtechnische Aufgaben beherrschen,
- die Anwendung der für Materialforschung wichtigen Datenbanken erlernen und den Datenaustausch in vernetzten Systemen bei neuartigen Fragestellungen nutzen können.

Inhalte:

Grundlegende Messtechnik:

- analoge Messtechnik (Messbrücken, Messverstärker)
- Grundlagen der Sensorik unterschiedlicher physikalischer Wirkprinzipien
- mess- und regelungstechnische Grundschaltungen zur Bestimmung verschiedener physikalischer Messgrößen (Messumformer, Frequenz- und Impulsweitenmessung, Regelkreise)
- Methoden zur Rauschunterdrückung (Filter- und Korrelationsverfahren, Lock-in-Messtechnik)
- Aufbau digitaler Messanordnungen (AD/DA-Wandler, Schnittstellen, Datenkonvertierung u. Speichersysteme)

Materialorientierte Messtechnik:

- z.B. Impedanzspektroskopie
- hochauflösende Rastersondenmikroskopie-Verfahren zur Charakterisierung von Materialien (z.B. Rasterkraft-mikroskopie zur Oberflächenabbildung, Einsatz von Bildverarbeitung u. Verwendung digitaler Filtertechniken)

EDV:

- Programmierung einer Messaufgabe (Gerätesteuerung) und Datenerfassung im Experiment mittels Software (z.B. Labview)
- Datenanalyse, -visualisierung und -modellierung (z.B. Origin/ Mathematica/ Maple)
- Datenaustausch und -beschaffung (Datenbanken, Internet)

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Angewandte Physik

Verwendbar in folgenden Studiengängen: B.Sc. Physik, B.Sc. Materialwissenschaft, B.Sc. Angewandte Physik, B.Sc. Physik und Technologie für Raumfahrtanwendungen

Teilnahmevoraussetzungen: keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereitu	
Vorlesung	15	15
Praktikum	60	60
Summe:	150	

Prüfungsvorleistungen: Zu jedem der 8-12 Versuche mündliche Abfrage (15-30 min) zu Versuchsgrundlagen bestanden, alle Versuche erfolgreich praktisch durchgeführt

Spezielle Ordnung für den Bachelorstudiengang	29 10 2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.35.07 Nr. 7

Modulprüfung:

- Prüfungsform: 8-12 Versuchsauswertungen zu den Praktikumsversuchen zu je 3-10 Seiten; werden freiwillig mehr Seiten verfasst, sind diese Teil der zu bewertenden Prüfungsleistung. Die genaue Anzahl der Versuchsauswertungen sowie deren Abgabefristen werden in der Praktikumsvorbesprechung bekanntgegeben.
- Wiederholungsprüfungen: Wiederholung des Praktikums inkl. Versuchsauswertungen
- Bildung der Modulnote: Ohne Benotung

Unterrichts- und Prüfungssprache: Deutsch

<u>Literatur: Jedes gängige Lehrbuch zu o.g. Themen, z.B.</u>

Horowitz, Hill, The Art of Electronics, Cambridge University Press

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	20.10.2022	7.55.07 NI. 7

07-BAP-16	Experimentalphysik V — Kern-, Teilchen- und O7-BAP-16 Astrophysik	
	Experimental Physics V –Nuclear-, Particle-, and Astrophysics	
	FB 07 / Physik / II. Physikalisches Institut	
Pflichtmodul	erstmals angeboten im Wintersemester 2024/25	5. Fachsemester

Die Studierenden sollen:

- Kenntnisse über die grundlegenden Phänomene, Prinzipien und Anwendungen der Kern-, Teilchenund Astrophysik besitzen,
- den Aufbau und die Methodik wichtiger Experimente beschreiben,
- Zusammenhänge zwischen den physikalischen Experimenten und den entsprechenden mathematischen Formulierungen erkennen,
- die zugrundeliegenden physikalischen Probleme mathematisch formulieren und mindestens näherungsweise selbstständig lösen können.

Inhalte:

- Mehrelektronensysteme
- Wechselwirkung von Teilchen mit Materie
- fundamentale Teilchen und Wechselwirkungen
- Symmetrien und Erhaltungssätze
- Kernmodelle, -reaktionen und -zerfälle
- Radioaktivität und Strahlenschutz
- Elementsynthese und Energieproduktion in Sternen

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des II. Physikalischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Physik, B.Sc. Angewandte Physik

Teilnahmevoraussetzungen: keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereit	
Vorlesung	60	90
Übung	30	90
Summe:	270	

Prüfungsvorleistungen: 50 % der maximal erzielbaren Punkte aus Übungsaufgaben müssen erreicht werden. Im Verlauf der Vorlesungszeit werden im Rahmen der Übung Übungsaufgaben ausgegeben, die bewertet werden. Die max. erreichbare Gesamtpunktezahl wird zu Beginn des Semesters bekanntgegeben. Die Studierenden bekommen die Aufgaben i. d. R. mindestens fünf Tage vor dem Abgabetermin zur Verfügung gestellt und erhalten die Bearbeitung mit Angabe der erreichten Punkte zurück. Es werden 7-14 Übungszettel mit Übungsaufgaben im Semester ausgegeben.

Modulprüfung:

- Prüfungsform: Klausur (90-120 min) zu den Inhalten von Vorlesung und Übung
- Wiederholungsprüfungen: Klausur (90-120 min) oder mündliche Prüfung (30-45 min), nach Entscheidung durch die Lehrperson

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.33.07 Nr. 7

Unterrichts- und Prüfungssprache	Deutsch
----------------------------------	---------

Literatur: Jedes gängige Lehrbuch zu o.g. Themen, z.B.

Povh, Rith, Scholz, Zetsche, Rodejohann, Teilchen und Kerne, Springer Spektrum

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.55.07 NI. 7

07 PAD 17	Fortgeschrittenenpraktikum 07-BAP-17	
07-DAF-17	Advanced Physics Laboratory	8 CP
	FB 07 / Physik	5. und 6.
Pflichtmodul	erstmals angeboten im Wintersemester 2024/25	Fachsemester

Die Studierenden sollen:

- sich in eine experimentell zu bearbeitende Aufgabe anhand der Literatur einarbeiten,
- im Team ein fortgeschrittenes Projekt theoretisch und experimentell bearbeiten,
- das Projekt in der Planung und der Durchführung erläutern,
- Aufgabenstellung, Theorie und Ergebnisse als geschlossenen Bericht darstellen.

Inhalte:

Die Studierenden sollen insgesamt 8 Versuche aus den Teilgebieten

- Festkörperphysik
- Oberflächenphysik
- Kern- und Teilchenphysik
- Angewandte Physik

durchführen. Idealerweise werden aus jedem Teilgebiet zwei Versuche durchgeführt; jedes Teilgebiet muss jedoch mit mindestens einem Versuch abgedeckt werden.

An Stelle vier der acht Praktikumsversuche kann einmalig ein Projektpraktikum in einer der experimentell arbeitenden Gruppen des Fachgebiets Physik durchgeführt werden.

Angebotsrhythmus und Dauer: jedes Semester, 2 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des I. Physikalischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Physik, B.Sc. Angewandte Physik, L3 Physik

Teilnahmevoraussetzungen: keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereitung	
Praktikum	64	176
Summe:	240	

Prüfungsvorleistungen: Zu jedem Versuch (5 – 8) mündliche Abfrage zu Versuchsgrundlagen bestanden, alle Versuche erfolgreich praktisch durchgeführt

Modulprüfung:

- Prüfungsform: 5-8 Versuchsauswertungen zu den Praktikumsversuchen zu je 3-10 Seiten; werden freiwillig mehr Seiten verfasst, sind diese Teil der zu bewertenden Prüfungsleistung. Die genaue Anzahl der Versuchsauswertungen sowie deren Abgabefristen werden in der Praktikumsvorbesprechung bekanntgegeben.
- Wiederholungsprüfungen: Wiederholung des Praktikums inkl. Versuchsauswertungen
- Bildung der Modulnote: Ohne Benotung

Unterrichts- und Prüfungssprache: Deutsch

Literatur: Fachpublikationen abhängig vom jeweiligen Versuch

Spezielle Ordnung für den Bachelorstudiengang	20 10 2022	7.25.07.05.7
"Angewandte Physik"	28.10.2022	7.35.07 Nr. 7

07-BAP-18	Künstliche Intelligenz I	
07-BAI-10	Artificial Intelligence I	9 CP
Pflichtmodul	FB 07 / Physik / Institut für Theoretische Physik	5. Fachsemester
Filicitifiodul	erstmals angeboten im Wintersemester 2024/25	5. Facilisemester

Die Studierenden kennen verschiedene Methoden der Künstlichen Intelligenz. Sie können deren jeweiligen Stärken und Schwächen beurteilen und so die Einsatzmöglichkeiten der Methoden in unterschiedlichen Anwendungsfeldern bewerten. Sie können und können diese ausgewählte Methoden für einfache modellhafte Problemstellungene am Computer umsetzen.

Inhalte: Grundlegende Begriffe, Geschichte der KI, Aussagenlogik, Prädikatenlogik, Prolog, Theorembeweiser, Bayessche Netze, regelbasiertes Schließen, Graphen, Suchalgorithmen, Schließen mit Unsicherheiten, Maschinelles Lernen, Data Mining, <u>Klassifizierung, Clustering, supervised und unsupervised Learning,</u> Entscheidungsbäume, Neuronale Netze.

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Theoretische Physik

Verwendbar in folgenden Studiengängen: B.Sc. Data Science, B.Sc. Angewandte Physik, andere B.Sc. und M.Sc. Studiengänge der JLU

Teilnahmevoraussetzungen: Empfohlen: Kenntnisse in Python

Veranstaltung:	Präsenzstunden Vor- und Nachbereitung	
Vorlesung	60	60
Übung	30	120
Summe:	270	

Prüfungsvorleistungen: 50 % der maximal erzielbaren Punkte aus Übungsaufgaben müssen erreicht werden. Im Verlauf der Vorlesungszeit werden im Rahmen der Übung Übungsaufgaben ausgegeben, die bewertet werden. Die max. erreichbare Gesamtpunktezahl wird zu Beginn des Semesters bekanntgegeben. Die Studierenden bekommen die Aufgaben i. d. R. mindestens fünf Tage vor dem Abgabetermin zur Verfügung gestellt und erhalten die Bearbeitung mit Angabe der erreichten Punkte zurück. Es werden 7-14 Übungszettel mit Übungsaufgaben im Semester ausgegeben.

Modulprüfung:

- Prüfungsform: Klausur (60-120 min)
- Wiederholungsprüfungen: Klausur (60-120 min) oder mündliche Prüfung (30-45 min), nach Entscheidung durch die Lehrperson

Unterrichts- und Prüfungssprache: Deutsch oder Englisch, nach Entscheidung durch die Lehrperson zu Beginn der Veranstaltung

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.35.U7 NT. 7

<u>Literatur:</u> Jedes gängige Lehrbuch zu o.g. Themen, z.B. <u>Ertel, Grundkurs Künstliche Intelligenz, Springer Vieweg</u>

07-BAP-19	Übergreifende Zusammenhänge der Physik	4 CP
07-BAF-19	Comprehensive Interrelations in Physics	4 CP
	FB 07 / Physik	
Pflichtmodul	erstmals angeboten im Sommersemester 2025	6. Fachsemester

Qualifikationsziele:

Die Studierenden sollen:

- einen Überblick über die Inhalte der experimentellen und theoretischen Physik in verschiedenen Gebieten besitzen,
- Zusammenhänge zwischen den unterschiedlichen Gebieten der Physik aufzeigen können.

Inhalte:

Inhalte und physikalische Zusammenhänge der Module Experimentalphysik I-V und Theoretische Physik I-II

- Klassische Physik: Mechanik, Elektrodynamik und Optik, Thermodynamik
- Moderne Physik: Spezielle Relativitätstheorie, Quantenphänomene, Atom- und Molekülphysik,
 Festkörperphysik, Kern-Teilchen- und Astrophysik

Angebotsrhythmus und Dauer: jedes Semester

Modulverantwortliche Professur oder Stelle: Vorsitzende Person des Prüfungsausschusses B.Sc. Angewandte Physik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Physik

Teilnahmevoraussetzungen: Bestehen der Module Experimentalphysik I-V und Theoretische Physik I-II

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Beratungsgespräch	2	118
Summe:	120	

Prüfungsvorleistungen: keine

Modulprüfung: mündliche Prüfung (30-60 min)

Unterrichts- und Prüfungssprache: Deutsch

Literatur: Jede gängige Lehrbücher zu o.g. Themen, z.B.

Gerthsen Physik, Springer Spektrum (Experimentalphysik I, II)

Haken, Wolf, Atom- und Quantenphysik, Springer (Experimentalphysik III)

Hunklinger, Festkörperphysik, De Gruyter (Experimentalphysik IV)

Povh, Rith, Scholz, Zetsche, Rodejohann, Teilchen und Kerne, Springer Spektrum (Experimentalphysik V)

Greiner, Klassische Mechanik I und II; Quantenmechanik, Verlag Harri Deutsch (Theor. Physik I)

<u>Greiner, Klassische Elektrodynamik; Thermodynamik und Statistische Mechanik, Verlag Harri Deutsch (Theor. Physik II)</u>

Spezielle Ordnung für den Bachelorstudiengang	20 40 2022	7.25.07.117
"Angewandte Physik"	28.10.2022	7.35.07 Nr. 7

07-BAP-20	Studienprojekt I	6 CP	
	Research Project I	U Cr	
Pflichtmodul	FB 07 / Physik	6. Fachsemester	
Filicitifiodul	erstmals angeboten im Sommersemester 2025	o. raciisemestei	

Die Studierenden sollen anhand einer abgeschlossenen Aufgabenstellung:

- die Methoden eines Spezialgebietes erprobt und ihre Kenntnisse und F\u00e4higkeiten darin in Teamarbeit vertieft haben,
- die F\u00e4higkeit zur Literaturrecherche und zur wissenschaftlichen Diskussion erweitert haben,
- die Anwendung multimedialer Pr\u00e4sentationstechniken unter Ber\u00fccksichtigung didaktischer Gesichtspunkte vertieft haben.

Inhalte:

- Sichtung der Literatur
- Erstellen und Umsetzung eines Arbeitsprogramms
- Diskussion und Präsentation der Ergebnisse
- Formulierung regelmäßiger Zwischenberichte und eines Abschlussberichts

Angebotsrhythmus und Dauer: jedes Semester, 1 Semester

Modulverantwortliche Professur oder Stelle: Vorsitzende Person des Prüfungsausschusses B.Sc. Angewandte Physik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Physik

Teilnahmevoraussetzungen: Alle Pflichtmodule des 1. bis 3. Semesters bestanden.

Veranstaltung:	Präsenzstunden
Arbeitsprogramm aufstellen, Diskussion	20
Praktische Ausführung des Arbeitsprogramms mit Aufarbeitung der Ergebnisse	160
Summe:	180

Prüfungsvorleistungen: keine

Modulprüfung: Vortrag zum Projekt mit anschließender Diskussion (15 - 30 min)

Unterrichts- und Prüfungssprache: Deutsch

Literatur: Fachpublikationen abhängig vom gewählten Projekt

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	20.10.2022	7.33.07 NI. 7

07-BAP-21	Studienprojekt II	6 CP	
	Research Project II	O CP	
Pflichtmodul	FB 07 / Physik	6. Fachsemester	
Pilicitifiodul	erstmals angeboten im Sommersemester 2025	o. raciisemestei	

Die Studierenden sollen anhand einer abgeschlossenen Aufgabenstellung:

- die Methoden eines Spezialgebietes erprobt und ihre Kenntnisse und F\u00e4higkeiten darin in Teamarbeit vertieft haben,
- die F\u00e4higkeit zur Literaturrecherche und zur wissenschaftlichen Diskussion erweitert haben,
- die Anwendung multimedialer Präsentationstechniken unter Berücksichtigung didaktischer Gesichtspunkte vertieft haben.

Inhalte:

- Sichtung der Literatur
- Erstellen und Umsetzung eines Arbeitsprogramms
- Diskussion und Präsentation der Ergebnisse
- Formulierung regelmäßiger Zwischenberichte und eines Abschlussberichts

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Vorsitzende Person des Prüfungsausschusses B.Sc. Angewandte Physik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Physik

Teilnahmevoraussetzungen: Alle Pflichtmodule des 1. bis 3. Semesters bestanden.

Veranstaltung:	Präsenzstunden	
Arbeitsprogramm aufstellen, Diskussion	20	
Praktische Ausführung des Arbeitsprogramms mit Aufarbeitung der Ergebnisse	160	
Summe:	180	

Prüfungsvorleistungen: keine

Modulprüfung: Vortrag zum Projekt mit anschließender Diskussion (15 - 30 min)

Unterrichts- und Prüfungssprache: Deutsch

Literatur: Fachpublikationen abhängig vom gewählten Projekt

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.33.07 NI. 7

07-BAP-22	Bachelorthesis	12 CP	
	Bachelor's Thesis	12 CF	
Pflichtmodul	FB 07 / Physik	6. Fachsemester	
Filicitifiodal	erstmals angeboten im Sommersemester 2025	o. raciisemestei	

Die Studierenden sollen die Fähigkeit besitzen, anhand einer konkreten Aufgabenstellung wissenschaftliche Methoden bei der Lösung anzuwenden, ihre Ergebnisse als wissenschaftliche Arbeit zu präsentieren und zu verteidigen.

Inhalte:

- Erarbeitung der Mess- und Auswertemethoden bzw. der theoretischen Lösungsverfahren
- Durchführung und Auswertung bzw. numerische Rechnungen
- Diskussion der Ergebnisse und graphische Darstellung
- Erstellen der Thesis-Schrift und eines Posters

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Vorsitzende Person des Prüfungsausschusses B.Sc. Angewandte Physik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Physik

Teilnahmevoraussetzungen: Alle Pflichtmodule des 1. bis 4. Semesters bestanden.

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Arbeitsplan aufstellen, Diskussion	20	
Praktische Ausführung des Arbeitsplans mit Aufarbeitung der Ergebnisse	340	
Summe:	30	60

Prüfungsvorleistungen: keine

Modulprüfung:

- Prüfungsform: Thesis, Umfang: 30-60 Seiten; werden freiwillig mehr Seiten verfasst, sind diese Teil der zu bewertenden Prüfungsleistung. Umfang des Kolloquiums zur Verteidigung der Thesis gem. §21 (1) AllB: 15-30 Minuten.
- Wiederholungsprüfung: Wiederholung des Moduls

Unterrichts- und Prüfungssprache: Grundsätzlich Deutsch; auf Antrag gem. § 21 Abs. 3 S. 2 AllB auch andere Sprache

Literatur: Fachpublikationen abhängig vom Thema der Thesis

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.55.07 NI. 7

	Quantum Optics and Laser Spectroscopy	
	FB 07 / Physik / I. Physikalisches Institut	ab 4.
Wahlpflichtmodul	erstmals angeboten im Sommersemester 2024	Fachsemester

Die Studierenden sollen:

- verschiedene Konzepte zur Erzeugung von Lichtimpulsen verstehen,
- fundamentale Rauscheigenschaften von Licht identifizieren und geeignete Kontrollmechanismen angeben können,
- die Entstehung und Eigenschaften von Lichtstrahlen diskutieren können,
- Effekte der nichtlinearen Optik und die experimentellen Methoden zu deren Visualisierung und Implementierung kennen.

Inhalte: Erzeugung kurzer und ultrakurzer Lichtimpulse: u.a. Güteschalten und Modenkopplung (aktiv und passiv), Photonenstatistik und nichtklassisches Licht: u.a. Schrotrauschen und Photonenkorrelationen, Mikromaser, Gaußsche Strahlen und Laserresonatoren: u.a. optische Moden und Bessel-Strahlen, Nichtlineare Optik: u.a. Frequenzverdopplung und Phasenanpassung, Methoden der Laserspektroskopie (u.A. spektrales Lochbrennen, dopplerfreie Spektroskopie, Pump-Probe, Vier-Wellenmischen)

Angebotsrhythmus und Dauer: jedes SoSe oder WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des I. Physikalischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Physik, B.Sc. Materialwissenschaft, B.Sc. Angewandte Physik, B.Sc. Physik und Technologie für Raumfahrtanwendungen

Teilnahmevoraussetzungen: keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Vorlesung	45	90
Übung	15	30
Summe:	18	80

Prüfungsvorleistungen: keine

Modulprüfung: Klausur (60-120 min) oder mündliche Prüfung (30-45 min), nach Entscheidung durch die Lehrperson

Unterrichts- und Prüfungssprache: Deutsch

Literatur: Jedes gängige Lehrbuch zu o.g. Themen, z.B.

Meschede, Optik, Licht und Laser, Teubner

Paul, Photonen, Teubner

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	20.10.2022	7.33.07 NI. 7

07-BAP- WPF2	Quantenstrukturen	6 CP
U7-DAI - WITZ	Quantum Structures	0 Cl
	FB 07 / Physik / Institut für Angewandte Physik	ab 4.
Wahlpflichtmodul	erstmals angeboten im Sommersemester 2024	Fachsemester

Die Studierenden sollen:

- Herstellungsmethoden von Strukturen, die mindestens in einer Dimension auf Grund ihrer Größe klar quantisierte Eigenschaften aufweisen, kennen,
- physikalische Eigenschaften solcher Strukturen quantitativ beschreiben können,
- Anwendungen dieser Strukturen kennen und ausgestalten können.

Inhalte: Quantisierung in 1D-, 2D- und 3D-Systemen, "bottom-up" Methoden zur Herstellung periodischer quantisierter Strukturen (z.B. nanopartikuläre Halbleiter, 2D-Materialien wie Graphen, Allotrope und Nanobänder, supramolekulare Strukturen) und deren physikalische Eigenschaften, Methoden zur Herstellung von individuell auf atomarer und molekularer Skala gestalteten Strukturen (z.B. Rastersondenmethoden, "break junctions"), physikalische Eigenschaften dieser Strukturen (z.B. Quantum Corral), Elektronik auf molekularer Skala (z.B. atomare und molekulare Drähte, Einzelmolekül-Dioden und Transistoren), quantenstrukturbasierte Logik

Angebotsrhythmus und Dauer: jedes SoSe oder WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Angewandte Physik

Verwendbar in folgenden Studiengängen: B.Sc. Physik, B.Sc. Materialwissenschaft, B.Sc. Angewandte Physik, B.Sc. Physik und Technologie für Raumfahrtanwendungen

Teilnahmevoraussetzungen: keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereitung	
Vorlesung	30	30
Seminar	10	30
Praktikum	20	60
Summe:	180	

Prüfungsvorleistungen: von Betreuer oder Betreuerin anerkannter schriftlicher Bericht zum Praktikum

Modulprüfung:

- Prüfungsform: mündliche Prüfung (30-45 min) oder Klausur (60 120 min) oder schriftliche wissenschaftliche Ausarbeitung (typisch 10-20 Seiten), nach Entscheidung durch die Lehrperson, zu den Themen von Vorlesung, Seminar und Praktikum
- Wiederholungsprüfungen: mündliche Prüfung (30-45 min)

Unterrichts- und Prüfungssprache: Deutsch

<u>Literatur:</u> Jedes gängige Lehrbuch zu o.g. Themen, z.B. <u>Waser, Nanoelectronics and Information Technology, Wiley</u>

07-BAP-WPF3 Dünne Schichten und Oberflächen 6 CP
--

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.33.07 NI. 7

	Thin Films and Surfaces	
	FB 07 / Physik / Institut für Angewandte Physik	
Wahlpflichtmodul	erstmals angeboten im Wintersemester 2024/25	5. Fachsemester

Die Studierenden sollen:

- mit grundlegenden Modellvorstellungen zu Oberflächen von Festkörpern vertraut sein,
- Arbeitstechniken der Oberflächenmodifikation, Dünnfilmpräparation und -charakterisierung kennen,
- in der Lage sein, dünne Filme an ausgewählten Beispielen zu präparieren und deren Eigenschaften zu vermessen und zu interpretieren.

Inhalte: Eigenschaften von reinen und adsorbatbedeckten, amorphen und kristallinen Festkörperoberflächen, Dünnschichtpräparation, Schichtcharakterisierung, anwendungsrelevante Beispiele

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Angewandte Physik

Verwendbar in folgenden Studiengängen: B.Sc. Physik, B.Sc. Materialwissenschaft, B.Sc. Angewandte Physik, B.Sc. Physik und Technologie für Raumfahrtanwendungen

Teilnahmevoraussetzungen: keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereitung	
Vorlesung	15	15
Praktikum	90	60
Summe:	180	

Prüfungsvorleistungen: von Betreuer oder Betreuerin anerkannter schriftlicher Bericht zum Praktikum

Modulprüfung: Klausur (60-120 min) oder mündliche Prüfung (30-45 min), nach Entscheidung durch die Lehrperson

Unterrichts- und Prüfungssprache: Deutsch

Literatur: Jedes gängige Lehrbuch zu o.g. Themen, z.B.

Smith, Thin-Film Deposition, McGraw Hill

Bubert, Jenett, Surface and Thin Film Analysis, Wiley

Spezielle Ordnung für den Bachelorstudiengang	20 10 2022	7.25.07.05.7
"Angewandte Physik"	28.10.2022	7.35.07 Nr. 7

07-BAP-WPF4	Grundlagen der Mikro- und Nanostrukturierung	6 CP	
07-BAF-WF14	Fundamentals of Micro- and Nanostructuring	U CF	
Wahlpflichtmodul	FB 07 / Physik / I. Physikalisches Institut	4. Fachsemester	
wampinchimodul	erstmals angeboten im SoSe 2023	4. Facilsemester	

Die Studierenden:

- kennen grundlegende Methoden und Materialien der Mikro- und Nanostrukturierung (Planartechnologie),
- haben ein Verständnis für notwendige Infrastrukturtechnologien (Reinraumtechnik),
- sind in der Lage, mikrotechnische und (top-down-) nanotechnologische Bauelemententwürfe hinsichtlich ihrer fertigungstechnischen Realisierbarkeit zu bewerten,
- sind imstande, einfache Prozessflows zu konzipieren und die dazu nötigen CAD-Daten zu erstellen.

Inhalte: Fotolithografie, Elektronenstrahllithografie; Strukturübertragung: Nass- und Trockenätzen; CAD: Dateiformate, Werkzeuge; Mess- und Charakterisierungsverfahren der Mikrotechnik; Mikroskopie; Reinraumtechnik und Verhalten im Reinraum; ausgewählte Anwendungen der Mikro-/Nanotechnik.

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des I. Physikalischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Physik, B.Sc. Materialwissenschaft, B.Sc. Angewandte Physik, B.Sc. Physik und Technologie für Raumfahrtanwendungen, L3 Physik

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereitung	
Vorlesung	30	60
Übung	20	70
Summe:	180	

Prüfungsvorleistungen: Herstellung einer Mikro- oder Nanostruktur und Dokumentation

Modulprüfung: Klausur (30-60 min) oder mündliche Prüfung (15-30 min), nach Entscheidung durch die Lehrperson

Unterrichts- und Prüfungssprache: Deutsch oder Englisch, nach Entscheidung durch die Lehrperson zu Beginn der Veranstaltung

Literatur: Jedes gängige Lehrbuch zu o.g. Themen, z.B.

Völklein, Zetterer, Praxiswissen Mikrosystemtechnik, Vieweg
Globisch, Lehrbuch Mikrotechnologie, Carl Hanser Verlag

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.55.07 NI. 7

07-BAP-WPF5	Grundlagen der Quanteninformation	6 CP	
U7-BAF-WF13	Fundamentals of Quantum Information	0 Cr	
Wahlpflichtmodul	FB07 / Institut für Theoretische Physik	5. Fachsemester	
wampinchimodul	erstmals angeboten im Wintersemester 2024/25	5. Facilsemester	

Die Studierenden sollen

- die quantenmechanischen Grundlagen der Quanteninformation verstehen,
- die Funktionsweise und den Aufbau eines Quantencomputers inclusive QBits kennen und verstehen,
- die Vorteile der Nutzung von Superposition und Verschränkung kennen.

Inhalte: CBits und Qbits, reversible Operationen, Superposition und Verschränkung, Quanten-Gate-Arrays und Messgates, Bornsche Regel, Deutschs Problem, Shor-Faktorisierung, Kryptographie, Grovers Suchalgorithmus, Quantenfehlerkorrektur, Bell- und Greenberger-Horne-Zeiliger-Zustände, Quantenkryptographie

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Theoretische Physik

Verwendbar in folgenden Studiengängen: B.Sc. und M.Sc. Data Science, B.Sc. und M.Sc. Physik, B.Sc. und M.Sc. Materialwissenschaft, B.Sc. und M.Sc. Angewandte Physik

Teilnahmevoraussetzungen: empfohlen: Grundlagen der Quantenmechanik

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Vorlesung	45	60
Übung	15	60
Summe:	180	

Prüfungsvorleistungen: 50 % der maximal erzielbaren Punkte aus Übungsaufgaben müssen erreicht werden. Im Verlauf der Vorlesungszeit werden im Rahmen der Übung Übungsaufgaben ausgegeben, die bewertet werden. Die max. erreichbare Gesamtpunktezahl wird zu Beginn des Semesters bekanntgegeben. Die Studierenden bekommen die Aufgaben i. d. R. mindestens fünf Tage vor dem Abgabetermin zur Verfügung gestellt und erhalten die Bearbeitung mit Angabe der erreichten Punkte zurück. Es werden 7-14 Übungszettel mit Übungsaufgaben im Semester ausgegeben.

Modulprüfung: Klausur (60-120 min) oder mündliche Prüfung (30-45 min), nach Entscheidung durch die Lehrperson

Unterrichts- und Prüfungssprache: Deutsch oder Englisch, nach Entscheidung durch die Lehrperson zu Beginn der Veranstaltung

<u>Literatur:</u> Jedes gängige Lehrbuch zu o.g. Themen, z.B. Bruß, Quanteninformation, Fischer Kompakt

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.33.07 Nr. 7

07-BAP-WPF6	Kernphysikalische Messmethoden in Medizin und Technik	8 CP
	Nuclear Physics in Medicine and Technology	
Wahlpflichtmodul	FB 07 / Physik / II. Physikalisches Institut	5. Fachsemester
wampinchinodul	erstmals angeboten im Wintersemester 2024/25	J. I acrisemester

Die Studierenden sollen:

- Kenntnisse über die grundlegenden Phänomene und Prinzipien der Kernphysik besitzen,
- die elementaren Wechselwirkungen von Teilchen und Photonen in Materie kennen,
- über Grundkenntnisse über Detektorprinzipien und grundlegende Messgeräte verfügen,
- die F\u00e4higkeit besitzen, Grundlagen der Messtechnik und Anwendungsbeispiele aus der Literatur zu erarbeiten,
- experimentelle Aufgaben im Team lösen können,
- Messresultate analysieren und darstellen können.

Inhalte: Wechselwirkung von geladenen und neutralen Teilchen in Materie; Absorption von nieder- und hochenergetischen Photonen; Detektorsysteme zur Orts, Zeit und Energiemessung von Teilchen und Photonen; Koinzidenztechnik; Prinzipien von Gas-, Halbleiter- und Szintillations-Detektoren; Ausleseelektronik und Datenerfassungssysteme; Grundlagen der Röntgendiagnose; Tomographie; Szintigraphie; Strahlentherapie; Elementanalyse in Technik und Umwelt

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des II. Physikalischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Physik, B.Sc. Materialwissenschaft, B.Sc. Physik und Technologie für Raumfahrtanwendungen, B.Sc. Angewandte Physik

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Vorlesung	30	30
Praktikum	90	60
Seminar	6	24
Summe:	240	

Prüfungsvorleistungen: Alle Versuche erfolgreich praktisch durchgeführt und alle Versuchsauswertungen mit bestanden bewertet (Praktikum).

Modulprüfung: Mündliche Prüfung (30-45 min)

Unterrichts- und Prüfungssprache: Deutsch

Spezielle Ordnung für den Bachelorstudiengang	20 10 2022	7.35.07 Nr. 7
"Angewandte Physik"	28.10.2022	7.35.07 Nr. 7

Literatur: Jedes gängige Lehrbuch zu o.g. Themen, z.B.
Leo, Techniques for Nuclear and Particle Physics Experiments, Springer

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	20.10.2022	7.33.07 NI. 7

07-BAP-WPF	Wahlpflichtfachbereich I - IV	Insgesamt 27 CP
U7-BAF-WFF	Compulsory Elective Module I - IV	msgesamt 27 Cr
Wahlaflichtmadul	FB 07 / Physik	15.
Wahlpflichtmodul	erstmals angeboten im Wintersemester 2022/23	Fachsemester

Der Wahlpflichtbereich dient der Vertiefung bzw. Spezialisierung der fachlichen Kompetenzen in den für die Angewandte Physik relevanten naturwissenschaftlichen Fachgebieten oder der Erlangung außerfachlicher Kompetenzen bzw. Schwerpunkte als Vorbereitung auf die spätere berufliche Tätigkeit.

Entsprechend können hier einerseits Spezialveranstaltungen aus der Physik und den Materialwissenschaften (Schwerpunkt Quantentechnologien), der Chemie oder der Mathematik eingebracht werden. Andererseits können auch Kompetenzen aus der Data Science (Schwerpunkt Data Science), den Lebenswissenschaften (Schwerpunkte Umweltmanagement bzw. Life Sciences) oder den Wirtschaftswissenschaften (Schwerpunkte BWL und VWL) erworben werden.

Durch die weitgehende Wahlfreiheit lernen die Studierenden, aktiv gestaltend auf die eigene Profilbildung einzuwirken.

Inhalte: Module, die der Erlangung der o.g. Qualifikationsziele dienen, können, neben den in dieser Anlage angegebenen Wahlpflichtmodulen, aus der unten aufgeführten Liste von Blöcken von Wahlpflichtmodulen frei gewählt werden. Die erforderlichen 27 CP werden auf mehrere Module verteilt. Weitere Module, insbesondere AfK-Module bis zu einem Gesamtumfang von 8 CP, sind auf Antrag möglich. In Zweifelsfällen sollte die/der Vorsitzende des Prüfungsausschusses kontaktiert werden.

Angebotsrhythmus und Dauer: jedes SoSe und WiSe, abhängig von dem jeweils gewählten Modul

Modulverantwortliche Professur oder Stelle: siehe Modulbeschreibung des jeweils gewählten Moduls

Spezielle Ordnung für den Bachelorstudiengang	28.10.2022	7.35.07 Nr. 7
"Angewandte Physik"	20.10.2022	7.55.07 NI. 7

FB	Fach	Modulcode	Titel	CF	
02		Paketangebote nach Nebenfachordnung			
	BWL	Großes	Nebenfach "Betriebswirtschaftslehre"	24	
		02-Wiwi:NF/B-BWL-1	Management I (Nebenfach)	6	
		02-Wiwi:NF/B-BWL-2	Management II (Nebenfach)	6	
		02-Wiwi:NF/B-BWL-3	Accounting (Nebenfach)	6	
		02-Wiwi:NF/B-BWL-4	Finance (Nebenfach)	6	
	VWL	Großes	s Nebenfach "Volkswirtschaftslehre"	24	
		02-Wiwi:NF/B-VWL-2	Mikroökonomie I (Nebenfach)	6	
		02-Wiwi:NF/B-VWL-3	Mikroökonomie II (Nebenfach)	6	
		02-Wiwi:NF/B-VWL-4	Makroökonomie I (Nebenfach)	6	
		02-Wiwi:NF/B-VWL-5	Makroökonomie II (Nebenfach)	6	
07	Physik	Schwerpur	nkt / Nebenfach "Quantentechnologien"	24	
		07-BAP-WPF1	Quantenoptik und Laserspektroskopie	6	
		07-BAP-WPF2	Quantenstrukturen	6	
		07-BAP-WPF3	Dünne Schichten und Oberflächen	6	
		07-BAP-WPF4	Grundlagen der Mikro- und Nanostrukturierung	6	
		07-BAP-WPF5	Grundlagen der Quanteninformation	6	
		07-BAP-WPF6	Kernphysikalische Messmethoden in Medizin und Technik	8	
	Data	Schwe	erpunkt / Nebenfach "Data Science"	24	
	Science	07-BDS-10	Ringvorlesung Data Science	3	
		07-BDS-12	Datenbanksysteme	12	
		07-BDS-14	Grundlagen der Datenanalyse mit R	6	
		07-BDS-15	Objektorientierte Programmierung für Data Science	9	
		07-BDS-16	Künstliche Intelligenz II	9	
		07-BDS-18	Wissenschaftliches Programmieren und Datenanalyse	9	
		07-BAP-WPF5	Grundlagen der Quanteninformation	6	
09	Life	Schw	erpunkt / Nebenfach "Life Science"	24	
	Sciences	BK 002	Biologie	6	
		BK 006	Biochemie I	6	
		BK 007	Anatomie und Physiologie	6	
		BK 028	Allgemeine Chemie	6	
		BK 033	Allgemeine und molekulare Mikrobiologie	6	
		BK 056	Genetik	6	
		BP 001	Biochemie II	6	

Spezielle Ordnung für den Bachelorstudiengang	20 10 2022	7.25.07.05.7
"Angewandte Physik"	28.10.2022	7.35.07 Nr. 7

Umweltma	BK 033	Allgemeine und molekulare Mikrobiologie	6
nagement	BK 034	Angewandte und Umweltmikrobiologie	6
	BK 036	Kreislauf- und Abfallwirtschaft	6
	BK 041	Schadstoffe in der Umwelt	6
	BK 042	Umweltökonomie und Umweltkommunikation	6
	BK 058	Bioökonomie	6
	BK 060	Bioressourcen	6
	BP 059	Ressourcennutzung, Umweltschutz und -politik	6
	BP 091	Betriebliches Umweltmanagement	6
	BP 103	Regenerative Energie	6
	BP 163	Bioenergie	6

"

Inkrafttreten

Dieser Beschluss tritt am Tage nach seiner Verkündung in Kraft. Der neue Wortlaut der geänderten Ordnung wird in den Mitteilungen der Universität Gießen bekannt gemacht.

Gießen, den #. ### #### Prof. Joybrato Mukherjee Präsident der Justus-Liebig-Universität Gießen