

Mitteilungen der Justus-Liebig-Universität Gießen

Ausgabe vom

17.05.2023

7.35.07 Nr. 8

Spezielle Ordnung für den Bachelorstudiengang Angewandte Informatik

Spezielle Ordnung für den Bachelorstudiengang Angewandte Informatik

des Fachbereichs 07 – Mathematik und Informatik, Physik und Geographie – der Justus-Liebig-Universität Gießen

Vom 08.02.2023

Diese Ordnung tritt am Tage nach ihrer Verkündung in Kraft.

Bisherige Fassungen:

	Fachbereichsrat	Senat	Präsidium	Verkündung
Urfassung	08.02.2023	26.04.2023	10.05.2023	17.05.2023

Aufgrund von § 50 Abs. 1 Nr. 1 des Hessischen Hochschulgesetzes vom 14. Dezember 2021 hat der Fachbereichsrat des Fachbereichs 07 – Mathematik und Informatik, Physik und Geographie – am 08.02.2023 die nachstehende Ordnung erlassen:

Inhaltsverzeichnis

§ 1 (zu § 1 AllB) Anwendungsbereich	2
§ 2 (zu § 3 AllB) Akademischer Grad	2
§ 3 (zu § 4 AllB) Studienbeginn	2
§ 4 (zu § 6 AllB) Arbeitsaufwand und Regelstudienzeit	
§ 5 (zu § 7 AllB) Aufbau des Studiums	2
§ 6 (zu § 8 AllB) Module	2
§ 7 (zu § 17 AllB) Prüfungsvorleistungen	2
§ 8 (zu § 18 AllB) Modulprüfungen	3
§ 9 (zu § 20 AllB) Bachelorprüfung	3
§ 10 (zu § 21 AllB) Thesis	
§ 11 (zu § 25 und 19 AllB) Prüfungstermine und Meldefristen	3
§ 12 (zu § 34 AllB) Prüfungszeugnis	4
§ 13 Inkrafttreten	4
Anhang	4
Anlage 1: Studienverlaufsplan	5
Anlage 1: Studienverlaufsplan	6
Anlage 3: Studienverlaufsplan für Teilzeitstudium 5	55
Anlage 4: Schwerpunkte	57

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.05.2025	7.55.07 NI. 6

§ 1 (zu § 1 AllB) Anwendungsbereich

In Ergänzung der Allgemeinen Bestimmungen für Bachelor- und Masterstudiengänge der Justus-Liebig-Universität Gießen vom 20. Februar 2019 (AllB) regelt diese Ordnung das Studium und die Prüfungen im Bachelorstudiengang "Angewandte Informatik".

§ 2 (zu § 3 AllB) Akademischer Grad

Der Fachbereich 07 – Mathematik und Informatik, Physik und Geographie – der Justus-Liebig-Universität Gießen verleiht nach erfolgreich abgeschlossenem Studium den akademischen Grad Bachelor of Science, abgekürzt "B.Sc.".

§ 3 (zu § 4 AllB) Studienbeginn

Der Studiengang kann nur zum Wintersemester begonnen werden.

§ 4 (zu § 6 AllB) Arbeitsaufwand und Regelstudienzeit

- (1) Das Bachelorstudium hat eine Regelstudienzeit von sechs Semestern und einen Umfang von 180 CP.
- (2) Das Studium kann in Form eines Teilzeitstudiums absolviert werden.

§ 5 (zu § 7 AllB) Aufbau des Studiums

- (1) Der Studienverlaufsplan (Anlage 1 Vollzeitstudium; Anlage 3 Teilzeitstudium) gibt den Studierenden Hinweise zur Planung des Studiums.
- (2) Das Studium gliedert sich in einen Pflichtbereich (132 CP), einen Schwerpunktbereich (36 CP) und in die Bachelor-Thesis (12 CP).
- (3) Die Studierenden wählen einen der Schwerpunkte, die in Anlage 4 mit den zugehörigen Studienverlaufsplänen aufgeführt sind.
- (4) Ein Wechsel des Schwerpunkts ist einmalig möglich.

§ 6 (zu § 8 AllB) Module

- (1) Die für das jeweilige Modul maßgebliche Modulbeschreibung ist im Modulhandbuch (Anlage 2) enthalten.
- (2) Pflichtmodule des Studiengangs sind:

Grundlagen der Informatik I, Grundlagen der Programmierung mit Python, Grundlagen der Statistik, Lineare Algebra, Grundlagen der Informatik II, Diskrete Strukturen, Mathematische und Naturwissenschaftliche Modellierung, Objektorientierte Programmierung, Künstliche Intelligenz I, Software Engineering, Algorithmen und Datenstrukturen, Simulation und Modellierung in der Informatik, Grundlagen der Datenanalyse mit R, Datenbanksysteme, Betriebssysteme, Technische Informatik, IT-Sicherheit, Bachelor-Thesis.

- (3) Der Schwerpunktbereich dient der Spezialisierung der Studierenden. Die Schwerpunkte sind in Anlage 4 aufgeführt. Einige Module der Schwerpunkte sind aus anderen Studiengängen entnommen, in deren Speziellen Ordnungen die zugehörigen Modulbeschreibungen zu finden sind. In der Anlage 4 wird für die betreffenden Module auf diese Speziellen Ordnungen verwiesen. Die Bachelor-Thesis muss innerhalb des gewählten Schwerpunktbereichs angefertigt werden.
- (4) Die Studierenden können sich während des Studiums in weiteren als den vorgeschriebenen Modulen einer Prüfung unterziehen. Diese so genannten freiwilligen Zusatzleistungen werden nicht auf die zu erbringende Creditleistung angerechnet und gehen nicht in die Bildung der Gesamtnote ein. Das erfolgreiche Bestehen freiwilliger Zusatzleistungen wird in einem Zusatzzeugnis ausgewiesen.

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.55.07 INI. 6

§ 7 (zu § 17 AllB) Prüfungsvorleistungen

- (1) Prüfungsvorleistungen sind in den jeweiligen Modulbeschreibungen benannt.
- (2) Übungsaufgaben sind zutreffend bearbeitet, wenn mindestens 50% der Aufgaben korrekt gelöst wurden. Die Modulbeschreibung kann hiervon abweichende, vorrangig zu beachtende Regelungen treffen.
- (3) In Modulen oder Modulteilen, die als Seminar oder Projekt durchgeführt werden, ist eine regelmäßige Teilnahme Prüfungsvorleistung. Eine regelmäßige Teilnahme ist gegeben, wenn nicht mehr als zwei Veranstaltungstermine ohne Nachweis eines nicht von der oder dem Studierenden zu vertretenden Grundes versäumt werden.

§ 8 (zu § 18 AllB) Modulprüfungen

- (1) Prüfungsformen sind Klausuren, mündliche Prüfungen, Hausarbeiten, Projektbericht (Studierende bearbeiten eigenständig eine wissenschaftliche Fragestellung innerhalb eines Projekts und verfassen dazu einen schriftlichen Bericht), e-Präsenzklausuren (elektronische Präsenzklausuren, d.h. die Prüfungsfragen werden im Computerbildschirm angezeigt und es werden die Antworten am Computer eingegeben), Portfolio (schriftliche, strukturierte Sammlung individueller studienbezogener Lern- und Arbeitsleistungen, wie Arbeitspläne und Milestones, Programmdokumentation, Literaturzusammenfassungen, und deren Entwicklungsschritte), e-Portfolio (Portfolio, bei dem die Erstellung und Abgabe elektronisch erfolgt; bei Projekten mit Programmieranteil enthält das Portfolio den Programmcode), Take-Home-Klausuren (zeitlich befristete Hausarbeit zur Bearbeitung von Aufgaben, die elektronisch bereitgestellt und deren Lösungen elektronisch eingereicht werden), Übungsaufgaben (Aufgaben, die elektronisch bereitgestellt werden, zu Hause bearbeitet werden und innerhalb einer Frist elektronisch abgegeben werden), Vortrag (mündliche Darstellung von Ergebnissen inklusive Diskussion, ggf. unterstützt durch eine Präsentation), Versuchsauswertung (die Studierenden führen einen wissenschaftlichen Versuch durch und beschreiben in Berichtsform die Grundlagen des Versuchs, die Durchführung und die Ergebnisse sowie ihre Auswertung).
- (2) Schwerpunkte können Module mit hiervon abweichenden Prüfungsformen vorsehen. Diese sind in den jeweiligen Speziellen Ordnungen der Studiengänge definiert, welche die Schwerpunktmodule exportieren.
- (3) Schwerpunkte können Module enthalten, die mit bestanden oder nicht bestanden bewertet werden, aber nicht weiter benotet werden.

§ 9 (zu § 20 AllB) Bachelorprüfung

- (1) Der Bachelorstudiengang ist insgesamt bestanden, wenn sowohl sämtliche Pflichtmodule als auch alle Module des gewählten Schwerpunkts bestanden sind.
- (2) Die Gesamtnote ergibt sich aus dem Durchschnitt aller benoteten Pflicht- und Schwerpunktmodule. Zur Berechnung der Gesamtnote werden die Notenpunkte mit den jeweiligen CP des Moduls multipliziert und die Summe durch die Gesamtzahl der benoteten CP dividiert.

§ 10 (zu § 21 AllB) Thesis

- (1) Die Anmeldung zur Bachelor-Thesis kann frühestens erfolgen, wenn mindestens 120 CP des Studiengangs absolviert sind. Arbeitsthema und Datum der Ausgabe sind vom Prüfungsamt aktenkundig zu machen.
- (2) Die Bearbeitungszeit beträgt 3 Monate für ein Vollzeitstudium und 6 Monate für ein Teilzeitstudium. Insgesamt ist das Thema so einzugrenzen, dass die Bachelor-Thesis mit einem Arbeitsaufwand von 360 Stunden abgearbeitet werden kann.
- (3) Der späteste Abgabetermin ist der 8. September eines jeden Jahres. Ausnahmen regelt der Prüfungsausschuss.

§ 11 (zu § 25 und 19 AllB) Prüfungstermine und Meldefristen

(1) Die Anmeldung zu den Prüfungen eines Moduls erfolgt automatisch mit der Anmeldung zu diesem Modul.

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.05.2025	7.55.07 IVI. 6

- (2) Mit der Einschreibung in den Studiengang ist automatisch die Anmeldung zu den Modulen des 1. Semesters verbunden.
- (3) Ist ein Prüfling nach § 29 II, III AllB von der Prüfung zurückgetreten, bestimmt der Prüfungsausschuss im Einvernehmen mit der oder dem Prüfenden den nächstmöglichen Prüfungstermin.

§ 12 (zu § 34 AllB) Prüfungszeugnis

Das Prüfungszeugnis enthält den nach § 5 (3) gewählten Schwerpunkt in Form von "B.Sc. Angewandte Informatik mit dem Schwerpunkt …".

§ 13 Inkrafttreten

Diese Ordnung tritt am Tage nach ihrer Verkündung in Kraft.

Gießen, den 10.05.2023 Prof. Joybrato Mukherjee Präsident der Justus-Liebig-Universität Gießen

Anhang

Anlage 1 — Studienverlaufsplan

Anlage 2 — Modulbeschreibungen

Anlage 3 — Studienverlaufsplan für Teilzeitstudium

Anlage 4 — Liste der Schwerpunkte

17.05.2023

7.35.07 Nr. 8

Anlage 1: Studienverlaufsplan

Modulhezeichnung / Modulcodo		Semester					
Modulbezeichnung / Modulcode	CP	1	2	3	4	5	6
Grundlagen der Informatik I 07-BAI-01	9	VL Ü					
Grundlagen der Programmierung mit Python 07-BAI-02	6	VL Ü					
3. Grundlagen der Statistik 07-BAI-03	6	VL Ü					
4. Lineare Algebra 07-BAI-04	9	VL Ü					
Summe CP 1. Semester	30						
5. Grundlagen der Informatik II 07-BAI-05	9		VL Ü				
6. Diskrete Strukturen 07-BAI-06	9		VL Ü				
7. Mathematische und Naturwissenschaftliche Modellierung 07-BAI-07	12		VL Ü CÜ				
Summe CP 2. Semester	30						
Objektorientierte Programmierung 07-BAI-08	9			VL Ü			
9. Künstliche Intelligenz I 07-BAI-09	9			P VL Ü			
10. Software-Engineering 07-BAI-10	6			P VL Ü			
11. Schwerpunkt	6			Var.			
Summe CP 3. Semester	30						
12. Algorithmen und Datenstrukturen 07-BAI-11	9				VL Ü		
13. Simulation und Modellierung in der Informatik 07-BAI-12	6				VL Ü		
14. Grundlagen der Datenanalyse mit R 07-BAI-13	6				VL Ü		
15. Schwerpunkt	9				Var.		
Summe CP 4. Semester	30						
16. Datenbanksysteme 07-BAI-14	9					VL Ü	
17. Betriebssysteme 07-BAI-15	6					VL Ü	
18. Technische Informatik 07-BAI-16	6					VL Ü	
19. Schwerpunkt	9					Var.	
Summe CP 5. Semester	30			ı			
20. IT-Sicherheit 07-BAI-17	6						VL Ü
21.Schwerpunkt	12						Var.
22. Bachelor-Thesis 07-BAI-18	12						Т
Summe CP 6. Semester	30						

VL=Vorlesung
Ü=Übung
CÜ=Computerübungen

S=Seminar

T=Thesis

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

P=Projekt

Anlage 2: Modulbeschreibungen

Grundlagen der Informatik I	7
Grundlagen der Programmierung mit Python	9
Grundlagen der Statistik	10
Lineare Algebra	11
Grundlagen der Informatik II	12
Diskrete Strukturen	14
Mathematische und Naturwissenschaftliche Modellierung	15
Objektorientierte Programmierung	16
Künstliche Intelligenz I	17
Software-Engineering	18
Algorithmen und Datenstrukturen	19
Simulation und Modellierung in der Informatik	20
Grundlagen der Datenanalyse mit R	21
Datenbanksysteme	23
Betriebssysteme	25
Technische Informatik	26
IT-Sicherheit	27
Bachelor-Thesis	28
Software-Test und Verifikation	29
Komplexität von Algorithmen	30
Software-Engineering II	32
Software-Projekt	33
Einführung in die Humangeographie mit Schwerpunkt Urban Studies und Mobilities	35
Studienprojekt "Künstliche Intelligenz"	37
Experimentalphysik I	38
Experimentalphysik II	39
Technische Informatik – Praktikum	
Studienprojekt "Physikalische Messmethoden"	41
Praktische Einführung in die computationale Neurowissenschaft	42
Lesekurs Neuroinformatik	43
Modellierung kognitiver Funktionen	44
Kryptographische Algorithmen	45
Numerische Algorithmen	46
Studienprojekt "Algorithmen"	47
Grundlagen der Biologie	48
Genetik, Mikro- und Molekularbiologie	49
Angewandte Bioinformatik und Systembiologie	51
Datenbanken und Datenstrukturen der Bioinformatik	52
Studienprojekt "Bioinformatik"	53

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.55.07 IVI. 6

Grundlagen der Informatik I 07-BAI-01		9 CP
0	Fundamentals of Computer Science I	
Deliabetas advil	FB 07 / Informatik / Institut für Informatik	1
Pflichtmodul	erstmals angeboten im WiSe 2023/24	1. Fachsemester

- haben einen Überblick über die Informatik,
- besitzen Grundwissen über Informationsrepräsentation und Rechnerkomponenten,
- besitzen die F\u00e4higkeit, L\u00f6sungen f\u00fcr einfache Programmieraufgaben in einer maschinennahen Sprache und in einer h\u00f6heren Programmiersprache zu entwickeln,
- verfügen über ein fundiertes Grundwissen über die Konzepte der Programmiersprachen und Programmiertechniken,
- haben die F\u00e4higkeit, elementare Algorithmen zu analysieren und zu klassifizieren,
- können elementare Datenstrukturen entwerfen und konstruieren,
- kennen grundlegende Such- und Sortieralgorithmen.

Inhalte: Grundlagen der Programmierung:

- Überblick über die Informatik
- Informationsdarstellung, Datentypen
- Rechnerkomponenten, maschinennahe Programmierung
- Algorithmusbegriff
- Kontrollstrukturen
- Rekursion
- Dynamische Variablen

Algorithmen und Datenstrukturen:

- Analyse von Algorithmen
- Konstruktion von Datentypen
- Elementare Datenstrukturen
- Suchalgorithmen
- Sortieralgorithmen

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Informatik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung		
Vorlesung	60	90		
Übung	30	90		
Summe:	27	70		

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.05.2025	7.55.07 INI. 6

Modulprüfung:

- modulabschließend
- Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6 Stunden) zu den Inhalten von
 Vorlesung und Übung
- 1. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden)
- 2. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden) oder mündliche Prüfung (20–30 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

07-BAI-02	Grundlagen der Programmierung mit Python	6 CP
07 B/ II 02	Fundamentals of Programming with Python	
Deliahtura	FB 07 / Physik / Institut für Theoretische Physik	1 Fach consists a
Pflichtmodul	erstmals angeboten im WiSe 2023/24	1. Fachsemester

Qualifikationsziele: Die Studierenden können einfache Programme unter Verwendung gängiger Kontroll- und Datenstrukturen in der Programmiersprache Python schreiben. Sie sind mit dem Umgang mit gängigen Datentypen in Python vertraut. Sie kennen grundlegende Methoden zur Datenverarbeitung und -visualisierung.

Inhalte:

- Interaktive Programmierumgebung mit Jupyter-Notebooks
- Python: Datentypen, Ausdrücke, Kontrollstrukturen, Funktionen, Klassen
- Module der Python-Standardlibrary und externe Bibliotheken zur Datenverarbeitung und -visualisierung

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Theoretische Physik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Vorlesung	30	30
Übung	30	90
Summe:	180	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Modulprüfung:

- modulabschließend
- e-Präsenzklausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6 Stunden) zu den Inhalten von Vorlesung und Übung
- 1. Wiederholungsprüfung: e-Präsenzklausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6 Stunden)
- 2. Wiederholungsprüfung: e-Präsenzklausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6 Stunden) oder mündliche Prüfung (20–30 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

07-BAI-03	Grundlagen der Statistik	6 CP
	Basic Statistics	
Deliabetas advil	FB 07 / Mathematik / Mathematisches Institut	1 Fachageston
Pflichtmodul	erstmals angeboten im WiSe 2023/24	1. Fachsemester

Qualifikationsziele: Die Studierenden kennen einerseits grundlegende Begriffe und Konzepte der angewandten Statistik, beherrschen numerische und grafische explorative Datenanalyse (EDA) für praxisrelevante Beispiele und können die Ergebnisse der EDA adäquat charakterisieren und interpretieren und kennen andererseits grundlegende Konzepte der diskreten Stochastik und können diese praktisch anwenden.

Inhalte:

- Grundlegende Begriffe und Konzepte der angewandten Statistik
- Methoden der numerischen und der grafischen EDA sowie deren Anwendung auf konkrete Datenbeispiele
- Grundlegende Begriffe der diskreten Stochastik
- Elementare Methoden der Kombinatorik
- Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeit, Zufallsvariablen, Erwartungswert und Varianz, Tschebyschev-Ungleichung, Grundlagen des Testens

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Mathematischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Vorlesung	30	60
Übung	30	60
Summe:	180	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 10–12 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1 Woche) im Semester ausgegeben.

Modulprüfung:

- modulabschließend
- Klausur (90–120 min) oder m\u00fcndliche Pr\u00fcfung (30–45 min) zu den Inhalten von Vorlesung und \u00dcbung
- 1. und 2. Wiederholungsprüfung: Klausur (90–120 min) oder mündliche Prüfung (30–45 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

07-BAI-04	Lineare Algebra	9 CP
	Linear Algebra	
DG: alchere a de d	FB 07 / Mathematik / Mathematisches Institut	4 5
Pflichtmodul	erstmals angeboten im WiSe 2023/24	1. Fachsemester

- sind mit logischem Denken und strengen Beweisen vertraut,
- haben Einsicht in die deduktive Methode,
- kennen die Grundbegriffe der Linearen Algebra,
- können mit linearen Abbildungen, Matrizen und linearen Gleichungssystemen umgehen.

Inhalte:

- Mengen und Abbildungen: Grundlagen
- Gruppen, Ringe, Körper: Elementare Eigenschaften
- Vektorräume: lineare Unabhängigkeit, Dimension, Basis, Unterraum, (direkte) Summe von Unterräumen, Dimensionsformeln von Unterräumen, Rn und Cn
- Lineare Abbildungen: Kern, Bild, Urbild, Isomorphismus, Summe und Produkt linearer Abbildungen, inverse Abbildung, eingeschränkte Abbildungen
- Matrizen: Addition und Multiplikation, Inverse, Transponierte und symmetrische Matrizen, elementare Umformungen, Rang, Regularität und Singularität, Matrixdarstellung linearer Abbildungen (insb. bei Basiswechsel), Matrizen als lineare Abbildungen
- Lineare Gleichungssysteme: Koeffizientenmatrix, Lösungsstruktur, Gauß-Algorithmus, Matrixinversion

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Mathematischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden Vor- und Nachbe	
Vorlesung	60	90
Übung	30	90
Summe:	270	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Modulprüfung:

- modulabschließend
- Klausur (120–180 min) zu den Inhalten von Vorlesung und Übung
- 1. und 2. Wiederholungsprüfung: Klausur (120–180 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

07-BAI-05	Grundlagen der Informatik II	9 CP
	Fundamentals of Computer Science II	
Deliabetas advil	FB 07 / Informatik / Institut für Informatik	2 Fachage etc.
Pflichtmodul	erstmals angeboten im SoSe 2024	2. Fachsemester

- beherrschen den Umgang mit dem mathematischen Grundgerüst der Informatik,
- beherrschen die prinzipielle Denkweise der Theoretischen Informatik,
- besitzen Grundwissen im Bereich der Booleschen Algebra,
- kennen Möglichkeiten und Grenzen von Schaltfunktionen und -werken,
- haben Verständnis für formale Berechnungsmodelle entwickelt,
- können die prinzipiellen und praktischen Grenzen des algorithmischen Problemlösens erkennen.

Inhalte: Schaltnetze, Schaltwerke und Automaten:

- Boolesche Algebra
- Schaltnetze
- Minimierung von Schaltfunktionen
- Schaltwerke, endliche Automaten
- Reduktion von endlichen Automaten
- Universelles Berechnungsmodell

Berechenbarkeit:

- Turingmaschinen
- Algorithmische Berechenbarkeit
- Unentscheidbare Probleme
- Rekursive Funktionen

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Informatik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung	
Vorlesung	60	90	
Übung	30	90	
Summe:	270		

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.05.2025	7.55.07 INI. 6

Modulprüfung:

- modulabschließend
- Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6 Stunden) zu den Inhalten von
 Vorlesung und Übung
- 1. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden)
- 2. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden) oder mündliche Prüfung (20–30 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 8

07-BAI-06	Diskrete Strukturen	9 CP
67 B/11 00	Discrete Structures	
DGI alatana adad	FB 07 / Mathematik / Mathematisches Institut	2 5
Pflichtmodul	erstmals angeboten im SoSe 2024	2. Fachsemester

- haben ein vertieftes Verständnis von mathematischem Arbeiten,
- sind zum faktenbasierten kritischen Denken befähigt,
- kennen die algebraischen und kombinatorischen Grundstrukturen,
- sind im Umgang mit Berechnung von Eigenwerten und Eigenvektoren von linearen Abbildungen und Matrizen, Diagonalisierbarkeit, Trigonalisierbarkeit und Determinante geübt,
- beherrschen die Anwendung von Eigenwertmethoden in Kombinatorik und Graphentheorie.

Inhalte:

- Graphen: Bäume, Zusammenhang, aufspannende Bäume, Symmetrien und Automorphismen, Cayleygraphen, Adjazenzmatrizen, bi/multipartite Graphen, Planarität
- Eigenwerte: charakteristisches Polynom, Determinante, Minimalpolynom, Trigonalisierungssatz, Diagonalisierungskriterien
- Anwendung von Eigenwerttechniken: geschlossene Formeln für lineare Rekursionsgleichungen, Färbungszahlen für Graphen, Nichtexistenz bestimmter Graphen, elementare Überlegungen zu Irrfahrten auf Graphen

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Mathematischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik

Teilnahmevoraussetzungen: Keine; empfohlen: Kenntnisse der Linearen Algebra (07-BAI-04)

Veranstaltung:	Präsenzstunden Vor- und Nachbereitung	
Vorlesung	60	90
Übung	30	90
Summe:	270	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Modulprüfung:

- modulabschließend
- Klausur (120–180 min) zu den Inhalten von Vorlesung und Übung
- 1. und 2. Wiederholungsprüfung: Klausur (120–180 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

07-BAI-07	Mathematische und Naturwissenschaftliche Modellierung	12 CP
	Computational Modelling in Math and Natural Sciences	
DG:-htmdul	FB 07 / Physik / Institut für Theoretische Physik	2 5
Pflichtmodul	erstmals angeboten im SoSe 2024	2. Fachsemester

Qualifikationsziele: Die Studierenden beherrschen den Umgang mit dem mathematischen Grundgerüst – Differentiation und Integration sowie Grundlagen der linearen Algebra. Die Studierenden können einfache naturwissenschaftliche Probleme am Computer durch selbstgeschriebene Programme in Python unter Zuhilfenahme wissenschaftlicher Bibliotheken modellieren. Die Studierenden sind insbesondere in der Lage, Daten nachhaltig zu verarbeiten und zu visualisieren.

Inhalte: Grundlagen der Analysis (Differentiation und Integration im Eindimensionalen, Taylor-Reihen, elementare und spezielle Funktionen, komplexe Zahlen und Funktionen, Differentialoperatoren, einfache lineare Differentialgleichungen, Skalarprodukte von Funktionen, Fouriertransformation) und angewandte lineare Algebra (Lösen von Gleichungssystemen, Eigenwertprobleme, Normalengleichung) zur Beschreibung naturwissenschaftlicher Phänomene

Numerische Umsetzung der erlernten Methoden am Computer, Aufarbeitung und Visualisierung von Daten sowie Aufstellen, Visualisieren und Anpassen naturwissenschaftlicher Modelle mittels Python und einschlägiger Bibliotheken (Numpy, Scipy, Pandas, Matplotlib).

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Theoretische Physik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik

Teilnahmevoraussetzungen: Keine; empfohlen: Grundlagen der Programmierung mit Python (07-BAI-02)

Veranstaltung:	Präsenzstunden Vor- und Nachbereitung	
Vorlesung	60	30
Übung	30	60
Computerübung	45	135
Summe:	360	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Modulprüfung:

- modulabschließend
- Klausur (120–180 min) oder e-Präsenzklausur (120–180 min) zu den Inhalten von Vorlesung, Übung und Computerübung
- 1. und 2. Wiederholungsprüfung: Klausur (120–180 min) oder e-Präsenzklausur (120–180 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 8

07-BAI-08	Objektorientierte Programmierung	9 CP
0, 2, 00	Object-Oriented Programming	
Deli alabassa ali ul	FB 07 / Physik / Institut für Theoretische Physik	2 Fach competer
Pflichtmodul	erstmals angeboten im WiSe 2024/2025	3. Fachsemester

Qualifikationsziele: Die Studierenden sind mit grundlegenden Konzepten modernen C++ vertraut. Sie können Algorithmen und Datenstrukturen aus der C++ Standardbibliothek einsetzen. Die Studierenden können außerdem Klassen und deren Schnittstellen entwerfen und implementieren. Sie können Programme kompilieren und Software mit Programmen zur Versionskontrolle (git) verwalten.

Inhalte:

- Versionskontrolle mit git, Compiler, Erstellen von Makefiles, Profiler, Debugger, Softwareentwicklungsumgebung
- C++: einfache und strukturierte Datentypen, Zeiger, Referenzen, Funktionen, C-Style Arrays, Container, C-Strings, lokale und globale Variablen, Funktionen mit Parameterübergabe bei Wert und Referenz, Namespaces, Header Dateien
- Objektorientierung: Klassen, Operatorüberladung, Vererbung, Mehrfachvererbung, virtuelle Member-Funktionen
- Generische und funktionale Programmierung mit Klassen- und Funktions-Templates, Algorithmen und Einsatz der C++-Standardbibliothek und wissenschaftlicher Bibliotheken (z.B. Boost, Eigen)

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Theoretische Physik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereitung	
Vorlesung	30	30
Übung	30	90
Projekt	15	75
Summe:	270	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Modulprüfung:

- modulabschließend
- e-Portfolio (5–10 Seiten und Programmcode) zum Projekt; Bearbeitungszeit 15 Wochen
- 1. Wiederholungsprüfung: Überarbeitung des e-Portfolios (5–10 Seiten und Programmcode) innerhalb von 4 Wochen
- 2. Wiederholungsprüfung: Überarbeitung des e-Portfolios (5–10 Seiten und Programmcode) innerhalb von 4 Wochen oder mündliche Prüfung (20–30 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

07-BAI-09	Künstliche Intelligenz I	9 CP
07 BAI 03	Artificial Intelligence I	
DG: abdus a dud	FB 07 / Physik / Institut für Theoretische Physik	2 5
Pflichtmodul	erstmals angeboten im WiSe 2024/25	3. Fachsemester

Qualifikationsziele: Die Studierenden kennen und beherrschen verschiedene Methoden der Künstlichen Intelligenz (Perzeptron, Logistische Regression, Entscheidungsbäume, Clustering, Regression, Neuronale Netze, Deep Learning, Ensemble Learning) und können diese für Probleme am Computer mit Python umsetzen.

Inhalte: Grundlegende Begriffe, Geschichte der KI, Maschinelles Lernen, Data Mining, Perzeptron, Logistische Regression, Entscheidungsbäume, Clustering, Regression, Neuronale Netze, Deep Learning, Ensemble Learning, Umsetzung der Methoden in Python mittels einschlägiger Bibliotheken (z.B. Scikit-learn, Tensorflow)

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Theoretische Physik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereitu	
Vorlesung	60	30
Übung	30	75
Projekt	15	60
Summe:	270	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50 % der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Modulprüfung:

- modulabschließend
- Portfolio oder e-Portfolio (jeweils 5–10 Seiten und Programmcode) über das Projekt; Bearbeitungszeit jeweils 10 Wochen
- 1. Wiederholungsprüfung: Überarbeitung des Portfolios oder e-Portfolios (5–10 Seiten und Programmcode) innerhalb von 4 Wochen
- 2. Wiederholungsprüfung: Überarbeitung des Portfolios oder e-Portfolios (5–10 Seiten und Programmcode) innerhalb von 4 Wochen oder mündliche Prüfung (20–30 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.55.07 IVI. 6

07-BAI-10	Software-Engineering	6 CP
07 B/11 10	Software Engineering	
DG: abdus a dud	FB 07 / Informatik / Institut für Informatik	2 5
Pflichtmodul	erstmals angeboten im WiSe 2024/25	3. Fachsemester

- besitzen Grundwissen im Bereich der Methodik des Softwareentwurfs,
- beherrschen Modellierungskonzepte,
- haben das Entity-Relationship-Modell als Schnittstelle zwischen realer Welt und Abstraktion verstanden und können dieses anwenden,
- kennen verschiedene Programmierparadigmen,
- besitzen Grundwissen im Bereich des ingenieurmäßigen Entwurfs großer Programmsysteme,
- haben Erfahrungen im Bereich der Datenanalyse gesammelt.

Inhalte:

- Grundlagen des Software-Entwurfs
- Modellierungskonzepte
- Entity-Relationship-Modell
- Programmierparadigmen
- Entwurf großer Programmsysteme
- Datenanalyse
- Softwaretechnik

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Informatik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik

Teilnahmevoraussetzungen: Kenntnisse im Umfang der Module Grundlagen der Informatik I und II (07-BAI-01 und 07-BAI-05)

Veranstaltung:	: Präsenzstunden Vor- und Nachbere	
Vorlesung	30	60
Übung	30	60
Summe:	180	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Modulprüfung:

- modulabschließend
- Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6 Stunden) zu den Inhalten von Vorlesung und Übung
- 1. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden)
- 2. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden) oder mündliche Prüfung (20–30 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

Unterrichts- und Prüfungssprache: Deutsch

07-BAI-11	Algorithmen und Datenstrukturen	9 CP
07 57 11	Algorithms and Data Structures	
50:11	FB 07 / Informatik / Institut für Informatik	4.5.1
Pflichtmodul	erstmals angeboten im SoSe 2025	4. Fachsemester

Qualifikationsziele: Die Studierenden können

- Problemstellungen unter Verwendung passender Datenstrukturen modellieren,
- zur Lösung gegebener Problemstellungen passende Algorithmen auswählen und diese situationsgerecht anpassen,
- Algorithmen bezüglich ihrer Komplexität bewerten.

Inhalte:

- Listen, Stacks, Queues, Mengen, Graphen
- Algorithmen: Suchverfahren, Sortierverfahren, Hashverfahren, Elementare Graphalgorithmen
- Analyse von Algorithmen
- O-Notation

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Informatik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik

Teilnahmevoraussetzungen: Kenntnisse im Umfang der Module Grundlagen der Informatik I und II (07-BAI-01 und 07-BAI-05)

Veranstaltung:	Präsenzstunden Vor- und Nachbereitur	
Vorlesung	60	90
Übung	30	90
Summe:	270	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Modulprüfung:

- modulabschließend
- Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6 Stunden) zu den Inhalten von
 Vorlesung und Übung
- 1. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden)
- 2. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden) oder mündliche Prüfung (20–30 min)

Unterrichts- und Prüfungssprache: Deutsch

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

07-BAI-12	Simulation und Modellierung in der Informatik	6 CP
07 5/112	Simulation and Modelling in Computer Science	
DG: 1.1	FB 07 / Informatik / Institut für Informatik	4.5.1
Pflichtmodul	erstmals angeboten im SoSe 2025	4. Fachsemester

- erlernen grundlegende Modellierungsmethoden,
- können ihre Techniken und Formalismen anwenden,
- können Probleme präzise und formal beschreiben,
- haben das Konzept der Simulation als Anwendung geeigneter Modellierung beispielhaft kennengelernt.

Inhalte:

- Graphen
- Modellierung von Strukturen
- Modellierung von statischen Systemen
- Modellierung von Nebenläufigkeit und parallelen Systemen
- Simulation von Systemen
- Anwendungen

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Informatik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik

Teilnahmevoraussetzungen: Kenntnisse im Umfang der Module Grundlagen der Informatik I und II (07-BAI-01 und 07-BAI-05)

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Vorlesung	30	60
Übung	30	60
Summe:	180	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Modulprüfung:

- modulabschließend
- Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6 Stunden) zu den Inhalten von
 Vorlesung und Übung
- 1. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden)
- 2. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden) oder mündliche Prüfung (20–30 min)

Unterrichts- und Prüfungssprache: Deutsch

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 8

07-BAI-13	Grundlagen der Datenanalyse mit R	6 CP
07 B/ 11 15	Fundamentals of Data Analysis with R	
Deli alatina a di il	FB 07 / Mathematik / Mathematisches Institut	4
Pflichtmodul	erstmals angeboten im SoSe 2025	4. Fachsemester

Qualifikationsziele: Die Studierenden erlernen den praktischen Umgang mit der "open-source" Software R und

- kennen deren grundlegende Datenstrukturen sowie Möglichkeiten des Im- und Exports von Daten,
- sind mit numerischer und insbesondere grafischer explorativer Datenanalyse durch die Anwendung von R auf reale Daten vertraut und kennen ausgewählte diesbezügliche theoretische Grundlagen,
- wissen, wie für in R implementierte Wahrscheinlichkeitsverteilungen deren Verteilungs-, Dichte- bzw.
 Wahrscheinlichkeits- sowie Quantilfunktionen ausgewertet und wie Pseudo-Zufallszahlen generiert werden,
- können neue Funktionen in R implementieren,
- beherrschen elementare Inferenzstatistik in Form von Konfidenzintervallen und Tests in ausgewählten einfachen Ein- und Zweistichprobenproblemen und kennen diesbezügliche theoretische Konzepte.

Inhalte:

- Einführung in die R-Umgebung
- Datenstrukturen in R sowie Im- und Export von Daten
- Beispiele und ausgewählte theoretischen Grundlagen der explorativen Datenanalyse sowie R-Funktionen dafür
- Wahrscheinlichkeitsverteilungen und Pseudo-Zufallszahlen sowie R-Funktionen für deren Nutzung bzw. Generierung
- Grundlagen der Programmierung in R und Grafik
- Theoretische Konzepte der Inferenzstatistik für einige ausgewählte einfache Ein- und Zweistichprobenprobleme sowie R-Funktionen für deren Lösung

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Mathematischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereitur	
Vorlesung	30	60
Übung	30	60
Summe:	180	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 10–12 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1 Woche) im Semester ausgegeben.

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.05.2025	7.55.07 NI. 6

Modulprüfung:

- modulabschließend
- Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6 Stunden) zu den Inhalten von
 Vorlesung und Übung
- 1. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden)
- 2. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden) oder mündliche Prüfung (30–45 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 8

07-BAI-14	Datenbanksysteme	9 CP
07 57 11	Database Systems	
Deliabetas advil	FB 07 / Informatik / Institut für Informatik	r resharing
Pflichtmodul	erstmals angeboten im WiSe 2025/26	5. Fachsemester

- besitzen Grundwissen im Bereich der Datenmodelle,
- beherrschen den Umgang mit dem Relationalen Modell,
- verfügen über ein fundiertes Grundwissen über die Konzepte der Datenbanksprache SQL,
- können einfache Datenbanken entwerfen,
- haben die Kompetenz erworben, konsistenzrelevante Aspekte im Umgang mit Datenbanken abzuwägen,
- kennen die elementaren Techniken zur Transaktionsverwaltung und zum Wiederanlauf,
- besitzen die F\u00e4higkeit, einfache Abfragen hinsichtlich ihrer Komplexit\u00e4t zu optimieren.

Inhalte:

- Architektur von Datenbanksystemen
- Datenmodelle
- Das Relationale Modell
- Relationale Sprachen
- Datenintegrität
- Transaktionsverwaltung
- Datenbankentwurf
- Logische Abfragenoptimierung
- Datenschutz

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Informatik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik

Teilnahmevoraussetzungen: Kenntnisse im Umfang der Module Grundlagen der Informatik I und II (07-BAI-01 und 07-BAI-05)

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Vorlesung	60	90
Übung	30	90
Summe:	270	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.05.2025	7.55.07 NI. 6

Modulprüfung:

- modulabschließend
- Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6 Stunden) zu den Inhalten von
 Vorlesung und Übung
- 1. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden)
- 2. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden) oder mündliche Prüfung (20–30 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.55.07 IVI. 6

07-BAI-15	Betriebssysteme	6 CP
07 BAI 13	Operating Systems	
DG: abdus a dud	FB 07 / Informatik / Institut für Informatik	5 5b
Pflichtmodul	erstmals angeboten im WiSe 2025/26	5. Fachsemester

- haben Grundwissen über Betriebssystemkonzepte,
- kennen Algorithmen zur Betriebsmittelverwaltung,
- beherrschen den Umgang mit UNIX/Linux-Betriebssystemkommandos,
- besitzen Grundwissen über den Aufbau von Rechnernetzen,
- kennen die Konzepte des Internets,
- haben die Kompetenz erworben, sicherheitsrelevante Aspekte im Umgang mit Rechnern abzuwägen.

Inhalte:

- Einführung in das Betriebssystem UNIX/Linux
- Speicherverwaltung
- Prozesse, Threads
- Dateisysteme, Ein- und Ausgabe
- Scheduling, Deadlocks
- Grundlagen der Rechnerkommunikation
- Typen verteilter Systeme
- Internetstruktur und -dienste
- Sicherheitsaspekte

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Informatik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik

Teilnahmevoraussetzungen: Kenntnisse im Umfang der Module Grundlagen der Informatik I und II (07-BAI-01 und 07-BAI-05)

Veranstaltung:	Präsenzstunden Vor- und Nachbereitung	
Vorlesung	30	60
Übung	30 60	
Summe:	180	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.05.2025	7.55.07 NI. 6

Modulprüfung:

- modulabschließend
- Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6 Stunden) zu den Inhalten von
 Vorlesung und Übung
- 1. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden)
- 2. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden) oder mündliche Prüfung (20–30 min)

Unterrichts- und Prüfungssprache: Deutsch

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 8

07-BAI-16	Technische Informatik	6 CP
07-BAI-10	Technical Informatics	
DG: 1.	FB 07 / Physik	
Pflichtmodul	erstmals angeboten im WiSe 2025/26	5. Fachsemester

- verfügen über Grundlagenwissen von Rechnerstrukturen und die Funktionsweise von mikroelektronischen Schaltungen,
- beherrschen den Umgang mit den Gesetzen der booleschen Algebra,
- verstehen den Entwurf und die Vereinfachung boolescher Schaltungen,
- besitzen Kenntnisse im Entwurf sequenzieller Schaltungen, über Arithmetik-Schaltungen und CMOS-Transistoren,
- verstehen Aufbau und Funktion einer zentralen Recheneinheit (CPU),
- kennen die Grundlagen und Anwendungen von Mikrocontrollern,
- verfügen über elementare Kompetenzen in Maschinenspracheprogrammierung,
- kennen unterschiedliche Rechnerarchitekturkonzepte.

Inhalte: Übersicht über Rechnerstrukturen und Rechnerarchitekturkonzepte, Speicherarchitekturen, Funktionsweise von mikroelektronischen Schaltungen, Grundlagen und Anwendungen von Mikrocontrollern, Grundlagen der Boolschen Algebra, Transistoren und ihre Ausführung in CMOS, Einführung in Maschinensprache z.B. anhand von Assembler.

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des II. Physikalischen Instituts oder des Instituts für Angewandte Physik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereitung	
Vorlesung	45	60
Übung	15	60
Summe:	180	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Modulprüfung:

- Prüfungsform: Klausur (90–120 min) zu den Inhalten von Vorlesung und Übung
- 1. und 2. Wiederholungsprüfung: Klausur (90–120 min) oder mündliche Prüfung (20–40 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 8

07-BAI-17	IT-Sicherheit	6 CP
07 BAI 17	IT-Security	
DG: alatana adad	FB 07 / Informatik / Institut für Informatik	C
Pflichtmodul	erstmals angeboten im SoSe 2026	6. Fachsemester

- rechtliche Aspekte situationsgerecht bei der Entwicklung von Software, bzw. der Entwicklung von Webseiten verwenden,
- Sicherheitsaspekte beim Angriff auf Netzwerke beschreiben und übliche Angriffsmuster und deren
 Gegenmaßnahmen erläutern,
- Grundlagen der Web-Security und der beschränkten Authentifizierung erläutern und passende Modelle beschreiben.

Inhalte:

- Rechtliche Aspekte des Datenschutzes und der Datensicherheit
- Grundlegendes Wissen über Schadsoftware
- Authentifizierung und Zugangskontrolle
- Web-Security

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Informatik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik

Teilnahmevoraussetzungen: Kenntnisse im Umfang der Module Grundlagen der Informatik I und II (07-BAI-01 und 07-BAI-05)

Veranstaltung:	Präsenzstunden Vor- und Nachbereitung	
Vorlesung	30	60
Übung	30	60
Summe:	180	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Modulprüfung:

- modulabschließend
- Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6 Stunden) zu den Inhalten von
 Vorlesung und Übung
- 1. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden)
- 2. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden) oder mündliche Prüfung (20–30 min)

Unterrichts- und Prüfungssprache: Deutsch

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

07-BAI-18	Bachelor-Thesis	42.60
	Bachelor,s Thesis	12 CP
DG: alatana ada d	FB 07	C Facharana tan
Pflichtmodul	erstmals angeboten im SoSe 2026	6. Fachsemester

Qualifikationsziele: Die Studierenden besitzen die Kompetenz, anhand einer konkreten Aufgabenstellung wissenschaftliche Methoden bei der Lösung anzuwenden, ihre Ergebnisse als wissenschaftliche Arbeit zu präsentieren und zu verteidigen.

Inhalte:

- Konzeption eines Arbeitsplans
- Einarbeitung in die Literatur
- Durchführung des Arbeitsplans, Diskussion der Ergebnisse und graphische Darstellung
- Erstellen der Thesis-Schrift und einer Präsentation

Angebotsrhythmus und Dauer: jedes Semester, 1 Semester

Modulverantwortliche Professur oder Stelle: Vorsitzende oder Vorsitzender des Prüfungsausschusses B.Sc. Angewandte Informatik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Arbeitsplan aufstellen, Diskussion	20	
Praktische Ausführung des Arbeits- plans mit Aufarbeitung der Ergeb- nisse	340	
Summe:	36	50

Prüfungsvorleistungen: Keine

Modulprüfung:

- modulabschließend
- Thesis (20–40 Seiten)
- Wiederholungsprüfung: Wiederholung des Moduls

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 8

07-BAI-S01-1	Software-Test und Verifikation	6 CP
07 B/11 301 1	Software Test and Verification	
Mark Indiahan adal	FB 07 / Informatik / Institut für Informatik	2 5
Wahlpflichtmodul	erstmals angeboten im WiSe 2024/25	3. Fachsemester

- statische und dynamische Teststrategien erläutern und auf gegebene Problemstellungen anwenden,
- grundlegende Modelle der Software-Architektur beschreiben und diese bei der Entwicklung von Software verwenden,
- für gegebene Projekte unter Berücksichtigung von Teststufen einen passenden Testprozess erstellen und durchführen,
- Testwerkzeuge situativ anwenden.

Inhalte:

- Teststrategien in der Softwareentwicklung
- Teststufen
- Testprozess
- Testwerkzeuge

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Informatik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik im Schwerpunkt "Software-Engineering"

Teilnahmevoraussetzungen: Kenntnisse im Umfang der Module Grundlagen der Informatik I und II (07-BAI-01 und 07-BAI-05)

Veranstaltung:	Präsenzstunden Vor- und Nachbereitu	
Vorlesung	30	60
Übung	30	60
Summe:	180	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Modulprüfung:

- modulabschließend
- Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6 Stunden) zu den Inhalten von
 Vorlesung und Übung
- 1. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden)
- 2. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden) oder mündliche Prüfung (20–30 min)

Unterrichts- und Prüfungssprache: Deutsch

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

07-BAI-S01-2	Komplexität von Algorithmen	9 CP
07 B/11 301 Z	Complexity of Algorithms	
Malala Giahama adad	FB 07 / Informatik / Institut für Informatik	4 5
Wahlpflichtmodul	erstmals angeboten im SoSe 2025	4. Fachsemester

- die Komplexität ausgewählter Problembeispiele beurteilen und algorithmisch unlösbare oder schwer handhabbare Probleme als solche erkennen,
 - Wechselwirkungen zwischen Algorithmen und Datenstrukturen analysieren,
 - grundlegende Komplexitätsklassen aus angewandter Sicht einordnen,
 - für gegebene Probleme elementare Reduktionen auf Problemklassen durchführen,
 - ausgewählte Approximationsalgorithmen realisieren und zweckmäßig einsetzen.

Inhalte:

- Komplexitätsmaße
- Raum- und Zeitkomplexität
- Grundlegende Komplexitätsklassen
- Reduzierbarkeit zwischen Problemen
- Beziehungen zwischen Komplexitätsklassen
- NP-Vollständigkeit
- Approximation
- Probabilistische Komplexitätsklassen

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Informatik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik in den Schwerpunkten "Software-Engineering" und "Algorithmen"

Teilnahmevoraussetzungen: Kenntnisse im Umfang der Module Grundlagen der Informatik I und II (07-BAI-01 und 07-BAI-05)

Veranstaltung:	Präsenzstunden Vor- und Nachbereitung	
Vorlesung	60	90
Übung	30	90
Summe:	270	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

Modulprüfung:

- modulabschließend
- Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6 Stunden) zu den Inhalten von
 Vorlesung und Übung
- 1. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden)
- 2. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden) oder mündliche Prüfung (20–30 min)

Unterrichts- und Prüfungssprache: Deutsch

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 8

07-BAI-S01-3	Software-Engineering II	9 CP
0, 5, 11 301 3	Software Engineering II	
Malala Giahama adad	FB 07 / Informatik / Institut für Informatik	5 5b
Wahlpflichtmodul	erstmals angeboten im WiSe 2025/26	5. Fachsemester

- gegebene Problemstellungen analysieren und situationsgerecht Software-Entwurfsmuster auswählen,
- grundlegende Modelle der Software-Architektur beschreiben und diese bei der Entwicklung von Software verwenden,
- Grundlagen des Projektmanagements in der Softwareentwicklung beschreiben und Aufwandschätzmethoden situativ anwenden.

Inhalte:

- Software-Entwurfsmuster
- Softwarearchitektur
- Projektmanagement der Softwareentwicklung
- Aufwandschätzmethoden

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Informatik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik im Schwerpunkt "Software-Engineering"

Teilnahmevoraussetzungen: Kenntnisse im Umfang der Module Grundlagen der Informatik I und II (07-BAI-01 und 07-BAI-05) sowie Software-Engineering (07-BAI-10)

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Vorlesung	60	90
Übung	30	90
Summe:	270	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Modulprüfung:

- modulabschließend
- Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6 Stunden) zu den Inhalten von
 Vorlesung und Übung
- 1. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden)
- 2. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden) oder mündliche Prüfung (20–30 min)

Unterrichts- und Prüfungssprache: Deutsch

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.05.2025	7.33.07 NI. 8

07-BAI-S01–4	Software-Projekt	- 12 CP
	Research Project "Software"	
ار راه معرف العامل	FB 07 / Informatik / Institut für Informatik	C Fachaguagtan
Wahlpflichtmodul	erstmals angeboten im SoSe 2026	6. Fachsemester

- können für ein gegebenes Projekt eine Planung zur Entwicklung einer passenden Software durchführen,
- beachten hierbei die wesentlichen Merkmale der Anforderungsanalyse und des Projektmanagements, insbesondere der Arbeit in einem Entwicklerteam,
- können entsprechende Dokumentationen unterstützend anfertigen,
- haben die F\u00e4higkeit zur Literaturrecherche und zur wissenschaftlichen Diskussion erweitert,
- haben die Anwendung multimedialer Pr\u00e4sentationstechniken unter Ber\u00fccksichtigung didaktischer
 Gesichtspunkte vertieft.

Inhalte:

- Vorgehensmodelle
- UML-Diagramme
- Methoden der Anforderungsanalyse
- Grundlagen des Projektmanagements

Angebotsrhythmus und Dauer: jedes Semester, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Informatik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik im Schwerpunkt "Software-Engineering"

Teilnahmevoraussetzungen: Kenntnisse im Umfang der Module Grundlagen der Informatik I und II (07-BAI-01 und 07-BAI-05)

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Arbeitsprogramm aufstellen, Diskussion	20	
Praktische Ausführung des Arbeits- programms mit Aufarbeitung der Er- gebnisse	340	
Summe:	360	

Prüfungsvorleistungen: Keine

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.05.2025	7.55.07 NI. 6

Modulprüfung:

- modulabschließend
- e-Portfolio (5–10 Seiten und Programmcode) und Vortrag (20–30 min) über das Projekt; Bearbeitungszeit 4 Monate
- Modulnote: e-Portfolio (50%) und Vortrag (50%)
- 1. Wiederholungsprüfung: Überarbeitung des e-Portfolios (5–10 Seiten und Programmcode) innerhalb von 4 Wochen und erneuter Vortrag (20–30 min)
- 2. Wiederholungsprüfung: Überarbeitung des e-Portfolios innerhalb (5–10 Seiten und Programm-code) von 4 Wochen und erneuter Vortrag (20–30 min) oder mündliche Prüfung (20–30 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 8

07-BAI-S02-1	Einführung in die Humangeographie mit Schwerpunkt Urban Studies und Mobilities Introduction to Human Geography with a focus on Urban Studies and Mobilities	9 CP
Mahlaffiahtan adul	FB 07 / Geographie / Institut für Geographie	3. und 4. Fachse-
Wahlpflichtmodul	erstmals angeboten im WiSe 2024/25	mester

- kennen die Grundbegriffe Wirtschaftsgeographie und k\u00f6nnen zentrale Fragestellungen des Fachgebietes formulieren und beantworten,
- verstehen gesellschaftliche und wirtschaftliche Zusammenhänge und können diese auf vergangene und aktuelle globale und regionale Entwicklungen reflektieren,
- kennen wichtige Erklärungsansätze der Stadtgeographie (Schwerpunkt Deutschland, Europa, USA),
- kennen den Aufbau des deutschen Raumplanungssystems und Planungsrechts und erhalten Einblick in wesentliche Planungsinstrumente auf kommunaler und regionaler Ebene,
- kennen die wichtigsten verkehrsgeographischen Grundlagen und Mobilitätsprozesse,
- erhalten einen Überblick über die grundlegenden Methoden der Wirtschaftsgeographie, der räumlichen Mobilitätsforschung und der Raumplanung,
- verstehen grundsätzlich die komplexen Wirkungen des menschlichen Handelns auf den Natur- und Kulturraum.

Inhalte: Urbanisierungstendenzen, Bevölkerungswachstum und der demographische Wandel sind übergeordnete Trends, die überall auf der Welt zu beobachten sind und je nach Entwicklungsstand sehr unterschiedliche Konsequenzen für den Lebensraum "Stadt" und sein regionales Umfeld haben. Dies hat Auswirkungen auf Handlungsoptionen und Entwicklungsstrategien. Die hohe Komplexität räumlicher Strukturen, den räumlichen Interaktionen/Mobilitäten und Wechselwirkungen zwischen den Menschen und ihrer belebten und unbelebten Umwelt sind in Bezug auf die technische und nachhaltige Gestaltung herausfordernd. Aus der Sicht einer nachhaltigen (regionalen) Entwicklung ist es erforderlich, Strategien zu entwickeln, die Überkonsum und der Tendenz zur Übernutzung natürlicher Ressourcen wirksam reduzieren können. Hierfür ist die Kenntnis der Wirkungszusammenhänge selbst, aber auch die Kenntnis von Möglichkeiten der technischen Unterstützung bei der Steuerung komplexer Regionszusammenhänge nötig.

- Grundbegriffe, Theorien, Fragestellungen und empirische Bearbeitung in den Fachgebieten der Stadt Bevölkerungs-, Verkehrs- und Wirtschaftsgeographie
- Betrachtung von Phänomenen der Fachgebiete auf unterschiedlichen räumlichen Maßstabsebenen
- Planungstheoretische Grundlagen sowie Instrumente und Planaussagen der Raumordnung
- Stadtentwicklungs- und Regionalplanung
- Sektorale Planung, v.a. Verkehrsplanung

Angebotsrhythmus und Dauer: jedes WiSe, 2 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Geographie

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik im Schwerpunkt "Smart Cities"

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Vorlesung	30	60
Vorlesung	30	60

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

Vorlesung	30	60
Summe:	270	

Prüfungsvorleistungen: Keine

Modulprüfung:

- modulabschließend
- Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6 Stunden) zu den Inhalten der Vorlesungen
- 1. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden)
- 2. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden) oder mündliche Prüfung (20–30 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

07-BAI-S03-1	Studienprojekt "Künstliche Intelligenz"	42.60	
07 BAI 303 1	Research Project "Artificial Intelligence"	12 CP	
NA/a la lasfii ala tana a al l	FB 07 / Mathematik / Physik	Г. Газ ь самента	
Wahlpflichtmodul	erstmals angeboten im WiSe 2025/26	5. Fachsemester	

Qualifikationsziele: Die Studierenden haben anhand einer abgeschlossenen Aufgabenstellung

- die verwendeten Methoden der k\u00fcnstlichen Intelligenz eines Spezialgebietes erprobt und ihre Kenntnisse und F\u00e4higkeiten darin in Teamarbeit vertieft,
- die Fähigkeit zur Literaturrecherche und zur wissenschaftlichen Diskussion erweitert,
- die Anwendung multimedialer Präsentationstechniken unter Berücksichtigung didaktischer Gesichtspunkte vertieft.

Inhalte: Mitarbeit an einem aktuellen Forschungsprojekt an Instituten der JLU, die sich mit Methoden der Künstlichen Intelligenz beschäftigen. Die Mitarbeit umfasst dabei die Sichtung von Literatur, die Umsetzung eines Arbeitsprogramms, die Diskussion und Präsentation der Ergebnisse, sowie die Formulierung wöchentlicher Zwischenberichte und eines Abschlussberichts.

Angebotsrhythmus und Dauer: jedes Semester, 1 Semester

Modulverantwortliche Professur oder Stelle: Vorsitzende oder Vorsitzender des Prüfungsausschusses B.Sc. Angewandte Informatik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik im Schwerpunkt "Künstliche Intelligenz"

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Arbeitsprogramm aufstellen, Diskussion	20	
Praktische Ausführung des Arbeits- programms mit Aufarbeitung der Er- gebnisse	340	
Summe:	30	60

Prüfungsvorleistungen: Keine

Modulprüfung:

- modulabschließend
- e-Portfolio (5–10 Seiten und Programmcode) und Vortrag (20–30 min) über das Projekt; Bearbeitungszeit 4 Monate
- Modulnote: e-Portfolio (50%) und Vortrag (50%)
- 1. Wiederholungsprüfung: Überarbeitung des e-Portfolios (5–10 Seiten und Programmcode) innerhalb von 4 Wochen und erneuter Vortrag (20–30 min)
- 2. Wiederholungsprüfung: Überarbeitung des e-Portfolios (5–10 Seiten und Programmcode) innerhalb von 4 Wochen und erneuter Vortrag (20–30 min) oder mündliche Prüfung (20–30 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 8

07-BAI-S04-1	Experimentalphysik I	6 CP
07 27 11 00 1 2	Experimental Physics I	
Malala Giahama adad	FB 07 / Physik	2 5
Wahlpflichtmodul	erstmals angeboten im WiSe 2024/25	3. Fachsemester

- grundlegende physikalische Prinzipien aus den Bereichen Mechanik und Wärmelehre fundiert diskutieren und auf einfache Probleme anwenden,
- Erhaltungssätze erkennen und anwenden,
- physikalische Phänomene mathematisch beschreiben und einfache Aufgaben lösen,
- einfache physikalische Experimente mit geeigneten Messgeräten erarbeiten und durchführen,
- experimentelle Ergebnisse darstellen und auswerten.

Inhalte:

- Grundgrößen, Kinematik, Newton, sche Axiome, Kräfte in der Natur, Scheinkräfte, Impuls, Arbeit und Energie, Drehimpuls, Statik und Dynamik starrer Körper, relativistische Mechanik, Mechanik deformierbarer Medien, mechanische Schwingungen und Wellen, Akustik
- Arten des Wärmetransports, Kinetische Gastheorie, reale Gase und Phasenumwandlungen, Hauptsätze der Wärmelehre, Wärmekraftmaschinen, Grundlagen der Elektrostatik
- Kinetische Gastheorie, Hauptsätze der Wärmelehre, reale Gase und Phasenumwandlungen, Arten des
 Wärmetransports, Physikalische Messtechnik

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Angewandte Physik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik im Schwerpunkt "Physikalische Messmethoden"

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden Vor- und Nachbereitung	
Vorlesung	60	30
Übung	30	60
Summe:	180	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Modulprüfung:

- Klausur (120 min) zu den Inhalten von Vorlesung und Übung
- 1. und 2. Wiederholungsprüfung: Klausur (120 min) zu den Inhalten von Vorlesung und Übung

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 8

07-BAI-S04-2	Experimentalphysik II	6 CP
07 B/11 304 Z	Experimental Physics II	
Malala Giahama adad	FB 07 / Physik	4 5
Wahlpflichtmodul	erstmals angeboten im SoSe 2025	4. Fachsemester

- grundlegende physikalische Prinzipien aus den Bereichen Elektrizitätslehre und Optik fundiert diskutieren und auf einfache Probleme anwenden,
- einfache Grundlagen und Phänomene der Atom-, Kern- und Festkörperphysik diskutieren,
- Erhaltungssätze erkennen und anwenden,
- physikalische Phänomene mathematisch beschreiben und einfache Beispielaufgaben lösen,
- einfache physikalische Experimente mit geeigneten Messgeräten erarbeiten und durchführen,
- experimentelle Ergebnisse darstellen und auswerten.

Inhalte:

- Elektrostatik, elektrischer Strom, Magnetostatik, Induktion, Anwendungen des Elektromagnetismus,
 elektrische und magnetische Eigenschaften von Materie, Maxwell, sche Gleichungen, elektrische Schwingungen und Wellen, Licht als elektromagnetische Welle
- Geometrische Optik, Wellenoptik, Grundlagen der Quanten- und Wellenmechanik; einfache Beispiele
- Physikalische Messtechnik

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Instituts für Angewandte Physik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik im Schwerpunkt "Physikalische Messmethoden"

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Vorlesung	60	30
Übung	30	60
Summe:	180	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Modulprüfung:

- Klausur (120 min) zu den Inhalten von Vorlesung und Übung
- 1. und 2. Wiederholungsprüfung: Klausur (120 min) zu den Inhalten von Vorlesung und Übung

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 8

07-BAI-S04-3	Technische Informatik – Praktikum	6 CP
07 57 11 35 1 3	Technical Informatics – Laboratory	
Mark In Girls Anna and al	FB 07 / Physik	C 5h
Wahlpflichtmodul	erstmals angeboten im SoSe 2026	6. Fachsemester

- erwerben Kenntnisse über analoge und digitale Schaltungstechnik,
- sind in der Lage technische Schaltungen zu entwerfen,
- erwerben Grundkenntnisse über den Aufbau von Rechnern und Mikroprozessoren,
- beherrschen die Programmentwicklung in Sinne einer strukturierten und modularen Programmierung,
- können an Beispielen aus dem Bereich der Messtechnik die Mikrocontrollertechnik praktisch einsetzen,
- können ihre Kenntnisse im Labor und der Industrie einsetzen.

Inhalte: Hardwarenahe Systemprogrammierung; Umgang mit Messinstrumenten; Mikrocontroller (Architektur, Programmierung, Anwendungen); integrierte Schaltungen, SMD-Technologie, Parallelisierung, Vektorisierung, Speichermedien, Netzwerke, Quantencomputer, Digitalelektronik (Transistor-Transistor Logik, Addierer, Flip-Flops, Zähler, Timerbausteine), Programmierbare Elektronik am Beispiel FPGA (Architektur, Programmierung, Anwendungen)

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des II. Physikalischen Instituts oder des Instituts für Angewandte Physik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik im Schwerpunkt "Physikalische Messmethoden"

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Vorlesung	15	30
Praktikum	60	75
Summe:	180	

Prüfungsvorleistungen: erfolgreiches Absolvieren aller Praktikumsversuche (10–12 Versuche; genaue Anzahl wird zum Beginn der Veranstaltung bekanntgegeben)

Modulprüfung:

- Prüfungsform: Versuchsauswertungen (1 Versuchsauswertung pro Versuch, jeweils 5–10 Seiten, Bearbeitungszeit jeweils 1 Woche)
- Bildung der Modulnote: Mittelwert aller Versuchsauswertungen
- 1. und 2. Wiederholungsprüfung: Überarbeitung der Versuchsauswertungen binnen 4 Wochen oder mündliche Prüfung (20–40 min) zu den Inhalten von Vorlesung und Praktikum

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

07-BAI-S04-4	Studienprojekt "Physikalische Messmethoden"	5 CP
	Research Project "Physical Measurement Methods"	
Mahla Giahama adad	FB 07 / Physik	C 5h
Wahlpflichtmodul	erstmals angeboten im SoSe 2026	6. Fachsemester

Qualifikationsziele: Die Studierenden haben anhand einer abgeschlossenen Aufgabenstellung

- die verwendeten physikalischen Messmethoden eines Spezialgebietes erprobt und ihre Kenntnisse und Fähigkeiten darin in Teamarbeit vertieft,
- die F\u00e4higkeit zur Literaturrecherche und zur wissenschaftlichen Diskussion erweitert,
- die Anwendung multimedialer Präsentationstechniken unter Berücksichtigung didaktischer Gesichtspunkte vertieft.

Inhalte: Mitarbeit an einem aktuellen Forschungsprojekt an den physikalischen Instituten der JLU. Die Mitarbeit umfasst dabei die Sichtung von Literatur, die Umsetzung eines Arbeitsprogramms, die Diskussion und Präsentation der Ergebnisse, sowie die Formulierung wöchentlicher Zwischenberichte und eines Abschlussberichts.

Angebotsrhythmus und Dauer: jedes Semester, 1 Semester

Modulverantwortliche Professur oder Stelle: Vorsitzende oder Vorsitzender des Prüfungsausschusses B.Sc. Angewandte Informatik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik im Schwerpunkt "Physikalische Messmethoden"

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Arbeitsprogramm aufstellen, Diskussion	10	
Praktische Ausführung des Arbeits- programms mit Aufarbeitung der Er- gebnisse	140	
Summe:	1!	50

Prüfungsvorleistungen: Keine

Modulprüfung:

- modulabschließend
- e-Portfolio (5–10 Seiten und Programmcode) und Vortrag (20–30 min) über das Projekt; Bearbeitungszeit 4 Monate
- Modulnote: e-Portfolio (50%) und Vortrag (50%)
- 1. Wiederholungsprüfung: Überarbeitung des e-Portfolios (5–10 Seiten und Programmcode) innerhalb von 4 Wochen und erneuter Vortrag (20–30 min)
- 2. Wiederholungsprüfung: Überarbeitung des e-Portfolios (5–10 Seiten und Programmcode) innerhalb von 4 Wochen und erneuter Vortrag (20–30 min) oder mündliche Prüfung (20–30 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

07-BAI-S05-1	Praktische Einführung in die computationale Neurowissenschaft	8 CP
	Practical Introduction to Computational Neuroscience	
Malala Giahama adad	FB 11 / Medizin / Medizininformatik	5 5h
Wahlpflichtmodul	erstmals angeboten im WiSe 2025/26	5. Fachsemester

Qualifikationsziele: In diesem Kurs erwerben die Studierenden praktische Erfahrung mit computationaler Neurowissenschaft, mit speziellem Fokus auf der Modellierung von Neuronen und neuronalen Netzwerken im gesunden und erkrankten Gehirn. Dabei wird ein eigenes wissenschaftliches Projekt aus dem Bereich der computationalen Modellierung neuronaler Funktionen durchgeführt, in welchem Funktionen auf verschiedenen Ebenen (von Synapsen und Dendriten zu neuronalen Verbänden) simuliert werden. Die Studierenden erlernen dabei die Konzeption und Evaluation von Computermodellen, die eng an experimentelle Daten angelehnt sind, und den Umgang mit Simulationen biophysisch realistischer und datengetriebener Modelle des Nervensystems.

Inhalte:

- Praktisches Wissen in Compartment- und Netzwerkmodellierung
- Praktisches Wissen in der Nutzung der NEURON-Software für biologisch inspirierte Simulationen von Neuronen und neuronalen Netzwerken
- Programmierung in Matlab und Python
- Erlernen der Arbeit mit wissenschaftlichen Problemen auf Basis relevanter Literatur

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Professur für computergestützte Modellierung im 3R-Tierschutz

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik im Schwerpunkt "Neuroinformatik"

Teilnahmevoraussetzungen: Programmierung (MBB-MA-AM-1)

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Seminar	60	30
Projekt	15	135
Summe:	240	

Prüfungsvorleistungen: Regelmäßige Teilnahme am Seminar. Durchführung eines Forschungsprojekts.

Modulprüfung:

- modulabschließend
- Projektbericht (20–30 Seiten) oder Vortrag (30–45 min) oder Projektbericht (20–30 Seiten) und Vortrag (30–45 min); Bearbeitungszeit jeweils 15 Wochen
- Bildung der Modulnote: Projektbericht (50%) und Vortrag (50%) im Falle beider Prüfungsformen;
 wenn nur eine Prüfungsform, dann diese zu 100%
- 1. Wiederholungsprüfung: je nach Erstprüfung; Überarbeitung des Projektberichts (20–30 Seiten) innerhalb von 4 Wochen und/oder erneuter Vortrag (30–45 min)
- 2. Wiederholungsprüfung: je nach Erstprüfung; Überarbeitung des Projektberichts (20–30 Seiten) innerhalb von 4 Wochen und/oder erneuter Vortrag (30–45 min) oder mündliche Prüfung (20–30 min)

Unterrichts- und Prüfungssprache: Englisch

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

07-BAI-S05-2	Lesekurs Neuroinformatik	2 CP
	Reading Seminar Neural Computation	
Malala Giahama adad	FB 07 / Mathematik / Mathematisches Institut	5 5b
Wahlpflichtmodul	erstmals angeboten im WiSe 2025/26	5. Fachsemester

Qualifikationsziele: Studierende lesen und diskutieren aktuelle Forschungsarbeiten aus dem Bereich Neuroinformatik. Dadurch sollen bereits erworbene Kenntnisse um neuste Methoden der Systemneurowissenschaft vertieft und der kritische Umgang mit relevanter Fachliteratur erlernt werden.

Inhalte:

- Kritisches Lesen aktueller Literatur im Bereich Neuroinformatik, mit Fokus auf neusten methodischen
 Ansätzen
- Präsentation von Schlüsselinhalten wissenschaftlicher Literatur in komprimierter Form
- Diskussion und kritische Auseinandersetzung zu Stärken und Schwächen wissenschaftlicher Arbeiten

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Professur für Neuroinformatik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik im Schwerpunkt "Neuroinformatik"

Teilnahmevoraussetzungen: Neuroinformatik I (07-BDS-WPF6) und Neuroinformatik II (07-BDS-WPF7)

Veranstaltung:	Präsenzstunden Vor- und Nachbe	
Seminar 30 30		30
Summe:	60	

Prüfungsvorleistungen: Regelmäßige Teilnahme am Seminar. Lesen der diskutierten Literatur. Präsentation (Dauer: 10–20 min, Bearbeitungszeit 4 Wochen) eines Papers im Seminar.

Modulprüfung:

- modulabschließend
- Hausarbeit (5–10 Seiten) zu einem im Seminar diskutierten Paper; Bearbeitungszeit 15 Wochen
- 1. Wiederholungsprüfung: Überarbeitung der Hausarbeit (5–10 Seiten) innerhalb von 4 Wochen
- 2. Wiederholungsprüfung: Überarbeitung der Hausarbeit (5–10 Seiten) innerhalb von 4 Wochen oder mündliche Prüfung (20–30 min)

Unterrichts- und Prüfungssprache: Englisch

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

07-BAI-S05-3	Modellierung kognitiver Funktionen	6 CP
G7	Modelling of cognitive functions	
NA/a h la Gliabhna a duil	FB 07 / Mathematik / Mathematisches Institut	C Fachagenestas
Wahlpflichtmodul	erstmals angeboten im SoSe 2026	6. Fachsemester

Qualifikationsziele: Hier lernen die Studierenden ihre Kenntnisse auf komplexere kognitive Funktionen wie Gedächtnis, Emotion oder Entscheidungsfindung anzuwenden. Die Studierenden können hier nach Absprache ein Themengebiet ihrer Wahl wählen. Dabei eignen sie sich Grundkenntnisse über die Implementierung der entsprechenden kognitiven Prozesse auf der Systemebene im Gehirn an und führen darauf basierend ein eigenes umschriebenes Projekt durch, in dem kognitive Funktionen durch computationale Analysen beschrieben und vorhergesagt werden.

Inhalte:

- Auseinandersetzung mit den neuronalen Grundlagen ausgewählter kognitiver Funktionen
- Planung und Durchführung eines eigenen Forschungsprojekts
- Datenanalyse mit computergestützten Methoden
- Interpretation und verständliche Darstellung von eigenen wissenschaftlichen Daten

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Professur für Neuroinformatik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik im Schwerpunkt "Neuroinformatik"

Teilnahmevoraussetzungen: Neuroinformatik I (07-BDS-WPF6), Neuroinformatik II (07-BDS-WPF7), Lesekurs Neuroinformatik (07-BAI-S52) und Programmierung (MBB-MA-AM-1)

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Seminar	30	30
Projekt	15	105
Summe:	180	

Prüfungsvorleistungen: Regelmäßige Teilnahme am Seminar. Durchführung eines eigenen Forschungsprojekts.

Modulprüfung:

- modulabschließend
- Projektbericht (20–30 Seiten) oder Vortrag (30–45 min) oder Projektbericht (20–30 Seiten) und Vortrag (30–45 min); Bearbeitungszeit jeweils 15 Wochen
- Bildung der Modulnote: Projektbericht (50%) und Vortrag (50%) im Falle beider Prüfungsformen;
 wenn nur eine Prüfungsform, dann diese zu 100%
- 1. Wiederholungsprüfung: je nach Erstprüfung; Überarbeitung des Projektberichts (20–30 Seiten) innerhalb von 4 Wochen und/oder erneuter Vortrag (30–45 min)
- 2. Wiederholungsprüfung: je nach Erstprüfung; Überarbeitung des Projektberichts (20–30 Seiten) innerhalb von 4 Wochen und/oder erneuter Vortrag (30–45 min) oder mündliche Prüfung (20–30 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 8

07-BAI-S06-1	Kryptographische Algorithmen	6 CP
07 27 11 000 2	Cryptographic Algorithms	
Mahlaffi ahtaa adul	FB 07 / Mathematik / Mathematisches Institut	2 Fach competer
Wahlpflichtmodul	erstmals angeboten im WiSe 2024/25	3. Fachsemester

Qualifikationsziele: Die Sicherheit moderner Verschlüsselungsverfahren im Internet basiert auf einigen wenigen mathematischen Problemen. In dieser Veranstaltung erlernen die Studierenden die wichtigsten Verschlüsselungsverfahren. Sie erlernen außerdem die mathematischen Grundlagen und verstehen, worauf die Sicherheit der Verfahren beruht.

Inhalte:

- Symmetrische Kryptographie (Historische Verfahren, Blockchiffren)
- Modulare Arithmetik (erweiterter euklidischer Algorithmus, chinesischer Restsatz, schnelle Exponentiation)
- Public Key Kryptographie (RSA, Diffie-Hellman)
- Kryptographische Hash-Funktionen und Anwendungen
- Primzahltests und Faktorisierung

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Mathematischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik im Schwerpunkt "Algorithmen"

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung	
Vorlesung	45	60	
Übung	15	60	
Summe:	18	30	

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Modulprüfung:

- modulabschließend
- Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6 Stunden) zu den Inhalten von
 Vorlesung und Übung
- 1. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden)
- 2. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden) oder mündliche Prüfung (20–30 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

07-BAI-S06-2	Numerische Algorithmen	9 CP
	Numerical Algorithms	
Malala Giahama adad	FB 07 / Mathematik / Mathematisches Institut	5 5b
Wahlpflichtmodul	erstmals angeboten im WiSe 2025/26	5. Fachsemester

Qualifikationsziele: In diesem Modul erlernen die Studierenden Lösungsalgorithmen für lineare und nichtlineare Probleme in der Numerik und Optimierung. Einen Schwerpunkt bilden Algorithmen zur numerisch stabilen Lösung linearer Gleichungssysteme. Ein weiterer Schwerpunkt ist die Lösung linearer Optimierungsprobleme. Sowohl in der Numerik als auch in der Optimierung erhalten die Studierenden außerdem einen Einblick in nichtlineare Verfahren.

Inhalte: Numerische Algorithmen

- Numerische lineare Algebra: Gaußelimination mit Pivotisierung, LR- und Cholesky-Zerlegung, orthogonale Zerlegungen, Ausgleichsrechnung, Potenzmethode für Eigenwerte
- Approximation mit Taylor- und Interpolationspolynomen, Splines
- Quadraturformeln
- Nichtlineare Gleichungen: Bisektion- und Newton-Verfahren
- Optimierungsalgorithmen
- Lineare Optimierung: Simplexalgorithmus, primales und duales Problem
- Gradientenverfahren

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Mathematischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik im Schwerpunkt "Algorithmen"

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Vorlesung	60	90
Übung	30	90
Summe: 270		70

Prüfungsvorleistungen: Zutreffende Bearbeitung der Übungsaufgaben (mind. 50% der Übungsaufgaben zutreffend gelöst). Es werden 7–14 Übungszettel mit Übungsaufgaben (Bearbeitungszeit je Übungszettel 1–2 Wochen) im Semester ausgegeben.

Modulprüfung:

- modulabschließend
- Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6 Stunden) zu den Inhalten von
 Vorlesung und Übung
- 1. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden)
- 2. Wiederholungsprüfung: Klausur (120–180 min) oder Take-Home-Klausur (Bearbeitungszeit: 3–6
 Stunden) oder mündliche Prüfung (20–30 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.05.2025	7.55.07 IVI. 6

07-BAI-S06-3	Studienprojekt "Algorithmen"	12.60	
07 BAI 300 3	Research Project "Algorithm"	12 CP	
NA/a la la fili ala tana a al cul	FB 07 / Mathematik / Mathematisches Institut	C Fachagus atau	
Wahlpflichtmodul	erstmals angeboten im SoSe 2026	6. Fachsemester	

Qualifikationsziele: Die Studierenden lernen anhand einer thematisch begrenzten Aufgabenstellung

- wissenschaftliche Arbeiten zu lesen und in begrenztem Umfang selbst zu recherchieren,
- selbständig die Funktionsweise eines bisher nicht behandelten Algorithmus nachzuvollziehen,
- den Algorithmus (möglicherweise in einem Spezialfall) zu implementieren,
- ihre Arbeit zu präsentieren.

Inhalte:

- Besprechung
- Erarbeiten eines Algorithmus aus einer wissenschaftlichen Quelle
- Implementierung des Algorithmus
- Erarbeitung des e-Portfolios
- Präsentation

Angebotsrhythmus und Dauer: jedes Semester, 1 Semester

Modulverantwortliche Professur oder Stelle: Geschäftsführende Direktorin oder geschäftsführender Direktor des Mathematischen Instituts

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik im Schwerpunkt "Algorithmen"

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Arbeitsprogramm aufstellen, Diskussion	20	
Praktische Ausführung des Arbeits- programms mit Aufarbeitung der Er- gebnisse	340	
Summe:	3	60

Prüfungsvorleistungen: Keine

Modulprüfung:

- modulabschließend
- e-Portfolio (5–10 Seiten und Programmcode) und Vortrag (20–30 min) über das Projekt; Bearbeitungszeit 4 Monate
- Modulnote: e-Portfolio (50%) und Vortrag (50%)
- 1. Wiederholungsprüfung: Überarbeitung des e-Portfolios (5–10 Seiten und Programmcode) innerhalb von 4 Wochen und erneuter Vortrag (20–30 min)
- 2. Wiederholungsprüfung: Überarbeitung des e-Portfolios (5–10 Seiten und Programmcode) innerhalb von 4 Wochen und erneuter Vortrag (20–30 min) oder mündliche Prüfung (20–30 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

07-BAI-S07-1	Grundlagen der Biologie	6 CP
07 27 11 007 2	Basic Biology	
Malala Giahama adad	FB 08 / Biologie / Tierökologie und Spezielle Zoologie	2 5
Wahlpflichtmodul	erstmals angeboten im WiSe 2024/25	3. Fachsemester

- beherrschen die Grundlagen der Botanik und Zoologie,
- sind in der Lage, die in ihrem Fachgebiet auftretenden botanischen und zoologischen Fragestellungen einzuordnen und zu verstehen.

Inhalte:

- Hypothese zur Entstehung des Lebens; Uratmosphäre; Evolution
- Bau der Tier- und Pflanzenzelle; Zellteilung; Zellerkennung Zelldiskriminierung; Mutabilität; Differenzierung; Vererbung
- Immunität; Sinneszellen und Sinnesorgane; Reiz- und Impulsleitung;
- Nervensysteme; Hormone
- Funktionsmorphologie von Geweben, Organen und Organsystemen
- Nahrungsaufnahme und Verdauungsapparat
- Gaswechsel, Wasser- und Salzhaushalt; Exkretion Sekretion; Ionenaufnahme; Stofftransport
- Autotrophie Heterotrophie
- Syntheseleistungen und Stoffwechsel von Pflanze und Tier
- Nahrungsnetze; Parasitosen Symbiosen
- Fortpflanzungsweisen und Entwicklung; Wachstum
- Baupläne der Pflanzen und Tiere
- Systematik des Pflanzen- und Tierreiches

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Professur für Tierökologie

Verwendbar in folgenden Studiengängen: B.Sc. Lebensmittelchemie, B.Sc. Ernährungswissenschaften, B.Sc. Angewandte Informatik im Schwerpunkt "Bioinformatik"

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Vorlesung	60	60
Übung	0	60
Summe:	18	30

Prüfungsvorleistungen: Keine

Modulprüfung:

- modulabschließend
- Klausur (90–120 min) zu den Inhalten von Vorlesung und Übung
- 1. und 2. Wiederholungsprüfung: Klausur (90–120 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 8

07-BAI-S07-2	Genetik, Mikro- und Molekularbiologie	6 CP
0, 2, 1, 00, 2	Genetics, micro- and molecular biology	
Mahla Giahama adad	FB 08 / Biologie / Genetik	4 5
Wahlpflichtmodul	erstmals angeboten im SoSe 2025	4. Fachsemester

- haben vertiefte Kenntnisse der Vererbung, und k\u00f6nnen Stammb\u00e4ume interpretieren,
- haben Kenntnisse über den Aufbau der Gene, der Chromosomen und des Genoms,
- haben Kenntnisse über grundlegende Regulationsmechanismen bei der Entwicklung,
- haben Kenntnisse über die Regulation des Zellzyklus und die Fehlfunktion bei Tumoren,
- haben Grundkenntnisse von der Anwendung grundlegender Gentechniken,
- kennen Struktur und Funktionen von Nukleinsäuren und Proteinen,
- haben grundlegende Kenntnisse über Baupläne der Mikroorganismen sowie über die Grundlagen der Bakterien- und Phagengenetik,
- haben einen Überblick über die Evolution und Artenvielfalt von Mikroorganismen und ihre vielfältigen Lebensräume,
- haben einen Überblick über die Vielfalt mikrobieller Stoffwechselwege und erkennen die Konsequenzen für globale Stoffkreisläufe und biotechnologische Nutzung,
- verfügen über theoretische Fertigkeiten der Kultivierung und Anreicherung von Mikroorganismen,
- haben grundlegende Kenntnisse in der Pathogenität von Viren und Mikroorganismen und den Übertragungswegen von Krankheiten.

Inhalte:

- Mechanismen der Vererbung (cytogenetisch, formalgenetisch)
- DNA Klonierung und grundlegende Gentechniken in Theorie und Praxis
- Genveränderungen durch Mutation
- Entwicklungsgenetik am Beispiel von genetischen Modellsystemen
- Gendefekte bei der Tumorentstehung
- Bauplan der prokaryonten Zelle und Viren
- Phagen und Bakteriengenetik
- Grundprinzipien des mikrobiellen Stoffwechsels und Wachstums
- Einblick in Evolution und Systematik der Mikroorganismen (Bacteria, Archaea, Eukarya)
- Bedeutung der Mikroorganismen: Nutzen und Schaden für den Menschen

Angebotsrhythmus und Dauer: jedes SoSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Professur für Genetik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik im Schwerpunkt "Bioinformatik"

Teilnahmevoraussetzungen: Grundlagen der Biologie (07-BAI-S07–1)

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Vorlesung	58	122
Summe:	180	

Prüfungsvorleistungen: Keine

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

Modulprüfung:

- modulabschließend
- Klausur (90 min)
- 1. und 2. Wiederholungsprüfung: Klausur (90 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 8

07-BAI-S07-3	Angewandte Bioinformatik und Systembiologie	6 CP
0, 5, 1, 30, 3	Applied Bioinformatics and Systems Biology	
Mahla Giahama adad	FB 08 / Biologie / Algorithmische Bioinformatik	4 5-4
Wahlpflichtmodul	erstmals angeboten im SoSe 2025	4. Fachsemester

- kennen wesentliche Datentypen und Dateiformate im Bereich der Bioinformatik,
- verstehen grundlegende Algorithmen und Anwendungen der Bioinformatik und k\u00f6nnen diese einsetzen,
- verstehen spezifische Probleme und Schwierigkeiten dieser Algorithmen und Methoden,
- erlangen relevante Kenntnisse in der Verwendung der Kommandozeile unter UNIX,
- erlangen relevante Grundkenntnisse in der Nutzung der statistischen Programmiersprache R,
- kennen verschiedene Hochdurchsatzmethoden und haben Kenntnisse in der Handhabung und Analyse der damit assoziierten Daten.

Inhalte:

- Verwendung der Kommandozeile in UNIX und Programmierung in R
- Statistische Grundlagen, Cluster- und Klassifikationsverfahren
- Genomik
- Datengenerierung mit Hochdurchsatzmethoden
- DNA-Sequenzanalyse
- Genomassemblierung
- Genexpressionsanalysen
- Epigenomik
- Sequenzmotive
- Datenvisualisierung
- Regulatorische Netzwerke

Angebotsrhythmus und Dauer: jedes SoSe, 4-Wochen-Block

Modulverantwortliche Professur oder Stelle: Professur für Algorithmische Bioinformatik

Verwendbar in folgenden Studiengängen: M.Sc. Biologie, Spezialisierungsrichtung Molekulare Biologie; B.Sc. Angewandte Informatik im Schwerpunkt "Bioinformatik"

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Vorlesung	20	40
Übung	40	80
Summe:	18	30

Prüfungsvorleistungen: Keine

Modulprüfung:

- modulabschließend
- Klausur (90 min) oder mündliche Prüfung (20–30 min) zu den Inhalten von Vorlesung und Übung
- 1. Und 2. Wiederholungsprüfung: Klausur (90 min) oder mündliche Prüfung (20–30 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

07-BAI-S07-4	Datenbanken und Datenstrukturen der Bioinformatik	6 CP
0, 2, 00,	Databases and data structures in bioinformatics	
Mark India Girch American	FB 08 / Biologie / Systembiologie	F F
Wahlpflichtmodul	erstmals angeboten im WiSe 2025/26	5. Fachsemester

- kennen wesentliche Datenbanken und zugehörige Datenformate im Bereich der Bioinformatik,
- sind vertraut mit etablierten Datenquellen für Sequenz-, Metabolit- und Strukturdaten,
- kennen Datenbanken für metabolische Netzwerke und Pathways,
- sind vertraut mir den gängigen Dateiformaten für die verschiedenen -omics-Daten,
- kennen Methoden zur Visualisierung von biologischen Daten,
- beherrschen den Umgang mit Schnittstellen zur automatischen Interaktion mit biologischen Datenbanken.

Inhalte:

- Sequenzdatenbanken (NCBI, EMBL, DDBJ ...)
- Strukturdatenbanken (bspw. PDB)
- Datenbanken zu Metabolischen Daten und Netzwerken (KEGG< Metacyc/Ecocyc, etc.)
- Visualisierungen
- Cytoscape, tSNE, Umap, PCoA, NMDS, ...
- Datenformate
- Schnittstellen (z.B. REST)
- Epigenomik

Angebotsrhythmus und Dauer: jedes WiSe, 1 Semester

Modulverantwortliche Professur oder Stelle: Professur für Systembiologie

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik im Schwerpunkt "Bioinformatik"

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Vor- und Nachbereitung					
Vorlesung	20	40				
Übung	40	80				
Summe:	180					

Prüfungsvorleistungen: Keine

Modulprüfung:

- modulabschließend
- Klausur (90 min) oder mündliche Prüfung (20–30 min) zu den Inhalten von Vorlesung und Übung
- 1. und 2. Wiederholungsprüfung: Klausur (90 min) oder mündliche Prüfung (20–30 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

07-BAI-S07-5	Studienprojekt "Bioinformatik"	42.00	
07-DAI-307-3	Research Project "Bioinformatic"	12 CP	
NA/- la la fit ala Assa - ala al	FB 08 / Biologie	C	
Wahlpflichtmodul	erstmals angeboten im SoSe 2026	6. Fachsemester	

Qualifikationsziele: Die Studierenden haben anhand einer abgeschlossenen Aufgabenstellung

- die verwendeten Methoden der Bioinformatik erprobt und ihre Kenntnisse und F\u00e4higkeiten darin in Teamarbeit vertieft,
- praktische Kenntnisse in der Software-Entwicklung oder Datenanalyse erworben,
- die Fähigkeit zur Literaturrecherche und zur wissenschaftlichen Diskussion erweitert,
- die Anwendung multimedialer Präsentationstechniken unter Berücksichtigung didaktischer Gesichtspunkte vertieft.

Inhalte: Mitarbeit an einem aktuellen Forschungsprojekt an Instituten der JLU, die sich mit Methoden der Bioinformatik beschäftigen. Die Aufgabenstellung umfasst dabei z.B. die computergestützte Analyse biologischer Daten, die Entwicklung passender Analyse-Pipelines, oder Softwareentwicklung mit bioinformatischer Problemstellung. Die Mitarbeit umfasst dabei die Sichtung von Literatur, die Umsetzung eines Arbeitsprogramms, die Diskussion und Präsentation der Ergebnisse, sowie die Formulierung wöchentlicher Zwischenberichte und eines Abschlussberichts.

Angebotsrhythmus und Dauer: jedes Semester, 1 Semester

Modulverantwortliche Professur oder Stelle: Vorsitzende oder Vorsitzender des Prüfungsausschusses B.Sc. Angewandte Informatik

Verwendbar in folgenden Studiengängen: B.Sc. Angewandte Informatik im Schwerpunkt "Bioinformatik"

Teilnahmevoraussetzungen: Keine

Veranstaltung:	Präsenzstunden	Vor- und Nachbereitung
Arbeitsprogramm aufstellen, Diskussion	20	
Praktische Ausführung des Arbeits- programms mit Aufarbeitung der Er- gebnisse	340	
Summe:	3(60

Prüfungsvorleistungen: Keine

Modulprüfung:

- modulabschließend
- e-Portfolio (5–10 Seiten und Programmcode) und Vortrag (20–30 min) über das Projekt; Bearbeitungszeit 4 Monate
- Modulnote: e-Portfolio (50%) und Vortrag (50%)
- 1. Wiederholungsprüfung: Überarbeitung des e-Portfolios (5–10 Seiten und Programmcode) innerhalb von 4 Wochen und erneuter Vortrag (20–30 min)
- 2. Wiederholungsprüfung: Überarbeitung des e-Portfolios (5–10 Seiten und Programmcode) innerhalb von 4 Wochen und erneuter Vortrag (20–30 min) oder mündliche Prüfung (20–30 min)

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 8

17.05.2023

7.35.07 Nr. 8

Anlage 3: Studienverlaufsplan für Teilzeitstudium

ı								Sem	estei	r				
	Modulbezeichnung / Modulcode	CP	1	2	3	4	5	6	7	8	9	10	11	12
1.	Grundlagen der Informatik I 07-BAI-01	9	VL Ü											
2.	Grundlagen der Programmierung mit Python 07-BAI-02	6	VL Ü											
Su	ımme CP 1. Semester	15												
3.	Mathematische und Naturwissenschaftliche Modellierung 07-BAI-07	12		VL Ü CÜ										
Su	ımme CP 2. Semester	12												
4.	Grundlagen der Statistik 07-BAI-03	6			VL Ü									
5.	Lineare Algebra 07-BAI-04	9			VL Ü									
Su	ımme CP 3. Semester	15												
6.	Grundlagen der Informatik II 07-BAI-05	9				VL Ü								
7.	Diskrete Strukturen 07-BAI-06	9				VL Ü								
Su	ımme CP 4. Semester	18												
8.	Künstliche Intelligenz I 07-BAI-09	9					VL Ü							
9.	Software-Engineering 07-BAI-10	6					P VL Ü							
Sı	** = * ** = *				l		Ŭ							
	imme CP 5. Semester	15												
	Algorithmen und Datenstrukturen 07-BAI-11	15 9						VL Ü						
10.								VL Ü VL Ü						
10. 11.	Algorithmen und Datenstrukturen 07-BAI-11 Simulation und Modellierung in der Informatik	9						Ü VL						
10. 11.	Algorithmen und Datenstrukturen 07-BAI-11 Simulation und Modellierung in der Informatik 07-BAI-12	9						Ü VL	VL Ü					
10. 11. Su 12.	Algorithmen und Datenstrukturen 07-BAI-11 Simulation und Modellierung in der Informatik 07-BAI-12 Imme CP 6. Semester Objektorientierte Programmierung 07-BAI-08	9 6 15 9						Ü VL	Ü P					
10. 11. Su 12.	Algorithmen und Datenstrukturen 07-BAI-11 Simulation und Modellierung in der Informatik 07-BAI-12 Imme CP 6. Semester Objektorientierte Programmierung 07-BAI-08 Schwerpunkt	9 6 15 9						Ü VL	Ü					
10. 11. Su 12.	Algorithmen und Datenstrukturen 07-BAI-11 Simulation und Modellierung in der Informatik 07-BAI-12 Imme CP 6. Semester Objektorientierte Programmierung 07-BAI-08 Schwerpunkt Imme CP 7. Semester Grundlagen der Datenanalyse mit R	9 6 15 9						Ü VL	Ü P	VL				
10. 11. Su 12. 13. Su 14.	Algorithmen und Datenstrukturen 07-BAI-11 Simulation und Modellierung in der Informatik 07-BAI-12 Imme CP 6. Semester Objektorientierte Programmierung 07-BAI-08 Schwerpunkt Imme CP 7. Semester Grundlagen der Datenanalyse mit R 07-BAI-13	9 6 15 9 6 15 6						Ü VL	Ü P Var	Ü				
10. 11. Su 12. 13. Su 14.	Algorithmen und Datenstrukturen 07-BAI-11 Simulation und Modellierung in der Informatik 07-BAI-12 Imme CP 6. Semester Objektorientierte Programmierung 07-BAI-08 Schwerpunkt Imme CP 7. Semester Grundlagen der Datenanalyse mit R	9 6 15 9 6 15						Ü VL	Ü P Var					
10. 11. Su 12. 13. Su 14. Su	Algorithmen und Datenstrukturen 07-BAI-11 Simulation und Modellierung in der Informatik 07-BAI-12 Imme CP 6. Semester Objektorientierte Programmierung 07-BAI-08 Schwerpunkt Imme CP 7. Semester Grundlagen der Datenanalyse mit R 07-BAI-13 Schwerpunkt Imme CP 8. Semester Datenbanksysteme	9 6 15 9 6 15 6						Ü VL	Ü P Var	Ü	VL Ü			
10. Su 12. 13. Su 14. 15. Su 16.	Algorithmen und Datenstrukturen 07-BAI-11 Simulation und Modellierung in der Informatik 07-BAI-12 Imme CP 6. Semester Objektorientierte Programmierung 07-BAI-08 Schwerpunkt Imme CP 7. Semester Grundlagen der Datenanalyse mit R 07-BAI-13 Schwerpunkt Imme CP 8. Semester	9 6 15 9 6 15 6 9						Ü VL	Ü P Var	Ü				
10. 11. Su 12. 13. Su 14. 15. Su 16.	Algorithmen und Datenstrukturen 07-BAI-11 Simulation und Modellierung in der Informatik 07-BAI-12 Imme CP 6. Semester Objektorientierte Programmierung 07-BAI-08 Schwerpunkt Imme CP 7. Semester Grundlagen der Datenanalyse mit R 07-BAI-13 Schwerpunkt Imme CP 8. Semester Datenbanksysteme 07-BAI-14 Betriebssysteme	9 6 15 9 6 15 6 9 15						Ü VL	Ü P Var	Ü	Ü VL			
10. Su 12. 13. Su 14. 15. Su 16. Su	Algorithmen und Datenstrukturen 07-BAI-11 Simulation und Modellierung in der Informatik 07-BAI-12 Imme CP 6. Semester Objektorientierte Programmierung 07-BAI-08 Schwerpunkt Imme CP 7. Semester Grundlagen der Datenanalyse mit R 07-BAI-13 Schwerpunkt Imme CP 8. Semester Datenbanksysteme 07-BAI-14 Betriebssysteme 07-BAI-15	9 6 15 9 6 15 6 9 15 6						Ü VL	Ü P Var	Ü	Ü VL	VL Ü		
10. 11. Su 12. 13. Su 14. 15. Su 16. 17. Su 18.	Algorithmen und Datenstrukturen 07-BAI-11 Simulation und Modellierung in der Informatik 07-BAI-12 Imme CP 6. Semester Objektorientierte Programmierung 07-BAI-08 Schwerpunkt Imme CP 7. Semester Grundlagen der Datenanalyse mit R 07-BAI-13 Schwerpunkt Imme CP 8. Semester Datenbanksysteme 07-BAI-14 Betriebssysteme 07-BAI-15 Imme CP 9. Semester IT-Sicherheit	9 6 15 9 6 15 6 9 15 15						Ü VL	Ü P Var	Ü	Ü VL	VL Ü Var		

Spezielle Ordnung für den Bachelorstudiengang			17.05.2023				7.35.07 Nr. 8			
Angewandte Informatik			17.05.2023				7.55.07 Nr. 8			
20. Technische Informatik 07-BAI-16	_									VL
	6									Ü
21. Schwerpunkt	9									Var
Summe CP 11. Semester	15									
22. Bachelor-Thesis 07-BAI-18	12									T
Summe CP 12. Semester	12									
Summe insgesamt	180									

VL=Vorlesung Ü=Übung CÜ=Computerübungen S=Seminar T=Thesis P=Projekt

Spezielle Ordnung für den Bachelorstudiengang

Spezielle Ordnung für den Bachelorstudiengang	17.05.2022	7.2F.07.Nr.0
Angewandte Informatik	17.05.2023	7.35.07 Nr. 8

Anlage 4: Schwerpunkte

Die Studierenden wählen einen der folgenden Schwerpunkte, die in alphabetischer Reihenfolge aufgelistet sind:

Schwerpunkt Algorithmen	57
Schwerpunkt Bioinformatik	57
Schwerpunkt Künstliche Intelligenz	58
Schwerpunkt Neuroinformatik	58
Schwerpunkt Physikalische Messmethoden	59
Schwerpunkt Smart Cities	59
Schwerpunkt Software-Engineering	60

Schwerpunkt Algorithmen

	Modulbezeichnung / Modulcode	СР	Semester								
	Wiodulbezeichhang/ Wiodulcode	CP	1	2	3	4	5	6			
1.	Kryptographische Algorithmen	6			VL						
	07-BAI-S06-1				Ü						
2.	Komplexität von Algorithmen	9				VL					
	07-BAI-S01-2	9				Ü					
3.	Numerische Algorithmen	9					VL				
	07-BAI-S06-2	9					Ü				
4.	Studienprojekt "Algorithmen" 07-BAI-S06-3	12						Р			
5.	Bachelor Thesis 07-BAI-18	12						Т			
Sı	umme insgesamt	48						·			

Alle Modulbeschreibungen sind in der Anlage 2 zu finden.

Schwerpunkt Bioinformatik

Modulbezeichnung / Modulcode			Semester						
	Wodubezeichhang/ Wodulcode	СР	1	2	3	4	5	6	
1.	Grundlagen der Biologie	6			VL				
	07-BAI-S07-1	0			Ü				
2.	Genetik, Mikro- und Molekularbiologie 07-BAI-S07-2	6				VL			
3.	Angewandte Bioinformatik und Systembiolo-					VL			
	gie	6				Ü			
	07-BAI-S07-3					U			
4.	Datenbanken und Datenstrukturen der Bioin-						VL		
	formatik	6					Ü		
	07-BAI-S07-4						U		
5.	Studienprojekt "Bioinformatik"	12						Р	
	07-BAI-S07-5	12						Р	
6.	Bachelor Thesis	4.2						_	
	07-BAI-18	12							
Sı	umme insgesamt	48							

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.05.2025	7.55.07 IVI. 6

Alle Modulbeschreibungen sind in der Anlage 2 zu finden.

Schwerpunkt Künstliche Intelligenz

Modulbezeichnung / Modulcode		СР	Semester							
	Wodubezeichhang/ Wodulcode	CP	1	2	3	4	5	6		
1.	Grundlagen der Stochastik 07-BDS-11	9			VL Ü					
2.	Textmining 07-BDS-WPF10	6				VL Ü				
3.	Studienprojekt "Künstliche Intelligenz" 07-BAI-S03-1	12					Р			
4.	Künstliche Intelligenz II 07-BDS-16	9						VL Ü		
5.	Bachelor Thesis 07-BAI-18	12						Т		
S	umme insgesamt	48								

Die Modulbeschreibungen 07-BAI-S03-1 und 07-BAI-18 sind in der Anlage 2 zu finden. Die Modulbeschreibungen 07-BDS-11, 07-BDS-WPF10 und 07-BDS-16 sind in Anlage 2 der speziellen Ordnung des Bachelorstudiengangs "Data Science" zu finden.

Schwerpunkt Neuroinformatik

	Modulbezeichnung / Modulcode	СР			Sem	ester	4 5	
	Wodubezeichhang/Wodulcode	CF	1	2	3	4		6
1.	Neuroinformatik I 07-BDS-WPF6	6			VL S			
					Pr			
2.	Programmierung MBB-MA-AM-1	8				S		
3.	Neuroinformatik II 07-BDS-WPF7	6				S		
4.	Praktische Einführung in die computationale Neurowissenschaft	8				'	S	
	07-BAI-S05-1						Р	
5.	Lesekurs Neuroinformatik 07-BAI-S05-2	2					S	
6.	Modellierung kognitiver Funktionen 07-BAI-S05-3	6						S P
7.	Bachelor Thesis 07-BAI-18	12						T
S	umme insgesamt	48						

Die Modulbeschreibungen 07-BAI-S05-1, 07-BAI-S05-2, 07-BAI-S05-3 und 07-BAI-18 sind in der Anlage 2 zu finden. Die Modulbeschreibungen 07-BDS-WPF6 und 07-BDS-WPF7 sind in Anlage 2 der speziellen Ordnung des Bachelorstudiengangs "Data Science" zu finden. Die Modulbeschreibung MBB-MA-AM-1 ist in Anlage 2 der speziellen Ordnung des Masterstudiengangs "Mind, Brain, and Behavior" zu finden.

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.03.2023	7.33.07 NI. 6

Schwerpunkt Physikalische Messmethoden

	Modulbezeichnung / Modulcode	СР			Sem	ester	ster 4 5 VL Ü VL Pr VL Ü PR PR	
	Wodubezeichhang/ Wodulcode	CF	1	2	3	4	5	6
1.	Experimentalphysik I 07-BAI-S04-1	6			VL Ü			
2.	Experimentalphysik II 07-BAI-S04-2	6						
3.	Messtechnik und EDV 07-BAP-15	5						
4.	Kernphysikalische Messmethoden in Medizin und Technik 07-BAP-WPF6	8					Ü	
5.	Technische Informatik – Praktikum 07-BAI-S04-3	6						VL PR
6.	Studienprojekt "Physikalische Messmethoden" 07-BAI-S04-4	5						Р
7.	Bachelor Thesis 07-BAI-18	12						Т
S	umme insgesamt	48						

Die Modulbeschreibungen 07-BAI-S04-1, 07-BAI-S04-2, 07-BAI-S04-3, 07-BAI-S04-4 und 07-BAI-18 sind in der Anlage 2 zu finden. Die Modulbeschreibungen 07-BAP-15 und 07-BAP-WPF6 sind in Anlage 2 der speziellen Ordnung des Bachelorstudiengangs "Angewandte Physik" zu finden.

Schwerpunkt Smart Cities

Modulbezeichnung / Modulcode		СР	Semester						
	Woddibezeichhang/ Woddicode	CF	1	2	3	4	5	6	
1.	Einführung in die Humangeographie mit				VL	VL			
	Schwerpunkt Urban Studies und Mobilities 07-BAI-S02-1	9				VL			
						VL			
2.	Geoinformatik	9				VL			
	07-BA-Geo-GIS					Р			
3.	Projekt 1 zum Schwerpunkt Smart Cities 07-BA-Geo-Pr oder 07-BA-Geo-Ex	9					Р		
4.	Projekt 2 zum Schwerpunkt Smart Cities 07-BA-Geo-Pr oder 07-BA-Geo-Ex	9						Р	
5.	Bachelor Thesis 07-BAI-18	12						Т	
S	Summe insgesamt 48								

Die Modulbeschreibungen 07-BAI-S02-1 und 07-BAI-18 sind in der Anlage 2 zu finden. Die Modulbeschreibungen 07-BA-Geo-GIS, 07-BA-Geo-Pr und 07-BA-Geo-Ex sind in Anlage 2 der speziellen Ordnung des Bachelorstudiengangs "Geographie" zu finden.

Spezielle Ordnung für den Bachelorstudiengang	17.05.2023	7.35.07 Nr. 8
Angewandte Informatik	17.05.2025	7.55.07 IVI. 6

Schwerpunkt Software-Engineering

Modulbezeichnung / Modulcode	СР			Sem	ester		
Wioddibezeichhang/ Wioddicode	CF	1	2	3	4	5	6
23. Software-Test und Verifikation	6			VL			
07-BAI-S01-1 24. Komplexität von Algorithmen	9			Ü	VL		
07-BAI-S01-2	9				Ü		
25. Software-Engineering II 07-BAI-S01-3	9					VL Ü	
26. Software-Projekt 07-BAI-S01-4	12						Р
27. Bachelor Thesis 07-BAI-18	12						Т
Summe insgesamt	48						

Alle Modulbeschreibungen sind in der Anlage 2 zu finden.

VL=Vorlesung

Ü=Übung

CÜ=Computerübungen

S=Seminar

T=Thesis

P=Projekt bzw. selbsgestaltete Arbeit

Pr=Praktikum