

07.02.2022

Spezielle Ordnung für den Masterstudiengang "Materialwissenschaft"

Zwölfter Beschluss zur Änderung der Speziellen Ordnung für den Masterstudiengang "Materialwissenschaft" des Fachbereichs 07 - Mathematik und Informatik, Physik, Geographie - und des Fachbereichs 08 - Biologie und Chemie der Justus-Liebig-Universität Gießen

Aufgrund von § 44 Abs. 1 des Hessischen Hochschulgesetzes vom 14. Dezember 2009 haben die Fachbereichsräte des Fachbereichs 07 - Mathematik und Informatik, Physik und Geographie - am 05.02.2020 und des Fachbereichs 08 – Biologie und Chemie – am 15.01.2020 die nachstehenden Änderungen beschlossen:

§ 1 Änderungen

Die Spezielle Ordnung für den Masterstudiengang "Materialwissenschaft" vom 04.05./25.05.2005, zuletzt geändert durch Beschluss vom 13.06./12.6.2019, wird wie folgt geändert:

1. Anlage 4a: Vereinbarung erhält folgende Fassung:

Double Degree Agreement on Master's level in Material Science between the Faculty of Biology and Chemistry and the Faculty of Mathematics, Computer Science, Physics, Geography, Justus-Liebig-University Giessen, Germany, and

the Graduate School of Engineering Science, Osaka University

1.	Index	
1.	Aims	. 2
2	Macter's programmes	2

Spezielle Ordnung Master-Studiengang Materialwissenschaft			7.36.07 Nr. 1
3.	Double Degree Programme		5
4.	4. Master thesis		7
5. Application and Entry Requirements		7	
6.	Language		8
7.	Workload Approval and Grading Scheme		8
8.	Master's Certificate		10
9.	Academic coordination		10

2. Aims

Based on the agreement of Justus-Liebig-University (JLU) and Osaka University (OU) both universities establish a double degree programme on Master's level in material science. The programme provides the opportunity for master students of material science at JLU and for master students of the Graduate School of Engineering Science at OU to gain the Master's degree of both universities: the "Master of Science" of JLU and the "Master of Engineering" of OU.

3. Master's programmes

The double degree programme is based on the following two Master's programmes:

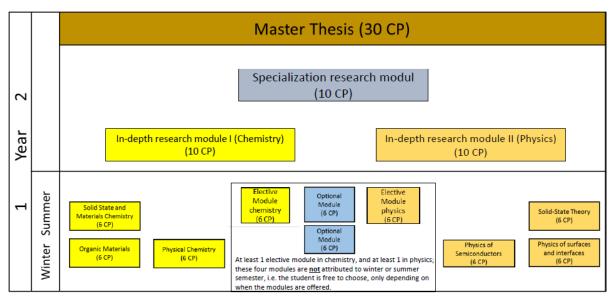
The **JLU Master's programme in Material Science** is commonly taught by Faculty 07 – Mathematics, Computer Science, Physics, Geography and Faculty 08 - Biology and Chemistry at the JLU. Starting every October, the 2 years long programme (i.e. 4 semesters) includes core modules in each subject, chemistry and physics, as well as optional modules in the first year (lecture-based modules). The second year is entirely devoted to research work. Students choose 3 research-oriented modules. The Masters' programme will be completed by submitting the Master's thesis and defending its results in front of an examination committee.

On successful completion of the programme, both faculties jointly confer the award of "Master of Science"(M.Sc.). Students receive a Master's certificate and a Certificate of Examination including Master's classification¹ and Transcript of Records (titles of all modules passed, workload, and grading, title of Master's thesis and grading).

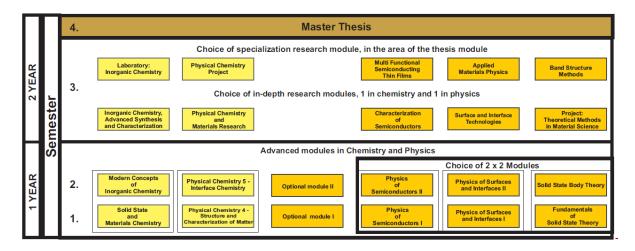
The Masters' programme itself is structured in modules. Modules are units of lectures, practical work, seminars, tutorials etc. dedicated to a specified topic (e.g. electrochemistry, solid state theory). Each module is described in detail by its content, aims, workload, types of exams, responsible lecturer etc. and is listed in the "Module descriptions" attached to the Special Regulation for the Master's programme in material science.

In general, there are two different types of **modules**:

• Lecture-based modules: These modules typically include a lecture (running for 15 weeks = 1 semester) and a seminar or a theoretical/practical exercise run by tutors. Thus, these modules can typically be finished completely within 4-5 months. Marks will be given on the basis of either a written or oral exam at the end of the module. The subjects of the modules typically represent important fields in science and technology, i.e. colloid chemistry, electrochemistry, photovoltaics etc. During the first


¹ The M.Sc. award is classified according to an overall grading. The overall grade is calculated by dividing the total weighted grade points (grade points for each module multiplied by the credit points allocated to the module) by the total number of credit points.

Spezielle Ordnung Master-Studiengang	7.26.07 Nr. 1
Materialwissenschaft	7.36.07 Nr. 1


year, JLU students choose take 4 of these advanced modules in chemistry and 4 in physics. Additionally, they follow their own interests by choosing 2 optional lecture- and/or research-based modules (6 CP each).

- Research modules: These modules are exclusively research-based, and the modules are defined on an individual basis depending on the research profile of the respective master student. The student can either take part in ongoing research or can be trained in a specific scientific method (e.g. a specific analytical method). At JLU₂ students select three research modules during the second year: two in-depth research modules in materials science-oriented chemistry and physics, one specialisation research module for preparing their Master thesis. Additionally, they follow their own interests by choosing 2 optional lecture- and/or research-based modules (6 CP each).
 - In accordance with the European Credit Transfer System (ECTS), the volume of learning activities (workload) required for achieving the Master's degree in material science equals 120 CP (ECTS Credit Points), i.e. 30 CP per semester / 60 CP per year. 1 CP is equivalent to an average working time of 30 hours. This includes contact time at which students have to be present at lectures, seminars, tutorials, practical work etc. and time for preparation and post-processing. Finally, this also includes time for self-study and examinations.
 - Each first year lecture-based module comprises 6 CP corresponding to 180 hours working time. The second year research modules comprise 10 CP each (i.e. 300 h). Preparing and defending the Master's thesis is equivalent to 30 CP (i.e. 900 h / 22 weeks).

M.Sc. Material Science Schedule:

Comment: the MSc program can be started in winter or summer semester

The Graduate School of Engineering Science, Osaka University (ES-OU) has two Master's courses, a regular Japanese course and a Special Program of "Engineering Science 21st Century" in which all lectures and instruction are given in English. JLU students will be admitted to the Special Program of "Engineering Science 21st Century" in ES-OU. In this program, students will be requested to choose at least nine lectures, four seminars and four special studies (Master thesis), as given in the following table. The list of lectures given in English is shown in list 2. Students can also have internship training at a Japanese company or research organization.

ES-OU aims to acquire a strong international reputation through increased exchange of students and researchers, and in joint research projects. For this objective, ES-OU has decided to offer a new interdisciplinary program, in which all lectures, as well as all instructions and supervision in research-related activities and seminars are given in English. The students are not required to learn Japanese to join this program. In this program, globally recognized and highly qualified graduates are expected to be educated under the guiding principles of ES-OU, which strives to integrate science and technology.

Outline and Features of the Program

- 1) The aim of this program is to develop human resources with high level, creative and flexible problem-solving ability. This is achieved through multi- and interdisciplinary research training, seminars, and lectures, given by prominent professors in their respective fields.
- 2) Master's Course students will be requested to choose at least nine elective subjects, as well as eight compulsory subjects, four seminars and four special studies (Master Thesis). The necessary credits for completion is 18 credits for elective subjects and 12 credits for compulsory subjects.
- 3) The opportunity for an internship at a prominent Japanese company or research organization will be provided in order to increase the knowledge and experience of cutting edge technologies. This internship will allow international students to become discerning and well-balanced scientists, with a deeper understanding of the Japanese society. The internship will also meet the requirements of the international students who wish to have practical experience in the industry.

M.Eng. Schedule (Special Program of "Engineering Science 21st Century"):

Spezielle Ordnung Master-Studiengang	7.36.07 Nr. 1
Materialwissenschaft	7.30.07 Nr. 1

	<u>Master Thesis</u>		
2 year	Seminar IV (1 credit) · Special Study IV (2 credits)		Research Training
	Seminar III (1 credit) · Special Study III (2 credits)	Choose of at least 9 lectures	for Mas- ter's The-
1 year	Seminar (1 credit) · Special Study (2 credits)	(2 credits each)	sis
	Seminar (1 credit) · Special Study (2 credits)		

required subjects

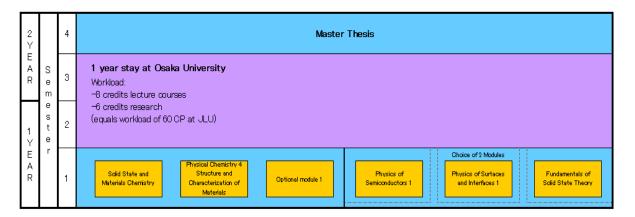
elective subjects

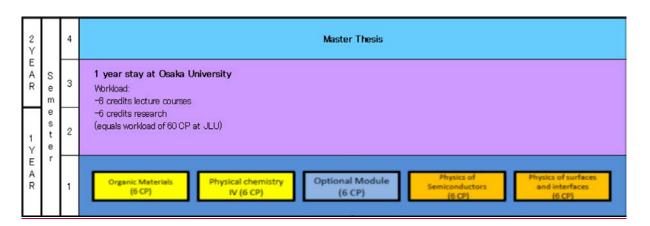
	Master Thesis		
2year	SeminarIV(1 credit)·Special StudyIV(2 credits)		Research Training
	SeminarⅢ(1 credit)·Special StudyⅢ(2 credits)	Choice of at least 9 lectures	for Master's
1	SeminarII(1 credit)·Special StudyII(2 credits)	(2 credits each)	Thesis
lyear	Seminar I (1 credit) · Special Study I (2 credits)		

required subjects elective subjects

4. Double Degree Programme

Requirements for awarding a Master's degree of JLU and of OU in the framework of the double degree programme:

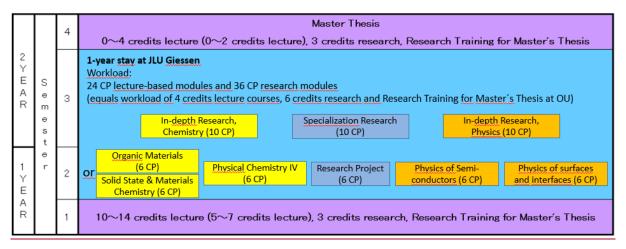

- Students have to complete a one year study stay at the partner university. During this time, they have to pass all courses, seminars, lectures, classes or others (hereinafter referred to as modules) defined in the working plan mutually agreed upon by the academic coordinators at JLU and ES-OU. The working plan shall contain the typical workload per year at the partner university: i.e. at JLU 60 CP in total (lecture based and research modules), at ES-OU 8 credits lecture course (elective) and 6 credits research (required). Therefore, each university offers a defined set of modules (i.e. lecture courses) taught in English. These modules (i.e. lecture courses) should be fully accepted by both universities. An updated list has to be provided by both universities regularly.
- Furthermore, the master thesis has to be written under joint supervision by professors from both universities and has to be defended in front of an examination committee.

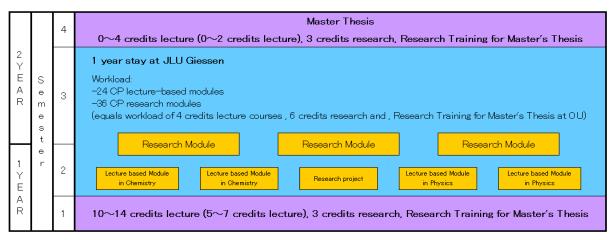

Schedule for Students' Exchange:

JLU students of the Masters' programme in material science start their studies in October at JLU (semester 1: October - March). During the first semester, they have to successfully participate in 5 lecture-based modules (30 CP in total). Afterwards, from April on, they spend a one year study stay (2 semesters) at the ES-OU Graduate School of Engineering Science where they have to obtain 8 credits by lecture courses (elective) and 6 credits by research (required). After coming back to the JLU, students complete their studies by preparing and defending their master thesis.

Schedule for JLU students:

Spezielle Ordnung Master-Studiengang	7.2C 07.Nr. 4
Materialwissenschaft	7.36.07 Nr. 1




ES-OU students of the Master's program students of the Graduate School of Engineering Science start their studies in April at OU. During their first semester (from April - September) they typically obtain 10 credits by lecture courses (elective) and 3 credits by research (required). From October on, they spend a one year study stay (2 semesters) at the JLU where they have to obtain 60 CP in total: Students choose 4 lecture-based modules (two in each subject, chemistry and physics) and a minor research project module (6 CP each). Furthermore, depending on their research profile students choose 3 research modules (10 CP each), in consultation with their supervisor. Back at the OU, students complete their studies by preparing and defending their master thesis. In addition to the described schedule, ES-OU students can also start in their first semester (April) at JLU and spend their first year at JLU before returning to OU. These students will follow the same study programme at JLU as those coming in their second semester.

Schedule for OU students:

7 26 07 Nr. 1
7.36.07 Nr. 1

*Students can replace one of the modules "Physics of Semiconductors (6 CP)" or "Physics of surfaces and interfaces (6 CP)" by the module "Solid State Theory (6 CP)".

5. Master thesis

After returning to their home university, students continue their research work and finalise their master thesis. The master thesis has to be written under the joint supervision of both universities and has to be defended in front of an examination committee.

Outcomes of the students' research work at the partner university shall be included in their Master thesis. These deliverables have to be specified as being gained at the partner university. The master thesis has to be submitted in English on schedule at the students' home university. One copy of the master thesis has to be provided for each supervisor at JLU and at <u>ES-OU</u>. The outcomes of the master thesis have to be defended in English in front of an examination committee. The supervisor of the partner university has to be enabled to participate in the committee (in person or via internet).

6. Application and Entry Requirements

Admission procedures to the double degree programme are carried out by the home universities. At the same time, the host university reserves the right for making the final decision.

Both universities should nominate students of their Master's programmes (in addition, ES-OU may nominate students which are at the end of their Bachelors programme for starting at JLU in April). A maximum number of 5 students can be proposed per year.

Spezielle Ordnung Master-Studiengang	7.26.07 No. 4
Materialwissenschaft	7.36.07 Nr. 1

As the entire study stay at the partner university will be conducted in English, knowledge of written and spoken English is required. Applicants must provide a certificate giving evidence of their proficiency in English. The following are accepted as evidence:

- 80 (iBT internet based) in the TOEFL (Test of English as a Foreign Language),
- 6 points in the IELTS Academic Test (International English Language Testing System),
- a Bachelor's degree course completed in English,
- another approved English competency test (e.g. at JLU DAAD vd2 or UNIcert II European Level B2)

Master students who are admitted to the JLU Master's programme in Material Science or the OU Masters' programme at the Graduate School of Engineering Science are eligible to apply for the double degree programme. In addition, students in their last Bachelor semester (see §3 of the agreement) may apply. At the beginning of the semester prior to the exchange During their first semester, applicants have to submit the following documents (in English) to the academic coordinator of their home university:

- Bachelor's Certificate (not applicable for ES-OU students starting at JLU in April),
- Letter of motivation,
- Working plan accepted by a professor and the academic coordinator of their home university,
- Letter confirming supervision by a professor of the partner university,
- an approved English competency test (see above).

Additionally, JLU students must prove that they are successfully participating in all first semester modules (30 CP) and passed exams of at least four of them (24 CP) prior to the exchange.

Students may also be admitted to the programme on the basis of interviews guided by the academic coordinator of their home university.

Based on the requirements and procedures mentioned above, both universities should nominate students as candidates for the programme. By the partner universities' academic coordinators' approval (including confirmation of working plan and supervision) students are admitted to the double degree programme by their home university.

7. Language

Studying during the study stay at the partner university is carried out in English. The Master thesis has to be written and defended in English.

8. Workload Approval and Grading Scheme

It is agreed that mutual recognition of the period of studies at the partner university is guaranteed. The workload will be calculated on the basis of the guidelines of the participating universities. At the JLU, the basis for recognition is the Special Regulation for the programme in Material Science leading to the Master of Science degree at Justus Liebig University Giessen:

https://www.uni-giessen.de/cms/mug/7/findex36.html/7 36 07 1 M.

At OU: http://www.osaka-u.ac.jp/jp/about/kitei/reiki honbun/u035RG00000231.html

Workload Approval:

Spezielle Ordnung Master-Studiengang	7.26.07.Nr. 1
Materialwissenschaft	7.36.07 Nr. 1

Gaining the Master's degree of JLU and of OU in the framework of the double degree programme requires that students pass modules (i.e. course work) to the extent of a typical one year workload at the partner university:

- at JLU 60 CP in total (lecture based and research modules),
- at <u>ES-</u>OU 8 credits lecture courses <u>(elective)</u>, 6 credits research <u>(required)</u>.

Mutual recognition of study periods (modules/course work resp. CP/credits) is implemented on the basis of the following tables which contain a comparison of workload at JLU and <u>ES-</u>OU.

Workload approval for JLU students:

	Approved as (in italics)		
	JLU	<u>ES-</u> OU	
1.Semester (JLU)	30 CP (5 x 6 CP modules)	10 credits lecture (5 x 2 credits lecture)	
2.+3.Semester (<u>ES-</u> OU)	24 CP (4 x 6 CP modules) 36 CP research modules	8 credits lecture (4 x 2 credits lecture) 6 credits research	
4.Semester (JLU)	30 CP Master thesis	6 credits research	
Σ	120 CP	18 credits lecture, 12 credits research	

Workload approval for OU students (the same workload holds true for ES-OU students going to JLU in their first semester):

	Approved as (in italics)		
	<u>ES-</u> OU	JLU	
1.Semester (ES-OU)	10~14 credits lecture (5~7 x 2 credits lecture) 3 credits research	30 CP (5 x 6 CP modules)	
2.+3.Semester (JLU)	4 credits lecture (2 x 2credits lecture) 6 credits research	24 CP (4 x 6 CP lecture based modules) 36 CP (1 x 6 CP research project, 3 x 10 CP research modules)	
4.Semester (ES-OU)	0~4 credits lecture (0~2 x 2credits lecture) 3 credits research, Master-Thesis	30 CP	
Σ	18 credits lecture, 12 credits research	120 CP	

Spezielle Ordnung Master-Studiengang	7.2C 07.Nr. 4
Materialwissenschaft	7.36.07 Nr. 1

Comparative Grading Scheme:

All work performed within modules shall be graded in accordance with the grading scheme applicable at the universities in question.

Comparative table of JLU/OU grades:

JLU			OU		
Percentages for the evaluation	Grades	Verbal grades	Percentages for the evaluation	Grades	Verbal grades
≥ 97	15	very good with distinction			-
≥ 92	14	very good	≥ 90	S	_
≥ 87	13	very good			_
≥ 82	12	Good	80 – 89	Α	_
≥ 77	11	Good			_
≥ 73	10	Good	70 – 79	В	_
≥ 68	9	satisfactory			_
≥ 64	8	satisfactory			_
≥ 59	7	satisfactory	60 – 69	С	_
≥ 54	6	sufficient			_
≥ 50	5	sufficient			_
< 50	4-0	Fail	< 60	F	Fail

For approval of workload and grading, a summary table should be provided in English for each student by the corresponding university. The summary table should also contain the title of the modules, workload and the grades (Transcript of Records). In order to arrive at the overall grade, the module grades at JLU should be converted into OU grades and vice versa in accordance with the table presented above.

9. Master's Certificate

Students who meet academic requirements (provided that no module is finally failed) in the framework of the double degree programme should be awarded two Master's Certificates: a Master's certificate of JLU ("Master of Science") and a Master's certificate of OU ("Master of Engineering "). Both certificates must refer to the bilateral double degree programme. Students also receive a Certificate of Examination including Master's classification and a Transcript of Records. Both universities provide Diploma Supplements.

10.Academic coordination

To ensure and facilitate the implementation of the double degree programme, each institution shall appoint an academic coordinator as contact person. The coordinators can be addressed by students, JLU and <u>ES-OU</u> colleagues of the double degree programme. Besides admitting applicants, they are authorized persons for accepting students' working plans and workload approval.

Spezielle Ordnung Master-Studiengang	7.2C 07.Nr. 1
Materialwissenschaft	7.36.07 Nr. 1

List 1 (JLU) (year 2014/2015)

Lecture-based modules:

These modules (6 CP) are run either in the winter or summer semester. Each year OU will be provided with a list of available modules.

Course Code	Title of course	Responsible Professor	Institute
Chemistry MNW03	Metal and Ligand reactivity (Chemistry of complexes)	Schindler	Inorganic Chemistry
Chemistry-MNW04	Computational chemistry/Molecular Modeling	Schreiner	Organic Chemistry
Chemistry MNW06	Scientific Writing and Data Dissemination	Schreiner	Organic Chemistry
Chemistry-MNW07	Matrix Isolation Techniques/Reactive Intermediates	Schreiner	Organic Chemistry
Chemistry MNW15	Colloid chemistry	Smarsly	Physical Chemistry
Chemistry-MNW16	Electrochemistry I – From Basics to Application	Janek	Physical Chemistry
Chemistry-MNW17	Electrochemistry II – Electrochemical Energy Technologies	Janek	Physical Chemistry
Chemistry-MNW18	Solid State Reactions	Janek	Physical Chemistry
Chemistry-MNW24	Surface chemistry and metal catalysis	Over	Physical Chemistry
Chemistry-MNW25	Electrochemistry III – Lab course in Electrochemistry and Interfaces	Janek	Physical Chemistry
Chemistry-MNW26	Inorganic Reaction Mechanisms	Schindler	Inorganic Chemistry
Chemistry-MNW29	Research Topics in Inorganic Chemistry I	Schindler/Smarsly	Inorganic Chemistry
Chemistry-MNW31	Research Topics in Organic Chemistry I	Schreiner/Wegner /Göttlich	Organic Chemistry
Chemistry MNW34	Modern Aspects of Physical Chemistry	Janek/Over/Smarsly	Physical Chemistry
Chemistry MNW36	(Organo)Catalysis and Synthesis	Schreiner/Wegner/Göttlich	Organic Chemistry
Physics MP13	Semiconductor Physics I	Meyer/Eickhoff /Klar	Solid State Physics
Physics MP14	Semiconductor Physics II	Meyer/Eickhoff /Klar	Solid State Physics
Physics-MP16	Introduction to Solid State Theory	Heiliger	Solid State Physics

Spezielle Ordnung Master-Studiengang	7 26 07 Nr. 1
Materialwissenschaft	7.36.07 Nr. 1

Physics-MP17	Solid State Theory	Heiliger	Solid State
			Physics
Physics-MP25	Nano- and Microstructures in Sensor- and Actua- tor Systems	Eickhoff/Klar/Henning	Solid State Physics
Physics MP35	Surface and Interface Physics I	Schlettwein/Dürr/ Schirmeisen	Applied Physics

Research based modules:

Important: Research modules (10 CP) are directly arranged with a professor and can be flexibly defined! Modules may be combined to form e.g. one 20 CP module. The subject depends very much on the research interests of the student.

Course Code	Title	Responsible Professor	Institute
Chemistry-MNV01	Inorganic Chemistry, Advanced Synthesis and Characterisation	Schindler, Smarsly, N.N.	Inorganic Chemistry
Chemistry-MNV02	Advanced Organic Chemistry Laboratory	Schreiner, Göttlich, Wegner	Organic Chemistry
Chemistry-MNV03	Physical Chemistry and Materials Research	Janek, Smarsly, Over	Physical Chemistry
Chemistry-MNS01	Project Work Inorganic Chemistry	Schindler, Smarsly, N.N.	Inorganic Chemistry
Chemistry-MNS02	Project Work Organic Chemistry	Schreiner, Göttlich, Wegner	Organic Chemistry
Chemistry MNS03	Project Work Physical Chemistry	Janek, Smarsly, Over	Physical Chemistry
Physics-MP-28 B	Modern Technologies of Conductive and Dielectric Materials	Göddenhenrich/ Schlett- wein/Thummes	Applied Physics
Physics MP 28 G	Micro and Nanostructured Semiconductors	Meyer/Klar /Eickhoff	Solid State Physics
Physics-MP-28 H	Bandstructure Calculations	Heiliger	Theoretical Physics
Physics MP 28 Q	Synthesis of Micro and Nano Structured Materials	Klar, Meyer, Eickhoff, Polity, Hoffmann	Solid State Physics
Physics-MP-28 R	Surface and Interface Technologies	Dürr, Schirmeisen, Schlett wein	Applied Physics
MP-29 A	Multifunctional Thin Films	Klar, Meyer, Eickhoff	Solid State Physics
Physics-MP-29-B	Applied Material Physics	Göddenhenrich/ Schlett- wein/Thummes	Applied Physics
Physics-MP-29 G	Green's Functions in Solid State Theory	Heiliger	Theoretical Physics

Spezielle Ordnung Master-Studiengang	7.26.07.11.4
Materialwissenschaft	7.36.07 Nr. 1

Physics-MP-29 L	Low Temperature Plasma Physics	Thoma, Mitic	Plasma Phys-
			ies

Faculty members and professors teaching in materials science; Full professors can be chosen as advisors; all listed faculty members offer research-based courses.

Faculty/Advisor	Institute	Research subjects (for the definition of research projects at JLU)
Dr. P. Adelhelm	Physical Chemistry	Energy storage materials, battery materials, carbon materials, nanostructures materials
Prof. Dr. M. Dürr	Applied Physics	Surface science, Surface spectroscopy, mass spectrometry
Prof. Dr. M. Eickhoff	Solid State Physics	Semiconductor physics, Micro- and nanostructures, nanowires, sensors
Dr. M. Elm	Phys. Chem./Physics	Magnetic materials for spintronics, nanostructured magnetic and ionic materials
Prof. Dr. C. Heiliger	Theoretical Physics	Computer-based modeling and simulation of functional materials, semiconductors, thermoelectrics
Dr. D. Hofmann (apl. Prof.)	Solid State Physics	Semiconductors
Prof. Dr. J. Janek	Physical Chemistry	Solid state ionics, fuel cell materials, battery materials, mixed conductors, solid state electrochemistry
Prof. Dr. P. J. Klar	Solid State Physics	Nano- and microstructured materials, semiconductors,
Dr. R. Marschall	Physical Chemistry	Photoelectrochemistry, materials for solar harvesting
Prof. Dr. A. Müller	Inorganic Chemistry	Thermoelectric materials
Dr. A. Polity (PD)	Solid State Physics	Thin films and thin film deposition, sputtering
Prof. Dr. Z. Mitic	Plasma Physics	Plasma techniques for materials science
Prof. Dr. D. Mollenhauer	Theoretical Chemistry	Computer-based modeling of interfaces and surfaces
Prof. Dr. H. Over	Physical Chemistry	Surface science, heterogeneous catalysis, electrocatalysis, surface analysis
Prof. Dr. S. Schindler	Inorganic Chemistry	Complex chemistry
Prof. Dr. A. Schirmeisen	Applied Physics	Surface science, scanning probe microscopy
Prof. Dr. D. Schlettwein	Applied Physics	Hybrid materials, photochemistry, photovoltaics, photoelectro- chemistry, organic semiconductors
Prof. Dr. P. R. Schreiner	Organic Chemistry	Synthesis of organic molecules, computational chemistry
Prof. Dr. B. Smarsly	Physical/Inorg. Che- mistry	Nanostructured materials, porous materials, materials for catalysis and sensing
Dr. J. Teubert	Solid State Physics	Semiconductor physics
Prof. Dr. M. Thoma	Plasma Physics	Plasma-based techniques
Prof. Dr. R. Göttlich	Organic Chemsitry	Synthesis, photoactive compounds and materials
Prof. Dr. H. Wegner	Organic Chemistry	Carbon-based materials, synthesis

Spezielle Ordnung Master-Studiengang	7.26.07 Nr. 1
Materialwissenschaft	7.36.07 Nr. 1

Prof. Dr. M. Wickleder	Inorganic Chemistry	Functional materials containing oxoanions
	,	· ·

List 2 (OU) (year 2014/2015)

List of lectures

o=Annual classes

*=Biennial classes

Introduction to Engineering Science Solid State Spectroscopy Nano-materials and spins Molecular Nanotechnology Properties of Materials Advanced Physical Chemistry Advanced Organic Chemistry Advanced Chemistry for Material Science Bio-Inspired Chemical Engineering Science and Engineering of Correlated Electron Materials Theoretical Materials Science Photophysics of Nanoscale Materials Frontier of Nano-scale Materials Engineering Science Research Internship Turbulence Dynamics Topics in Nonlinear Dynamics Strength of Structure Ultrasonic Techniques Strength of Structure Ultrasonic Techniques Topics in Fluids Engineering for Space Machinery Topics on Robotics Stability Analysis of Dynamical Systems Advanced Computational Mechanics 2(*) Advanced Theoretical Solid Mechanics 2(*) Advanced Theoretical Solid Mechanics 2(*) Advanced Computational Mechanics	Lectures	Credits
Molecular Nanotechnology Properties of Materials Advanced Physical Chemistry Advanced Organic Chemistry Advanced Chemistry for Material Science Bio-Inspired Chemical Engineering Science and Engineering of Correlated Electron Materials Theoretical-Materials Science Photophysics of Nanoscale Materials Engineering Science Research Internship Turbulence Dynamics Viscous Fluid Mechanics Strength of Structure Ultrasonic Techniques Topics in Fluids Engineering for Space Machinery Engineering Fundamental Systems Advanced Theoretical Solid Mechanics 2(*) Topics on Robotics Stability Analysis of Dynamical Systems Advanced Theoretical Solid Mechanics 2(*) Advanced Computational Mechanics 2(*) Advanced Computational Mechanics 2(*) Advanced Computational Mechanics	Introduction to Engineering Science	2(o)
Molecular Nanotechnology Properties of Materials Advanced Physical Chemistry Advanced Organic Chemistry Advanced Chemistry Per Material Science Bio Inspired Chemistry For Material Science Bio Inspired Chemical Engineering 2(c) Science and Engineering of Correlated Electron Materials Theoretical Materials Science Photophysics of Nanoscale Materials Frontier of Nano-scale Materials Engineering Science Research Internship 2(c) Frontier of Nano-scale Materials Engineering Science Research Internship 2(d) Turbulence Dynamics 2(**) Turbulence Dynamics 2(**) Topics in Nonlinear Dynamics Viscous Fluid Mechanics Strength of Structure 2(**) Ultrasonic Techniques Topics in Fluids Engineering for Space Machinery Topics on Robotics Stability Analysis of Dynamical Systems Advanced Theoretical Solid Mechanics 2(**) Advanced Computational Mechanics	Solid State Spectroscopy	2(o)
Properties of Materials 2(o) Advanced Physical Chemistry 2(o) Advanced Organic Chemistry 2(o) Advanced Chemistry for Material Science 2(o) Bio-Inspired Chemistry for Material Science 2(o) Bio-Inspired Chemical Engineering 2(o) Science and Engineering of Correlated Electron Materials Theoretical Materials Science 2(o) Photophysics of Nanoscale Materials 2(o) Frontier of Nano-scale Materials 2(o) Engineering Science Research Internship 2(o) Turbulence Dynamics 2(c) Turbulence Dynamics 2(c) Viscous Fluid Mechanics 2(c) Strength of Structure 2(c) Ultrasonic Techniques 2(c) Topics in Fluids Engineering for Space Machinery Topics on Robotics 2(c) Stability Analysis of Dynamical Systems 2(c) Advanced Computational Mechanics 2(c) Advanced Computational Mechanics 2(c)	Nano-materials and spins	2(0)
Advanced Physical Chemistry Advanced Organic Chemistry Advanced Chemistry For Material Science Bio-Inspired Chemistry For Material Science Bio-Inspired Chemical Engineering Science and Engineering of Correlated Electron Materials Theoretical Materials Science Photophysics of Nanoscale Materials Frontier of Nano-scale Materials Engineering Science Research Internship Advanced Dynamics Turbulence Dynamics Viscous Fluid Mechanics Viscous Fluid Mechanics Yes Strength of Structure Ultrasonic Techniques Topics in Fluids-Engineering for Space Machinery Topics on Robotics Stability Analysis of Dynamical Systems Advanced Theoretical Solid Mechanics Advanced Computational Mechanics 2(*) Advanced Computational Mechanics 2(*) Advanced Computational Mechanics 2(*)	Molecular Nanotechnology	2(0)
Advanced Organic Chemistry Advanced Chemistry for Material Science Bio-Inspired Chemistry for Material Science Bio-Inspired Chemical Engineering Science and Engineering of Correlated Electron Materials Theoretical Materials Science Photophysics of Nanoscale Materials Frontier of Nano-scale Materials Engineering Science Research Internship Turbulence Dynamics Viscous Fluid Mechanics Viscous Fluid Mechanics Strength of Structure Ultrasonic Techniques Topics in Fluids Engineering for Space Machinery Topics on Robotics Stability Analysis of Dynamical Systems Advanced Theoretical Solid Mechanics 2(*) Advanced Computational Mechanics 2(*) Advanced Computational Mechanics 2(*) Advanced Computational Mechanics 2(*) Advanced Computational Mechanics	Properties of Materials	2(o)
Advanced Chemistry for Material Science Bio-Inspired Chemical Engineering Science and Engineering of Correlated Electron Materials Theoretical Materials Science Photophysics of Nanoscale Materials Engineering Science Research Internship Turbulence Dynamics Topics in Nonlinear Dynamics Viscous Fluid Mechanics Strength of Structure Ultrasonic Techniques Topics in Fluids Engineering for Space Machinery Topics on Robotics Stability Analysis of Dynamical Systems Advanced Theoretical Solid Mechanics 2(*) Advanced Computational Mechanics 2(*) Advanced Computational Mechanics 2(*) Advanced Computational Mechanics 2(*)	Advanced Physical Chemistry	2(o)
Bio-Inspired Chemical Engineering 2(o) Science and Engineering of Correlated Electron Materials Theoretical Materials Science Photophysics of Nanoscale Materials Engineering Science Research Internship Turbulence Dynamics Topics in Nonlinear Dynamics Viscous Fluid Mechanics Strength of Structure Ultrasonic Techniques Topics in Fluids Engineering for Space Machinery Topics on Robotics Stability Analysis of Dynamical Systems Advanced Computational Mechanics 2(*)	Advanced Organic Chemistry	2(o)
Science and Engineering of Correlated Electron Materials Theoretical Materials Science Photophysics of Nanoscale Materials Erontier of Nano-scale Materials Engineering Science Research Internship 2(o) Turbulence Dynamics 2(*) Viscous Fluid Mechanics Strength of Structure Ultrasonic Techniques Topics in Fluids Engineering for Space Machinery Topics on Robotics Stability Analysis of Dynamical Systems Advanced Theoretical Solid Mechanics 2(*) Advanced Computational Mechanics 2(*) Advanced Computational Mechanics 2(*) Advanced Computational Mechanics 2(*) Advanced Theoretical Solid Mechanics 2(*) Advanced Computational Mechanics 2(*) Advanced Computational Mechanics 2(*)	Advanced Chemistry for Material Science	2(o)
Materials Theoretical Materials Science Photophysics of Nanoscale Materials Frontier of Nano-scale Materials Engineering Science Research Internship Turbulence Dynamics Topics in Nonlinear Dynamics Viscous Fluid Mechanics Strength of Structure Ultrasonic Techniques Topics in Fluids Engineering for Space Machinery Topics on Robotics Stability Analysis of Dynamical Systems Advanced Theoretical Solid Mechanics 2(*) Advanced Computational Mechanics 2(*) Advanced Computational Mechanics 2(*)	Bio-Inspired Chemical Engineering	2(o)
Photophysics of Nanoscale Materials Frontier of Nano-scale Materials Engineering Science Research Internship Turbulence Dynamics Topics in Nonlinear Dynamics Viscous Fluid Mechanics Strength of Structure Ultrasonic Techniques Topics in Fluids Engineering for Space Machinery Topics on Robotics Stability Analysis of Dynamical Systems Advanced Theoretical Solid Mechanics 2(*) Advanced Computational Mechanics 2(*) Advanced Computational Mechanics 2(*) 2(*) 2(*) 2(*) 2(*) 2(*) 2(*) 2(*) 2(*) 2(*) 2(*) 2(*)		2(o)
Frontier of Nano-scale Materials Engineering Science Research Internship 2(o) Turbulence Dynamics 2(*) Topics in Nonlinear Dynamics Viscous Fluid Mechanics 2(*) Strength of Structure 2(*) Ultrasonic Techniques Topics in Fluids Engineering for Space Machinery Topics on Robotics 2(*) Stability Analysis of Dynamical Systems Advanced Theoretical Solid Mechanics 2(*) Advanced Computational Mechanics 2(*)	Theoretical Materials Science	2(o)
Engineering Science Research Internship Turbulence Dynamics Topics in Nonlinear Dynamics Viscous Fluid Mechanics Strength of Structure Ultrasonic Techniques Topics in Fluids Engineering for Space Machinery Topics on Robotics Stability Analysis of Dynamical Systems Advanced Theoretical Solid Mechanics Advanced Computational Mechanics 2(*) Co) 2(*) 2(*) 2(*) 2(*) 2(*) 2(*) 2(*) Advanced Computational Mechanics 2(*) Advanced Computational Mechanics 2(*)	Photophysics of Nanoscale Materials	2(o)
Turbulence Dynamics 2(*) Topics in Nonlinear Dynamics Viscous Fluid Mechanics 2(*) Strength of Structure 2(*) Ultrasonic Techniques Topics in Fluids Engineering for Space Machinery Topics on Robotics 2(*) Stability Analysis of Dynamical Systems Advanced Theoretical Solid Mechanics Advanced Computational Mechanics 2(*) 2(*) 2(*) 2(*) 2(*)	Frontier of Nano-scale Materials	2(o)
Topics in Nonlinear Dynamics Viscous Fluid Mechanics 2(*) Strength of Structure 2(*) Ultrasonic Techniques Topics in Fluids Engineering for Space Machinery Topics on Robotics 2(*) Stability Analysis of Dynamical Systems Advanced Theoretical Solid Mechanics 2(*) Advanced Computational Mechanics	Engineering Science Research Internship	2(o)
Viscous Fluid Mechanics 2(*) Strength of Structure 2(*) Ultrasonic Techniques Topics in Fluids Engineering for Space Machinery Topics on Robotics 2(*) Stability Analysis of Dynamical Systems Advanced Theoretical Solid Mechanics Advanced Computational Mechanics 2(*) Advanced Computational Mechanics	Turbulence Dynamics	2(*)
Strength of Structure 2(*) Ultrasonic Techniques 2(*) Topics in Fluids Engineering for Space Machinery Topics on Robotics 2(*) Stability Analysis of Dynamical Systems Advanced Theoretical Solid Mechanics Advanced Computational Mechanics 2(*) Advanced Computational Mechanics	Topics in Nonlinear Dynamics	2(*)
Ultrasonic Techniques Topics in Fluids Engineering for Space Machinery Topics on Robotics 2(*) Stability Analysis of Dynamical Systems Advanced Theoretical Solid Mechanics Advanced Computational Mechanics 2(*)	Viscous Fluid Mechanics	2(*)
Topics in Fluids Engineering for Space Machinery Topics on Robotics 2(*) Stability Analysis of Dynamical Systems Advanced Theoretical Solid Mechanics Advanced Computational Mechanics 2(*)	Strength of Structure	2(*)
Topics on Robotics 2(*) Stability Analysis of Dynamical Systems Advanced Theoretical Solid Mechanics Advanced Computational Mechanics 2(*)	Ultrasonic Techniques	2(*)
Stability Analysis of Dynamical Systems Advanced Theoretical Solid Mechanics Advanced Computational Mechanics 2(*) Advanced Computational Mechanics		2(*)
Advanced Theoretical Solid Mechanics 2(*) Advanced Computational Mechanics 2(*)	Topics on Robotics	2(*)
Advanced Computational Mechanics 2(*)	Stability Analysis of Dynamical Systems	2(*)
	Advanced Theoretical Solid Mechanics	2(*)
	Advanced Computational Mechanics	2(*)
Theory of Optimum Design and Synthesis 2(*)	Theory of Optimum Design and Synthesis	2(*)

Spezielle Ordnung Master-Studiengang	7.26.07 No. 4
Materialwissenschaft	7.36.07 Nr. 1

Biological System Engineering	2/*)
	2(*)
Electronic Device Engineering	2(*)
Quantum Information Science	2(*)
Advanced Optoelectronics	2(o)
Systems and Control Theory	2(*)
Optimal Systems Theory	2(*)
Signal Analysis Theory	2(*)
Theory of Systems Analysis	2(*)
Applied Robotics	2(*)
Intelligent Robotics	2(*)
Mixed Reality Systems	2(*)
Advanced Robot Systems	2(*)
Imaging Systems	2(*)
Advanced Human Interfaces	2(*)
Communication Robot	2(*)
Database Systems	2(*)
Topics in Mathematical Sciences - I	2(*)
Topics in Mathematical Sciences II	2(*)
Nonlinear System Theory	2(o)
Systems Optimization and Analysis	2(*)
Intelligent Mathematical Programming System	2(*)
Topics in Mathematical Statistics I	2(*)
Topics in Mathematical Statistics-II-	2(*)
Material Process Engineering	2(*)
Bioreaction Engineering	2(*)
Biomechanical Engineering	2(*)
Biomedical Simulation and Measurement	2(*)
Medical Information Technology	2(*)
Solid State Devices	2(o)
Opto and Quantum Electronics	2(0)
Advanced Mathematical Science A	2(0)
Advanced Mathematical Science B	2(0)
Advanced Mathematical Science C	2(0)

Spezielle Ordnung Master-Studiengang	7 26 07 Nr. 1
Materialwissenschaft	7.36.07 Nr. 1

Division	Area	Research Group	Keywords	erice, Osaka Orliver as of June 2 Professor
		Theoretical Research Group of Strongly	Topological insulators and superconductors, Exotic superconductors, Strongly correlated electron systems,	Prof. FUJIMOTO Sato
		Correlated Systems	Quantum magnetism, Quantum criticality, Mathematical physics	
		Experimental Research Group for	Bulk-sensitive photoelectron spectroscopy (hard X-ray and extremely low-energy excitation), Bulk-sensitive soft x-ray	Prof. SEKIYAMA Akir
		Spectroscopy of Correlated Materials Experimental Research Group for	angle-resolved photoemission, Fermiology for strongly correlated electron systems Nanostructures. Spintronics	Prof. SUZUKI Yoshisi
		Nanoscience		TIOI. COLOTA TOSHIS
	Quantum Physics of	Quantum Information and Quantum Optics	Quantum information, Quantum cryptography, Quantum computing,	Prof. IMOTO Nobuyu
Materials Physics	Nanoscale Materials	Group for Exploration of Functional Materials	Entanglement manipulation, Quantum optics, New aspects of quantum mechanics Magnetism, Ferroelectricity, Correlated electron systems, Oxides, Crystal growth	Prof. KIMURA Tsuvo:
				,
		Experimental Research Group for Electron-	NMR/NQR Studies under Multiple Physical Environments, Novel Phases of Condensed Matters, High-Temperature	Prof. KITAOKA Yosh
	Quantum Materiale Dhyeice	correlated Matter Science Optical and Quantum Information Science	Superconductivity, Quantum Magnetism, Strongly Correlated Electrons Systems Semiconductor quantum devices, Quantum electronics, Organic and bio-semiconductor nano-physics	Prof. MATSUMOTO
	Qualitum Materials Physics	Group		Kazuhiko
		Condensed Matter Theory	First-principles calculation, Condensed matter theory, Materials prediction and design, Magnetism, Ferroelectricity, Superconductivity, Multiferroics	Prof. OGUCHI Tamio
			Environmentally benign process for molecular transformations, Simulation of enzymatic functions with metallo- and	
	Synthetic Chemistry	Synthetic Organic Chemistry Group	organocatalysts, Creation of functional organometallics	Prof. NAOTA Takeshi
		Synthetic Polymer Chemistry Group	Stereospecific Living Polymerization, Stereoregular Polymers, Precision Polymer Synthesis, Uniform Polymers,	Prof. KITAYAMA Tats
			Functional Polymers, Polymer Characterization	
OL 1.4		Organometallic Chemistry Group	Design and Synthesis of Homogeneous Molecular Catalysts, Organometallic Complexes, Metal Nanoclusters, Chiral Complexes, and Molecular Devices	Prof. MASHIMA Kazu
Chemistry	Molecular Organization	Surface Chemistry Group	Energy Conversion, Electrode Interfaces, Ionic Liquid Interfacial Chemistry, Catalytic Reaction Mechanism, Electron Transfer at Interfaces	Prof. FUKUI Ken-ichi
	Chemistry	Biological Chemistry Group	Nucleic acids chemistry, Chemical synthesis of oligonucleotides, DNA damage, DNA repair, Biomolecular	Prof. IWAI Shigenori
		, ,	recognition, Protein-nucleic acid interactions	
	Solar Energy Chemistry	Solar Energy Conversion	New materials for solar cells; Chemical processes for solar cell fabrication; Photocatalysis; Nanometer-sized metal particles; Nano-porous catalysts	Prof. MATSUMURA Michio
Chemical Engineering	Chemical Reaction Engineering	Nanoreaction Engineering Group	Chemical reaction engineering, porous materials, inorganic membranes, liquid crystals	Prof. NISHIYAMA Norikazu
	Linginooning	Quantum Chemical Engineering group	Quantum nonlinear optics, Materials-oriented quantum chemistry, Open-shell molecular systems, Quantum dynamics	Prof. NAKANO Masa
		High-Performance Catalyst Group	Green Chemistry, Environmentally-benign organic synthesis, Inorganic crystallites, Dendrimer, Nanocluster	Prof. JITSUKAWA Koichiro
	Environment and Energy System	Transport Phenomena Control Group	Control of Heat and Mass Trasnfer, Liquid-Liquid Interface, Phase Change, Computational Fluid Dynamics	Prof. OKANO Yasuno
	Зумен	Molecular-Aggregate Chemical Engineering Group	Soft Self-Organizing System, Distribution of Molecule at Mesoscale, Amphiphilic Molecule, Ionic Liquid, Molecular Simulation, Solution Theory	Prof. MATUBAYASI Nobuvuki
	Bioprocess Engineering	Bio-Inspired Chemical engineering Group	Bio-Inspired Chemical Engineering, Self-Assemblies, Engineering Science of Liposome, Molecular Recognition, Artificial Enzyme, Bioseparation	Prof. UMAKOSHI Hin
		Bioreaction Engineering Group	Bioprocess, Bioreactor, Gene/metabolic Engineering, Tissue Engineering, Environment Bioengineering	Prof. TAYA Masahito
	Solar Energy Chemistry	Environmental Photochemical Engineering	Photocatalysts, Photofunctional Materials, Highly Selective Transformation of Organic Compounds,	Prof. HIRAI Takayuki
		Group	Photoluminescent Molecular Devices and Sensors	
	Frontier Materials	Molecular Architectonics Research Group	Experimental and Theoretical Studies on Molecular-based and Molecular-scale Electronics, Spintronics and Thermoelectronics, and on Novel Molecular Architectures utilizing Fluctuations towards Brain-like Devices	Prof. TADA Hirokazu
		Experimental Research Group for Functional Molecules	Development of Functional Organic Materials for Optoelectronic Applications, Supramolecular Chemistry based on Two-Dimensional Self-Assembly on Surfaces, Creation of Functional Materials based on Multiple Molecular Interactions	Prof. TOBE Yoshito
		Theory Group of Advanced Materials	Computational materials design, Numerical simulation of many-body systems (Elucidation and prediction of new	Prof. KATAYAMA-
		Science	phase of matters under extreme conditions, The first-principles calculations and its development based on the quantum simulation)	YOSHIDA Hiroshi (As
rontier Materials	Discouries of Noncouri	Experimental Research Group for	Optical properties of semiconductor ultrathin films and nanoparticles, and strongly-correlated electron systems,	Prof. KUSAKABE Ko-ic Prof. ASHIDA Masaa
Science	Dynamics of Nanoscale Materials	Coherence of Nanoscale Materials	Nonlinear laser spectroscopy, Ultrafast time-resolved spectroscopy, THz spectroscopy, SEM-cathodoluminescence,	PIOI. AOHIDA Masaa
		Experimental Research Group for	Optical fabrication and manipulation of nanoparticles photochemistry, photofunctional molecule, three-dimensional three-pulse photon echo, ultrafast detection of	Prof. MIYASAKA Him
		Fluctuation Dynamics in Condensed Phase	photochemical reactions, laser-control of chemical reactions, time-resolved microscopy, single-molecule	
	O	,	measurement, biomolecular fluctuation Material science at extreme conditions; Superconductivity, magnetism, structural phase transitions, new material and	D-4 CHIMIZHIA
	Quantum Science in Extreme Conditions	Experimental Research Group for Materials Science in Extreme Conditions	material science at extreme conditions; Superconductivity, magnetism, structural phase transitions, new material and new function	Prof. SHIMIZU Katsu
	Extreme Continuoria	Experimental Research Group for Materials	Nano-fabrication of solids and semiconductors, Hetero-structure of oxides, Nano-materials device, Electronics of	Prof. TANAKA Hidek
		Engineering Science in Nano-structure	functional oxides	

Spezielle Ordnung Master-Studiengang	7.36.07 Nr. 1
Materialwissenschaft	7.36.07 Nr. 1

Graduate School of Engineering Science, Osaka University as of June 2014 Department of Mechanical Science and Bioengineering Research Group Thermal Engineering and Science Group Professor Division Mechanics of Fluids and Thermo-fluids Turbulent Flows, Turbulence Control, Subcritical Transition to Turbulence, Heat Transfer Enhancement, Drag Reduction, Unsteady and Chaotic Thermal Convection Fields Prof. KAWAHARA Genta Fluid Mechanics Group Nonlinear Waves and Oscillations, Stability, Acoustics, Thermoacoustics, Shock, Soliton, Chaos, Break-up of liquid sheets and drops, Capillary effects, Level-set method, Periodic structures and localization, Localized mode Nonlinear Mechanics Mechanics of Solid Materials Strength of Structure and Materials Group Dynamic behavior of materials and structure, Biomimetics of plants, Hydrogen embrittlement of metals, Mechanical Prof. KOBAYASHI properties of functional materials, Development of new structural materials Hidetoshi Noncontact ultrasonic measurements, Characterization of emerging functional materials, Electromagnetic acoustic Prof. HIRAO Masahiko sensing, Biosensors, Resonance Ultrasound Microscopy, Micromechanics Solid Mechanics Group Molecular fluid dynamics for life science, environmental technology, and space engineering. Nanoscale medical device, Numerical design of next-generation battery, Amospheric flow on planets, Microinanoscale multiphase flow, Coexistence of flow field and fluxulation, lonic current, Non-equilibrium gas flow Propulsion Engineering Molecular Fluid Dynamics Group Fluid Machinery, Turbopump Inducer, Artificial Heart, Flow Instability, Multiphase Flow, Cavitation, High Performance Computing of Computational Fluid Dynamics Fluids Engineering Group Mechanical Human-Robot Interface, Analysis of Human Movements, Human-like Musculoskeletal Robots, Human Skills Transfer to Robots, Robotic Orthosis, Assistance System for Single-Incision Laparoscopic Surgery Engineering Mechano-informatics Robotics and Mechatronics Group Prof. MIYAZAKI Fumio Predictive multiscale-multiphysics modeling and simulation of solids Prof.OGATA Shigenobu

	Biomechanical Science	Biomechanics Group	Biomechanics of cells, tissues, and organs, Functional adaptation and remodeling, Biomaterials and tissue engineering, Computational biomechanics, Biofluid dynamics, Biomechanical Imaging	Prof. WADA Shigeo
		Mechanical and Bioengineering Systems Group	Biomechanical System Modeling, Computational Biomechanics, Cardiovascular Biomechanics, Rehabilitation Engineering, Welfare Engineering, Adaptive Structures and Systems, Optimum/Adaptive Structural Design, Smart Design Engineering	Prof. TANAKA Masao
		Bio-mechanical/physical informatics Group	Human model, Living Informatics, Bio-mechanical/physical signal analysis, Human stress sensing/control, Affordance analysis/design	Guest Prof. MATSUOKA Katsunori
Bioengineering	Biophysical Engineering	BioSystem Engineering Group	Cell Engineering, Tissue Engineering, Stem Cell Biotechnology, Regenerative Medicine, Brain-Machine Interface, Genome Science, Nanobiotechnology, Bioenergetics, Three-dimensional protein structure. Structural Biology, Biophysics, Protein Science	Prof. MIYAKE Jun
		Bio-Dynamics Group	Nonlinear dynamical system theory and its application to biology, Physiome, In silico human, Motor control, Biologica rhythms, Cardiac arrhythmias, Systems biology, Biosignal processing, Homeodynamics	l Prof. NOMURA Taishin
	Biomedical and Biophysical Measurements	Biomedical Photonics Group	Biomedical optics, Nanometer-scale optical microscope, Laser associated non-linear photonics, Analysis of chemica component in blood vessels and blood dynamics, Biosensor	Prof. ARAKI Tsutomu
		Bioimaging Group	Biomedical measurement, Medical image, CG, Visualization, Display system, VR, Haptic rendering, Human- computer interaction, Communication, Information sharing, Physics-based simulation, Complex Space	Prof. OSHIRO Osamu

Theoretical Solid Mechanics Group

Materialwissenschaft 7.36.07 Nr. 1	Spezielle Ordnung Master-Studiengang	7.26.07.Nr. 1
	Materialwissenschaft	7.36.07 Nr. 1

				Outlinta Calcul of Facino	in Colonia Ocolo III I
Department of S	ystems Innovation			Graduate School of Engineer	ing Science, Usaka University as of June 2014
Division	Area	Research Group	Keywords		Professor
	Solid State Electronics	Nanoelectronics Group	Group-IV semiconductor materials, Nitride semiconductor r Thermoelectric devices, Syncrotron radiation X-ray microdi		Prof. SAKAI Akira
		Optoelectronics Group	Thin-film solar cells, Thin-film displays, Amorphous semico spectroscopy		
		Nano-scale Physics & Device Group	Semiconductor spintronics, Low-temperature MBE, Metal/S Flexible electronics		
	Advanced Quantum Devices and Electronics	Advanced Quantum Device System Group	Nuclear quadrupole resonance(NQR), Mine detection, Bag Superconducting interference device (SQUID), High temper	erature superconducting electronics	Prof. ITOZAKI Hideo
Advanced Electronics and		Advanced Quantum Information Device Group	Quantum computers, Quantum information, Nuclear magne	etic resonance (NMR), Electron spin resonance (ESR) Prof. KITAGAWA Masahiro
Optical Science	Optical Electronics	Microwave Photonics Group	Planar antennas, Adaptive antennas, Microwave photonics Photonics crystals, Optical measurements, Optical scatteri		
		Information Photonics Group	Millimeter- and terahertz-wave photonics, Nano-structure p signal processing and measurement, Communication syste		notonic Prof. NAGATSUMA Tadao
		Quantum Electronics Group	Laser cooling, Quantum information, Quantum optics, Ion t	trap, Laser stabilization, Frequency standard	Prof. URABE Shinji
	Center for Science and Technology under Extreme Conditions	Advanced Electronics Group	Atom technology, Nanoelectronics, Nanoprocessing, Scar Nanometer analysis and characterization	nning Probe Microscopy, Nano electron source,	Prof. ABE Masayuki
	Contact Theorem		Soft Robotics, Embodied Artificial Intelligence, Bio-mimetic	- Debetion Die Debetion Managementalistel Debet	s. Prof HOSODA Koh
	System Theory	Adaptive Robotics Group	Humanoid Robots		
		Systems Analysis Group	Signal Analysis, Systems Analysis, Adaptive System, No		Prof. IIGUNI Youji
Systems Science and Applied	Intelligent Systems	Applied Robotics Group	Robot Mechanism, Robot Vision, Ambient Intelligence, Nar Safety & Security Robotics, Human Robot Interaction		
Informatics		Intelligent Robotics Group	Interactive Intelligent Robots, Android Science, Learning a Sensor Network, Pattern Recognition, Brain-Machine Inter	face, Electromagnetic Linear Actuator	
		Pattern Measurement Group	Vision Sensing, Image Engineering, 3D Measurement, Inte	elligent Sensing, Digital Archives, Augmented Re-	ality Prof. SATO Kosuke
		Human Interface Group	Human Communication, Intelligent User Interface, Media T Web Intelligence, Mobile Computing	Fechnology,	Prof. NISHIDA Shogo
	Mathematical Modelling	Differential Equation Group	Nonlinear partial differential equations, Variational method: Mathematical sciences		Takayuki
Mathematical		Applied Analysis Group	Nonlinear analysis, Mathematical modeling, Numerical sim differential equations, Integrable systems, Mathematical ph		Prof. SUZUKI Takashi
Science	Statistical Science	Statistical Analysis Group	Model Selection, High-Dimensional Statistics, Machine Lea Statistical Graphics, Statistical Computing, Resampling, No.	arning, Bioinformatics, Complex Networks, onparametric Statistics	Prof. SHIMODAIRA Hidetoshi
		Statistical Science Group	Multivariate analysis, Structural equation modeling, Statisti analysis, MCMC		
	Finance	Research Group of Statistical Inference	Financial data analysis, Time series analysis, High frequen stochastic differential equations, Monte Carlo methods, Ma	ncy data analysis, Actuarial mathematics, Statistic athematical statistics	s for Prof. UCHIDA Masayuki
Mathematical		Research Group of Mathematical Modeling in Finance	Long-term optimal investment, Dynamic portfolio selection, games, Dynamic programming equations, Optimal executions	, Asset price modeling, Stochastic control, Differe on, Liquidity problem, Quantitative risk managem	ntial Prof. SEKINE Jun ent
Science for Social Systems		Research Group of Stochastic Analysis	Analysis on path space, Fractal, Anomalous structure, Diffi equation, Nonlinear filtering equation	usion process, Heat equation, Stochastic control,	H-J-B Prof. HINO Masanori
Systems	Theoretical Systems Science	Research Group of Complex Systems	Systems theory, Discrete event systems, Hybrid systems, game, Cyber-physical systems	Embedded systems, Nonlinear systems, Evolution	nary Prof. USHIO Toshimitsu
		Research Group of Systems Optimization and Decision Making	Decision making, Systems optimization, Combinatorial opti Supply chain management	imization, Game theory, Fuzzy systems, Data mir	ing, Prof. INUIGUCHI Masahiro

2. § 27 wird wie folgt neu gefasst:

"Diese Ordnung in der Fassung des zwölften Änderungsbeschlusses gilt für alle Studierenden ab dem Sommersemester 2020; bis dahin gilt die bisherige Ordnung fort."

§ 2 Inkrafttreten

Dieser Beschluss tritt am Tage nach seiner Verkündung in Kraft. Der neue Wortlaut der geänderten Ordnung wird in den Mitteilungen der Universität Gießen bekannt gemacht.

Gießen, den #. ### #### Prof. Joybrato Mukherjee Präsident der Justus-Liebig-Universität Gießen