für den Masterstudiengang ologie für Raumfahrtanwendungen" erlaufsplan hlusses vom 16.02.2022	06.05.2022	7.36.07 Nr. 9	S. 1
--	------------	---------------	------

Studienverlaufsplan

1. Semester	СР	2. Semester	СР	3. Semester	СР	4. Semester	СР
Pflichtmodul I	6	Pflichtmodul III	6	Pflichtmodul V	10	Master Thesis	30
Pflichtmodul II	6	Pflichtmodul IV	6	Vertiefungsmodul	10		
Wahlbereich	18	Wahlbereich	18	Spezialisierungsmodul	10		
Σ CP / Semester	30		30		30		30
					Sumi	me CP gesamt	120

Pflichtmodule

1. Semester	MRF-J-01 MRF-G-01	Grundlagen der Raumfahrt (6 CP) Analyse von Raumfahrtsystemen (6 CP)
2. Semester	MRF-J-04 MRF-G-02	Raumfahrtsysteme (6 CP) Design von Raumfahrtsystemen (6 CP)
3. Semester	MRF-G-03	Implementation von Raumfahrtsvstemen - CanSat (10 CP)

Wahlbereich (1. Semester & 2. Semester)

Der Wahlbereich umfasst Module mit insgesamt 36 CP aus zwei Listen, die, sofern die Module nicht schon im Bachelor-Studium belegt wurden, gewählt werden können.

Hiervon sind in den ersten zwei Semestern Module im Gesamtumfang von mindestens 15 CP aus folgender Liste 1 zu wählen:

MRF-J-02	Festkörperphysik (9 CP)
MRF-J-03	Grundlagen der Plasmaphysik (6 CP)
MRF-T-01	Höhere Regelungstechnik (6 CP)
MRF-T-02	Höhere Informatik (6 CP)
MRF-J-05	Halbleiterphysik (6 CP)
MRF-J-06	Theoretische Plasmaphysik (6 CP)
MRF-J-07	Höhere Experimentelle Atom- und Plasmaphysik (6 CP)
MRF-J-08	Spektroskopie (6 CP)
MRF-J-09	Anwendungen der Kern- und Teilchenphysik in der Raumfahrt (6 CP)
MRF-T-03	Bildverarbeitung (6 CP)
MRF-T-04	Schaltungssimulation in der Leistungselektronik (5 CP)
MRF-T-05	Automatisierungstechnisches Seminar (5 CP)
MRF-T-06	3D Feldsimulation elektronischer Baugruppen (5 CP)
MRF-T-07	Intelligente Sensorsysteme (5 CP)
MRF-T-08	Fortgeschrittene Verfahren der Analogtechnik (5 CP)

Die Differenz zur Gesamt CP-Zahl von 36 CP für den Wahlbereich kann durch Belegung von in Anlage 2 als Liste 2 aufgeführten Modulen erlangt werden, bis zu einer maximalen CP-Zahl von 9 CP auch durch Erlangung von außerfachlichen Kompetenzen in Rahmen von AfK-Modulen.