The Substitutability between Brick-and-Mortar Stores and e-Commerce

The Case of Books

Georg Götz, Daniel Herold, Phil-Adrian Klotz and Jan Thomas Schäfer Workshop on the Economics of FBP Systems, November 14, 2019

Justus Liebig University Giessen, Germany

Motivation

- Rise of e-Commerce increased competitive pressure among retailers in various industries (e.g., Srinivasan 2002, J. Retail.).
- What is the degree of substitutability between B\&M stores and e-Commerce from the viewpoint of consumers? (e.g., analyzed by Brynjilfson, Hu and Rahman 2009, Mansci)
- Empirical analysis on the German book market
- Books constitute case of a horizontally and vertically differentiated good with relatively pronounced uncertainty prior to purchase
- "Service Provision" of B\&M retailers
- advice, expert opinion (e.g., Hilger, Rafert and villas-Boas 2011, REStat for wine market; Reinstein and Snyder 2005, JIE for movie industry)
- impulse purchases (e.g., Burt 2003, Journal of Retailing and Consumer Services)
- showrooms (Bell, Gallino and Moreno 2017, Mansci)
- reputable dealership (Marvel and McCafferty 1990, RAND)
- e-Commerce
- price search (Tang, Smith and Montgomery 2010, IJIO)
- low inconvenience costs
- General problem: Free-riding (Telser 1960, JLE) and limited attention in e-Commerce.

e-Commerce vs. B\&M retailers

- If (some) consumers prefer B\&M retailers over e-Commerce: increase in the number of $B \& M$ retailers has a positive impact on demand \rightarrow empirical question
- We find evidence that this is indeed the case \rightarrow e-Commerce and B\&M retailers are no perfect substitutes.
- Result has consequences for evaluation of fixed book price systems (FBP).

Discussion: Fixed book prices

Discussion: Fixed book prices

- Number of bookstores is higher with FBP (Dearrley and Feather 2002 Publishing ressearch quarterly, Davies et al. 2004 DTI economics paper No. 9)
- We find that an increase in number of bookstores has positive effect on demand
- Hence, positive influence of FBP on book demand possible via number of bookstores
- Economic question: net effect of FBP?
- Political question?
- More readers with high number of bookstores, higher prices? \rightarrow heavy book readers?
- Cheaper books?
- General concern: which books become cheaper? Only bestsellers (Fishwick 2008, International Journal of the Economics of Business)?

Data

- Evolution, locations and size of B\&M retail stores in Germany, taken from the (historical) list of members of the German Publishers and Booksellers Association.
- Sales data is provided by the market research company MediaControl that tracks book sales in almost real time. It comprises data of
- pure B\&M retailers,
- chain stores (w/ e-Commerce), and,
- online retail, including Amazon.
- Consumer survey data (GfK)
- Contains information on e-Book sales of some 20,000 consumers
- Allows for an estimation of e-Book sales and revenue
- Data available on a monthly basis and on a federal state level.
- 9 different product groups: fiction, non-fiction, guide-books, school books, social sciences, natural sciences, humanities, travel, children books.
- January, 2011 to December, 2017.
- 1176×10 observations.

Number of B\&M retailers in Germany

GfK Consumer Panel - "market share" of different formats (volume)

- Common share of e-Books and audiobooks taken together is at most about 14%.

Sales: Yearly aggregates

year	Scanner data			e-Book (estimate)		Total (estimate)	
	revenue	quantity	revenue	quantity	revenue	quantity	
2011	3607.2	291.6	-	-	-	-	
2012	3570.8	282.8	-	-	-	-	
2013	3484.2	273.5	-	19.9	3538.7	287.7	
2014	3374.4	267.8	164.3	174.5	21.9	3561.2	
2015	3386.7	266.5	182.1	22.9	288.4		
2016	3516.8	265.2	177.8	23.7	3647.5	288.1	
2017	3469.7	257.8					

Sales: Monthly aggregates

Empirical analysis

- Hypothesis: There is no correlation between sales and the number of $B \& M$ stores retailers.
- Econometric caveats
- Endogeneity of sales and number of outlets \rightarrow IV-Approach using the labor force as instrument.
- Intra-year trends \rightarrow Estimate in differences and compare sales to sales in the same month last year.

Empirical analysis w/o e-Books or audiobooks

- Regression
- 1st stage

$$
\begin{equation*}
\text { grwstores }_{i, t}=\delta_{1} X_{t}^{\prime}+\delta_{2} \triangle \text { pop }_{i, t}+\delta_{3} \triangle \text { gtrends }_{i, t}+\alpha_{i}+\triangle \varepsilon_{i, t} \tag{1}
\end{equation*}
$$

- 2nd stage

$$
\begin{equation*}
\triangle \text { quantity }_{i, t}=\beta_{1} X_{t}^{\prime}+\beta_{2} \text { grwstores }_{i, t}^{\text {fit }}+\beta_{3} \triangle \text { gtrends }_{i, t}+\alpha_{i}+\Delta u_{i, t} \tag{2}
\end{equation*}
$$

- Variables
- grwstores $_{i, t}=\frac{\left(\text { bookstores }_{i, t}-\text { bookstores }_{i, t-12}\right)}{\text { bookstores }_{i, t-12}}$
- X_{t}^{\prime} - vector of dummy variables for each year of the observation period
- $\triangle g$ trends $_{i, t}$ - Google Trends index
- α_{i} - Time-invariant dummy variables for the federal states
- quantity $_{i, t}$ - number of sold books per capita/sales force
- grwstores ${ }_{i, t}^{\mathrm{fit}}$ - fitted values from the first stage regression
- i - federal state; t - month

Google Trends search volume index for the topic "book"

Main estimation with physical book sales per capita as dependent variable

	(1)	(2)	(3)
	All books	Fiction	Nonfiction
grwstores	$1.124^{* * *}$	$0.543^{* * *}$	0.168***
	(0.291)	(0.0899)	(0.0274)
2013	0.00114	-0.0147***	$0.00194 *$
	(0.00768)	(0.00252)	(0.000773)
2014	$0.0465^{* * *}$	$0.00989^{* * *}$	$0.00953^{* * *}$
	(0.0100)	(0.00277)	(0.000860)
2015	$0.0275^{* * *}$	0.00919***	$0.00697^{* * *}$
	(0.00617)	(0.00204)	(0.000680)
2016	0.00573	0.00609*	-0.0000525
	(0.00913)	(0.00250)	(0.000969)
2017	0.00381	0.00328	0.00234***
	(0.00567)	(0.00178)	(0.000569)
\triangle gtrends	0.00117	0.000354	0.000113
	(0.000893)	(0.000238)	(0.0000817)
Anderson-Rubin Wald F-statistic	14.11	40.65	35.09
Kleibergen-Paap rk Wald F-statistic	107.9	107.9	107.9
\# of observations	1008	1008	1008

[^0]
Estimation with total book sales per capita as dependent variable

	(1) All books (incl. e-Books)	0.729^{*} (0.336)
grwstores	All books (incl. e-Books_grw.)	
2016	-0.0214^{*}	0.722^{*}
	(0.00884)	$-0.0230^{* *}$
2017	$-0.0222^{* * *}$	(0.00861)
Anderson-Rubin Wald F-statistic	(0.00659)	$-0.0237^{* * *}$
Kleibergen-Paap rk Wald F-statistic	4.872	(0.00623)
$\#$ of observations	61.18	5.290
Standard errors in parentheses. We apply a 2-step GMM estimation.	61.18	
$* p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$	504	504

Results

- Drop in the number of bookstores explains 33.4% for 2011-2017 of the decrease in physical book sales.
- On average, when a bookstore closed in the period 2011-2017, physical book sales decreased by 8,812 across all categories.
- Incorporating also e-Book sales into our estimations, we find that a decline in the number of bookstores explains 26.5\%-55.6\% for 2014-2017.
- Results indicate that B\&M stores and e-Commerce are no perfect substitutes, i.e., there is no one-for-one substitution when bookstores close.
- Degree of substitutability depends on genres (see also Reinstein and Snyder 2005, JIE wrt. impact of expert opinion on box office sales for different movie genres)
- sales of fiction titles decreased by 4,249 books.
- sales of non-fiction titles decreased by 1,338 books.
- Results also show that about $\sim 23 \%$ of decrease in sales of fiction titles can be explained by closure of bookstores. For non-fiction titles, the value is $\sim 59 \% \rightarrow$ other variables (e.g., changes in leisure activities) have greater impact on sales of fiction titles than for non-fiction titles.

Appendix: Estimation with GfK consumer survey data only

	(1) All books $($ GfK data $)$
grwstores	$1.067^{* *}$
	(0.381)
2016	-0.00264
	(0.0105)
2017	-0.0258^{*}
	(0.0111)
Anderson-Rubin Wald F-statistic	8.605
Kleibergen-Paap rk Wald F-statistic	65.20
$\#$ of observations	576
Standard errors in parentheses. We apply a 2-step GMM estimation.	
$* p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$	

[^0]: Standard errors in parentheses. We apply a 2-step GMM estimation.

 * $p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$

