Personal tools

Information zum Seitenaufbau und Sprungmarken fuer Screenreader-Benutzer: Ganz oben links auf jeder Seite befindet sich das Logo der JLU, verlinkt mit der Startseite. Neben dem Logo kann sich rechts daneben das Bannerbild anschließen. Rechts daneben kann sich ein weiteres Bild/Schriftzug befinden. Es folgt die Suche. Unterhalb dieser oberen Leiste schliesst sich die Hauptnavigation an. Unterhalb der Hauptnavigation befindet sich der Inhaltsbereich. Die Feinnavigation findet sich - sofern vorhanden - in der linken Spalte. In der rechten Spalte finden Sie ueblicherweise Kontaktdaten. Als Abschluss der Seite findet sich die Brotkrumennavigation und im Fussbereich Links zu Barrierefreiheit, Impressum, Hilfe und das Login fuer Redakteure. Barrierefreiheit JLU - Logo, Link zur Startseite der JLU-Gießen Direkt zur Navigation vertikale linke Navigationsleiste vor Sie sind hier Direkt zum Inhalt vor rechter Kolumne mit zusaetzlichen Informationen vor Suche vor Fußbereich mit Impressum

Document Actions

BWL XI: Software Paper on Reinforcement Learning in Journal of Open Source Software

A new software paper has been accepted for publication in Journal of Open Source Software. The paper presents the first R package for performing model-free reinforcement learning in R.

Title: ReinforcementLearning: A Package to Perform Model-Free Reinforcement Learning in R

Authors: Nicolas Pröllochs, Stefan Feuerriegel (ETH Zurich)



Reinforcement learning refers to a group of methods from artificial intelligence where an agent performs learning through trial and error. It differs from supervised learning, since reinforcement learning requires no explicit labels; instead, the agent interacts continuously with its environment. That is, the agent starts in a specific state and then performs an action, based on which it transitions to a new state and, depending on the outcome, receives a reward. Different strategies (e.g. Q-learning) have been proposed to maximize the overall reward, resulting in a so-called policy, which defines the best possible action in each state. Mathematically, this process can be formalized by a Markov decision process and it has been implemented by packages in R; however, there is currently no package available for reinforcement learning. As a remedy, this paper demonstrates how to perform reinforcement learning in R and, for this purpose, introduces the ReinforcementLearning package. The package provides a remarkably flexible framework and is easily applied to a wide range of different problems. We demonstrate its use by drawing upon common examples from the literature (e.g. finding optimal game strategies).


The ReinforcementLearning R package is available on CRAN.