Personal tools

Information zum Seitenaufbau und Sprungmarken fuer Screenreader-Benutzer: Ganz oben links auf jeder Seite befindet sich das Logo der JLU, verlinkt mit der Startseite. Neben dem Logo kann sich rechts daneben das Bannerbild anschließen. Rechts daneben kann sich ein weiteres Bild/Schriftzug befinden. Es folgt die Suche. Unterhalb dieser oberen Leiste schliesst sich die Hauptnavigation an. Unterhalb der Hauptnavigation befindet sich der Inhaltsbereich. Die Feinnavigation findet sich - sofern vorhanden - in der linken Spalte. In der rechten Spalte finden Sie ueblicherweise Kontaktdaten. Als Abschluss der Seite findet sich die Brotkrumennavigation und im Fussbereich Links zu Barrierefreiheit, Impressum, Hilfe und das Login fuer Redakteure. Barrierefreiheit JLU - Logo, Link zur Startseite der JLU-Gießen Direkt zur Navigation vertikale linke Navigationsleiste vor Sie sind hier Direkt zum Inhalt vor rechter Kolumne mit zusaetzlichen Informationen vor Suche vor Fußbereich mit Impressum

Document Actions

BWL XII: Research article accepted in the Journal of Information Systems Research

We are very pleased to announce the acceptance of an article entitled Eye-Tracking-Based Classification of Information Search Behavior using Machine Learning: Evidence from Experiments in Physical Shops and Virtual Reality Shopping Environments in a very high-ranking journal for information systems. In this article, we use approaches of machine learning to learn about the buyer at an early stage purely by means of eye movements.

We use both eye-tracking data, which we have recorded while shopping in real supermarkets, and eye-tracking data in virtual supermarkets.


The item is still in print and will soon be available online.


Titel: Eye-Tracking-Based Classification of Information Search Behavior using Machine Learning: Evidence from Experiments in Physical Shops and Virtual Reality Shopping Environments

Autoren: Jella Pfeiffer, Thies Pfeiffer, Martin Meißner und Elisa Weiß


Abstract: Classifying information search behavior helps tailor recommender systems to individual customers' shopping motives. But how can we identify these motives without requiring users to exert too much effort? Our research goal is to demonstrate that eye tracking can be used at the point of sale to do so. We focus on two frequently investigated shopping motives -- goal-directed and exploratory search. To train and test a prediction model, we conducted two eye-tracking experiments in front of supermarket shelves. The first experiment was carried out in immersive virtual reality, the second in physical reality, in other words as a field study in a real supermarket. We conducted a virtual reality study, because recently launched virtual shopping environments suggest that there is great interest in using this technology as a retail channel.


Our empirical results show that support vector machines allow the correct classification of search motives with 80% accuracy in virtual reality and 85% accuracy in physical reality. Our findings also imply that eye movements allow shopping motives to be identified relatively early in the search process: our models achieve 70% prediction accuracy after only 15 seconds in virtual reality and 75% in physical reality. Applying an ensemble method increases the prediction accuracy substantially to about 90%. Consequently, the approach that we propose could be used for the satisfiable classification of consumers in practice. Furthermore, both environments' best predictor variables overlap substantially. This finding provides evidence that, in virtual reality, information search behavior might be similar to the one used in physical reality. Finally, we also discuss managerial implications for retailers and companies that are planning to use our technology to personalize a consumer assistance system.

Filed under: fb02_forschung