Personal tools

Information zum Seitenaufbau und Sprungmarken fuer Screenreader-Benutzer: Ganz oben links auf jeder Seite befindet sich das Logo der JLU, verlinkt mit der Startseite. Neben dem Logo kann sich rechts daneben das Bannerbild anschließen. Rechts daneben kann sich ein weiteres Bild/Schriftzug befinden. Es folgt die Suche. Unterhalb dieser oberen Leiste schliesst sich die Hauptnavigation an. Unterhalb der Hauptnavigation befindet sich der Inhaltsbereich. Die Feinnavigation findet sich - sofern vorhanden - in der linken Spalte. In der rechten Spalte finden Sie ueblicherweise Kontaktdaten. Als Abschluss der Seite findet sich die Brotkrumennavigation und im Fussbereich Links zu Barrierefreiheit, Impressum, Hilfe und das Login fuer Redakteure. Barrierefreiheit JLU - Logo, Link zur Startseite der JLU-Gießen Direkt zur Navigation vertikale linke Navigationsleiste vor Sie sind hier Direkt zum Inhalt vor rechter Kolumne mit zusaetzlichen Informationen vor Suche vor Fußbereich mit Impressum

Document Actions

Research group Prof. Dr. Jürgen Janek

Physical chemistry of solids – solid state ionics and electrochemistry
Current notice

New PhD projects available in the field of Solid State Batteries. In case of interest please contact directly Prof. Janek.

Welcome to our homepage!
AG Janek 2018

 

Die AG Janek erforscht physikalisch-chemische Grundlagen von Festkörperprozessen, die für moderne Energie- und Grenzflächentechnologien wichtig sind.

Recent Publications

Benchmarking the performance of all-solid-state lithium batteries
S. Randau, D. A. Weber, O. Kötz, R. Koerver, P. Braun, A. Weber, E. Ivers-Tiffée, T. Adermann, J. Kulisch, W. G. Zeier, F. H. Richter, and J. Janek, Nat. Energy 5 (2020) 259; find paper here

 

Incorporating Diamondoids as Electrolyte Additive into the Sodium Metal Anode to Mitigate Dendrite Growth
J. J. A. Kreissl, D. Langsdorf, B. A. Tkachenko, P. R. Schreiner, J. Janek, and D. Schröder, ChemSusChem (2020); find paper here

 

Modeling Effective Ionic Conductivity and Binder Influence in Composite Cathodes for All-Solid-State Batteries
A. Bielefeld, D. A. Weber, and J. Janek, ACS Appl. Mater. Interfaces (2020); find paper here

 

Interphase Formation of PEO20:LiTFSI–Li6PS5Cl Composite Electrolytes with Lithium Metal
F. J. Simon, M. Hanauer, F. H. Richter, and J. Janek, ACS Appl. Mater. Interfaces 12 (2020) 11713; find paper here

 

LATP and LiCoPO4 thin film preparation–Illustrating interfacial issues on the way to all-phosphate SSBs
P. Hofmann, F. Walther, M. Rohnke, J. Sann, W. G. Zeier, and J. Janek, Solid State Ion. 342 (2019) 115054; find paper here

Picture of the month - August 2019

Here you can find alternating insights into our research group. Enlarged versions of all published pictures can be found here.

Die Rasterkraftmikroskopie (atomic force microscopy, AFM) ist eine Methode zur Charakterisierung einer Probenoberfläche, bei er eine Spitze nahe über die zu untersuchende Oberfläche geführt wird. Durch Messung der atomaren Kräfte zwischen Spitze und Oberfläche anhand der Auslenkung der Spitze lassen sich Informationen über die Topographie der Oberfläche gewinnen oder aber auch die magnetischen und chemischen Eigenschaften der Oberfläche bestimmen. Das Bild zeigt links die mittels AFM untersuchte Topographie einer Kathode für Lithium-Ionenbatterien, wobei als Aktivmaterial Sekundärpartikel von Li(Ni,Co,Mn)O2 mit einem Durchmesser von einigen Mikrometern in Kohlenstoff eingebettet sind. In der rechten Aufnahme wurde während der AFM-Messung eine elektrisch leitfähige Spitze verwendet, um die elektrische Leitfähigkeit der Kathode an der Oberfläche zu untersuchen. Deutlich zu erkennen ist die Wirkung des Kohlenstoffs als Leitadditiv, da ein elektrischer Strom hauptsächlich Bereich des Kohlenstoffs gemessen wird. (Bild eingereicht von Miguel Wiche und Matthias Elm)

 

Atomic Force Microscopy (AFM) is a method of characterizing a sample surface by passing a tip close to the surface to be examined. By measuring the atomic forces between the tip and the surface by means of the deflection of the tip, it is possible to obtain information about the topography of the surface or to determine the magnetic and chemical properties of the surface. The picture on the left shows the topography of a cathode for lithium-ion batteries investigated by AFM, in which as active material secondary particles of Li(Ni,Co,Mn)O2 with a diameter of a few micrometers are embedded in carbon. In the right image, an electrically conductive tip was used during the AFM measurement to examine the electrical conductivity of the cathode at the surface. Clearly recognizable is the impact of carbon as conductive additive, since an electrical current is measured mainly in the region, where carbon is found. (Picture submitted by Miguel Wiche and Matthias Elm).

The WG Janek is involved in the following networks
Logo BASF BASF-Forschungsnetzwerk "Elektrochemie und Batterien"

FestBatt

BMBF-Kompetenzcluster für Festkörperbatterien "FestBatt"

BMBF Logo

BMBF-Projekt MaLiBa

"Maßgeschneiderte Lithium-Metall-Anoden für zukünftige Batteriesysteme"

BMBF Logo

BMBF-Projekt MeLuBatt

BMBF-Projekt MeLuBatt

 "Frischer Wind für Metall/Luftsauerstoff-Batterien:

Was man von Lithium-Ionen-Batterien lernen kann"

NASEBER

 BMBF-Projekt NASEBER

"Natriumbasierte feste Sulfid- und Oxid-Elektrolyt-Batterien"

BMBF Logo

BMBF - Deutsch-Japanisches Programm


Projekt "Osaban" (Operando surface analytics for batteries with
3D-structured metal anodes)

 

Projekt "InCa" (Interfaces in Composite All-solid-state Cathodes: Advanced Characterization and Optimization; 3D analysis of structured composite cathodes)

BMBF Logo

BMBF - Deutsch-Taiwanesisches Programm

Projekt "EvaBatt"

BMBF Logo

BMBF - Deutschland-USA (DE-US)

Projekte "LiSi" und "CatSE"

DFG-logo

DFG-Exzellenzinitiative - Cluster "POLIS"

German Israeli Battery School

German Israeli Battery School